WorldWideScience

Sample records for bone mass measured

  1. Intercomparison of techniques for the non-invasive measurement of bone mass

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques

  2. DXA measurements in Rett syndrome reveal small bones with low bone mass.

    Science.gov (United States)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine; Andersen, Henrik; Nielsen, Jytte Bieber; Brøndum-Nielsen, Karen; Jensen, Jens-Erik Beck

    2011-09-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients with RTT do have low BMD when correcting for smaller bones by examination with dual-energy X-ray absorptiometry (DXA). We compared areal BMD (aBMD(spine) and aBMD(total hip) ) and volumetric bone mineral apparent density (vBMAD(spine) and vBMAD(neck) ) in 61 patients and 122 matched healthy controls. Further, spine and hip aBMD and vBMAD of patients were associated with clinical risk factors of low BMD, low-energy fractures, MECP2 mutation groups, and X chromosome inactivation (XCI). Patients with RTT had reduced bone size on the order of 10% and showed lower values of spine and hip aBMD and vBMAD (p bone mass and small bones are evident in RTT, indicating an apparent low-bone-formation phenotype. Copyright © 2011 American Society for Bone and Mineral Research.

  3. DXA measurements in rett syndrome reveal small bones with low bone mass

    DEFF Research Database (Denmark)

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine

    2011-01-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients...

  4. Exercise and bone mass in adults.

    Science.gov (United States)

    Guadalupe-Grau, Amelia; Fuentes, Teresa; Guerra, Borja; Calbet, Jose A L

    2009-01-01

    There is a substantial body of evidence indicating that exercise prior to the pubertal growth spurt stimulates bone growth and skeletal muscle hypertrophy to a greater degree than observed during growth in non-physically active children. Bone mass can be increased by some exercise programmes in adults and the elderly, and attenuate the losses in bone mass associated with aging. This review provides an overview of cross-sectional and longitudinal studies performed to date involving training and bone measurements. Cross-sectional studies show in general that exercise modalities requiring high forces and/or generating high impacts have the greatest osteogenic potential. Several training methods have been used to improve bone mineral density (BMD) and content in prospective studies. Not all exercise modalities have shown positive effects on bone mass. For example, unloaded exercise such as swimming has no impact on bone mass, while walking or running has limited positive effects. It is not clear which training method is superior for bone stimulation in adults, although scientific evidence points to a combination of high-impact (i.e. jumping) and weight-lifting exercises. Exercise involving high impacts, even a relatively small amount, appears to be the most efficient for enhancing bone mass, except in postmenopausal women. Several types of resistance exercise have been tested also with positive results, especially when the intensity of the exercise is high and the speed of movement elevated. A handful of other studies have reported little or no effect on bone density. However, these results may be partially attributable to the study design, intensity and duration of the exercise protocol, and the bone density measurement techniques used. Studies performed in older adults show only mild increases, maintenance or just attenuation of BMD losses in postmenopausal women, but net changes in BMD relative to control subjects who are losing bone mass are beneficial in

  5. Peak bone mineral density, lean body mass and fractures

    NARCIS (Netherlands)

    Boot, Annemieke M.; de Ridder, Maria A. J.; van der Sluis, Inge M.; van Slobbe, Ingrid; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    Background: During childhood and adolescence, bone mass and lean body mass (LBM) increase till a plateau is reached. In this longitudinal and cross-sectional study, the age of reaching the plateau was evaluated for lumbar spine and total body bone mass measurements and lean body mass. The

  6. Role of clinical indications of bone mass measurement with bi-photonic X-ray absorptiometry. Interet et indications cliniques des mesures de masse osseuse par absorptiometrie biphotonique a rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    Bone densitometry by precise, reliable and non-traumatic methods such as X-ray bi-phonon absorptiometry, is the only way to predict osteoporosis fractures risks. The whole epidemiological studies establish that bone mass loss and osteoporosis risk are directly linked. The measurement of the bone mass is the basis of osteoporosis prevention for elderly women, and of other clinical situations. This paper gives, by a critical analysis of available data, advantages and limits of bone mass measurements by X-ray bi-phonon absorptiometry, and essential clinical indications. (A.B.). 181 refs.

  7. Establishment of peak bone mass.

    Science.gov (United States)

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.

  8. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    International Nuclear Information System (INIS)

    Riis, B.J.; Christiansen, C.

    1988-01-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement

  9. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    International Nuclear Information System (INIS)

    Fränzle, Andrea; Giske, Kristina; Bretschi, Maren; Bäuerle, Tobias; Hillengass, Jens; Bendl, Rolf

    2013-01-01

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approach is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean

  10. Maternal first-trimester diet and childhood bone mass: the Generation R Study.

    Science.gov (United States)

    Heppe, Denise H M; Medina-Gomez, Carolina; Hofman, Albert; Franco, Oscar H; Rivadeneira, Fernando; Jaddoe, Vincent W V

    2013-07-01

    Maternal diet during pregnancy has been suggested to influence bone health in later life. We assessed the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass. In a prospective cohort study in 2819 mothers and their children, we measured first-trimester daily energy, protein, fat, carbohydrate, calcium, phosphorus, and magnesium intakes by using a food-frequency questionnaire and homocysteine, folate, and vitamin B-12 concentrations in venous blood. We measured childhood total body bone mass by using dual-energy X-ray absorptiometry at the median age of 6.0 y. Higher first-trimester maternal protein, calcium, and phosphorus intakes and vitamin B-12 concentrations were associated with higher childhood bone mass, whereas carbohydrate intake and homocysteine concentrations were associated with lower childhood bone mass (all P-trend childhood bone mass. In the fully adjusted regression model that included all dietary factors significantly associated with childhood bone mass, maternal phosphorus intake and homocysteine concentrations most-strongly predicted childhood bone mineral content (BMC) [β = 2.8 (95% CI: 1.1, 4.5) and β = -1.8 (95% CI: -3.6, 0.1) g per SD increase, respectively], whereas maternal protein intake and vitamin B-12 concentrations most strongly predicted BMC adjusted for bone area [β = 2.1 (95% CI: 0.7, 3.5) and β = 1.8 (95% CI: 0.4, 3.2) g per SD increase, respectively]. Maternal first-trimester dietary factors are associated with childhood bone mass, suggesting that fetal nutritional exposures may permanently influence bone development.

  11. Validation of a physical activity questionnaire to measure the effect of mechanical strain on bone mass.

    Science.gov (United States)

    Kemper, Han C G; Bakker, I; Twisk, J W R; van Mechelen, W

    2002-05-01

    Most of the questionnaires available to estimate the daily physical activity levels of humans are based on measuring the intensity of these activities as multiples of resting metabolic rate (METs). Metabolic intensity of physical activities is the most important component for evaluating effects on cardiopulmonary fitness. However, animal studies have indicated that for effects on bone mass the intensity in terms of energy expenditure (metabolic component) of physical activities is less important than the intensity of mechanical strain in terms of the forces by the skeletal muscles and/or the ground reaction forces. The physical activity questionnaire (PAQ) used in the Amsterdam Growth and Health Longitudinal Study (AGAHLS) was applied to investigate the long-term effects of habitual physical activity patterns during youth on health and fitness in later adulthood. The PAQ estimates both the metabolic components of physical activities (METPA) and the mechanical components of physical activities (MECHPA). Longitudinal measurements of METPA and MECHPA were made in a young population of males and females ranging in age from 13 to 32 years. This enabled evaluation of the differential effects of physical activities during adolescence (13-16 years), young adulthood (21-28 years), and the total period of 15 years (age 13-28 years) on bone mineral density (BMD) of the lumbar spine, as measured by dual-energy X-ray absorptiometry (DXA) in males (n = 139) and females (n = 163) at a mean age of 32 years. The PAQ used in the AGAHLS during adolescence (13-16 years) and young adulthood (21-28 years) has the ability to measure the physical activity patterns of both genders, which are important for the development of bone mass at the adult age. MECHPA is more important than METPA. The highest coefficient of 0.33 (p PAQ was established by comparing PAQ scores during four annual measurements in 200 boys and girls with two other objective measures of physical activity: movement

  12. Peak bone mass density among residents of Metro Manila

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.B.; Guanzon, M.L.V.V.; Balderas, J.A.J.; Villaruel, C.M.; Santos, F.

    1996-01-01

    To determine the peak bone mass density among residents of Metro Manila using dual x-ray absorptiometry (DEXA).The design used is cross-sectional study. The study include 23 females and 22 males, with 3 to 4 subjects for each age range of 5. The methods used was bone mass density measurements on the lumbar spine and the femur using dual x-ray absorptiometry (DPXI lunar) were taken. The values were also age-matched and matched with that of a young adult based on programmed Caucasian norm provided by Lunar Co. The values were then scattered against age for each sex. Ten (10) cc of blood was also extracted from the patients, with 5 cc of blood separated for future studies. Patients were also interviewed as to their lifestyle, diet, use of contraceptive pill or hormonal replacement treatment, using a Filipino version of the revised questionnaire on the WHO Study on osteoporosis. The mean bone mass density at the L21.4 level for females was 1.12±0.11 g/cm 2 and 0,91±0.11 g/cm 2 at the femur. The highest BMD in both the lumbar spine femoral neck measurements among females was achieved between the ages 30-35 years of age with the lowest BMD occurring between 15-20 yrs. old and incidentally in 2 subjects with ages between 40-44. There seems to be little bone loss among beyond the age 35, unlike in the females. Bone mass density among a sample Metro Manila residents was determined using DEXA and the measurements on the lumbar spine and femoral neck. These were age-matched with that of young adult based on Caucasian norm provided by the Lunar Co. Peak bone mass density in the L2L4 level among the females is reached between the ages 30-35 years old, after which there is progressive bone loss with values in the 45-50 years old approximating the values in the 15-19 years old age range. A similar pattern is seen in the measurements taken at the femoral neck. Among males, the peak BMD is reached during the 30-35 years old, but there seems to be no rapid decline or rapid bone

  13. Fat mass measured by DXA varies with scan velocity

    DEFF Research Database (Denmark)

    Black, Eva; Petersen, Liselotte; Kreutzer, Martin

    2002-01-01

    To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....

  14. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass

    International Nuclear Information System (INIS)

    Berthold, L.D.; Alzen, G.; Haras, G.; Mann, M.

    2006-01-01

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  15. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  16. Bone mineral measurements and the pathogenesis of osteoporosis

    International Nuclear Information System (INIS)

    Aloia, J.F.; Vaswani, A.N.; Ellis, K.J.; Cohn, S.H.

    1986-01-01

    Low bone mass (osteopenia) is a major factor in the development of osteoporotic fractures in women after the menopause. The pathogenesis of postmenopausal osteoporosis has been pursued by dual lines of investigation: (1) development of a model to describe involutional bone loss, (2) identification of those factors which result in some healthy women having a greater risk for osteoporosis than others. Bone mineral measurements have been made using in vivo neutron activation analysis and whole body counting for the measurement of total body calcium (TBCa), single photon absorptiometry for the measurement of bone mineral content of the distal radius and dual photon absorptiometry for measurement of the bone density of the spine. TBCa is higher in men than women and is lost at a slow linear rate in men. Blacks have a skeletal mass about 8-9% higher than Caucasians. Women have a similar loss of TBCa to men prior to menopause, but then have an accelerated rate of loss after menopause. The change in bone density of the radius and spine with increasing age is also best described by a 2 phase regression in women, with appreciable loss after age 50

  17. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found in lum.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  18. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    Science.gov (United States)

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  19. Bone mass and turnover in fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Gam, A; Egsmose, C

    1993-01-01

    Physical inactivity accelerates bone loss. Since patients with fibromyalgia are relatively physically inactive, bone mass and markers of bone metabolism were determined in 12 premenopausal women with fibromyalgia and in healthy age matched female control subjects. No differences were found...... in lumbar bone mineral density, femoral neck bone mineral density, serum levels of alkaline phosphatase, osteocalcin, ionized calcium and phosphate. The urinary excretion of both hydroxyproline and calcium relative to urinary creatinine excretion was significantly higher in patients with fibromyalgia, p = 0.......01. This was linked to lower urinary creatinine excretion (p = 0.02) probably reflecting lower physical activity in the patients with fibromyalgia. We conclude that bone mass and turnover are generally not affected in premenopausal women with fibromyalgia....

  20. A clinical study evaluating bone mineral mass in the radius during skeletal growth

    International Nuclear Information System (INIS)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome. (author)

  1. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Determinants of bone mass and bone geometry in adolescent and young adult women

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Hoorneman, G.; Väänänen, K.; Charles, P.; Ando, S.; Maggiolini, M.; Charzewska, J.; Rotily, M.; Deloraine, A.; Heikkinen, J.; Juvin, R.; Schaafsma, G.

    2000-01-01

    Bone mass and bone geometry are considered to have independent effects on bone strength. The purpose of this study was to obtain data on bone mass and geometry in young female populations and how they are influenced by body size and lifestyle factors. In a cross-sectional, observational study in six

  3. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    Directory of Open Access Journals (Sweden)

    Kolsoom Parvaneh

    2014-01-01

    Full Text Available A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1 increasing mineral solubility due to production of short chain fatty acids; (2 producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3 reducing intestinal inflammation followed by increasing bone mass density; (4 hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  4. Effects of Eggshell Calcium Supplementation on Bone Mass in Postmenopausal Vietnamese Women.

    Science.gov (United States)

    Sakai, Seigo; Hien, Vu Thi Thu; Tuyen, Le Danh; Duc, Ha Anh; Masuda, Yasunobu; Yamamoto, Shigeru

    2017-01-01

    Bone mass decreases along with aging, especially for women after menopause because of lower estrogen secretion together with low calcium intake. This study was conducted to study the effect of eggshell calcium supplementation on bone mass in 54 postmenopausal Vietnamese women living in a farming area about 60 km from Hanoi, Vietnam. Sets of 3 subjects matched by age, bone mass, BMI and calcium intake were divided randomly into 3 groups with 18 subjects in each group. The eggshell calcium group was administered 300 mg/d calcium from eggshell, the calcium carbonate group 300 mg/d calcium from calcium carbonate and the placebo group received no calcium supplementation. Bone mass (Speed of Sound (SOS)) was measured at the beginning (the baseline), the middle (6th month) and the end of the study (12th month) by the single blind method. SOS of the eggshell group increased significantly at 12 mo (p0.05). In conclusion, eggshell calcium was more effective in increasing bone mass than calcium carbonate in postmenopausal Vietnamese women.

  5. Trabecular bone mineral density measured by quantitative CT of the lumbar spine in children and adolescents: reference values and peak bone mass; Trabekulaere Knochendichte der Lendenwirbelsaeule bei Kindern und Jugendlichen in der quantitativen CT: Referenzwerte und Peak Bone Mass

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, L.D.; Alzen, G. [Kinderradiologie, Zentrum fuer Radiologie, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany); Haras, G. [Siemens AG, Medical Solutions, Forchheim (Germany); Mann, M. [AG Medizinische Statistik, Universitaetsklinikum Giessen und Marburg GmbH, Standort Giessen (Germany)

    2006-12-15

    Purpose: The aim of this study was to assess bone density values in the trabecular substance of the lumbar vertebral column in children and young adults in Germany from infancy to the age of peak bone mass. Materials and Methods: We performed quantiative computed tomography (QCT) on the first lumbar vertebra in 28 children and adolescents without diseases that may influence bone metabolism (15 boys, 13 girls, mean ages 11 and 8 years, respectively). We also measured 17 healthy young adults (9 men, 8 women, mean ages 20 and 21 years). We used a Somatom Balance Scanner (Siemens, Erlangen) and the Siemens Osteo software. Scan parameters: Slice thickness 1 cm, 80 kV, 81 or 114 mAs. We measured the trabecular bone density and the area and height of the vertebra and calculated the volume and content of calcium hydroxyapatite (Ca-HA) in the trabecular substance of the first lumbar vertebra. Results: Prepubertal boys had a mean bone density of 148.5 (median [med] 150.1, standard deviation [SD] 15.4) mg/Ca-HA per ml bone, and prepubertal girls had a mean density of 149.5 (med 150.8, SD 23.5) mg/ml. We did not observe a difference between prepubertal boys and girls. After puberty there was a significant difference (p<0.001) between males and females: Mean density (male) 158.0, med 162.5, SD 24.0 mg/ml, mean density (female) 191.2, med 191.3, SD 17.7 mg/ml. The Ca-HA content in the trabecular bone of the first lumbar vertebra was 1.1 (med 1.1, SD 0.5) g for prepubertal boys and 1.1 (0.9, 0.4) g for prepubertal girls. For post-pubertal males, the mean Ca-HA content was 3.5 g, med 3.5 SD 0.5 g, and for post-pubertal females, the mean content was 2.8, med 2.7, SD 0.4 g. Conclusion: The normal trabecular bone mineral density is 150 mg/ml with a standard deviation of 20 mg/ml independent of age or gender until the beginning of puberty. Peak bone mass (bone mineral content) in the trabecular substance of the lumbar vertebral column is higher in males than in females, and peak bone

  6. Association between bone mass as assessed by quantitative ultrasound and physical function in elderly women: The Fujiwara-kyo study

    Directory of Open Access Journals (Sweden)

    Akira Minematsu

    2017-06-01

    Conclusions: Measurements of physical function can effectively identify elderly women with low bone mass at an early stage without the need for bone mass measurements. In particular, one-leg standing time and 10-m gait time were good predictors of low bone mass, and is easy to measure, low-cost, and can be self-measured. These findings will be helpful in the prevention and treatment of osteoporosis.

  7. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  8. Relative contributions of lean and fat mass to bone strength in young Hispanic and non-Hispanic girls.

    Science.gov (United States)

    Hetherington-Rauth, Megan; Bea, Jennifer W; Blew, Robert M; Funk, Janet L; Hingle, Melanie D; Lee, Vinson R; Roe, Denise J; Wheeler, Mark D; Lohman, Timothy G; Going, Scott B

    2018-05-22

    With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. Lean mass was a significant positive contributor to all bone outcomes (p Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic. Copyright © 2018. Published by Elsevier Inc.

  9. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... bone density are seen even during childhood and adolescence. Hormonal factors. The hormone estrogen has an effect on peak bone mass. For example, women who had their first menstrual cycle at an early age and those who use oral contraceptives, which contain estrogen, often have high bone mineral ...

  10. Aging and bone. X-ray bone densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Rikushi (Shiga Univ. of Medical Sciences, Otsu (Japan))

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.).

  11. Aging and bone. X-ray bone densitometry

    International Nuclear Information System (INIS)

    Morita, Rikushi

    1994-01-01

    Bone mass at all ages of the individuals is the integration of genetic factors, nutrition, physical exercise, hormonal environments, and other factors influencing the bone. It is also a measurable risk factor for osteoporosis which may subsequently cause bone fractures. Thus measuring bone mass is required to predict the probability of developing bone fractures subsequent to osteoporosis, and to diagnose osteoporosis, and to manage the osteoporosis patient. This paper discusses bone mineral measurements according to their characteristics and clinical application. Methodology for measuring bone mass has rapidly progressed during the past 15 years, which covers photodensitometry, photon absorptiometry (single energy X-ray absorptiometry and dual energy X-ray absorptiometry), quantitative CT, and ultrasound. These techniques have allowed noninvasive measurement of bone mineral density in any site of the skeleton with high accuracy and precision, although a single use of the technique cannot satisfy the complete clinical requirements. Thus the most appropriate method for measuring bone mineral density is important to monitor bone mass change and according to the specific site. (N.K.)

  12. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    Science.gov (United States)

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (partistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all partistic gymnasts had higher lean mass (partistic and the rhythmic gymnasts (partistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, partistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  13. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys.

    Science.gov (United States)

    Dolan, Eimear; McGoldrick, Adrian; Davenport, Colin; Kelleher, Grainne; Byrne, Brendan; Tormey, William; Smith, Diarmuid; Warrington, Giles D

    2012-09-01

    Horse-racing jockeys are a group of weight-restricted athletes, who have been suggested as undertaking rapid and extreme weight cycling practices in order to comply with stipulated body-mass standards. The aim of this study was to examine bone mass, turnover and endocrine function in jockeys and to compare this group with age, gender and body mass index matched controls. Twenty male professional jockeys and 20 healthy male controls participated. Dual energy X-ray absorptiometry scans and early morning fasting blood and urine samples were used to measure bone mass, turnover and a hormonal profile. Total body bone mineral density (BMD) was significantly lower in jockeys (1.143 ± 0.05 vs. 1.27 ± 0.06 g cm(-3), p professional jockeys have an elevated rate of bone loss and reduced bone mass that appears to be associated with disrupted hormonal activity. It is likely that this may have occurred in response to the chronic weight cycling habitually experienced by this group.

  14. Clinical study evaluating bone mineral mass in the radius during skeletal growth. Single photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Hagino, Hiroshi

    1989-01-01

    Using 125-I single photon absorptiometry, bone mineral measurements were performed on 206 healthy Japanese children (2 to 19 years of age). Bone mineral content (BMC), bone width (BW) and BMC/BW values were determined for the radius at distal 1/6 site (metaphysis) and distal 1/3 site (diaphysis). BMC/BW values at both sites correlated well with body height and weight. Bone mass in the diaphysis (distal 1/3 site) increased linearly during the 2-19 years of skeletal growth, but bone mass in the metaphysis (1/6 site) increased steeply during the pubertal period. In children receiving glucocorticoid therapy, bone mass was reduced in proportion to the duration of drug administration. In children under anticonvulsant therapy, the yearly increse in bone mass was significantly low especially in those patients with poor physical activity levels. Bone mineral decrease in the radius occurred in the children with hypopituitalism, hypothyroidism (cretinism), hyperthyroidism and Turner's syndrome.

  15. Relationship of bony trabecular characteristics and age to bone mass

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Song, Young Han; Yoon, Young Nam; Lee, Wan; Lee, Byung Do

    2006-01-01

    Bony strength is dependent on bone mass and bony structure. So this study was designed to investigate the relationship between the bone mass and bony mass and bony trabecular characteristics. Study subjects were 51 females (average age 68.6 years) and 20 males (average age 66.4 years). Bony mineral density (BMD, grams/cm 2 ) of proximal femur was measured by a dual energy X-ray absorptiometry (DEXA). Regions of interest (ROIs) were selected from the digitized radiographs of proximal femur. A customized computer program processed morphologic operations (MO) of ROIs. 44 skeletal variables of MO were calculated from ROIs on the Ward's triangle and greater trochanter of femur. WHO BMD classes were predicted by MO variables of the same ROI. Classification and Regression Tree analysis was used for calculating weighted kappa values, sensitivity and specificity of MO. The discriminating factors of morphologic operation were branch point, branch point [per cm sq]. Age also played important role in distinguishing osteoporotic classes. The sensitivity of MO at Ward's triangle and Greater Trochanter was 91.8%, 65.6%, respectively. The specificity of MO was 100% at Ward's triangle and Greater Trochanter. Bony trabecular characteristics obtained using radiological bone morphometric analysis seem to be related to bone mass

  16. Quantitative computed tomography in measurement of vertebral trabecular bone mass

    International Nuclear Information System (INIS)

    Nilsson, M.; Johnell, O.; Jonsson, K.; Redlund-Johnell, I.

    1988-01-01

    Measurement of bone mineral concentration (BMC) can be done by several modalities. Quantitative computed tomography (QCT) can be used for measurements at different sites and with different types of bone (trabecular-cortical). This study presents a modified method reducing the influence of fat. Determination of BMC was made from measurements with single-energy computed tomography (CT) of the mean Hounsfield number in the trabecular part of the L1 vertebra. The method takes into account the age-dependent composition of the trabecular part of the vertebra. As the amount of intravertebral fat increases with age, the effective atomic number for these parts decreases. This results in a non-linear calibration curve for single-energy CT. Comparison of BMC values using the non-linear calibration curve or the traditional linear calibration with those obtained with a pixel-by-pixel based electron density calculation method (theoretically better) showed results clearly in favor of the non-linear method. The material consisted of 327 patients aged 6 to 91 years, of whom 197 were considered normal. The normal data show a sharp decrease in trabecular bone after the age of 50 in women. In men a slower decrease was found. The vertebrae were larger in men than in women. (orig.)

  17. A study on assessment of bone mass from aluminum-equivalent image by digital imaging system

    International Nuclear Information System (INIS)

    Kim, Jin Soo; Kim, Jae Duck; Choi, Eui Hwan

    1997-01-01

    The purpose of this study was to evaluated the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxy apatite block and hydroxyapatite mass. The results of this study were as follows : 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated (r2=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference (P<0.05) between them. 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r2 =0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different (P<0.05).

  18. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    Science.gov (United States)

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  19. Bone mass in Indian children--relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study.

    Science.gov (United States)

    Ganpule, A; Yajnik, C S; Fall, C H D; Rao, S; Fisher, D J; Kanade, A; Cooper, C; Naik, S; Joshi, N; Lubree, H; Deshpande, V; Joglekar, C

    2006-08-01

    Bone mass is influenced by genetic and environmental factors. Recent studies have highlighted associations between maternal nutritional status during pregnancy and bone mass in the offspring. We hypothesized that maternal calcium intakes and circulating micronutrients during pregnancy are related to bone mass in Indian children. DESIGN/SETTING/PARTICIPANTS/MAIN OUTCOME MEASURES: Nutritional status was measured at 18 and 28 wk gestation in 797 pregnant rural Indian women. Measurements included anthropometry, dietary intakes (24-h recall and food frequency questionnaire), physical workload (questionnaire), and circulating micronutrients (red cell folate and plasma ferritin, vitamin B12, and vitamin C). Six years postnatally, total body and total spine bone mineral content and bone mineral density (BMD) were measured using dual-energy x-ray absorptiometry (DXA) in the children (n = 698 of 762 live births) and both parents. Both parents' DXA measurements were positively correlated with the equivalent measurements in the children (P pregnancy (milk, milk products, pulses, non-vegetarian foods, green leafy vegetables, fruit) had higher total and spine bone mineral content and BMD, and children of mothers with higher folate status at 28 wk gestation had higher total and spine BMD, independent of parental size and DXA measurements. Modifiable maternal nutritional factors may influence bone health in the offspring. Fathers play a role in determining their child's bone mass, possibly through genetic mechanisms or through shared environment.

  20. Corticosteroid therapy and bone mass - comparisOfl of rheumatoid ...

    African Journals Online (AJOL)

    osis Int sis and et of ine in l energy. Tissue. Invasive. -72. cl Med f the ed. The ce ... needs to be re-evaluated, favouring earlier use of such ... There are also very few reports of bone ... compare bone mass at various sites in young, ambulant .... Bone mass ill patients with RA and SLE in relation to ..... on bone in young adults.

  1. Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Warming, Lise; Ravn, Pernille; Christiansen, Claus

    2003-01-01

    as double-layer thickness. Body composition was measured by dual energy x-ray absorptiometry, which divides the body into fat mass, lean mass, and bone mass, both for the total body and regional body compartments. An abdominal region was inserted manually. Statistics were Pearson correlations and analysis...... of variance. RESULTS: Endometrial thickness and total body bone mass were correlated, respectively, to body mass index (r = 0.14, P ... correlate with increased endometrial thickness and bone mass....

  2. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  3. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    International Nuclear Information System (INIS)

    Delmas, P.D.; Duboeuf, F.; Braillon, P.; Meunier, P.J.

    1988-01-01

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments [fr

  4. Measurement of lumbar spine bone mineral content using dual photon absorptiometry. Usefulness in metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, P.D.; Duboeuf, F.; Braillon, P.; Meunier, P.J.

    1988-06-02

    Measurement of bone density using an accurate, non-invasive method is a crucial step in the clinical investigation of metabolic bone diseases, especially osteoporosis. Among the recently available techniques, measurement of lumbar spine bone mineral content (BMC) using dual photon absorptiometry appears as the primary method because it is simple, inexpensive, and involves low levels of radiation exposure. In this study, we measured the BMC in 168 normal adults and 95 patients. Results confirmed the good reproducibility and sensitivity of this technique for quantifying bone loss in males and females with osteoporosis. Significant bone loss was found in most females with primary hyperparathyroidism. Dual photon absorptiometry can also be used for quantifying increases in bone mass in Paget disease of bone and diffuse osteosclerosis. Osteomalacia is responsible for a dramatic fall in BMC reflecting lack of mineralization of a significant portion of the bone matrix, a characteristic feature in this disease. Furthermore, in addition to being useful for diagnostic purposes and for evaluation of the vertebral fracture risk, lumbar spine absorptiometry can be used for monitoring the effectiveness of bone-specific treatments.

  5. Bone mass in schizophrenia and normal populations across different decades of life

    Directory of Open Access Journals (Sweden)

    Chueh Ching-Mo

    2009-01-01

    Full Text Available Abstract Background Chronic schizophrenic patients have been reported as having higher osteoporosis prevalence. Survey the bone mass among schizophrenic patients and compare with that of the local community population and reported data of the same country to figure out the distribution of bone mass among schizophrenic patients. Methods 965 schizophrenic patients aged 20 years and over in Yuli Veterans Hospital and 405 members aged 20 and over of the community living in the same town as the institute received bone mass examination by a heel qualitative ultrasound (QUS device. Bone mass distribution was stratified to analyzed and compared with community population. Results Schizophrenic patients have lower bone mass while they are young. But aging effect on bone mass cannot be seen. Accelerated bone mass loss during menopausal transition was not observed in the female schizophrenic patients as in the subjects of the community female population. Conclusion Schizophrenic patients have lower bone mass than community population since they are young. Further study to investigate the pathophysiological process is necessary to delay or avoid the lower bone mass in schizophrenia patients.

  6. Thin healthy women have a similar low bone mass to women with anorexia nervosa.

    Science.gov (United States)

    Fernández-García, D; Rodríguez, M; García Alemán, J; García-Almeida, J M; Picón, M J; Fernández-Aranda, F; Tinahones, F J

    2009-09-01

    An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI 18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients.

  7. Vitamin D and estrogen receptor-alpha genotype and indices of bone mass and bone turnover in Danish girls

    DEFF Research Database (Denmark)

    Cusack, S.; Mølgaard, C.; Michaelsen, K. F.

    2006-01-01

    (VDR) (FokI, TaqI) and estrogen receptor-alpha (ER alpha) (PvuII, XbaI), and bone mineral density (BMD), bone mineral content (BMC), and markers of bone turnover in 224 Danish girls aged 11-12 years. BMD and BMC were measured by dual-energy X-ray absorptiometry. Serum osteocalcin, 25(OH......Peak bone mass is a major determinant of osteoporosis risk in later life. It is under strong genetic control; however, little is known about the identity of the genes involved. In the present study, we investigated the relationship between polymorphisms in the genes encoding the vitamin D receptor...

  8. Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Jensen, Trine

    2016-01-01

    remission (0.0032 vs. 0.0058 g/cm(2)/year; p clinical practice, and only......BACKGROUND: Rheumatoid arthritis is characterised by progressive joint destruction and loss of periarticular bone mass. Hand bone loss (HBL) has therefore been proposed as an outcome measure for treatment efficacy. A definition of increased HBL adjusted for age- and sex-related bone loss is lacking....... In this study, we aimed to: 1) establish reference values for normal hand bone mass (bone mineral density measured by digital x-ray radiogrammetry (DXR-BMD)); and 2) examine whether HBL is normalised in rheumatoid arthritis patients during treatment with tumour necrosis factor alpha inhibitors (TNFI). METHODS...

  9. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  10. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    Science.gov (United States)

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  11. Assessment of bone mass by image analysis of metacarpal bone roentgenograms

    International Nuclear Information System (INIS)

    Hayashi, Yasufumi; Yamamoto, Kichizo; Fukunaga, Masao; Ishibashi, Toshinobu; Takahashi, Kichiya; Nishii, Yasuho.

    1990-01-01

    A digital image processing (DIP) method for assessing bone mass was developed on the basis of image analysis of roentgenograms. Linearity between DIP values and the actual calcium carbonate content was scarcely affected even if roentgenograms were made with bone phantoms placed in different depths of water or by altering the voltage of X-ray generation. In clinical studies, coefficients of variation (CV) for various measurements were lower than 2.4%. When the correlation between the DIP values and the bone mineral densities in the distal one-third of the radius, and the 2nd to 4th lumbar vertebrae were investigated in 340 females, there were good positive correlations of r=0.799, and r=0.611, respectively (p<0.001). The DIP value was significantly lower in patients showing a low Singh index and in those with vertebral fractures than in other subjects. These results suggest that the DIP method provides an index with which to assess the efficacy of treatment and which can be used as a criterion in screening for osteoporosis. (author)

  12. Effect of fat mass and lean mass on bone mineral density in postmenopausal and perimenopausal Thai women

    Directory of Open Access Journals (Sweden)

    Namwongprom S

    2013-02-01

    Full Text Available Sirianong Namwongprom,1 Sattaya Rojanasthien,2 Ampica Mangklabruks,3 Supasil Soontrapa,4 Chanpen Wongboontan,5 Boonsong Ongphiphadhanakul61Clinical Epidemiology Program and Department of Radiology, 2Department of Orthopaedics, 3Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 4Department of Orthopaedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, 5Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 6Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, ThailandBackground: The purpose of this study was to investigate the association between fat mass, lean mass, and bone mineral density (BMD in postmenopausal and perimenopausal Thai women.Methods: A cross-sectional study was conducted in 1579 healthy Thai women aged 40–90 years. Total body, lumbar spine, total femur, and femoral neck BMD and body composition were measured by dual x-ray absorptiometry. To evaluate the associations between fat mass and lean mass and various measures of BMD, multivariable linear regression models were used to estimate the regression coefficients for fat mass and lean mass, first in separate equations and then with both fat mass and lean mass in the same equation.Results: Among the study population, 1448 subjects (91.7% were postmenopausal and 131 (8.3% were perimenopausal. In postmenopausal women, after controlling for age, height, and duration of menopause, both fat mass and lean mass were positively correlated with BMD when they were analyzed independently of each other. When included in the same equation, both fat mass and lean mass continued to show a positive effect, but lean mass had a significantly greater impact on BMD than fat mass at all regions except for total body. Lean mass but not fat mass had a positive effect on BMD at all skeletal sites except the lumbar spine, after controlling for age and height in perimenopausal

  13. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  14. Common endocrine control of body weight, reproduction, and bone mass

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  15. Effect of age and disease on bone mass in Japanese patients with schizophrenia.

    Science.gov (United States)

    Sugawara, Norio; Yasui-Furukori, Norio; Umeda, Takashi; Tsuchimine, Shoko; Fujii, Akira; Sato, Yasushi; Saito, Manabu; Furukori, Hanako; Danjo, Kazuma; Matsuzaka, Masashi; Takahashi, Ippei; Kaneko, Sunao

    2012-02-20

    There have been a limited number of studies comparing bone mass between patients with schizophrenia and the general population. The aim of this study was to compare the bone mass of schizophrenia patients with that of healthy subjects in Japan. We recruited patients (n = 362), aged 48.8 ± 15.4 (mean ± SD) years who were diagnosed with schizophrenia or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV). Bone mass was measured using quantitative ultrasound densitometry of the calcaneus. The osteosono-assessment index (OSI) was calculated as a function of the speed of sound and the transmission index. For comparative analysis, OSI data from 832 adults who participated in the Iwaki Health Promotion Project 2009 was used as representative of the general community. Mean OSI values among male schizophrenic patients were lower than those in the general population in the case of individuals aged 40 and older. In females, mean OSI values among schizophrenic patients were lower than those in the general community in those aged 60 and older. In an analysis using the general linear model, a significant interaction was observed between subject groups and age in males. Older schizophrenic patients exhibit lower bone mass than that observed in the general population. Our data also demonstrate gender and group differences among schizophrenic patients and controls with regard to changes in bone mass associated with aging. These results indicate that intervention programs designed to delay or prevent decreased bone mass in schizophrenic patients might be tailored according to gender.

  16. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  17. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    Science.gov (United States)

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  18. Effect of age and disease on bone mass in Japanese patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Sugawara Norio

    2012-02-01

    Full Text Available Abstract Background There have been a limited number of studies comparing bone mass between patients with schizophrenia and the general population. The aim of this study was to compare the bone mass of schizophrenia patients with that of healthy subjects in Japan. Methods We recruited patients (n = 362, aged 48.8 ± 15.4 (mean ± SD years who were diagnosed with schizophrenia or schizoaffective disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV. Bone mass was measured using quantitative ultrasound densitometry of the calcaneus. The osteosono-assessment index (OSI was calculated as a function of the speed of sound and the transmission index. For comparative analysis, OSI data from 832 adults who participated in the Iwaki Health Promotion Project 2009 was used as representative of the general community. Results Mean OSI values among male schizophrenic patients were lower than those in the general population in the case of individuals aged 40 and older. In females, mean OSI values among schizophrenic patients were lower than those in the general community in those aged 60 and older. In an analysis using the general linear model, a significant interaction was observed between subject groups and age in males. Conclusions Older schizophrenic patients exhibit lower bone mass than that observed in the general population. Our data also demonstrate gender and group differences among schizophrenic patients and controls with regard to changes in bone mass associated with aging. These results indicate that intervention programs designed to delay or prevent decreased bone mass in schizophrenic patients might be tailored according to gender.

  19. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  20. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  1. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.

    Science.gov (United States)

    Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K

    2017-09-01

    Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  2. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    International Nuclear Information System (INIS)

    Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E

    2015-01-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)

  3. Do vegetarians have a normal bone mass?

    Science.gov (United States)

    New, Susan A

    2004-09-01

    Public health strategies targeting the prevention of poor bone health on a population-wide basis are urgently required, with particular emphasis being placed on modifiable factors such as nutrition. The aim of this review was to assess the impact of a vegetarian diet on indices of skeletal integrity to address specifically whether vegetarians have a normal bone mass. Analysis of existing literature, through a combination of observational, clinical and intervention studies were assessed in relation to bone health for the following: lacto-ovo-vegetarian and vegan diets versus omnivorous, predominantly meat diets, consumption of animal versus vegetable protein, and fruit and vegetable consumption. Mechanisms of action for a dietary "component" effect were examined and other potential dietary differences between vegetarians and non-vegetarians were also explored. Key findings included: (i) no differences in bone health indices between lacto-ovo-vegetarians and omnivores; (ii) conflicting data for protein effects on bone with high protein consumption (particularly without supporting calcium/alkali intakes) and low protein intake (particularly with respect to vegan diets) being detrimental to the skeleton; (iii) growing support for a beneficial effect of fruit and vegetable intake on bone, with mechanisms of action currently remaining unclarified. The impact of a "vegetarian" diet on bone health is a hugely complex area since: 1) components of the diet (such as calcium, protein, alkali, vitamin K, phytoestrogens) may be varied; 2) key lifestyle factors which are important to bone (such as physical activity) may be different; 3) the tools available for assessing consumption of food are relatively weak. However, from data available and given the limitations stipulated above, "vegetarians" do certainly appear to have "normal" bone mass. What remains our challenge is to determine what components of a vegetarian diet are of particular benefit to bone, at what levels and under

  4. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice

    Science.gov (United States)

    Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and

  5. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice.

    Science.gov (United States)

    Friedman, Michael A; Bailey, Alyssa M; Rondon, Matthew J; McNerny, Erin M; Sahar, Nadder D; Kohn, David H

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6-12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups-exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases

  6. Insulin Resistance Is Associated With Smaller Cortical Bone Size in Nondiabetic Men at the Age of Peak Bone Mass.

    Science.gov (United States)

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2017-06-01

    In type 2 diabetes mellitus, fracture risk is increased despite preserved areal bone mineral density. Although this apparent paradox may in part be explained by insulin resistance affecting bone structure and/or material properties, few studies have investigated the association between insulin resistance and bone geometry. We aimed to explore this association in a cohort of nondiabetic men at the age of peak bone mass. Nine hundred ninety-six nondiabetic men aged 25 to 45 years were recruited in a cross-sectional, population-based sibling pair study at a university research center. Insulin resistance was evaluated using the homeostasis model assessment of insulin resistance (HOMA-IR), with insulin and glucose measured from fasting serum samples. Bone geometry was assessed using peripheral quantitative computed tomography at the distal radius and the radial and tibial shafts. In age-, height-, and weight-adjusted analyses, HOMA-IR was inversely associated with trabecular area at the distal radius and with cortical area, periosteal and endosteal circumference, and polar strength strain index at the radial and tibial shafts (β ≤ -0.13, P insulin-like growth factor 1, or sex steroid levels. In this cohort of nondiabetic men at the age of peak bone mass, insulin resistance is inversely associated with trabecular and cortical bone size. These associations persist after adjustment for body composition, muscle size or function, or sex steroid levels, suggesting an independent effect of insulin resistance on bone geometry. Copyright © 2017 Endocrine Society

  7. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    Directory of Open Access Journals (Sweden)

    Dolores Perovano Pardini

    2000-01-01

    Full Text Available CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic referral center. SAMPLE: 53 post-menopausal women, aged 48-58 years. MAIN MEASUREMENTS: Urinary pyr and d-pyr were measured in fasting urine samples by spectrofluorometry after high performance liquid chromatography and corrected for creatinine excretion measured before treatment and after 1, 2, 4 and 12 months. Bone mineral density (BMD was measured by dual energy X-ray absorptiometry (DEXA before treatment and after 12 months of HRT. RESULTS: The BMD after HRT was about 4.7% (P < 0.0004; 2% (P < 0.002; and 3% (P < 0.01 higher than the basal values in lumbar spine, neck and trochanter respectively. There were no significant correlations between pyridinium cross-links and age, weight, menopause duration and BMD. The decrease in pyr and d-pyr was progressive after HRT, reaching 28.9% (P < 0.0002, and 42% (P < 0.0002 respectively after 1 year. CONCLUSIONS: Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.

  8. Discordant effect of body mass index on bone mineral density and speed of sound

    Directory of Open Access Journals (Sweden)

    Hagag Philippe

    2003-07-01

    Full Text Available Abstract Background Increased BMI may affect the determination of bone mineral density (BMD by dual X-ray absorptiometry (DXA and speed of sound (SOS measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI on BMD and SOS measured along bones. Methods We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m2, and 11 lean (BMI = 21 kg/m2 postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. Results Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P P Conclusions The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women.

  9. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links.

    Science.gov (United States)

    Pardini, D P; Sabino, A T; Meneses, A M; Kasamatsu, T; Vieira, J G

    2000-01-06

    The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. Cohort correlational study. Academic referral center. 53 post-menopausal women, aged 48-58 years. Urinary pyr and d-pyr were measured in fasting urine samples by spectrofluorometry after high performance liquid chromatography and corrected for creatinine excretion measured before treatment and after 1, 2, 4 and 12 months. Bone mineral density (BMD) was measured by dual energy X-ray absorptiometry (DEXA) before treatment and after 12 months of HRT. The BMD after HRT was about 4.7% (P < 0.0004); 2% (P < 0.002); and 3% (P < 0. 01) higher than the basal values in lumbar spine, neck and trochanter respectively. There were no significant correlations between pyridinium cross-links and age, weight, menopause duration and BMD. The decrease in pyr and d-pyr was progressive after HRT, reaching 28.9% (P < 0.0002), and 42% (P < 0.0002) respectively after 1 year. Urinary pyridinoline and deoxypyridinoline excretion decreases early in hormone replacement therapy, reflecting a decrease in the bone resorption rate, and no correlation was observed with the bone mass evaluated by densitometry.

  10. The peak bone mass of Hawaiian, Filipino, Japanese, and white women living in Hawaii.

    Science.gov (United States)

    Davis, J W; Novotny, R; Ross, P D; Wasnich, R D

    1994-10-01

    Our study compares the bone mass of Hawaiian, Filipino, Japanese, and white women living in Oahu, Hawaii. Eligible women ranged in age from 25 to 34; all had bone mass measurements at the spine, calcaneus, and proximal and distal radius. Their average bone mineral density (BMD) remained stable with age at all four bone sites, indicating that the age range 25-34 may represent the peak bone mass. Bone mass varied, however, between ethnicities; differences in BMD up to 11% were observed. The Hawaiian women had the greatest BMD, and whites had the second greatest BMD at the spine and calcaneus. The Japanese most frequently had the lowest BMD. Differences in body size partly explained the differences; most ethnic differences were reduced or eliminated after adjusting for height and weight. At the spine, the ethnic differences for BMD were also apparent with BMC and with vertebral area. Hawaiian and white women had greater values than Japanese or Filipino women. Differences at the proximal radius resembled the spine, except that whites had the widest proximal widths. The results were more complex for the distal radius. At the distal radius whites had the lowest BMD of the four ethic groups. The difference between whites and Hawaiians derived from the greater bone mineral content (BMC) of the Hawaiian women. By contrast, the difference between whites and the Japanese and Filipinos derived from the wider distal widths of the white women. Compared with the Japanese and Filipino women, the white women appeared to disperse their BMC at the distal radius across a wider bone width.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Peak bone mass density among residents of Metro Manila

    International Nuclear Information System (INIS)

    Lim-Abrahan, Mary Anne V.; Gacutan-Liwag, Aretha Ann C.; Balderas, Jubilia Araceli J.; Guanzon, Ma. Vicenta Luz; Guzman, Angel de

    2002-01-01

    Study Objectives: To determine the peak bone mass density among residents of Metro Manila using dual energy X-ray absorptiometry and to correlate factors such as age, height, weight, body mass index, total caloric, protein and calcium intake to bone mass density. Design: Cross sectional study Setting: Philippine General Hospital and St Luke's Medical Center, tertiary government and private owned hospitals, respectively. Subjects: Two hundred twenty-eight 228) healthy randomly chosen subjects from amongst hospital companion, aged 15-52 years old, distributed at 25 subjects per group of five per sex. Methods: Bone mass density measurements were done on lumbar spine and femoral neck using dual energy x-ray absorptiometry (Lunar DPXL). Ten (10) cc of blood was extracted on one hundred fourteen (114) patients; 5 cc of which was used for biochemical studies while the rest of the sample was stored for fixture studies. One hundred fourteen (114) patients were then interviewed using the Filipino version of the WHO questionnaire for the Study of Osteoporosis, and their nutritional intake was assessed using a previous day food recall. Results: At present, there are a total of 228 patients recruited. The mean weight and height were 57-43±11.17 kg and 158.16±8.44 cm, respectively, and the mean BMI was 22.99±4.11. The mean daily calcium intake was 501.17±357.79 gms/day (n=64). The mean BMD at the L2-L4 spine for females was 1.14±0.15 gm/cm 2 and 1.12±0.21 gm/cm 2 for the males. The highest BMD was 1.23±0.20 gm/cm 2 in the 35-39 year old age group for the females and 1.26±0.31 gm/cm 2 in the 30-34 age group for the males. The mean femoral neck BMD was 0.91±0.12 gm/cm 2 for the females and 1.00±0.13 gm/cm 2 for the males. The highest femoral neck BMD was 0.931±0.12 gm/cm 2 in the 20-24 females and 1.03±0.18 gm/cm 2 in the 20-24 age group for the males. Calcium intake and weight was significantly correlated in the lumbar spine. Height and sex was correlated with both

  12. Association between circulating levels of adiponectin and indices of bone mass and bone metabolism in middle-aged post-menopausal women.

    Science.gov (United States)

    Tenta, R; Kontogianni, M D; Yiannakouris, N

    2012-03-01

    Adiponectin, a fat derived cytokine, is a potential independent contributor to bone mineral density (BMD); however, its action on bone metabolism in humans is still unclear. The aim of this study was to investigate the relationship of adiponectin with bone mass indices and bone metabolic markers in middle-aged post-menopausal women without diabetes. A random sample consisted of 81 post-menopausal women (age range 45-61 yr, osteopenic/osteoporotic no.=43) was studied. Lumbar-spine BMD (BMD(L2-L4)) and total-body bone mineral content (TBBMC) were measured with dual X-ray absorptiometry. Plasma levels of total and high-molecular weight (HMW) adiponectin, osteoprotegerin (OPG), soluble receptor activator of nuclear factor-κB ligand (sRANKL) and IGF-I were determined. No association was observed between total or HMW adiponectin and BMD(L2-L4) or TBBMC. On the contrary, adiponectin levels were positively associated with OPG levels (partial r=0.276, p=0.015) and negatively with IGF-I (partial r=-0.438, pfailed to show statistically significant association between circulating adiponectin levels and indices of bone mass in women during the postmenopausal period, we showed significant associations with OPG and IGF-I levels, suggesting an anabolic role of adiponectin, which may contribute in the understanding of the interplay between adipose tissue-derived hormones and bone metabolism. © 2012, Editrice Kurtis.

  13. Peak bone mass density among residents of metro Manila: A preliminary report

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.; Guanzon, L.V.; Guzman, A.M. de; Villaruel, C.M.; Santos, F.

    1998-01-01

    Study Objective: To determine the peak bone mass density among residents of Metro Manila using dual X-ray absorptiometry (DEXA). Design: Cross-sectional study. Setting: Philippine General Hospital, a university based tertiary care hospital, and St. Luke's Medical Center, a private tertiary care center. Subjects: Forty five (45) healthy subjects aged 15-50 years old, all current residents of Metro Manila, were randomly chosen from among hospital companions were included in the study. There were 23 females and 22 males, with 3 to 4 subjects for each age range of 5. Methods: Bone mass density measurements on the lumbar spine and the femur using dual X-ray absorptiometry (DPXL Lunar) were taken. The values were also age-matched and matched with that of a young adult based on programmed Caucasian norm provided by Lunar Co. The values were then scattered against age for each sex. Ten (10) cc of blood was also extracted from the patients, with the 5 cc of blood separated for future studies. Parathormone assay and biochemistry examinations were also done. Patents were also interviewed as to their lifestyle, diet, use of contraceptive pill or hormonal replacement treatment, using a Filipino version of the revised questionnaire on the WHO Study on Osteoporosis. Dietary content was estimated using a previous day food recall. Results: The mean weight and height for females were 59.48±16.34 kg and 153.52±5.09 cm respectively, and for males, 58.14±10.06 kg and 162.52±6.75 cm respectively. The mean bone mass density at the L 2 L 4 level for females was 1.12±0.11 g/cm 2 and 0.91±0.11 g/cm 2 at the femur. The highest BMD in both the lumbar spine femoral neck measurements among females was achieved among those aged 30-35 years of age with the lowest BMD occurring between 15-19 and 45-50 years of age in the lumbar spine among female subjects. The highest BMD at the lumbar spine and the femoral neck among males was achieved between the ages 30-35 years of age with the lowest IND

  14. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet?

    NARCIS (Netherlands)

    Parsons, T.J.; Dusseldorp, van M.; Seibel, M.J.; Staveren, van W.A.

    2001-01-01

    Dutch adolescents who consumed a macrobiotic (vegan-type) diet in early life, demonstrate a lower relative bone mass than their omnivorous counterparts. We investigated whether subjects from the macrobiotic group showed signs of catching up with controls in terms of relative bone mass, reflected by

  15. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  16. Relationships between bone mass and dietary/lifestyle habits in Japanese women at 3-4 months postpartum.

    Science.gov (United States)

    Hoshino, A; Yamada, A; Tanabe, R; Noda, S; Nakaoka, K; Oku, Y; Katayama, C; Haraikawa, M; Nakano, H; Harada, M; Uenishi, K; Goseki-Sone, M

    2017-11-01

    The relationships between calcaneal bone mass and dietary/lifestyle habits in women at 3-4 months postpartum were examined in the context of osteoporosis prevention. Cross-sectional survey. We measured bone mass using calcaneal ultrasound in mothers who brought their 3- to 4-month-old babies to healthcare centers in Japan for health examination and administered a self-report questionnaire on physical characteristics and dietary/lifestyle habits to those who agreed to participate in the survey. Valid data were available for 1220 women (valid response rate, 97.5%). Based on their stiffness score, a measure of bone mass, 70.9% (n = 865) of the participants were classified as 'no apparent abnormality (stiffness score ≥78.8)' (low-risk group), 18.2% (n = 222) as 'guidance required (≥70.1-healthy eating habits, such as increased consumption of calcium-rich foods, and prevent osteoporosis. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. Lumbar bone mass predicts low back pain in males

    NARCIS (Netherlands)

    Hoozemans, M.J.M.; Koppes, L.L.J.; Twisk, J.W.R.; Dieën, J.H. van

    2012-01-01

    STUDY DESIGN.: Longitudinal study of lumbar bone mass as predictor of low back pain (LBP). OBJECTIVE.: To investigate whether low bone mineral content (BMC) and bone mineral density (BMD) values at the age of 36 years are associated with the prevalence of LBP at the age of 42 years among the study

  18. Measurement of MC5 antibody distribution in blood and bone marrow

    International Nuclear Information System (INIS)

    Johnson, T.K.; Gonzales, R.; Kasliwal, R.; Lear, J.; Feyerabend, A.; Ceriani, R.; Bunn, P.

    1990-01-01

    PURPOSE: Bone marrow is most often the dose-limiting organ in radioimmunotherapy. Controversy exists over optimal methods of estimating dose exposure to bone marrow. The purpose of this paper is to compare bone marrow activity from serial blood samples versus bone marrow biopsy specimens as measures of dose exposure to bone marrow. Peripheral blood samples and bone marrow biopsy specimens were obtained at 48 and 168 hours after infusion from 12 female patients infused with iodine-131-labeled MC5 antibody. The percentage of bone marrow in each biopsy specimen was assumed to be equivalent to the percentage of active bone marrow estimated to be in the pelvis. Activity present in the bone marrow as calculated with use of the estimated bone marrow mass for an adult female and then compared with the peripheral blood activity

  19. Outcomes of bone density measurements in coeliac disease.

    Science.gov (United States)

    Bolland, Mark J; Grey, Andrew; Rowbotham, David S

    2016-01-29

    Some guidelines recommend that patients with newly diagnosed coeliac disease undergo bone density scanning. We assessed the bone density results in a cohort of patients with coeliac disease. We searched bone density reports over two 5-year periods in all patients from Auckland District Health Board (2008-12) and in patients under 65 years from Counties Manukau District Health Board (2009-13) for the term 'coeliac.' Reports for 137 adults listed coeliac disease as an indication for bone densitometry. The average age was 47 years, body mass index (BMI) 25 kg/m(2), and 77% were female. The median time between coeliac disease diagnosis and bone densitometry was 261 days. The average bone density Z-score was slightly lower than expected (Z-score -0.3 to 0.4) at the lumbar spine, total hip and femoral neck, but 88-93% of Z-scores at each site lay within the normal range. Low bone density was strongly related to BMI: the proportions with Z-score 30 kg/m(2) were 28%, 15%, 6% and 0% respectively. Average bone density was normal, suggesting that bone density measurement is not indicated routinely in coeliac disease, but could be considered on a case-by-case basis for individuals with strong risk factors for fracture.

  20. Chronic Alcohol Abuse Leads to Low Bone Mass with No General Loss of Bone Structure or Bone Mechanical Strength

    DEFF Research Database (Denmark)

    Ulhøi, Maiken Parm; Meldgaard, Karoline; Steiniche, Torben

    2017-01-01

    Chronic alcohol abuse (CAA) has deleterious effects on skeletal health. This study examined the impact of CAA on bone with regard to bone density, structure, and strength. Bone specimens from 42 individuals with CAA and 42 individuals without alcohol abuse were obtained at autopsy. Dual-energy X......-ray absorptiometry (DEXA), compression testing, ashing, and bone histomorphometry were performed. Individuals with CAA had significantly lower bone mineral density (BMD) in the femoral neck and significantly lower bone volume demonstrated by thinner trabeculae, decreased extent of osteoid surfaces, and lower mean...... wall thickness of trabecular osteons compared to individuals without alcohol abuse. No significant difference was found for bone strength and structure. Conclusion: CAA leads to low bone mass due to a decrease in bone formation but with no destruction of bone architecture nor a decrease in bone...

  1. Poor bone health in underprivileged Indian girls: an effect of low bone mass accrual during puberty.

    Science.gov (United States)

    Khadilkar, Anuradha V; Sanwalka, Neha J; Kadam, Nidhi S; Chiplonkar, Shashi A; Khadilkar, Vaman V; Mughal, M Zulf

    2012-05-01

    A socio-economic gradient exists for most reasons of morbidity and mortality including delayed puberty in lower (LSES) as compared to higher (HSES) socio-economic stratum and puberty is an important factor affecting bone status in children and adolescents. Thus, a cross-sectional study was conducted on 195 age-matched pairs of girls (8-17years) from LSES and HSES in Pune City, India to assess the hypothesis that socio-economic factors working through late puberty would have a negative association with bone status of adolescents. Height, weight and Tanner stage were assessed. Total body bone mineral content (TBBMC), total body bone area (TBBA), total body bone mineral density (TBBMD), lean body mass (LBM) and total body fat mass (TBFM) were measured using GE Lunar DPX Pro Pencil Beam DXA (Wisconsin, USA) scanner. Mean TBBMC (1172±434g), TBBA (1351±356cm(2)), TBBMD (0.846±0.104g/cm(2)), LBM (21,622±5306g) and TBFM (7746±5194g) in LSES girls were significantly lower than that of HSES girls [TBBMC (1483±525g), TBBA (1533±380cm(2)), TBBMD (0.942±0.119g/cm(2)), LBM (24,308±5829g) and TBFM (12,196±7404g)] (pbone parameters. The differences in TBBMC, TBBA, LBM and TBFM between the 2 socio-economic strata at Tanner stage I were not significant (p>0.1) whereas there were significant differences in these parameters from Tanner stages II to V (pbone health in adolescent girls from the lower socio-economic stratum. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Abnormal distal renal tubular acidification in patients with low bone mass: prevalence and impact of alkali treatment.

    Science.gov (United States)

    Sromicki, Jerzy Jan; Hess, Bernhard

    2017-06-01

    Chronic acid retention is known to promote bone dissolution. In this study, 23 % of patients with osteopenia/osteoporosis were diagnosed with abnormal distal renal tubular acidification (dRTA), a kidney dysfunction leading to chronic acid retention. Treating those patients with alkali-therapy shows improvement in bone density. To evaluate the prevalence of abnormal distal renal tubular acidification in patients with low bone mass (LBM) and the impact of additional alkali treatment on bone density in patients with concomitant LBM and dRTA,183 patients referred for metabolic evaluation of densitometrically proven low bone mass were screened for abnormal distal renal tubular acidification between 2006 and 2013. In all LBM urine pH (U-pH) was measured in the 2nd morning urines after 12 h of fasting. If U-pH was ≥5.80, LBM underwent a 1-day ammonium chloride loading, and U-pH was remeasured the next morning. If U-pH after acid loading did not drop below 5.45, patients were diagnosed with abnormal distal renal tubular acidification. Normal values were obtained from 21 healthy controls. All LBM with dRTA were recommended alkali citrate in addition to conventional therapy of LBM, and follow-up DXAs were obtained until 2014. 85 LBM underwent NH 4 Cl loading. 42 LBM patients were diagnosed with incomplete dRTA (idRTA; prevalence 23.0 %). During follow-up (1.6-8 years) of idRTA-LBM patients, subjects adhering to alkali treatment tended to improve BMD at all sites measured, whereas BMD of non-adherent idRTA patients worsened/remained unchanged. (1) About one out of four patients with osteopenia/osteoporosis has idRTA. (2) Upon NH 4 Cl loading, idRTA patients do not lower urine pH normally, but show signs of increased acid-buffering by bone dissolution. (3) In idRTA patients with low bone mass on conventional therapy, additional long-term alkali treatment improves bone mass at lumbar spine and potentially at other bone sites. (4) All patients with low bone mass undergoing

  3. [Influence of preoperative bone mass density in periprosthetic bone remodeling after implantation of ABG-II prosthesis: A 10-year follow-up].

    Science.gov (United States)

    Aguilar Ezquerra, A; Panisello Sebastiá, J J; Mateo Agudo, J

    2016-01-01

    Preoperative bone mass index has shown to be an important factor in peri-prosthetic bone remodelling in short follow-up studies. Bone density scans (DXA) were used to perform a 10-year follow-up study of 39 patients with a unilateral, uncemented hip replacement. Bone mass index measurements were made at 6 months, one year, 3 years, 5 years, and 10 years after surgery. Pearson coefficient was used to quantify correlations between preoperative bone mass density (BMD) and peri-prosthetic BMD in the 7 Gruen zones at 6 months, one year, 3 years, 5 years, and 10 years. Pre-operative BMD was a good predictor of peri-prosthetic BMD one year after surgery in zones 1, 2, 4, 5 and 6 (Pearson index from 0.61 to 0.75). Three years after surgery it has good predictive power in zones 1, 4 and 5 (0.71-0.61), although in zones 3 and 7 low correlation was observed one year after surgery (0.51 and 0.57, respectively). At the end of the follow-up low correlation was observed in the 7 Gruen zones. Sex and BMI were found to not have a statistically significant influence on peri-prosthetic bone remodelling. Although preoperative BMD seems to be an important factor in peri-prosthetic remodelling one year after hip replacement, it loses its predictive power progressively, until not being a major factor in peri-prosthetic remodelling ten years after surgery. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.

  4. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    Science.gov (United States)

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  5. High bone turnover is associated with low bone mass in both pre- and postmenopausal women

    DEFF Research Database (Denmark)

    Ravn, Pernille; Fledelius, C; Rosenquist, C

    1996-01-01

    of CrossLaps and OCN-Mid corrected for height and weight, had 6%-11% lower bone mass in all regions (p r = -0.13 to r = -0.28, p ....05. In postmenopausal women, the difference in bone mass between the highest and lowest quartiles was 8%-14% (p r = -0.14 to r = -0.32, p r = -0.06 to r = -0.......20 for premenopausal women, NS to p r = -0.01 to r = -0.23, NS to p

  6. Tracking of bone mass from childhood to puberty

    DEFF Research Database (Denmark)

    Rønne, M. S.; Heidemann, M.; Schou, A.

    2018-01-01

    health. Introduction: Bone mass development in childhood varies by sex and age, but also by pubertal stage. The objectives of this study were to (1) describe bone mass development in childhood as it relates to pubertal onset and to (2) determine the degree of tracking from childhood to adolescence....... Methods: A longitudinal study with 7 years of follow-up was initiated in 2008 to include 831 children (407 boys) aged 8 to 17 years. Participants underwent whole body dual-energy X-ray absorptiometry (DXA) scanning, blood collection to quantify luteinizing hormone levels, and Tanner stage self...

  7. Assessment of bone mineral content in the internal bone volume

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Alho, A.; Husby, T.; Ullevaal Sykehus, Oslo

    1991-01-01

    A method for assessing values related to bone density and mass is described. Mean attenuation and pixel area are measured in pixels selected on the basis of CT units. The method is to a large extent computerized and not dependent on manual positioning or outlining of a region of interest. Because it is not dependent on a comparatively large volume of homogeneous bone it can be used to make assessments even in very heterogeneous bones including cortical bone. The method is adaptable for measurement in all parts of the skeleton and values related to both bone density (DRV) and bone mass (MRV) are derived. The measurements in the femoral condyles were shown to have a precision of approximately 0.25 to 0.30 Z-score units (standard deviation of the measurements expressed in Z-score units). The agreement between chemically analyzed calcium density (weight of calcium per volume) and DRV was little less than 0.50 Z-scores and 0.30 Z-scores for the chemically determined calcium mass and the MRV. The agreement with mechanical bone strength was 0.78 Z-scores for DRV and 0.64 for the MRV. Altering scan parameters or measuring approaches gave systematic differences in the measurements. There were, however, good linear correlations between the measurements which show that these different measuring approaches essentially gave identical measurements. (orig.)

  8. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  9. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    International Nuclear Information System (INIS)

    Sala, A.; Webber, C.E.; Morrison, J.; Beaumont, L.F.; Barr, R.D.

    2007-01-01

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  10. Reproducibility of DXA measurements of bone mineral density and body composition in children

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Cheryl M.; Roza, Melissa A.; Webber, Colin E. [Hamilton Health Sciences, Department of Nuclear Medicine, Hamilton, ON (Canada); Barr, Ronald D. [McMaster Children' s Hospital, Hamilton, ON (Canada)

    2009-02-15

    The technique of X-ray-based dual photon absorptiometry (DXA) is frequently used in children for the detection of changes in bone mass or body composition. Such changes can only be considered real if the uncertainties arising from the measurement technique are exceeded. Our objectives were twofold: (1) to determine the reproducibility of bone mineral density (BMD) measurements in children at the spine and the hip and from the whole body, as well as of whole-body measurements of mineral mass, lean body mass and fat mass in children; and (2) to estimate, from the measured precision, the time interval that needs to elapse before a statistically significant change in a DXA variable can be detected. The reproducibility of techniques for the measurement of BMD and body composition using DXA was measured in 15 young children (9 girls and 6 boys) and 17 older children (9 girls and 8 boys). Reproducibility was derived from the standard deviation of three repeated measurements of spine BMD, total hip BMD, whole-body BMD (WBBMD), whole-body bone mineral content (WBBMC), lean mass and fat mass. Technique precision was better than 0.01 g cm{sup -2} for spine BMD and for WBBMD. Hip BMD measurements were slightly less precise, particularly in younger children (0.013 g cm{sup -2}). For body composition variables, technique precision was 13 g for WBBMC, 201 g for lean body mass and 172 g for fat mass in younger children. Technique precision for older children was 18 g, 251 g and 189 g for the corresponding variables. Predictions showed that the absence of a normal increase in WBBMC in a small-for-age girl could be established after 12 months. For spine BMD, a significant increase should be observable after 6 months for boys over the age of 11 years. For younger boys, more than 12 months has to elapse before anticipated changes can be detected with confidence. The time intervals required to elapse before decisions can be made concerning the significance of observed differences

  11. Reproducibility of DXA measurements of bone mineral density and body composition in children

    International Nuclear Information System (INIS)

    Leonard, Cheryl M.; Roza, Melissa A.; Webber, Colin E.; Barr, Ronald D.

    2009-01-01

    The technique of X-ray-based dual photon absorptiometry (DXA) is frequently used in children for the detection of changes in bone mass or body composition. Such changes can only be considered real if the uncertainties arising from the measurement technique are exceeded. Our objectives were twofold: (1) to determine the reproducibility of bone mineral density (BMD) measurements in children at the spine and the hip and from the whole body, as well as of whole-body measurements of mineral mass, lean body mass and fat mass in children; and (2) to estimate, from the measured precision, the time interval that needs to elapse before a statistically significant change in a DXA variable can be detected. The reproducibility of techniques for the measurement of BMD and body composition using DXA was measured in 15 young children (9 girls and 6 boys) and 17 older children (9 girls and 8 boys). Reproducibility was derived from the standard deviation of three repeated measurements of spine BMD, total hip BMD, whole-body BMD (WBBMD), whole-body bone mineral content (WBBMC), lean mass and fat mass. Technique precision was better than 0.01 g cm -2 for spine BMD and for WBBMD. Hip BMD measurements were slightly less precise, particularly in younger children (0.013 g cm -2 ). For body composition variables, technique precision was 13 g for WBBMC, 201 g for lean body mass and 172 g for fat mass in younger children. Technique precision for older children was 18 g, 251 g and 189 g for the corresponding variables. Predictions showed that the absence of a normal increase in WBBMC in a small-for-age girl could be established after 12 months. For spine BMD, a significant increase should be observable after 6 months for boys over the age of 11 years. For younger boys, more than 12 months has to elapse before anticipated changes can be detected with confidence. The time intervals required to elapse before decisions can be made concerning the significance of observed differences between

  12. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    Science.gov (United States)

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  13. Does bone measurement on the radius indicate skeletal status. Concise communication

    International Nuclear Information System (INIS)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.; Lange, T.A.; Lindgren, U.; Smith, E. Jr.

    1984-01-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of the lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state

  14. Quantitative metacarpal bone measurements before and after renal transplantation

    International Nuclear Information System (INIS)

    Andresen, J.; Nielsen, H.E.; Kommunehospitalet, Aarhus

    1986-01-01

    The outer (D) and inner diameter (d) of the second metacarpal bone, the combined cortical thickness (D-d), cortical area (D 2 -d 2 ) and bone mass ((D 2 d 2 /D 2 ) were measured in 74 renal transplant (RT) recipients at the time of renal transplantation and in a prospective analysis of 60 recipients after transplantation. The RT patient group was made up of recipients who after renal transplanation developed osteonecrosis or spontaneous fractures (RT-ON/SF) and an age- and sex-matched renal control group of subjects who did not develop these complications (RT-C). At the time of renal transplantation, in renal transplant recipient men and women, significantly reduced values in D, D-d and D 2 -d 2 was noticed. These findings could be explained by a higher ratio of bone resoprtion than formation at the periosteal surface. Following renal transplantation, significant increases in d were seen with significant decreases in D-d, D 2 -d 2 and (D 2 -d 2 )/D 2 , probably due to endosteal bone resorption, whereas D was unchanged compared with normal control persons. In the total group and in RT-ON/SF women, D decreased significantly and in ON/SF, increased significantly with significant decrease in bone mass compared with normal women whereas no significant changes in the parameters were seen in RT-C women. These findings indicate that bone loss after transplantation continues at the periosteal surface in women. The bone loss was most markedly demonstrated in women, who subsequently develop osteonecrosis or spontaneous fractures, probably due to combined periosteal and endosteal resorption of calcified bony tissue. (orig.)

  15. Phantom studies of triple photon absorptiometry and bone mineral measurement at a hip prosthesis

    International Nuclear Information System (INIS)

    Farrell, T.J.; Webber, C.E.

    1992-01-01

    The feasibility of using triple photon absorptiometry (TPA) for the measurement of bone mineral mass about a hip prosthesis was examined. A theoretical expression describing the variance of TPA measurements was verified using a triple photon source and phantom materials which simulate the soft tissue-bone mineral-metal prosthesis system. The expression for the variance was used to determine an optimized set of photon energies. It was shown that a precision of 3% could be obtained for reasonable measurement times using this optimized set of energies and that TPA should be a feasible approach for measurement of bone mineral about a hip prosthesis. (orig.)

  16. Volleyball and Basketball Enhanced Bone Mass in Prepubescent Boys.

    Science.gov (United States)

    Zouch, Mohamed; Chaari, Hamada; Zribi, Anis; Bouajina, Elyès; Vico, Laurence; Alexandre, Christian; Zaouali, Monia; Ben Nasr, Hela; Masmoudi, Liwa; Tabka, Zouhair

    2016-01-01

    The aim of this study was to examine the effect of volleyball and basketball practice on bone acquisition and to determine which of these 2 high-impact sports is more osteogenic in prepubertal period. We investigated 170 boys (aged 10-12 yr, Tanner stage I): 50 volleyball players (VB), 50 basketball players (BB), and 70 controls. Bone mineral content (BMC, g) and bone area (BA, cm(2)) were measured by dual-energy X-ray absorptiometry at different sites. We found that, both VB and BB have a higher BMC at whole body and most weight-bearing and nonweight-bearing sites than controls, except the BMC in head which was lower in VB and BB than controls. Moreover, only VB exhibited greater BMC in right and left ultra-distal radius than controls. No significant differences were observed between the 3 groups in lumbar spine, femoral neck, and left third D radius BMC. Athletes also exhibited a higher BA in whole body, limbs, lumbar spine, and femoral region than controls. In addition, they have a similar BA in head and left third D radius with controls. The VB exhibited a greater BA in most radius region than controls and a greater femoral neck BA than BB. A significant positive correlation was reported between total lean mass and both BMC and BA in whole body, lumbar spine, total hip, and right whole radius among VB and BB. In summary, we suggest that volleyball and basketball have an osteogenic effect BMC and BA in loaded sites in prepubescent boys. The increased bone mass induced by both volleyball and basketball training in the stressed sites was associated to a decreased skull BMC. Moreover, volleyball practice produces a more sensitive mechanical stress in loaded bones than basketball. This effect seems translated by femoral neck expansion. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  17. Does fetal smoke exposure affect childhood bone mass? The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2015-01-01

    textabstractSummary: We assessed the intrauterine influence of maternal smoking on childhood bone mass by comparing parental prenatal and postnatal smoking habits. We observed higher bone mass in children exposed to maternal smoking, explained by higher body weight. Maternal smoking or related

  18. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  19. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    Science.gov (United States)

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  20. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  1. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  2. Lack of seasonal variation in bone mass and biochemical estimates of bone turnover

    International Nuclear Information System (INIS)

    Overgaard, K.; Nilas, L.; Johansen, J.S.; Christiansen, C.

    1988-01-01

    Three previous studies have indicated a seasonal variation in bone mineral content, with values during the summer being 1.7% to 7.5% higher than during the winter. We have examined the seasonal influence on both bone mass, biochemical estimates of bone turnover and vitamin D metabolites in 86 healthy women, aged 29-53 years. All participants were followed up for 2 years with examinations every 6 weeks or 3 months. Bone mineral content in the proximal and distal part of the forearm (single photon absorptiometry) did not reveal any significant seasonal variation, whereas bone mineral density of the lumbar spine (dual photon absorptiometry) indicated that the highest values occurred in winter. None of the biochemical parameters showed any statistically significant cyclical changes. Serum concentrations of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D3 showed a highly significant seasonal variation, whereas the serum 1,25-dihydroxyvitamin D concentration was virtually unchanged. We conclude that seasonal variation in bone mineral content and bone turnover should not be taken into account when interpreting data from longitudinal studies of healthy pre- and postmenopausal women on a sufficient vitamin D nutriture

  3. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults.

    Science.gov (United States)

    Shen, W; Chen, J; Gantz, M; Punyanitya, M; Heymsfield, S B; Gallagher, D; Albu, J; Engelson, E; Kotler, D; Pi-Sunyer, X; Gilsanz, V

    2012-09-01

    Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM; age 18.0-39.9 years) and an older group with potential bone loss (PoBL; age 40.0-88.0 years). Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole-body magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. An inverse correlation was observed between pelvic BMAT and pelvic, total and spine BMD in the younger PBM group (r=-0.419 to -0.461, PBMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434-0.928). Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes.

  4. The value of calcaneal bone mass measurement using a dual X-ray laser calscan device in risk screening for osteoporosis

    Directory of Open Access Journals (Sweden)

    Gulseren Kayalar

    2009-01-01

    Full Text Available OBJECTIVE: To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA. MATERIALS AND METHODS: A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score <-2.5 received a referral for DXA of the spine and hip. Besides dual energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. RESULTS: Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO, dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT, covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (p<0.05. A significant correlation was observed between the calcaneal dual energy X-ray laser T-score and age (r=-0.465, p=0.001, body mass index (BMI (r=0.223, p=0.001, number of live births (r=-0.229, p=0.001, breast feeding time (r=-0.064, p=0.001, and age at menarche (r=-0.050, p=0.008. The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001 and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001 at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001 and calcaneal

  5. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  6. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study.

    Science.gov (United States)

    Cole, Zoe A; Gale, Catharine R; Javaid, M Kassim; Robinson, Sian M; Law, Catherine; Boucher, Barbara J; Crozier, Sarah R; Godfrey, Keith M; Dennison, Elaine M; Cooper, Cyrus

    2009-04-01

    Maternal nutrition is a potentially important determinant of intrauterine skeletal development. Previous studies have examined the effects of individual nutrients, but the pattern of food consumption may be of greater relevance. We therefore examined the relationship between maternal dietary pattern during pregnancy and bone mass of the offspring at 9 yr of age. We studied 198 pregnant women 17-43 yr of age and their offspring at 9 yr of age. Dietary pattern was assessed using principal component analysis from a validated food frequency questionnaire. The offspring underwent measurements of bone mass using DXA at 9 yr of age. A high prudent diet score was characterized by elevated intakes of fruit, vegetables, and wholemeal bread, rice, and pasta and low intakes of processed foods. Higher prudent diet score in late pregnancy was associated with greater (p socioeconomic status, height, arm circumference, maternal smoking, and vitamin D status. Associations with prudent diet score in early pregnancy were weaker and nonsignificant. We conclude that dietary patterns consistent with current advice for healthy eating during pregnancy are associated with greater bone size and BMD in the offspring at 9 yr of age.

  7. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    Science.gov (United States)

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P girls, but active-fit girls had 6.1 % (P girls, which was likely due to their 6.7 % (P active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  8. Effects of Obesity on Bone Mass and Quality in Ovariectomized Female Zucker Rats

    Directory of Open Access Journals (Sweden)

    Rafaela G. Feresin

    2014-01-01

    Full Text Available Obesity and osteoporosis are two chronic conditions that have been increasing in prevalence. Despite prior data supporting the positive relationship between body weight and bone mineral density (BMD, recent findings show excess body weight to be detrimental to bone mass, strength, and quality. To evaluate whether obesity would further exacerbate the effects of ovariectomy on bone, we examined the tibiae and fourth lumbar (L4 vertebrae from leptin receptor-deficient female (Leprfa/fa Zucker rats and their heterozygous lean controls (Leprfa/+ that were either sham-operated or ovariectomized (Ovx. BMD of L4 vertebra was measured using dual-energy X-ray absorptiometry, and microcomputed tomography was used to assess the microstructural properties of the tibiae. Ovariectomy significantly (P<0.001 decreased the BMD of L4 vertebrae in lean and obese Zucker rats. Lower trabecular number and greater trabecular separation (P<0.001 were also observed in the tibiae of lean- and obese-Ovx rats when compared to sham rats. However, only the obese-Ovx rats had lower trabecular thickness (Tb.Th (P<0.005 than the other groups. These findings demonstrated that ovarian hormone deficiency adversely affected bone mass and quality in lean and obese rats while obesity only affected Tb.Th in Ovx-female Zucker rats.

  9. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    OpenAIRE

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). S...

  10. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    Science.gov (United States)

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p Rugby players were heavier than controls, with greater lean mass and BMD (p rugby players (p rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.

  11. Handball Practice Enhances Bone Mass in Specific Sites Among Prepubescent Boys.

    Science.gov (United States)

    Missawi, Kawther; Zouch, Mohamed; Chakroun, Yosra; Chaari, Hamada; Tabka, Zouhair; Bouajina, Elyès

    2016-01-01

    This investigation's purpose is to focus on the effects of practicing handball for at least 2 yr on bone acquisition among prepubescent boys. One hundred prepubescent boys aged 10.68 ± 0.85 yr were divided into 2 groups: 50 handball players (HP group) and 50 controls (C group). Bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were evaluated by using dual-photon X-ray absorptiometry on the whole body, lumbar spine (L2-L4), legs, arms, femoral necks, hips and radiuses. Results showed greater values of BMD in both right and left femoral neck and total hip in handball players than in controls. In addition, handball players had higher values of legs and right total hip BMC than controls without any obvious variation of BA measurement in all sites between groups. All results of the paired t-test displayed an obviously marked variation of bone mass parameters between the left and right sides in the trained group without any marked variation among controls. Data showed an increased BMD of the supporting sites between the left and the right leg among handball players. However, "BMC" results exhibited higher values in the right than in the left total hip, and in the right total radius than in the left correspondent site. In addition, differences in the "BA" measurements were observed in the left total hip and in the right arm. Specific bone sites are markedly stimulated by handball training in prepubescent boys. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  12. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    International Nuclear Information System (INIS)

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-01-01

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  13. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice

    Directory of Open Access Journals (Sweden)

    O'Shea Marianne

    2006-03-01

    Full Text Available Abstract There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX. However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO sedentary (SED; 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT. The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.

  14. Bone mass determination from microradiographs by computer-assisted videodensitometry. Pt. 2

    International Nuclear Information System (INIS)

    Kaelebo, P.; Strid, K.G.

    1988-01-01

    Aluminium was evaluated as a reference substance in the assessment of rabbit cortical bone by microradiography followed by videodensitometry. Ten dense, cortical-bone specimens from the same tibia diaphysis were microradiographed using prefiltered 27 kV roentgen radiation together with aluminium step wedges and bone simulating phantoms for calibration. Optimally exposed and processed plates were analysed by previously described computer-assisted videodensitometry. For comparison, the specimens were analysed by physico-chemical methods. A strict proportionality was found between the 'aluminium equivalent mass' and the ash weight of the specimens. The total random error was low with a coefficient of variation within 1.5 per cent. It was concluded that aluminium is an appropriate reference material in the determination of cortical bone, which it resembles in effective atomic number and thus X-ray attenuation characteristics. The 'aluminium equivalent mass' is suitably established as the standard of expressing the results of bone assessment by microradiography. (orig.)

  15. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.

    Science.gov (United States)

    Guntur, Anyonya R; Le, Phuong T; Farber, Charles R; Rosen, Clifford J

    2014-05-01

    Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and

  16. Analysis of bone mass density of lumbar spine zone of athletes

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... Strengthening exercises, together with walking and aerobic exercises ... effects of exercises on bone mass, the exercises putting load on the ...... activity, body weight and composition, and muscular strength on bone density in ...

  17. Assessment of the influence of body composition on bone mass in children and adolescents based on a functional analysis of the muscle-bone relationship.

    Science.gov (United States)

    Golec, Joanna; Chlebna-Sokół, Danuta

    2014-01-01

    The functional model of skeletal development considers the mechanical factor to be the most important skeletal modulant. The aim of the study was a functional analysis of the bone-muscle relationship in children with low and normal bone mass. The study involved 149 children with low and 99 children with normal bone mass (control group). All patients underwent a densitometry examination (DXA). Low bone mass was diagnosed if the Z-score was below values of Z-scores for all parameters in children with low bone mass as compared to the control group. Children with low bone mass had lower content of adipose and muscle tissue and a marked deficit of muscle tissue with regard to height (which according to mechanostat theory leads to lower muscle-generated strain on bones). This group of children had also lower TBBMC/LBM Z-scores, which indicates greater fracture susceptibility. 1. Functional analysis, which showed associations between bone and muscle tissues, can be useful for diagnosing and monitoring skeletal system disorders as well as making therapeutic decisions.2. The study emphasizes the role of proper nutrition and physical activities, which contribute to proper body composition, in the prevention of bone mineralization disorders in childhood and adolescence. 3. The study showed the inadequacy of the classic reference ranges used in interpreting DXA data in children and demonstrated the usefulness of continuous variables for that purpose.

  18. The role of lean body mass and physical activity in bone health in children.

    Science.gov (United States)

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p  608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be considered in physical education curricula and other health-enhancing programs.

  19. 3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption

    International Nuclear Information System (INIS)

    Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine

    2007-01-01

    Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41 Ca and measuring urinary 41 Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41 Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3 H-tetracycline ( 3 H-TC) as a proxy for 41 Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3 H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats

  20. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  1. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  2. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Poedenphant, J.; Nilas, L.; Christiansen, C.

    1989-01-01

    We investigated the descriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMD spine ) also measured by DPA, and to the bone-mineral content of the forearms (BMC forearm ) measured by single photon absorptiometry (SPA). TBBD, BMD spine and BMC forearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMD spine or BMC forearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures. BMC forearm had an intermediate position, whereas BMD spine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMD spine or BMC forearm , whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements. (author)

  3. Reduced bone mass in Dutch adolescents fed a macrobiotic diet in early life.

    Science.gov (United States)

    Parsons, T J; van Dusseldorp, M; van der Vliet, M; van de Werken, K; Schaafsma, G; van Staveren, W A

    1997-09-01

    This study investigated the effect of a macrobiotic (vegan-type) diet, low in calcium and vitamin D, consumed in early life, on bone mineral during adolescence. Bone mineral content (BMC) and bone area were measured in 195 adolescents (103 girls, 92 boys) aged 9-15 years, using dual-energy X-ray absorptiometry. Ninety-three adolescents (43 girls, 50 boys) had followed a macrobiotic diet in childhood, and 102 (60 girls, 42 boys) were control subjects. After adjustment for bone area, weight, height, percent body lean, age, and puberty, BMC was significantly lower in macrobiotic subjects, in boys and girls, respectively, at the whole body, -3.4% and -2.5%, spine, -8.5% and -5.0%, femoral neck, -8.0% and -8.2%, midshaft radius, -6.8% and -5.6%, and also in girls, at the trochanter, -5.8% (p < 0.05). No group differences were observed at the wrist. Group differences were not explained by current calcium adjusted bone mass at age 9-15 years, observations which may hold important implications for fracture risk in later life.

  4. Non-invasive clinical measurements of bone mineral

    International Nuclear Information System (INIS)

    Mazess, R.B.

    1982-01-01

    Non-invasive methods are now available for measurement of both compact and trabecular bone on both the appendicular and axial skeleton. Radiogrammetry and photodensitometry both are subject to large errors in areas of heavy tissue cover but precise measurements can be made on the hand bones. Single-photon absorptiometry with 125 I provides a more accurate and precise measure of appendicular compact bone, which is particularly useful for screening of metabolic bone disease and for monitoring renal osteodystrophy. Dual-photon absorptiometry with 153 Gd provides a measurement of the femoral neck and of the lumbar spine and hence is the most diagnostically sensitive measurement method. It is also the most sensitive for monitoring bone changes

  5. Clinical manifestations of low bone mass in amenorrhea patients with elevated follicular stimulating hormone.

    Science.gov (United States)

    Yu, Qi; Lin, Shouqing; He, Fangfang; Li, Baoluo; Lin, Yuan; Zhang, Tao; Zhang, Ying

    2002-09-01

    To study the characteristics of low bone mass in amenorrhea patients with elevated follicular stimulating hormone (FSH). Amenorrhea patients with elevated FSH: Primary amenorrhea 18 cases, secondary amenorrhea 171 cases and age matched controls with normal menstruation, 180 cases. The descriptive parameters were: estrogen, alkaline phosphatase, urinary excretion of calcium to creatine ratio, cortical bone mineral density at the right radius measured by single photon absorptiometry and trabecular bone mineral density at the lumbar vertebra body measured by quantitative computerized tomography. Average E(2) levels in amenorrhea patients is under 150 pmol/L with significantly higher alkaline phosphatase and urine calcium to creatine ratio values than the normal menstruation group. Cortical bone mineral density in the secondary amenorrhea group (655 +/- 69 mg/cm(2)) was significantly lower than that of the normal menstruation group (677 +/- 56 mg/cm(2), P < 0.01). Trabecular bone mineral density in the secondary amenorrhea group (145 +/- 26 mg/cm(3)) was significantly lower than that of the NOR group (192 +/- 28 mg/cm(3), P < 0.001). The disparity with the normal menstruation group is even greater in the primary amenorrhea group. Bone mineral density of the amenorrhea patients was negatively correlated with duration of the menopause. Serum estrodiol levels in amenorrhea patients was so low that bone turnover was accelerated. This led to insufficient bone accumulation and a dramatically drop in trabecular bone mineral density. The extent was closely related to age of onset of amenorrhea and the duration of ovarian failure.

  6. Imaging and mapping of mouse bone using MALDI-imaging mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yoko Fujino

    2016-12-01

    Full Text Available Matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS is an advanced method used globally to analyze the distribution of biomolecules on tissue cryosections without any probes. In bones, however, hydroxyapatite crystals make it difficult to determine the distribution of biomolecules using MALDI-IMS. Additionally, there is limited information regarding the use of this method to analyze bone tissues. To determine whether MALDI-IMS analysis of bone tissues can facilitate comprehensive mapping of biomolecules in mouse bone, we first dissected femurs and tibiae from 8-week-old male mice and characterized the quality of multiple fixation and decalcification methods for preparation of the samples. Cryosections were mounted on indium tin oxide-coated glass slides, dried, and then a matrix solution was sprayed on the tissue surface. Images were acquired using an iMScope at a mass-to-charge range of 100–1000. Hematoxylin-eosin, Alcian blue, Azan, and periodic acid-Schiff staining of adjacent sections was used to evaluate histological and histochemical features. Among the various fixation and decalcification conditions, sections from trichloroacetic acid-treated samples were most suitable to examine both histology and comprehensive MS images. However, histotypic MS signals were detected in all sections. In addition to the MS images, phosphocholine was identified as a candidate metabolite. These results indicate successful detection of biomolecules in bone using MALDI-IMS. Although analytical procedures and compositional adjustment regarding the performance of the device still require further development, IMS appears to be a powerful tool to determine the distribution of biomolecules in bone tissues. Keywords: Matrix-assisted laser desorption/ionization-imaging mass spectrometry, Tissue cryosection, Bone, Fixation, Decalcification

  7. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength.

    Science.gov (United States)

    Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C

    2008-05-01

    Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral

  8. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  9. Low bone mass density is associated with hemolysis in brazilian patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Gabriel Baldanzi

    2011-01-01

    Full Text Available OBJECTIVES: To determine whether kidney disease and hemolysis are associated with bone mass density in a population of adult Brazilian patients with sickle cell disease. INTRODUCTION: Bone involvement is a frequent clinical manifestation of sickle cell disease, and it has multiple causes; however, there are few consistent clinical associations between bone involvement and sickle cell disease. METHODS: Patients over 20 years of age with sickle cell disease who were regularly followed at the Hematology and Hemotherapy Center of Campinas, Brazil, were sorted into three groups, including those with normal bone mass density, those with osteopenia, and those with osteoporosis, according to the World Health Organization criteria. The clinical data of the patients were compared using statistical analyses. RESULTS: In total, 65 patients were included in this study: 12 (18.5% with normal bone mass density, 37 (57% with osteopenia and 16 (24.5% with osteoporosis. Overall, 53 patients (81.5% had bone mass densities below normal standards. Osteopenia and osteoporosis patients had increased lactate dehydrogenase levels and reticulocyte counts compared to patients with normal bone mass density (p<0.05. Osteoporosis patients also had decreased hemoglobin levels (p<0.05. Hemolysis was significantly increased in patients with osteoporosis compared with patients with osteopenia, as indicated by increased lactate dehydrogenase levels and reticulocyte counts as well as decreased hemoglobin levels. Osteoporosis patients were older, with lower glomerular filtration rates than patients with osteopenia. There was no significant difference between the groups with regard to gender, body mass index, serum creatinine levels, estimated creatinine clearance, or microalbuminuria. CONCLUSION: A high prevalence of reduced bone mass density that was associated with hemolysis was found in this population, as indicated by the high lactate dehydrogenase levels, increased

  10. Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study.

    Science.gov (United States)

    Zouch, Mohamed; Zribi, Anis; Alexandre, Christian; Chaari, Hamada; Frere, Delphine; Tabka, Zouhair; Vico, Laurence

    2015-01-01

    The aim of this study was to examine the effect of 3-yr soccer practice on bone acquisition in prepubescent boys. We investigated 65 boys (aged 10-13 yr, Tanner stage I) at baseline, among which only 40 boys (Tanner stages II and III) have continued the 3-yr follow-up: 23 soccer players (F) completed 2-5 h of training plus 1 competition game per week and 17 controls (C). Bone mineral density (BMD, g/cm(2)) and bone mineral content (BMC, g) were measured by dual-energy X-ray absorptiometry at different sites. At baseline, BMD was higher in soccer players than in controls in the whole body and legs. In contrast, there was nonsignificant difference BMD in head, femoral neck, arms, and BMC in all measured sites between groups. At 3-yr follow-up, soccer players were found to have higher BMD and BMC at all sites than controls, except for head BMD and BMC and arms BMC in which the difference was nonsignificant between groups. During the 3-yr follow-up, the soccer players were found to gain significantly more in lumbar spine (31.2% ± 2.9% vs 23.9% ± 2.1%; p soccer players have less %BMD and %BMC changes in the head than controls. A nonsignificant difference was found in legs, dominant arm, head %BMD and %BMC changes, and whole-body %BMC changes between groups. In summary, we suggest that soccer has an osteogenic effect BMD and BMC in loaded sites in pubertal soccer players. The increased bone mass induced by soccer training in the stressed sites was associated to a decreased skull bone mass after 3 yr of follow-up. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  11. Histone deacetylase 3 is required for maintenance of bone mass during aging

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; Bradley, Elizabeth W.; Dudakovic, Amel; Carlson, Samuel W.; Ryan, Zachary C.; Kumar, Rajiv; Dadsetan, Mahrokh; Yaszemski, Michael J.; Chen, Qingshan; An, Kai-Nan; Westendorf, Jennifer J.

    2012-01-01

    Histone deacetylase 3 (Hdac3) is a nuclear enzyme that removes acetyl groups from lysine residues in histones and other proteins to epigenetically regulate gene expression. Hdac3 interacts with bone-related transcription factors and co-factors such as Runx2 and Zfp521, and thus is poised to play a key role in the skeletal system. To understand the role of Hdac3 in osteoblasts and osteocytes, Hdac3 conditional knockout (CKO) mice were created with the Osteocalcin (OCN) promoter driving Cre expression. Hdac3 CKOOCN mice were of normal size and weight, but progressively lost trabecular and cortical bone mass with age. The Hdac3 CKOOCN mice exhibited reduced cortical bone mineralization and material properties and suffered frequent fractures. Bone resorption was lower, not higher, in the Hdac3 CKOOCN mice, suggesting that primary defects in osteoblasts caused the reduced bone mass. Indeed, reductions in bone formation were observed. Osteoblasts and osteocytes from Hdac3 CKOOCN mice showed increased DNA damage and reduced functional activity in vivo and in vitro. Thus, Hdac3 expression in osteoblasts and osteocytes is essential for bone maintenance during aging. PMID:23085085

  12. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  13. Importance of participation rate in sampling of data in population based studies, with special reference to bone mass in Sweden.

    OpenAIRE

    Düppe, H; Gärdsell, P; Hanson, B S; Johnell, O; Nilsson, B E

    1996-01-01

    OBJECTIVE: To study the effects of participation rate in sampling on "normative" bone mass data. DESIGN: This was a comparison between two randomly selected samples from the same population. The participation rates in the two samples were 61.9% and 83.6%. Measurements were made of bone mass at different skeletal sites and of muscle strength, as well as an assessment of physical activity. SETTING: Malmö, Sweden. SUBJECTS: There were 230 subjects (117 men, 113 women), aged 21 to 42 years. RESUL...

  14. Sports Practice and Bone Mass in Prepubertal Adolescents and Young Adults: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Alessandra Madia Mantovani

    Full Text Available Abstract AIM To compare bone mass and body composition variables between adolescents engaged in high-impact sports and adults who were sedentary during early life. METHOD A cross-sectional study with 155 participants (64 adolescents and 91 adults aged between 11 and 50 years old. Among the adults, history of sports was evaluated during face-to-face interviews, and information regarding the adolescents' training routines was provided by their coaches. Body composition was evaluated using Dual Energy X-Ray Absorptiometry which provided data about bone mineral density (BMD, bone mineral content (BMC, fat mass (FM, and free fat mass (FFM. RESULTS Adults who engaged in sports practice during early life had higher values of BMC (ES-r = 0.063, FFM (ES-r = 0.391, and lower values of FM (ES-r = 0.396 than sedentary adults. Higher values of BMC (ES-r = 0.063 and BMD in lower limbs (ES-r = 0.091 were observed in active adolescents. Adolescents engaged in sports and adults who were sedentary in early life presented similar values in all bone variables, FM, and FFM. CONCLUSIONS Sports involvement in early life is related to higher bone mass in adulthood. Adolescents engaged in sports presented similar bone mass to adults who had been sedentary in early life.

  15. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  16. Low bone mass prevalence and osteoporosis risk factor assessment in African American Wisconsin women.

    Science.gov (United States)

    Kidambi, Srividya; Partington, Susan; Binkley, Neil

    2005-11-01

    Post-menopausal osteoporosis is seen in all racial groups. With the increasing population and longevity of minority groups, osteoporosis is becoming an important health concern. Data regarding risk factors for, and prevalence of, low bone mass and awareness of osteoporosis risk in African American (AA) women are limited. This article evaluates the risk factors for, and prevalence of, low bone mass in a population of urban AA women in Wisconsin and assesses this group's perceived risk for osteoporosis. One hundred fifty consecutive community-dwelling AA women > or = 45 years old from Milwaukee, Wis were asked to complete a questionnaire based on currently accepted osteoporosis risk factors. Additionally, their perception of osteoporosis risk was assessed using a Likert scale. All subjects underwent quantitative calcaneal ultrasound. Subject mean age was 54 +/- 7 years. Mean T- and Z-scores were 0.5 and 0.4, respectively. Applying World Health Organization criteria, osteopenia (bone mineral density T-score 2 children), postmenopausal state, and current smoking were associated with lower calcaneal bone mass. Higher education and presence of diabetes were associated with a higher bone mass. Only 25% of the women surveyed thought they were at moderate to high risk for osteoporosis. Low bone mass was present in 33% of these AA women despite their relative young age. Many AA women do not perceive osteoporosis as a health risk. It is necessary to develop strategies to educate AA women regarding osteoporosis risk.

  17. Bone mineral content measurement by bone mineral analyzer

    International Nuclear Information System (INIS)

    Yamamoto, Itsuo; Dokoh, Shigeharu; Fukunaga, Masao; Torizuka, Kanji; Kosaka, Tadako.

    1976-01-01

    With a bone mineral analyzer (Studsvik Bone Scanner 7102), bone mineral content (BMC) was validated using various concentrations of standard CaCO 3 . Seventy-five normal subjects, nineteen patients with rheumathoid arthritis (RA) and twenty-two patients with abnormal thyroid function were investigated by this method. Some inherent problems concerning the present measurements were also discussed. Reproducibility of BMC in sixteen normal subjects during a four months interval was +-4% on the mid-shaft of the radius and +-5% on the distal head of the radius, respectively. Although correlation of the single energy method and the dual energy method with the bone scanner was high (r=0.970), the single energy method was probably underestimated due to the fat layer. BMC in normal subjects was highest in 30th and 40th decades for both males and females, and gradually decreased with aging. Males had higher BMC and BMC/bone width than did females. All of the stage 1 group of RA patients, according to roentgenographic staging, revealed normal BMC, but most of stage 2 and 3 groups had abnormally low BMC, suggesting that progression of the disease may be an important factor in BMC values. The BMC of hyperthyroid patients was low, whereas that of euthyroid patients was normal. Serial measurements of BMC in a hyperparathyroid patient and a hyperthyroid patient revealed distinct recurrence of BMC after treatment. (Evans, J.)

  18. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake and high bone turnover

    OpenAIRE

    Kruger, Annamarie; Kruger, Marlena C.; Kruger, Iolanthé Marike; Wentzel-Viljoen, Edelweiss

    2011-01-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the Nor...

  19. Relationship between alveolar bone measured by 125I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    International Nuclear Information System (INIS)

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-01-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using 125 I absorptiometry to measure bone mass. The purpose of this study was to compare 125 I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using 125 I absorptiometry. At each site the 125 I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it

  20. LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French-Canadian women.

    Science.gov (United States)

    Giroux, Sylvie; Elfassihi, Latifa; Cardinal, Guy; Laflamme, Nathalie; Rousseau, François

    2007-05-01

    Bone mineral density has a strong genetic component but it is also influenced by environmental factors making it a complex trait to study. LRP5 gene was previously shown to be involved in rare diseases affecting bone mass. Mutations associated with gain-of-function were described as well as loss-of-function mutations. Following this discovery, many frequent LRP5 polymorphisms were tested against the variation of BMD in the normal population. Heel bone parameters (SOS, BUA) were measured by right calcaneal QUS in 5021 healthy French-Canadian women and for 2104 women, BMD evaluated by DXA at two sites was available (femoral neck (FN) and lumbar spine (LS)). Among women with QUS measures and those with DXA measures, 26.5% and 32.8% respectively were premenopausal, 9.2% and 10.7% were perimenopausal and 64.2% and 56.5% were postmenopausal. About a third of the peri- and postmenopausal women never received hormone therapy. Two single nucleotide coding polymorphisms (Val667Met and Ala1330Val) in LRP5 gene were genotyped by allele-specific PCR. All bone measures were tested individually for associations with each polymorphism by analysis of covariance with adjustment for non genetic risk factors. Furthermore, haplotype analysis was performed to take into account the strong linkage disequilibrium between the two polymorphisms. The two LRP5 polymorphisms were found to be associated with all five bone measures (L2L4 and femoral neck DXA as well as heel SOS, BUA and stiffness index) in the whole sample. Premenopausal women drove the association as expected from the proposed role of LRP5 in peak bone mass. Our results suggest that the Val667Met polymorphism is the causative variant but this remains to be functionally proven.

  1. Chronic obstructive pulmonary disease and low bone mass: A case-control study

    Directory of Open Access Journals (Sweden)

    Rakesh K Gupta

    2014-01-01

    Full Text Available Background and Objective: Low bone mass (osteopenia and osteoporosis is one of the effects associated with chronic obstructive pulmonary disease (COPD. There is very little data from Saudi Arabia on COPD and low bone mass. This retrospective study was done to assess the prevalence of osteoporosis and osteopenia in COPD patients attending King Fahd Hospital of the University (KFHU, Alkhobar. Patients and Methods: After obtaining the ethical approval from the research committee, all patients seen between at the King Fahd Hospital of the University between January 2010 and December 2012 were included. The inclusion criteria included a follow up of a minimum 2 years, and the Medical Records should have the details of forced expiratory volume in one second (FEV 1 , blood bone profile and bone biomarkers and dual-energy X-ray absorptiometry (DEXA scan. Patients were labeled as osteopenia if the T score was -<1 to <-2.5 and osteoporosis of <-2.5 as per the WHO definition of osteopenia and osteoporosis. Results: Seventy-three patients were being followed in the clinics and 49 patients satisfied the inclusion criteria. The average age was 60.6 ± 10.47 years; males were 43 and females 6. Three (6.1% were normal and the remaining 46 (93.9% were with low bone mass. Thirty-two (65.3% were osteoporotic and 14 (28.57% were osteopenic. The average duration of COPD was 4.5 ± 6.2 years. Majority (n = 36, 73.4% of patients were in the Global Initiative for COPD (GOLD class II and III. FEV 1 was significantly lower in the patients with low bone mass 1.66 ± 0.60 versus 3.61 ± 0.58 (P < 0.001. Conclusions: Our study shows that over 90% of Saudi Arabian patients with COPD suffer from osteopenia and osteoporosis and unfortunately they remain under-diagnosed and undertreated.

  2. Evaluating the risk of osteoporosis through bone mass density

    International Nuclear Information System (INIS)

    Sayed, S.A.; Khaliq, A.

    2017-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30 percent of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. Method: In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). Result: The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4 percent (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. Conclusion: The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis. (author)

  3. Evaluating The Risk Of Osteoporosis Through Bone Mass Density.

    Science.gov (United States)

    Sayed, Sayeeda Amber; Khaliq, Asif; Mahmood, Ashar

    2016-01-01

    Osteoporosis is a bone disorder, characterized by loss of bone mass density. Osteoporosis affects more than 30% of post-menopausal women. Osteoporosis is often associated with restricted body movement, pain and joint deformities. Early identification and early intervention can help in reducing these complications. The primary objective of this study was to estimate the burden of Osteoporosis in Urban setting of Sindh among women of different age groups and to access the effect of different protective measures that can reduce the risk of Osteoporosis. In this study, 500 women's of 3 major cities of Sindh were approached by non-probability convenience sampling technique. Women bearing age 20 years or more were included. Women who fall under inclusion criteria were screened for BMD (Bone mineral density) test and were classified as Healthy, Osteopenic and Osteoporotic based on their T-score. The association of different protective measures and risk of osteoporosis was assessed by prevalence relative risk (PRR). The result of this study indicate that the burden of Osteoporosis is very high among the women of Sindh, only 17.4% (84) women were found to have normal BMD score. The life style of majority of women was sedentary. The PRR calculated for Exposure to sunlight, regular exercise, and use of nutritional supplement was 12.5, 5.19 and 2.72 folds respectively. The results of study reveal that exposure to sunlight, regular physical exercise and use of nutritional supplements found to be effective in reducing the risk of osteoporosis among women of all age group. Health education and promotion toward osteoporosis prevention can significantly contribute in reducing the morbidity of osteoporosis.

  4. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    Directory of Open Access Journals (Sweden)

    Sara H Windahl

    Full Text Available Androgens are important regulators of bone mass but the relative importance of testosterone (T versus dihydrotestosterone (DHT for the activation of the androgen receptor (AR in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2, encoded by separate genes (Srd5a1 and Srd5a2. 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05 and cortical bone mineral content (-15%, p<0.05 but unchanged serum androgen levels compared with wild type (WT mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05 in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05. Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  5. Measurement of hand bone mineral content using single-photon absorptiometry

    International Nuclear Information System (INIS)

    Nicoll, J.J.; Smith, M.A.; Law, E.; Tothill, P.; Reid, D.; Brown, N.; Nuki, G.

    1987-01-01

    A single photon absorption imaging technique has been developed to assess the bone mass of the hand, especially in patients with rheumatoid arthritis or bronchial asthma. A modified rectilinear scanner images the hand by transmission scanning in a water bath with a 7.4 GBq 125 I source. A microcomputer is used to calculate the bone mineral distribution, and the total bone mineral content (BMC) of the hand is determined from that distribution. The precision (coefficient of variation) of the measurement is 1.9%. A control population of 20 men and 58 women has been studied to determine normal variations in hand bone mineral content with age, sex, body size, hand volume and years since menopause. The normal men are found to have an average hand BMC of 25.1 g with a coefficient of variation (CV) of 22%, which is reduced to 12% by normalising for body size using span. The normal women had an average hand BMC of 18.0 g +- 15%. The CV is reduced to 13% by normalising for span and years post-menopause. (author)

  6. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  7. Maternal first-trimester diet and childhood bone mass: The Generation R Study

    NARCIS (Netherlands)

    D.H.M. Heppe (Denise); M.C. Medina-Gomez (Carolina); A. Hofman (Albert); O.H. Franco (Oscar); F. Rivadeneira Ramirez (Fernando); V.W.V. Jaddoe (Vincent)

    2013-01-01

    textabstractBackground: Maternal diet during pregnancy has been suggested to influence bone health in later life. Objective: We assessed the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass. Design: In a prospective cohort study in 2819 mothers and

  8. Method and system for in vivo measurement of bone tissue using a two level energy source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Cameron, J.R.; Judy, P.F.

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content according to the following relationship: I = (I 0 ) exp [(μBM/sup M/BM) - (μST/sup M/ST)] wherein I 0 is the unattentuated intensity of the radiations in the beam, μ is the mass attenuation coefficient, M is mass in g/cm 2

  9. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  10. Bone mineral density measurement over the shoulder region

    DEFF Research Database (Denmark)

    Doetsch, A M; Faber, J; Lynnerup, N

    2002-01-01

    values decreased with age (P shoulder BMD levels increased significantly with increased body mass index (BMI) (P positive relationship between the increased hip/shoulder BMD differential with BMI supports the conclusion that the shoulder is subject......The purpose of this study was to (1). establish a method for measuring bone mineral density (BMD) over the shoulder region; (2). compare the relationship between shoulder BMD levels with hip BMD and body mass index (BMI); and (3). discuss the relevance of the shoulder scan as an early indicator...... of osteoporosis compared with hip scans, the latter representing a weight-bearing part of the skeleton. We developed a scanning procedure, including a shoulder fixation device, and determined the most appropriate software in order to establish a reference material with the highest possible precision. Duplicate...

  11. Long term effect of thiazides on bone mass in women with hypercalciuric nephrolithiasis

    OpenAIRE

    Spivacow, Francisco R; Negri, Armando L; del Valle, Elisa E

    2013-01-01

    Background: Decreased bone mineral density and increased prevalence of bone fractures have been found in patients with idiopathic hypercalciuria. It is not yet clear if thiazide treatment prevent these events. Methods: We retrospectively evaluated bone mass and biochemical markers of bone turnover in response to thiazide therapy in 52 consecutive female patients with idiopathic hypercalciuria and nephrolithiasis. Patients were divided in two subgroups according to their menopausal status: 25 ...

  12. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    Science.gov (United States)

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  13. Bone assessment via thermal photoacoustic measurements

    Science.gov (United States)

    Feng, Ting; Kozloff, Kenneth M.; Hsiao, Yi-Sing; Tian, Chao; Perosky, Joseph; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    The feasibility of an innovative biomedical diagnostic technique, thermal photoacoustic (TPA) measurement, for nonionizing and non-invasive assessment of bone health is investigated. Unlike conventional photoacoustic PA methods which are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e. the temperature dependent Grueneisen parameter which is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique is less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 370 C to 440 C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

  14. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    Science.gov (United States)

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  15. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  16. Reference Centile Curves for Body Fat Percentage, Fat-free Mass, Muscle Mass and Bone Mass Measured by Bioelectrical Impedance in Asian Indian Children and Adolescents.

    Science.gov (United States)

    Chiplonkar, Shashi; Kajale, Neha; Ekbote, Veena; Mandlik, Rubina; Parthasarathy, Lavanya; Borade, Ashwin; Patel, Pinal; Patel, Prerna; Khadilkar, Vaman; Khadilkar, Anuradha

    2017-12-15

    To create gender-specific percentile curves for percent body fat (%BF) by Bio electrical Impedance Analysis (BIA) for screening adiposity and risk of hypertension in Indian children and generate reference curves for percent fat-free mass (%FFM), muscle mass (%LM) and bone mineral content (BMC) by using bioelectrical impedance. Secondary analysis of data from previous multicenter cross-sectional studies. Private schools from five regions of India. A random sample of 3850 healthy school children (2067 boys) (5-17 yr) from private schools in five major Indian cities. Anthropometry, blood pressure (BP) and body composition were measured by bioelectrical impedance. Reference curves were generated by the LMS method. %BF, %FFM, %LM, BMC and BP. Median %BF increased by 6% from 5 to 13 years of age and declined (around 2%) up to 17 years in boys. In girls, %BF increased by 8% from 5 to 14 years and thereafter declined by 3%. Based upon the risk of hypertension, the new cut-offs of 75th and 85th percentile of %BF were proposed for detecting over fatness and excess fatness in children. Median %FFM was 90% at 5 yrs and decreased till 12 years, and then showed a slight increase to 84% at 17 yrs in boys. In girls, it was 86% at 5 yrs and decreased till 15 yrs, and plateaued at 71.8% at 17 yrs. Reference curves for percent body fat for Indian children would be useful to screen children for health risk in clinical set up.

  17. Influence of androgens on bone mass in young women with sickle cell anemia

    International Nuclear Information System (INIS)

    Al-Elq, Abdulmohsen H.; Sultan, Osama A.; Al-Turki, Haifa A.; Sadat-Ali, M.

    2008-01-01

    The objective was to evaluate the relationship between the gender hormonal levels and bone mineral density in premenopausal women suffering with sickle cell disease. Method was a cross-sectional study including consecutive female adult patients with sickle cell anemia attending the outpatient hematology/orthopedic clinics, or admitted to King Fahd University Hospital, Al-Khobar, Saudi Arabia, between August 2006 and June 2007. Patient's age was documented and body mass index was calculated. Blood was drawn for complete blood picture, biochemistry and hormonal profile including total estradiol E2 and total testosterone Te. Bone mineral density BMD was measured for all patients using dual energy x-ray absorptiometry scan at the hip and lumbar spine. We analyzed the data of 51 patients with an average age of 26+/-3.1 years. Patients were divided into two groups group A and group B. Group A had normal BMD and group B with low BMD. Thirty-one (60.8%) were in group A and 20 (39.2%) were in group B. The E-2 level was not statistically different between the 2 groups, while Te level was significantly lower in women with low BMD 38+/-11.8 versus 22.3+/-11.7 ng/dl, p<0.001. Our study indicates that in menopausal female patients with sickle cell anemia, testosterone may play a role in the preservation of bone mass. (author)

  18. Recovery of decreased bone mineral mass after lower-limb fractures in adolescents.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier E; Delhumeau, Cécile; Farpour-Lambert, Nathalie J; De Coulon, Geraldo; Dubois-Ferrière, Victor; Rizzoli, René

    2013-06-05

    Loss of bone mineral mass, muscle atrophy, and functional limitations are predictable consequences of immobilization and subsequent weight-bearing restriction due to leg or ankle fractures. The aim of this study was to prospectively determine whether decreased bone mineral mass following lower-limb fractures recovers at follow-up durations of six and eighteen months in adolescents. In the present study, we included fifty adolescents who underwent cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of four different sites (total hip, femoral neck, entire lower limb, and calcaneus) were performed at the time of the fracture, at cast removal, and at follow-ups of six and eighteen months. Patients with fractures were paired with healthy controls according to sex, age, and ethnicity. Dual x-ray absorptiometry values were compared between groups and between injured and non-injured legs in adolescents with fractures. Among those with fractures, lower-limb bone mineral variables were significantly lower at the injured side compared with the non-injured side at cast removal, with differences ranging from 6.2% to 31.7% (p < 0.0001). Similarly, injured adolescents had significantly lower bone mineral values at the level of the injured lower limb compared with healthy controls (p < 0.0001). At the six-month follow-up, there were still significant residual differences between injured and non-injured legs in adolescents with fractures (p < 0.0001). However, a significant residual difference between healthy controls and injured adolescents was present only for femoral neck bone mineral density (p = 0.011). At the eighteen-month follow-up, no significant difference was observed at any lower-limb site. Bone mineral loss following a fracture of the lower limb in adolescents is highly significant and affects the lower limb both proximal to and distal to the fracture site. In contrast to observations in adults, a rapid bone mass reversal occurs with full

  19. Determination of peak bone mass density and composition in low-income urban residents of metro Manila using isotope techniques

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.V.; Guanzon, L.V.V.; De Guzman, A.M.; Villaruel, C.M.; Santos, F.

    1996-01-01

    Filipinos are predisposed to osteoporosis because of inadequate calcium in their diet early on in life, confounded by malnutrition, susceptibility to infectious diseases and their generally small body frame. And yet the problem of osteoporosis has not been properly addressed. The incidence of osteoporosis is not known since oftentimes it is established only once complications have set in. It is believed that osteoporosis poses a public health concern but its extent is not realized at present because of lack of local epidemiological data. This study aims to determine the bone mass density as a function of age among 210 screened and healthy volunteers coming from urban poor communities of Metro Manila over a 3-year period. A LUNAR DPX-L bone densitometry for dual X-ray photon absorptiometry will be used, with measurements taken on the spine and femur. It also aims to correlate factors such as nutritional intake, physical activity, lifestyle, sex and body mass index with that of bone mass density. Blood and urine samples will be obtained for biochemistry and hormonal radioimmunoassay examination. Statistical analysis will be done to com are differences within the group and to determine rate of bone loss as a function of age and sex. Plans for future research include the determination of trace element content in cortical bone and tooth samples from healthy living subjects. (author)

  20. Comparison between femoral bone mineral parameters assessed by QCT and dual X-ray densitometry

    International Nuclear Information System (INIS)

    Hoeiseth, A.; Stroemsoee, K.; Alho, A.

    1995-01-01

    The aim of this study was to assess the agreement between different femoral bone mineral measures and their agreement with some biomechanical parameters. By means of quantitative CT (QCT) and dual X-ray absorptiometry (DXA), measurements were made in different locations of 33 pairs of human femur specimens. There was a principal distinction between bone density as measured by QCT and bone mass as measured by QCT and DXA. Bone mass measured by QCT and the bone mineral content (BMC) measured by DXA are true mass parameters. However, bone mineral density (BMD) as measured by DXA agreed substantially better with the mass measures than with the densities. The mass measures, including the BMD, had good agreements with each other, with a common reference parameter and with the biomechanical parameters. The QCT densities had, on the average, poor agreements with each other, with the other bone mineral measures (including the MBDs), and with the mechanical parameters. The gender differences were less for the QCT densities than for the mass parameters, whereas in this regard the BMDs were intermediate. All measures had approximately similar reproducibilities. (orig.)

  1. Bone changes in endometrosis

    International Nuclear Information System (INIS)

    Jensen, P.S.; Orphanoudakis, S.C.; Hutchinson-Williams, K.; Lewis, A.B.; Lovett, L.; Polan, M.L.; DeCherney, A.H.; Comite, F.

    1989-01-01

    In this study, quantitative CT is used to measure bone in the distal radius in normal women, women with endometriosis who had not been treated, and women with endometriosis who had been treated with danazol--an anabolic (androgen) steroid. Measurements of cortex and trabeculae indicate that untreated women have decreased bone mass (1125 HU and 160 HU, respectively), compared with bone mass in normal women (1269 HU and 257 HU; P < .05) and treated women (1238 HU and 255 HU). This finding is important because the most effective way to reduce the complications of osteoporosis is identification of risk factors, prevention, and early treatment

  2. A path model of sarcopenia on bone mass loss in elderly subjects.

    Science.gov (United States)

    Rondanelli, M; Guido, D; Opizzi, A; Faliva, M A; Perna, S; Grassi, M

    2014-01-01

    Aging is associated with decreases in muscle mass, strength, power (sarcopenia) and bone mineral density (BMD). The aims of this study were to investigate in elderly the role of sarcopenia on BMD loss by a path model, including adiposity, inflammation, and malnutrition associations. Body composition and BMD were measured by dual X-ray absorptiometry in 159 elderly subjects (52 male/107 female; mean age 80.3 yrs). Muscle strength was determined with dynamometer. Serum albumin and PCR were also assessed. Structural equations examined the effect of sarcopenia (measured by Relative Skeletal Muscle Mass, Total Muscle Mass, Handgrip, Muscle Quality Score) on osteoporosis (measured by Vertebral and Femoral T-scores) in a latent variable model including adiposity (measured by Total Fat Mass, BMI, Ginoid/Android Fat), inflammation (PCR), and malnutrition (serum albumin). The sarcopenia assumed a role of moderator in the adiposity-osteoporosis relationship. Specifically, increasing the sarcopenia, the relationship adiposity-osteoporosis (β: -0.58) decrease in intensity. Adiposity also influences sarcopenia (β: -0.18). Malnutrition affects the inflammatory and the adiposity states (β: +0.61, and β: -0.30, respectively), while not influencing the sarcopenia. Thus, adiposity has a role as a mediator of the effect of malnutrition on both sarcopenia and osteoporosis. Malnutrition decreases adiposity; decreasing adiposity, in turn, increase the sarcopenia and osteoporosis. This study suggests such as in a group of elderly sarcopenia affects the link between adiposity and BMD, but not have a pure independent effect on osteoporosis.

  3. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women.

    Science.gov (United States)

    Andreoli, A; Bazzocchi, A; Celi, M; Lauro, D; Sorge, R; Tarantino, U; Guglielmi, G

    2011-10-01

    The knowledge of factors modulating the behaviour of bone mass is crucial for preventing and treating osteoporotic disease; among these factors, body weight (BW) has been shown to be of primary importance in postmenopausal women. Nevertheless, the relative effects of body composition indices are still being debated. Our aim was to analyze the relationship between body mass index (BMI), fat and lean mass and bone mineral density (BMD) in a large population of women. Moreover, this study represents a first important report on reference standard values for body composition in Italian women. Between 2005 and 2008, weight and height of 6,249 Italian women (aged 30-80 years) were measured and BMI was calculated; furthermore BMD, bone mineral content, fat and lean mass were measured by dual-energy X-ray absorptiometry. Individuals were divided into five groups by decades (group 1, 30.0-39.9; group 2, 40.0-49.9; group 3, 50.0-59.9; group 4, 60.0-69.9; group 5, 70.0-79.9). Differences among decades for all variables were calculated using a one-way analysis of variance (ANOVA) and Bonferroni test by the SPSS programme. Mean BW was 66.8±12.1 kg, mean height 159.1±6.3 cm and mean BMI 26.4±4.7 kg/m(2). According to BW and BMI, there was an increase of obesity with age, especially in women older than 50 years (posteoporosis in the examined population was 43.0% and 16.7%, respectively. Our data show that obesity significantly decreased the risk for osteoporosis but did not decrease the risk for osteopenia. It is strongly recommended that a strong policy regarding prevention of osteopenia and osteoporosis be commenced. An overall examination of our results suggests that both fat and lean body mass can influence bone mass and that their relative effect on bone could be modulated by their absolute amount and ratio to total BW.

  4. Establishing a method to measure bone structure using spectral CT

    Science.gov (United States)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  5. [Bone Cell Biology Assessed by Microscopic Approach. Assessment of bone quality using Raman and infrared spectroscopy].

    Science.gov (United States)

    Suda, Hiromi Kimura

    2015-10-01

    Bone quality, which was defined as "the sum total of characteristics of the bone that influence the bone's resistance to fracture" at the National Institute of Health (NIH) conference in 2001, contributes to bone strength in combination with bone mass. Bone mass is often measured as bone mineral density (BMD) and, consequently, can be quantified easily. On the other hand, bone quality is composed of several factors such as bone structure, bone matrix, calcification degree, microdamage, and bone turnover, and it is not easy to obtain data for the various factors. Therefore, it is difficult to quantify bone quality. We are eager to develop new measurement methods for bone quality that make it possible to determine several factors associated with bone quality at the same time. Analytic methods based on Raman and FTIR spectroscopy have attracted a good deal of attention as they can provide a good deal of chemical information about hydroxyapatite and collagen, which are the main components of bone. A lot of studies on bone quality using Raman and FTIR imaging have been reported following the development of the two imaging systems. Thus, both Raman and FTIR imaging appear to be promising new bone morphometric techniques.

  6. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development.

    Science.gov (United States)

    Lappe, Joan M; Watson, Patrice; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J; Oberfield, Sharon; Shepherd, John; Winer, Karen K; Zemel, Babette

    2015-01-01

    Childhood and adolescence are critical periods of bone mineral content (BMC) accrual that may have long-term consequences for osteoporosis in adulthood. Adequate dietary calcium intake and weight-bearing physical activity are important for maximizing BMC accrual. However, the relative effects of physical activity and dietary calcium on BMC accrual throughout the continuum of pubertal development in childhood remains unclear. The purpose of this study was to determine the effects of self-reported dietary calcium intake and weight-bearing physical activity on bone mass accrual across the five stages of pubertal development in a large, diverse cohort of US children and adolescents. The Bone Mineral Density in Childhood study was a mixed longitudinal study with 7393 observations on 1743 subjects. Annually, we measured BMC by dual-energy X-ray absorptiometry (DXA), physical activity and calcium intake by questionnaire, and pubertal development (Tanner stage) by examination for up to 7 years. Mixed-effects regression models were used to assess physical activity and calcium intake effects on BMC accrual at each Tanner stage. We found that self-reported weight-bearing physical activity contributed to significantly greater BMC accrual in both sexes and racial subgroups (black and nonblack). In nonblack males, the magnitude of the activity effect on total body BMC accrual varied among Tanner stages after adjustment for calcium intake; the greatest difference between high- and low-activity boys was in Tanner stage 3. Calcium intake had a significant effect on bone accrual only in nonblack girls. This effect was not significantly different among Tanner stages. Our findings do not support differential effects of physical activity or calcium intake on bone mass accrual according to maturational stage. The study demonstrated significant longitudinal effects of weight-bearing physical activity on bone mass accrual through all stages of pubertal development. © 2014 American

  7. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  8. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  9. Analysis of a Fossil Bone from Malu Rosu - Giurgiu by Accelerator Mass Spectroscopy

    International Nuclear Information System (INIS)

    Olariu, Agata; Popescu, I.V.; Hellborg, Ragnar; Stenstroem, Kristina; Skog, Goeran; Alexandrescu, E.

    2000-01-01

    In the present work we studied a fossil bone found in the archaeological site at Malu Rosu, near Giurgiu. Other specimens of fossil bones from Malu Rosu had been earlier dated by a chemical method, considering the content of the fluorine by neutron activation analysis. In this paper we have determined the age of a bone from Malu Rosu by the method of radiocarbon using the AMS (accelerator mass spectroscopy) technique. The measurement has been performed at 3 MeV Pelletron accelerator of the Lund University. The preparation of the bone sample was done in 2 steps: extraction of collagen from the structure of the bone by a chemical pretreatment, and then the transformation of collagen to pure carbon. The conversion to the elemental carbon is done also in two steps: formation of CO 2 by collagen combustion, and then the reduction of CO 2 to pure carbon. The sample of bone, as pure carbon is put in a copper holder and is arranged in a wheel in the following sequence: 5 carbon samples and 3 standards (1 standard of anthracite and 2 standards of oxalic acid). The anthracite being a very old coal is considered to have no 14 C traces and by its measurement one gets the background for 14 C both of the accelerator and of preparation installation of samples. Oxalic acid is a standard SRM prepared by USA National Bureau of Standards, with a well known activity of 14 C, measured in the Radiocarbon Dating Laboratory, Lund University, used to normalize the value of the 14 C counting rate, for the sample measured in the same conditions of beam current and time as the standard. The wheel with samples and standards are put in the ion source of the accelerator. The central part of the Lund AMS system is a Pelletron tandem accelerator (model 3UDH, produced by NEC, Wisconsin USA). The accelerator is run at 2.4 MV during AMS experiments, which is optimal for the C 3+ charge state. On the experimental beam line a magnetic quadrupole triplet, a velocity selector and a second analyzing

  10. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M-C; Thomsen, Jesper Skovhus; Nyengaard, J R

    2014-01-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind...... of periosteal BFR/BS (2-fold increase vs. BTX, Pmuscle mass (+29% vs. BTX, Pmuscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse......BMD, -13%, Pmuscle mass (-69%, Pmuscle cell cross sectional area (CSA) (-73%, P

  11. The relationship between low bone mass and metabolic syndrome in Korean women.

    Science.gov (United States)

    Hwang, D-K; Choi, H-J

    2010-03-01

    We examined the relationship between low bond mass and metabolic syndrome in 2,475 Korean women. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome. Moreover, age and weight adjusted vertebral BMD was significantly decreased with additional components of the metabolic syndrome. Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and metabolic syndrome. It has been suggested that proinflammatory cytokines and low-grade systemic inflammation activate bone resorption and may lead to reduced bone mineral density (BMD). The objective of this study was to determine the relationship between low bone mass and metabolic syndrome in Korean women. This is a cross-sectional study of 2,548 women aged 18 years and over who had visited the Health Promotion Center. Physical examination and laboratory tests were performed. Vertebral BMD was measured using dual-energy X-ray absorptiometry. Metabolic syndrome was defined by National Cholesterol Education Program-Adult Treatment Panel III criteria. Among 2,475 women, 511 (21.0%) women had metabolic syndrome. Women with abdominal obesity or hypertriglyceridemia had significantly lower vertebral BMD than women without respective components after adjustment for age, weight, and height. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome (p = 0.031). Moreover, age- and weight-adjusted vertebral BMD were significantly decreased with additional components of the metabolic syndrome (p = 0.004). These findings suggest that metabolic syndrome might be another risk factor for osteoporosis and related fractures.

  12. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  13. Improvement of Lumbar Bone Mass after Infliximab Therapy in Crohn’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Marina Mauro

    2007-01-01

    Full Text Available BACKGROUND: Patients with Crohn’s disease (CD have a high risk of developing osteoporosis, but the mechanisms underlying bone mass loss are unclear. Elevated proinflammatory cytokines, such as tumour necrosis factor-alpha (TNFα, have been implicated in the pathogenesis of bone resorption.

  14. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass.

    Science.gov (United States)

    Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei

    2017-04-24

    This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  15. Association of vitamin D receptor and estrogen receptor-α gene polymorphism with peak bone mass and bone size in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Qi-ren HUANG; Jin-wei HE; Yun-qiu HU; Qi ZHOU; Jing-hui LU; Miao LI; Yu-juan LIU

    2004-01-01

    AIM: To investigate if vitamin D receptor (VDR) gene Apa I polymorphism and estrogen receptor-α (ER-α) gene Pvu II, Xba I polymorphisms are related to bone mineral density (BMD), bone mineral content (BMC) and bone size in premenopausal Chinese women. METHODS: The VDR Apa I genotype and ER-α Pvu II, Xba I genotype were determined by PCR-restriction fragment length polymorphism (RFLP) in 493 unrelated healthy women aged 20-40 years of Hah nationality in Shanghai city. BMD (g/cm2), BMC (g), and bone areal size (BAS, cm2) at lumbar spine 1-4 (L1-4) and proximal femur (femoral neck, trochanter and Ward's triangle) were measured by duel-energy X-ray absorptionmetry. RESULTS: All allele frequencies did not deviate from Hardy-Weinberg equilibrium. After phenotypes were adjusted for age, height, and weight, a significant association was found between VDR Apa I genotype and BMC variation at L1-4 and Ward's triangle (P<0.05), but not in BMD or BAS at lumbar spine and proximal femur.ER-α Pvu II, Xba I genotype was not related to BMC, BMD, and BAS at all sites. CONCLUSION: The study suggested that Apa I polymorphism in VDR gene may influence on attainment and maintenance of peak bone mass in premenopausal Chinese women.

  16. Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: comparison of measurement methods

    International Nuclear Information System (INIS)

    Reinbold, W.D.; Genant, H.K.; Reiser, U.J.; Harris, S.T.; Ettinger, B.

    1986-01-01

    To investigate associations among methods for noninvasive measurement of skeletal bone mass, we studied 40 healthy early postmenopausal women and 68 older postmenopausal women with osteoporosis. Methods included single- and dual-energy quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the lumbar spine, single-photon absorptiometry (SPA) of the distal third of the radius, and combined cortical thickness (CCT) of the second metacarpal shaft. Lateral thoracolumbar radiography was performed, and a spinal fracture index was calculated. There was good correlation between QCT and DPA methods in early postmenopausal women and modest correlation in postmenopausal osteoporotic women. Correlations between spinal measurements (QCT or DPA) and appendicular cortical measurements (SPA or CCT) were modest in healthy women and poor in osteoporotic women. Measurements resulting from one method are not predictive of those by another method for the individual patient. The strongest correlation with severity of vertebral fracture is provided by QCT; the weakest, by SPA. There was a high correlation between single- and dual-energy QCT results, indicating that errors due to vertebral fat are not substantial in these postmenopausal women. Single-energy QCT may be adequate and perhaps preferable for assessing postmenopausal women. The measurement of spinal trabecular bone density by QCT discriminates between osteoporotic women and younger healthy women with more sensitivity than measurements of spinal integral bone by DPA or of appendicular cortical bone by SPA or CCT

  17. Determination of peak bone mass density and composition in low income urban residents of metro Manila using isotope techniques

    International Nuclear Information System (INIS)

    Lim-Abrahan, M.A.

    2000-01-01

    The work described in this paper is a continuation of the first phase of the study, which is the determination of the peak bone mass density among residents of Metro Manila using dual energy x-ray absorptiometry. However, it also aims to correlate sex, body mass index, nutritional factors, physical activity and lifestyle to peak bone mass and thus attempts to explain any discrepancies in peak bone mass density to that seen in other countries

  18. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    Science.gov (United States)

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  19. Dual energy X-ray absorptiometry for the measurement of bone mineral density in Shanghai residents

    International Nuclear Information System (INIS)

    Zhang Yuanxun; Li Deyi; Ma Jixiao; Huang Qiren

    1996-01-01

    In recent years, the rapid development of bone mineral density determination technique provides a powerful research tool to diagnose osteoporosis and prevent fracture. Since the beginning of 1995, the research group incooperation with Shanghai 6th people's hospital is carrying on bone density measurements as a part of Co-ordinated Research Programme (CRP) organized by International Atomic Energy Agency (IAEA). The purpose of this study is to determine the age of peak bone mass in each study group of Shanghai residents and to quantify differences in bone density as functions of the age and sex of persons in the study groups. At the same time the authors should get the normal human BMD (Bone Mineral Density) reference database specially for Shanghai residents, China. The roles of various life styles, exercise, diet and so on are also investigated

  20. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    OpenAIRE

    Pardini,Dolores Perovano; Sabino,Anibal Tagliaferri; Meneses,Ana Maria; Kasamatsu,Teresa; Vieira,José Gilberto Henriques

    2000-01-01

    CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic...

  1. Cognitive function in relation with bone mass and nutrition: cross-sectional association in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Brownbill Rhonda A

    2004-05-01

    Full Text Available Abstract Background It has been suggested that bone loss and cognitive decline are co-occurring conditions, possibly due to their relationship with estrogen. Cognitive decline has been associated with various nutritional deficiencies as well. The purpose of this study was to determine if cognitive function is related to bone mineral density of various skeletal sites as well as to various dietary components. Methods Cross-sectional study with 97 healthy, Caucasian, postmenopausal women (59.4–85.0 years enrolled in a larger longitudinal study, investigating the effects of sodium on bone mass. The subjects were divided into two groups based on cognition scores. Group 1 represented lower and Group 2 higher scores on cognitive function. Bone mineral density from the whole body, lumbar spine, femur and forearm were measured with the Lunar DPX-MD instrument. Anthropometry was measured by standard methods. Cognition was assessed using the Mini Mental State Examination. Cumulative (over 2 years dietary intake from 3-day records was analyzed by Food Processor® (ESHA Research, Salem, OR and cumulative physical activity was assessed using Allied Dunbar National Fitness Survey for older adults. Results Subjects' cognition scores ranged from 22–30 (normal, 27–30, indicating all subjects had either mild or no cognitive impairment. Multiple Analysis of Covariance adjusted for age, height, weight, physical activity, alcohol, calcium, sodium and energy intake, showed a statistically significant association between cognition and bone mineral density of all measurable sites (η2 = 0.21, P 2 = 0.07, P = 0.050. Group 2 did have a significantly higher potassium intake (P = 0.023. In multiple regression, saturated fat had a significant negative relationship with cognitive function. Conclusions It appears mild degree of cognitive impairment may be a marker for lower bone mineral density as well as for a diet lower in carbohydrate and potassium intake, and higher

  2. Measurement of bone blood flow in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.; Adler, G.; Venci, R.; Lanphier, E.H.; DeLuca, P.M. Jr.

    1984-01-01

    Bone blood flow in sheep tibia has been estimated via the measurement of the perfusion limited clearance of 41 Ar from the bone mineral matrix following fast neutron activation of 44 Ca. Tibia blood flows were estimated for the intact sheep, and after the installation of an intramedullary pressure tap to elevate bone marrow pressure by saline infusion. The results indicate that normal blood flow in the tibia is in the range of 1.1 to 3.7 ml/100ml-min in the intact animal and at normal marrow pressure. With an elevated intramedullary pressure of approximately 100 mmHg, the bone blood flow measured varied around 0.5 to 1.1 ml/100ml-min. 12 refs., 5 figs., 1 tab

  3. Measurement of fluoride in bone

    International Nuclear Information System (INIS)

    Mernagh, J.R.; Harrision, J.E.; Hancock, R.; McNeill, K.G.

    1977-01-01

    The fluorine concentration in bone biopsy samples was measured by neutron activation analysis. The fluorine content was expressed in terms of the calcium content. Samples were irradiated in a reactor to induce the 19 F(n,γ) 20 F and 48 Ca(n,γ) 49 Ca reactions and after rapid transport from the reactor the resulting activities were measured with a Ge(Li) detector. Reproducibility was better than 10% for the F/Ca ratio. The detection limit for F is 50 μg. This nondestructive technique will be used to assess the effect of fluoride therapy on bone metabolism of patients with idiopathic osteoporosis. (author)

  4. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  5. Sclerostin Blockade and Zoledronic Acid Improve Bone Mass and Strength in Male Mice With Exogenous Hyperthyroidism.

    Science.gov (United States)

    Tsourdi, Elena; Lademann, Franziska; Ominsky, Michael S; Rijntjes, Eddy; Köhrle, Josef; Misof, Barbara M; Roschger, Paul; Klaushofer, Klaus; Hofbauer, Lorenz C; Rauner, Martina

    2017-11-01

    Hyperthyroidism in mice is associated with low bone mass, high bone turnover, and high concentrations of sclerostin, a potent Wnt inhibitor. Here, we explored the effects of either increasing bone formation with sclerostin antibodies (Scl-Ab) or reducing bone turnover with bisphosphonates on bone mass and strength in hyperthyroid mice. Twelve-week-old C57BL/6 male mice were rendered hyperthyroid using l-thyroxine (T4; 1.2 µg/mL added to the drinking water) and treated with 20 mg/kg Scl-Ab twice weekly or 100 µg/kg zoledronic acid (ZOL) once weekly or phosphate-buffered saline for 4 weeks. Hyperthyroid mice displayed a lower trabecular bone volume at the spine (-42%, P hyperthyroid mice increased trabecular bone volume at the spine by threefold and twofold, respectively. Serum bone formation and resorption markers were increased in hyperthyroid mice and suppressed by treatment with ZOL but not Scl-Ab. Trabecular bone stiffness at the lumbar vertebra was 63% lower in hyperthyroid mice (P hyperthyroidism, was increased by Scl-Ab by 71% and ZOL by 22% (both P hyperthyroid mice was restored by treatment with Scl-Ab and ZOL. Thus, bone-forming and antiresorptive drugs prevent bone loss in hyperthyroid mice via different mechanisms. Copyright © 2017 Endocrine Society.

  6. Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.

    Science.gov (United States)

    Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J

    2003-09-01

    High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.

  7. Bone composition measured by x-ray scattering

    International Nuclear Information System (INIS)

    Newton, M.; Hukins, D.W.L.

    1992-01-01

    Ten composite samples consisting of cortical bone and adipose tissue, in known proportions, were made. The intensity of monochromatic x-rays (energy 8 keV) scattered by these samples was determined as a function of the modulus of the scattering vector, K. The ratio of the heights of peaks at K values of around 134 and 22 nm -1 provided a measure of the ratio of adipose tissue to bone mineral in these samples. This method was then used to determine the ratio of adipose tissue to mineral in samples of trabecular bone from 16 vertebral bodies. The results were correlated with measurements of the bone composition determined by ashing (r = 0.66) and histomorphometry (r = 0.66). Furthermore, the ashing and histomorphometry results were correlated with each other (r = 0.68). The feasibility of using higher energy x-rays (35-80 keV) for obtaining the same information from bone within the body is briefly discussed. (author)

  8. In vivo measurement of bone aluminum in population living in southern Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Aslam,; Pejovic-Milic, A.; Chettle, D. R. [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1 (Canada)

    2008-11-15

    The harmful biological effect of excessive aluminum (Al) load in humans has been well documented in the literature. Al stored in bone, for instance due to dialysis treatment or occupational exposure, can interfere with normal bone remodeling leading to osteodystrophy, osteoarthritis, or osteomalacia. On the other hand, the relationship between chronic Al exposure and the risk of Alzheimer's disease remains controversial. In this work, the feasibility of in vivo neutron activation analysis (IVNAA) for measuring Al levels in the human hand bone, using the thermal neutron capture reaction {sup 27}Al(n,{gamma}){sup 28}Al, is reported. This noninvasive diagnostic technique employs a high beam current Tandetron accelerator based neutron source, an irradiation/shielding cavity, a 4{pi} NaI(Tl) detector system, and a new set of hand bone phantoms. The photon spectra of the irradiated phantom closely resemble those collected from the hands of nonexposed healthy subjects. A protocol was developed using the newly developed hand phantoms, which resulted in a minimum detectable limit (MDL) of 0.29 mg Al in the human hand. Using the ratio of Al to Ca as an index of Al levels per unit bone mass, the MDL was determined as 19.5{+-}1.5 {mu}g Al/g Ca, which is within the range of the measured levels of 20-27 {mu}g Al/g Ca[ICRP, Report of the Task Group on Reference Man, Publication 23 (Pergamon, Oxford, 1975)] found in other in vivo and in vitro studies. Following the feasibility studies conducted with phantoms, the diagnostic technique was used to measure Al levels in the hand bones of 20 healthy human subjects. The mean hand bone Al concentration was determined as 27.1{+-}16.1 ({+-}1 SD) {mu}g Al/g Ca. The average standard error (1{sigma}) in the Al/Ca is 14.0 {mu}g Al/g Ca, which corresponds to an average relative error of 50% in the measured levels of Al/Ca. These results were achieved with a dose equivalent of 17.6 mSv to a hand and an effective dose of 14.4 {mu}Sv. This

  9. Selected factors affecting bone mass in students with diagnosed obesity, aged 7–10 years, from Łódź

    Directory of Open Access Journals (Sweden)

    Anna Łupińska

    2017-12-01

    Full Text Available Introduction: Obesity may be a risk factor for mineralisation and bone structure disorders, contrary to a common belief in its protective effects on bone tissue. Aim: The aim of the study was to assess the relationship between selected risk factors and obesity indicators and bone mass in obese children. Material and methods: The study included 80 children aged between 7 and 10 years with excessive body weight (60 obese and 20 overweight; the reference group included 37 children with body weight appropriate for height. All patients underwent physical examination with anthropometric measurements. Parents were asked to complete a questionnaire. The average daily intake of selected nutrients was analysed using Dieta 2 software package. Densitometry (dual-energy X-ray absorptiometry, DXA was performed in all children to evaluate bone mass. Results: Obese and overweight children had statistically significantly higher total body BMD and total body BMD Z-score compared to control group. Most DXA parameters (except from volumetric bone mineral density were positively correlated with body weight, height and waist circumference. A significant positive correlation was found between physical activity and total body BMD. There was a negative correlation between the average daily intake of proteins, carbohydrates, magnesium and phosphorus in obese children and most DXA parameters (p < 0.05. Conclusions: Bone mass in obese children is positively affected by somatic features (body weight, height, waist circumference and body composition and physical activity, and negatively affected by increased intake of proteins, carbohydrates, phosphorus and magnesium. The calculated volumetric mineral bone density may reflect the actual bone mineral density and prevent DXA overestimation in obese children.

  10. Accuracy of dual photon absorptiometry for assessment of bone mineral and body composition

    International Nuclear Information System (INIS)

    Aoki, Manabu; Iwamura, Akira; Goto, Eisuke; Mori, Yutaka; Kawakami, Kenji; Soshi, Shigeru

    1991-01-01

    Accuracy of bone mineral measurement by the dual photon absorptiometry (DPA) was studied in comparison to ashed bone mineral (ash) on the lumbar spine of 23 cada vars. There was a high correlation (r=0.896) between the value of DPA and ash weight. Bone mineral content in the radius by the single photon absorptiometry (SPA) did not correlate to bone mineral density (BMD) by DPA in the patients with hemodialysis. SPA may be less useful to assess BMD of the whole body. Fat mass and lean mass measured by DPA were well correlated to the value obtained by the electrical impedance method. Precision in measurement of fat mass and lean mass was also confirmed by the electrical impedance method. These results suggest that DPA has a high precision for measurements of the bone mineral and the body composition. (author)

  11. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P 1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  12. Factors affecting the precision of bone mineral measurements

    International Nuclear Information System (INIS)

    Cormack, J.; Evil, C.A.

    1990-01-01

    This paper discusses some statistical aspects of absorptiometric bone mineral measurements. In particular, the contribution of photon counting statistics to overall precision is estimated, and methods available for carrying out statistical comparisons of bone loss and determining their precision are reviewed. The use of replicate measurements as a means of improving measurement precision is also discussed. 11 refs

  13. Influence of Nordic Walking Training on Muscle Strength and the Electromyographic Activity of the Lower Body in Women With Low Bone Mass

    Directory of Open Access Journals (Sweden)

    Ossowski Zbigniew

    2016-06-01

    Full Text Available Introduction. Osteoporosis and osteopenia are related to changes in the quantity and quality of skeletal muscle and contribute to a decreased level of muscle strength. The purpose of this study was to evaluate the impact of Nordic walking training on muscle strength and the electromyographic (EMG activity of the lower body in women with low bone mass. Material and methods. The participants of the study were 27 women with low bone mass. The sample was randomly divided into two groups: a control group and an experimental group. Women from the experimental group participated in 12 weeks of regular Nordic walking training. Functional strength was assessed with a 30-second chair stand test. The EMG activities of the gluteus maximus (GMax, rectus femoris (RF, biceps femoris (BF, soleus (SOL, and lumbar (LB muscles were measured using a surface electromyogram. Results. Nordic walking training induced a significant increase in the functional strength (p = 0.006 of the lower body and activity of GMax (p = 0.013 and a decrease in body mass (p = 0.006 in women with reduced bone mass. There was no statistically significant increase in the EMG activities of the RF, BF, SOL, or LB muscles. The study did not indicate any significant changes in functional muscle strength, the EMG activity of the lower body, or anthropometry in women from the control group. Conclusions. Nordic walking training induces positive changes in lower body strength and the electromyographic activity of the gluteus maximus as well as a decrease in body mass in women with low bone mass.

  14. In-vitro studies of change in edge detection with changes in bone density

    International Nuclear Information System (INIS)

    Pocock, N.; Noakes, K.; Griffiths, M.

    1999-01-01

    Full text: Dual energy X-ray absorptiometry (DXA) requires edge detection software to identify the skeletal regions for quantitation of bone mineral density (BMD) and bone mineral content (BMC). As bone mass decreases, the detection of bone edges becomes more difficult and this potentially could cause errors in DXA estimations of areal BMD or BMC. To address this issue, we have used an in-vitro model to study the effects of 'bone loss' on calculated bone area, BMD and BMC. Multiple vertebral phantoms, of equal cross-sectional area but incrementally decreased areal BMD, were constructed using calcium sulphate hemihydrate. The weight of each phantom vertebra, measured accurately using an electronic balance, was used as an index of its true 'bone mass equivalent' (BME). The phantoms were scanned and analysed in the lumbar spine mode using a Lunar DPX-L (L) and Hologic QDR-1000 (H). The changes in BME were compared to changes in measured area, BMC and areal BMD. The results demonstrate that, in an in-vitro model, as bone mass decreases, measured bone area and consequently BMC will decrease as the edge detection algorithms have greater difficulty in detecting the true edges. In conclusion, in an in-vitro model, the DXA edge detection algorithms will underestimate bone area as bone mass decreases. This has potential implications for monitoring changes in bone mass in vivo

  15. Adiposity and TV viewing are related to less bone accrual in young children.

    Science.gov (United States)

    Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R

    2009-01-01

    To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.

  16. Relationship between bone turnover markers and the heel stiffness index measured by quantitative ultrasound in middle-aged and elderly Japanese men

    Science.gov (United States)

    Nishimura, Takayuki; Arima, Kazuhiko; Abe, Yasuyo; Kanagae, Mitsuo; Mizukami, Satoshi; Okabe, Takuhiro; Tomita, Yoshihito; Goto, Hisashi; Horiguchi, Itsuko; Aoyagi, Kiyoshi

    2018-01-01

    Abstract The aim of the present study was to investigate the age-related patterns and the relationships between serum levels of tartrate-resistant acid phosphatase-5b (TRACP-5b) or bone-specific alkaline phosphatase (BAP), and the heel stiffness index measured by quantitative ultrasound (QUS) in 429 Japanese men, with special emphasis on 2 age groups (40–59 years and 60 years or over). The heel stiffness index (bone mass) was measured by QUS. Serum samples were collected, and TRACP-5b and BAP levels were measured. The stiffness index was significantly decreased with age. Log (TRACP-5b) was significantly increased with age, but Log (BAP) was stable. Generalized linear models showed that higher levels of Log (TRACP-5b) and Log (BAP) were correlated with a lower stiffness index after adjusting for covariates in men aged 60 years or over, but not in men aged 40 to 59 years. In conclusion, higher rates of bone turnover markers were associated with a lower stiffness index only in elderly men. These results may indicate a different mechanism of low bone mass among different age groups of men. PMID:29465590

  17. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  18. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects

    Directory of Open Access Journals (Sweden)

    D.C.L. Carvalho

    2006-10-01

    Full Text Available Quadriplegic subjects present extensive muscle mass paralysis which is responsible for the dramatic decrease in bone mass, increasing the risk of bone fractures. There has been much effort to find an efficient treatment to prevent or reverse this significant bone loss. We used 21 male subjects, mean age 31.95 ± 8.01 years, with chronic quadriplegia, between C4 and C8, to evaluate the effect of treadmill gait training using neuromuscular electrical stimulation, with 30-50% weight relief, on bone mass, comparing individual dual-energy X-ray absorptiometry responses and biochemical markers of bone metabolism. Subjects were divided into gait (N = 11 and control (N = 10 groups. The gait group underwent gait training for 6 months, twice a week, for 20 min, while the control group did not perform gait. Bone mineral density (BMD of lumbar spine, femoral neck, trochanteric area, and total femur, and biochemical markers (osteocalcin, bone alkaline phosphatase, pyridinoline, and deoxypyridinoline were measured at the beginning of the study and 6 months later. In the gait group, 81.8% of the subjects presented a significant increase in bone formation and 66.7% also presented a significant decrease of bone resorption markers, whereas 30% of the controls did not present any change in markers and 20% presented an increase in bone formation. Marker results did not always agree with BMD data. Indeed, many individuals with increased bone formation presented a decrease in BMD. Most individuals in the gait group presented an increase in bone formation markers and a decrease in bone resorption markers, suggesting that gait training, even with 30-50% body weight support, was efficient in improving the bone mass of chronic quadriplegics.

  19. Behavioral Intervention in Adolescents Improves Bone Mass, Yet Lactose Maldigestion Is a Barrier

    Directory of Open Access Journals (Sweden)

    Yujin Lee

    2018-03-01

    Full Text Available Calcium intake during adolescence is important for attainment of peak bone mass. Lactose maldigestion is an autosomal recessive trait, leading to lower calcium intake. The Adequate Calcium Today study aimed to determine if a school-based targeted behavioral intervention over one year could improve calcium intake and bone mass in early adolescent girls. The school-randomized intervention was conducted at middle schools in six states over one school year. A total of 473 girls aged 10–13 years were recruited for outcome assessments. Bone mineral content (BMC was determined by dual energy X-ray absorptiometry. Dietary calcium intake was assessed with a semi-quantitative food frequency questionnaire. Baseline calcium intake and BMC were not significantly different between groups. After the intervention period, there were no differences in changes in calcium intake and BMC at any site between groups. An unanticipated outcome was a greater increase in spinal BMC among lactose digesters than lactose maldigesters in the intervention schools only (12 months (6.9 ± 0.3 g vs. 6.0 ± 0.4 g, p = 0.03 and considering the entire study period (18 months (9.9 ± 0.4 vs. 8.7 ± 0.5 g, p < 0.01. Overall, no significant differences between the intervention and control schools were observed. However, lactose digesters who received the intervention program increased bone mass to a greater extent than lactose maldigesters.

  20. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus.

    Science.gov (United States)

    Moseley, Kendall F; Dobrosielski, Devon A; Stewart, Kerry J; De Beur, Suzanne M Jan; Sellmeyer, Deborah E

    2011-05-01

    Despite high bone mineral density (BMD), persons with type 2 diabetes are at greater risk of fracture. The relationship between body composition and BMD in noninsulin-requiring diabetes is unclear. The aim was to examine how fat and lean mass independently affect the skeleton in this population. Subjects for this cross-sectional analysis were men (n = 78) and women (n = 56) aged 40-65 years (56 ± 6 years) with uncomplicated, noninsulin-requiring type 2 diabetes. Total body fat and lean mass, total body, hip and lumbar spine BMD were measured with dual energy X-ray absorptiometry. Magnetic resonance imaging measured total abdominal, visceral and subcutaneous (SQ) fat. Subjects had normal all-site BMD and were obese to overweight (body mass index 29-41 kg/m(2)) with controlled diabetes (HbA1c women 6·6 ± 1·2%, men 6·7 ± 1·6%). Lean mass was positively associated with total body, hip, femoral neck and hip BMD in both sexes. Fat mass, abdominal total and SQ fat were associated with total body and hip BMD in women. In multivariate analyses adjusted for sex, lean mass significantly predicted total, hip and femoral neck BMD in men and women. In unadjusted models, lean mass continued to predict BMD at these sites in men; fat mass also predicted total body, femoral and hip BMD in women. In men and women with uncomplicated, noninsulin-requiring diabetes, lean mass significantly predicted BMD at the total body, hip and femoral neck. Further research is needed to determine whether acquisition or maintenance of lean mass in T2DM can prevent hip fracture in this at-risk population. © 2011 Blackwell Publishing Ltd.

  1. Determination of bone mineral density at distal radius measured by single photon absorptiometry

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Yanagimoto, Shinichi; Hitomi, Go; Murakami, Akihiko; Suemori, Shinji; Yokobayashi, Tsuneo; Ishii, Koshi; Hiji, Hiroo

    1988-01-01

    We have discussed the index of the bone mineral density (BMD) at the distal radius measured by single photon absorptiometry. Initially, the shape at the distal radius was evaluated using an X-ray photogram of the forearm and a calculation formula of the cross-sectional area at the distal radius was performed using an X-CT photogram of the forearm. A new index for the bone mineral density (modified BMD, mBMD), bone mineral content/cross-sectional area, at the distal radius was obtained for 154 young normal subjects (20 ∼ 44 yrs.). No significant differences in the mBMD values between young normal males and females, except for the group 20 ∼ 24 year-old group, were observed. Furthermore, a significantly decreased in the mBMD values with aging was observed in females between the ages of 20 ∼ 24 and 40 ∼ 44. However, no significant changes in the mBMD values were recognized in the men. Thus, it was shown that the new BMD index, mBMD, was useful for evaluating the changes of the bone mass. (author)

  2. Preoperative measurement of canine primary bone tumors, using radiography and bone scintigraphy

    International Nuclear Information System (INIS)

    Lamb, C.R.; Berg, J.; Bengston, A.E.

    1990-01-01

    Specimens of 20 canine primary bone tumors (18 osteosarcoma, 2 fibrosarcoma) were examined to compare the maximal axial length of gross tumor with the length of the lesion seen on preoperative radiographs and 99mTc methylene diphosphonate bone scintigraphic images. Radiographs defined the length of the tumor to within +/- 10% of the gross measurement for 6 (30%), underestimated it for 12 (60%), and overestimated it for 2 (10%) specimens. Bone scintigraphy defined tumor length within +/- 10% for 8 (40%), underestimated it for 1 (5%), and overestimated it for the remaining 11 (55%) specimens. Use of radiographic evaluation alone could result in underestimation of the diaphyseal extent of a primary bone tumor, with risk of incomplete resection. Bone scan images tend to overestimate tumor length and, therefore, may provide safer resection guidelines

  3. An Investigation Into the Differences in Bone Density and Body Composition Measurements Between 2 GE Lunar Densitometers and Their Comparison to a 4-Component Model.

    Science.gov (United States)

    Watson, Laura P E; Venables, Michelle C; Murgatroyd, Peter R

    We describe a study to assess the precision of the GE Lunar iDXA and the agreement between the iDXA and GE Lunar Prodigy densitometers for the measurement of regional- and total-body bone and body composition in normal to obese healthy adults. We compare the whole-body fat mass by dual-energy X-ray absorptiometry (DXA) to measurements by a 4-component (4-C) model. Sixty-nine participants, aged 37 ± 12 yr, with a body mass index of 26.2 ± 5.1 kg/cm 2 , were measured once on the Prodigy and twice on the iDXA. The 4-C model estimated fat mass from body mass, total body water by deuterium dilution, body volume by air displacement plethysmography, and bone mass by DXA. Agreements between measurements made on the 2 instruments and by the 4-C model were analyzed by Bland-Altman and linear regression analyses. Where appropriate, translational cross-calibration equations were derived. Differences between DXA software versions were investigated. iDXA precision was less than 2% of the measured value for all regional- and whole-body bone and body composition measurements with the exception of arm fat mass (2.28%). We found significant differences between iDXA and Prodigy (p Lunar instruments, Prodigy and iDXA measurement values. A divergence from the reference 4-C observations remains in FM estimations made by DXA even following the recent advances in technology. Further studies are particularly warranted in individuals with large FM contents. Copyright © 2017. Published by Elsevier Inc.

  4. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats.

    Science.gov (United States)

    Fournier, C; Rizzoli, R; Ammann, P

    2014-11-01

    Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal

  5. High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep.

    Science.gov (United States)

    Simon, M J K; Beil, F T; Rüther, W; Busse, B; Koehne, T; Steiner, M; Pogoda, P; Ignatius, A; Amling, M; Oheim, R

    2014-07-01

    Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone

  6. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    Directory of Open Access Journals (Sweden)

    Sina Gallo

    2012-01-01

    Full Text Available For over 2 decades, dual-energy X-ray absorptiometry (DXA has been the gold standard for estimating bone mineral density (BMD and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation, weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada. Whole body (WB as well as regional sites of the lumbar spine (LS 1–4 and femur was measured using DXA (QDR 4500A, Hologic Inc. providing bone mineral content (BMC for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0±14.2 versus 227.0±29.7 g, spine BMC by 130% (2.35±0.42 versus 5.37±1.02 g, and femur BMC by 190% (2.94±0.54 versus 8.50±1.84 g. Spine BMD increased by 14% (0.266±0.044 versus 0.304±0.044 g/cm2 during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals.

  7. A multicenter study of the influence of fat and lean mass on bone mineral content

    DEFF Research Database (Denmark)

    Hla, M M; Davis, J W; Ross, P D

    1996-01-01

    We examined the relative influence of fat and lean mass on bone mineral content (BMC) among 1600 early postmenopausal women aged 45-59 y from four geographical locations (Nottingham, United Kingdom; Portland, OR; Honolulu; and Copenhagen). Bone sites investigated included the major fracture sites...

  8. Effect of Raised Body Fat on Vitamin D, Leptin and Bone Mass

    International Nuclear Information System (INIS)

    Fatima, S. S.; Alam, F.

    2015-01-01

    Objectives: To estimate leptin, vitamin D and bone mineral density levels in individuals with high fat mass, and to assess any correlation. Methods: The cross-sectional study was conducted at the Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi, and Aga Khan University, Karachi, from August 2012 to July 2014, and comprised healthy male volunteers between the ages of 18-60 years. Body fat percentage was determined using bioelectrical impedance analysis and the participants were classified as: Group A (15-21.9); Group B (22-27.9); and Group C (>28). Bone mineral density was calculated by ultrasound bone densitometer (T-score between +1 and -1 considered normal). Enzyme-linked immunosorbent assay kits were used to determine the levels of vitamin D and leptin. SPSS 19 was used for statistical analysis. Results: A total of 132 male subjects participated in this study, with each of the 3 groups having 44(33.3 percent). Despite all groups having low Vitamin D, a marked decrease was observed in group C compared to groups A and B (p <0.018). Bone mineral density T-score was <-1; total calcium was within normal range in all three groups. Serum leptin was raised in Group C compared to group A and B (p=0.03). Body fat percentage was negatively associated with vitamin D (p=0.004; r = -0.351), while it was positively correlated with leptin (p =0.038; r = 0.256). Conclusion: Excess of body fat percentage led to decreased vitamin D and raised leptin. However, bone mineral density and calcium levels were within normal range, suggesting that other factors might have played a role in maintaining bone mass in obese individuals, such as leptin. (author)

  9. Fat Mass Is Positively Associated with Estimated Hip Bone Strength among Chinese Men Aged 50 Years and above with Low Levels of Lean Mass

    Directory of Open Access Journals (Sweden)

    Guiyuan Han

    2017-04-01

    Full Text Available This study investigated the relationships of fat mass (FM and lean mass (LM with estimated hip bone strength in Chinese men aged 50–80 years (median value: 62.0 years. A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA. The relationships of the LM index (LMI and the FM index (FMI with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders (p < 0.05. Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area (p < 0.05. The contribution of the LMI (4.0%–12.8% was greater than that of the FMI (2.0%–5.7%. The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile (p < 0.05, but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.

  10. Appendicular bone mass and knee and hand osteoarthritis in Japanese women: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Moji Kazuhiko

    2002-10-01

    Full Text Available Abstract Background It has been reported that there is an inverse association between osteoarthritis (OA and osteoporosis. However, the relationship of bone mass to OA in a Japanese population whose rates of OA are different from Caucasians remains uncertain. Methods We studied the association of appendicular bone mineral density (second metacarpal; mBMD and quantitative bone ultrasound (calcaneus; stiffness index with knee and hand OA among 567 Japanese community-dwelling women. Knee and hand radiographs were scored for OA using Kellgren-Lawrence (K/L scales. In addition, we evaluated the presence of osteophytes and of joint space narrowing. The hand joints were examined at the distal and proximal interphalangeal (DIP, PIP and first metacarpophalangeal/carpometacarpal (MCP/CMC joints. Results After adjusting for age and body mass index (BMI, stiffness index was significantly higher in women with K/L scale, grade 3 at CMC/MCP joint compared with those with no OA. Adjusted means of stiffness index and mBMD were significantly higher in women with definite osteophytes at the CMC/MCP joint compared to those without osteophytes, whereas there were no significant differences for knee, DIP and PIP joints. Stiffness index, but not mBMD, was higher in women with definite joint space narrowing at the CMC/MCP joint compared with those with no joint space narrowing. Conclusions Appendicular bone mass was increased with OA at the CMC/MCP joint, especially among women with osteophytes. Our findings suggest that the association of peripheral bone mass with OA for knee, DIP or PIP may be less clearcut in Japanese women than in other populations.

  11. Osteoporosis in clinical practice – bone densitometry and fracture risk

    African Journals Online (AJOL)

    Osteoporosis is a condition of decreased bone mass and bone density associated with an increase in fracture risk. Bone mineral density (BMD) of the lumbar spine and femur can be reliably measured by double-beam X-ray absorptiometry (DEXA), which provides a measure of bone strength. Reduction in BMD is a ...

  12. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women.

    Directory of Open Access Journals (Sweden)

    SoJung Kim

    Full Text Available The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ scores, body composition, and bone mineral density (BMD in healthy young college women.Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4 and proximal femur BMD (left side; total hip, femoral neck. The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm, weight (kg, fat free mass (FFM, kg, percent body fat (%, and body mass index (BMI. Participants were asked to record their 24-hour food intake in a questionnaire.There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014 and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007, while no significant relationships were found in cBPAQ (p > 0.05. When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024, while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015. Only FFM predicted 15% of the variance in L2-L4 (p = 0.004. There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025, but other dietary intakes variables were not significant (p > 0.05.BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in life.

  13. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    Science.gov (United States)

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reduced Bone and Body Mass in Young Male Rats Exposed to Lead

    Directory of Open Access Journals (Sweden)

    Fellipe Augusto Tocchini de Figueiredo

    2014-01-01

    Full Text Available The aim of this study was to see whether there would be differences in whole blood versus tibia lead concentrations over time in growing rats prenatally. Lead was given in the drinking water at 30 mg/L from the time the dams were pregnant until offspring was 28- or 60-day-old. Concentrations of lead were measured in whole blood and in tibia after 28 (28D and 60 days (60D in control (C and in lead-exposed animals (Pb. Lead measurements were made by GF-AAS. There was no significant difference (P>0.05 in the concentration of whole blood lead between Pb-28D (8.0±1.1 μg/dL and Pb-60D (7.2±0.89 μg/dL, while both significantly varied (P<0.01 from controls (0.2 μg/dL. Bone lead concentrations significantly varied between the Pb-28D (8.02±1.12 μg/g and the Pb-60D (43.3±13.26 μg/g lead-exposed groups (P<0.01, while those exposed groups were also significantly higher (P<0.0001 than the 28D and 60D control groups (Pb < 1 μg/g. The Pb-60D group showed a 25% decrease in tibia mass as compared to the respective control. The five times higher amount of lead found in the bone of older animals (Pb-60D versus Pb-28D, which reinforces the importance of using bone lead as an exposure biomarker.

  15. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  16. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women.

    Science.gov (United States)

    Shen, W; Chen, J; Punyanitya, M; Shapses, S; Heshka, S; Heymsfield, S B

    2007-05-01

    Recent studies suggest that bone marrow adipose tissue (BMAT) might play a role in the pathogenesis of osteoporosis. Previous research using regional magnetic resonance spectroscopy methods to measure BMAT has reported inconsistent findings on the relationship between BMAT and dual-energy absorptiometry (DXA)-measured bone mineral density (BMD). In the present study, total body and pelvic BMAT were evaluated in 56 healthy women (age 18-88 yrs, mean +/- SD, 47.4 +/- 17.6 yrs; BMI, 24.3 +/- 4.2 kg/m(2)) with T1-weighted whole-body magnetic resonance imaging (MRI). BMD was measured using the whole-body DXA mode (GE Lunar DPX, software version 4.7). A strong negative correlation was observed between pelvic BMAT and BMD (total-body BMD, R = -0.743, P BMAT and BMD (total-body BMD, R = -0.443, P BMAT and BMD remained strong after adjusting for age, weight, total body fat, and menopausal status (partial correlation: total-body BMD, R = -0.553, P BMAT was also highly correlated with age (pelvic BMAT, R = 0.715, P BMAT, R = 0.519, P BMAT is thus strongly inversely correlated with DXA-measured BMD independent of other predictor variables. These observations, in the context of DXA technical concerns, support the growing evidence linking BMAT with low bone density.

  17. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.

    Directory of Open Access Journals (Sweden)

    Francisco J A de Paula

    Full Text Available Bone marrow harbors a significant amount of body adipose tissue (BMAT. While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.

  18. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women.

    Science.gov (United States)

    de Paula, Francisco J A; de Araújo, Iana M; Carvalho, Adriana L; Elias, Jorge; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H

    2015-01-01

    Bone marrow harbors a significant amount of body adipose tissue (BMAT). While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism.

  19. Trends in osteoporosis and low bone mass in older US adults, 2005-2006 through 2013-2014.

    Science.gov (United States)

    Looker, A C; Sarafrazi Isfahani, N; Fan, B; Shepherd, J A

    2017-06-01

    This study examined trends in osteoporosis and low bone mass in older US adults between 2005 and 2014 using bone mineral density (BMD) data from the National Health and Nutrition Examination Survey (NHANES). Osteoporosis and low bone mass appear to have increased at the femur neck but not at the lumbar spine during this period. Recent preliminary data from Medicare suggest that the decline in hip fracture incidence among older US adults may have plateaued in 2013-2014, but comparable data on BMD trends for this time period are currently lacking. This study examined trends in the prevalence of osteoporosis and low bone mass since 2005 using BMD data from NHANES. The present study also updated prevalence estimates to 2013-2014 and included estimates for non-Hispanic Asians. Femur neck and lumbar spine BMD by DXA were available for 7954 adults aged 50 years and older from four NHANES survey cycles between 2005-2006 and 2013-2014. Significant trends (quadratic or linear) were observed for the femur neck (mean T-score and osteoporosis in both sexes; low bone mass in women) but not for the lumbar spine. The trend in femur neck status was somewhat U-shaped, with prevalences being most consistently significantly higher (by 1.1-6.6 percentage points) in 2013-2014 than 2007-2008. Adjusting for changes in body mass index, smoking, milk intake, and physician's diagnosis of osteoporosis between surveys did not change femur neck trends. In 2013-2014, the percent of older adults with osteoporosis was 6% at the femur neck, 8% at the lumbar spine, and 11% at either site. There was some evidence of a decline in femur neck BMD between 2005-2006 and 2013-2014, but not in lumbar spine BMD. Changes in the risk factors that could be examined did not explain the femur neck BMD trends.

  20. The effect of ethnicity on appendicular bone mass in white, coloured ...

    African Journals Online (AJOL)

    Ethnic differences in the incidence and prevalence of osteoporosis have been shown throughout the world. In South Africa the prevalence of osteoporosis is much higher in whites than in blacks. This is surprising, since factors that might predispose to reduce bone mass are more preponderant in black communities.

  1. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods.

    Science.gov (United States)

    Campione, Nicolás E; Evans, David C

    2012-07-10

    Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a

  2. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    Directory of Open Access Journals (Sweden)

    Campione Nicolás E

    2012-07-01

    Full Text Available Abstract Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in

  3. Factors associated with low bone mass in the hemodialysis patients – a cross-sectional correlation study

    Directory of Open Access Journals (Sweden)

    Huang Guey-Shiun

    2009-06-01

    Full Text Available Abstract Background Low bone mass is common in end-stage renal disease patients, especially those undergoing hemodialysis. It can lead to serious bone health problems such as fragility fractures. The purpose of this study is to investigate the risk factors of low bone mass in the hemodialysis patients. Methods Sixty-three subjects on hemodialysis for at least 6 months were recruited from a single center for this cross-sectional study. We collected data by questionnaire survey and medical records review. All subjects underwent a bone mineral density (BMD assay with dual-energy x-ray absorptiometry at the lumbar spine and right hip. Data were statistically analyzed by means of descriptive analysis, independent t test and one way analysis of variance for continuous variables, Pearson product-moment correlation to explore the correlated factors of BMD, and stepwise multiple linear regression to identify the predictors of low bone mass. Results Using WHO criteria as a cutoff point, fifty-one subjects (81% had a T-score lower than -1, of them 8 subjects (13% had osteoporosis with the femoral neck most commonly affected. Regarding risk factors, age, serum alkaline phosphatase (ALP level, and intact parathyroid hormone (iPTH level had significant negative correlations with the femoral neck and lumbar spine BMD. On the other hand, serum albumin level, effective exercise time, and body weight (BW had significant positive correlations with the femoral neck and lumbar spine BMD. Age, effective exercise time, and serum albumin level significantly predicted the femoral neck BMD (R2 × 0.25, whereas BW and the ALP level significantly predicted the lumbar spine BMD (R2 × 0.20. Conclusion This study showed that advanced age, low BW, low serum albumin level, and high ALP and iPTH levels were associated with a low bone mass in the hemodialysis patients. We suggest that regular monitoring of the femoral neck BMD, maintaining an adequate serum albumin level and BW

  4. Effects of a 6-month football intervention program on bone mass and physical fitness in overweight children

    DEFF Research Database (Denmark)

    Seabra, André; Serra, Hugo; Seabra, Ana

    2016-01-01

    , consisting of four weekly 60-90 min sessions with mean heart rate > 80%HRmax [football group (FG)]. A control group (CG) included eight boys of equivalent age from an obesity clinic located in the same area as the school. Both groups participated in two sessions of 45-90 min physical education per week......Introduction: Physical activity is an important medium for improving bone mass and physical fitness of children, and as such is often emphasized in intervention programs with overweight/obesity children. Only few studies have examined the impact of a specific team sport intervention on the bone...... at school. Bone mass indicators included whole-boy and lumbar spine bone mineral density (BMD) and bone mineral content (BMC). Physical fitness tests included 5- and 30-m sprints, countermovement jump (CMJ), and Yo-Yo intermittent endurance test level 1 (Yo-Yo IE1). Body composition was evaluated using dual...

  5. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  6. Fractal analysis of bone architecture at distal radius

    International Nuclear Information System (INIS)

    Tomomitsu, Tatsushi; Mimura, Hiroaki; Murase, Kenya; Sone, Teruki; Fukunaga, Masao

    2005-01-01

    Bone strength depends on bone quality (architecture, turnover, damage accumulation, and mineralization) as well as bone mass. In this study, human bone architecture was analyzed using fractal image analysis, and the clinical relevance of this method was evaluated. The subjects were 12 healthy female controls and 16 female patients suspected of having osteoporosis (age range, 22-70 years; mean age, 49.1 years). High-resolution CT images of the distal radius were acquired and analyzed using a peripheral quantitative computed tomography (pQCT) system. On the same day, bone mineral densities of the lumbar spine (L-BMD), proximal femur (F-BMD), and distal radius (R-BMD) were measured by dual-energy X-ray absorptiometry (DXA). We examined the correlation between the fractal dimension and six bone mass indices. Subjects diagnosed with osteopenia or osteoporosis were divided into two groups (with and without vertebral fracture), and we compared measured values between these two groups. The fractal dimension correlated most closely with L-BMD (r=0.744). The coefficient of correlation between the fractal dimension and L-BMD was very similar to the coefficient of correlation between L-BMD and F-BMD (r=0.783) and the coefficient of correlation between L-BMD and R-BMD (r=0.742). The fractal dimension was the only measured value that differed significantly between both the osteopenic and the osteoporotic subjects with and without vertebral fracture. The present results suggest that the fractal dimension of the distal radius can be reliably used as a bone strength index that reflects bone architecture as well as bone mass. (author)

  7. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats.

    Science.gov (United States)

    Iwamoto, Jun; Matsumoto, Hideo; Takeda, Tsuyoshi; Sato, Yoshihiro; Yeh, James K

    2010-09-01

    The purpose of the present study was to examine the effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Thirty-four female Sprague-Dawley retired breeder rats were randomized into three groups: age-matched control, sciatic neurectomy (NX), and NX + vitamin K2 administration (menatetrenone, 30 mg/kg/day p.o., three times a week). At the end of the 8-week experiment, bone histomorphometric analysis was performed on cortical and cancellous bone of the tibial diaphysis and proximal metaphysis, respectively, and osteocyte lacunar system and porosity were evaluated on cortical bone of the tibial diaphysis. NX decreased cortical and cancellous bone mass compared with age-matched controls as a result of increased endocortical and trabecular bone erosion and decreased trabecular mineral apposition rate (MAR). Vitamin K2 ameliorated the NX-induced increase in bone erosion, prevented the NX-induced decrease in MAR, and increased bone formation rate (BFR/bone surface) in cancellous bone, resulting in an attenuation of NX-induced cancellous bone loss. However, vitamin K2 did not significantly influence cortical bone mass. NX also decreased osteocyte density and lacunar occupancy and increased porosity in cortical bone compared with age-matched controls. Vitamin K2 ameliorated the NX-induced decrease in lacunar occupancy by viable osteocytes and the NX-induced increase in porosity. The present study showed the efficacy of vitamin K2 for cancellous bone mass and cortical lacunar occupancy by viable osteocytes and porosity in sciatic NX rats.

  8. Impact of obesity on bone mass throughout adult life: Influence of gender and severity of obesity.

    Science.gov (United States)

    Maïmoun, Laurent; Mura, Thibault; Leprieur, Elodie; Avignon, Antoine; Mariano-Goulart, Denis; Sultan, Ariane

    2016-09-01

    Obesity improves areal bone mineral density (aBMD). However, it is unknown whether gender, ageing or the severity of obesity could modulate this effect and whether different bone sites are similarly affected. The aim of this observational study was to model the aBMD variation in obese patients from peak bone period to old age according to gender, bone localisation and severity of obesity. Five hundred and four obese patients (363 women, 72%) with a mean BMI of 38.5 ± 6.0 kg/m2, aged from 18.1 to 81.9 years (mean age 49.6 ± 14.6 years) were recruited. The whole body (WB), hip, lumbar spine (L1–L4) and one-third radius aBMDs were determined using dual-energy x-ray absorptiometry (DXA). Z-scores were significantly increased, above the age- and gender-related mean, both for women and men at WB (respectively 0.79 SD and 0.32 SD), hip (1.09 SD and 1.06 SD), one-third radius (1.70 SD and 0.45 SD) and L1–L4 levels (0.86 SD for women only). The improvement of Z-scores was significantly more marked in women compared to men at all bone sites, hip excepted. Furthermore, differences compared with normal values were significantly accentuated by ageing, without noticeable gender effect. In women, regardless of BMI and bone site, Z-scores were higher than normal values, this difference being most marked at WB, L1–L4 and hip levels for obese patients with a BMI above 40 kg/m2. Lean mass, but not fat mass, was independently associated with aBMD in men and women. This study demonstrated for the first time that obesity induces an improvement of aBMD, which is modulated by bone site location, severity of obesity, age and gender. The accentuation of peak bone mass combined with a reduction of bone loss rate with ageing may explain why obese patients present a lower prevalence of osteoporosis.

  9. Alveolar bone mass in pre- and postmenopausal women with serum calcium as a marker: A comparative study

    Directory of Open Access Journals (Sweden)

    Amitha Ramesh

    2011-01-01

    Conclusion: Postmenopausal women exhibit a reduced alveolar bone mass and lowered levels of serum total calcium with the increasing age. These changes may be useful indicators for low skeletal bone mineral density or osteoporosis.

  10. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo.

    Science.gov (United States)

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-08-01

    Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life.

  11. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  12. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  13. Reduced bone mass and preserved marrow adipose tissue in patients with inflammatory bowel diseases in long-term remission.

    Science.gov (United States)

    Bastos, C M; Araújo, I M; Nogueira-Barbosa, M H; Salmon, C E G; de Paula, F J A; Troncon, L E A

    2017-07-01

    Bone marrow adipose tissue has not been studied in patients with inactive inflammatory bowel disease. We found that these patients have preserved marrow adiposity even with low bone mass. Factors involved in bone loss in active disease may have long-lasting effects but do not seem to affect bone marrow adiposity. Reduced bone mass is known to occur at varying prevalence in patients with inflammatory bowel diseases (IBD) because of inflammation, malnutrition, and steroid therapy. Osteoporosis may develop in these patients as the result of an imbalanced relationship between osteoblasts and adipocytes in bone marrow. This study aimed to evaluate for the first time bone mass and bone marrow adipose tissue (BMAT) in a particular subgroup of IBD patients characterized by long-term, steroid-free remission. Patients with Crohn's disease (CD; N = 21) and ulcerative colitis (UC; N = 15) and controls (C; N = 65) underwent dual X-ray energy absorptiometry and nuclear magnetic resonance spectroscopy of the L3 lumbar vertebra for BMAT assessment. Both the CD and UC subgroups showed significantly higher proportions of patients than controls with Z-score ≤-2.0 at L1-L4 (C 1.54%; CD 19.05%; UC 20%; p = 0.02), but not at other sites. The proportions of CD patients with a T-score ˂-1.0 at the femoral neck (C 18.46%; CD 47.62%; p = 0.02) and total hip (C 16.92%; CD 42.86%; p = 0.03) were significantly higher than among controls. There were no statistically significant differences between IBD patients and controls regarding BMAT at L3 (C 28.62 ± 8.15%; CD 29.81 ± 6.90%; UC 27.35 ± 9.80%; p = 0.67). IBD patients in long-term, steroid-free remission may have a low bone mass in spite of preserved BMAT. These findings confirm the heterogeneity of bone disorders in IBD and may indicate that factors involved in bone loss in active disease may have long-lasting effects on these patients.

  14. Local bone mineral mass as a function of dose in radium cases

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Bone mineral mass at specific sites in the forearms and fingers of females with exposure to radium and mesothorium appears to have no dependence on dose. Data analysis is continuing, so these results should be considered preliminary. Future analyses will include males

  15. Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system.

    Directory of Open Access Journals (Sweden)

    Theodore P Braun

    Full Text Available Signaling via the type 4-melanocortin receptor (MC4R is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO. We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.

  16. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    Science.gov (United States)

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  17. Anorexia nervosa: slow regain of bone mass.

    Science.gov (United States)

    Valla, A; Groenning, I L; Syversen, U; Hoeiseth, A

    2000-01-01

    In a retrospective study of women aged 18-30 years, aimed at assessing factors associated with peak bone mass (PBM), 13 of 239 study cases reported having had anorexia nervosa. The mean total femoral and lumbar bone mineral density (BMD) values were not significantly lower in women who had had anorexia than in the pooled group (mean Z-scores of -0.60 and -0.48). Cases with less than 6 years since the anorexia had on average a present weight 5.7 kg less than their premorbid weights, while cases with more than 6 years since the eating disorder had an average weight 22.5 kg above their pre-morbid weights. The cases who had not regained their weight had BMD values significantly lower than the pooled material (mean Z-scores -1.15 and -0.9 in the lumbar spine and total femur respectively). Those who had regained their weight had BMD values as predicted from their present anthropometric data, while those who had not regained their weight had BMD values that were substantially below that predicted from their present weight. Anorexia nervosa seems to be associated with a low BMD which is even lower than that which can be predicted from the weight loss alone. This suggests that weight loss and other factors, such as menstrual dysfunction and estrogen deficiency, are independent and thus additive causes of bone loss in anorexia nervosa. Recovery of BMD seems slow, but the BMD may become as predicted from the anthropometric data after restoration of body weight and menses. The potential for recovery of BMD seems intact for several years after menarche.

  18. A 21-Week Bone Deposition Promoting Exercise Programme Increases Bone Mass in Young People with Down Syndrome

    Science.gov (United States)

    Gonzalez-Aguero, Alejandro; Vicente-Rodriguez, German; Gomez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A.; Casajus, Jose A.

    2012-01-01

    Aim: To determine whether the bone mass of young people with Down syndrome may increase, following a 21-week conditioning training programme including plyometric jumps. Method: Twenty-eight participants with Down syndrome (13 females, 15 males) aged 10 to 19 years were divided into exercise (DS-E; n = 14; eight females, six males mean age 13y 8mo,…

  19. Estimation of Penetrated Bone Layers During Craniotomy via Bioimpedance Measurement.

    Science.gov (United States)

    Teichmann, Daniel; Rohe, Lucas; Niesche, Annegret; Mueller, Meiko; Radermacher, Klaus; Leonhardt, Steffen

    2017-04-01

    Craniotomy is the removal of a bone flap from the skull and is a first step in many neurosurgical interventions. During craniotomy, an efficient cut of the bone without injuring adjoining soft tissues is very critical. The aim of this study is to investigate the feasibility of estimating the currently penetrated cranial bone layer by means of bioimpedance measurement. A finite-element model was developed and a simulation study conducted. Simulations were performed at different positions along an elliptical cutting path and at three different operation areas. Finally, the validity of the simulation was demonstrated by an ex vivo experiment based on use of a bovine shoulder blade bone and a commercially available impedance meter. The curve of the absolute impedance and phase exhibits characteristic changes at the transition from one bone layer to the next, which can be used to determine the bone layer last penetrated by the cutting tool. The bipolar electrode configuration is superior to the monopolar measurement. A horizontal electrode arrangement at the tip of the cutting tool produces the best results. This study successfully demonstrates the feasibility to detect the transition between cranial bone layers during craniotomy by bioimpedance measurements using electrodes located on the cutting tool. Based on the results of this study, bioimpedance measurement seems to be a promising option for intra operative ad hoc information about the bone layer currently penetrated and could contribute to patient safety during neurosurgery.

  20. The W Boson Mass Measurement

    CERN Document Server

    Kotwal, Ashutosh V

    2016-01-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  1. Prevalence of Osteoporosis and Low Bone Mass Among Puerto Rican Older Adults

    Science.gov (United States)

    Noel, Sabrina E; Mangano, Kelsey M; Griffith, John L; Wright, Nicole C; Dawson-Hughes, Bess; Tucker, Katherine L

    2018-01-01

    Historically, osteoporosis has not been considered a public health priority for the Hispanic population. However, recent data indicate that Mexican Americans are at increased risk for this chronic condition. Although it is well established that there is heterogeneity in social, lifestyle, and health-related factors among Hispanic subgroups, there are currently few studies on bone health among Hispanic subgroups other than Mexican Americans. The current study aimed to determine the prevalence of osteoporosis and low bone mass (LBM) among 953 Puerto Rican adults, aged 47 to 79 years and living on the US mainland, using data from one of the largest cohorts on bone health in this population: The Boston Puerto Rican Osteoporosis Study (BPROS). Participants completed an interview to assess demographic and lifestyle characteristics and bone mineral density measures. To facilitate comparisons with national data, we calculated age-adjusted estimates for osteoporosis and LBM for Mexican American, non-Hispanic white, and non-Hispanic black adults, aged ≥50 years, from the National Health and Nutrition Examination Survey (NHANES). The overall prevalence of osteoporosis and LBM were 10.5% and 43.3% for participants in the BPROS, respectively. For men, the highest prevalence of osteoporosis was among those aged 50 to 59 years (11%) and lowest for men ≥70 years (3.7%). The age-adjusted prevalence of osteoporosis for Puerto Rican men was 8.6%, compared with 2.3% for non-Hispanic white, and 3.9% for Mexican American men. There were no statistically significant differences between age-adjusted estimates for Puerto Rican women (10.7%), non-Hispanic white women (10.1%), or Mexican American women (16%). There is a need to understand specific factors contributing to osteoporosis in Puerto Rican adults, particularly younger men. This will provide important information to guide the development of culturally and linguistically tailored interventions to improve bone health in this

  2. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Chuang, C-H; Tu, M-Y; Tsai, T-C; Chang, S-Y; Chen, C-M

    2015-02-01

    Kefir treatment in ovariectomized (OVX) rats could significantly decrease the levels of bone turnover markers and prevent OVX-induced bone loss, deterioration of trabecular microarchitecture, and biomechanical dysfunction that may be due to increase intracellular calcium uptake through the TRPV6 calcium channel. Osteoporosis is a disease characterized by low bone mass and structural deterioration of bone tissue, leading to an increased fracture risk. The incidence of osteoporosis increases with age and occurs most frequently in postmenopausal women due to estrogen deficiency, as the balance between bone resorption and bone formation shifts towards increased levels of bone resorption. Among various methods of prevention and treatment for osteoporosis, an increase in calcium intake is the most commonly recommended preventive measure. Kefir is a fermented milk product made with kefir grains that degrade milk proteins into various peptides with health-promoting effects, including immunomodulating-, antithrombotic-, antimicrobial-, and calcium-absorption-enhancing bioactivities. The aim of this study is to investigate the effect of kefir on osteoporosis prophylaxis in an ovariectomized rat model. A total of 56 16-week-old female Sprague-Dawley (SD) rats were divided into 7 experimental groups: sham (normal), OVX/Mock, OVX/1X kefir (164 mg/kg BW/day), OVX/2X kefir (328 mg/kg BW/day), OVX/4X kefir (656 mg/kg BW/day), OVX/ALN (2.5 mg/kg BW/day), and OVX/REBONE (800 mg/kg BW/day). After 12-week treatment with kefir, the bone physiology in the OVX rat model was investigated. Accordingly, the aim of this study was to investigate the possible transport mechanism involved in calcium absorption using the Caco-2 human cell line. A 12-week treatment with kefir on the OVX-induced osteoporosis model reduced the levels of C-terminal telopeptides of type I collagen (CTx), bone turnover markers, and trabecular separation (Tb. Sp.). Additionally, treatment with kefir increased

  3. Objectively measured physical activity and bone strength in 9-year-old boys and girls.

    Science.gov (United States)

    Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf

    2008-09-01

    The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any

  4. Trapezium Bone Density-A Comparison of Measurements by DXA and CT.

    Science.gov (United States)

    Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken

    2018-01-18

    Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  5. Trapezium Bone Density—A Comparison of Measurements by DXA and CT

    Directory of Open Access Journals (Sweden)

    Sebastian Breddam Mosegaard

    2018-01-01

    Full Text Available Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1 determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA scans by a circumference method and a new inner-ellipse method; and (2 to compare those to measurements of bone density obtained by computerized tomography (CT-scans in Hounsfield units (HU. We included 71 hands from 59 patients with a mean age of 59 years (43–77. All patients had Eaton–Glickel stage II–IV trapeziometacarpal (TM joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94 between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49 for the circumference method, and (r = 0.55 for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.

  6. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    Science.gov (United States)

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  7. Bone structural changes after gastric bypass surgery evaluated by HR-pQCT

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Støving, René Klinkby; Frederiksen, Katrine Hartmund

    2017-01-01

    OBJECTIVE, DESIGN AND METHODS: Roux-en-Y gastric bypass (RYGB) has proved successful in attaining sustained weight loss but may lead to metabolic bone disease. To assess impact on bone mass and structure, we measured a real bone mineral density at the hip and spine by dual-energy X-ray absorptiom......OBJECTIVE, DESIGN AND METHODS: Roux-en-Y gastric bypass (RYGB) has proved successful in attaining sustained weight loss but may lead to metabolic bone disease. To assess impact on bone mass and structure, we measured a real bone mineral density at the hip and spine by dual-energy X...... of increased risk of developing osteoporosis and fragility fractures remain an important concern....

  8. Maternal vitamin D status and offspring bone fractures

    DEFF Research Database (Denmark)

    Petersen, Sesilje Bondo; Olsen, Sjurdur Frodi; Mølgaard, Christian

    2014-01-01

    BACKGROUND: Studies investigating the association between maternal vitamin D status and offspring bone mass measured by dual-energy X-ray absorptiometry (DXA) during childhood have shown conflicting results. PURPOSE: We used occurrence of bone fractures up to the age of 18 as a measure reflecting...... offspring bone mass and related that to maternal vitamin D status. METHODS: The Danish Fetal Origins 1988 Cohort recruited 965 pregnant women during 1988-89 at their 30th gestation week antenatal midwife visit. A blood sample was drawn and serum was stored, which later was analyzed for the concentration...... percentile) 25(OH)D was 76.2 (23.0-152.1) nmol/l. During follow up 294 children were registered with at least one bone fracture diagnosis. Multivariable Cox regression models using age as the underlying time scale indicated no overall association between maternal vitamin D status and first time bone...

  9. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover.

    Science.gov (United States)

    Kruger, Marlena C; Kruger, Iolanthé M; Wentzel-Viljoen, Edelweiss; Kruger, Annamarie

    2011-10-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the North West Province of South Africa (Prospective Urban and Rural Epidemiology-South Africa project). Fasting blood samples were taken; and participants were interviewed to complete questionnaires on self-reported diseases, fractures, and dietary intakes. Bone health markers were assessed in a subgroup of 658 women older than 45 years. Specific lifestyle risk factors identified were inactivity, smoking, injectable progestin contraception use, and high alcohol consumption. Dietary risk factors identified were low calcium and high animal protein, phosphorous, and sodium intakes. The 25(OH)D3 and C-terminal telopeptide (CTX) levels were significantly higher in the rural vs the urban women older than 50 years. Parathyroid hormone (PTH) levels increased with age in both groups. The 25(OH)D levels were inversely correlated with CTX and PTH in rural women. In urban women, PTH and CTX were correlated while dietary calcium was inversely correlated with CTX and PTH with 25(OH)D3. The combination of low dietary calcium (<230 mg/d), marginally insufficient 25(OH)D3 status, and raised PTH may result in increased bone resorption. Further research is required to assess bone health and fracture risk in black African women. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-Free Female's Lean Body and Bone Mass.

    Science.gov (United States)

    Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M

    2017-12-01

    To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

  11. Dlk1/FA1 Is a Novel Endocrine Regulator of Bone and Fat Mass and Its Serum Level Is Modulated By Growth Hormone

    DEFF Research Database (Denmark)

    Abdallah, B.M.; Ding, M.; Jensen, C.H.

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. FA1 (fetal antigen 1) is the soluble form of dlk1 (delta like 1), which is a member of the Notch-Delta family. We have previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1-mice) using the hydrodynamic-based gene transfer procedure (HGTP). We found that increased serum FA1 levels led to a significant reduction in total body weight......, fat mass and bone mass in a dose-dependent manner. Reduced bone mass in FA1-mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58% and 72% respectively. Since FA1 is co-localized with growth hormone (GH) in the pituitary gland, we explored the possible...

  12. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ding, Ming; Jensen, Charlotte H

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. Fetal antigen 1 (FA1) is the soluble form of dlk1 (delta-like 1), which is a member of the Notch-Delta family. We previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1 mice) using the hydrodynamic-based gene transfer procedure. We found that increased serum FA1 levels led to a significant reduction in total body weight, fat...... mass, and bone mass in a dose-dependent manner. Reduced bone mass in FA1 mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58 and 72%, respectively. Because FA1 is colocalized with GH in the pituitary gland, we explored the possible modulation of serum FA1...

  13. Automated radiogrammetry is a feasible method for measuring bone quality and bone maturation in severely disabled children

    NARCIS (Netherlands)

    Mergler, Sandra; de Man, Stella A.; Boot, Annemieke M; Bindels-de Heus, Karen G. C. B.; Huijbers, Wim A. R.; van Rijn, Rick R.; Penning, Corine; Evenhuis, Heleen M.

    Children with severe neurological impairment and intellectual disability are prone to low bone quality and fractures. We studied the feasibility of automated radiogrammetry in assessing bone quality in this specific group of children. We measured outcome of bone quality and, because these children

  14. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  15. Overview of the mass measurements

    International Nuclear Information System (INIS)

    Shull, L.M.

    1991-01-01

    a three-day mass measurement workshop conference sponsored by the INMM was held April 22-24, 1991, in Atlanta, Georgia. DOE Order 5633.3 requires mass measurement control programs for the measurements of nuclear materials but provides little guidance on details for these programs. Measurement principles used for mass are often applicable to other physical property measurements. Westinghouse Savannah River Site (WSRS) personnel organized the workshop conference to facilitate the transfer of mass measurement technology and establish better communications between the calibration laboratories, manufactures, regulators, and scale and balance users in the mass measurement community. Three different formats were used to present the information: a seminar, individual papers, and workshops. The seminar topic was the Process Measurement Assurance Program (PMAP), developed by EG and G Mound Applied Technologies, for determining and controlling measurement errors in manufacturing processes. Paper and workshop topics included: Mass Measurement Techniques and Programs, Selection of equipment and Standards, Standards and Traceability, and Automation in Mass Measurement. The paper gives an overview of the workshop conference, including purpose, participants, and summaries of the seminar, paper, and workshops

  16. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662keV γ-ray energies

    International Nuclear Information System (INIS)

    Akar, A.; Baltas, H.; Cevik, U.; Korkmaz, F.; Okumusoglu, N.T.

    2006-01-01

    The half-value thicknesses, linear and mass attenuation coefficients of biological samples such as bone, muscle, fat and water have been measured at 140, 364 and 662keV γ-ray energies by using the ATOMLAB TM -930 medical spectrometer. The γ-rays were obtained from 99m Tc, 131 I and 137 Cs γ-ray point sources. Also theoretical calculations have been performed in order to obtain the half-value thicknesses and, mass and linear attenuation coefficients at photon energies 0.001keV-20MeV for bone, muscle and water samples. The calculated value and the experimental results of this work and the other results in literature are found to be in good agreement

  17. Bone mineral density and body composition in adolescents with failure to thrive

    Directory of Open Access Journals (Sweden)

    Thiago Sacchetto de Andrade

    2010-06-01

    Full Text Available Objective: To evaluate bone mineral mass in adolescents with failure to thrive in relation to body composition. Methods: A case-control study involving 126 adolescents (15 to 19 years, in final puberty maturation being 76 eutrophic and 50 with failure to thrive (genetic or constitutional delay of growth, of matching ages, gender and pubertal maturation. The weight, height and calculated Z score for height/age and body mass index; bone mineral content, bone mineral density and adjusted bone mineral density were established for total body, lower back and femur; total fat-free mass and height-adjusted fat-free mass index, total fat mass and height-adjusted. The statistical analyses were performed using the Student’s t-test (weight, height and body composition; Mann-Whitney test (bone mass and multiple linear regression (bone mass determinants. Results: weight, height and height/age Z-score were significantly higher among eutrophic subjects. Both groups did not show statistically significant differences for fat mass, percentage of fat mass, total fat mass height adjusted and fat-free mass index height sadjusted. However, total free fat maass was smaller for the failure to thrive group. Conclusions: There was no statistically significant difference for bone mass measurements among adolescents with failure to thrive; however, the factors that determine bone mass formation should be better studied due to the positive correlation with free fat mass detected in these individuals.

  18. Urinary and Anthropometrical Indices of Bone Density in Healthy ...

    African Journals Online (AJOL)

    Measurements on the x-ray of the 2nd metacarpal of the right hand and 2h fasting urine sample were used in a cross sectional study to assess urinary indices of bone density (bone mass, percentage cortical area, PCA) in 94 healthy Nigerian adults aged between 19-72 years. Body mass index (BMI) was also estimated.

  19. The Ca, Cl, Mg, Na, and P mass fractions in benign and malignant giant cell tumors of bone investigated by neutron activation analysis

    International Nuclear Information System (INIS)

    Vladimir Zaichick; German Davydov; Tatyana Epatova; Sofia Zaichick

    2015-01-01

    The Ca, Cl, Mg, Na, and P content and Ca/P, Ca/Mg, Ca/Na, Cl/Ca, and Cl/Na ratios in samples of intact bone, benign and malignant giant cell tumor (GCT) of bone were investigated by neutron activation analysis with high resolution spectrometry of short-lived radionuclides. It was found that in GCT tissue the mass fractions of Cl and Na are higher and the mass fraction of Ca and P are lower than in normal bone tissues. Moreover, it was shown that higher Cl/Na mass fraction ratios as well as lower Ca/Cl, Ca/Mg, and Ca/Na mass fraction ratios are typical of the GCT tissue compared to intact bone. Finally, we propose to use the estimation of such parameters as the Cl mass fraction and the Ca/Cl mass fraction ratio as an additional test for differential diagnosis between benign and malignant GCT. (author)

  20. [Shushu (ancient Chinese numerology) in Lingshu: Gudu (Miraculous Pivot: Bone-Length Measurement)].

    Science.gov (United States)

    Zhuo, Lian-Shi

    2010-10-01

    Lingshu: Gudu (Miraculous Pivot: Bone-Length Measurement) is compared with literatures concerning the Shushu (ancient Chinese numerology) of the Qin Dynasty (221 B. C. - 206 B. C. ) and the Han Dynasty (206 B. C.-220 A. D.) in this article. And it is discovered that "the number of heaven and earth" in Yijing (The Book of Change) was implied in the bone-length measurement. The theory of Shushu is hidden in the sized of head, neck, chest, abdomen, back and 4 extremities according to the measurement. The meaning of establishment of bone-length measurement, which is found to have universality, laid in setting down the measurement of meridians. And it is the origin of the proportional measurement of locating acupoints. Checked with the theory of Shushu, errors in the description of bone-length measurement could also be found in Lingshu: Gudu (Miraculous Pivot: Bone-Length Measurement) of the present edition, which is helpful for the modern study on the measurement.

  1. Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention

    Directory of Open Access Journals (Sweden)

    Nguyen Nguyen D

    2005-06-01

    Full Text Available Abstract Background While risk factors of osteoporosis in Western populations have been extensively documented, such a profile has not been well studied in Caucasians of non-European origin. This study was designed to estimate the modifiable distribution and determinants of bone mineral density (BMD among Iranian women in Australia. Methods Ninety women aged 35 years and older completed a questionnaire on socio-demographic and lifestyle factors. BMD was measured at the lumbar spine (LS and femoral neck (FN using DXA (GE Lunar, WI, USA, and was expressed in g/cm2 as well as T-score. Results In multiple regression analysis, advancing age, lower body mass index (BMI, and smoking were independently associated with LS and FN BMD, with the 3 factors collectively accounting for 30% and 38% variance of LS and FN BMD, respectively. LS and FN BMD in smokers was 8% lower than that in non-smokers. Further analysis of interaction between BMI and smoking revealed that the effect of smoking was only observed in the obese group (p = 0.029 for LSBMD and p = 0.007 for FNBMD, but not in the overweight and normal groups. Using T-scores from two bone sites the prevalence of osteoporosis (T-scores ≤ -2.5 was 3.8% and 26.3% in pre-and post-menopausal women, respectively. Among current smokers, the prevalence was higher (31.3% than that among ex-smokers (28.6% and non-smokers (7.5%. Conclusion These data, for the first time, indicate that apart from advancing age and lower body mass index, cigarette smoking is an important modifiable determinant of bone mineral density in these Caucasians of non-European origin.

  2. Analysis of bone mass density of lumbar spine zone of athletes ...

    African Journals Online (AJOL)

    This study was carried out to evaluate T-Z scores of lumbar spine zone (L1, L2, L3, L4, L1-L4) bone mass density (BMD) of elite active male athletes in different branches and to determine the differences between them. 42 healthy male athletes aged 18 - 25 competing in different branches (Taekwondo 12, wrestling 8, Judo ...

  3. Three-dimensional measurement of temporal bone by using personal computer

    International Nuclear Information System (INIS)

    Kimura, Hiroki; Murata, Kiyotaka; Isono, Michio; Azuma, Hiroji; Itou, Akihiko

    1996-01-01

    Measurement of anatomical indices in human temporal bone has been reported only sporadically using high resolution CT. We developed a method for measuring such indices by computer assisted processing of images obtained by high resolusion CT. Intensive measurement of distances between all anatomical points in the entire temporal bone structure became possible with this method. (author)

  4. Intraoperative bone and bone marrow sampling: a simple method for accurate measurement of uptake of radiopharmaceuticals in bone and bone marrow

    International Nuclear Information System (INIS)

    Oyen, W.J.G.; Buijs, W.C.A.M.; Kampen, A. van; Koenders, E.B.; Claessens, R.A.M.J.; Corstens, F.H.M.

    1993-01-01

    Accurate estimation of bone marrow uptake of radiopharmaceuticals is of crucial importance for accurate whole body dosimetry. In this study, a method for obtaining normal bone marrow and bone during routine surgery without inconvenience to volunteers is suggested and compared to an indirect method. In five volunteers (group 1), 4 MBq 111 In-labelled human polyclonal IgG ( 111 In-IgG) was administered 48h before placement of a total hip prosthesis. After resection of the femoral head and neck, bone marrow was aspirated from the medullary space with a biopsy needle. In five patients, suspected of having infectious disease (group 2), bone marrow uptake was calculated according to a well-accepted method using regions of interest over the lumbar spine, 48h after injection of 75 MBq 111 In-IgG. Bone marrow uptake in group 1 (4.5 ±1.3%D kg -1 ) was significantly lower than that in group 2 (8.5 ± 2.1%D kg -1 ) (P<0.01). Blood and plasma activity did not differ significantly for both groups. This method provides a system for directly and accurately measuring uptake and retention in normal bone marrow and bone of all radiopharmaceuticals at various time points. It is a safe and simple procedure without any discomfort to the patient. Since small amounts of activity are sufficient, the radiation dose to the patient is low. (author)

  5. A case report of aneurysmal bone cyst in involving occipital bone

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hae Soon; Lee, Won Hyong; Yoo, Seong Yul; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Majority of the aneurysmal bone cyst affects tubular bones. The vertebra are also a frequent site of aneurysmal bone cyst where they are usually found as an expanding, nutiloculated new growth in the lamina or within the vertebral body. We present an aneurysmal bone cyst of cranial bone which is relatively rare. A 33 month old girl was admitted to SNUH, complaining of progressive growing occipital mass of 14 months duration. A round, rubbery, child fist sized mass was situated at the suboccipital area. The mass was not tender, nor pulsatile and bruits were not audible. Simple skull roentgenogram showed the huge, blown-out osteolytic lesion at the suboccipital area. No vascularity within the mass was noted on the right brachial angiography.

  6. Intraoperative mechanical measurement of bone quality with the DensiProbe.

    Science.gov (United States)

    Hoppe, Sven; Uhlmann, Michael; Schwyn, Robert; Suhm, Norbert; Benneker, Lorin M

    2015-01-01

    Reduced bone stock can result in fractures that mostly occur in the spine, distal radius, and proximal femur. In case of operative treatment, osteoporosis is associated with an increased failure rate. To estimate implant anchorage, mechanical methods seem to be promising to measure bone strength intraoperatively. It has been shown that the mechanical peak torque correlates with the local bone mineral density and screw failure load in hip, hindfoot, humerus, and spine in vitro. One device to measure mechanical peak torque is the DensiProbe (AO Research Institute, Davos, Switzerland). The device has shown its effectiveness in mechanical peak torque measurement in mechanical testing setups for the use in hip, hindfoot, and spine. In all studies, the correlation of mechanical torque measurement and local bone mineral density and screw failure load could be shown. It allows the surgeon to judge local bone strength intraoperatively directly at the region of interest and gives valuable information if additional augmentation is needed. We summarize methods of this new technique, its advantages and limitations, and give an overview of actual and possible future applications. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  7. The Relation between Visceral and Subcutaneous Fat to Bone Mass among Egyptian Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Sahar A. El-Masry

    2014-12-01

    CONCLUSIONS: Visceral and subcutaneous fat had significant positive association with bone mass in children; males and females respectively. On the contrary such association disappeared during adolescence.

  8. Thyroid hormone interacts with the sympathetic nervous system to modulate bone mass and structure in young adult mice.

    Science.gov (United States)

    Fonseca, Tatiana L; Teixeira, Marilia B C G; Miranda-Rodrigues, Manuela; Rodrigues-Miranda, Manuela; Silva, Marcos V; Martins, Gisele M; Costa, Cristiane C; Arita, Danielle Y; Perez, Juliana D; Casarini, Dulce E; Brum, Patricia C; Gouveia, Cecilia H A

    2014-08-15

    To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects. Interestingly, the mRNA expression of osteoprotegerin, a protein that limits osteoclast activity, was upregulated and downregulated by T3 in the bone of α(2A/2C)-AR(-/-) and WT mice, respectively. β1-AR mRNA expression and IGF-I serum levels, which exert bone anabolic effects, were increased by T3 treatment only in α(2A/2C)-AR(-/-) mice. As expected, T3 inhibited the cell growth of calvaria-derived osteoblasts isolated from WT mice, but this effect was abolished or reverted in cells isolated from KO mice. Collectively, these findings support the hypothesis of a TH-SNS interaction to control bone mass and structure of young adult mice and suggests that this interaction may involve α2-AR signaling. Finally, the present findings offer new insights into the mechanisms through which TH regulates bone mass, structure, and physiology. Copyright © 2014 the American Physiological Society.

  9. Influence of pregnancy on bone density: a risk factor for osteoporosis? Measurements of the calcaneus by ultrasonometry.

    Science.gov (United States)

    Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz

    2012-04-01

    There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.

  10. Body composition and reproductive function exert unique influences on indices of bone health in exercising women.

    Science.gov (United States)

    Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane

    2013-09-01

    Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p < 0.001); however, femoral neck CSA and CSMI were not different between groups. E1G cycle mean and age of menarche were the strongest predictors of lumbar spine aBMD and BMAD, together explaining 25.5% and 22.7% of the variance, respectively. Lean mass was the strongest predictor of total hip and femoral neck aBMD as well as femoral neck CSMI and CSA, explaining 8.5-34.8% of the variance. Upon consideration of several potential osteogenic stimuli, reproductive function appears to play

  11. Automated radiogrammetry is a feasible method for measuring bone quality and bone maturation in severely disabled children

    International Nuclear Information System (INIS)

    Mergler, Sandra; Man, Stella A. de; Boot, Annemieke M.; Heus, Karen G.C.B.B.; Huijbers, Wim A.R.; Rijn, Rick R. van; Penning, Corine; Evenhuis, Heleen M.

    2016-01-01

    Children with severe neurological impairment and intellectual disability are prone to low bone quality and fractures. We studied the feasibility of automated radiogrammetry in assessing bone quality in this specific group of children. We measured outcome of bone quality and, because these children tend to have altered skeletal maturation, we also studied bone age. We used hand radiographs obtained in 95 children (mean age 11.4 years) presenting at outpatient paediatric clinics. We used BoneXpert software to determine bone quality, expressed as paediatric bone index and bone age. Regarding feasibility, we successfully obtained a paediatric bone index in 60 children (63.2%). The results on bone quality showed a mean paediatric bone index standard deviation score of -1.85, significantly lower than that of healthy peers (P < 0.0001). Almost 50% of the children had severely diminished bone quality. In 64% of the children bone age diverged more than 1 year from chronological age. This mostly concerned delayed bone maturation. Automated radiogrammetry is feasible for evaluating bone quality in children who have disabilities but not severe contractures. Bone quality in these children is severely diminished. Because bone maturation frequently deviated from chronological age, we recommend comparison to bone-age-related reference values. (orig.)

  12. Automated radiogrammetry is a feasible method for measuring bone quality and bone maturation in severely disabled children

    Energy Technology Data Exchange (ETDEWEB)

    Mergler, Sandra [Erasmus MC, Department of General Practice and Intellectual Disability Medicine, University Medical Centre, Rotterdam (Netherlands); Care and Service Centre for People with Intellectual Disabilities, Medical Department ASVZ, Sliedrecht (Netherlands); Man, Stella A. de [Amphia Hospital, Department of Paediatrics, Breda (Netherlands); Boot, Annemieke M. [University of Groningen, Department of Paediatric Endocrinology, University Medical Centre Groningen, Groningen (Netherlands); Heus, Karen G.C.B.B. [Erasmus MC, Department of General Paediatrics, Sophia Children' s Hospital, University Medical Centre, Rotterdam (Netherlands); Huijbers, Wim A.R. [Beatrix Hospital, Department of Paediatrics, Gorinchem (Netherlands); Rijn, Rick R. van [Emma Children' s Hospital/Academic Medical Centre, Department of Radiology, Amsterdam (Netherlands); Penning, Corine; Evenhuis, Heleen M. [Erasmus MC, Department of General Practice and Intellectual Disability Medicine, University Medical Centre, Rotterdam (Netherlands)

    2016-06-15

    Children with severe neurological impairment and intellectual disability are prone to low bone quality and fractures. We studied the feasibility of automated radiogrammetry in assessing bone quality in this specific group of children. We measured outcome of bone quality and, because these children tend to have altered skeletal maturation, we also studied bone age. We used hand radiographs obtained in 95 children (mean age 11.4 years) presenting at outpatient paediatric clinics. We used BoneXpert software to determine bone quality, expressed as paediatric bone index and bone age. Regarding feasibility, we successfully obtained a paediatric bone index in 60 children (63.2%). The results on bone quality showed a mean paediatric bone index standard deviation score of -1.85, significantly lower than that of healthy peers (P < 0.0001). Almost 50% of the children had severely diminished bone quality. In 64% of the children bone age diverged more than 1 year from chronological age. This mostly concerned delayed bone maturation. Automated radiogrammetry is feasible for evaluating bone quality in children who have disabilities but not severe contractures. Bone quality in these children is severely diminished. Because bone maturation frequently deviated from chronological age, we recommend comparison to bone-age-related reference values. (orig.)

  13. A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia.

    Science.gov (United States)

    Lodberg, Andreas; Eijken, Marco; van der Eerden, Bram C J; Okkels, Mette Wendelboe; Thomsen, Jesper Skovhus; Brüel, Annemarie

    2018-05-01

    Disuse causes a rapid and substantial bone loss distinct in its pathophysiology from the bone loss associated with cancers, age, and menopause. While inhibitors of the activin-receptor signaling pathway (IASPs) have been shown to prevent ovariectomy- and cancer-induced bone loss, their application in a model of disuse osteopenia remains to be tested. Here, we show that a soluble activin type IIA receptor (ActRIIA-mFc) increases diaphyseal bone strength and cancellous bone mass, and mitigates the loss of femoral neck bone strength in the Botulinum Toxin A (BTX)-model of disuse osteopenia in female C57BL/6J mice. We show that ActRIIA-mFc treatment preferentially stimulates a dual-effect (anabolic-antiresorptive) on the periosteal envelope of diaphyseal bone, demonstrating in detail the effects of ActRIIA-mFc on cortical bone. These observations constitute a previously undescribed feature of IASPs that mediates at least part of their ability to mitigate detrimental effects of unloading on bone tissue. The study findings support the application of IASPs as a strategy to combat bone loss during disuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, ... on bone mineral density at either the femur neck or lumbar spine? Nine percent of persons aged ...

  15. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    Science.gov (United States)

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  16. Body composition and bone mineral mass in normal and obese female population using dual X-ray absorptiometry

    International Nuclear Information System (INIS)

    Massardo, T.; Gonzalez, P.; Coll, C.; Rodriguez, J.L.; Solis, I.; Oviedo, S.

    2002-01-01

    It has been observed that a greater percentage of body fat is associated with augmented bone mineral mass. Objective: The goal of this work was to assess the relationship between bone mineral density (BMD in g/cm 2 ) and content (BMC in g) and soft tissue components, fat and lean mass (in g) in whole body of adult female population in Chile. Method: We studied 185 volunteers, asymptomatic, excluding those using estrogens, regular medication, tobacco (>10 cigarettes/day), excessive alcohol intake or with prior oophorectomy. They were separated in 111 pre and 74 post menopausal and according to body mass index (BMI) they were 37 women > 30 kg/m 2 and 148 2 . A Lunar Dual X-Ray absorptiometer was used to determine whole BMD and BMC. Results: Post menopausal women were older and smaller [p:0.0001], with higher body mass index [p:0.0007] and with lower BMD and BMC and higher fat mass than the pre menopausal group; In the whole group, women with BMI ≥ 30 (obese) were compared with normal weight observing no difference in BMD. The fat mass incremented significantly with age. Obese women > 50 years presented greater BMC than the non-obese. The percentage of fat corresponded to 48% in the obese group and to 39% in the non-obese [p<0.0001]. Conclusion: Fat mass somehow protect bone mineral loss in older normal population, probably associated to multifactorial causes including extra ovaric estrogen production. Postmenopausal women presented lower mineral content than premenopausal, as it was expected

  17. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  18. Study of osteoporosis through the measurement of bone density, trace elements, biomechanical properties and immunocytochemicals

    International Nuclear Information System (INIS)

    Aras, N.K.; Korkusuz, F.; Akkas, N.; Laleli, Y.; Kuscu, L.; Gunel, U.

    1996-01-01

    Osteoporosis is defined as an absolute decrease in the amount of bone to a level below required for mechanical support. It is an important bone disease in elderly people in many countries. Unfortunately, there is no reliable statistical data in Turkey for the incidence of osteoporosis. A decrease in bone mass is the important cause in fractures in osteoporosis. Therefore, we intend to study both bone density and other variables such as trace elements, biomechanical properties and other immunocytochemicals in bone, all combined might give an information about the cause and prevention of osteoporosis. (author)

  19. Measurement of torsion angles of long finger bones using computed tomography

    International Nuclear Information System (INIS)

    Berthold, L.D.; Ishaque, N.; Mauermann, F.; Klose, K.J.; Boehringer, G.

    2001-01-01

    Objective: Rotational dislocation at the fracture site is a complication of long finger bone fractures of the metacarpals and phalanges. To evaluate such deformities, we performed CT of the articular surfaces of these bones to demonstrate the torsion angles. Design: We evaluated 10 pairs of cadaver hands. These were placed flat, with the bones of interest perpendicular to the gantry to acquire axial images. The torsion of the long bone axes was defined as the angle between a tangent positioned parallel to the proximal articular surface and a tangent parallel to the distal articular surface of individual bones. Results: The maximum difference between repeated measurements was 4 . Intraobserver differences measured between right and left hands are less than 3 . Conclusion: Side differences in torsion angles exceeding 3 are strongly suspicious of a malrotation after fracture. These measurements might help to plan derotational osteotomy and assess the results of therapy. (orig.)

  20. Some mass measurement problems

    International Nuclear Information System (INIS)

    Merritt, J.S.

    1976-01-01

    Concerning the problem of determining the thickness of a target, an uncomplicated approach is to measure its mass and area and take the quotient. This paper examines the mass measurement aspect of such an approach. (author)

  1. Rapid restoration of bone mass after surgical management of hyperthyroidism: A prospective case control study in Southern India.

    Science.gov (United States)

    Karunakaran, Poongkodi; Maharajan, Chandrasekaran; Mohamed, Kamaludeen N; Rachamadugu, Suresh V

    2016-03-01

    The rate and the extent of bone remineralization at cancellous versus cortical sites after treatment of hyperthyroidism is unclear. Few studies have examined the effect of operative management of hyperthyroidism on recovery of bone mass. To evaluate prospectively the bone mineral density (BMD), bone mineral content (BMC), and bone areal size at the spine, hip, and forearm before and after total thyroidectomy. A prospective case control observational study from August 2011 to July 2014 in a single center. This study evaluated 40 overt hyperthyroid patients and 31 age-matched euthyroid controls who were operative candidates. Bone indices were measured at baseline and 6-month postoperatively using dual energy x-ray absorptiometry. Serum levels of alkaline phosphatase and 25-hydroxy vitamin D3 (25OHD) were assessed. Baseline BMD of hyperthyroid subjects at the spine, hip, and forearm were less than euthyroid controls (P = .001) with concomitant increases in serum alkaline phosphatase (mean ± SD, 143 ± 72 vs 72 ± 23 IU/L control; P hyperthyroid patients, posttreatment BMD expressed as g/cm(2) were 0.97 ± 0.12 (vs pretreatment 0.91 ± 0.14; P = .001) at the spine, 0.87 ± 0.12 (vs pretreatment 0.80 ± 0.13; P = .001) at the hip, and 0.67 ± 0.09 (vs pretreatment 0.64 ± 0.11; P = .191) at the forearm. The percent change in BMD was greatest at spine (8.3%) followed by the hip (7.6%) and forearm (3.0%). Operative management with total thyroidectomy improved the bone loss associated with hyperthyroidism as early as 6 months postoperatively at the hip and spine despite concomitant vitamin D deficiency. Delayed recovery of bone indices at the forearm, a cortical bone, requires further long-term evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bone Metabolism in Anorexia Nervosa

    Science.gov (United States)

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN), a psychiatric disorder predominantly affecting young women, is characterized by self-imposed chronic nutritional deprivation and distorted body image. AN is associated with a number of medical co-morbidities including low bone mass. The low bone mass in AN is due to an uncoupling of bone formation and bone resorption, which is the result of hormonal adaptations aimed at decreasing energy expenditure during periods of low energy intake. Importantly, the low bone mass in AN is associated with a significant risk of fractures and therefore treatments to prevent bone loss are critical. In this review, we discuss the hormonal determinants of low bone mass in AN and treatments that have been investigated in this population. PMID:24419863

  3. A simple method of screening for metabolic bone disease

    International Nuclear Information System (INIS)

    Broughton, R.B.K.; Evans, W.D.

    1982-01-01

    The purpose of this investigation was to find a simple method -to be used as an adjunct to the conventional bone scintigram- that could differentiate between decreased bone metabolism or mass, i.e., osteoporosis -normal bone- and the group of conditions of increased bone metabolism or mass namely, osteomalacia, renal osteodystrophy, hyperparathyroidism and Paget's disease. The Fogelman's method using the bone to soft tissue ratios from region of interest analysis at 4 hours post injection, was adopted. An initial experience in measuring a value for the count rate density in lumbar vertebrae at 1 hr post injection during conventional bone scintigraphy appears to give a clear indication of the overall rate of bone metabolism. The advantage over whole body retention methods is that the scan performed at the end of the metabolic study will reveal localized bone disease that may otherwise not be anticipated

  4. Effects of growth hormone administration for 6 months on bone turnover and bone marrow fat in obese premenopausal women.

    Science.gov (United States)

    Bredella, Miriam A; Gerweck, Anu V; Barber, Lauren A; Breggia, Anne; Rosen, Clifford J; Torriani, Martin; Miller, Karen K

    2014-05-01

    Abdominal adiposity is associated with low BMD and decreased growth hormone (GH) secretion, an important regulator of bone homeostasis. The purpose of our study was to determine the effects of a short course of GH on markers of bone turnover and bone marrow fat in premenopausal women with abdominal adiposity. In a 6-month, randomized, double-blind, placebo-controlled trial we studied 79 abdominally obese premenopausal women (21-45 y) who underwent daily sc injections of GH vs. placebo. Main outcome measures were body composition by DXA and CT, bone marrow fat by proton MR spectroscopy, P1NP, CTX, 25(OH)D, hsCRP, undercarboxylated osteocalcin (ucOC), preadipocyte factor 1 (Pref 1), apolipoprotein B (ApoB), and IGF-1. GH increased IGF-1, P1NP, 25(OH)D, ucOC, bone marrow fat and lean mass, and decreased abdominal fat, hsCRP, and ApoB compared with placebo (pbone formation. A six-month decrease in abdominal fat, hsCRP, and ApoB inversely predicted 6-month change in P1NP, and 6-month increase in lean mass and 25(OH)D positively predicted 6-month change in P1NP (p≤0.05), suggesting that subjects with greatest decreases in abdominal fat, inflammation and ApoB, and the greatest increases in lean mass and 25(OH)D experienced the greatest increases in bone formation. A six-month increase in bone marrow fat correlated with 6-month increase in P1NP (trend), suggesting that subjects with the greatest increases in bone formation experienced the greatest increases in bone marrow fat. Forward stepwise regression analysis indicated that increase in lean mass and decrease in abdominal fat were positive predictors of P1NP. When IGF-1 was added to the model, it became the only predictor of P1NP. GH replacement in abdominally obese premenopausal women for 6 months increased bone turnover and bone marrow fat. Reductions in abdominal fat, and inflammation, and increases in IGF-1, lean mass and vitamin D were associated with increased bone formation. The increase in bone marrow fat may

  5. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    Science.gov (United States)

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  6. Dating of some fossil Romanian bones by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Olariu, Agata; Skog, Goeran; Emilian Alexandrescu; Hellborg, Ragnar; Stenstroem, Krstina; Faarinen, Mikko; Persson, Per

    2002-01-01

    Some fossil bones from Romanian territories have been dated by accelerator mass spectrometry (AMS) using the pelletron system from Lund University. The preparation of samples has been the classical procedure to produce pure graphite from bones specimens, The Paleolithic site from Malu Rosu, near Giurgiu was thoroughly analyzed. Two human fossil skulls from Cioclovina and Baia de Fier of special archaeological importance have been estimated to be of around 30 000 years old, a conclusion with great implications for the history of ancient Romania. By this physical analysis, a long scientific dispute was settled. The two fossil human skulls are the only ones of this age from Romania. One could advance the hypothesis that the skulls belong to a certain type of a branch of Central European Cro-Magon, the classical western type, considering both the chronological and the anthropological features. They constitute eastern limit of the Cro-Magnon man type. (authors)

  7. Study on the relationship between bone metabolism indexes and osteoporosis in aged males

    International Nuclear Information System (INIS)

    Luo Nanping; Yang Daoli; Zhao Yutang; Peng Liyi; Liu Guixiang

    2001-01-01

    Objective: To investigate the characteristics and significance of the changes of bone metabolism indexes related to the occurrence of osteoporosis in aged males. Methods: Serum interleukin 1β(IL-1β), insulin-like growth factor II (IGF-II), parathyroid hormone (PTH-M) and 25-OH-D were measured by radio-immunoassay in 58 aged males with osteoporosis and 37 cases with bone mass loss. Bone density was measured in these subjects and all the indexes were compared with those in young and middle-aged and aged healthy controls. Results: IL-1β and PTH-M levels in aged males with osteoporosis or bone mass loss were higher than those in healthy controls (P < 0.01), while IGF-II and 25-OH-D were lower than in normal controls, especially in osteoporosis group (P < 0.01). With the age increasing and the deterioration of the disorder, bone density in the two groups of patients were significantly lower than those in young and middle-aged controls (P < 0.01). Aged males with osteoporosis had a significantly lower bone density than patients with bone mass loss. Conclusion: Cytokines and disturbance of bone metabolism indexes are the main factors that lead to osteoporosis characterized by more bone absorption and less bone formation in aged males

  8. International conference on bone mineral measurement, October 12--13, 1973, Chicago, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-12-31

    From international conference on bone mineral measurement; Chicago, Illinois, USA (12 Oct 1973). Abstracts of papers presented at the international conference on bone mineral measurement are presented. The papers were grouped into two sessions: a physical session including papers on measuring techniques, errors, interpretation and correlations, dual photon techniques, and data handling and exchange; a biomedical session including papers on bone disease, osteoporosis, normative data, non-disease influences, renal, and activity and inactivity. (ERB)

  9. Bone mineral density and computer tomographic measurements in correlation with failure strength of equine metacarpal bones

    Directory of Open Access Journals (Sweden)

    Péter Tóth

    2014-01-01

    Full Text Available Information regarding bone mineral density and fracture characteristics of the equine metacarpus are lacking. The aim of this study was to characterize the relationship between mechanical properties of the equine metacarpal bone and its biomechanical and morphometric properties. Third metacarpal bones were extracted from horses euthanized unrelated to musculoskeletal conditions. In total, bone specimens from 26 front limbs of 13 horses (7.8 ± 5.8 years old including Lipizzaner (n = 5, Hungarian Warmblood (n = 2, Holsteiner (n = 2, Thoroughbred (n = 1, Hungarian Sporthorse (n = 1, Friesian (n = 1, and Shagya Arabian (n = 1 were collected. The horses included 7 mares, 4 stallions and 2 geldings. Assessment of the bone mineral density of the whole bone across four specific regions of interest was performed using dual-energy X-ray absorptiometry. The bones were scanned using a computer tomographic scanner to measure cross-sectional morphometric properties such as bone mineral density and cross-sectional dimensions including cortical area and cortical width. Mechanical properties (breaking force, bending strength, elastic modulus were determined by a 3-point bending test. Significant positive linear correlations were found between the breaking force and bone mineral density of the entire third metacarpal bones (P P P in vivo investigations.

  10. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  11. Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization?

    DEFF Research Database (Denmark)

    Molgaard, C.; Larnkjaer, A.; Cashman, K.D.

    2010-01-01

    Introduction: A high peak bone mass may be essential for reducing the risk of osteoporosis later in life and a sufficient vitamin D level during puberty may be necessary for optimal bone accretion and obtaining a high peak bone mass. Dietary intake and synthesis during winter of vitamin D might...... be limited but the effect of vitamin D supplementation in adolescence on bone mass is not well established. Objective: To investigate the effect of supplementation with 5 and 10 mu g/day vitamin D-3 for 12 months in 11- to 12-year-old girls on bone mass and bone turnover as well as the possible influence....../l) vitamin D-3 for 12 months compared to placebo (-3.1 +/- 9.8 nmol/l, baseline 43.4 +/- 17.1 nmol/l). There was no effect of vitamin D-supplementation on biomarkers for bone turnover or on whole body or spine bone mineral augmentation. However, vitamin D supplementation increased whole body bone mineral...

  12. Organ mass measurements

    International Nuclear Information System (INIS)

    Kawamura, H.

    1998-01-01

    The term, anatomical measurements, in the context of this Co-ordinated Research Programme refers to measurements of masses of internal organs, although the human body is composed of internal organs and tissues such as skeleton, muscle, skin and adipose. The mass of an organ containing a radionuclide (source organ), and the mass of a target organ which absorbs energy of the radiation, are essential parameters in the ICRP dosimetric model derived from the MIRD method. Twelve specific organs of interest were proposed at the Coordinated Research Programme Project Formulation Meeting (PFM) in 1988. A slightly different set of thirteen organs with potential significance for radiation protection were selected for study at the Research Co-ordination Meeting held at the Bhabha Atomic Research Centre in 1991. The dimensions of the organs could also be useful information, but were considered unimportant for internal dose assessment. Due to the strong concern about the unified method for collecting organ mass data at the PFM, a guide-line was established stressing the need for organ data from subjects that were healthy and normal, at least until shortly before death, or from sudden death cases, following the Japanese experience. In this report, masses of nine to thirteen organs are presented from seven participating countries. Three participants have also reported the organ masses as fractions of the total body mass

  13. Muscle strength and regional lean body mass influence on mineral bone health in young male adults.

    Science.gov (United States)

    Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller

    2018-01-01

    The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, pBMC and BMD for LL (R2adj = 0.68, pBMC (R2adj = 0.47, pBMC (R2adj = 0.36, pBMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.

  14. Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis.

    Science.gov (United States)

    Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda

    2011-01-01

    Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Methods and application of bone densitometry in clinical diagnosis

    International Nuclear Information System (INIS)

    Wahner, H.W.; Riggs, B.L.

    1986-01-01

    With the awareness of osteoporosis as a major health problem for an aging population, there is great interest in early recognition and treatment of abnormal bone loss. Effective prevention of bone loss has to occur prior to the occurrence of irreparable damage. Standard radiographic procedures are not sensitive enough for the task. Therefore, a number of alternative procedures to estimate bone loss have been developed over the years, ranging from efforts to quantitate information obtained from radiographic images to sophisticated procedures such as neutron activation analysis or procedures based on the Compton scatter phenomenon. Only two procedures, photon absorptiometry and computed tomography (CT), have emerged as applicable for routine clinical use. In photon absorptiometry the entire bone mineral (cortical and trabecular bone) of a specific skeletal site is measured. CT allows measuring of bone mineral of trabecular or cortical bone alone. Normally, bone mass reaches a maximum in the third decade and then continuously declines. This age-related bone loss is greater in women in whom an accelerated rate of loss occurs at the menopause. When bone density reaches a critical fracture threshold, skeletal fractures occur (spine, hip, and distal long bones). The age at which this critical fracture threshold is reached depends on the maximal bone mass achieved in early adulthood and the rate of loss with increasing age. With the exception of NaF, present-day therapeutic efforts only retard or prevent bone loss but do not significantly add bone mineral to the skeleton. Recognition of high-risk groups and early treatment are therefore required. 79 references

  16. MR imaging of bone marrow metastasis in patients with neuroblastoma. Comparison between mass-screened cases and clinically detected cases

    International Nuclear Information System (INIS)

    Kanegawa, Kimio; Akasaka, Yoshinori; Kawasaki, Ryuta; Nishiyama, Shoji; Mabuchi, Osamu; Muraji, Toshihiro

    1999-01-01

    Seventy-six patients with neuroblastoma who underwent bone marrow MRI were divided into two groups: the first group consisted of patients detected by mass screening (M group, n=55), and the second group of patients detected clinically (non-M group, n=21). Bone marrow metastasis was morphologically classified into two types, nodular type and diffuse type. We studied the incidence of bone marrow metastasis, relationship between the patterns of bone marrow metastasis and the presence of bone metastasis, and morphological changes of bone marrow metastasis after chemotherapy. In M group, the incidence of bone marrow metastasis was 7.3% (4 patients) and the patterns of bone marrow metastases were all nodular type not accompanied with bone metastasis and disappeared after chemotherapy. In non-M group, the incidence of bone marrow metastasis was 52.4% (11 patients). Bone marrow metastases had both patterns of metastasis. Forty-five per cent of diffuse type of bone marrow metastasis were accompanied with bone metastasis. All bone marrow metastases disappeared after chemotherapy, but in one of 11, there was recurrence of bone marrow metastasis. (author)

  17. Cortical bone mineral content in primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Mautalen, C.; Reyes, H.R.; Ghiringhelli, G.; Fromm, G.

    1986-01-01

    The bone mineral content (BMC) of 35 patients with primary hyperparathyroidism (PHPT) was measured at the mid radius (95% cortical bone) by photon absorptiometry of a 241 Am source. The majority of the patients had an overt disease of moderate to severe degree. Average serum calcium of the group was 12.3 mg/100 ml (range 10.6 to 18.0 mg/100 ml). The percentage of normality of the BMC was (Av +- 1 SD) 75.1 +- 13.0% for the whole group. The average increment of BMC in 14 patients 9 to 26 months after parathyroidectomy was 9.9%, with a wide dispersion. However, a highly significant negative correlation (r: 0.83; P < 0.01) was found between the initial bone mass and the percentage increment per month after surgery. No furhter gain was observed 2 years after parathyroidectomy except in one patient with an extremely severe bone loss. In spite of the gain obtained after surgery the bone mass remained markedly diminished in most patients showing that the cortical bone loss caused by PHPT is mainly irreversible. (author)

  18. Top quark mass measurements with CMS

    CERN Document Server

    Kovalchuk, Nataliia

    2017-01-01

    Measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark, an analysis of endpoint spectra as well as measurements from shapes of top quark decay distributions. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass and also $\\alpha_{\\textnormal S}$ are extracted from the top pair cross section measured at CMS.

  19. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.

    Directory of Open Access Journals (Sweden)

    Ee-Cheng Khor

    Full Text Available Prader-Willi Syndrome (PWS, a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR, including a set of small non-translated nucleolar RNA's (snoRNA. Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health

  20. Measurement of bone mineral using multiple-energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Our laboratory has previously reported a method of determining the amount of bone mineral using triple-energy absorptiometry with a continuous x-ray spectrum. In the present study, the experimental properties of the technique were examined. The accuracy, the influence of fat content and body thickness and the in vitro and in vivo precision were analysed. The results found in this investigation showed that despite the complexity of the technique, the amount of bone mineral can be accurately determined. The in vivo precision was determined to be 3.4%, expressed as the coefficient of variation (CV), for different skeletal parts. The in vitro precision was found to be 2.1% (CV). Neither the fat content nor the body thickness had any effect on the measured bone mineral values. Excellent linearity and a close correlation were found between the true and the measured bone mineral values. (author)

  1. Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study.

    Science.gov (United States)

    Rudäng, Robert; Darelid, Anna; Nilsson, Martin; Nilsson, Staffan; Mellström, Dan; Ohlsson, Claes; Lorentzon, Mattias

    2012-10-01

    It has previously been shown that smoking is associated with reduced bone mass and increased fracture risk, but no longitudinal studies have been published investigating altered smoking behavior at the time of bone mass acquisition. The aim of this study was to investigate the development of bone density and geometry according to alterations in smoking behavior in a 5-year, longitudinal, population-based study of 833 young men, age 18 to 20 years (baseline). Furthermore, we aimed to examine the cross-sectional, associations between current smoking and parameters of trabecular microarchitecture of the radius and tibia, using high-resolution peripheral quantitative computed tomography (HR-pQCT), in young men aged 23 to 25 years (5-year follow-up). Men who had started to smoke since baseline had considerably smaller increases in areal bone mineral density (aBMD) at the total body (mean ± SD, 0.020 ± 0.047 mg/cm(2) versus 0.043 ± 0.040 mg/cm(2) , p young adulthood have poorer development of their aBMD at clinically important sites such as the spine and hip than nonsmokers, possibly due to augmented loss of trabecular density and impaired growth of cortical cross-sectional area. Copyright © 2012 American Society for Bone and Mineral Research.

  2. Final Report: Bone Mass Inheritance: A Project to Identify the Genetic Regulation of Bone Mass; FINAL

    International Nuclear Information System (INIS)

    Recker, Robert R. M.D.

    2002-01-01

    This project was designed to find human chromosomal locations that contain genes regulating peak bone density. It is part of a whole genome search for those loci,each responsible for at least 15% of the variation in the peak adult bone density. We accomplished this with a sib pair design, combined with simultaneous examination of extended kindreds. This project gave partial support of the recruitment which has now been completed. The project will extend into 2003. During the remainder of the project, a whole genome scan will be performed from the entire cohort of 2226 persons who have DNA archived, followed by linkage analysis. This project will meet the scientific objective leading eventually to expanded options for treating the condition that leads to bone thinning osteoporosis, and potential fractures in aging populations

  3. Influence of IL-6 and bone metabolic markers on bone absorption and osteogenesis

    International Nuclear Information System (INIS)

    Yin Qiuxia; Luo Nanping; Wang Ruishan; Chen Yingjian; Niu Aijun; Sun Xiaoming

    2003-01-01

    Objective: To study the role of IL-6 and bone metabolic markers in the pathogenesis of osteoporosis in aged men. Methods: Serum IL-6, bone glaprotein (BGP), testosterone (T), ALP and Ca were measured in 90 old male subjects with RIA and biochemical analytical method. The tested subjects consisted of 40 cases of osteoporosis and 50 cases of decreased bone mass. The values were compared with those in 32 healthy old males and 35 younger subjects as controls. Results: Bone absorption marker (IL-6) increased with severity of osteoporosis and the levels were significantly higher than those in controls (p < 0.01). Osteogenesis marker (BGP, SALP and T) decreased by different degrees and were significant lower than those in controls (p < 0.05, p < 0.01). Conclusion: Abnormal serum level of IL-6 and other bone metabolic markers might indicate increased bone absorption and decreased osteogenesis, which were the characteristics of osteoporosis in aged men

  4. Associations of Bone Mineral Density with Lean Mass, Fat Mass, and Dietary Patterns in Postmenopausal Chinese Women: A 2-Year Prospective Study.

    Directory of Open Access Journals (Sweden)

    Yongjie Chen

    Full Text Available To assess factors associated with bone mineral density (BMD in postmenopausal women in a longitudinal study, and to examine the relative contribution of lean mass, fat mass, dietary patterns, and years since menopause to BMD.Two hundred and eighty-two postmenopausal women were randomly selected from Hongqi Community Health Center, in Harbin City, China. All participants were followed up from 2009 to 2011. Dietary data were collected using a Food Frequency Questionnaire. BMD of the left hip, the lumbar spine, and the total body, and the body composition were measured by dual-energy X-ray absorptiometry at baseline and follow-up.Lean mass and fat mass were positively associated with BMD of the spine, hip, and the total body at both baseline and follow-up. The association between fat mass and BMD at the spine at baseline (P = 0.210 and at the spine (P = 0.116 and hip (P = 0.073 in the second year was not statistically significant when height was adjusted. Six dietary patterns were identified but only cereal grains-fruits pattern (P = 0.001 in the spine, P = 0.037 in hip and milk-root vegetables pattern (P = 0.010 in hip were associated with BMD of the spine and hip. The linear mixed model of follow-up data showed that lean mass, years since menopause, and age of menophania were the significant determinants of BMD of all sites. Moreover, lean mass was the best determinant of BMD (VIP = 1.936.Lean mass, years since menopause, age of menophania and dietary patterns are the important determinants of BMD of the spine, hip, and the total body. Lean mass is the best determinant of BMD.

  5. Age-associated bone loss and intraskeletal variability in the Imperial Romans.

    Science.gov (United States)

    Cho, Helen; Stout, Sam Darrel

    2011-01-01

    An Imperial Roman sample from the Isola Sacra necropolis (100-300 A.D.) offered an opportunity to histologically examine bone loss and intraskeletal variability in an urban archaeological population. Rib and femur samples were analyzed for static indices of bone remodeling and measures of bone mass. The Imperial Romans experienced normal age-associated bone loss via increased intracortical porosity and endosteal expansion, with females exhibiting greater bone loss and bone turnover rates than in males. Life events such as menopause and lactation coupled with cultural attitudes and practices regarding gender and food may have led to increased bone loss in females. Remodeling dynamics differ between the rib and femur and the higher remodeling rates in the rib may be attributed to different effective age of the adult compacta or loading environment. This study demonstrates that combining multiple methodologies to examine bone loss is necessary to shed light on the biocultural factors that influence bone mass and bone loss.

  6. 'Sink or swim': an evaluation of the clinical characteristics of individuals with high bone mass.

    LENUS (Irish Health Repository)

    Gregson, C L

    2011-04-01

    High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. INTRODUCTION: High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. METHODS: Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. RESULTS: Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon\\/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg\\/m(2

  7. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  8. Measurements of the static friction coefficient between bone and muscle tissues.

    Science.gov (United States)

    Shacham, Sharon; Castel, David; Gefen, Amit

    2010-08-01

    This study aimed at measuring the static coefficient of friction (mu) between bone and skeletal muscle tissues in order to support finite element (FE) modeling in orthopaedic and rehabilitation research, where such contact conditions need to be defined. A custom-made friction meter (FM) that employs the load cell and motion-controlled loading arm of a materials testing machine was designed for this study. The FM was used to measure mu between fresh ulna bones and extensor muscles surrounding the ulna, which were harvested from five young adult pigs. Mean bone-muscle mu were between 0.36 and 0.29, decreased with the increase in loads applied on the bone (p<0.05) and plateaued at a mean approximately 0.3 for loads exceeding 4 N. Hence, for FE modeling of bone-muscle contacts through which loads with magnitudes of kgs to 10s-of-kgs are transferred, assuming mu of approximately 0.3 appears to be appropriate.

  9. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    International Nuclear Information System (INIS)

    Hoffmeister, Brent K; Holt, Andrew P; Kaste, Sue C

    2011-01-01

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  10. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, Brent K; Holt, Andrew P [Department of Physics, Rhodes College, Memphis, TN (United States); Kaste, Sue C, E-mail: hoffmeister@rhodes.edu [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN (United States)

    2011-10-07

    Ultrasonic backscatter techniques offer a promising new approach for detecting changes in bone caused by osteoporosis. However, several challenges impede clinical implementation of backscatter techniques. This study examines how the dense outer surface of bone (the cortex) affects backscatter measurements of interior regions of porous (cancellous) bone tissue. Fifty-two specimens of bone were prepared from 13 human femoral heads so that the same region of cancellous bone could be ultrasonically interrogated through the cortex or along directions that avoided the cortex. Backscatter signals were analyzed over a frequency range of 0.8-3.0 MHz to determine two ultrasonic parameters: apparent integrated backscatter (AIB) and frequency slope of apparent backscatter (FSAB). The term 'apparent' means that the parameters are sensitive to the frequency-dependent effects of diffraction and attenuation. Significant (p < 0.001) changes in AIB and FSAB indicated that measurements through the cortex decreased the apparent backscattered power and increased the frequency dependence of the power. However, the cortex did not affect the correlation of AIB and FSAB with the x-ray bone mineral density of the specimens. This suggests that results from many previous in vitro backscatter studies of specimens of purely cancellous bone may be extrapolated with greater confidence to in vivo conditions.

  11. Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    International Nuclear Information System (INIS)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J.; Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn; Nieman, Fred H.M.

    2011-01-01

    18 F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent 18 F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average 18 F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. 18 F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. 18 F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that 18 F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  12. Three-dimensional quantification of structures in trabecular bone using measures of complexity

    DEFF Research Database (Denmark)

    Marwan, Norbert; Kurths, Jürgen; Thomsen, Jesper Skovhus

    2009-01-01

    The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three-dimensiona......The study of pathological changes of bone is an important task in diagnostic procedures of patients with metabolic bone diseases such as osteoporosis as well as in monitoring the health state of astronauts during long-term space flights. The recent availability of high-resolution three......-dimensional (3D) imaging of bone challenges the development of data analysis techniques able to assess changes of the 3D microarchitecture of trabecular bone. We introduce an approach based on spatial geometrical properties and define structural measures of complexity for 3D image analysis. These measures...... evaluate different aspects of organization and complexity of 3D structures, such as complexity of its surface or shape variability. We apply these measures to 3D data acquired by high-resolution microcomputed tomography (µCT) from human proximal tibiae and lumbar vertebrae at different stages...

  13. Top quark mass measurement

    International Nuclear Information System (INIS)

    Maki, Tuula; Helsinki Inst. of Phys.; Helsinki U. of Tech.

    2008-01-01

    The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parameterized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector

  14. Locomotion and muscle mass measures in a murine model of collagen-induced arthritis

    NARCIS (Netherlands)

    Hartog, A.; Hulsman, J.; Garssen, J.

    2009-01-01

    Background: Rheumatoid arthritis (RA) is characterized by chronic poly-arthritis, synovial hyperplasia, erosive synovitis, progressive cartilage and bone destruction accompanied by a loss of body cell mass. This loss of cell mass, known as rheumatoid cachexia, predominates in the skeletal muscle and

  15. Radiolabeled microsphere measurements of alveolar bone blood flow in dogs

    International Nuclear Information System (INIS)

    Kaplan, M.L.; Jeffcoat, M.K.; Goldhaber, P.

    1978-01-01

    Radiolabeled microspheres were injected into the left cardiac ventricle in healthy adult dogs to quantify blood in maxillary and mandibular alveolar bone. Heart rate, arterial blood pressure and pulse contour were monitored throughout each experiment. Blood flow in maxillary alveolar bone was more than 30 % greater (p<.001) than in mandibular alveolar bone. Alveolar bone blood flow (mean +- S.D.) measured as ml/min per gram was 0.12 +- .02 in the maxilla compared to 0.09 +- .02 in the mandible. The cardiovascular parameters monitored were constant immediately prior to the injection of microspheres and remained unchanged during and following injection. It is possible that radiolabeled microspheres can be used to quantify the circulatory changes in alveolar bone during the development of destructive periodontal disease in dogs. (author)

  16. Bone mineral density and nutritional indices in adolescent females with recently diagnosed anorexia

    International Nuclear Information System (INIS)

    Wong, J.C.H.; Lewindon, P.J.; Mortimer, R.; Sheperd, R.W.; Royal Children's Hospital, Brisbane, QLD

    1999-01-01

    Full text: Osteopenia/osteoporosis and fractures have been shown to occur with anorexia nervosa (AN). This study evaluated adolescent females diagnosed with AN less than 12 months previously to determine the presence of any significant bone mass reduction at this early stage of diagnosis and to evaluate the correlation between total body (TB) and lumbar spine (LS) bone mineral densities (BMD) and bone mineral content (BMC), and nutritional indices (body weight, body mass index (BMI), lean mass, fat mass and percentage fat). The subjects were 22 adolescent females aged 12-17 years (mean= 14.3 years) diagnosed with AN less than 12 months earlier (range 2.5-11 months; mean = 6.7 months). They had bone density measurements of the TB and LS using a Lunar DPX-L densitometer. Comparison was made with values of age-matched controls in the Lunar normative database. Although there was a tendency towards low TB and LS bone mass, these changes were not statistically significant. Bivariate analyses showed significant correlation between TB BMD and lean mass (P < 0.001) and weight (P < 0.001) and between TB BMC and lean mass (P < 0.001) and weight (P < 0.01). There was similar significant correlation between LS BMD and lean mass (P < 0.01) and weight (P<0.01), and between LS BMC and lean mass (P < 0.01) and weight (P < 0.01). With stepwise regression analysis, only lean mass remained significantly correlated with TB BMD and BMC and LS BMD and BMC. There was no longer any significant correlation with weight. In this study, the weight percentile was found to be correlated highly with the LS BMD Z-score (P < 0.01). Therefore, during adolescence, the lean mass in particular, but also body weight, are good indicators of bone densities. Adolescent females do not appear to show bone mass reduction in the early stages of diagnosis of anorexia nervosa. This suggests early intervention may preserve bone gain and attainment of normal peak bone mass

  17. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  18. Coherent scattering and matrix correction in bone-lead measurements

    International Nuclear Information System (INIS)

    Todd, A.C.

    2000-01-01

    The technique of K-shell x-ray fluorescence of lead in bone has been used in many studies of the health effects of lead. This paper addresses one aspect of the technique, namely the coherent conversion factor (CCF) which converts between the matrix of the calibration standards and those of human bone. The CCF is conventionally considered a constant but is a function of scattering angle, energy and the elemental composition of the matrices. The aims of this study were to quantify the effect on the CCF of several assumptions which may not have been tested adequately and to compare the CCFs for plaster of Paris (the present matrix of calibration standards) and a synthetic apatite matrix. The CCF was calculated, using relativistic form factors, for published compositions of bone, both assumed and assessed compositions of plaster, and the synthetic apatite. The main findings of the study were, first, that impurities in plaster, lead in the plaster or bone matrices, coherent scatter from non-bone tissues and the individual subject's measurement geometry are all minor or negligible effects; and, second, that the synthetic apatite matrix is more representative of bone mineral than is plaster of Paris. (author)

  19. Bone mineral density and metabolic indices in hyperthyroidism.

    Science.gov (United States)

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  20. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia

    Directory of Open Access Journals (Sweden)

    Fujiwara S

    2014-11-01

    Full Text Available Saeko Fujiwara,1 Etsuro Hamaya,2 Masayo Sato,2 Peita Graham-Clarke,3 Jennifer A Flynn,2 Russel Burge41Hiroshima Atomic Bomb Casualty Council, Hiroshima, Japan; 2Lilly Research Laboratories Japan, Eli Lilly Japan K.K., Kobe, Japan; 3Global Health Outcomes, Eli Lilly Australia, Sydney, NSW, Australia; 4Global Health Outcomes, Eli Lilly and Company, Indianapolis, IN, USAPurpose: To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia.Materials and methods: Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain. Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis.Results: Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications, but not the hip region (eight publications, a low incidence of vertebral fracture (three publications, decreases in markers of bone turnover (eleven publications, improved hip structural geometry (two publications, improved blood–lipid profiles (five publications, a low incidence of hot flushes

  1. Measurement of the top quark mass

    International Nuclear Information System (INIS)

    Blusk, Steven R.

    1998-01-01

    The first evidence and subsequent discovery of the top quark was reported nearly 4 years ago. Since then, CDF and D0 have analyzed their full Run 1 data samples, and analysis techniques have been refined to make optimal use of the information. In this paper, we report on the most recent measurements of the top quark mass, performed by the CDF and D0 collaborations at the Fermilab Tevatron. The CDF collaboration has performed measurements of the top quark mass in three decay channels from which the top quark mass is measured to be 175.5 ± 6.9 GeV=c 2 . The D0 collaboration combines measurements from two decay channels to obtain a top quark mass of 172.1 ± 7.1 GeV/c 2 . Combining the measurements from the two experiments, assuming a 2 GeV GeV/c 2 correlated systematic uncertainty, the measurement of the top quark mass at the Tevatron is 173.9 ± 5.2 GeV/c 2 . This report presents the measurements of the top quark mass from each of the decay channels which contribute to this measurement

  2. Mass Customization Measurements Metrics

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2014-01-01

    A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....

  3. Bone mineralization in childhood and adolescence.

    Science.gov (United States)

    Bachrach, L K

    1993-08-01

    Prevention of osteoporosis depends on establishing adequate peak bone mass in the first two decades of life. Achievement of this goal requires an understanding of factors that promote skeletal health. Genetic factors are important determinants of adult bone mass, but nonheritable variables, including body mass, calcium nutriture, sex steroids, and activity can strongly influence whether maximal bone mineral is achieved. Acquisition of bone mineral continues throughout childhood and adolescence, reaching a lifetime maximum in early adulthood. Adolescence is a particularly critical time for bone mineral accretion as more than half of the bone calcium is normally laid down during the teen years. Chronic illness, malnutrition, or endocrine deficiencies at this age may result in profound deficits in bone mass, which may not be fully reversible. These risk factors contribute to the osteopenia associated with anorexia nervosa, exercise-induced amenorrhea, delayed puberty, Turner's syndrome, and growth hormone deficiency.

  4. Efficacy of estrogen replacement therapy (ERT) on uterine growth and acquisition of bone mass in patients with Turner syndrome.

    Science.gov (United States)

    Nakamura, Tomomi; Tsuburai, Taku; Tokinaga, Aya; Nakajima, Izumi; Kitayama, Reiko; Imai, Yuichi; Nagata, Tomoko; Yoshida, Hiroshi; Hirahara, Fumiki; Sakakibara, Hideya

    2015-01-01

    Estrogen replacement therapy (ERT) is necessary for uterine development and bone mass acquisition in women with Turner syndrome (TS) suffering from ovarian insufficiency. However, adequate ERT regimens have not yet been established. The aim of this study was to evaluate the efficacy of ERT for both uterine development and bone mass acquisition. One hundred TS patients from Yokohama City University Hospital (88 with primary amenorrhea (PA) and 12 patients with spontaneous menstrual cycles (MC)) were enrolled after obtaining consent. Clinical profiles, uterine length (UL) measured by ultrasonic examination, and bone mineral density (BMD) of the lumbar vertebrae (L2-4) assessed by DEXA were evaluated. At the time of the first visit, the ULs of patients in the PA group were significantly shorter than those in the MC group. After receiving ERT, there were no significant differences in UL between patients with PA and MC. Forty-seven patients for whom the ERT initiation age was known were investigated to clarify the influence on BMD. The results showed that the BMD in the late initiation (18 years or older) group at the latest visit (0.770 ± 0.107 g/cm2: n = 16) was significantly lower than that in the early initiation (under 18 years) group (0.858 ± 0.119 g/cm2: n = 21) or the MC group (0.941 ± 0.118 g/cm2: n = 10). No significant differences were seen between the early initiation and MC group. ERT was effective in increasing UL and BMD. However, early initiation of ERT is necessary to increase BMD.

  5. Method to measure the force to pull and to break pin bones of fish.

    Science.gov (United States)

    Balaban, Murat O; Jie, Hubert; Yin Yee, Yin; Alçiçek, Zayde

    2015-02-01

    A texture measurement device was modified to measure the force required to pull pin bones from King salmon (Oncorhynchus tshawytscha), snapper (Pagrus auratus), and kahawai (Arripis trutta). Pulled bones were also subjected to tension to measure the breaking force. For all fish, the pulling force depended on the size of the fish, and on the length of the pin bone (P bones. For example, fresh small salmon (about 1500 g whole) required 600 g on average to pull pin bones, and large fish (about 3700 g whole) required 850 g. Longer bones required greater pulling force. The breaking force followed the same trend. In general, the breaking force was greater than the pulling force. This allows the removal of the bones without breaking them. There was no statistically significant (P > 0.05) difference between the forces (both pulling and breaking) from fresh and frozen/thawed samples, although in general frozen/thawed samples required less force to pull. With the quantification of pulling and breaking forces for pin bones, it is possible to design and build better, "more intelligent" pin bone removal equipment. © 2015 Institute of Food Technologists®

  6. Anorexia Nervosa and Bone

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure and reduced bone strength, all of which contribute to increased fracture risk., Adolescents with AN have decreased rates of bone accrual compared with normal-weight controls, raising addition concerns of suboptimal peak bone mass and future bone health in this age group. Changes in lean mass and compartmental fat depots, hormonal alterations secondary to nutritional factors contribute to impaired bone metabolism in AN. The best strategy to improve bone density is to regain weight and menstrual function. Oral estrogen-progesterone combinations are not effective in increasing bone density in adults or adolescents with AN, and transdermal testosterone replacement is not effective in increasing bone density in adult women with AN. However, physiologic estrogen replacement as transdermal estradiol with cyclic progesterone does increase bone accrual rates in adolescents with AN to approximate that in normal-weight controls, leading to a maintenance of bone density Z-scores. A recent study has shown that risedronate increases bone density at the spine and hip in adult women with AN. However, bisphosphonates should be used with great caution in women of reproductive age given their long half-life and potential for teratogenicity, and should be considered only in patients with low bone density and clinically significant fractures when non-pharmacological therapies for weight gain are ineffective. Further studies are necessary to determine the best therapeutic strategies for low bone density in AN. PMID:24898127

  7. Sex differences in bone marrow density measured by quantitative ultrasonometry: For 20 year old college student

    International Nuclear Information System (INIS)

    Lee, Won Jeong

    2017-01-01

    The purpose of this study is to compare the bone marrow density measured by quantitative ultrasonometry (QUS) between men and women. Questionnaires for general characteristics were obtained from 104 participants, and then their both calcaneus was measured by using QUS. Sex differences for bone marrow density (BMD) were analyzed by an Independent t-test using the SPSS 19.0 program. Of 104 participants, women and men were 69(66.3%) and 35(33.7%), respectively. T-value of left calcaneus was high significantly in women than that in men(0.443 vs. 0.031, p=0.161) as well as that of right calcaneus(0.555 vs. 0.049, p=0.093). T-value of right calcaneus was high than that of left calcaneus in women and men (not significant, p>0.05). T-value of both calcaneus was increasing with physical activity. T-value of calcaneus was no statistically significant with age and body mass index. The BMD of women is high significantly more than that of men, and BMD is relation with physical activity

  8. Sex differences in bone marrow density measured by quantitative ultrasonometry: For 20 year old college student

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jeong [Dept. of Radiological Technology, Daejeon Health Institute of Technology, Daejeon (Korea, Republic of)

    2017-09-15

    The purpose of this study is to compare the bone marrow density measured by quantitative ultrasonometry (QUS) between men and women. Questionnaires for general characteristics were obtained from 104 participants, and then their both calcaneus was measured by using QUS. Sex differences for bone marrow density (BMD) were analyzed by an Independent t-test using the SPSS 19.0 program. Of 104 participants, women and men were 69(66.3%) and 35(33.7%), respectively. T-value of left calcaneus was high significantly in women than that in men(0.443 vs. 0.031, p=0.161) as well as that of right calcaneus(0.555 vs. 0.049, p=0.093). T-value of right calcaneus was high than that of left calcaneus in women and men (not significant, p>0.05). T-value of both calcaneus was increasing with physical activity. T-value of calcaneus was no statistically significant with age and body mass index. The BMD of women is high significantly more than that of men, and BMD is relation with physical activity.

  9. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  10. Evaluation of cortical bone mass, thickness and density by z-scores in osteopenic conditions and in relation to menopause and estrogen treatment

    International Nuclear Information System (INIS)

    Meema, S.; Meema, H.E.

    1982-01-01

    Z-scores express, differences from normals in standard deviation units, and are particularly useful for comparison of changes where normal values are age- and sex-dependent. We determined z-scores for bone mineral mass, cortical thickness, and bone mineral density in the radius in various conditions and diseases in both sexes. In the males, z-scores were calculated for age, but in the females z-scores for menopausal status (years postmenopausal exclusive of years on estrogen treatment) were found to be more appropriate. With few exceptions, changes in a disease were of a similar order in both sexes. For bone minerals mass few mean z-scores were significantly increased, but diseases with significantly decreased mean z-scores were numerous. The usefulness of z-scores in diagnosis and study of metabolic bone disease is discussed. (orig.)

  11. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency?

    DEFF Research Database (Denmark)

    Klefter, Oliver; Feldt-Rasmussen, Ulla

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  12. Dairy products, yogurts, and bone health.

    Science.gov (United States)

    Rizzoli, René

    2014-05-01

    Fracture risk is determined by bone mass, geometry, and microstructure, which result from peak bone mass (the amount attained at the end of pubertal growth) and from the amount of bone lost subsequently. Nutritional intakes are an important environmental factor that influence both bone mass accumulation during childhood and adolescence and bone loss that occurs in later life. Bone growth is influenced by dietary intake, particularly of calcium and protein. Adequate dietary calcium and protein are essential to achieve optimal peak bone mass during skeletal growth and to prevent bone loss in the elderly. Dairy products are rich in nutrients that are essential for good bone health, including calcium, protein, vitamin D, potassium, phosphorus, and other micronutrients and macronutrients. Studies supporting the beneficial effects of milk or dairy products on bone health show a significant inverse association between dairy food intake and bone turnover markers and a positive association with bone mineral content. Fortified dairy products induce more favorable changes in biochemical indexes of bone metabolism than does calcium supplementation alone. The associations between the consumption of dairy products and the risk of hip fracture are less well established, although yogurt intake shows a weakly positive protective trend for hip fracture. By consuming 3 servings of dairy products per day, the recommended daily intakes of nutrients essential for good bone health may be readily achieved. Dairy products could therefore improve bone health and reduce the risk of fractures in later life.

  13. Growth hormone and bone health.

    Science.gov (United States)

    Bex, Marie; Bouillon, Roger

    2003-01-01

    Growth hormone (GH) and insulin-like growth factor-I have major effects on growth plate chondrocytes and all bone cells. Untreated childhood-onset GH deficiency (GHD) markedly impairs linear growth as well as three-dimensional bone size. Adult peak bone mass is therefore about 50% that of adults with normal height. This is mainly an effect on bone volume, whereas true bone mineral density (BMD; g/cm(3)) is virtually normal, as demonstrated in a large cohort of untreated Russian adults with childhood-onset GHD. The prevalence of fractures in these untreated childhood-onset GHD adults was, however, markedly and significantly increased in comparison with normal Russian adults. This clearly indicates that bone mass and bone size matter more than true bone density. Adequate treatment with GH can largely correct bone size and in several studies also bone mass, but it usually requires more than 5 years of continuous treatment. Adult-onset GHD decreases bone turnover and results in a mild deficit, generally between -0.5 and -1.0 z-score, in bone mineral content and BMD of the lumbar spine, radius and femoral neck. Cross-sectional surveys and the KIMS data suggest an increased incidence of fractures. GH replacement therapy increases bone turnover. The three controlled studies with follow-up periods of 18 and 24 months demonstrated a modest increase in BMD of the lumbar spine and femoral neck in male adults with adult-onset GHD, whereas no significant changes in BMD were observed in women. GHD, whether childhood- or adult-onset, impairs bone mass and strength. Appropriate substitution therapy can largely correct these deficiencies if given over a prolonged period. GH therapy for other bone disorders not associated with primary GHD needs further study but may well be beneficial because of its positive effects on the bone remodelling cycle. Copyright 2003 S. Karger AG, Basel

  14. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  15. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie

    2012-02-01

    Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia

  16. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry

    International Nuclear Information System (INIS)

    Hirata, Takafumi; Tanoshima, Mina; Suga, Akinobu; Tanaka, Yu-ki; Nagata, Yuichi; Shinohara, Atsuko; Chiba, Momoko

    2008-01-01

    The biological processing of Ca produces significant stable isotope fractionation. The level of isotopic fractionation can provide key information about the variation in dietary consumption or Ca metabolism. To investigate this, we measured the 43 Ca/ 42 Ca and 44 Ca/ 42 Ca ratios for bone and blood plasma samples collected from mice of various ages using multiple collector-ICP-mass spectrometry (MC-ICP-MS). The 44 Ca/ 42 Ca ratio in bones was significantly (0.44 - 0.84 per mille) lower than the corresponding ratios in the diet, suggesting that Ca was isotopically fractionated during Ca metabolism for bone formation. The resulting 44 Ca/ 42 Ca ratios for blood plasma showed almost identical, or slightly higher, values (0.03 - 0.2 per mille) than found in a corresponding diet. This indicates that a significant amount of Ca in the blood plasma was from dietary sources. Unlike that discovered for Fe, there were not significant differences in the measured 44 Ca/ 42 Ca ratios between female and male specimens (for either bone or blood plasma samples). Similarity, the 44 Ca/ 42 Ca ratios suggests that there were no significant differences in Ca dietary consumption or Ca metabolism between female and male specimens. In contrast, the 44 Ca/ 42 Ca ratios of blood plasma from mother mice during the lactation period were significantly higher than those for all other adult specimens. This suggests that Ca supplied to infants through lactation was isotopically lighter, and the preferential supply of isotropically lighter Ca resulted in isotopically heavier Ca in blood plasma of mother mice during the lactation period. The data obtained here clearly demonstrate that the Ca isotopic ratio has a potential to become a new tool for evaluating changes in dietary consumption, or Ca metabolism of animals. (author)

  17. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    Science.gov (United States)

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  18. Bone densitometry in normal women of reproductive age: Correlation with reference values and anthropometric variables

    International Nuclear Information System (INIS)

    Lobo, G.; Palma, T.; Ladron de Guevara, D.

    2002-01-01

    Bone mass density measurements using X rays is considered to be the non-invasive reference method to measure bone mineral density. Even though the technology has reached a high level of development, precision and reproducibility must be optimised to assure that the observed variations are due solely to the variations in bone mineral content, and not to other associated variables, either technical or biological. The main factors affecting bone density measurements are those that depend on the technique used and those which depend on characteristics of the individuals. The variability associated with the technique can be minimised by an adequate standardisation and quality control. Among those characteristics of the individuals, which have been mentioned as a source of variability, the most important are related to the anthropomorphic characteristics such as size and depth of osseous structures, and thickness and characteristics of soft tissues. These factors may be especially important because the interpretation of bone mass density measurements depends on values obtained for reference normal populations, which are incorporated into the bone mass densitometers as reference value databases. Usually the anthropomorphic characteristics of this reference population are unknown and can be different from those of the local population, independently of genetic or ethnic factors. This situation leads to error both in the definition of basic concepts such as osteopenia and osteoporosis, and in the interpretation of individual results for population studies. The purpose of this study is to correlate bone density measurements of normal Chilean women with reference value databases and with parameters, which depend on body size

  19. Structure model index does not measure rods and plates in trabecular bone

    Directory of Open Access Journals (Sweden)

    Phil L Salmon

    2015-10-01

    Full Text Available Structure model index (SMI is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4, to cylindrical (SMI = 3 to planar (SMI = 0. The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI+ and negative (SMI- components, bone volume fraction (BV/TV, the fraction of the surface that is concave (CF, and mean ellipsoid factor (EF in trabecular bone using 38 X-ray microtomography (XMT images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile. We simulated bone resorption by eroding an image of elephant trabeculae and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely less than 20%, of the trabecular surface is concave (CF 0.155 – 0.700. SMI is unavoidably influenced by aberrations from SMI-, which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from SMI's close and artefactual relationship with BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabeculae. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with

  20. Technology on precision measurement of mass

    International Nuclear Information System (INIS)

    2005-10-01

    This book mentions mass and scales about technology for precision measurement, which deal with how to measure mass with scale. So it describes the basic things of mass and scales. It includes translated book of international standard OIML with demand of measurement and technology and form for test report and international original standard OIML with metrological and technical requirements and test report format.

  1. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, Jens L; Matsumoto, Keitaro

    2008-01-01

    .0 +/- 1.4%); nutrient group: 0.953 +/- 0.051 to 0.978 +/- 0.043 g/mm(3) (3.8 +/- 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report...... that nutrient supplementation results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  2. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly.

    Science.gov (United States)

    Malgo, F; Hamdy, N A T; Rabelink, T J; Kroon, H M; Claessen, K M J A; Pereira, A M; Biermasz, N R; Appelman-Dijkstra, N M

    2017-03-01

    Acromegaly is a rare disease caused by excess growth hormone (GH) production by the pituitary adenoma. The skeletal complications of GH and IGF-1 excess include increased bone turnover, increased cortical bone mass and deteriorated microarchitecture of trabecular bone, associated with a high risk of vertebral fractures in the presence of relatively normal bone mineral density (BMD). We aimed to evaluate tissue-level properties of bone using impact microindentation (IMI) in well-controlled patients with acromegaly aged ≥18 years compared to 44 controls from the outpatient clinic of the Centre for Bone Quality. In this cross-sectional study, bone material strength index (BMSi) was measured in 48 acromegaly patients and 44 controls with impact microindentation using the osteoprobe. Mean age of acromegaly patients (54% male) was 60.2 years (range 37.9-76.5), and 60.5 years (range 39.8-78.6) in controls (50% male). Patients with acromegaly and control patients had comparable BMI (28.2 kg/m 2  ± 4.7 vs 26.6 kg/m 2  ± 4.3, P = 0.087) and comparable BMD at the lumbar spine (1.04 g/cm 2  ± 0.21 vs 1.03 g/cm 2  ± 0.13, P = 0.850) and at the femoral neck (0.84 g/cm 2  ± 0.16 vs 0.80 g/cm 2  ± 0.09, P = 0.246). BMSi was significantly lower in acromegaly patients than that in controls (79.4 ± 0.7 vs 83.2 ± 0.7; P acromegaly after reversal of long-term exposure to pathologically high GH and IGF-1 levels. Our findings also suggest that methods other than DXA should be considered to evaluate bone fragility in patients with acromegaly. © 2017 European Society of Endocrinology.

  3. Modeling the effect of levothyroxine therapy on bone mass density in postmenopausal women: a different approach leads to new inference

    Directory of Open Access Journals (Sweden)

    Tavangar Seyed

    2007-06-01

    Full Text Available Abstract Background The diagnosis, treatment and prevention of osteoporosis is a national health emergency. Osteoporosis quietly progresses without symptoms until late stage complications occur. Older patients are more commonly at risk of fractures due to osteoporosis. The fracture risk increases when suppressive doses of levothyroxine are administered especially in postmenopausal women. The question is; "When should bone mass density be tested in postmenopausal women after the initiation of suppressive levothyroxine therapy?". Standard guidelines for the prevention of osteoporosis suggest that follow-up be done in 1 to 2 years. We were interested in predicting the level of bone mass density in postmenopausal women after the initiation of suppressive levothyroxine therapy with a novel approach. Methods The study used data from the literature on the influence of exogenous thyroid hormones on bone mass density. Four cubic polynomial equations were obtained by curve fitting for Ward's triangle, trochanter, spine and femoral neck. The behaviors of the models were investigated by statistical and mathematical analyses. Results There are four points of inflexion on the graphs of the first derivatives of the equations with respect to time at about 6, 5, 7 and 5 months. In other words, there is a maximum speed of bone loss around the 6th month after the start of suppressive L-thyroxine therapy in post-menopausal women. Conclusion It seems reasonable to check bone mass density at the 6th month of therapy. More research is needed to explain the cause and to confirm the clinical application of this phenomenon for osteoporosis, but such an approach can be used as a guide to future experimentation. The investigation of change over time may lead to more sophisticated decision making in a wide variety of clinical problems.

  4. Mechanical response tissue analyzer for estimating bone strength

    Science.gov (United States)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  5. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  6. Bone Mass in Young Adulthood Following Gonadotropin-Releasing Hormone Analog Treatment and Cross-Sex Hormone Treatment in Adolescents With Gender Dysphoria

    NARCIS (Netherlands)

    Klink, D.T.; Caris, M.G.; Heijboer, A.C.; van Trotsenburg, M.; Rotteveel, J.

    2015-01-01

    Context: Sex steroids are important for bone mass accrual. Adolescents with gender dysphoria (GD) treated with gonadotropin-releasing hormone analog (GnRHa) therapy are temporarily sex-steroid deprived until the addition of cross-sex hormones (CSH). The effect of this treatment on bone mineral

  7. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    Science.gov (United States)

    Stein, Koen W H; Werner, Jan

    2013-01-01

    Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  8. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Koen W H Stein

    Full Text Available Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  9. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil.

    Science.gov (United States)

    Bachagol, Deepa; Joseph, Gilbert Stanley; Ellur, Govindraj; Patel, Kalpana; Aruna, Pamisetty; Mittal, Monika; China, Shyamsundar Pal; Singh, Ravendra Pratap; Sharan, Kunal

    2018-02-01

    Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Bone health in children and adolescents with perinatal HIV infection

    Science.gov (United States)

    Puthanakit, Thanyawee; Siberry, George K

    2013-01-01

    The long-term impact on bone health of lifelong HIV infection and prolonged ART in growing and developing children is not yet known. Measures of bone health in youth must be interpreted in the context of expected developmental and physiologic changes in bone mass, size, density and strength that occur from fetal through adult life. Low bone mineral density (BMD) appears to be common in perinatally HIV-infected youth, especially outside of high-income settings, but data are limited and interpretation complicated by the need for better pediatric norms. The potential negative effects of tenofovir on BMD and bone mass accrual are of particular concern as this drug may be used more widely in younger children. Emphasizing good nutrition, calcium and vitamin D sufficiency, weight-bearing exercise and avoidance of alcohol and smoking are effective and available approaches to maintain and improve bone health in all settings. More data are needed to inform therapies and monitoring for HIV-infected youth with proven bone fragility. While very limited data suggest lack of marked increase in fracture risk for youth with perinatal HIV infection, the looming concern for these children is that they may fail to attain their expected peak bone mass in early adulthood which could increase their risk for fractures and osteoporosis later in adulthood. PMID:23782476

  11. Association between low lean mass and low bone mineral density in 653 women with hip fracture: does the definition of low lean mass matter?

    Science.gov (United States)

    Di Monaco, Marco; Castiglioni, Carlotta; Di Monaco, Roberto; Tappero, Rosa

    2017-12-01

    Loss of both muscle and bone mass results in fragility fractures with increased risk of disability, poor quality of life, and death. Our aim was to assess the association between low appendicular lean mass (aLM) defined according to different criteria and low bone mineral density (BMD) in hip-fracture women. Six hundred fifty-three women admitted to our rehabilitation hospital underwent dual energy X-ray absorptiometry 19.1 ± 4.1 (mean ± SD) days after hip-fracture occurrence. Low aLM was identified according to either Baumgartner's definition (aLM/height 2 less than two standard deviations below the mean of the young reference group) or FNIH criteria: aLM definition, the association between low aLM/height 2 and low BMD was significant: χ 2 (1, n = 653) = 8.52 (p = 0.004), but it was erased by adjustments for age and fat mass. Using the FNIH definition the association between low aLM and low BMD was significant: χ 2 (1, n = 653) = 42.5 (p definition based on aLM/BMI ratio the association between low aLM/BMI ratio and low BMD was nonsignificant: χ 2 (1, n = 653) = 0.003 (p = 0.957). The association between low aLM and low BMD in women with hip fracture dramatically depends on the adopted definition of low aLM. FNIH threshold for aLM (<15.02 kg) emerges as a useful tool to capture women with damage of the muscle-bone unit.

  12. Dual-photon absorptiometry: A new method of determining bone mineral content. Pt. 1

    International Nuclear Information System (INIS)

    Buttermann, G.; Eiber, J.; Hennig, J.; Pabst, H.W.

    1988-01-01

    Cortical (neck of femur) and trabecular (L 2-4) bone mass has been determined repeatedly with DPA using 153 Gd (NOVO Lab 22 a) in 545 females and 112 males with no evidence of bone diseases. Measured 'normal' (age- and sex-related average) values for bone mineral content (BMC) differed significantly (p [de

  13. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  14. Handbook of mass measurement

    CERN Document Server

    Jones, Frank E

    2002-01-01

    "How much does it weigh?" seems a simple question. To scientists and engineers, however, the answer is far from simple, and determining the answer demands consideration of an almost overwhelming number of factors.With an intriguing blend of history, fundamentals, and technical details, the Handbook of Mass Measurement sets forth the details of achieving the highest precision in mass measurements. It covers the whole field, from the development, calibration, and maintenance of mass standards to detailed accounts of weighing designs, balances, and uncertainty. It addresses the entire measurement process and provides in-depth examinations of the various factors that introduce error.Much of the material is the authors'' own work and some of it is published here for the first time. Jones and Schoonover are both highly regarded veterans of the U.S. National Institute of Standards and Technology. With this handbook, they have provided a service and resource vital to anyone involved not only in the determination of m...

  15. Changes in bone mass during low dose corticosteroid treatment in patients with polymyalgia rheumatica

    DEFF Research Database (Denmark)

    Krogsgaard, M R; Thamsborg, G; Lund, B

    1996-01-01

    or deflazacort. Bone mineral content (BMC) was measured in the lumbar spine and in the distal forearm before treatment and three, six, and 12 months after treatment. RESULTS: At three months the decrease in lumbar BMC and bone mineral density (BMD) was significantly greater in the deflazacort group than...

  16. SHP1 Regulates Bone Mass by Directing Mesenchymal Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Menghui Jiang

    2016-07-01

    Full Text Available Osteoblasts and adipocytes are derived from a common precursor, mesenchymal stem cells (MSCs. Alterations in the normal fate of differentiating MSCs are involved in the development of obesity and osteoporosis. Here, we report that viable motheaten (mev mice, which are deficient in the SH2-domain-containing phosphatase-1 (SHP1, develop osteoporosis spontaneously. Consistently, MSCs from mev/mev mice exhibit significantly reduced osteogenic potential and greatly increased adipogenic potential. When MSCs were transplanted into nude mice, SHP1-deficient MSCs resulted in diminished bone formation compared with wild-type MSCs. SHP1 was found to bind to GSK3β and suppress its kinase activity by dephosphorylating pY216, thus resulting in β-catenin stabilization. Mice, in which SHP1 was deleted in MSCs using SHP1fl/flDermo1-cre, displayed significantly decreased bone mass and increased adipose tissue. Taken together, these results suggest a possible role for SHP1 in controlling tissue homeostasis through modulation of MSC differentiation via Wnt signaling regulation.

  17. Comparative analysis of bone mineral contents with dual-energy quantitative computed tomography

    International Nuclear Information System (INIS)

    Choi, T. J.; Yoon, S. M.; Kim, O. B.; Lee, S. M.; Suh, S. J.

    1997-01-01

    The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent K 2 HPO 4 standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC). The attenuation coefficient of tissues highly depends on the radiation energy, density and effective atomic number of composition. The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone, fat and soft tissue equivalent solution in two photon spectra. In this experiments, the BMC of DEQCT with 80 and 120kV p X rays was compared to ash weight of animal trabecular bone. We obtained the mass attenuation coefficient of 0.2409, 0.5608 and 0.2206 in 80kV p , and 0.2046, 0.3273 and 0.1971 cm 2 /g in 120kV p X-ray spectra for water, bone and fat equivalent materials, respectively. The BMC with DEQCT was accomplished with empirical constants K 1 =0.3232, K 2 =0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone. The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r=0.998 and r=0.996, respectively. The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone. (author)

  18. Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women.

    Science.gov (United States)

    Moon, Seong-Su; Lee, Young-Sil; Kim, Sung Woo

    2012-10-01

    Osteoporosis is a disease associated with insulin resistant states such as central obesity, diabetes, and metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD) is also increased in such conditions. However, little is known about whether osteoporosis and nonalcoholic fatty liver disease are etiologically related to each other or not. We examined whether bone mineral density (BMD) is associated with NAFLD in pre- and postmenopausal women. Four hundred eighty-one female subjects (216 premenopausal and 265 postmenopausal) were enrolled. Lumbar BMD was measured using dual-energy X-ray absorptiometry. Liver ultrasonography was done to check the severity of fatty liver. We excluded subjects with a secondary cause of liver disease. Blood pressure, lipid profile, fasting plasma glucose, alanine aminotransferase (ALT), aspartate aminotransferase, and body mass index were measured in every subject. Mean lumbar BMD was lower in subjects with NAFLD than those without NAFLD in postmenopausal women (0.98 ± 0.01 vs. 1.01 ± 0.02 g/cm², P = 0.046). Multiple correlation analysis revealed a significant association between mean lumbar BMD and NAFLD in postmenopausal subjects after adjusting for age, body mass index, ALT, smoking status, and alcohol consumption (β coefficient -0.066, 95% CI -0.105 to -0.027, P = 0.001). Even after adjusting the presence of metabolic syndrome, the significance was maintained (β coefficient -0.043, 95% CI -0.082 to -0.004, P = 0.031). Lumbar BMD is related with NAFLD in postmenopausal females. We suggest that postmenopausal women with NAFLD may have a higher risk of osteoporosis than those without.

  19. The effect of hemiplegia on bone mass and soft tissue body composition

    International Nuclear Information System (INIS)

    Iversen, E.; Hassager, C.; Christiansen, C.

    1989-01-01

    The content of bone mineral (BMC), lean tissue, and fat tissue were measured by single and dual photon absorptiometry in both the paretic and the nonparetic limbs of 15 patients, hemiplegic due to cerebrovascular accident 23-38 weeks earlier. Compared with the non-paretic arm, the paretic arm had approximately 10% lower (P < 0.01) BMC. This difference was largest at the measuring site with the highest ratio of trabecular to compact bone. The paretic leg had a 4% (P < 0.001) lower BMC than the non-paretic leg. For both the arms and the legs, the lean content was lower (P < 0.05) and the fat content higher (P < 0.01) in the paretic than in the non-paretic. This was relatively more pronounced in the arms than in the legs. We conclude that partial immobilization, owing to parasis after a cerebrovascular accident, results in characteristic changes in the affected limbs, with a marked decrease in the content of bone and lean tissue and a pronounced increase in fatty tissue. (author)

  20. Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Puolakkainen, Tero; Ma, Hongqian; Kainulainen, Heikki; Pasternack, Arja; Rantalainen, Timo; Ritvos, Olli; Heikinheimo, Kristiina; Hulmi, Juha J; Kiviranta, Riku

    2017-01-19

    Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral μCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.

  1. Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women

    DEFF Research Database (Denmark)

    Holm, Lars; Olesen, J.L.; Matsumoto, K.

    2008-01-01

    .4%); nutrient group: 0.953 ± 0.051 to 0.978 ± 0.043 g/mm3 (3.8 ± 3.4%)] when adjusted for age, body mass index, and BMD at inclusion. Bone formation displayed an interaction (P increased osteocalcin at 24 wk in the nutrient group. In conclusion, we report that nutrient supplementation...... results in superior improvements in muscle mass, muscle strength, femoral neck BMD, and bone formation during 24 wk of strength training. The observed differences following such a short intervention emphasize the significance of postexercise nutrient supply on musculoskeletal maintenance.......We evaluated the response of various muscle and bone adaptation parameters with 24 wk of strength training in healthy, early postmenopausal women when a nutrient supplement (protein, carbohydrate, calcium, and vitamin D) or a placebo supplement (a minimum of energy) was ingested immediately...

  2. Evaluation of temporal bone pneumatization on high resolution CT (HRCT) measurements of the temporal bone in normal and otitis media group and their correlation to measurements of internal auditory meatus, vestibular or cochlear aqueduct

    International Nuclear Information System (INIS)

    Nakamura, Miyako

    1988-01-01

    High resolution CT axial scans were made at the three levels of the temoral bone 91 cases. These cases consisted of 109 sides of normal pneumatization (NR group) and 73 of poor pneumatization resulted by chronic otitis (OM group). NR group included sensorineural hearing loss cases and/or sudden deafness on the side. Three levels of continuous slicing were chosen at the internal auditory meatus, the vestibular and the cochlear aqueduct, respectively. In each slice two sagittal and two horizontal measurements were done on the outer contour of the temporal bone. At the proper level, diameter as well as length of the internal acoustic meatus, the vestibular or the cochlear aqueduct were measured. Measurements of the temporal bone showed statistically significant difference between NR and OM groups. Correlation of both diameter and length of the internal auditory meatus to the temporal bone measurements were statistically significant. Neither of measurements on the vestibular or the cochlear aqueduct showed any significant correlation to that of the temporal bone. (author)

  3. Identification of a dietary pattern prospectively associated with bone mass in Australian young adults.

    Science.gov (United States)

    van den Hooven, Edith H; Ambrosini, Gina L; Huang, Rae-Chi; Mountain, Jenny; Straker, Leon; Walsh, John P; Zhu, Kun; Oddy, Wendy H

    2015-11-01

    Relatively little is known about the relations between dietary patterns and bone health in adolescence, which is a period of substantial bone mass accrual. We derived dietary patterns that were hypothesized to be related to bone health on the basis of their protein, calcium, and potassium contents and investigated their prospective associations with bone mineral density (BMD), bone area, and bone mineral content (BMC) in a cohort of young adults. The study included 1024 young adults born to mothers who were participating in the Western Australian Pregnancy Cohort (Raine) Study. Dietary information was obtained from food-frequency questionnaires at 14 and 17 y of age. Dietary patterns were characterized according to protein, calcium, and potassium intakes with the use of reduced-rank regression. BMD, bone area, and BMC were estimated with the use of a total body dual-energy X-ray absorptiometry scan at 20 y of age. We identified 2 major dietary patterns. The first pattern was positively correlated with intakes of protein, calcium, and potassium and had high factor loadings for low-fat dairy products, whole grains, and vegetables. The second pattern was positively correlated with protein intake but negatively correlated with intakes of calcium and potassium and had high factor loadings for meat, poultry, fish, and eggs. After adjustment for anthropometric, sociodemographic, and lifestyle factors, a higher z score for the first pattern at 14 y of age was positively associated with BMD and BMC at 20 y of age [differences: 8.6 mg/cm(2) (95% CI: 3.0, 14.1 mg/cm(2)) and 21.9 g (95% CI: 6.5, 37.3 g), respectively, per SD increase in z score]. The z score for this same pattern at 17 y of age was not associated with bone outcomes at 20 y of age. The second pattern at 14 or 17 y of age was not associated with BMD, BMC, or bone area. A dietary pattern characterized by high intakes of protein, calcium, and potassium in midadolescence was associated with higher BMD and BMC at 20

  4. Cross calibration of QDR-2000 and QDR-1000 dual-energy X-ray densitometers for bone mineral and soft-tissue measurements

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Gram, J; Hansen, T. B.

    1995-01-01

    ) and fan beam (FB) modes (n = 40-62) as a quality control measure. A total of 83 subjects (79 females and four males) with a wide range of bone mineral densities (BMD) were studied. There was a linear relationship between results with the QDR-1000W and QDR-2000 in SB mode, and between SB and FB mode...... device. Soft-tissue composition with FB (enhanced analysis protocol) on the QDR-2000 differed greatly from that obtained using SB (standard protocol). Lean tissue mass was 4 kg lower and fat mass 4 kg higher in FB mode.(ABSTRACT TRUNCATED AT 250 WORDS)...

  5. Measurement of humerus and radius bone mineral content in the term and preterm infant

    International Nuclear Information System (INIS)

    Vyhmeister, N.R.; Linkhart, T.A.

    1988-01-01

    We compared two anatomic sites for single-photon absorptiometric measurement of bone mineral content (BMC) in term and preterm infants. The distal one third of the radius and the midportion of the humerus were evaluated for measurements of BMC with an unmodified, commercially available bone densitometer. We assessed reproducibility of BMC and bone width (BW) measurements and defined normal at-birth ranges of BMC, BW, and BMC/BW ratio for infants with gestational ages of 24 to 42 weeks. Humerus BMC correlated with gestational age, birth weight, and BW of patients and did not differ from humerus BMC values determined over the same range of gestational ages at another center. Representative serial measurements of two very low birth weight (VLBW) infants are presented to demonstrate the feasibility of using humerus BMC in longitudinal studies to assess changes in bone mineralization. We conclude that bone densitometer measurements of mid-humerus BMC can be successfully performed and are preferable to similar measurements of the radius for VLBW infants. Normal humerus BMC values were defined for use in diagnosis and evaluation of the efficacy of treatment in VLBW infants who are at high risk of developing osteopenia of prematurity

  6. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    International Nuclear Information System (INIS)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-01-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bones most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references

  7. Hormone replacement therapy dissociates fat mass and bone mass, and tends to reduce weight gain in early postmenopausal women

    DEFF Research Database (Denmark)

    Jensen, L B; Vestergaard, P; Hermann, A P

    2003-01-01

    in women randomized to HRT (1.94 +/- 4.86 kg) than in women randomized to no HRT (2.57 +/- 4.63, p = 0.046). A similar pattern was seen in the group receiving HRT or not by their own choice. The smaller weight gain in women on HRT was almost entirely caused by a lesser gain in fat. The main determinant...... of the weight gain was a decline in physical fitness. Women opting for HRT had a significantly lower body weight at inclusion than the other participants, but the results in the self-selected part of the study followed the pattern found in the randomized part. The change in fat mass was the strongest predictor...... of bone changes in untreated women, whereas the change in lean body mass was the strongest predictor when HRT was given. Body weight increases after the menopause. The gain in weight is related to a decrease in working capacity. HRT is associated with a smaller increase in fat mass after menopause. Fat...

  8. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years.

    Science.gov (United States)

    Kindler, Joseph M; Pollock, Norman K; Laing, Emma M; Oshri, Assaf; Jenkins, Nathan T; Isales, Carlos M; Hamrick, Mark W; Ding, Ke-Hong; Hausman, Dorothy B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2017-07-01

    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  9. Bone metabolic activity in hyperostosis cranialis interna measured with {sup 18}F-fluoride PET

    Energy Technology Data Exchange (ETDEWEB)

    Waterval, Jerome J.; Dongen, Thijs M.A. van; Stokroos, Robert J.; Manni, Johannes J. [Maastricht University Medical Center, Department of Otorhinolaryngology and Head and Neck Surgery, Maastricht (Netherlands); Teule, Jaap G.J.; Kemerink, Gerrit J.; Brans, Boudewijn [Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Nieman, Fred H.M. [Maastricht University Medical Center, Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht (Netherlands)

    2011-05-15

    {sup 18}F-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent {sup 18}F-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average {sup 18}F-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. {sup 18}F-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. {sup 18}F-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that {sup 18}F-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course. (orig.)

  10. In vivo measurements of bone lead content in residents of southern Ontario

    International Nuclear Information System (INIS)

    Gamblin, C.; Gordon, C.L.; Webber, C.E.; Muir, D.C.F.; Chettle, D.R.

    1994-01-01

    In 111 subjects not occupationally exposed, bone lead content increased steadily with age in both men and women. Higher than expected bone lead levels were observed in two-thirds of 27 subjects working in occupations with potential for lead exposure. Five of 8 patients who displayed symptoms which might have been due to lead poisoning had increased bone lead levels. In vivo bone lead measurements reflect the cumulative extent of exposure to environmental and occupational sources of lead and allow the assessment of abnormal exposures. (Author)

  11. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    Science.gov (United States)

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  12. Bone mineral density and trabecular bone tissue quality in obese men

    Directory of Open Access Journals (Sweden)

    V.V. Povoroznyuk

    2017-02-01

    Full Text Available Obesity and osteoporosis are the two metabolic dise­ases with increased prevalence over last decades and a strong impact on the global morbidity and mortality have gained a status of major health threats worldwide. There is evidence that the higher body mass index (BMI values are associated with greater bone mineral density (BMD resulting in a site-specific protective effect for fragility fractures. On the other hand, higher BMI values increases incidence of falls and is associated with worse fractures consolidation. However, trabecular bone score (TBS indirectly explores bone quali­ty, independently of BMD. The aim of the study was to determine the connection between the BMD and TBS parameters in Ukrainian men suffering from obesity. Methods. We examined 396 men aged 40–89 years, by the BMI all the subjects were divided into 2 groups: Group A — with obesity and BMI ≥ 30 kg/m2 (n = 129 and Group B — without obesity and BMI < 30 kg/m2 (n = 267. The BMD of total body, lumbar spine at the site L1–L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA. The TBS of L1–L4 was assessed by means of TBS iNsight (Med-Imaps, Pessac, France. Results. In general, obese men had a significantly higher BMD of lumbar spine, femoral neck, total body and ultradistal forearm (p < 0.001 in comparison with men without obesity. The TBS of L1–L4 was significantly lower in obese men compared to non-obese men (p < 0.001. The significant positive correlation between the fat mass and the BMD at different sites was observed. The correlation between the fat mass and TBS of L1–L4 was also significant, but negative. Conclusions. Obesity negatively affects the quality of trabecular bone, while bone mineral density was significantly higher.

  13. The usefulness of measurement of whole body count in assessing bone marrow metastasis in cancer patients with increased periarticular bone uptake on follow-up bone scan: a comparison with bone marrow scan

    International Nuclear Information System (INIS)

    Jin, Seong Chan; Choi, Yun Young; Cho, Suk Shin

    2003-01-01

    Increased periarticular uptake could be associated with peripheral bone marrow expansion in cancer patients with axial bone marrow metastasis. We compared bone scan and bone marrow scan to investigate whether the increased whole body count in patients with increased periarticular uptake on bone scan is useful in the diagnosis of axial marrow metastasis, and evaluate the role of additional bone marrow scan in these cases. Twelve patients with malignant diseases who showed increased periarticular uptake on bone scan were included. Whole body count was measured on bone scan and it is considered to be increased when the count is more than twice of other patients. Bone marrow scan was taken within 3-7 days. Five hematologic malignancy, 3 stomach cancer, 2 breast cancer, 1 prostate cancer and 1 lung canner were included. All three patients with increased whole body count on bone scan showed axial marrow suppression and peripheral marrow expansion. Eight of 9 patients without increased whole body count showed axial marrow suppression and peripheral marrow expansion. One turned out to be blastic crisis of chronic myelogeneous leukemia, and seven showed normal axial marrow with peripheral marrow expansion in chronic anemia of malignancy. The last one without increased whole body count showed normal bone marrow scan finding. Increased whole body count on bone scan could be a clue to axial bone marrow metastasis in cancer patients with increased periarticular uptake, and bone marrow scan is a valuable method for differential diagnosis in these cases

  14. Measurement of bone mineral density using DEXA and biochemical markers of bone turnover in 5-year survivors after orthotopic liver transplantation

    International Nuclear Information System (INIS)

    Xu Hao; Eichstaedt, H.

    1998-01-01

    Purpose: To observe bone loss and bone metabolism status in 5-year survivors after orthotopic liver transplantation (OLT). Methods: Measurement of bone mineral density (BMD) of the lumbar spine (L2∼L4) and femoral neck using dual energy X-ray absorptiometry (DEXA) and analysis of biochemical markers of bone turnover, such as ostecalcin (OSC), bone alkaline phosphatase (BAP), carboxy-terminal propeptide of type I procollagen (PICP), carboxy-terminal cross-linked telo-peptide of type I collagen (ICTP), PTH and 25-hydroxy-vitamin D (25-OH-D). These markers were measured in 31 5-year survivors after OLT, 34 patients with chronic liver failure (CLF) before OLT and 38 normal subjects. Results: Age-matched Z-score of BMD (Z-score) at L2∼L4 was significantly higher in 5-year survivors than that in patients with CLF before OLT. Incidence of osteoporosis (Z-score<-2.0) in 5-year survivors was significantly lower than that in patients with CLF before OLT. Although serum concentrations of bone formation and bone resorption markers in 5-year survivors were high than those of normal subjects, as compared to patients with CLF before OLT, serum OSC was increased, serum ICTP and BAP were reduced, serum PICP was unchanged. Serum PTH and 25-OH-D level was normal. Conclusions: In 5-year survivors following liver transplantation there was a reduction in bone loss and incidence of osteoporosis and an improvement of bone metabolism

  15. Top quark mass measurement in dilepton channel

    International Nuclear Information System (INIS)

    Lysak, R.

    2007-01-01

    In this work, we measured the top quark mass in tt'-' events produced in pp'-' interactions at the center-of-mass energy 1.96 TeV using CDF detector. We used dilepton in tt'-' events where both W bosons from top quarks are decaying into leptons. The data sample corresponds to 340 pb -1 . We found there 33 tt'-' candidates while expecting 10.5 ± 1.9 background events. In the measurement, we reconstruct one, representative mass for each event using the assumption about longitudinal momentum of in tt'-' system, in order to be able to kinematically solve the under-constrained system. The mass distributions (templates) are created for simulated signal and background events. Templates are parametrized in order to obtain smooth probability density functions. Likelihood maximization which includes these parametrized templates is then performed on reconstructed masses obtained from data sample in order to obtain final top quark mass estimate. The result of applying this procedure on data events is top quark mass estimate 169.5 +7. 7 - 7.2 (stat.) ± 4.0(syst.) GeV/c 2 for 30 out of 33 candidates, where the solution for top quark mass was found. This measurement was a part of first top quark mass measurement in dilepton channel at CDF in Run II. The top quark mass measured here is consistent with the CDF measurement in dilepton channel from Run I M top = 167.4 ± 10.3(stat.) ± 4.8(syst.) GeV/c 2 . Moreover, the combined result of four top quark mass measurements in dilepton channel from Run II (one of these four measurements is our measurement) M top = 167.9 ± 5.2(stat.) ± 3.7(syst.) GeV/c 2 significantly (by ∼ 40%) improved the precision of top quark mass determination from Run I. It should be also noted, that this combined result is consistent with measurement obtained in 'lepton+jets' channel at CDF in Run II (M top = 173.5 +3.9 -3.8 GeV/c 2 ). So, we don't have yet any indication about new physics beyond the Standard Model. My main contribution in this analysis was

  16. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  17. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Science.gov (United States)

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  18. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    Science.gov (United States)

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (Pmyostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  19. Body composition and bone mineral density measurements by using a multi-energy method

    International Nuclear Information System (INIS)

    Herve, L.

    2003-01-01

    Dual-energy X-ray absorptiometry is a major technique to evaluate bone mineral density, thus allowing diagnosis of bone decalcification ( osteoporosis). Recently, this method has proved useful to quantify body composition (fat ratio). However, these measurements suffer from artefacts which can lead to diagnosis errors in a number of cases. This work has aimed to improve both the reproducibility and the accuracy of bone mineral density and body composition measurements. To this avail, the acquisition conditions were optimised in order to ameliorate the results reproducibility and we have proposed a new method to correct inaccuracies in the determination of bone mineral density. Experimental validations yield encouraging results on both synthetic phantoms and biological samples. (author)

  20. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model.

    Science.gov (United States)

    Perosky, Joseph E; Khoury, Basma M; Jenks, Terese N; Ward, Ferrous S; Cortright, Kai; Meyer, Bethany; Barton, David K; Sinder, Benjamin P; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M

    2016-12-01

    Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of a program of short bouts of exercise on bone health in adolescents involved in different sports: the PRO-BONE study protocol.

    Science.gov (United States)

    Vlachopoulos, Dimitris; Barker, Alan R; Williams, Craig A; Knapp, Karen M; Metcalf, Brad S; Gracia-Marco, Luis

    2015-04-11

    Osteoporosis is a skeletal disease associated with high morbidity, mortality and increased economic costs. Early prevention during adolescence appears to be one of the most beneficial practices. Exercise is an effective approach for developing bone mass during puberty, but some sports may have a positive or negative impact on bone mass accrual. Plyometric jump training has been suggested as a type of exercise that can augment bone, but its effects on adolescent bone mass have not been rigorously assessed. The aims of the PRO-BONE study are to: 1) longitudinally assess bone health and its metabolism in adolescents engaged in osteogenic (football), non-osteogenic (cycling and swimming) sports and in a control group, and 2) examine the effect of a 9 month plyometric jump training programme on bone related outcomes in the sport groups. This study will recruit 105 males aged 12-14 years who have participated in sport specific training for at least 3 hours per week during the last 3 years in the following sports groups: football (n = 30), cycling (n = 30) and swimming (n = 30). An age-matched control group (n = 15) that does not engage in these sports more than 3 hours per week will also be recruited. Participants will be measured on 5 occasions: 1) at baseline; 2) after 12 months of sport specific training where each sport group will be randomly allocated into two sub-groups: intervention group (sport + plyometric jump training) and sport group (sport only); 3) exactly after the 9 months of intervention; 4) 6 months following the intervention; 5) 12 months following the intervention. Body composition (dual energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance), bone stiffness index (ultrasounds), physical activity (accelerometers), diet (24 h recall questionnaire), pubertal maturation (Tanner stage), physical fitness (cardiorespiratory and muscular), bone turnover markers and vitamin D will be measured at each visit. The PRO-BONE

  2. Physical activity, but not sedentary time, influences bone strength in late adolescence.

    Science.gov (United States)

    Tan, Vina Ps; Macdonald, Heather M; Gabel, Leigh; McKay, Heather A

    2018-03-20

    Physical activity is essential for optimal bone strength accrual, but we know little about interactions between physical activity, sedentary time, and bone outcomes in older adolescents. Physical activity (by accelerometer and self-report) positively predicted bone strength and the distal and midshaft tibia in 15-year-old boys and girls. Lean body mass mediated the relationship between physical activity and bone strength in adolescents. To examine the influence of physical activity (PA) and sedentary time on bone strength, structure, and density in older adolescents. We used peripheral quantitative computed tomography to estimate bone strength at the distal tibia (8% site; bone strength index, BSI) and tibial midshaft (50% site; polar strength strain index, SSI p ) in adolescent boys (n = 86; 15.3 ± 0.4 years) and girls (n = 106; 15.3 ± 0.4 years). Using accelerometers (GT1M, Actigraph), we measured moderate-to-vigorous PA (MVPA Accel ), vigorous PA (VPA Accel ), and sedentary time in addition to self-reported MVPA (MVPA PAQ-A ) and impact PA (ImpactPA PAQ-A ). We examined relations between PA and sedentary time and bone outcomes, adjusting for ethnicity, maturity, tibial length, and total body lean mass. At the distal tibia, MVPA Accel and VPA Accel positively predicted BSI (explained 6-7% of the variance, p accounting for lean mass. Sedentary time did not independently predict bone strength at either site. Greater tibial bone strength in active adolescents is mediated, in part, by lean mass. Despite spending most of their day in sedentary pursuits, adolescents' bone strength was not negatively influenced by sedentary time.

  3. Bone and fat connection in aging bone.

    Science.gov (United States)

    Duque, Gustavo

    2008-07-01

    The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.

  4. Imperiling urban environment through varying air pollution rein in measures and mass transit policies - a case study of Lahore

    International Nuclear Information System (INIS)

    Aziz, A.

    2015-01-01

    Gargantuan expansion of big cities has increased motor vehicular tremendously. Lahore, a primitive green city is now gripped with swelling motor vehicular air pollution. Mass public transport, a back bone of city transportation network, due to erroneous running significantly contributes toward motor vehicular air pollution. Policy initiatives of the Government to curb motor vehicular air pollution are merely focused upon reduction of air pollution at source by the use of technology and clean fuel programmes. The policies for introduction of mass transit remained imprecise which lead to rise in transportation demand and increase in surfeit emission; Half-baked policies normally stem out to get political popularity which imperils urban environment. The paper highlights inconsistent policy measures and unsound air pollution control strategies adopted in big cities of Pakistan. Furthermore it gives guidance for sustainable mass transit policy measures. (author)

  5. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    Science.gov (United States)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  6. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    International Nuclear Information System (INIS)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok

    2000-01-01

    %, 9%) were more common in COM with cholesteatoma (p-value less than 0.05). Soft tissue in Prussak's space (58%, 72%), retraction of the tympanic membrane (19%, 9%), and tympanosclerosis (8%, 10%) were not however, important findings (p-value greater than 0.05). Bone erosion or destruction was seen in COM without cholesteatoma, but expansile bone erosion or destruction with mass effect suggested COM with cholesteatoma. These findings of temporal bone CT in COM demonstrate the existence and extent of combined cholesteatoma, and are therefore valuable. (author)

  7. Differential diagnosis between chronic otitis media with and without cholesteatoma by temporal bone CT: focus on bone change and mass effect

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Cheol Kyu; Park, Dong Woo; Seong, Jin Yong; Lee, Kak Soo; Park Choong Ki; Lee, Seung Ro; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2000-01-01

    flaccida (35%, 9%) were more common in COM with cholesteatoma (p-value less than 0.05). Soft tissue in Prussak's space (58%, 72%), retraction of the tympanic membrane (19%, 9%), and tympanosclerosis (8%, 10%) were not however, important findings (p-value greater than 0.05). Bone erosion or destruction was seen in COM without cholesteatoma, but expansile bone erosion or destruction with mass effect suggested COM with cholesteatoma. These findings of temporal bone CT in COM demonstrate the existence and extent of combined cholesteatoma, and are therefore valuable. (author)

  8. Age- and sex-related changes in bone mass measured by neutron activation

    International Nuclear Information System (INIS)

    Cohn, S.H.; Aloia, J.F.; Vaswani, A.N.; Zanzi, I.; Vartsky, D.; Ellis, K.J.

    1981-01-01

    Total-body calcium (TBCa) measurements have been employed in two basic types of studies. In the first type, serial measurements made on an individual patient are used to trace the time variation in body calcium. In the second type of study, the absolute total body calcium of an individual is determined and compared to a standard or predicted value in order to determine the deficit or excess of calcium. Generally, the standards are derived from data obtained from normal populations and grouped by the parameters of age and sex (mean value denoted TBCa/sub m/). In the study reported in this paper, the clinical usefulness of predicted calcium (TBCa/sub p/) is evaluated. The predicted value (TBCa/sub p/) for an individual is obtained with an algorithm utilizing values of sex and age, height and lean body mass (as derived from 40 K measurement). The latter two components characterize skeletal size and body habitus, respectively. For the study, 133 white women and 71 white men ranging in age from 20 to 80 years were selected from a larger population. Individuals with evidence of metabolic calcium disorders or osteoporosis were excluded. Additionally, the women and men selected were first judged to have total body potassium levels in the normal range. For each age decade, the variance of TBCa values of these individuals, when expressed in terms of TBCa/sub p/, was significantly less than when expressed in terms of TBCa/sub m/. Thus, erroneous conclusions based on Ca deficit in osteoporosis could be drawn for individuals whose height and body size differ markedly from the average, as the variation of their TBCa values often exceeds the variation in the age and sex cohort. Data on a group of osteoporotic women were compared with the normal skeletal baseline values both in terms of the TBCa and the TBCa/sub p/ values

  9. Age- and sex-related changes in bone mass measured by neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Aloia, J.F.; Vaswani, A.N.; Zanzi, I.; Vartsky, D.; Ellis, K.J.

    1981-01-01

    Total-body calcium (TBCa) measurements have been employed in two basic types of studies. In the first type, serial measurements made on an individual patient are used to trace the time variation in body calcium. In the second type of study, the absolute total body calcium of an individual is determined and compared to a standard or predicted value in order to determine the deficit or excess of calcium. Generally, the standards are derived from data obtained from normal populations and grouped by the parameters of age and sex (mean value denoted TBCa/sub m/). In the study reported in this paper, the clinical usefulness of predicted calcium (TBCa/sub p/) is evaluated. The predicted value (TBCa/sub p/) for an individual is obtained with an algorithm utilizing values of sex and age, height and lean body mass (as derived from /sup 40/K measurement). The latter two components characterize skeletal size and body habitus, respectively. For the study, 133 white women and 71 white men ranging in age from 20 to 80 years were selected from a larger population. Individuals with evidence of metabolic calcium disorders or osteoporosis were excluded. Additionally, the women and men selected were first judged to have total body potassium levels in the normal range. For each age decade, the variance of TBCa values of these individuals, when expressed in terms of TBCa/sub p/, was significantly less than when expressed in terms of TBCa/sub m/. Thus, erroneous conclusions based on Ca deficit in osteoporosis could be drawn for individuals whose height and body size differ markedly from the average, as the variation of their TBCa values often exceeds the variation in the age and sex cohort. Data on a group of osteoporotic women were compared with the normal skeletal baseline values both in terms of the TBCa and the TBCa/sub p/ values.

  10. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians

    DEFF Research Database (Denmark)

    Harsløf, Torben; Frost, M; Nielsen, T L

    2013-01-01

    The interaction between muscle and bone is complex. The aim of this study was to investigate if variations in the muscle genes myostatin (MSTN), its receptor (ACVR2B), myogenin (MYOG), and myoD1 (MYOD1) were associated with fracture risk, bone mineral density (BMD), bone mineral content (BMC......), and lean body mass. We analyzed two independent cohorts: the Danish Osteoporosis Prevention Study (DOPS), comprising 2,016 perimenopausal women treated with hormone therapy or not and followed for 10 years, and the Odense Androgen Study (OAS), a cross-sectional, population-based study on 783 men aged 20......-29 years. Nine tag SNPs in the four genes were investigated. In the DOPS, individuals homozygous for the variant allele of the MSTN SNP rs7570532 had an increased risk of any osteoporotic fracture, with an HR of 1.82 (95 % CI 1.15-2.90, p = 0.01), and of nonvertebral osteoporotic fracture, with an HR of 2...

  11. Lack of influence of simple premenopausal hysterectomy on bone mass and bone metabolism

    DEFF Research Database (Denmark)

    Ravn, Pernille; Lind, C; Nilas, L

    1995-01-01

    urinary calcium corrected for creatinine excretion. RESULTS: Women who had undergone premenopausal hysterectomy had similar bone mineral densities compared with women with an intact uterus in all compartments, apart from a 6% to 11% higher bone mineral density (p

  12. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    Science.gov (United States)

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Biomechanical properties of the femoral neck relative to osteosynthesis methods and bone mineral content assessed by computed tomography

    International Nuclear Information System (INIS)

    Husby, T.

    1990-01-01

    Bone mineral content as determined by computerized tomography (CT) and mechanical strength on axial loading were compared in 36 cadaveric femur specimens. Based on the CT measurements of density and area, the mass of a transverse slice of the femur was estimated. Highly significant correlations were demonstrated between strength and cancellous bone density. Even higher correlations were revealed when the bone masses of the proximal and distal femoral areas were calculated. Based on these findings, an equal distribution of the effective mass of the femur was postulated. This hypothesis was confirmed in an experimental rotational model. The CT attenuation values were also correlated to direct measurements of bone mineral content, i.e. calcium. Moreover, the strength of different metal implants, commonly used in femoral neck fractures, were assessed in cadaver specimens. 134 refs., 13 figs., 12 tabs

  14. [THE IMPORTANCE OF "MILK BONES" TO "WISDOM BONES" - COW MILK AND BONE HEALTH - LESSONS FROM MILK ALLERGY PATIENTS].

    Science.gov (United States)

    Nachshon, Liat; Katz, Yitzhak

    2016-03-01

    The necessity of milk consumption in the western diet is a subject of intense controversy. One of the main benefits of milk is that it is the main source of dietary calcium. Calcium is a major bone mineral, mandatory for bone health. Its supply is derived exclusively from external dietary sources. During the growth period, an increased calcium supply is needed for the process of bone mass accumulation. An optimal bone mass achieved by the end of the growth period may be protective later in life against the bone mass loss that commonly occurs. This in turn, can be preventative against the occurrence of osteoporosis and the development of spontaneous bone fractures. Over the past several decades, an increased incidence of osteoporosis has been documented in western countries, leading to high rates of morbidity and mortality in the middle-aged and geriatric population. Many studies have investigated the dietary calcium requirements for different ages, to achieve and maintain proper bone health. Based on their results, guidelines concerning calcium intake in every stage of life have been published by national and international organizations. In the western diet, it is difficult to achieve the recommended calcium intake without milk consumption. Moreover, calcium bioavailability for intestinal absorption is high. Several studies have recently raised doubts concerning the amounts of calcium intake in the western diet and its effectiveness in preventing osteoporosis. The main disadvantage of these studies is their being based on the patient's past memory recall of milk consumption. Patients with IgE-mediated cow's milk protein allergy are a unique population. Their lifetime negligible milk consumption is undisputed. A recent study investigated for the first time, the bone density of young adults with milk allergy at the end of their growth period. Their severe reduction in bone mineral density and dietary calcium intake defines them as a high risk group for the

  15. Methodologies for the measurement of bone density and their precision and accuracy

    International Nuclear Information System (INIS)

    Goodwin, P.N.

    1987-01-01

    Radiographic methods of determining bone density have been available for many years, but recently most of the efforts in this field have focused on the development of instruments which would accurately and automatically measure bone density by absorption, or by the use of x-ray computed tomography (CT). Single energy absorptiometers using I-125 have been available for some years, and have been used primarily for measurements on the radius, although recently equipment for measuring the os calcis has become available. Accuracy of single energy measurements is about 3% to 5%; precision, which has been poor because of the difficulty of exact repositioning, has recently been improved by automatic methods so that it now approaches 1% or better. Dual energy sources offer the advantages of greater accuracy and the ability to measure the spine and other large bones. A number of dual energy scanners are now on the market, mostly using gadolinium-153 as a source. Dual energy scanning is capable of an accuracy of a few percent, but the precision when scanning patients can vary widely, due to the difficulty of comparing exactly the same areas; 2 to 4% would appear to be typical. Quantitative computed tomography (QCT) can be used to directly measure the trabecular bone within the vertebral body. The accuracy of single-energy QCT is affected by the amount of marrow fat present, which can lead to underestimations of 10% or more. An increase in marrow fat would cause an apparent decrease in bone mineral. However, the precision can be quite good, 1% or 2% on phantoms, and nearly as good on patients when four vertebrae are averaged. Dual energy scanning can correct for the presence of fat, but is less precise, and not available on all CT units. 52 references

  16. Labeling of MDP with 188Re for bone tumour therapy

    International Nuclear Information System (INIS)

    Barbezan, Angelica B.; Osso Junior, Joao A.

    2011-01-01

    188 Re is one of the most attractive radioisotopes for a variety of therapeutic applications in nuclear medicine, due to its physical decay properties, such as β - emission of 2.12 MeV, γ emission of 155 keV and half life of 16.9 hours. Biphosphonates are potent inhibitors of osteoclastic bone resorption and are effective in several diseases that cause bone fragility and bone metastases. Because of these characteristics, labeled biphosphonates have been studied for bone pathologies, also acting as palliation of bone pain in case of metastasis.The aim of this study was to optimize the labeling of a phosphonate-MDP (Sodium Methylene Diphosphonate) with 188 Re for use in bone pain palliation. 188 Re was obtained by eluting a 188 W- 188 Re generator from POLATOM. The labeling was performed at room temperature using MDP, SnCl 2 as reducing agent and ascorbic acid. The variables studied were: Mass of ligand (3, 6 and 10 mg), reducing agent mass (5, 7, 10 and 11 mg), ascorbic acid mass (1, 3, 5 and 6 mg), pH (1 and 2) and time of reaction (15, 60, 120, 360 and 4320 minutes), that also reflected the stability of the radiopharmaceutical. The radiochemical control, that also measures the labeling efficiency was evaluated by paper chromatography using Whatman 3MM paper and the solvents acetone and 0.9%NaCl. The best formulation was the following: Mass of ligand MDP: 10 mg, mass of SnCl 2 : 5 mg, ascorbic acid mass: 3 mg, time of reaction: 30 minutes, pH: 1. Under optimum conditions, 188 Re MDP radiolabeling yield was 98,07% and the radiopharmaceutical was stable up to 72 h. (author)

  17. Collaborative Research and Support of Fitzsimmons Army Medical Center DWH Research Program Projects. The Effects of Region-Specific Resistance Exercises on Bone Mass in Premenopausal Military Women, Protocol 8

    National Research Council Canada - National Science Library

    Hayes, Robert

    1995-01-01

    .... The purpose of this study is to determine if peak bone mass can be improved after age 20, the age at which peak bone mass is usually reached, and to compare the effects of region-specific resistance...

  18. L-shell x-ray fluorescence measurements of lead in bone: accuracy and precision

    International Nuclear Information System (INIS)

    Todd, Andrew C.; Carroll, Spencer; Khan, Fuad A.; Moshier, Erin L.; Geraghty, Ciaran; Tang, Shida; Parsons, Patrick J.

    2002-01-01

    This study aimed to quantify the accuracy and precision of a method for in vivo measurements of lead in bone using L-shell x-ray fluorescence (LXRF), the former via comparison with independent measurements of lead in bone obtained using electrothermal atomic absorption spectrometry (AAS) following acid digestion. Using LXRF, the lead content of adult human cadaver tibiae was measured, both as intact legs and as dissected tibiae with overlying tissue removed, the latter at several proximal-distal locations. After LXRF, each tibia was divided into nine cross-sectional segments, which were further separated into tibia core and surface samples for AAS measurement. The proximal-distal variability of AAS-measured core and surface tibia lead concentrations has been described elsewhere (the lead concentration was found to decrease towards both ends of the tibia). The subjects of this paper are the proximal-distal variability of the LXRF-measured lead concentrations, the measurement uncertainty and the statistical agreement between LXRF and AAS. There was no clear proximal-distal variability in the LXRF-measured concentrations; the degree of variability in actual tibia lead concentrations is far less than the LXRF measurement uncertainty. Measurement uncertainty was dominated by counting statistics and exceeded the estimate of lead concentration in most cases. The agreement between LXRF and AAS was reasonably good for bare bone measurements but poor for intact leg measurements. The variability of the LXRF measurements was large enough, for both bare bone and intact leg measurements, to yield grave concerns about the analytical use of the technique in vivo. (author)

  19. Precision Mass Measurement of Argon Isotopes

    CERN Multimedia

    Lunney, D

    2002-01-01

    % IS388\\\\ \\\\ A precision mass measurement of the neutron-deficient isotopes $^{32,33,34}$Ar is proposed. Mass values of these isotopes are of importance for: a) a stringent test of the Isobaric-Multiplet- Mass-Equation, b) a verification of the correctness of calculated charge-dependent corrections as used in super-allowed $\\beta$- decay studies aiming at a test of the CVC hypothesis, and c) the determination of the kinematics in electron-neutrino correlation experiments searching for scalar currents in weak interaction. The measurements will be carried out with the ISOLTRAP Penning trap mass spectrometer.

  20. The bone mass density in men aged over 50 and its relation to the concentration of free and total testosterone in the blood serum

    International Nuclear Information System (INIS)

    Purzycka-Jazdon, A.; Lasek, W.; Serafin, Z.; Manysiak, S.

    2003-01-01

    As the mean length of life increases, osteoporosis affects a growing number of men and women, thus becoming an important medical and socioeconomic problem in many countries. Pathogenesis and the prevalence of the osteoporosis in women are well established, however, in men, they are still controversial. In this study, the bone mass density (BMD) of the lumbar spine was determined in 100 healthy men age 50-83, using quantitative computed tomography (QCT). Also, the total serum and free testosterone was measured. The mean BMD was 123.1I39.3 mg/cm 3 , and the values below a fracture threshold were noted in 39% of subjects. The mean concentration of total and free serum testosterone was 4.3I1.7 ng/ml and 6.2I3.7 pg/ml, respectively. There was a significant (p 3 , respectively). There was no correlation found between total testosterone and BMD. Results indicate that reduced bone mass density in males over 50 is as frequent as recently reported in females. Moreover, sex hormones seem to be related to osteoporosis development in men as well. (author)

  1. Vitamin D and nutritional status are related to bone fractures in alcoholics.

    Science.gov (United States)

    González-Reimers, Emilio; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco; Candelaria Martín-González, M; Hernández-Betancor, Iván; Fernández-Rodríguez, Camino M; Viña-Rodríguez, J; González-Díaz, Antonieta

    2011-01-01

    Bone fractures are common in alcoholics. To analyse which factors (ethanol consumption; liver function impairment; bone densitometry; hormone changes; nutritional status, and disrupted social links and altered eating habits) are related to bone fractures in 90 alcoholic men admitted to our hospitalization unit because of organic problems. Bone homoeostasis-related hormones were measured in patients and age- and sex-matched controls. Whole-body densitometry was performed by a Hologic QDR-2000 (Waltham, MA, USA) densitometer, recording bone mineral density (BMD) and fat and lean mass; nutritional status and liver function were assessed. The presence of prevalent fractures was assessed by anamnesis and chest X-ray film. Forty-nine patients presented at least one fracture. We failed to find differences between patients with and without fractures regarding BMD parameters. Differences regarding fat mass were absent, but lean mass was lower among patients with bone fracture. The presence of fracture was significantly associated with impaired subjective nutritional evaluation (χ² = 5.79, P = 0.016), lower vitamin D levels (Z = 2.98, P = 0.003) and irregular eating habits (χ² = 5.32, P = 0.02). Reduced lean mass and fat mass, and altered eating habits were more prevalent among patients with only rib fractures (n = 36) than in patients with multiple fractures and/or fractures affecting other bones (n = 13). These last were more closely related to decompensated liver disease. Serum vitamin D levels showed a significant relationship with handgrip strength (ρ = 0.26, P = 0.023) and lean mass at different parts of the body, but not with fat mass. By logistic regression analysis, only vitamin D and subjective nutritional evaluation were significantly, independently related with fractures. Prevalent fractures are common among heavy alcoholics. Their presence is related more closely to nutritional status, lean mass and vitamin D levels than to BMD. Lean mass is more reduced

  2. Modified Creatinine Index and the Risk of Bone Fracture in Patients Undergoing Hemodialysis: The Q-Cohort Study.

    Science.gov (United States)

    Yamada, Shunsuke; Taniguchi, Masatomo; Tokumoto, Masanori; Yoshitomi, Ryota; Yoshida, Hisako; Tatsumoto, Narihito; Hirakata, Hideki; Fujimi, Satoru; Kitazono, Takanari; Tsuruya, Kazuhiko

    2017-08-01

    Hemodialysis patients are at increased risk for bone fracture and sarcopenia. There is close interplay between skeletal muscle and bone. However, it is still unclear whether lower skeletal muscle mass increases the risk for bone fracture. Cross-sectional study and prospective longitudinal cohort study. An independent cohort of 78 hemodialysis patients in the cross-sectional study and 3,030 prevalent patients undergoing maintenance hemodialysis prospectively followed up for 4 years. Skeletal muscle mass measured by bioelectrical impedance analysis (BIA) and modified creatinine index, an estimate of skeletal muscle mass based on age, sex, Kt/V for urea, and serum creatinine level. Bone fracture at any site. In the cross-sectional study, modified creatinine index was significantly correlated with skeletal muscle mass measured by BIA. During a median follow-up of 3.9 years, 140 patients had bone fracture. When patients were divided into sex-specific quartiles based on modified creatinine index, risk for bone fracture estimated by a Fine-Gray proportional subdistribution hazards model with all-cause death as a competing risk was significantly higher in the lower modified creatinine index quartiles (Q1 and Q2) compared to the highest modified creatinine index quartile (Q4) as the reference value in both sexes (multivariable-adjusted HRs for men were 7.81 [95% CI, 2.63-23.26], 5.48 [95% CI, 2.08-14.40], 2.24 [95% CI, 0.72-7.00], and 1.00 [P for trend creatinine index; no data for residual kidney function and fracture sites and causes. Modified creatinine index was correlated with skeletal muscle mass measured by BIA. Lower modified creatinine index was associated with increased risk for bone fracture in male and female hemodialysis patients. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. [Diet, nutrition and bone health].

    Science.gov (United States)

    Miggiano, G A D; Gagliardi, L

    2005-01-01

    Nutrition is an important "modifiable" factor in the development and maintenance of bone mass and in the prevention of osteoporosis. The improvement of calcium intake in prepuberal age translates to gain in bone mass and, with genetic factor, to achievement of Peak Bone Mass (PBM), the higher level of bone mass reached at the completion of physiological growth. Individuals with higher PBM achieved in early adulthood will be at lower risk for developing osteoporosis later in life. Achieved the PBM, it is important maintain the bone mass gained and reduce the loss. This is possible adopting a correct behaviour eating associated to regular physical activity and correct life style. The diet is nutritionally balanced with caloric intake adequate to requirement of individual. This is moderate in protein (1 g/kg/die), normal in fat and the carbohydrates provide 55-60% of the caloric intake. A moderate intake of proteins is associated with normal calcium metabolism and presumably does'nt alter bone turnover. An adequate intake of alkali-rich foods may help promote a favorable effect of dietary protein on the skeleton. Lactose intolerance may determinate calcium malabsorption or may decrease calcium intake by elimination of milk and dairy products. Omega3 fatty acids may "down-regulate" pro-inflammatory cytokines and protect against bone loss by decreasing osteoclast activation and bone reabsorption. The diet is characterized by food containing high amount of calcium, potassium, magnesium and low amount of sodium. If it is impossible to reach the requirement with only diet, it is need the supplement of calcium and vitamin D. Other vitamins (Vit. A, C, E, K) and mineral (phosphorus, fluoride, iron, zinc, copper and boron) are required for normal bone metabolism, thus it is need adequate intake of these dietary components. It is advisable reduce ethanol, caffeine, fibers, phytic and ossalic acid intake. The efficacy of phytoestrogens is actually under investigation. Some

  4. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt.

    Science.gov (United States)

    Jackowski, Stefan A; Faulkner, Robert A; Farthing, Jonathan P; Kontulainen, Saija A; Beck, Thomas J; Baxter-Jones, Adam D G

    2009-06-01

    We examined the timing of the age and the magnitude of peak lean tissue mass accrual (PLTV) relative to the age and magnitude of two variables of bone strength [peak cross sectional area velocity (PCSAV), and peak section modulus velocity, (PZV)] at the proximal femur in males and females during the adolescent growth spurt. We hypothesized that the age of PLTV would precede the ages of PCSAV and PZV and that there is a positive relationship between the magnitude of PLTV and both PCSAV and PZV in both genders. 41 males and 42 females aged 8-18 years were selected from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2005). Participants' total body lean tissue mass was assessed annually for 6 consecutive years using DXA. Narrow neck and femoral shaft cross sectional areas (CSA) and section modulus (Z) were determined using the hip structural analysis (HSA) program. Participants were aligned by maturational age (years from peak height velocity). Lean tissue mass, CSA, and Z were converted into whole year velocities and the maturational age of peak tissue velocities was determined using a cubic spline curve fitting procedure. A 2 x 3 (gender x tissue) factorial MANOVA with repeated measures was used to test for differences between age of PLTV and the ages of PCSAV and PZV between genders. Multiple regression analyses were used to examine the relationship between PLTV and both PCSAV and PZV. There were no sex differences in the ages at which tissue peaks occurred when aligned by maturational age. There were significant differences between the age of PLTV and both PCSAV and PZV at the narrow neck (p=0.001) and femoral shaft (p=0.03), where the age of PLTV preceded both PCSAV and PZV when pooled by gender. PLTV was a significant predictor of the magnitude of both PCSAV and PZV at all sites (ptheory that muscle development is an important factor in affecting bone strength.

  5. Rate of bone loss in postmenopausal and osteoporotic women

    International Nuclear Information System (INIS)

    Aloia, J.F.; Ross, P.; Vaswani, A.; Zanzi, I.; Cohn, S.H.

    1982-01-01

    Regional and total bone mass were determined in three groups of women by photon absorptiometry of the distal radius [bone mineral content (BMC)] and total neutron activation analysis [total body calcium (TBCa)], respectively. There were three groups of patients: group A, osteoporotic women treated with a variety of pharmacologic agents; group B, osteoporotic women (controls) taking only calcium supplements; and group C, normal postmenopausal women. The mean TBCa and BMC were considerably higher in the postmenopausal women than in the osteoporotic women. The rate of change of bone mass in group C was -0.45%/yr and -0.9%/yr for the total skeleton and radius, respectively. Group B had no significant rate of loss, whereas group A demonstrated a significant increase in TBCa of 0.75%/yr with no change in the BMC of the radius. There were no significant between-subject correlations for the slopes (rates of change) of the two bone mineral measurements

  6. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    Science.gov (United States)

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  8. Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.

    Science.gov (United States)

    Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio

    2017-06-01

    Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.

  9. Methionine restriction alters bone morphology and affects osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Amadou Ouattara

    2016-12-01

    Full Text Available Methionine restriction (MR extends the lifespan of a wide variety of species, including rodents, drosophila, nematodes, and yeasts. MR has also been demonstrated to affect the overall growth of mice and rats. The objective of this study was to evaluate the effect of MR on bone structure in young and aged male and female C57BL/6J mice. This study indicated that MR affected the growth rates of males and young females, but not aged females. MR reduced volumetric bone mass density (vBMD and bone mineral content (BMC, while bone microarchitecture parameters were decreased in males and young females, but not in aged females compared to control-fed (CF mice. However, when adjusted for bodyweight, the effect of MR in reducing vBMD, BMC and microarchitecture measurements was either attenuated or reversed suggesting that the smaller bones in MR mice is appropriate for its body size. In addition, CF and MR mice had similar intrinsic strength properties as measured by nanoindentation. Plasma biomarkers suggested that the low bone mass in MR mice could be due to increased collagen degradation, which may be influenced by leptin, IGF-1, adiponectin and FGF21 hormone levels. Mouse preosteoblast cell line cultured under low sulfur amino acid growth media attenuated gene expression levels of Col1al, Runx2, Bglap, Alpl and Spp1 suggesting delayed collagen formation and bone differentiation. Collectively, our studies revealed that MR altered bone morphology which could be mediated by delays in osteoblast differentiation. Keywords: Methionine restriction, Aged mice, Micro-computed tomography, Nanoindentation, MC3T3-E1 subclone 4

  10. Optimizing Bone Health in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jason L. Buckner

    2015-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA, as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA.

  11. Measurement of bone mineral content by dual photon absorptiometry in patients with metabolic bone diseases

    International Nuclear Information System (INIS)

    Ohtani, Masami; Hino, Megumu; Ikekubo, Katsuji

    1991-01-01

    Dual photon absorptiometry was used to measure bone mineral content in 225 patients with metabolic bone diseases (84 males and 102 females) and 186 healthy subjects (25 males and 200 females). Mineral content of the lumbar vertebrae tended to rapidly decrease after the age of 40 in healthy female subjects. For males, gradual decrease in mineral content was associated with aging. Bone mineral content showed a correlation with the severity of osteoporosis as shown on X-ray films. Mineral content tended to be decreased in the lumbar vertebrae in patients with vertebral compression fracture, and in the femur in patients with vertebral or femoral fracture. For hyperthyroidism, mineral content of the lumbar vertebrae was decreased in some females, but was within normal limit in males. Hyperparathyroidism and hypoparathyroidism tended to be associated with decrease and increase in mineral content, respectively. Two each patients with osteomalacia or Cushing syndrome had a decreased mineral content. In these patients, it was increased after the treatment. (N.K.)

  12. Measurement of bone mineral content by dual photon absorptiometry in patients with metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ohtani, Masami; Hino, Megumu; Ikekubo, Katsuji (Kobe City General Hospital (Japan)) (and others)

    1991-12-01

    Dual photon absorptiometry was used to measure bone mineral content in 225 patients with metabolic bone diseases (84 males and 102 females) and 186 healthy subjects (25 males and 200 females). Mineral content of the lumbar vertebrae tended to rapidly decrease after the age of 40 in healthy female subjects. For males, gradual decrease in mineral content was associated with aging. Bone mineral content showed a correlation with the severity of osteoporosis as shown on X-ray films. Mineral content tended to be decreased in the lumbar vertebrae in patients with vertebral compression fracture, and in the femur in patients with vertebral or femoral fracture. For hyperthyroidism, mineral content of the lumbar vertebrae was decreased in some females, but was within normal limit in males. Hyperparathyroidism and hypoparathyroidism tended to be associated with decrease and increase in mineral content, respectively. Two each patients with osteomalacia or Cushing syndrome had a decreased mineral content. In these patients, it was increased after the treatment. (N.K.).

  13. Bone health measured using quantitative ultrasonography in adult males with muscular dystrophy.

    Science.gov (United States)

    Morse, C I; Smith, J; Denny, A; Tweedale, J; Searle, N D; Winwood, K; Onambele-Pearson, G L

    2016-12-14

    To compare muscle and bone health markers in adult males (aged 20-59 yrs) with and without muscular dystrophy (MD). Participants included 11 Fascioscapulohumeral (FSH), 11 Becker's (Be), 9 limb girdle (LG), 11 Duchenne (DMD), and 14 non-dystrophic controls (CTRL). Physical activity was assessed using Bone (BPAQ) and disability specific (PASIPD) questionnaires. Bone QUS provided T- and Z scores from the Distal Radius (DR) and Mid-shaft tibia (MST). Tibialis anterior cross sectional area (TA ACSA ) was measured using B-mode ultrasound. Grip strength was measured in all but DMD. Physical activity was lower in DMD, FSH and BeMD than CTRL (PPASIPD correlated with grip strength (r=0.65, P<0.01) and TA ACSA (r=0.46, P<0.01). Muscle size, strength, and bone health was lower in adult males with MD compared to adult males without MD, the extent of this is partially determined by physical activity.

  14. An in vivo technique for the measurement of bone blood flow in animals

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; DeLuca, P.M. Jr.; Pearson, D.W.; Nickles, R.J.; Lehner, C.E.; Lanphier, E.H.

    1987-01-01

    A new technique to measure the in vivo clearance of 41 Ar from the bone mineral matrix is demonstrated following fast neutron production of 41 Ar in bone via the 44 Ca(n,α) reaction at 14.1 MeV. At the end of irradiation, the 41 Ar activity is assayed with a Ge(Li) detector where sequential gamma-ray spectra are taken. Following full-energy peak integration, background and dead time correction, the activity of 41 Ar as a function of time is determined. Results indicated that the Ar washout from bone in rats using this technique was approximately 16 ml (100 ml min) -1 and in agreement with other measurement techniques. For sheep the bone perfusion in the tibia was approximately 1.9+-0.2 ml (100 ml min) -1 . (author)

  15. Measuring the running top-quark mass

    International Nuclear Information System (INIS)

    Langenfeld, Ulrich; Uwer, Peter

    2010-06-01

    In this contribution we discuss conceptual issues of current mass measurements performed at the Tevatron. In addition we propose an alternative method which is theoretically much cleaner and to a large extend free from the problems encountered in current measurements. In detail we discuss the direct determination of the top-quark's running mass from the cross section measurements performed at the Tevatron. (orig.)

  16. Dating of cremated bones

    OpenAIRE

    Lanting, JN; Aerts-Bijma, AT; van der Plicht, J; Boaretto, E.; Carmi, I.

    2001-01-01

    When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a r...

  17. Constitutional bone impairment in Noonan syndrome.

    Science.gov (United States)

    Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista

    2017-03-01

    Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH Vitamin D Serum Levels in Systemic Sclerosis.

    Directory of Open Access Journals (Sweden)

    Addolorata Corrado

    Full Text Available A reduced bone mineral density (BMD is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc; nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc or diffuse cutaneous (dcSSc SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content.

  19. Bone turnover in postmenopausal osteoporosis

    International Nuclear Information System (INIS)

    Thomsen, K.

    1988-02-01

    Studies of the bone turnover in postmenopausal osteoporosis are essential, because the associated bone loss is inevitably due to the relative increase of bone resorption compared with bone formation. Measurement of the bone mineral content (BMC) in normal adults is assessed - partly on the uncorrected values and partly in proportion to the body muscle mass. The whole body retention (WBR) method is presented. The WBR and alternative urinary excretion (UE) methods used by the author are characterised and compared with the retention methods described in the literature. The representativity of WBR and UE for the estimation of bone turnover in normal subjects and patients with various bone metabolic diseases is discussed. The conclusion is that the modified retention methods used by the author have a satisfactory precision and accuracy in relation to the clinical studies carried out. The author's modification of the WBR method for determination of bone turnover and the alternative urinary excretion method (UE) consists in continuous scanning in the whole body count, using a gamma camera, and with the collimator a short distance from the volunteer. This procedure has the advantage of restricting the radioactive dose to 2 mCi (72 MBa). This is smaller by a factor of 5-10 than the dose used to measure WBR with equally simple counting equipment: With the author's procedure, using frontal counting, WBR is systematically underestimated by about 4 per cent point compared to the purely dorsal count, but since the frontal position is the most comfortable, requires a smaller radioactive dose, and the error is systematic, it is the preferred counting procedure. Correction of WBR and UE for bone mineral content is in principle a new parameter of bone turnover, whose improved accuracy increases the validity of the retention determinations. 136 refs. (EG)

  20. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  1. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.

    Science.gov (United States)

    Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac

    2018-02-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

  2. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    in iliac crest bone biopsies from patients with the HBM phenotype and controls. We also used retrovirus-mediated gene transduction to establish three different human mesenchymal stem cell (hMSC) strains stably expressing wildtype LRP5 (hMSC-LRP5WT), LRP5T244 (hMSC-LRP5T244, inactivation mutation leading...... to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...... mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach to increase...

  3. Effects of Denosumab and Calcitriol on Severe Secondary Hyperparathyroidism in Dialysis Patients With Low Bone Mass.

    Science.gov (United States)

    Chen, Chien-Liang; Chen, Nai-Ching; Liang, Huei-Lung; Hsu, Chih-Yang; Chou, Kang-Ju; Fang, Hua-Chang; Lee, Po-Tsang

    2015-07-01

    Secondary hyperparathyroidism (SHPT) may worsen with administration of denosumab in chronic renal failure patients with low bone mass. This study aimed to evaluate the short-term effect of coadministration of calcitriol and denosumab on PTH secretion and parathyroid structure and the incidence of adverse effects in patients with SHPT and low bone mass. This was a 24-week, open-label study at Kaohsiung Veterans General Hospital in Kaohsiung, Taiwan. Dialysis patients with SHPT (intact parathyroid hormone [iPTH] > 800 pg/mL) and low bone mass (T score < -2.5) were enrolled. Patients received denosumab (60 mg) and doses of calcitriol adjusted to achieve iPTH < 300 pg/mL. Parathyroid gland volume was assessed upon study initiation and completion. Serum calcium, phosphate, alkaline phosphatase, iPTH, and adverse effects were assessed at each visit (Day 7, 14, and 21, and every month thereafter). iPTH significantly decreased (mean decrease, 58.28 ± 6.12%) with denosumab/calcitriol administration (P < .01) but not in the controls (patients not receiving denosumab). Parathyroid gland volume decreased (mean decrease, 21.98 ± 5.54%) with denosumab/calcitriol administration (P < .01) and progressively increased (20.58 ± 4.48%) in the controls (P < .05). Serum alkaline phosphatase and iPTH levels were significantly correlated to decreased iPTH and regression of parathyroid hyperplasia (P < .05). The most common adverse events were hypocalcemia (33.33%) and respiratory tract infection (4.17%). Hypocalcemia rapidly resolved with calcium and calcitriol supplements. Denosumab allows for supra-physiologic doses of calcitriol resulting in decreased parathyroid secretion and parathyroid hyperplasia. Supervised administration and weekly laboratory and clinical monitoring of serum calcium are recommended during the first month to prevent hypocalcemia.

  4. Volume and mass measurements of liquids

    International Nuclear Information System (INIS)

    Zander, M.

    1987-12-01

    The report comprises the 10 lectures given at the 74th PTB seminar, which represent the state of the art in the field of liquid flow measurement. The lectures deal with the overflow-pipette as the primary volume standard of PTB, gas elimination devices (compulsory in measuring assemblies with volume meters), measuring assemblies for the reception of milk, electromagnetic flowmeters, vortex-shedding meters, indirect mass measurement from volume and density, direct mass measurement (coriolis flowmeters), pipeline-measurements, level measurement at storage tanks with conventional and optical methods and a development aid project for the set up of test rigs in India. (orig.) [de

  5. The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism.

    Science.gov (United States)

    Sodi, R; Hazell, M J; Durham, B H; Rees, C; Ranganath, L R; Fraser, W D

    2009-09-01

    There is increasing evidence suggesting that adiponectin plays a role in the regulation of bone metabolism. This was a cross-sectional study of 34 post-menopausal women with and 37 without osteoporosis. All subjects had body mass index (BMI), bone mineral density (BMD), total-, high molecular weight (HMW)-adiponectin and their ratio, osteoprotegerin (OPG), a marker of bone resorption (betaCTX) and formation (P1NP) measured. We observed a positive correlation between BMI and BMD (r=0.44, plean subjects but there was no difference between those with or without osteoporosis. There were significant negative correlations between HMW/total-adiponectin ratio and BMI (r=-0.27, p=0.030) and with OPG (r=-0.44, pproduction of OPG thereby affecting osteoclasts mediated bone resorption.

  6. The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study

    DEFF Research Database (Denmark)

    Vlachopoulos, Dimitris; Barker, Alan R; Ubago-Guisado, Esther

    2018-01-01

    OBJECTIVES: Research investigating the longitudinal effects of the most popular sports on bone development in adolescent males is scarce. The aim is to investigate the effect of 12-month participation in osteogenic and non-osteogenic sports on bone development. DESIGN: A 12-month study...... by dual-energy X-ray absorptiometry, and bone stiffness was measured by quantitative ultrasound. Bone outcomes at 12 months were adjusted for baseline bone status, age, height, lean mass and moderate to vigorous physical activity. RESULTS: Footballers had higher improvement in adjusted BMC at the total...... body, total hip, shaft, Ward's triangle, legs and bone stiffness compared to cyclists (6.3-8.0%). Footballers had significantly higher adjusted BMC at total body, shaft and legs compared to swimmers (5.4-5.6%). There was no significant difference between swimmers and cyclists for any bone outcomes...

  7. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D.; Äystö, J.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Jokinen, A.; Kellerbauer, A.; Kluge, H.-J.; Kolhinen, V.S.; Oinonen, M.; Sauvan, E.; Schwarz, S.

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  8. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.

    Science.gov (United States)

    Legiran, Siswo; Brandi, Maria Luisa

    2012-09-01

    Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.

  9. Prevalence of radiographic hip osteoarthritis is increased in high bone mass.

    Science.gov (United States)

    Hardcastle, S A; Dieppe, P; Gregson, C L; Hunter, D; Thomas, G E R; Arden, N K; Spector, T D; Hart, D J; Laugharne, M J; Clague, G A; Edwards, M H; Dennison, E M; Cooper, C; Williams, M; Davey Smith, G; Tobias, J H

    2014-08-01

    Epidemiological studies have shown an association between increased bone mineral density (BMD) and osteoarthritis (OA), but whether this represents cause or effect remains unclear. In this study, we used a novel approach to investigate this question, determining whether individuals with High Bone Mass (HBM) have a higher prevalence of radiographic hip OA compared with controls. HBM cases came from the UK-based HBM study: HBM was defined by BMD Z-score. Unaffected relatives of index cases were recruited as family controls. Age-stratified random sampling was used to select further population controls from the Chingford and Hertfordshire cohort studies. Pelvic radiographs were pooled and assessed by a single observer blinded to case-control status. Analyses used logistic regression, adjusted for age, gender and body mass index (BMI). 530 HBM hips in 272 cases (mean age 62.9 years, 74% female) and 1702 control hips in 863 controls (mean age 64.8 years, 84% female) were analysed. The prevalence of radiographic OA, defined as Croft score ≥3, was higher in cases compared with controls (20.0% vs 13.6%), with adjusted odds ratio (OR) [95% CI] 1.52 [1.09, 2.11], P = 0.013. Osteophytes (OR 2.12 [1.61, 2.79], P subchondral sclerosis (OR 2.78 [1.49, 5.18], P = 0.001) were more prevalent in cases. However, no difference in the prevalence of joint space narrowing (JSN) was seen (OR 0.97 [0.72, 1.33], P = 0.869). An increased prevalence of radiographic hip OA and osteophytosis was observed in HBM cases compared with controls, in keeping with a positive association between HBM and OA and suggesting that OA in HBM has a hypertrophic phenotype. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Labeling of MDP with {sup 188}Re for bone tumour therapy

    Energy Technology Data Exchange (ETDEWEB)

    Barbezan, Angelica B.; Osso Junior, Joao A., E-mail: jaosso@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    {sup 188}Re is one of the most attractive radioisotopes for a variety of therapeutic applications in nuclear medicine, due to its physical decay properties, such as {beta}{sup -} emission of 2.12 MeV, {gamma} emission of 155 keV and half life of 16.9 hours. Biphosphonates are potent inhibitors of osteoclastic bone resorption and are effective in several diseases that cause bone fragility and bone metastases. Because of these characteristics, labeled biphosphonates have been studied for bone pathologies, also acting as palliation of bone pain in case of metastasis.The aim of this study was to optimize the labeling of a phosphonate-MDP (Sodium Methylene Diphosphonate) with {sup 188}Re for use in bone pain palliation. {sup 188}Re was obtained by eluting a {sup 188}W-{sup 188}Re generator from POLATOM. The labeling was performed at room temperature using MDP, SnCl{sub 2} as reducing agent and ascorbic acid. The variables studied were: Mass of ligand (3, 6 and 10 mg), reducing agent mass (5, 7, 10 and 11 mg), ascorbic acid mass (1, 3, 5 and 6 mg), pH (1 and 2) and time of reaction (15, 60, 120, 360 and 4320 minutes), that also reflected the stability of the radiopharmaceutical. The radiochemical control, that also measures the labeling efficiency was evaluated by paper chromatography using Whatman 3MM paper and the solvents acetone and 0.9%NaCl. The best formulation was the following: Mass of ligand MDP: 10 mg, mass of SnCl{sub 2}: 5 mg, ascorbic acid mass: 3 mg, time of reaction: 30 minutes, pH: 1. Under optimum conditions, {sup 188}Re MDP radiolabeling yield was 98,07% and the radiopharmaceutical was stable up to 72 h. (author)

  11. Top-quark mass and top-quark pole mass measurements with the ATLAS detector

    CERN Document Server

    Barillari, Teresa; The ATLAS collaboration

    2017-01-01

    Results of top-quark mass measurements in the di-lepton and in the all-jets top-antitop decay channels with the ATLAS detector are presented. The measurements are obtained using proton--proton collisions at a centre-of-mass energy \\sqrt{s} = 8 TeV at the CERN Large Hadron Collider. The data set used corresponds to an integrated luminosity of 20.2 fb-1. The top-quark mass in the di-lepton channel is measured to be 172.99 +/-0.41 (stat.) +/- 0.74 (syst.) GeV. In the all-jets analysis the top-quark mass is measured to be 173.72 +/- 0.55 (stat.)+/- 1.01 (syst.) GeV. In addition, the top-quark pole mass is determined from inclusive cross-section measurements in the top-antitop di-lepton decay channel with the ATLAS detector. The measurements are obtained using data at \\sqrt{s} = 7 TeV and \\sqrt{s} =8 TeV corresponding to an integrated luminosity of 4.6 fb-1 and 20.2 fb-1 respectively. The top-quark pole mass is measured to be 172.9^{+2.5}_{-2.6} GeV.

  12. Determinants of bone mass and bone size in a large cohort of physically active young adult men

    Directory of Open Access Journals (Sweden)

    Garrett P

    2006-02-01

    Full Text Available Abstract The determinants of bone mineral density (BMD at multiple sites were examined in a fit college population. Subjects were 755 males (mean age = 18.7 years entering the United States Military Academy. A questionnaire assessed exercise frequency and milk, caffeine, and alcohol consumption and tobacco use. Academy staff measured height, weight, and fitness. Calcaneal BMD was measured by peripheral dual-energy x-ray absorptiometry (pDXA. Peripheral-quantitative computed tomography (pQCT was used to measure tibial mineral content, circumference and cortical thickness. Spine and hip BMD were measured by DXA in a subset (n = 159. Mean BMD at all sites was approximately one standard deviation above young normal (p

  13. Measurement of $b$-hadron masses

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Gracianiv Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Measurements of $b$-hadron masses are performed with the exclusive decay modes $B^+\\to J/\\psi K^+$, $B^0 \\to J/\\psi K^{*0}$, $B^0 \\to J/\\psi K^0_{\\rm S}$, $B_s^0 \\to J/\\psi\\phi$ and $\\Lambda^0_b\\to J/\\psi\\Lambda$ using an integrated luminosity of 35 pb$^{-1}$ collected in $pp$ collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with $J/\\psi \\to \\mu^+\\mu^-$ decays and verified to be known to a relative precision of $2 \\times 10^{-4}$ using other two-body decays. The results are more precise than previous measurements, particularly in the case of the $B^0_s$ and $\\Lambda^0_b$ masses.

  14. Compromised trabecular microarchitecture and lower finite element estimates of radius and tibia bone strength in adults with turner syndrome

    DEFF Research Database (Denmark)

    Hansen, Stinus; Brixen, Kim; Gravholt, Claus H

    2012-01-01

    Although bone mass appear ample for bone size in Turner syndrome (TS), epidemiological studies have reported an increased risk of fracture in TS. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) to measure standard morphological parameters of bone geometry...

  15. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    Science.gov (United States)

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  16. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  17. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  18. Age-related decrements in bone mineral density in women over 65

    Science.gov (United States)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  19. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength.

    Science.gov (United States)

    Sinder, B P; White, L E; Salemi, J D; Ominsky, M S; Caird, M S; Marini, J C; Kozloff, K M

    2014-08-01

    Treatments to reduce fracture rates in adults with osteogenesis imperfecta are limited. Sclerostin antibody, developed for treating osteoporosis, has not been explored in adults with OI. This study demonstrates that treatment of adult OI mice respond favorably to sclerostin antibody therapy despite retention of the OI-causing defect. Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Antiresorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 month old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly > Cys substitution on Col1a1. Six-month-old WT and Brtl/+ mice were treated with Scl-Ab (25 mg/kg, 2×/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI.

  20. Evaluation of the peak bone mass by quantitative heel ultrasound in young women of the centre of Italy

    Directory of Open Access Journals (Sweden)

    A. Puxeddu

    2011-09-01

    Full Text Available Objective: To measure the reference young adult mean values in healthy women of the centre of Italy by Quantitative heel UltraSound (QUS. Methods: The study group was composed by 70 caucasian women: mean age was 25.4 years (Standard Deviation 4.7, mean weight was 58 Kg (SD 8.2, mean height was 166 cm (SD 5.8, mean BMI was 20.9 kg/m2 (SD 2.5. Every subject was evaluated firstly with an original questionnaire to discover risk factors (like for example steroids consumption, recent fractures of the lower limb, then was measured by quantitative heel ultrasonometry Hologic Sahara. Results: Mean extimated Bone Mineral Density (BMD 0.588 g/cm2 (SD 0.124 mean Quantitative Ultrasound Index (QUI 105.0 (SD 19.6, mean Speed of Sound (SOS 1564.2 m/s (SD 31.4, mean Broadband Ultrasound Attenuation (BUA 84.8 dB/MHz (SD 17.4. No significant correlation was found between QUS parameters and anthropometric data. A correlation was found between every QUS parameters. No significant differences were found about QUI and extimated BMD, between our results and Hologic normative data for European women. Conclusions: It is very important to develop specific reference values for any measurement device and site of skeleton especially in the age of reaching the peak bone mass because the T score is then measured referring to these data. Usually the normative data are supplied by manufacturer and are based on large multicentric study. In our opinion it could be helpful to verify if these data are compatible with the population examined in every region.

  1. Pattern of alveolar bone loss and reliability of measurements with the radiographic technique

    International Nuclear Information System (INIS)

    Rise, J.; Albandar, J.M.

    1988-01-01

    The purposes of this paper were to study the pattern of bone loss among different teeth at the individual level and to study the effect of using different aggregated units of analysis on measurement error. Bone loss was assessed in standardized periapical radiographs from 293 subjects (18-68 years), and the mean bone loss score for each tooth type was calculated. These were then correlated by means of factor analysis to study the bone loss pattern. Reliability (measurement error) was studied by the internal consistency and the test-retest methods. The pattern of bone loss showed a unidimensional pattern, indicating that any tooth will work equally well as a dependent variable for epidemiologic descriptive purposes. However, a more thorough analysis also showed a multidimensional pattern in terms of four dimensions, which correspond to four tooth groups: incisors, upper premolars, lower premolars and molars. The four dimensions accounted for 80% of the toal variance. The multidimensional pattern may be important for the modeling of bone loss; thus different models may explain the four dimension (indices) used as dependent variables. The reliability (internal consistency) of the four indices was satisfactory. By the test-retest method, reliability was higher when the more aggregated unit (the individual) was used

  2. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    Science.gov (United States)

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  3. Bone fluoride determination for clinical investigation of osteoporosis

    International Nuclear Information System (INIS)

    Krishnan, S.S.; McNeill, K.G.; Hitchman, A.J.W.; Mernagh, J.R.; Lin, S.C.; Harrison, J.E.

    1984-01-01

    Sodium fluoride is the therapeutic agent known to stimulate bone growth with net increase in bone mineral mass in patients afflicted with osteoporosis, a common crippling bone disease. In order to study the effect of sodium fluoride treatment, a method of analysis for fluoride in bone has been developed using Neutron Activation Analysis (NAA). The technique proved to be simple, fast, reliable and non-destructive. Thus the sample, often bone biopsy specimen, is available, after fluoride analysis, for further histological studies. NAA was used to analyze both fluoride and calcium in the bone and the results expressed as F/Ca ratio was meaningful since it normalizes the fluoride to bone mineral mass which is the important factor in this study. Four years of fluoride treatment of osteoporotics showed significant increase of bone mass (up to 30%) in several patients. These increases were associated with histological bone picture of fluorosis. In the case of patients with renal osteodystrophy, there was evidence that fluorosis contributes to the bone disease. 3 references, 2 figures, 2 tables

  4. Bone mineral density (BMD) and computer tomographic measurements of the equine proximal phalanx in correlation with breaking strength.

    Science.gov (United States)

    Tóth, P; Horváth, C; Ferencz, V; Tóth, B; Váradi, A; Szenci, O; Bodó, G

    2013-01-01

    Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.

  5. Quantitative computed tomography for measuring bone mineral content

    International Nuclear Information System (INIS)

    Felsenberg, D.; Kalender, W.A.; Banzer, D.; Schmilinsky, G.; Heyse, M.; Fischer, E.; Schneider, U.; Siemens A.G., Erlangen; Krankenhaus Zehlendorf, Berlin

    1988-01-01

    Quantitative computed tomography (QCT) for measuring bone mineral content of lumbar vertebrae is increasingly used internationally. The effect of using conventional CT (single energy CT, SE-CT) and dual energy CT (DE-CT) on reproducibility has been examined. We defined a standard measurement protocol, which automatically evaluates a calibration phantom. This should ensure an in vivo reproducibility of 1 to 2%. Reference data, which has been obtained with this protocol from 113 normal subjects, using SE-CT ad DE-CT, are presented. (orig.) [de

  6. Bone mineral density among female sports participants.

    Science.gov (United States)

    Egan, Elizabeth; Reilly, Thomas; Giacomoni, Magali; Redmond, Louise; Turner, Clare

    2006-02-01

    Training for and participation in impact-loading sports are associated with alterations in bone strength which are specific to anatomical site and type of strain. The effect of exercise on bone mineral density (BMD) depends on the type of activity engaged in. Sports with high impact loading seem to have a positive effect in promoting bone mineralisation, whereas those with low impacts may have negative or no effects. The aims of the present study were to compare BMD and body composition measures among female participants in three distinctly different sports and investigate differences from sedentary control subjects. Participants were club and university level Rugby Union football players (n = 30, age: 21.4 +/- 1.9 years, height: 1.67 +/- 0.05 m, mass: 73.3 +/- 10.7 kg), netball players (n = 20, 20.7 +/- 1.3 years, 1.68 +/- 0.07 m, 64.3 +/- 7.2 kg), distance runners (n = 11, 21.5 +/- 2.6 years, 1.68 +/- 0.04 m, 57.1 +/- 6.1 kg), and sedentary controls (n = 25, 21.4 +/- 1.1 years; 1.64 +/- 0.07 m, 56.8 +/- 6.8 kg). With the exception of three distance runners, all participants were eumenorrhoeic. Bone mineral density scans were performed for whole-body, left proximal femur, and lumbar spine (L1-4) using dual-energy X-ray absorptiometry. Fat mass, percent body fat, and fat-free soft tissue mass were assessed from whole-body scans. Regional and segmental analysis was also carried out on whole-body BMD data using standard procedures. The runners had a lower fat mass and percent body fat compared to the other sports participants and the controls. All sports groups had higher BMD values than had the controls. Density of bone in the upper body was most pronounced in the rugby football players and least pronounced in the runners. Positive effects were evident at all sites for the rugby players. There were significant correlations between BMD and fat-free soft tissue mass, BMD and body mass, and BMD and training volume. It is concluded that sports participation has positive

  7. The correlation between R2' and bone mineral measurements in human vertebrae: an in vitro study

    International Nuclear Information System (INIS)

    Brismar, T.B.; Karlsson, M.; Li, T.Q.; Ringertz, H.

    1999-01-01

    The aim of this study was to investigate whether MR imaging of trabecular bone structure using magnetic inhomogeneity measurements is related to the amount of bone mineral in human vertebrae. Weight, bone mineral content (BMC DXA ), bone mineral per area (BMA DXA ) and bone mineral density (BMD CT ) were determined in 12 defatted human lumbar vertebrae (L2-L4) by weighing, dual X-ray absorptiometry (DXA) and CT. Inhomogeneity caused by susceptibility differences between trabecular bone and surrounding water was studied with MR imaging at 1.5 T using the GESFIDE sequence. The pulse sequence determines the transverse relaxation rate R2 * and its two components, the non-reversible transverse relaxation rate (R2) and the reversible transverse relaxation rate (R2'; i. e. relaxation rate due to magnetic susceptibility) in a single scan. Voxel size was 0.9 x 1.9 x 5.0 mm. Positive significant correlations between R2' and weight, BMC DXA , BMA DXA and BMD CT were observed (r > 0.61 and p DXA and BMD CT (r > 0.66 and p DXA . Thus, R2' measurements are related to the amount of bone mineral, but they also provide information which is not obtainable from bone mineral measurements. (orig.) (orig.)

  8. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency? A systematic literature analysis

    DEFF Research Database (Denmark)

    Klefter, O.; Feldt-Rasmussen, U.

    2009-01-01

    to a muscle modulating effect, and if treatment with GH would primarily increase muscle mass and strength with a secondary increase in BMD/BMC, thus supporting the present physiological concept that mass and strength of bones are mainly determined by dynamic loads from the skeletal muscles. METHOD: We...... performed a systematic literature analysis, including 51 clinical trials published between 1996 and 2008, which had studied the development in muscle mass, muscle strength, BMD, and/or BMC in GH-treated adult GHD patients. RESULTS: GH therapy had an anabolic effect on skeletal muscle. The largest increase...... in muscle mass occurred during the first 12 months of therapy. Most trials measuring BMD/BMC reported significant increases from baseline values. The significant increases in BMD/BMC occurred after 12-18 months of treatment, i.e. usually later than the increases in muscle parameters. Only seven trials...

  9. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  10. Weight loss and bone mineral density.

    Science.gov (United States)

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  11. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  12. Greater access to fast-food outlets is associated with poorer bone health in young children.

    Science.gov (United States)

    Vogel, C; Parsons, C; Godfrey, K; Robinson, S; Harvey, N C; Inskip, H; Cooper, C; Baird, J

    2016-03-01

    A healthy diet positively influences childhood bone health, but how the food environment relates to bone development is unknown. Greater neighbourhood access to fast-food outlets was associated with lower bone mass among infants, while greater access to healthy speciality stores was associated with higher bone mass at 4 years. Identifying factors that contribute to optimal childhood bone development could help pinpoint strategies to improve long-term bone health. A healthy diet positively influences bone health from before birth and during childhood. This study addressed a gap in the literature by examining the relationship between residential neighbourhood food environment and bone mass in infants and children. One thousand one hundred and seven children participating in the Southampton Women's Survey, UK, underwent measurement of bone mineral density (BMD) and bone mineral content (BMC) at birth and 4 and/or 6 years by dual-energy X-ray absorptiometry (DXA). Cross-sectional observational data describing food outlets within the boundary of each participant's neighbourhood were used to derive three measures of the food environment: the counts of fast-food outlets, healthy speciality stores and supermarkets. Neighbourhood exposure to fast-food outlets was associated with lower BMD in infancy (β = -0.23 (z-score): 95% CI -0.38, -0.08) and lower BMC after adjustment for bone area and confounding variables (β = -0.17 (z-score): 95% CI -0.32, -0.02). Increasing neighbourhood exposure to healthy speciality stores was associated with higher BMD at 4 and 6 years (β = 0.16(z-score): 95% CI 0.00, 0.32 and β = 0.13(z-score): 95% CI -0.01, 0.26 respectively). The relationship with BMC after adjustment for bone area and confounding variables was statistically significant at 4 years, but not at 6 years. The neighbourhood food environment that pregnant mothers and young children are exposed may affect bone development during early childhood. If confirmed in

  13. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  14. Variations in habitual bone strains in vivo: long bone versus mandible

    NARCIS (Netherlands)

    de Jong, W.C.; Korfage, J.A.M.; Langenbach, G.E.J.

    2010-01-01

    Little is known about the similarities and dissimilarities between daily in vivo strain histories of different bones, other than the generally accepted view that most bones need daily loading to maintain their mass. Similarities in daily strain histories might uncover a common basic mechanical

  15. Variations in habitual bone strains in vivo: Long bone versus mandible

    NARCIS (Netherlands)

    de Jong, W. C.; Korfage, J. A. M.; Langenbach, G. E. J.

    2010-01-01

    Little is known about the similarities and dissimilarities between daily in vivo strain histories of different bones, other than the generally accepted view that most bones need daily loading to maintain their mass. Similarities in daily strain histories might uncover a common basic mechanical

  16. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  17. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I; Mueller, D; Matsuura, M; Lochmueller, E-M; Zysset, P; Eckstein, F

    2008-01-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  18. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Maira L. Mendonça

    Full Text Available OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT and 21 controls (CG. Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01. Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%. The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005, but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  19. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  20. Study of osteoporosis through the measurement of bone mineral density and trace elements

    International Nuclear Information System (INIS)

    Aras, N.K.; Yilmaz, G.; Alkanl, S.; Korkusuz, F.; Ungan, M.; Kuscu, L.; Laleli, Y.; Eksioglu, F.; Sepici, B.; Gunel, U.

    2000-01-01

    The main purpose of this study was to establish a relation, if any, between bone mineral density, BMD, of the healthy Turkish population of the ages between 15 and 50 with social and demographic information, family history of fractures, personal and inherited characteristic, smoking and alcohol habit, history of fertility, level of physical activity, food consumption especially trace elements and other variables. Most of these relations were discussed in the last RCM in San Diego, CA, October 7-10,1996. Since then we have concentrated our work on more BMD and trace element measurements in bone. To this end, bone mineral density measurements, trace element studies, neutron activation analysis, fluoride analysis and atomic absorption analysis were undertaken and resulting data were analysed

  1. Direct neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian, E-mail: weinheimer@uni-muenster.de [Westfaelische Wilhelms-Universitaet, Institut fuer Kernphysik (Germany)

    2013-03-15

    Direct neutrino mass experiments are complementary to searches for neutrinoless double {beta}-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c{sup 2} . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c{sup 2} by increasing strongly the statistics and-at the same time-reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium {beta}-decay experiments cryo-bolometers investigating the endpoint region of {sup 187}Re {beta}-decay or the electron capture of {sup 163}Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  2. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  3. Nuclear medical methods for determination of bone mineral content

    International Nuclear Information System (INIS)

    Fischer, M.; Kempers, B.; Tschepke, H.D.; Spitz, J.

    1988-01-01

    Osteoporosis is becoming recognized as a major social and economical health problem. Bone mineral content (BMC) depends on many hormonal and metabolic factors. The pathophysiological mechanism of the loss of bone mass is still unclear. For preventive diagnosis and treatment of osteoporosis, quantitative technology is required that will measure BMC with high precision and reproducibility. Nuclear medical methods permit the BMC of the appendicular skeleton to be measured by single photon absorptiometry. Whole-body BMC, as well as spine and femur BMC, can be measured by dual photon absorptiometry. The results from both procedures are reasonably precise and correlate well with the ash weight of isolated bone. The radiation exposure level in both SPA and DPA is low. SPA and DPA may be used for cost-effective screening of high-risk patients to predict the likelihood of future fractures and control osteoporosis therapy. (orig.) [de

  4. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo

    Directory of Open Access Journals (Sweden)

    Stefan Grote

    2013-06-01

    Full Text Available Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (DensiProbe®. We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dual-energy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Z-transformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2, followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2, trochanteric region with 0.685 g/cm2 (±0.19 g/cm2 and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2. Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm. Load to failure was 4050.2 N (±1586.7 N. The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001. The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001. A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  5. Osteoporosis: Modern Paradigms for Last Century's Bones.

    Science.gov (United States)

    Kruger, Marlena C; Wolber, Frances M

    2016-06-17

    The skeleton is a metabolically active organ undergoing continuously remodelling. With ageing and menopause the balance shifts to increased resorption, leading to a reduction in bone mineral density and disruption of bone microarchitecture. Bone mass accretion and bone metabolism are influenced by systemic hormones as well as genetic and lifestyle factors. The classic paradigm has described osteoporosis as being a "brittle bone" disease that occurs in post-menopausal, thin, Caucasian women with low calcium intakes and/or vitamin D insufficiency. However, a study of black women in Africa demonstrated that higher proportions of body fat did not protect bone health. Isoflavone interventions in Asian postmenopausal women have produced inconsistent bone health benefits, due in part to population heterogeneity in enteric bacterial metabolism of daidzein. A comparison of women and men in several Asian countries identified significant differences between countries in the rate of bone health decline, and a high incidence rate of osteoporosis in both sexes. These studies have revealed significant differences in genetic phenotypes, debunking long-held beliefs and leading to new paradigms in study design. Current studies are now being specifically designed to assess genotype differences between Caucasian, Asian, African, and other phenotypes, and exploring alternative methodology to measure bone architecture.

  6. Sequences of Regressions Distinguish Nonmechanical from Mechanical Associations between Metabolic Factors, Body Composition, and Bone in Healthy Postmenopausal Women.

    Science.gov (United States)

    Solis-Trapala, Ivonne; Schoenmakers, Inez; Goldberg, Gail R; Prentice, Ann; Ward, Kate A

    2016-03-09

    There is increasing recognition of complex interrelations between the endocrine functions of bone and fat tissues or organs. The objective was to describe nonmechanical and mechanical links between metabolic factors, body composition, and bone with the use of graphical Markov models. Seventy postmenopausal women with a mean ± SD age of 62.3 ± 3.7 y and body mass index (in kg/m 2 ) of 24.9 ± 3.8 were recruited. Bone outcomes were peripheral quantitative computed tomography measures of the distal and diaphyseal tibia, cross-sectional area (CSA), volumetric bone mineral density (vBMD), and cortical CSA. Biomarkers of osteoblast and adipocyte function were plasma concentrations of leptin, adiponectin, osteocalcin, undercarboxylated osteocalcin (UCOC), and phylloquinone. Body composition measurements were lean and percent fat mass, which were derived with the use of a 4-compartment model. Sequences of Regressions, a subclass of graphical Markov models, were used to describe the direct (nonmechanical) and indirect (mechanical) interrelations between metabolic factors and bone by simultaneously modeling multiple bone outcomes and their relation with biomarker outcomes with lean mass, percent fat mass, and height as intermediate explanatory variables. The graphical Markov models showed both direct and indirect associations linking plasma leptin and adiponectin concentrations with CSA and vBMD. At the distal tibia, lean mass, height, and adiponectin-UCOC interaction were directly explanatory of CSA (R 2 = 0.45); at the diaphysis, lean mass, percent fat mass, leptin, osteocalcin, and age-adiponectin interaction were directly explanatory of CSA (R 2 = 0.49). The regression models exploring direct associations for vBMD were much weaker, with R 2 = 0.15 and 0.18 at the distal and diaphyseal sites, respectively. Lean mass and UCOC were associated, and the global Markov property of the graph indicated that this association was explained by osteocalcin. This study, to our

  7. Three-dimensional geometric analysis of felid limb bone allometry.

    Directory of Open Access Journals (Sweden)

    Michael Doube

    Full Text Available Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry.Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

  8. Early life vitamin D depletion alters the postnatal response to skeletal loading in growing and mature bone

    Science.gov (United States)

    Buckley, Harriet; Owen, Robert; Marin, Ana Campos; Lu, Yongtau; Eyles, Darryl; Lacroix, Damien; Reilly, Gwendolen C.; Skerry, Tim M.; Bishop, Nick J.

    2018-01-01

    There is increasing evidence of persistent effects of early life vitamin D exposure on later skeletal health; linking low levels in early life to smaller bone size in childhood as well as increased fracture risk later in adulthood, independently of later vitamin D status. A major determinant of bone mass acquisition across all ages is mechanical loading. We tested the hypothesis in an animal model system that early life vitamin D depletion results in abrogation of the response to mechanical loading, with consequent reduction in bone size, mass and strength during both childhood and adulthood. A murine model was created in which pregnant dams were either vitamin D deficient or replete, and their offspring moved to a vitamin D replete diet at weaning. Tibias of the offspring were mechanically loaded and bone structure, extrinsic strength and growth measured both during growth and after skeletal maturity. Offspring of vitamin D deplete mice demonstrated lower bone mass in the non loaded limb and reduced bone mass accrual in response to loading in both the growing skeleton and after skeletal maturity. Early life vitamin D depletion led to reduced bone strength and altered bone biomechanical properties. These findings suggest early life vitamin D status may, in part, determine the propensity to osteoporosis and fracture that blights later life in many individuals. PMID:29370213

  9. In vivo analysis of bone calcium by local neutron activation of the hand. Results osteoporotic and hemodialysed patients

    International Nuclear Information System (INIS)

    Maziere, B.; Kuntz, D.; Comar, D.

    1978-01-01

    Neutron activation analysis can be used to measure the total bone mass or simply the calcium mass or concentration of a bone segment, for example the hand bones or vertebrae. For a number of reason, dosimetric, technological but especially physiophatological we decided to use local activation technique. In generalized demineralising one diseases, particularly osteoporosis, the calcium content variations of one segment are in fast comparable to those of another, and more generally to the mineral content variations of the whole skeleton. It is true that ideally we should measure the mineral content of the lumbar vertebrae where the metabolic activity is especially high, and where damage may occur sooner or in any case is detected earlier in osteoporosis. However neutron irradiation of the vertebrae meets with certain technical problems and may also present difficulties in the interpretation of results. Furthermore in other bone diseases, hyperparathyroidism for instance and especially renal osteodystrophy, bone mineral loss is particularly premature and pronounced in the hand and we therefore decided for the moment to use the hand for the neutron activation analysis of bone calcium. The technique enabled us to measure the calcium concentration of the hand bones in hemodialysed subjects and in patients with primitive osteoporosis

  10. Penning trap mass measurements on nobelium isotopes

    International Nuclear Information System (INIS)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-01-01

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes 252-254 No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a 48 Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  11. Measurement of b-hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Abellan Beteta, C. [Universitat de Barcelona, Barcelona (Spain); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Albrecht, J.; Alessio, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Alexander, M. [School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Alkhazov, G. [Petersburg Nuclear Physics Institute (PNPI), Gatchina (Russian Federation); Alvarez Cartelle, P. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Alves, A.A. [Sezione INFN di Roma La Sapienza, Roma (Italy); Amato, S. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (Brazil); Amhis, Y. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Anderson, J. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Appleby, R.B. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Aquines Gutierrez, O. [Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg (Germany); Archilli, F. [Laboratori Nazionali dell' INFN di Frascati, Frascati (Italy); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Arrabito, L. [CC-IN2P3, CNRS/IN2P3, Lyon-Villeurbanne (France); and others

    2012-02-28

    Measurements of b-hadron masses are performed with the exclusive decay modes B{sup +}{yields}J/{psi}K{sup +}, B{sup 0}{yields}J/{psi}K{sup Low-Asterisk 0}, B{sup 0}{yields}J/{psi}K{sub S}{sup 0}, B{sub s}{sup 0}{yields}J/{psi}{phi} and {Lambda}{sub b}{sup 0}{yields}J/{psi}{Lambda} using an integrated luminosity of 35 pb{sup -1} collected in pp collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with J/{psi}{yields}{mu}{sup +}{mu}{sup -} decays and verified to be known to a relative precision of 2 Multiplication-Sign 10{sup -4} using other two-body decays. The results are more precise than previous measurements, particularly in the case of the B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} masses.

  12. Dual photon absorptiometry for bone mineral measurements using a gamma camera

    International Nuclear Information System (INIS)

    Valkema, R.; Prpic, H.; Blokland, J.A.K.; Camps, J.A.J.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1994-01-01

    A gamma camera was equipped with a special collimator and arm assembly for bone mineral measurements with dual photon absorptiometry (DPA). The system was evaluated in vitro and in vivo and compared both with a rectilinear DPA and a dual energy X-ray (DEXA) system. All 3 systems showed a linear response in measurements of 4 vials, containing different amounts of hydroxyapatite. Phantom measurements with the gamma camera system showed a precision of 1.6% to 2.8%. Results obtained in 8 healthy volunteers with rectilinear and gamma camera systems were well correlated (R 2 = 0.78). With the photon beam directed from posterior to anterior, the separation of vertebrae was easy with the gamma camera system. We conclude that bone mineral measurements can be made with a gamma camera for assessment of fracture risk and in the decision process whether a patient needs treatment or not. For follow-up, the precision of DPA with a gamma camera is inadequate. (orig.)

  13. Top Quark Mass Measurements at ATLAS and CMS

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The top quark mass ($m_{top}$) is a fundamental parameter of the Standard Model of Particle Physics (SM). As the heaviest of all known SM particles with a mass close to the EW symmetry breaking scale, the top quark plays a pivotal role in the theory of elementary particles. The exact value of the top quark mass has implications on a number of theoretical predictions, which motivates the need for precision measurements of $m_{top}$. This presentation highlights a number of such precision measurements carried out by the ATLAS and CMS collaborations at centre-of-mass energies of $\\sqrt{s}=7$ and $8$ TeV from the combined LHC Run I datasets. A wide range of analysis strategies are employed in a number of channels. Measurements of both the top quark pole mass and $m_{top}$ as defined by the Monte Carlo generator in simulated signal samples are shown. Finally, a summary of combinations of the LHC measurements is presented, together with a look toward top quark mass measurements at $\\sqrt{s}=13$ TeV.

  14. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  15. Top quark mass measurement at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  16. Measurement of bone mineral contents in Pakistan by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Hashmi, R.

    1990-01-01

    Vertebral bone mineral content (BMC) was measured with dual photon absorptiometry in 144 normal males and 219 females (ages 11-85 years), 118 patients of hyperthyroidism, 7 of chronic renal failure and 5 each of postmenopausal osteoporosis and primary hyperparathyroidism. Generally males had higher BMC than females. Pattern of age related bone gain and diminution was same in both sexes but the rate of bone loss differed significantly, females having higher rate of bone loss. When compared to Western population lower BMC values in our normals were seen. However, rate of bone loss in our population was lower than that reported in the west. BMC values in patients suffering from hyperthyroidism and chronic renal failure were not significantly different that of age matched normals. The small numbers of cases of post menopausal osteoporosis and hyperpara- thyroidism, tough precluding any generalization, did show lower BMC values. Lower BMC values in our normal population could possibly be explained on racial ground. But in spite of less than ideal dietary status in our normal population in general, the lower rate of bone loss and a lower incidence of osteoporosis in hyperthyroid and chronic renal failure cases can raise the possibility of active vitamin D metabolism component, triggered by utraviolet radiation, having an overall beneficiary effect on the calcium cycle. This calls for a more comprehensive workup. (author)

  17. Primary pericranial Ewing's sarcoma on the temporal bone: A case report.

    Science.gov (United States)

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, "pericranial Ewing's sarcoma," and diagnosed the present tumor as pericranial Ewing's sarcoma. We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone.

  18. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  19. Mass Measurement of Very Short Half-Lived Nuclei

    CERN Document Server

    Duma, M; Iacob, V E; Thibault, C

    2002-01-01

    The MISTRAL (Mass measurements at ISolde with a Transmission RAdiofrequency spectrometer on-Line) experiment exploits a rapid measurement technique to make accurate mass determinations of very short-lived nuclei. The physics goals are to elucidate new nuclear structure effects and constrain nuclear mass models in regions of interest to nuclear astrophysics.\\\\ \\\\The spectrometer, installed in May 97, performed as promised in the proposal with mass resolution exceeding 100,000. In its first experiment in July 1998, neutron-rich Na isotopes having half-lives as short as 31 ms were measured. A second experiment in November 1998 enabled us to improve the measurement precision of the isotopes $^{26-30}$Na to about 20 keV. The measurement program continues as experiment IS 373.

  20. Precision measurement of $D$ meson mass differences

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    Using three- and four-body decays of $D$ mesons produced in semileptonic $b$-hadron decays, precision measurements of $D$ meson mass differences are made together with a measurement of the $D^{0}$ mass. The measurements are based on a dataset corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected in $pp$ collisions at 7~TeV. Using the decay $D^0 \\rightarrow K^{+} K^{-} K^{-} \\pi^{+}$, the $D^0$ mass is measured to be \\begin{alignat*}{3} M(D^0) \\phantom{ghd} &=&~1864.75 \\pm 0.15 \\,({\\rm stat}) \\pm 0.11 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2. \\end{alignat*} The mass differences \\begin{alignat*}{3} M(D^{+}) - M(D^{0}) &=& 4.76 \\pm 0.12 \\,({\\rm stat}) \\pm 0.07 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2, \\\\ M(D^{+}_s) - M(D^{+}) &=& \\phantom{00}98.68 \\pm 0.03 \\,({\\rm stat}) \\pm 0.04 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2 \\end{alignat*} are measured using the $D^0 \\rightarrow K^{+} K^{-} \\pi^{+} \\pi^{-}$ and $D^{+}_{(s)} \\rightarrow K^{+}K^{-} \\pi^{+}$ modes.

  1. Dioxin-like compounds are not associated with bone strength measured by ultrasonography in Inuit women from Nunavik (Canada): results of a cross-sectional study.

    Science.gov (United States)

    Paunescu, Alexandra-Cristina; Ayotte, Pierre; Dewailly, Eric; Dodin, Sylvie

    2013-01-01

    Bone strength in Inuit people appears lower than that of non-Aboriginals. Inuit are exposed to persistent organic pollutants including dioxin-like compounds (DLCs) through their traditional diet that comprises predatory fish and marine mammal fat. Results from experimental and population studies suggest that some DLCs can alter bone metabolism and increase bone fragility. This cross-sectional descriptive study was conducted to examine the relationship between the stiffness index (SI) and plasma concentrations of total DLCs or specific dioxin-like polychlorinated biphenyls (DL-PCBs) in Inuit women of Nunavik (Northern Quebec, Canada). SI was determined by ultrasonography at the right calcaneus of 194 Inuit women aged 35-72 years who participated to Qanuippitaa? How Are We? Nunavik Inuit Health Survey in 2004. Plasma total DLC levels were quantified by measuring the aryl hydrocarbon receptor-mediated transcriptional activity elicited by plasma sample extracts in a cell-based reporter gene assay. Plasma concentrations of DL-PCBs nos. 105, 118, 156, 157, 167 and 189 were measured by gas chromatography-mass spectrometry. We used multiple linear regression analyses to investigate relations between total DLCs or specific DL-PCBs and SI, taking into consideration several potential confounders. Neither total plasma DLCs nor specific DL-PCBs were associated with SI after adjustment for several confounders and covariates. Our results do not support a relation between exposure to DLCs and bone strength measured by ultrasonography in Inuit women of Nunavik.

  2. Dioxin-like compounds are not associated with bone strength measured by ultrasonography in Inuit women from Nunavik (Canada: results of a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Paunescu

    2013-05-01

    Full Text Available Background. Bone strength in Inuit people appears lower than that of non-Aboriginals. Inuit are exposed to persistent organic pollutants including dioxin-like compounds (DLCs through their traditional diet that comprises predatory fish and marine mammal fat. Results from experimental and population studies suggest that some DLCs can alter bone metabolism and increase bone fragility. Objective. This cross-sectional descriptive study was conducted to examine the relationship between the stiffness index (SI and plasma concentrations of total DLCs or specific dioxin-like polychlorinated biphenyls (DL-PCBs in Inuit women of Nunavik (Northern Quebec, Canada. Methods. SI was determined by ultrasonography at the right calcaneus of 194 Inuit women aged 35–72 years who participated to Qanuippitaa? How Are We? Nunavik Inuit Health Survey in 2004. Plasma total DLC levels were quantified by measuring the aryl hydrocarbon receptor–mediated transcriptional activity elicited by plasma sample extracts in a cell-based reporter gene assay. Plasma concentrations of DL-PCBs nos. 105, 118, 156, 157, 167 and 189 were measured by gas chromatography–mass spectrometry. We used multiple linear regression analyses to investigate relations between total DLCs or specific DL-PCBs and SI, taking into consideration several potential confounders. Results. Neither total plasma DLCs nor specific DL-PCBs were associated with SI after adjustment for several confounders and covariates. Conclusion. Our results do not support a relation between exposure to DLCs and bone strength measured by ultrasonography in Inuit women of Nunavik.

  3. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  4. Electron spin resonance (ESR dose measurement in bone of Hiroshima A-bomb victim.

    Directory of Open Access Journals (Sweden)

    Angela Kinoshita

    Full Text Available Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims' bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR. In 1973, one of the authors of the present study (SM traveled to Japan and conducted a preliminary experiment on the victims' bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.

  5. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim

    Science.gov (United States)

    2018-01-01

    Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims’ bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims’ bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles. PMID:29408890

  6. Exercise Preserves Physical Function in Prostate Cancer Patients with Bone Metastases.

    Science.gov (United States)

    Galvão, Daniel A; Taaffe, Dennis R; Spry, Nigel; Cormie, Prue; Joseph, David; Chambers, Suzanne K; Chee, Raphael; Peddle-McIntyre, Carolyn J; Hart, Nicolas H; Baumann, Freerk T; Denham, James; Baker, Michael; Newton, Robert U

    2018-03-01

    The presence of bone metastases has excluded participation of cancer patients in exercise interventions and is a relative contraindication to supervised exercise in the community setting because of concerns of fragility fracture. We examined the efficacy and safety of a modular multimodal exercise program in prostate cancer patients with bone metastases. Between 2012 and 2015, 57 prostate cancer patients (70.0 ± 8.4 yr; body mass index, 28.7 ± 4.0 kg·m) with bone metastases (pelvis, 75.4%; femur, 40.4%; rib/thoracic spine, 66.7%; lumbar spine, 43.9%; humerus, 24.6%; other sites, 70.2%) were randomized to multimodal supervised aerobic, resistance, and flexibility exercises undertaken thrice weekly (EX; n = 28) or usual care (CON; n = 29) for 3 months. Physical function subscale of the Medical Outcomes Study Short-Form 36 was the primary end point as an indicator of patient-rated physical functioning. Secondary end points included objective measures of physical function, lower body muscle strength, body composition, and fatigue. Safety was assessed by recording the incidence and severity of any adverse events, skeletal complications, and bone pain throughout the intervention. There was a significant difference between groups for self-reported physical functioning (3.2 points; 95% confidence interval, 0.4-6.0 points; P = 0.028) and lower body muscle strength (6.6 kg; 95% confidence interval, 0.6-12.7; P = 0.033) at 3 months favoring EX. However, there was no difference between groups for lean mass (P = 0.584), fat mass (P = 0.598), or fatigue (P = 0.964). There were no exercise-related adverse events or skeletal fractures and no differences in bone pain between EX and CON (P = 0.507). Multimodal modular exercise in prostate cancer patients with bone metastases led to self-reported improvements in physical function and objectively measured lower body muscle strength with no skeletal complications or increased bone pain. ACTRN12611001158954.

  7. Trabecular bone in the calcaneus of runners.

    Directory of Open Access Journals (Sweden)

    Andrew Best

    Full Text Available Trabecular bone of the human calcaneus is subjected to extreme repetitive forces during endurance running and should adapt in response to this strain. To assess possible bone functional adaptation in the posterior region of the calcaneus, we recruited forefoot-striking runners (n = 6, rearfoot-striking runners (n = 6, and non-runners (n = 6, all males aged 20-41 for this institutionally approved study. Foot strike pattern was confirmed for each runner using a motion capture system. We obtained high resolution peripheral computed tomography scans of the posterior calcaneus for both runners and non-runners. No statistically significant differences were found between runners and nonrunners or forefoot strikers and rearfoot strikers. Mean trabecular thickness and mineral density were greatest in forefoot runners with strong effect sizes (<0.80. Trabecular thickness was positively correlated with weekly running distance (r2 = 0.417, p<0.05 and years running (r2 = 0.339, p<0.05 and negatively correlated with age at onset of running (r2 = 0.515, p<0.01 Trabecular thickness, mineral density and bone volume ratio of nonrunners were highly correlated with body mass (r2 = 0.824, p<0.05 and nonrunners were significantly heavier than runners (p<0.05. Adjusting for body mass revealed significantly thicker trabeculae in the posterior calcaneus of forefoot strikers, likely an artifact of greater running volume and earlier onset of running in this subgroup; thus, individuals with the greatest summative loading stimulus had, after body mass adjustment, the thickest trabeculae. Further study with larger sample sizes is necessary to elucidate the role of footstrike on calcaneal trabecular structure. To our knowledge, intraspecific body mass correlations with measures of trabecular robusticity have not been reported elsewhere. We hypothesize that early adoption of running and years of sustained moderate volume running stimulate bone modeling in trabeculae of the

  8. First mass measurements at LHCb

    CERN Multimedia

    Bressieux, J

    2011-01-01

    The LHC opens new frontiers in heavy flavour physics through an unprecedented statistical reach for a variety of interesting states produced in pp collisions. The LHCb spectrometer provides a good mass resolution and is suitable for spectroscopy studies. We present first preliminary mass measurements of several $b$ hadrons and of the exotic $X(3872)$ meson, reconstructed in final states containing a $J/\\psi$ using the data collected in 2010 by the LHCb experiment. An important aspect of the analysis is the calibration of the momentum scale using $J/\\psi \\to \\mu^+ \\mu^-$ decays, as well as the control of systematic uncertainties. While the already very competitive mass measurements for the $B^+$, $B^0$ and $B^0_s$ mesons receive similar contributions from systematic and statistical uncertainties, those of the $\\Lambda_b$, $B^+_c$ and $X(3872)$ particles are dominated by statistical uncertainties, and will therefore substantially improve with more data in the future.

  9. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Giovanni; Fina, Laura [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Bandirali, Michele; Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Unita di Radiologia, San Donato Milanese (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, San Donato Milanese (Italy)

    2014-08-15

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  10. Measurement of vertebral bone marrow lipid profile at 1.5-T proton magnetic resonance spectroscopy and bone mineral density at dual-energy X-ray absorptiometry: correlation in a swine model

    International Nuclear Information System (INIS)

    Di Leo, Giovanni; Fina, Laura; Bandirali, Michele; Messina, Carmelo; Sardanelli, Francesco

    2014-01-01

    Bone marrow is mainly composed of red (hematopoietic) and yellow (fatty) components. Soon after the birth there is a physiological conversion of the bone marrow from red to yellow, so that the percentage of hematopoietic cells and adipocytes changes with aging. Although bone marrow adipogenesis is a physiologic process involving all mammals, recent studies showed an accelerated marrow adipogenesis associated with several chronic conditions, including osteoporosis [4] and diabetes mellitus. Moreover, this increased marrow fat is accompanied by a decrease in bone density. Marrow fat is therefore increasingly believed to influence the bone microenvironment. Diagnostic tools for quantitative measurement of bone marrow fat and bone mineral density (BMD) include proton magnetic resonance spectroscopy (MRS) and dual-energy Xray absorptiometry (DXA), respectively. Using MRS, an inverse relationship between vertebral bone marrow fat content and lumbar BMD has been demonstrated in patients affected with osteoporosis or with diabetes mellitus. In most studies, a quite standard MRS sequence has been used, with short echo times (TE) for the measurement of the bulk methylene. In this study we sought to optimize the MRS sequence in order to try to measure other fat components of the vertebral bone marrow at 1.5 T. For this purpose, we used an animal model that allowed long acquisition times and repeated measures. Moreover, we aimed at estimating in this model the relationship between vertebral bone marrow fat content at proton MRS and BMD at DXA.

  11. Ethnic Differences in Bone Health

    Directory of Open Access Journals (Sweden)

    Ayse eZengin

    2015-03-01

    Full Text Available There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture as well muscle strength (mass, force generation, anatomy and fat mass. We review what is known about differences in bone-densitometry derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 – 2014. A ‘one size fits all approach’ should not be used to understand better ethnic differences in fracture risk.

  12. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  13. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  14. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    Science.gov (United States)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  15. Bone mineral density in immigrants from southern China to Denmark. A cross-sectional study

    DEFF Research Database (Denmark)

    Ravn, Pernille; Wang, S; Overgaard, K

    1996-01-01

    Immigration from Japan to USA has been shown to increase bone mineral density (BMD) and body fat in women. The effects of immigration between other geographical areas on bone mass and body composition are largely unknown, especially in men. In the present study, we measured bone mass and body...... composition by dual energy X-ray absorptiometry (Hologic QDR-2000) in 73 healthy premenopausal women (age 35 +/- 8 years) and 69 men (age 40 +/- 12 years) who had immigrated from southern China to Denmark 2 months to 36 years ago. The BMD measurements (Total BMD, trunk BMD and leg BMD) were related positively...... to years since immigration (YSI) (R2 = 0.10-0.16, p women, but not in men. Fat distribution was related mainly to age in both premenopausal women and men (R2 = 0.16-0.26, p women (age 36 +/- 6 years). Chinese...

  16. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens

    Directory of Open Access Journals (Sweden)

    Sabine G. Gebhardt-Henrich

    2017-08-01

    Full Text Available Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT, a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage.

  17. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  18. [Milk, Daily products and Bone health.Milk or dairy products and bone:Epidemiology.

    Science.gov (United States)

    Tamaki, Junko

    2018-01-01

    An assessment of the association between the intake of milk or dairy products and bone density or the risk of fractures on the basis of epidemiological studies revealed the following findings:(1)a sufficient prepubertal intake of milk or dairy products could contribute to the increased bone growth and maximized peal bone mass because the intake of calcium in the corresponding stage in Japan is inadequate;(2)adequate milk intake could contribute to the maintenance of peal bone mass among menstruating adult females and the decrease of bone loss in postmenopausal females. Adequate milk intake could contribute to the decrease of aging-induced bone loss in elderly males, though there is no sufficient scientific evidence;and(3)a meta-analysis indicated no correlation between the increased milk intake and decreased risks of hip fractures in the elderly. As the intake of milk or dairy products in the Japanese elderly is rather less than that reported by the meta-analysis, the minimal intake of milk or dairy products is anticipated to elevate the risk of fractures in middle-aged or elderly males and females although the scientific evidence is inadequate.

  19. W Boson Mass Measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke Univ., Durham, NC (United States). Physics Dept.

    2017-03-27

    This is the closeout report for the grant for experimental research at the energy frontier in high energy physics. The report describes the precise measurement of the W boson mass at the CDF experiment at Fermilab, with an uncertainty of ≈ 12 MeV, using the full dataset of ≈ 9 fb-1 collected by the experiment up to the shutdown of the Tevatron in 2011. In this analysis, the statistical and most of the experimental systematic uncertainties have been reduced by a factor of two compared to the previous measurement with 2.2 fb-1 of CDF data. This research has been the culmination of the PI's track record of producing world-leading measurements of the W boson mass from the Tevatron. The PI performed the first and only measurement to date of the W boson mass using high-rapidity leptons using the D0 endcap calorimeters in Run 1. He has led this measurement in Run 2 at CDF, publishing two world-leading measurements in 2007 and 2012 with total uncertainties of 48 MeV and 19 MeV respectively. The analysis of the final dataset is currently under internal review in CDF. Upon approval of the internal review, the result will be available for public release.

  20. Risk of Fracture in Women with Sarcopenia, Low Bone Mass, or Both.

    Science.gov (United States)

    Harris, Rebekah; Chang, Yuefang; Beavers, Kristen; Laddu-Patel, Deepika; Bea, Jennifer; Johnson, Karen; LeBoff, Meryl; Womack, Catherine; Wallace, Robert; Li, Wenjun; Crandall, Carolyn; Cauley, Jane

    2017-12-01

    To determine whether women with sarcopenia and low bone mineral density (BMD) are at greater risk of clinical fractures than those with sarcopenia or low BMD alone. Women's Health Initiative (WHI) Observational and Clinical trials. Three U.S. clinical centers (Pittsburgh, PA; Birmingham, AL; Phoenix/Tucson, AZ). Women (mean age 63.3 ± 0.07) with BMD measurements (N = 10,937). Sarcopenia was defined as appendicular lean mass values corrected for height and fat mass. Low BMD was defined as a femoral neck T-score less than -1.0 based on the Third National Health and Nutrition Examination Survey reference database for white women. Cox proportional hazards analysis was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). We followed women for incident fractures over a median of 15.9 years. Participants were classified into mutually exclusive groups based on BMD and sarcopenia status: normal BMD and no sarcopenia (n = 3,857, 35%), sarcopenia alone (n = 774, 7%), low BMD alone (n = 4,907, 45%), and low BMD and sarcopenia (n = 1,399, 13%). Women with low BMD, with (HR = 1.72, 95% CI = 1.44-2.06) or without sarcopenia (HR = 1.58, 95% CI = 1.37-1.83), had greater risk of fracture than women with normal BMD; the difference remained statistically significant after adjustment for important covariates. Women with low BMD, with (HR = 2.78, 95% CI = 1.78-4.30 and without (HR = 2.42, 95% CI = 1.63-3.59) sarcopenia had higher risk of hip fractures. Women with sarcopenia alone had similar HRs to women with normal BMD. Compared to women with normal BMD. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.