WorldWideScience

Sample records for bone marrow stem

  1. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... lymphoma , and myeloma can be treated with a bone marrow transplant . This is now often called a stem cell ... are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. " ...

  2. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  3. Effect of bone marrow mesenchymal stem cells on the proliferation of bone marrow CD34~+ cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王荣

    2013-01-01

    Objective To investigate the effect on the marrow CD34+ cells by bone marrow mesenchymal stem cells(BMMSC),VarioMACS was used to sort bone marrow CD34+ cells,and then the purity of CD34+ cell was tested by FCM. Marrow mononuclear cells from abortion fetal bone marrow were isolated,and BMMSC were

  4. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...

  5. Partitioning of bone marrow into stem cell regulatory domains.

    OpenAIRE

    Maloney, M A; Lamela, R A; Banda, M J; Patt, H M

    1982-01-01

    To examine the hypothesis that bone marrow consists of discrete stem cell regulatory volumes or domains, we studied spleen colony-forming unit (CFU-S) population growth kinetics in unirradiated WBB6F1-W/Wv mice receiving various doses of +/+ bone marrow cells. Assay of femoral marrow CFU-S content in the eight recipient dose groups revealed a family of growth curves having an initial dose-independent exponential phase and a subsequent dose-dependent deceleration phase. CFU-S content at the gr...

  6. Regulation of Hematopoietic Stem Cells by Bone Marrow Stromal Cells

    OpenAIRE

    Anthony, Bryan; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here we review the complex and diverse stromal cell populations that reside ...

  7. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  8. Bone Marrow Stem Cell as a Potential Treatment for Diabetes

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Diabetes mellitus (DM is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs and tissue stem cells (TSCs to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM.

  9. Clonal Characterization of Bone Marrow Derived Stem Cells and Their Application for Bone Regeneration

    OpenAIRE

    Xiao, Yin; Mareddy, Shobha; Crawford, Ross

    2010-01-01

    Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolat...

  10. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    OpenAIRE

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of t...

  11. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  12. Bone marrow-derived stem cells and respiratory disease.

    Science.gov (United States)

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  13. The survival of cryopreserved human bone marrow stem cells.

    Science.gov (United States)

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  14. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    OpenAIRE

    Le Thua Trung Hau; Duc Phu Bui; Nguyen Duy Thang; Pham Dang Nhat; Le Quy Bao; Nguyen Phan Huy; Tran Ngoc Vu; Le Phuoc Quang; Boeckx willy Denis; Mey Albert De

    2015-01-01

    Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone a...

  15. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  16. Autologous bone marrow stem cells--properties and advantages.

    Science.gov (United States)

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  17. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  18. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    OpenAIRE

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labe...

  19. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    OpenAIRE

    Sabine Wislet-Gendebien; Emerence Laudet; Virginie Neirinckx; Bernard Rogister

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In th...

  20. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking.

    Science.gov (United States)

    Ratajczak, M Z

    2015-04-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  1. Differentiation of rat bone marrow stem cells in liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Yu-Tao Zhan; Yu Wang; Lai Wei; Bin Liu; Hong-Song Chen; Xu Cong; Ran Fei

    2006-01-01

    AIM: To investigate the differentiation of rat bone marrow stem cells in liver after partial hepatectomy.METHODS: Bone marrow cells were collected from the tibia of rat with partial hepatectomy, the medial and left hepatic lobes were excised. The bone marrow stem cells (Thy+CD3-CD45RA- cells) were enriched from the bone marrow cells by depleting red cells and fluorescence-activated cell sorting. The sorted bone marrow stem cells were labeled by PKH26-GL in vitro and autotransplanted by portal vein injection. After 2wk, the transplanted bone marrow stem cells in liver were examined by the immunohistochemistry of albumin (hepatocyte-specific marker).RESULTS: The bone marrow stem cells (Thy+CD3-CD45RA- cells) accounted for 2.8% of bone marrow cells without red cells. The labeling rate of 10μM PKH26-GL on sorted bone marrow stem cells was about 95%.There were sporadic PKH26-GL-labeled cells among hepatocytes in liver tissue section, and some of the cells expressed albumin.CONCLUSION: Rat bone marrow stem cells can differentiate into hepatocytes in regenerative environment and may participate in liver regeneration after partial hepatectomy.

  2. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Science.gov (United States)

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  3. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  4. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in (Review)

    OpenAIRE

    Ehninger, A; Trumpp, A

    2011-01-01

    Stem cell niches are defined as the cellular and molecular microenvironments that regulate stem cell function together with stem cell autonomous mechanisms. This includes control of the balance between quiescence, self-renewal, and differentiation, as well as the engagement of specific programs in response to stress. In mammals, the best understood niche is that harboring bone marrow hematopoietic stem cells (HSCs). Recent studies have expanded the number of cell types contributing to the HSC...

  5. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    DEFF Research Database (Denmark)

    Tormin, Ariane; Li, Ou; Brune, Jan Claas;

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of prim...

  6. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  7. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  8. The separation of a mixture of bone marrow stem cells from tumor cells: an essential step for autologous bone marrow transplantation

    International Nuclear Information System (INIS)

    KHT tumor cells were mixed with mouse bone marrow to simulate a sample of bone marrow containing metastatic tumor cells. This mixture was separated into a bone marrow fraction and a tumor cell fraction by centrifugal elutriation. Elutriation did not change the transplantability of the bone marrow stem cells as measured by a spleen colony assay and an in vitro erythroid burst forming unit assay. The tumorogenicity of the KHT cells was similarly unaffected by elutriation. The data showed that bone marrow cells could be purified to less than 1 tumor cell in more than 106 bone marrow cells. Therefore, purification of bone marrow removed prior to lethal radiation-drug combined therapy for subsequent autologous transplantation appears to be feasible using modifications of this method if similar physical differences between human metastatic tumor cells and human bone marrow cells exist. This possibility is presently being explored

  9. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  10. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  11. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  12. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  13. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  14. Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Insulin-Dependent Diabetes

    OpenAIRE

    Fotino, Carmen; Ricordi, Camillo; Lauriola, Vincenzo; Alejandro, Rodolfo; Pileggi, Antonello

    2010-01-01

    The bone marrow is an invaluable source of adult pluripotent stem cells, as it gives rise to hematopoietic stem cells, endothelial progenitor cells, and mesenchymal cells, amongst others. The use of bone marrow-derived stem cell (BMC) transplantation (BMT) may be of assistance in achieving tissue repair and regeneration, as well as in modulating immune responses in the context of autoimmunity and transplantation. Ongoing clinical trials are evaluating the effects of BMC to preserve functiona...

  15. 2012478 Biological characteristics of bone marrow mesenchymal stem cells and JAK2 mutation in myeloproliferative neoplasms

    Institute of Scientific and Technical Information of China (English)

    田竑

    2012-01-01

    Objective To study the biological characteristics of bone marrow mesenchymal stem cells(BMSCs) and detect JAK2 mutation in BMSCs from myeloproliferative neoplasms(MPN) patients. Methods JAK2 V617F mutation and exon 12 mutation in 70 MPN patients’ blood or bone marrow samples were detected.

  16. Cross-talk between Bone Marrow and Tissue Injury : Novel Regenerative Therapy for Severely Damaged Tissues by Mobilizing Bone Marrow Mesenchymal Stem Cells in Vivo

    OpenAIRE

    Tamai, Katsuto; Kaneda, Yasufumi

    2013-01-01

    group box 1 (HMGB1), which mobilizes a sub-population of non-hematopoietic cells from bone marrow into the circulation to repair skin and restore Col 7 expression. These bone marrow-derived epithelial stem/progenitor cells are derived from a lineage-negative, platelet-derived growth factor alpha-positive mesenchymal stem cell pool in bone marrow, which represents less than 0.3% of the total bone marrow cell population. In addition, systemic administration of HMGB1 to wounded wild-type mice le...

  17. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    Directory of Open Access Journals (Sweden)

    Le Thua Trung Hau

    2015-12-01

    Full Text Available Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone allograft as compared to an autologous bone graft in the treatment of bone nonunion. Bone marrow aspiration concentrate (BMAC was previously produced from bone marrow aspirate via a density gradient centrifugation. Autologous cancellous bone was harvested in 9 patients and applied to the nonunion site. In 18 patients of the clinical trial group after the debridement, the bone gaps were filled with a composite of BMAC and allograft cancellous bone chips (BMAC-ACB. Bone consolidation was obtained in 88.9 %, and the mean interval between the cell transplantation and union was 4.6 +/- 1.5 months in the autograft group. Bone union rate was 94.4 % in group of composite BMAC-ACB implantation. The time to union in BMAC-ACB grafting group was 3.3 +/- 0.90 months, and led to faster healing when compared to the autograft. A mean concentration of autologous progenitor cells was found to be 2.43 +/- 1.03 (x106 CD34+ cells/ml, and a mean viability of CD34+ cells was 97.97 +/- 1.47 (%. This study shows that the implantation of BMAC has presented the efficacy for treatment of nonunion and may contribute an available alternative to autologous cancellous bone graft. But large clinical application of BM-MSCs requires a more appropriate and profound scientific investigations. [Biomed Res Ther 2015; 2(12.000: 409-417

  18. Targeting the bone marrow: applications in stem cell transplantation

    International Nuclear Information System (INIS)

    Therapeutic doses of radiation cab be selectively directed to the bone marrow either directly using vectors that bind to myeloid and/or lymphoid specific antigens or indirectly by targeting bone matrix. The combination of an accessible target tissue and relatively radiation sensitive malignant cells favours the use of targeted radiotherapy in the treatment of haematopoietic malignancies. Dose escalation of targeted radiation can increase tumour cell destruction and has led to the use of myelosuppressive and possibly myeloablative doses of targeted radiation. A natural development has been the use of targeted radiation in conditioning prior to haematopoietic stem cell transplantation (HSCT). Several groups are actively exploring the use of targeted radiotherapy in the context of HSCT as treatment for haematological malignancies. Although no randomised trials using targeted radiotherapy in HSCT have been published, phase I and II trials have shown very encouraging results stimulating further clinical research in this field. After more than a decade of translational research the optimal combination of therapeutic radioisotope and vector has not been determined. This review summarises the clinical experience of targeted radiotherapy in HSCT and discusses the problems that still need to be solved to maximise the potential of this new treatment modality in HSCT

  19. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus;

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  20. Mesenchymal Stem Cells in Immune-Mediated Bone Marrow Failure Syndromes

    OpenAIRE

    Maria-Christina Kastrinaki; Konstantia Pavlaki; Batsali, Aristea K.; Elisavet Kouvidi; Irene Mavroudi; Charalampos Pontikoglou; Papadaki, Helen A

    2013-01-01

    Immune-mediated bone marrow failure syndromes (BMFS) are characterized by ineffective marrow haemopoiesis and subsequent peripheral cytopenias. Ineffective haemopoiesis is the result of a complex marrow deregulation including genetic, epigenetic, and immune-mediated alterations in haemopoietic stem/progenitor cells, as well as abnormal haemopoietic-to-stromal cell interactions, with abnormal release of haemopoietic growth factors, chemokines, and inhibitors. Mesenchymal stem/stromal cells (MS...

  1. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  2. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  3. Replacement of hematopoietic system by allogeneic stem cell transplantation in myelofibrosis patients induces rapid regression of bone marrow fibrosis

    OpenAIRE

    Kröger Nicolaus; Kvasnicka Michael; Thiele Jürgen

    2012-01-01

    Abstract Bone marrow fibrosis is a hallmark of primary and post ET/PV myelofibrosis. To investigated the impact of replacement of the hematopoietic system in myelofibrosis patients by allogeneic stem cell transplantation on bone marrow fibrosis, we studied bone marrow fibrosis on bone marrow samples from 24 patients with myelofibrosis before and after dose-reduced conditioning followed by allogeneic stem cell transplantation from related or unrelated donor. Using the European Consensus on Gra...

  4. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    OpenAIRE

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was...

  5. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  6. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche

    OpenAIRE

    Méndez-Ferrer, Simón; Michurina, Tatyana V.; Ferraro, Francesca; Amin R Mazloom; MacArthur, Ben D; Lira, Sergio A.; Scadden, David T.; Ma’ayan, Avi; Enikolopov, Grigori N.; Frenette, Paul S.

    2010-01-01

    The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial tr...

  7. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    OpenAIRE

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed AbdolReza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was d...

  8. Bone Marrow Derived Adult Stem Cell Implantation: A Possible Permanent Treatment Modality for Type 2 Diabetics

    OpenAIRE

    R.S. KAHLON; M.K. Manchanda; P. KANWAL

    2011-01-01

    Introduction: Diabetes is one of the most prevalent chronic disease that exists in the world. Type 2Diabetes is the predominant type of diabetes. Management is basically limited to exercise, diet and oralhypoglycemic drugs before insulin therapy has to be instituted. But bone marrow derived stem cellimplantation into the islets has shown very encouraging results for diabetics.Methods: Bone marrow derived stem cells when implanted in the pancreas leads to regeneration ofinsulin producing Beta ...

  9. Osteobiol (r) enhances osteogenic differentiation in bone marrow derived stem cells

    OpenAIRE

    D. Lauritano; Carinci, F.; Zollino, I; A. Hassanipour; Saggese, V; A. Palmieri; Girardi, A; Cura, F; A. Piras; Zamboni, P.; Brunelli, G

    2012-01-01

    OsteoBiol (R) (OsteoBiol, Tecnoss Dental, Turin, Italy) a cortical collagenated porcine bone is largely employed in oral implant techniques for bone regeneration thanks to its biocompatibility and osteoconductivity To study the mechanism by which cortical porcine bone promotes osteoblast differentiation and bone regeneration, changes in expression level of bone related genes were investigated by real time RT-PCR, in bone marrow derived stem cells and human osteoblasts cultivated with OsteoBio...

  10. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts

    Institute of Scientific and Technical Information of China (English)

    Youxin Song; Zhujun Wang; Zhixue Wang; Hong Zhang; Xiaohui Li; Bin Chen

    2012-01-01

    Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.

  11. Comparisons of Mouse Mesenchymal Stem Cells in Primary Adherent Culture of Compact Bone Fragments and Whole Bone Marrow

    OpenAIRE

    Yiting Cai; Tianshu Liu; Fang Fang; Chengliang Xiong; Shiliang Shen

    2015-01-01

    The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment cult...

  12. Cultivation of hamster bone marrow haematopoietic stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Kovačević-Filipović Milica

    2010-01-01

    Full Text Available Hamster, a hibernating animal, is an important experimental model in research on the influence of hypothermia on different physiological processes. A simple procedure for cultivation and identification of hamster hematopoetic stem cells (HSC and hematopoetic progenitor cells (HPC is a premise for a successful investigation upon hypothermia effects on hematopoiesis. The aim of this work was to evaluate the utilization of commercially available methylcellulose media (MC and recombinant mouse and human cytokines for hamster HSC and HPC assays, in order to enable further studies on these cells. Hamster bone marrow mononuclear cells (BMMNC were plated in MC containing cytokines that support mouse or human HPC growth. Also, BMMNC were resuspended in cytokine supplemented liquid media and incubated for 5 weeks with a four day monitoring of viable cell number. We demonstrated that hamster hematopoietic progenitor cells committed for erythroid lineage and myeloid lineage successfully formed recognizable colonies in both mouse and human MC, while multipotent progenitor cells formed colonies only in mouse MC. We also defined conditions for the evaluation of hamster HSC activity in liquid cultures, based on continuous 5 weeks HSC proliferation. The obtained results verify the utilization of mouse specific MC for further research on hamster HPC biology during hypothermia.

  13. Adiponectin Promotes Human Jaw Bone Marrow Stem Cell Osteogenesis.

    Science.gov (United States)

    Pu, Y; Wu, H; Lu, S; Hu, H; Li, D; Wu, Y; Tang, Z

    2016-07-01

    Human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) are multipotent progenitor cells with osteogenic differentiation potential. The relationship between adiponectin (APN) and the metabolism of h-JBMMSCs has not been fully elucidated, and the underlying mechanism remains unclear. The aim of the study was to investigate the effect and mechanism of APN on h-JBMMSC metabolism. h-JBMMSCs were obtained from the primary culture of human jaw bones and treated with or without APN (1 µg/mL). Osteogenesis-related gene expression was evaluated by real-time polymerase chain reaction (PCR), alkaline phosphatase (ALP) activity assay, and enzyme-linked immunosorbent assay (ELISA). To further investigate the signaling pathway, mechanistic studies were performed using Western blotting, immunofluorescence, lentiviral transduction, and SB202190 (a specific p38 inhibitor). Alizarin Red staining showed that APN promoted h-JBMMSC osteogenesis. Real-time PCR, ALP assay, and ELISA showed that ALP, osteocalcin (OCN), osteopontin, and integrin-binding sialoprotein were up-regulated in APN-treated cells compared to untreated controls. Immunofluorescence revealed that adaptor protein containing a pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL1) translocated from the nucleus to the cytoplasm with APN treatment. Additionally, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased over time with APN treatment. Moreover, knockdown of APPL1 or p38 MAPK inhibition blocked the expression of APN-induced calcification-related genes including ALP, Runt-related transcription factor 2 (RUNX2), and OCN. Furthermore, Alizarin Red staining of calcium nodes was not increased by the knockdown of APPL1 or p38 inhibition. Our data suggest that this regulation is mediated through the APPL1-p38 MAPK signaling pathway. These findings collectively provide evidence that APN induces the osteogenesis of h-JBMMSCs through APPL1-mediated p38 MAPK activation

  14. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    Institute of Scientific and Technical Information of China (English)

    Bruno; C; Huber; Ulrich; Grabmaier; Stefan; Brunner

    2014-01-01

    Parathyroid hormone(PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.

  15. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration.

    Science.gov (United States)

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-11-26

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  16. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  17. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Peng Xia; Su Pan; Jieping Cheng; Maoguang Yang; Zhiping Qi; Tingting Hou; Xiaoyu Yang

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu-bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid-and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi-tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro-tubule-associated protein 1B via a cross-signaling network, and affect the migratory efifciency of bone marrow mesenchymal stem cells towards injured spinal cord.

  18. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    OpenAIRE

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury...

  19. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  20. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction

    OpenAIRE

    Bao-xia Zhang; Jin-sheng Zhang; Mei-mei Du; Xiao-ya Wang; Wei Li

    2016-01-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Pana...

  1. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  2. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  3. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  4. OVERLAPPING ROLES FOR ENDOTHELIAL SELECTINS IN MURINE HEMATOPOIETIC STEM/PROGENITOR CELL HOMING TO BONE MARROW

    OpenAIRE

    Nabors, L. Karina; Wang, Leo D.; Wagers, Amy J.; Kansas, Geoffrey S.

    2013-01-01

    Selectins are carbohydrate-binding adhesion molecules critically involved in leukocyte recognition of endothelium. The endothelial selectins have been implicated in homing of hematopoietic stem/progenitor cell(s) (HSPC) to the bone marrow (BM) during bone marrow transplant (BMT), but the precise role(s) of individual selectins in this process have never been defined. BMT of lethally irradiated mice lacking both endothelial selectins (E/P KO) with limiting numbers of wild-type BM cells rescued...

  5. HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow

    Institute of Scientific and Technical Information of China (English)

    Mong-Liang; Chen; Kuan-Der; Lee; Huei-Chun; Huang; Yue-Lin; Tsai; Yi-Chieh; Wu; Tzer-Min; Kuo; Cheng-Po; Hu; Chungming; Chang

    2010-01-01

    AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like...

  6. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells

    OpenAIRE

    Schaniel, Christoph; Sirabella, Dario; Qiu, Jiajing; Niu, Xiaohong; Lemischka, Ihor R.; Moore, Kateri A.

    2011-01-01

    The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow a...

  7. What Is the Most Appropriate Source for Hematopoietic Stem Cell Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    OpenAIRE

    Itır Sirinoglu Demiriz; Emre Tekgunduz; Fevzi Altuntas

    2012-01-01

    The introduction of peripheral stem cell (PSC) and cord blood (CB) as an alternative to bone marrow (BM) recently has caused important changes on hematopoietic stem cell transplantation (HSCT) practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT pr...

  8. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    Science.gov (United States)

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals. PMID:25445328

  9. Identification of cells in primate bone marrow resembling the hemopoietic stem cell in the mouse

    NARCIS (Netherlands)

    Dicke, K.A.; Noord, M.J. van; Maat, B.

    1973-01-01

    The colony forming unit culture (CFU C) in the thin layer agar colony technique is considered to be representative for hemopoietic stem cells (HSC), according to studies in mouse and monkey bone marrow. Using this in vitro assay as a guide, stem cell concentrates were prepared from monkey and human

  10. Biocompatibility Studies on Fibrin Glue Cultured with Bone Marrow Mesenchymal Stem Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    方煌; 彭松林; 陈安民; 黎逢峰; 任凯; 胡宁

    2004-01-01

    Summary: By culturing bone marrow mesenchymal stem cells of rabbits with fibrin glue in vitro,the biocompatibility of fibrin glue was investigated to study whether this material can be used as scaffolds in bone tissue engineering. After 2-months old New Zealand rabbits had been anesthetized, about 4-6 ml of bone marrow were aspirated from rabbit femoral trochanter. The monocytes suspension was aspirated after bone marrow was centrifuged with lymphocyte separating medium and cultured primarily. Then the cells were divided into two groups: one was cultured with complete medium and the other with induced medium. The cells of the two groups were collected and inoculated to the culture plate containing fibrin glue. In the control group, cells were inoculated without fibrin glue. The implanted cells and materials were observed at different stages under a phase-contrast microscope and scanning electron microscope. MTT and alkaline phosphatase (ALP) were measured. Bone marrow mesenchymal stem cells grew on the surface of fibrin glue and adhered to it gradually. Cells light absorption value (A value) and the ALP content showed no significant difference. Fibrin glue had no inhibitory effect on cell morphology, growth, proliferation and differentiation. It has good biocompatibility and can be used as scaffold materials for bone marrow mesenchymal stem cells in bone tissue engineering.

  11. Quick and effective method of bone marrow mesenchymal stem cell extraction

    Directory of Open Access Journals (Sweden)

    Gudleviciene Zivile

    2015-01-01

    Full Text Available Background. Mesenchymal stem cells (MSCs are currently exploited in numerous clinical trials to investigate their potential in immune regulation, hematopoesis or tissue regeneration. The most common source of MSCs for clinical use is human bone marrow. To generate sufficient numbers of cells relevant to clinical use in most cases the high volumes (20-50 ml of bone marrow aspirates are taken. Methods. In this pilot study, 8 healthy bone marrow donors were included. Two different MSC extraction methods were evaluated: MSCs extraction from 60 ml of bone marrow using density gradient and MSCs extraction from 6 ml using red blood cell (RBC lysis. Results. Our results showed that after RBC lysis the efficient amount of human MSCs can be isolated from 10 times less bone marrow volume (6 ml. Moreover, using small volume of bone marrow the adequate therapeutical dose of MSCs could be achieved during similar period of time (3-4 weeks. In conclusion, we have shown that MSCs isolation using RBC lysis is an effective and more advantageous method in comparison to standard MSCs isolation using density-gradient. Using RBC lysis from small volume of bone marrow the same amount of MSCs were obtained as usually using large volume and density-gradient.

  12. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Li-ye; ZHENG Jia-kun; WANG Chao-yang; LI Wen-yu

    2005-01-01

    Objective: To investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells. Methods: Bone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry. Conclusions: Bone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.

  13. Busulfan and total body irradiation as antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogenic bone marrow transplantation

    International Nuclear Information System (INIS)

    The capacity of busulfan and total body irradiation to ablate hematopoietic stem cells as preparation for the allogeneic bone marrow transplantation of patients with congenital bone marrow disorders was studied. Fourteen patients received 18 transplants; busulfan was used in the preparatory regimen of eight transplants and total body irradiation in the regimens of six transplants. Sustained hematopoietic ablation was achieved in six of eight patients prepared with busulfan and in all six patients prepared with total body irradiation. Three patients prepared with total body irradiation died with idiopathic interstitial pneumonitis, whereas no patients receiving busulfan developed interstitial pneumonitis. The optimal antihematopoietic stem cell agent to be used for the preparation of patients with congenital bone marrow disorder for bone marrow transplantation is not certain

  14. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  15. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  16. Pilot study: bone marrow stem cells as a treatment for dogs with chronic spinal cord injury

    OpenAIRE

    Sarmento, Carlos Alberto Palmeira; Rodrigues, Marcio Nogueira; Bocabello, Renato Zonzini; Mess, Andrea Maria; Miglino, Maria Angelica

    2014-01-01

    Background Chronic Spinal Cord injury is a common, severe, and medically untreatable disease. Since the functional outcomes of acute and experimental chronic spinal cord injury have been shown to improve with stem cell therapy, a case study was conducted to test if the application of stem cell also regenerates chronic SCI dysfunction. Transplantation of foetal bone marrow stem cells was applied in seven dogs with chronic spinal cord injury. Magnetic resonance images and assessments of symptom...

  17. Allogenic inhibition of the stem hemopoietic cells in the bone marrow and embryonic liver in adult mice

    International Nuclear Information System (INIS)

    The maternal effect was shown to influence the degree of allogenic inhibition of stem hemopoietic cells of the embryonic liver and adult bone marrow in CBA and C57Bl/6 mice. The display of allogenic inhibition of stem cells of the embryonic liver and adult bone marrow proved to be similar in C57Bl/6 mice and dissimilar in CBA

  18. HGF Expressing Stem Cells in Usual Interstitial Pneumonia Originate from the Bone Marrow and Are Antifibrotic.

    Directory of Open Access Journals (Sweden)

    Amiq Gazdhar

    Full Text Available Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia.Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7. Bone marrow derived stromal cells (BMSC from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later.In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+ indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis.HGF-positive stem cells are present in human fibrotic lung tissue (UIP and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.

  19. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function*

    OpenAIRE

    Wang, Jian-an; Fan, You-qi; Li, Chang-Ling; He, Hong; Sun, Yong; Lv, Bing-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells. BMCs wer...

  20. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    OpenAIRE

    Ayatollahi, M.; Geramizadeh, B; Zakerinia, M; M Ramzi; Yaghobi, R.; Hadadi, P.; Rezvani, A. R.; Aghdai, M.; N Azarpira; Karimi, H.

    2012-01-01

    Background: The ability of mesenchymal stem cells (MSCs) to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering. Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential. Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells we...

  1. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  2. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  3. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  4. Rampant infections of bone marrow stem cell niches as triggers for spondyloarthropathies and rheumatoid arthritis.

    Science.gov (United States)

    Berthelot, Jean-Marie; Sibilia, Jean

    2016-01-01

    Tropheryma Whipplei can induce rheumatism mimicking SpA or RA, but even more rampant bacterial/viral infections in epiphyseal bones could also contribute to the onset of RA and SpA. Indeed, as bone marrow stem cell niches are enriched in Tregs and myeloid derived suppressor cells, these areas are favourable for the persistence of quiescent viruses and/or dormant bacteria. This review focuses on the possibility that such silent infections of bone marrow stem cell niches might contribute to the pathogenesis of SpA and RA, at least during their onset. Some infections can affect the bone marrow mesenchymal stem cells, which can transmit these pathogens to their progeny. Transient but repeated revivals of viruses or dormant bacteria could promote the conversion of marrow regulatory T cells into effector phenotypes, leading to autoimmunity in the epiphyseal bone marrow, entheses and adjacent synovium. This scenario would also fit the flares of rheumatic disorders and explain why some joints or enthuses can be severely involved whereas their neighbours remain intact. The efficiency of anti-TNF drugs does not rule out a role of persistent infections in SpA and RA. These drugs do not affect chlamydial clearance, or the reactivation of latent Salmonella enterica serovar Typhimurium in mice or Epstein-Barr virus in humans. Anti-TNF might even prevent, rather than foster, the revival of dormant bacteria and viruses in marrow stem cell niches. Indeed, anti-TNF enhance the maturation of the immunosuppressive immature myeloid cells around stem cells into dendritic cells and macrophages, thus restoring immune responses in these areas. PMID:26886813

  5. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss

    DEFF Research Database (Denmark)

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-01-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging...

  6. Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells.

    Science.gov (United States)

    Tolar, Jakub; McGrath, John A

    2014-09-01

    Novel therapeutic tools to accelerate wound healing would have a major impact on the overall burden of skin disease. Lin et al. demonstrate in mice that endogenous bone marrow stem cell mobilization, produced by a pharmacologic combination of AMD3100 and tacrolimus, leads to faster and better-quality wound healing, findings that have exciting potential for clinical translation. PMID:25120149

  7. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  8. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  9. Differential Gene Expression Profile Associated with the Abnormality of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia

    OpenAIRE

    Li, Jianping; Yang, Shaoguang; Lu, Shihong; Zhao, Hui; Feng, Jianming; Li, Wenqian; Ma, Fengxia; Ren, Qian; Liu, Bin; Zhang, Lei; Zheng, Yizhou; Han, Zhong Chao

    2012-01-01

    Aplastic anemia (AA) is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs) and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs). In the present study, we comprehensively compared the biological features and gene expression profile...

  10. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural...

  11. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  12. Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow

    OpenAIRE

    Sung, Hwa Jung; Hong, Soon Cheol; Yoo, Ji Hyun; Oh, Jee Hyun; Shin, Hye Jin; Choi, In Young; Ahn, Ki Hoon; Kim, Sun Haeng; Park, Yong; Kim, Byung Soo

    2010-01-01

    This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, e...

  13. Stem cells and cancer: Evidence for bone marrow stem cells in epithelial cancers

    Institute of Scientific and Technical Information of China (English)

    Han-Chen Li; Calin Stoicov; Arlin B Rogers; JeanMarie Houghton

    2006-01-01

    Cancer commonly arises at the sites of chronic inflammation and infection. Although this association has long been recognized, the reason has remained unclear. Within the gastrointestinal tract, there are many examples of inflammatory conditions associated with cancer, and these include reflux disease and Barrett's adenocarcinoma of the esophagus, Helicobacter infection and gastric cancer, inflammatory bowel disease and colorectal cancer and viral hepatitis leading to hepatocellular carcinoma.There are several mechanisms by which chronic inflammation has been postulated to lead to cancer which includes enhanced proliferation in an endless attempt to heal damage, the presence of a persistent inflammatory environment creating a pro-carcinogenic environment and more recently a role for engraftment of circulating marrow-derived stem cells which may contribute to the stromal components of the tumor as well as the tumor mass itself. Here we review the recent advances in our understanding of the contributions of circulating bone marrow-derived stem cells to the formation of tumors in animal models as well as in human beings.

  14. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    OpenAIRE

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to...

  15. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was eva...

  16. Data on bone marrow stem cells delivery using porous polymer scaffold

    OpenAIRE

    Ramasatyaveni Geesala; Nimai Bar; Dhoke, Neha R.; Pratyay Basak; Amitava Das

    2015-01-01

    Low bioavailability and/or survival at the injury site of transplanted stem cells necessitate its delivery using a biocompatible, biodegradable cell delivery vehicle. In this dataset, we report the application of a porous biocompatible, biodegradable polymer network that successfully delivers bone marrow stem cells (BMSCs) at the wound site of a murine excisional splint wound model. In this data article, we are providing the additional data of the reference article “Porous polymer scaffold fo...

  17. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    OpenAIRE

    Burdon, Tom J.; Arghya Paul; Nicolas Noiseux; Satya Prakash; Dominique Shum-Tim

    2010-01-01

    During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines ...

  18. Contribution of Bone Marrow Hematopoietic Stem Cells to Adult Mouse Inner Ear: Mesenchymal Cells and Fibrocytes

    OpenAIRE

    Lang, Hainan; Ebihara, Yasuhiro; Schmiedt, Richard A.; Minamiguchi, Hitoshi; Zhou, Daohong; Smythe, Nancy; LIU, LIYA; Ogawa, Makio; Schulte, Bradley A.

    2006-01-01

    Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP+ BM cells also were transplanted into conditioned newborn mice deriv...

  19. Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment

    OpenAIRE

    Hoggatt, Jonathan; Pelus, Louis M.

    2011-01-01

    The vast majority of hematopoietic stem cells (HSCs) reside in specialized niches within the bone marrow during steady state, maintaining lifelong blood cell production. A small number of HSCs normally traffic throughout the body; however, exogenous stimuli can enhance their release from the niche and entry into the peripheral circulation. This process, termed mobilization, has become the primary means to acquire a stem cell graft for hematopoietic transplant at most transplant centers. Curre...

  20. Use of Bone Marrow derived Stem Cells in patients with Cardiovascular Disorders

    OpenAIRE

    Abraham S; Naveen AT; Kirtivasan V; Prasad GN; Karthik Vaidyanathan; Rajesh V.; Madhusankar N; Cherian KM

    2007-01-01

    Patients with end stage heart failure have very few treatment options. The long waiting times for transplant and the complications associated with immunosuppression has led to the search for alternatives. Subsequent to the isolation and characterization of stem cells, tremendous advances have been made and the safety and feasibility of autologous bone marrow derived stem cells has been proven in preclinical studies. Clinical studies have also shown mobilized cells repair the infracted heart, ...

  1. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    OpenAIRE

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S. B.

    2006-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating diff...

  2. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!

    OpenAIRE

    Borlongan, CV

    2011-01-01

    Mobilizing bone cells to the head, astutely referred to as ‘bonehead’ therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies imp...

  3. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors

    OpenAIRE

    Jinpu Yang; Keerat Kaur; Li Lin Ong; Eisenberg, Carol A; Leonard M. Eisenberg

    2015-01-01

    The G9a histone methyltransferase inhibitor BIX01294 was examined for its ability to expand the cardiac capacity of bone marrow cells. Inhibition of G9a histone methyltransferase by gene specific knockdown or BIX01294 treatment was sufficient to induce expression of precardiac markers Mesp1 and brachyury in bone marrow cells. BIX01294 treatment also allowed bone marrow mesenchymal stem cells (MSCs) to express the cardiac transcription factors Nkx2.5, GATA4, and myocardin when subsequently exp...

  4. Use of Bone Marrow derived Stem Cells in patients with Cardiovascular Disorders

    Directory of Open Access Journals (Sweden)

    Abraham S

    2007-01-01

    Full Text Available Patients with end stage heart failure have very few treatment options. The long waiting times for transplant and the complications associated with immunosuppression has led to the search for alternatives. Subsequent to the isolation and characterization of stem cells, tremendous advances have been made and the safety and feasibility of autologous bone marrow derived stem cells has been proven in preclinical studies. Clinical studies have also shown mobilized cells repair the infracted heart, improving function and survival. We have started a clinical study to evaluate the efficacy of bone marrow derived stem cells. Bone-marrow was aspirated from the right iliac crest and the stem cells were isolated by density gradient method and suspended according to the mode of delivery.From Jan 2007 till date 10 patients (8 adults, 2 children, age with end stage cardiovascular disorder of varied etiology (Ischemic left ventricular dysfunction - 6 patients, Primary pulmonary hypertension - 2 patients, Dilated cardiomyopathy -1 patient, Biventricular non-compaction -1 patient underwent stem cell therapy. All patients were evaluated and cardiac function was measured by using echocardiography and thallium scintigraphy. There were no procedure related complications. These patients are being regularly followed-up and one patient who has completed 6-month follow-up has shown improvement in perfusion as well as increase in ejection fraction of 10%. Stem cell therapy in patients with end-stage cardiovascular disorder might be a promising tool by means of angiogenesis and other paracrine mechanisms.

  5. Bone marrow fat.

    Science.gov (United States)

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  6. Comparative study of the differentiation potential of rat bone marrow mesenchymal stem cells and rat muscle-derived stem cells

    Directory of Open Access Journals (Sweden)

    Ivan Alexandra

    2013-01-01

    Full Text Available We present a comparative study of the plasticity of rat bone marrow mesenchymal stem cells (MSCs and rat muscle-derived stem cells (MDSCs. The study was performed on two cell populations that were isolated by aspiration from the femur bone marrow and gastrocnemius muscle biopsy of 6-week-old albino rats. Both cell populations were exposed to identical stimulation conditions. The cells were capable of undergoing osteogenic, chondrogenic, adipogenic and epithelial differentiation, as shown by histochemistry and immunostaining techniques. The MDSC population showed behavior and characteristics similar to the bone marrow MSC population; however, the osteogenic and adipogenic potential was more reduced compared to MSCs. Our results indicate a positive expression of E cadherin and Cytokeratin 10 after 28 days under epithelial stimulation, suggesting a potential use for gastrocnemius muscle MDSCs as a promising source for regenerative therapies, including re-epithelialization and skin regeneration.

  7. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  8. Biological Characteristics of Human Bone Marrow Mesenchymal Stem Cell Cultured in Vitro

    Institute of Scientific and Technical Information of China (English)

    FA Xian'en; WANG Lixia; HOU Jianfeng; ZHANG Ruicheng; WANG Haiyong; YANG Chenyuan

    2005-01-01

    Summary: Some biological characteristics of human bone marrow mesenchymal stem cells (MSCs) cultured in vitro were observed. hMSCs were isolated from bone marrow and purified by density gradient centrifugation method, and then cultured in vitro. The proliferation and growth characteristics of hMSCs were observed in primary and passage culture. MSCs of passage 3 were examined for the purify by positive rate of CD29 and CD44 through flow cytometry. Human bone marrow MSCs showed active proliferation capacity in vitro. The purify of MSCs separated by our method was higher than 90 %. It was concluded that hMSCs have been successfully cultured and expanded effectively. It provided a foundation for further investigation and application of MSCs.

  9. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bais, Manish V.; Shabin, Zabrina M.; Young, Megan; Einhorn, Thomas A. [Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, MA 02118 (United States); Kotton, Darrell N. [Pulmonary Center, Boston University School of Medicine, Boston, MA 02118 (United States); Gerstnefeld, Louis C., E-mail: lgersten@bu.edu [Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, MA 02118 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Nanog is related to marrow stromal stem cell maintenance. Black-Right-Pointing-Pointer Increasing Nanog expression is seen during post natal surgical bone repair. Black-Right-Pointing-Pointer Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express {approx}50 Multiplication-Sign the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at {approx}80 Multiplication-Sign the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a {approx}3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a {approx}50% decrease was seen in the expression of terminal osteogenic gene expression and a {approx}50% loss in trabecular bone mass. This

  10. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    International Nuclear Information System (INIS)

    Highlights: ► Nanog is related to marrow stromal stem cell maintenance. ► Increasing Nanog expression is seen during post natal surgical bone repair. ► Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express ∼50× the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at ∼80× the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a ∼3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a ∼50% decrease was seen in the expression of terminal osteogenic gene expression and a ∼50% loss in trabecular bone mass. This loss of bone mass was accompanied by an increased ∼2- to 5-fold adipogenic gene expression and observed increase of fat cells in the

  11. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  12. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  13. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats

    OpenAIRE

    Kumar, Saravana Kumar Sampath; Perumal, Saraswathi; Rajagopalan, Vijayaraghavan

    2014-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mesenchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by flow cytometry for pos...

  14. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw

    Directory of Open Access Journals (Sweden)

    Cella Luigi

    2011-08-01

    Full Text Available Abstract Purpose Bisphosphonate - related osteonecrosis of the JAW (BRONJ is a well known side effect of bisphosphonate therapies in oncologic and non oncologic patients. Since to date no definitive consensus has been reached on the treatment of BRONJ, novel strategies for the prevention, risk reduction and treatment need to be developed. We report a 75 year old woman with stage 3 BRONJ secondary to alendronate and pamidronate treatment of osteoporosis. The patient was unresponsive to recommended treatment of the disease, and her BRONJ was worsening. Since bone marrow stem cells are know as being multipotent and exhibit the potential for differentiation into different cells/tissue lineages, including cartilage, bone and other tissue, we performed autologous bone marrow stem cell transplantation into the BRONJ lesion of the patient. Methods Under local anesthesia a volume of 75 ml of bone marrow were harvested from the posterior superior iliac crest by aspiration into heparinized siringes. The cell suspension was concentrated, using Ficoll - Hypaque® centrifugation procedures, in a final volume of 6 ml. Before the injection of stem cells into the osteonecrosis, the patient underwent surgical toilet, local anesthesia was done and spongostan was applied as a carrier of stem cells suspension in the bone cavity, then 4 ml of stem cells suspension and 1 ml of patient's activated platelet-rich plasma were injected in the lesion of BRONJ. Results A week later the residual spongostan was removed and two weeks later resolution of symptoms was obtained. Then the lesion improved with progressive superficialization of the mucosal layer and CT scan, performed 15 months later, shows improvement also of bone via concentric ossification: so complete healing of BRONJ (stage 0 was obtained in our patient, and 30 months later the patient is well and without signs of BRONJ. Conclusion To our knowledge this is the first case of BRONJ successfully treated with

  15. Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences.

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Alix, Philippe; Leprince, Pierre; Glejzer, Aneta; Poulet, Christophe; Hennuy, Benoit; Sommer, Lukas; Shakhova, Olga; Rogister, Bernard

    2012-08-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases. PMID:22349262

  16. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  17. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  18. Bone marrow dosimetry via microCT imaging and stem cell spatial mapping

    Science.gov (United States)

    Kielar, Kayla N.

    In order to make predictions of radiation dose in patients undergoing targeted radionuclide therapy of cancer, an accurate model of skeletal tissues is necessary. Concerning these tissues, the dose-limiting factor in these therapies is the toxicity of the hematopoietically active bone marrow. In addition to acute effects, one must be concerned as well with long-term stochastic effects such as radiation-induced leukemia. Particular cells of interest for both toxicity and cancer risk are the hematopoietic stem cells (HSC), found within the active marrow regions of the skeleton. At present, cellular-level dosimetry models are complex, and thus we cannot model individual stem cells in an anatomic model of the patient. As a result, one reverts to looking at larger tissue regions where these cell populations may reside. To provide a more accurate marrow dose assessment, the skeletal dosimetry model must also be patient-specific. That is, it should be designed to match as closely as possible to the patient undergoing treatment. Absorbed dose estimates then can be tailored based on the skeletal size and trabecular microstructure of an individual for an accurate prediction of marrow toxicity. Thus, not only is it important to accurately model the target tissues of interest in a normal patient, it is important to do so for differing levels of marrow health. A skeletal dosimetry model for the adult female was provided for better predictions of marrow toxicity in patients undergoing radionuclide therapy. This work is the first fully established gender specific model for these applications, and supersedes previous models in scalability of the skeleton and radiation transport methods. Furthermore, the applicability of using bone marrow biopsies was deemed sufficient in prediction of bone marrow health, specifically for the hematopoietic stem cell population. The location and concentration of the HSC in bone marrow was found to follow a spatial gradient from the bone trabeculae

  19. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1 After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2 Our culture medium is not supplemented with any additional growth factor. (3 Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4 Our method has been carefully tested in several mouse strains and the results are reproducible. (5 We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.

  20. Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Webster Keith A

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSC are pluripotent cells, present in the bone marrow and other tissues that can differentiate into cells of all germ layers and may be involved in tissue maintenance and repair in adult organisms. Because of their plasticity and accessibility these cells are also prime candidates for regenerative medicine. The contribution of stem cell aging to organismal aging is under debate and one theory is that reparative processes deteriorate as a consequence of stem cell aging and/or decrease in number. Age has been linked with changes in osteogenic and adipogenic potential of MSCs. Results Here we report on changes in global gene expression of cultured MSCs isolated from the bone marrow of mice at ages 2, 8, and 26-months. Microarray analyses revealed significant changes in the expression of more than 8000 genes with stage-specific changes of multiple differentiation, cell cycle and growth factor genes. Key markers of adipogenesis including lipoprotein lipase, FABP4, and Itm2a displayed age-dependent declines. Expression of the master cell cycle regulators p53 and p21 and growth factors HGF and VEGF also declined significantly at 26 months. These changes were evident despite multiple cell divisions in vitro after bone marrow isolation. Conclusions The results suggest that MSCs are subject to molecular genetic changes during aging that are conserved during passage in culture. These changes may affect the physiological functions and the potential of autologous MSCs for stem cell therapy.

  1. Superparamagnetic iron oxide nanoparticles label human bone marrow and umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Ma Yan; Zhang De-qing; Chen Le; Wang Jian; Zhang Xue; Hou Yan; Bi Xiao-juan; Yang Rong; Hu An-hua

    2012-01-01

      BACKGROUND: Nowadays, it is becoming more and more important to optimize safety of human derived cel s, label cel s efficiently and track cel s after cel s transplantation both in basic research and clinic application. OBJECTIVE: To compare the cel viability, labeling efficiency and imaging effect of the T2* weight image (WI) magnetic resonance (MR) between the human bone marrow and umbilical cord derived mesenchymal stem cel s labeled with the superparamaganetic iron oxide nanoparticles, as wel as to optimize their treatment efficiency. METHODS: The third generation of human bone marrow and umbilical cord derived mesenchymal stem cel s were cultured, and labeled with 5-30 mg/L Feridex Ⅳ and protamine sulfate. RESULTS AND CONCLUSION: The viability of human bone marrow mesenchymal stromal cel s was similar with human umbilical cord derived mesenchymal stem cel s (P >0.05). There was no significant difference of labeling rate between the bone marrow msenchymal stem cel s labeled with 5-30 mg/L Feridex Ⅳ(P >0.05); while there was significant difference of labeling rate between the umbilical cord derived mesenchymal stem cel s labeled with 5 mg/L Feridex Ⅳ and 20 and 30 mg/L Feridex Ⅳ(P <0.05); the positive labeling rate of umbilical cord derived mesenchymal stem cel s was lower than that of bone marrow msenchymal stem cel s after labeled with 10 mg/L FeridexⅣ(P <0.05). When two sources of cel s were labeled with Feridex Ⅳ more than 2 mg/L, the iron oxide particles were found in the cel suspension and could not be removed by elution and filtration. The signal intensity from 3.0T MR GRE T2*WI scan was decreased with the increasing of Feridex Ⅳ concentration in both cel types. It is safe and effective to label the two tissue-derived mesenchymal stem cel s with 10 mg/L Feridex Ⅳ-protamine sulfate complex, and can be observed with T2*WI MR.

  2. Bone marrow biopsy

    Science.gov (United States)

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  3. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Dong; Libin Yang; Lin Yang; Hongxing Zhao; Chao Zhang; Dapeng Wu

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen-chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  4. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Li; Zhanxiu Zhang; Lili Zhao; Hui Li; Suxia Wang; Yong Shen

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was signiifcantly enhanced in the model group. Af-ter 8 weeks, the number of horseradish peroxidase-labeled nerve ifbers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and signiifcantly higher than in the model group. The newly formed nerve ifbers and myelinated ner ve ifbers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group.

  5. Bone marrow cells and embryonic stem cells are a promising tool for therapy of brain and spinal cord injuries

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva; Jendelová, Pavla; Glogarová, Kateřina; Urdzíková, Lucia; Kroupová, Jana; Burian, B.; Herynek, V.; Hájek, M.

    Solden, 2004. s. -. [Neurochemistry Winter Conference /6./. 27.03.2004-01.04.2004, Solden] R&D Projects: GA MŠk LN00A065 Keywords : bone marrow cells * embryonic stem cells Subject RIV: FH - Neurology

  6. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  7. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    OpenAIRE

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; LI Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance ...

  8. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    OpenAIRE

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, gluta...

  9. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    Institute of Scientific and Technical Information of China (English)

    Xianchao Li; Wensheng Hou; Xiaoying Wu; Wei Jiang; Haiyan Chen; Nong Xiao; Ping Zhou

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy-poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efifciencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra-tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green lfuorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental ifndings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypox-ic-ischemic brain damage.

  10. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    OpenAIRE

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the tr...

  11. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    OpenAIRE

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem ...

  12. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow

    OpenAIRE

    Sabine Wislet-Gendebien; Christophe Poulet; Virginie Neirinckx; Benoit Hennuy; Swingland, James T.; Emerence Laudet; Lukas Sommer; Olga Shakova; Vincent Bours; Bernard Rogister

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the ...

  13. Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model

    OpenAIRE

    Chen, Dayong; Zeng, Wei; Fu, Yunfeng; Gao, Meng; Lv, Guohua

    2015-01-01

    The aims of this study were to assess that the effects of bone marrow mesenchymal stem cells (BMSCs) combination with minocycline improve spinal cord injury (SCI) in rat model. In the present study, the Wistar rats were randomly divided into five groups: control group, SCI group, BMSCs group, Minocycline group and BMSCs + minocycline group. Basso, Beattie and Bresnahan (BBB) test and MPO activity were used to assess the effect of combination therapy on locomotion and neutrophil infiltration. ...

  14. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    OpenAIRE

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubul...

  15. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation

    OpenAIRE

    Chen, Yu-Bing; Jia, Quan-Zhang; Li, Dong-Jun; Sun, Jing-Hai; Xi, Shuang; Liu, Li-ping; Gao, De-Xuan; Jiang, Da-Wei

    2015-01-01

    The aim of this study was to observe the effects of bone marrow mesenchymal stem-cell transplantation (BMSCs) in repairing acute spinal cord damage in rats and to examine the potential beneficial effects. 192 Wistar rats were randomized into 8 groups. Spinal cord injury was created. Behavior and limb functions were scored. Repairing effects of BMSCs transplantation was evaluated and compared. In vitro 4’,6-diamidino-2-phenylindole (DAPI)-tagged BMSCs were observed, and whether they migrated t...

  16. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    OpenAIRE

    Meihui Chen; Yu Hou; Dingkun Lin

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, A...

  17. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  18. Transcriptomic portrait of human Mesenchymal Stromal/Stem cells isolated from bone marrow and placenta

    OpenAIRE

    Roson-Burgo, Beatriz; Sanchez-Guijo, Fermin; del Cañizo, Consuelo; De Las Rivas, Javier

    2014-01-01

    Background Human Mesenchymal Stromal/Stem Cells (MSCs) are adult multipotent cells that behave in a highly plastic manner, inhabiting the stroma of several tissues. The potential utility of MSCs is nowadays strongly investigated in the field of regenerative medicine and cell therapy, although many questions about their molecular identity remain uncertain. Results MSC primary cultures from human bone marrow (BM) and placenta (PL) were derived and verified by their immunophenotype standard patt...

  19. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Szyska, Martin; Na, Il-Kang

    2016-01-01

    The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioni...

  20. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    OpenAIRE

    Hu Y; Tan HB; Wang XM; Rong H; Cui HP; Cui H

    2013-01-01

    Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC) transplantation i...

  1. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    OpenAIRE

    Dequan Li; Cong Wang; Chuang Chi; Yuanyuan Wang; Jing Zhao; Jun Fang; Jingye Pan

    2016-01-01

    Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the a...

  2. β-Cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells

    OpenAIRE

    Anna Milanesi; Jang-Won Lee; Zhenhua Li; Stefano Da Sacco; Valentina Villani; Vanessa Cervantes; Laura Perin; Yu, John S.

    2012-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into β-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous β-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF) or pancreatic-duode...

  3. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development.

    OpenAIRE

    Menssen Adriane; Häupl Thomas; Sittinger Michael; Delorme Bruno; Charbord Pierre; Ringe Jochen

    2011-01-01

    Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC) differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic diffe...

  4. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    OpenAIRE

    Xu, Yi; Du, Shiwei; Yu, Xinguang; HAN, XIAO; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human ...

  5. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    Saravana Kumar Sampath Kumar; Saraswathi Perumal; Vijayaraghavan Rajagopalan

    2014-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mes-enchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by lfow cytometry for positive expression of CD44 and CD90 and negative expression of CD45. Once CD44 and CD90 positive expression was achieved, the cells were cultured again to 90% conlfuence for later experiments. Twenty-four rats aged 8 weeks old were randomly and evenly divided into normal control, cold water swim stress (cold stress), cold stress + PBS (intra-venous infusion), and cold stress + bone marrow mesenchymal stem cells (1 × 106; intravenous infusion) groups. The total period of study was 60 days which included 1 month stress period followed by 1 month treatment. Behavioral functional test was performed during the entire study period. After treatment, rats were sacriifced for histological studies. Treatment with bone marrow mesenchymal stem cells signiifcantly increased the number of neuronal cells in hippocampal CA1 region. Adult bone marrow mesenchymal stem cells injected by intravenous administration show potential therapeutic effects in cognitive decline associated with stress-related lesions.

  6. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Xijing He; Haopeng Li; Guoyu Wang

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  7. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90+cells in mononuclear cells from CD34-/CD45-peripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34+cells in peripheral blood stem cells with a low expression of molecules CD117-and DR-suggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  8. Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience

    Science.gov (United States)

    Charbord, Pierre; Livne, Erella; Gross, Gerhard; Häupl, Thomas; Neves, Nuno M.; Marie, Pierre; Bianco, Paolo; Jorgensen, Christian

    2011-01-01

    Genostem (acronym for “Adult mesenchymal stem cells engineering for connective tissue disorders. From the bench to the bed side”) has been an European consortium of 30 teams working together on human bone marrow Mesenchymal Stem Cell (MSC) biological properties and repair capacity. Part of Genostem activity has been dedicated to the study of basic issues on undifferentiated MSCs properties and on signalling pathways leading to the differentiation into 3 of the connective tissue lineages, osteoblastic, chondrocytic and tenocytic. We have evidenced that native bone marrow MSCs and stromal cells, forming the niche of hematopoietic stem cells, were the same cellular entity located abluminally from marrow sinus endothelial cells. We have also shown that culture-amplified, clonogenic and highly-proliferative MSCs were bona fide stem cells, sharing with other stem cell types the major attributes of self-renewal and of multipotential priming to the lineages to which they can differentiate (osteoblasts, chondrocytes, adipocytes and vascular smooth muscle cells/pericytes). Extensive transcription profiling and in vitro and in vivo assays were applied to identify genes involved in differentiation. Thus we have described novel factors implicated in osteogenesis (FHL2, ITGA5, Fgf18), chondrogenesis (FOXO1A) and tenogenesis (Smad8). Another part of Genostem activity has been devoted to studies of the repair capacity of MSCs in animal models, a prerequisite for future clinical trials. We have developed novel scaffolds (chitosan, pharmacologically active microcarriers) useful for the repair of both bone and cartilage. Finally and most importantly, we have shown that locally implanted MSCs effectively repair bone, cartilage and tendon. PMID:20198518

  9. Bone marrow mesenchymal stem cell transplantation combined with core decompression and bone grafting in the repair of osteonecrosis of femoral head

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Wang Nan; Yang Li-feng; Ma Ji; Li Zhi

    2015-01-01

    BACKGROUND: Core decompression alone for osteonecrosis of femoral head easily causes fovea of femoral head and colapse of inner microstructure. Therefore, autologous bone is needed for filing and supporting. Moreover, bone marrow stem cel transplantation can decrease the incidence of femoral head colapse. OBJECTIVE:To discuss the clinical effects of core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels for osteonecrosis of femoral head. METHODS: A total of 33 patients were treated by core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels in the Fourth Department of Bone Surgery, Central Hospital Affiliated to Shenyang Medical Colege in China from December 2012 to May 2013. RESULTS AND CONCLUSION:After the treatment by core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels, Harris hip function score increased and pain disappeared in patients with osteonecrosis of femoral head. They could do various labors. Radiographs or CT examination displayed normal femoral head in 30 hips, accounting for 79%. Pain significantly reduced. Normal or slight limp walking was found in 15 hips, accounting for 40%. There were 35 hips in patients, whose walking distance was extended, accounting for 92%. 24 hips dysfunction was improved markedly, accounting for 63%. Al results suggested that core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels improved the local blood supply of femoral head, and played a positive role in promoting the necrotic bone absorption and bone repairing.

  10. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    Science.gov (United States)

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  11. Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment

    Directory of Open Access Journals (Sweden)

    Rogério Pezato

    2014-01-01

    Full Text Available Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.

  12. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow

    OpenAIRE

    Balazs, Alejandro B.; Fabian, Attila J.; Esmon, Charles T.; Mulligan, Richard C.

    2006-01-01

    The hematopoietic stem cell (HSC) is a unique cell type found in bone marrow, which has the capacity for both self-renewal and differentiation into all blood lineages. The identification of genes expressed specifically in HSCs may help identify gene products vital to the control of self-renewal and/or differentiation, as well as antigens capable of forming the basis for improved methods of stem cell isolation. In previous studies, we identified a number of genes that appeared to be differenti...

  13. Osteogenic ability of bone marrow stem cells intraoperatively enriched by a novel matrix

    OpenAIRE

    Ye, Qing; Chen, Kaining; HUANG, WU; HE, YUNSONG; NONG, MINGSHAN; LI, CHUNXIANG; LIANG, TIANSEN

    2014-01-01

    Poly-L-lysine (PLL) is commonly used as an adhibiting agent due to its good viscosity, and demineralized bone matrix (DBM) is a common enriched matrix for selective cell retention technology. Therefore, the aim of this study was to use PLL to coat the surface and interspaces of DBM to form a novel type of enriched matrix [DBM coated with PLL (PLL-DBM)], in order to effectively improve the enrichment effects of bone marrow stem cells and enhance their osteogenic ability. Electron microscope sc...

  14. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction.

    Science.gov (United States)

    Zhang, Jin-Sheng; Zhang, Bao-Xia; Du, Mei-Mei; Wang, Xiao-Ya; Li, Wei

    2016-02-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules (20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54- and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. PMID:27073383

  15. MR tomography of bone marrow changes after high-dose chemotherapy and autologous peripheral stem cell transplantation

    International Nuclear Information System (INIS)

    Purpose: Evaluation of MR standard imaging and short time inversion recovery (STIR) imaging to assess changes in red bone marrow cellularity after high-dose chemotherapy (HDC) and peripheral blood stem cells transplantation (PBSCT). Results: STIR sequences demonstrated marked changes in signal intensity not only until the aplasia occurred but also during bone marrow repopulation. An increased signal intensity was observed after HDC in 13/15 patients (87%), followed by a decrease in signal intensity immediately after aplasia in 14/15 patients (93%). Signal intensity further changed parallel to marrow engraftment in 11/15 patients (73%). T2-TSE only showed clear changes during repopulation in 8/15 patients (53%). The individual course of the signal in T1-TSE was markedly inhomogeneous. Conclusions: STIR sequences show bone marrow edema during aplasia and marrow cellularity during reconstitution and are suitable for characterisation of red bone marrow after HDC and autologous PBSCT. (orig.)

  16. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  17. Amyloid Deposits in the Bone Marrow of Patients with AL Amyloidosis Do Not Impact Stem Cell Mobilization or Engraftment

    OpenAIRE

    Cowan, Andrew J.; Seldin, David C.; Skinner, Martha; Quillen, Karen; Doros, Gheorghe; Tan, Josenia; O'Hara, Carl; Finn, Kathleen T.; Sanchorawala, Vaishali

    2012-01-01

    Amyloid deposits are often found in the bone marrow in patients with AL amyloidosis; we sought to determine whether this affects stem cell collection or engraftment following high dose melphalan and autologous stem cell transplantation (HDM/SCT). Data on 361 patients with AL amyloidosis who had Congo red staining of the pre-treatment bone marrow biopsy and underwent HDM/SCT from July 1994 to December 2011 were reviewed. Data were analyzed for stem cell yield, number of days of stem cell colle...

  18. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some re-spects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group, followed by the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the poly-lactic glycolic acid conduit+bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve ifbers, and a completely degraded and resorbed conduit, in the polylac-tic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is ben-eifcial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the

  19. Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain functional and immune properties and do not contribute to the pathogenesis of the disease

    OpenAIRE

    Bueno, Clara; Roldan, Mar; Anguita, Eduardo; Romero-Moya, Damia; Martín-Antonio, Beatriz; Rosu-Myles, Michael; del Cañizo, Consuelo; Campos, Francisco; García, Regina; Gómez-Casares, Maite; Fuster, Jose Luis; Jurado, Manuel; DELGADO, MARIO; Menendez, Pablo

    2014-01-01

    Aplastic anemia is a life-threatening bone marrow failure disorder characterized by peripheral pancytopenia and marrow hypoplasia. The majority of cases of aplastic anemia remain idiopathic, although hematopoietic stem cell deficiency and impaired immune responses are hallmarks underlying the bone marrow failure in this condition. Mesenchymal stem/stromal cells constitute an essential component of the bone marrow hematopoietic microenvironment because of their immunomodulatory properties and ...

  20. Optimal graft source for allogeneic hematopoietic stem cell transplant: bone marrow or peripheral blood?

    Science.gov (United States)

    Adhikari, Janak; Sharma, Priyadarshani; Bhatt, Vijaya Raj

    2016-08-01

    Peripheral blood (PB), compared with bone marrow graft, has higher stem cell content, leads to faster engraftment and is more convenient for collection. Consequently, the use of PB graft has significantly increased in recent years. Although the use of PB graft is acceptable or even preferred to bone marrow graft in matched related donor allogeneic transplant due to a possibility of improved survival, PB graft increases the risk of chronic graft-versus-host disease and associated long-term toxicities in the setting of matched unrelated donor allogeneic transplant. In haploidentical transplant, mitigation of graft-versus-host disease with the use of post-transplant cyclophosphamide is a hypothesis-generating possibility; however, available studies have significant limitations to draw any definite conclusion. PMID:27168462

  1. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. (National Institutes of Health, Bethesda, MD (USA))

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  2. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    International Nuclear Information System (INIS)

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells

  3. G-CSF: From granulopoietic stimulant to bone marrow stem cell mobilizing agent.

    Science.gov (United States)

    Bendall, Linda J; Bradstock, Kenneth F

    2014-08-01

    G-CSF was among the first cytokines to be identified and rapidly transitioned into clinical medicine. Initially used to promote the production of neutrophils in patients with chemotherapy-induced neutropenia it helped to revolutionize the delivery of cancer therapy. Its ability to mobilize hematopoietic stem cells from the bone marrow into the blood was subsequently exploited, changing the face of hematopoietic stem cell transplantation. Today the knowledge gained in unraveling the mechanisms of stem cell mobilization by G-CSF is being explored as a means to increase chemosensitivity in hematological malignancies. This review provides a brief history of G-CSF and then focuses on recent advances in our understanding of G-CSF-induced stem cell mobilization and the potential clinical application of this knowledge in chemo-sensitization. PMID:25131807

  4. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    OpenAIRE

    Ningning He; Lu Zhang; Jian Cui; Zongjin Li

    2014-01-01

    Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs). As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this rev...

  5. Human bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Lopez M

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD. This review summarizes the knowledge and possible future clinical uses of MSCs.

  6. Cultivation of hamster bone marrow haematopoietic stem and progenitor cells

    OpenAIRE

    Kovačević-Filipović Milica; Okić Ivana; Petrićević Tanja; Mojsilović S.; Krstić Aleksandra; Jovčić Gordana; Bugarski Diana; Milenković P.; Petakov Marijana; Radovanović Anita; Božić Tatjana; Ivanović Z.

    2010-01-01

    Hamster, a hibernating animal, is an important experimental model in research on the influence of hypothermia on different physiological processes. A simple procedure for cultivation and identification of hamster hematopoetic stem cells (HSC) and hematopoetic progenitor cells (HPC) is a premise for a successful investigation upon hypothermia effects on hematopoiesis. The aim of this work was to evaluate the utilization of commercially available methylcellulose media (MC) and recombinant mouse...

  7. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells☆

    OpenAIRE

    Tang, Yue; Cui, Yongchun; Luo, Fuliang; Liu, Xiaopeng; Wang, XiaoJuan; Wu, Aili; Zhao, Junwei; Tian, Zhong; Wu, Like

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and do...

  8. Bone marrow aspiration

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  9. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  10. Our Experience with Autologous Bone Marrow Stem Cell Application in Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mukund K

    2009-01-01

    Full Text Available Background - Use of autologous bone marrow stem cell is a newly evolving treatment modality for end stage cardiac failure as reported in the literature. We report our experience with two patients with dilated cardiomyopathy who underwent this treatment after failure of maximal conventional therapy. Methods - A 29 year old Male patient with history of orthopnea and PND, with a diagnosis of dilated cardiomyopathy and echocardiographic evidence of severe LV dysfunction was referred for further treatment. His echo on admission showed EF of 17% and no other abnormal findings except elevated bilirubin levels. He was in NYHA functional class IV. He received intracoronary injection of autologous bone marrow stem cells in January 2009. 254X106 cells were injected with a CD34+ of 0.20%. His clinical condition stabilized and he was discharged home. He received a second injection of 22X106 in vitro expanded stem cells with a CD34+ of 0.72% in Aug 2009. He is now in NYHA class II-III with EF 24%. A 31year old Male patient with history of increasing shortness of breath, severe over the past 3-4 days was admitted for evaluation and treatment. His echo on admission showed EF of 20% and was in NYHA functional class IV. Coronary angiogram was normal and he was stabilized on maximal anti failure measures. He received intracoronary autologous bone marrow stem cell injection of 56X106 with a CD34+ of 0.53% in August 2009. His clinical condition stabilized over the next 10 days and he was discharged home. Conclusions - In our experience of two cases of dilated cardiomyopathy, safety of intracoronary injection of autologous bone marrow stem cells both isolated and in vitro expanded has been proven in both the cases with efficacy proven in one of the cases. Long term follow-up of these two cases and inclusion of more number of similar cases where all available conventional therapies have not resulted in significant improvement for such studies are planned.

  11. Reduction of radiation-induced damage to salivary gland by bone marrow derived stem cells

    International Nuclear Information System (INIS)

    Irradiation of the salivary glands can result in severe side effects that reduce the patient's quality of life. Late damage to the salivary glands is mainly caused by exhaustion of the tissue's stem cells. Post-irradiation replacement of salivary gland stem cells with healthy donor stem cells may reduce complications. Bone marrow derived stem cells (BMSC) have been show to be multipotent and engraft in many tissue after injury. In this study we assessed the potential of BMSC to reduce irradiation-induced salivary gland damage. The salivary glands of wild type C57Bl/6 mice were locally irradiated with 20 Gy. Thirty days later, BMSC from transgenic eGFP+ C57Bl/6 mice were transplanted by i.v. injection or by direct injection into the salivary glands. In addition, animals were transplanted with eGFP + bone marrow after 9.5 Gy TBI excluding the salivary glands. Subsequently, the animals were locally irradiated to the salivary gland with 20 Gy. Thirty days later i.v. G-CSF mobilised eGFP + bone marrow derived stem cells to the peripheral blood. Again thirty days after mobilisation, the salivary gland were harvested. eGFP + cells were detected by confocal laser fluorescence scanning microscopy and flow cytometry and H and E histology was performed. eGFP + cells were detected in the salivary gland after all protocols. The number of eGFP + cells in irradiated salivary glands was highest in animals treated with G-CSF. Intraglandular transplantation, in contrast, was successful only in 1 out of 8 attempts. Immuno-histochemistry using a-SM-actin antibodies showed the close vicinity of actin and eGFP within the cells, demonstrating the occurrence of BMSC derived myoepithelial cells in irradiated salivary gland. Further, cell-type specific antibodies will reveal the nature of all eGFP + cells. H and E histology revealed improved gland morphology in animals treated with G-CSF after irradiation when compared to the non-treated animals. These preliminary results indicate that bone

  12. Bone Marrow-Derived Stem Cells:A Mixed Blessing in the Multifaceted World of Diabetic Complications

    OpenAIRE

    Mangialardi, Giuseppe; Madeddu, Paolo

    2016-01-01

    Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected b...

  13. Culture medium of bone marrow-derived human mesenchymal stem cells effects lymphatic endothelial cells and tumor lymph vessel formation

    OpenAIRE

    ZHAN, JIE; Li, Yahong; Yu, Jing; ZHAO, YUANYAUN; CAO, WENMING; Ma, Jie; Sun, Xiaoxian; Sun, Li; QIAN, HUI; Zhu, Wei; Xu, Wenrong

    2015-01-01

    Human bone marrow mesenchymal stem cells (hBM-MSCs) favor tumor growth and metastasis in vivo and in vitro. Neovascularization is involved in several pathological conditions, including tumor growth and metastasis. Previous studies have demonstrated that human bone marrow MSC-derived conditioned medium (hBM-MSC-CM) can promote tumor growth by inducing the expression of vascular epidermal growth factor (VEGF) in tumor cells. However, the effect of BM-MSCs on tumor lymph vessel formation has yet...

  14. MURINE MOBILIZED PERIPHERAL BLOOD STEM CELLS HAVE A LOWER CAPACITY THAN BONE MARROW TO INDUCE MIXED CHIMERISM AND TOLERANCE

    OpenAIRE

    Koporc, Zvonimir; Pilat, Nina; Nierlich, Patrick; Blaha, Peter; Bigenzahn, Sinda; Pree, Ines; Selzer, Edgar; Sykes, Megan; Muehlbacher, Ferdinand; Wekerle, Thomas

    2008-01-01

    Allogeneic bone marrow transplantation (BMT) under costimulation blockade allows induction of mixed chimerism and tolerance without global T cell depletion. The mildest such protocols without recipient cytoreduction, however, require clinically impracticable bone marrow (BM) doses. The successful use of mobilized peripheral blood stem cells (PBSC) instead of BM in such regimens would provide a substantial advance, allowing transplantation of higher doses of hematopoietic donor cells. We thus ...

  15. In vitro evaluation of isolation possibility of stem cells from intra oral soft tissue and comparison of them with bone marrow stem cells

    OpenAIRE

    P. Torkzaban; Saffarpour, A.; M. Bidgoli; Sohilifar, S.

    2012-01-01

    Objective: Stem cells are of great interest for regenerating disturbed tissues and organs. These cells are commonly isolated from the bone marrow, but there has been interest in other tissues in the recent years. In this study, we evaluated the possibility of isolation of stem cells from oral connective tissue and investigated their characteristics. Materials and Methods: In this experimental study, sampling from the bone marrow and oral connective tissue of a beagle dog was performed under g...

  16. Normal Hematopoietic Stem Cells within the AML Bone Marrow Have a Distinct and Higher ALDH Activity Level than Co-Existing Leukemic Stem Cells

    OpenAIRE

    Schuurhuis, Gerrit J.; Meel, Michael H.; Wouters, Floris; Min, Lisa A.; Terwijn, Monique; de Jonge, Nick A.; Kelder, Angele; Snel, Alexander N; Zweegman, Sonja; Ossenkoppele, Gert J.; Smit, Linda

    2013-01-01

    Persistence of leukemic stem cells (LSC) after chemotherapy is thought to be responsible for relapse and prevents the curative treatment of acute myeloid leukemia (AML) patients. LSC and normal hematopoietic stem cells (HSC) share many characteristics and co-exist in the bone marrow of AML patients. For the development of successful LSC-targeted therapy, enabling eradication of LSC while sparing HSC, the identification of differences between LSC and HSC residing within the AML bone marrow is ...

  17. Bone Marrow Mesenchymal Stem Cell and Vein Conduit on Sciatic Nerve Repair in Rats

    Science.gov (United States)

    Seyed Foroutan, Kamal; Khodarahmi, Ali; Alavi, Hootan; Pedram, Sepehr; Baghaban Eslaminejad, Mohamad Reza; Bordbar, Sima

    2015-01-01

    Background: Peripheral nerve repair with sufficient functional recovery is an important issue in reconstructive surgery. Stem cells have attracted extensive research interest in recent years. Objectives: The purpose of this study was to compare the vein conduit technique, with and without the addition of mesenchymal stem cells in gap-less nerve injury repair in rats. Materials and Methods: In this study, 36 Wistar rats were randomly allocated to three groups: In the first group, nerve repair was performed with simple neurorrhaphy (control group), in the second group, nerve repair was done with vein conduit over site (vein conduit group) and in the third group, bone marrow stem cells were instilled into the vein conduit (stem cell group) after nerve repair with vein conduit over site. Six weeks after the intervention, the sciatic function index, electrophysiological study and histological examination were performed. Results: All animals tolerated the surgical procedures and survived well. The sciatic function index and latency were significantly improved in the vein conduit (P = 0.04 and 0.03, respectively) and stem cell group (P = 0.02 and 0.03, respectively) compared with the control group. No significant difference was observed in sciatic function and latency between the vein conduit and stem-cell groups. Moreover, histological analysis showed no significant difference in regenerative density between these two groups. Conclusions: The results of this study showed that the meticulous microsurgical nerve repair, which was performed using the vein tubulization induced significantly better sciatic nerve regeneration. However, the addition of bone marrow mesenchymal stem cell to vein conduit failed to promote any significant changes in regeneration outcome. PMID:25825699

  18. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  19. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    OpenAIRE

    Zoleikha Golipoor; Fereshteh Mehraein; Fariba Zafari; Akram Alizadeh; Shima Ababzadeh; Maryam Baazm

    2016-01-01

    Objective: Bone marrow (BM) is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL) stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB) in response to tissue injury. In this study we ...

  20. Reprogramming of bone marrow-derived mesenchymal stem cells into functional insulin-producing cells by chemical regimen

    OpenAIRE

    Wang, Qiwei; Ye, Lingling; Liu, Hong; Liu, Xingmao; Li, Shichong; Chen, Zhaolie

    2012-01-01

    Beta-cell transplantation is considered to be the most effective approach to cure type 1 diabetes (T1D). Unfortunately, the scarce availability of donor tissue limits the applicability of this therapy. Recent stem cell research progress shows stem cell therapy may be a potential means to solve this problem. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewable and multipotent adult stem cells which can differentiate into the three germ layers. Here we aimed to investigate wheth...

  1. Intralesional Application of Autologous Bone Marrow Stem Cells with Scaffold in Canine for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Justin William B

    2009-01-01

    Full Text Available A three year old male non-descriptive companion dog was presented to the Small Animal Orthopedic Unit of Madras Veterinary College Teaching Hospital (MVC with paraplegia of fourth degree neurological deficit of hind limbs due to automobile trauma. Radiographic views were suggestive of dislocation at T8-T9 vertebral segment with fracture of L2 vertebra. Myelography confirmed the signs of abrupt stoppage of the contrast column cranial to dislocated area and was interpretive of transected spinal cord at L2 level. Construct was prepared with bone marrow mononuclear cells (BMMNC isolated from bone marrow aspirate of femur and the cells were seeded in Thermoreversible Gelatin Polymer (TGP at the cell processing facility of Nichi-In Centre for Regenerative Medicine (NCRM as per GMP protocols and was engrafted after hemilaminectomy and durotomy procedures in the MVC. Postoperatively the animal was clinically stable; however the animal died on the 7th day. Autopsy revealed co-morbid conditions like cystitis, nephritis and transmissible venereal tumor. Histopathology of the engrafted area revealed sustainability of aggregated stem cells that were transplanted revealing an ideal biocompatibility of the construct prepared with bone marrow mononuclear cells and polymer hydrogel for spinal cord regeneration in dogs. Further studies in similar cases will have to be undertaken to prove the long term efficacy.

  2. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yuxin Wu; Jinghan Zhang; Xiaoming Ben

    2013-01-01

    Non-adherent bone marrow cel-derived mesenchymal stem cel s from C57BL/6J mice were sepa-rated and cultured using the “pour-off” method. Non-adherent bone marrow cel-derived mesen-chymal stem cel s developed colony-forming unit-fibroblasts, and could be expanded by supple-mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cel-derived mesenchymal stem cel s exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cel-derived mesenchymal stem cel s fromβ-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cel s positive for LacZ andβ-galactosidase staining were observed in the ischemic tissues, and cel s co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cel-derived mesenchymal stem cel s could differentiate into neuronal-like cel s in vitro and in vivo.

  3. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  4. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  5. Expression of Odontogenic Genes in Human Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Seyedeh Sara Bagheri

    2013-01-01

    Full Text Available Objective: Tooth loss is a common problem and since current tooth replacement methods cannot counter balance with biological tooth structures, regenerating natural tooth structures has become an ideal goal. A challenging problem in tooth regeneration is to find a proper clinically feasible cell to seed.This study was designed to investigate the odontogenic potential of human bone marrow mesenchymal stem cells (HBMSCs for seeding in tooth regeneration.Materials and Methods: In this experimental study, three pregnant Sprague Dawley (SD rats were used at the eleventh embryonic day and rat fetuses were removed surgically using semilunar flap under general anesthesia. The primary mandible was cut using a stereomicroscope. The epithelial and mesenchymal components were separated and the dissected oral epithelium was cultured for 3 days. We used flow cytometry analysis to confirm presence of mesenchymal stem cells and not hematopoietic cells and to demonstrate the presence of oral epithelium. Bone marrow mesenchymal stem cells (BMSCs and cultured oral epithelium were then co-cultured for 14 days. BMSCs cultured alone were used as controls. Expression of two odontogenic genes Pax9 and DMP1 was assessed using quantitative reverse transcription- polymerase chain reaction (RT-PCR.Results: Expression of two odontogenic genes, Pax9 and DMP1, were detected in BMSCs co-cultured with oral epithelium but not in the control group.Conclusion: Expression of Pax9 and DMP1 by human BMSCs in the proximity of odontogenic epithelium indicates odontogenic potential of these cells.

  6. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2012-01-01

    Full Text Available The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months were tested in Morris water maze (MWM and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500×103/ and PBS (phosphate buffer saline. In the second experiment, Ibotenic acid (Ibo was injected bilaterally into the nucleus basalis magnocellularis (NBM of young rats (3 months and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500×103/ and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  7. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors

    OpenAIRE

    Zhang, Ting; Lee, Yuk Wai; Rui, Yun Feng; Cheng, Tin Yan; Jiang, Xiao Hua; Li, Gang

    2013-01-01

    Introduction Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues. This behavior of MSCs has been exploited as a tumor-targeting strategy for cell-based cancer therapy. However, the effects of MSCs on tumor growth are controversial. This study was designed to determine the effect of MSCs on the growth of breast and prostate tumors. Methods Bone marrow-derived MSCs (BM-MSCs) were isolated and characterized. Effects of BM-MSCs on tumor cell proliferation were analyzed in a co-cul...

  8. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    OpenAIRE

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  9. Preliminary study on the freeze-drying of human bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Zhang, Shao-zhi; Qian, Huan; Wang, Zhen; Fan, Ju-li; Zhou, Qian; Guang-ming CHEN; Li, Rui; Fu, Shan; Sun, Jie

    2010-01-01

    Long-term preservation and easy transportation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) will facilitate their application in medical treatment and bioengineering. A pilot study on the freeze-drying of hBM-MSCs was carried out. hBM-MSCs were loaded with trehalose. The glass transition temperature of the freeze-drying suspension was measured to provide information for the cooling and primary drying experiment. After freeze-drying, various rehydration processes were tested....

  10. Enhanced Adipogenicity of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia

    OpenAIRE

    Naresh Kumar Tripathy; Saurabh Pratap Singh; Soniya Nityanand

    2014-01-01

    Fatty bone marrow (BM) and defective hematopoiesis are a pathologic hallmark of aplastic anemia (AA). We have investigated adipogenic and osteogenic potential of BM mesenchymal stem cells (BM-MSC) in 10 AA patients (08 males and 02 females) with median age of 37 years (range: 06 to 79 years) and in the same number of age and sex matched controls. It was observed that BM-MSC of AA patients had a morphology, phenotype, and osteogenic differentiation potential similar to control subjects but adi...

  11. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  12. Bone-Marrow Stem-Cell Survival in the Non-Uniformly Exposed Mammal

    International Nuclear Information System (INIS)

    For comparison of the effectiveness of non-uniform versus uniform irradiations in causing haematological death in mammals, a model of the irradiated haemopoietic system has been proposed. The essential features of this model are: (1) that different parts of the haemopoietic system have numbers of stem cells which are proportioned to the amounts of active marrow in those parts as measured by 59Fe uptake, (2) that stem cells in the different parts are subject to the, same dose-survival relationship, and (3) that survival of the animal depends on survival of a critical fraction of the total number of stem cells independent of their distribution among the parts of the total marrow mass. To apply this model one needs to know: (a) the relative 59Fe uptakes of the different parts of the haemopoietic system, (b) the doses delivered to those parts by each of the exposures to be compared, and (c) the dose-survival curve applicable to the stem cells. From these one can calculate the fraction of stem cells surviving each exposure. In a preliminary communication the applicability of the model was investigated using data obtained entirely from the literature. Additional data, particularly on bone-marrow distribution, have since been obtained and are included here. The primary object of the present paper is to test further the validity of the above 'stem-cell survival model'. Data on bilateral (essentially uniform) versus unilateral and non-uniform rotational exposures in mammals are examined with respect to the surviving fraction of stem cells at the LD50/30 day dose level. Although an adequate test is not possible at present for lack of a full set of data in any one species, a partial test indicates compatibility with data for dogs and rats. Other possible mortality determinants such as doses or exposures at entrance, midline or exit, or the gram-rads or average dose to the marrow, appear to be less useful than the critical stem-cell survival fraction

  13. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  14. Thy1-positive bone marrow stem cells express liver-specific genes in vitro and can mature into hepatocytes in vivo

    OpenAIRE

    Bae, Si Hyun; Choi, Jong Young; Yoon, Seung Kew; Oh, Il-Hoan; Yoon, Kun Ho; Park, Seong Tae; Kim, Gi Dae; Oh, Seh-Hoon; PETERSEN, BRYON E.

    2007-01-01

    The bone marrow contains stem cells that have the potential to differentiate into a variety of organ-specific mature cells, including the liver and the pancreas. Recently, the origin of hepatic progenitors and hepatocytes was identified to be the bone marrow. However, evidence that describes which cells, among all bone marrow cells, differentiate into hepatocytes, has not yet been presented. Based on recent reports, hematopoietic and hepatic stem cells share characteristic markers such as CD3...

  15. Increase of radioresistance of hemopoietic stem cells (CFUs) of femoral bone marrow in mice after administration of dextran sulfate

    International Nuclear Information System (INIS)

    The influence of a single i.p. injection of dextran sulfate (DS) on the radiosensitivity of the hemopoietic stem cells (CFUs) of the femoral bone marrow of mice was investigated. The administration of DS induced an increase of the proliferative activity and the number of CFUs in the spleen and femoral bone marrow, and an elevation of the number of CFUs in the circulatory blood. An enhanced survival of CFUs in the femoral bone marrow and increased numbers of endogenous colonies of the hemopoietic tissue in the spleens were found after the administration of DS 24 and 72 hours before sublethal irradiation. The dose reduction factor of the substance calculated from the equieffective exposure for the decrease of CFUs in the femoral bone marrow was for both intervals of DS injection 2.2. DS increased the radioresistance of mice which is manifested by an increased survival of the animals after lethal whole-body gamma irradiation. (author)

  16. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  17. Heterogeneous populations of bone marrow stem cells--are we spotting on the same cells from the different angles?

    Directory of Open Access Journals (Sweden)

    Janina Ratajczak

    2004-10-01

    Full Text Available Accumulated evidence suggests that in addition to hematopoietic stem cells (HSC, bone marrow (BM also harbors endothelial stem cells (ESC, mesenchymal stem cells (MSC, multipotential adult progenitor cells (MAPC, pluripotent stem cells (PCS as well as tissue committed stem cells (TCSC recently identified by us. In this review we discuss the similarities and differences between these cell populations. Furthermore, we will present the hypothesis that all of these versatile BM derived stem cells are in fact different subpopulations of TCSC. These cells accumulate in bone marrow during ontogenesis and being a mobile population of cells are released from BM into peripheral blood after tissue injury to regenerate damaged organs. Furthermore, since BM is a "hideout" for TCSC, their presence in preparations of bone marrow derived mononuclear cells should be considered before experimental evidence is interpreted simply as trans-differentiation or plasticity of HSC. Finally, our observation that the number of TCSC accumulate in the bone marrow of young animals and their numbers decrease during senescence provides a new insight into aging and may explain why the regeneration processes becomes less effective in older individuals.

  18. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects

    OpenAIRE

    Min Cai; Rui Shen; Lei Song; Minjie Lu; Jianguang Wang; Shihua Zhao; Yue Tang; Xianmin Meng; Zongjin Li; Zuo-Xiang He

    2016-01-01

    Stem cells are promising for the treatment of myocardial infarction (MI) and large animal models should be used to better understand the full spectrum of stem cell actions and preclinical evidences. In this study, bone marrow mesenchymal stem cells (BM-MSCs) were transplanted into swine heart ischemia model. To detect glucose metabolism in global left ventricular myocardium and regional myocardium, combined with assessment of cardiac function, positron emission tomography-computer tomography ...

  19. Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow

    OpenAIRE

    Dhanasekaran, M.; Indumathi, S.; Kanmani, A.; Poojitha, R.; Revathy, K. M.; Rajkumar, J. S.; D.Sudarsanam

    2012-01-01

    Omentum fat derived stem cells have emerged as an alternative and accessible therapeutic tool in recent years in contrast to the existing persuasive sources of stem cells, bone marrow and subcutaneous adipose tissue. However, there has been a scanty citation on human omentum fat derived stem cells. Furthermore, identification of specific cell surface markers among aforesaid sources is still controversial. In lieu of this existing perplexity, the current research work aims at signifying omentu...

  20. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    Directory of Open Access Journals (Sweden)

    Hu Y

    2013-10-01

    Full Text Available Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC transplantation in preventing loss of visual function in aged rats with glaucoma caused by laser-induced ocular hypertension. We found that BMSCs promoted survival of retinal ganglion cells in the transplanted eye as compared with the control eye. Further, in swimming tests guided by visual cues, the rats with a BMSC transplant performed significantly better. We believe that BMSC transplantation therapy is effective in treating aged rats with glaucoma. Keywords: glaucoma, stem cell, transplantation, cell therapy, aging

  1. Histopathological Comparison between Bone Marrow- and Periodontium-derived Stem Cells for Bone Regeneration in Rabbit Calvaria

    Science.gov (United States)

    Kadkhoda, Z.; Safarpour, A.; Azmoodeh, F.; Adibi, S.; Khoshzaban, A.; Bahrami, N.

    2016-01-01

    Background: Periodontitis is an important oral disease. Stem cell therapy has found its way in treatment of many diseases. Objective: To evaluate the regenerative potential of periodontal ligament-derived stem cells (PDLSCs) and osteoblast differentiated from PDLSC in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs) and pre-osteoblasts in calvarial defects. Methods: After proving the existence of surface markers by flow cytometry, BM-MSCs were differentiated into osteoblasts. 5 defects were made on rabbit calvaria. 3 of them were first covered with collagen membrane and then with BM-MSCs, PDLSCs, and pre-osteoblasts. The 4th defect was filled with collagen membrane and the 5th one was served as control. After 4 weeks, histological (quantitative) and histomorphological (qualitative) surveys were performed. Results: Both cell lineages were positive for CD-90 cell marker, which was specifically related to stem cells. Alizarin red staining was done for showing mineral material. RT-PCR set up for the expression of Cbfa1 gene, BMP4 gene, and PGLAP gene, confirmed osteoblast differentiation. The findings indicated that although PDLSCs and pre-osteoblasts could be used for bone regeneration, the rate of regeneration in BM-MSCs-treated cavities was more significant (p<0.0001). Conclusion: The obtained results are probably attributable to the effective micro-environmental signals caused by different bone types and the rate of cell maturation. PMID:26889369

  2. Imaging of Bone Marrow.

    Science.gov (United States)

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  3. Magnetic labeling and in vitro MR imaging of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Objective: To label rat bone marrow mesenchymal stem cells with feridex combined with poly-l-lysine (PLL), and to determine the feasibility of detection of magnetically labeled stem cells with MR imaging. Methods: Feridex were incubated with PLL for 1 hour to obtain a complex of feridex-PLL. Mesenchymal stem cells isolated from the bone marrows of Wistar rats were cultured and expanded. By the 4th passage, cells were co-incubated overnight with the feridex-PLL complex. Prussian blue staining for demonstrating intracytoplastic nanoparticles and trypan-blue exclusion test for cell viability were performed respectively at 24 h, 1 w, 2 w, 3 w after labeling. MR imaging of cell suspensions was performed by using T1WI, T2WI and T2* WI sequences at a clinical 1.5 T MR system. Results: Numerous intracytoplastic iron particles were stained with Prussian blue. With division of stern cells, the stained particles were seen decreased gradually. Trypan blue exclusion test at 24 h, 1 w, 2 w and 3 w showed that the viability of the labeled cells was 91.00%, 93.00%, 91.75%, and 92.50%, not significantly different with that of nonlabeled cells (P>0.05). For 103, 104 and l05 cells, T2 signal intensity decreased by 63.75%, 82.31% and 91.92% respectively, T2* signal intensity decreased by 68.24%, 83.01%, and 93.94% respectively. For 105 labeled cells, T2* signal intensity decreased by 93.75%, 75.92%, 41.75% and 8.83 % respectively at 24 h, 1 w, 2 w and 3 w after labeling. Conclusion: Magnetic labeling of rat bone marrow stem cells with feridex-PLL complex is feasible, efficient and safe. T2* WI is the most sensitive sequence to detect the labeled cells. The degree of T2 signal decreasing may be related to the cell count and division phase. (authors)

  4. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  5. Molecular Mechanisms Mediating Retinal Reactive Gliosis Following Bone Marrow Mesenchymal Stem Cell Transplantation

    Science.gov (United States)

    Tassoni, Alessia; Gutteridge, Alex; Barber, Amanda C.; Osborne, Andrew

    2015-01-01

    abstract A variety of diseases lead to degeneration of retinal ganglion cells (RGCs) and their axons within the optic nerve resulting in loss of visual function. Although current therapies may delay RGC loss, they do not restore visual function or completely halt disease progression. Regenerative medicine has recently focused on stem cell therapy for both neuroprotective and regenerative purposes. However, significant problems remain to be addressed, such as the long‐term impact of reactive gliosis occurring in the host retina in response to transplanted stem cells. The aim of this work was to investigate retinal glial responses to intravitreally transplanted bone marrow mesenchymal stem cells (BM‐MSCs) to help identify factors able to modulate graft‐induced reactive gliosis. We found in vivo that intravitreal BM‐MSC transplantation is associated with gliosis‐mediated retinal folding, upregulation of intermediate filaments, and recruitment of macrophages. These responses were accompanied by significant JAK/STAT3 and MAPK (ERK1/2 and JNK) cascade activation in retinal Muller glia. Lipocalin‐2 (Lcn‐2) was identified as a potential new indicator of graft‐induced reactive gliosis. Pharmacological inhibition of STAT3 in BM‐MSC cocultured retinal explants successfully reduced glial fibrillary acidic protein expression in retinal Muller glia and increased BM‐MSC retinal engraftment. Inhibition of stem cell‐induced reactive gliosis is critical for successful transplantation‐based strategies for neuroprotection, replacement, and regeneration of the optic nerve. Stem Cells 2015;33:3006–3016 PMID:26175331

  6. Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK), Dresden (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Haagen, J.; Noack, R.; Siegemund, A.; Gabriel, P. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Doerr, W. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Comprehensive Cancer Center, Medical University/AKH Vienna, Dept. of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna (Austria)

    2014-04-15

    Oral mucositis is a severe and dose limiting early side effect of radiotherapy for head-and-neck tumors. This study was initiated to determine the effect of bone marrow- and mesenchymal stem cell transplantation on oral mucositis (mouse tongue model) induced by fractionated irradiation. Daily fractionated irradiation (5 x 3 Gy/week) was given over 1 (days 0-4) or 3 weeks (days 0-4, 7-11, 14-18). Each protocol was terminated (day 7 or 21) by graded test doses (5 dose groups, 10 animals each) in order to generate complete dose-effect curves. The incidence of mucosal ulceration, corresponding to confluent mucositis grade 3 (RTOG/EORTC), was analyzed as the primary, clinically relevant endpoint. Bone marrow or mesenchymal stem cells were transplanted intravenously at various time points within these fractionation protocols. Transplantation of 6 x 10{sup 6}, but not of 3 x 10{sup 6} bone marrow stem cells on day -1, +4, +8, +11 or +15 significantly increased the ED{sub 50} values (dose, at which an ulcer is expected in 50% of the mice); transplantation on day +2, in contrast, was ineffective. Mesenchymal stem cell transplantation on day -1, 2 or +8 significantly, and on day +4 marginally increased the ED{sub 50} values. Transplantation of bone marrow or mesenchymal stem cells has the potential to modulate radiation-induced oral mucositis during fractionated radiotherapy. The effect is dependent on the timing of the transplantation. The mechanisms require further investigation. (orig.)

  7. Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation

    International Nuclear Information System (INIS)

    Oral mucositis is a severe and dose limiting early side effect of radiotherapy for head-and-neck tumors. This study was initiated to determine the effect of bone marrow- and mesenchymal stem cell transplantation on oral mucositis (mouse tongue model) induced by fractionated irradiation. Daily fractionated irradiation (5 x 3 Gy/week) was given over 1 (days 0-4) or 3 weeks (days 0-4, 7-11, 14-18). Each protocol was terminated (day 7 or 21) by graded test doses (5 dose groups, 10 animals each) in order to generate complete dose-effect curves. The incidence of mucosal ulceration, corresponding to confluent mucositis grade 3 (RTOG/EORTC), was analyzed as the primary, clinically relevant endpoint. Bone marrow or mesenchymal stem cells were transplanted intravenously at various time points within these fractionation protocols. Transplantation of 6 x 106, but not of 3 x 106 bone marrow stem cells on day -1, +4, +8, +11 or +15 significantly increased the ED50 values (dose, at which an ulcer is expected in 50% of the mice); transplantation on day +2, in contrast, was ineffective. Mesenchymal stem cell transplantation on day -1, 2 or +8 significantly, and on day +4 marginally increased the ED50 values. Transplantation of bone marrow or mesenchymal stem cells has the potential to modulate radiation-induced oral mucositis during fractionated radiotherapy. The effect is dependent on the timing of the transplantation. The mechanisms require further investigation. (orig.)

  8. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded allograft

    Directory of Open Access Journals (Sweden)

    J O Eniwumide

    2007-08-01

    Full Text Available Improvements to current therapeutic strategies are needed for the treatment of skeletal defects. Bone tissue engineering offers potential advantages to these strategies. In this study, ectopic bone formation in a range of scaffolds was assessed. Vital autograft and devitalised allograft served as controls and the experimental groups comprised autologous bone marrow derived stem cell seeded allograft, biphasic calcium phosphate (BCP and tricalcium phosphate (TCP, respectively. All implants were implanted in the back muscle of adult Dutch milk goats for 12 weeks. Micro-computed tomography (µCT analysis and histomorphometry was performed to evaluate and quantify ectopic bone formation. In good agreement, both µCT and histomorphometric analysis demonstrated a significant increase in bone formation by cell-seeded calcium phosphate scaffolds as compared to the autograft, allograft and cell-seeded allograft implants. An extensive resorption of the autograft, allograft and cell-seeded allograft implants was observed by histology and confirmed by histomorphometry. Cell-seeded TCP implants also showed distinct signs of degradation with histomorphometry and µCT, while the degradation of the cell-seeded BCP implants was negligible. These results indicate that cell-seeded calcium phosphate scaffolds are superior to autograft, allograft or cell-seeded allograft in terms of bone formation at ectopic implantation sites. In addition, the usefulness of µCT for the efficient and non-destructive analysis of mineralised bone and calcium phosphate scaffold was demonstrated.

  9. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  10. In vitro evaluation of isolation possibility of stem cells from intra oral soft tissue and comparison of them with bone mar-row stem cells

    Directory of Open Access Journals (Sweden)

    P. Torkzaban

    2012-01-01

    Full Text Available Objective: Stem cells are of great interest for regenerating disturbed tissues and organs. These cells are commonly isolated from the bone marrow, but there has been interest in other tissues in the recent years. In this study, we evaluated the possibility of isolation of stem cells from oral connective tissue and investigated their characteristics.Materials and Methods: In this experimental study, sampling from the bone marrow and oral connective tissue of a beagle dog was performed under general anesthesia. Bone marrow stem cell isolation was performed according to the established protocols. The samples obtained from oral soft tissue were broken to small pieces and after adding collagenase I, the samples were incubated for 45 minutes in 37°C. Other processes were similar to the processes which were carried out on bone marrow cells. Then cell properties were compared to evaluate if the cells from the connective tissue were stem cells.Results: The cells from the bone marrow and connective tissue had the same morphology. The result of colony forming unit assay was relatively similar. Population doubling time was similar too. In addition, both cell groups differentiated to osteoblasts in osteogenic media.Conclusion: The cells isolated from the oral connective tissue had the characteristics of stem cells, including fibroblastoid morphology, self renewal properties, high proliferation rate and differentiation potential.

  11. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Zurab Kakabadze

    2016-01-01

    Full Text Available Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50% cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA scale, 7 (78% out of the 9 patients observed an improvement by one grade, while two cases (22% saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury.

  12. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Kakabadze, Zurab; Kipshidze, Nickolas; Mardaleishvili, Konstantine; Chutkerashvili, Gocha; Chelishvili, Irakli; Harders, Albrecht; Loladze, George; Shatirishvili, Gocha; Kipshidze, Nodar; Chakhunashvili, David; Chutkerashvili, Konstantine

    2016-01-01

    Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50%) cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA) scale, 7 (78%) out of the 9 patients observed an improvement by one grade, while two cases (22%) saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury. PMID:27433165

  13. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  14. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  15. Survival of mice and hematopoietic stem cells in bone marrow after intermittent total body irradiation

    International Nuclear Information System (INIS)

    As a preparative procedure for bone marrow transplantation, intermittent total body irradiation (TBI) has been used in our hospital. The biological significance of this method, in which the instantaneous dose rate is high but the average dose rate is low, has not been evaluated to date. The hematopoietic responses caused by both intermittent and continuous TBI were compared. In the intermittent irradiation, mice in a moving irradiation chamber were exposed under a small field (2 x 35 cm2), and the instantaneous and average dose rates were 1 Gy/min and 0.25 - 0.12 Gy/min, respectively. The average dose rate was adjusted to the same level in both irradiation methods. LD50/30 and survival of colony-forming units (CFU) in culture and survival of endogenuous CFU in the spleen from female BDF1 mice were the same with the two methods. These results show that the response of hematopoietic stem cells depends on the average dose rate, not on the instantaneous dose rate. Our findings suggest that intermittent irradiation, as well as the continuous method, would be useful for preparing patients before bone marrow transplantation. (author)

  16. Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications.

    Science.gov (United States)

    Hoch, Allison I; Leach, J Kent

    2014-05-01

    Bone marrow-derived mesenchymal stem/stromal cells (MSCs) have demonstrated success in the clinical treatment of hematopoietic pathologies and cardiovascular disease and are the focus of treating other diseases of the musculoskeletal, digestive, integumentary, and nervous systems. However, during the requisite two-dimensional (2D) expansion to achieve a clinically relevant number of cells, MSCs exhibit profound degeneration in progenitor potency. Proliferation, multilineage potential, and colony-forming efficiency are fundamental progenitor properties that are abrogated by extensive monolayer culture. To harness the robust therapeutic potential of MSCs, a consistent, rapid, and minimally detrimental expansion method is necessary. Alternative expansion efforts have exhibited promise in the ability to preserve MSC progenitor potency better than the 2D paradigm by mimicking features of the native bone marrow niche. MSCs have been successfully expanded when stimulated by growth factors, under reduced oxygen tension, and in three-dimensional bioreactors. MSC therapeutic value can be optimized for clinical applications by combining system inputs to tailor culture parameters for recapitulating the niche with probes that nondestructively monitor progenitor potency. The purpose of this review is to explore how modulations in the 2D paradigm affect MSC progenitor properties and to highlight recent efforts in alternative expansion techniques. PMID:24682286

  17. Senescing human bone-marrow-derived clonal mesenchymal stem cells have altered lysophospholipid composition and functionality.

    Science.gov (United States)

    Lee, Seul Ji; Yi, TacGhee; Ahn, Soo Hyun; Lim, Dong Kyu; Hong, Ji Yeon; Cho, Yun Kyoung; Lim, Johan; Song, Sun U; Kwon, Sung Won

    2014-03-01

    Mesenchymal stem cells (MSCs) have been used in a wide range of research and clinical studies because MSCs do not have any ethical issues and have the advantage of low carcinogenicity due to their limited proliferation. However, because only a small number of MSCs can be obtained from the bone marrow, ex vivo amplification is inevitably required. For that reason, this study was conducted to acquire the metabolic information to examine and control the changes in the activities and differentiation potency of MSCs during the ex vivo culture process. Endogenous metabolites of human bone-marrow-derived clonal MSCs (hcMSCs) during cellular senescence were profiled by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS). To select significant metabolites, we used the linear mixed effects model having fixed effects for batch and time (passage) and random effects for metabolites, determining the mean using a t test and the standard deviation using an F test. We used structural analysis with representative standards and spectrum patterns with different collision energies to distinctly identify eight metabolites with altered expression during senescence as types of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), such as LPC 16:0 and LPE 22:4. The present study revealed changes in endogenous metabolites and mechanisms due to senescence. PMID:24498988

  18. ISOLATION AND INDUCTION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS TO EXPRESS CHONDROCYTIC PHENOTYPE

    Institute of Scientific and Technical Information of China (English)

    尹战海; 刘淼; 王金堂; 曹峻岭; 张璟; 郑钧

    2002-01-01

    Objective To isolate rabbit bone marrow mesenchymal stem cells (MSCs), and observe the inducing effect of growth factors on MSCs to express chondrocytic phenotype. Methods MSCs were seperated from bone marrow of New Zealand rabbit. TGF-β1, IGF-I, Vitamin C and dexamethasone were added into culture medium to induce proliferation and differention of MSCs. Procollagen α1(Ⅱ) mRNA in cells was detected by RT-PCR to observe the chondrogenous effect of inducing factors. ALP in culture medium was detected by automatic biochemical analyser, and lipid droplet in cells was stained by Sudan Ⅲ to clarify whether these factors given had osteogenic and adipogenic potential. Results Expression of articular cartilage specific procollagen α1 (Ⅱ)mRNA was promoted by inducing factors-TGF-β1, IGF-I, Vitamine C and dexamethasone; elevated level of ALP in culture medium and lipid droplet in cells were also detected. Whereas ALP level was decreased and lipid stain were negative in groups without dexamethasone. Conclusion ① Expression of chondrocytic phenotype by MSCs could be induced by the synergistic action of TGF-β1, IGF-I and Vitamine C. ② Dexmathasone had osteogenic and adipogenic potential, it should not be chosen to induce chondrogenic differention of MSCs.

  19. Cysteine: A Novel Neural Inducer for Rat Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Malek Soleimani Mehranjani

    2014-06-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs can differentiate into various cell types. Since cysteine has structural similarities to neuronal inducers β-mercaptoethanol and glutathione, we examined its effect on neural induction of rat bone marrow MSCs. Materials and Methods: In this experimental study, cells were treated in a medium containing 1mM cysteine for 24 hours prior to treatment with neuron inducing medium containing 10 mM cysteine for 1, 2 and 3 hours. Cell viability and morphology were assessed by 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT assay and, Hoechst, propidium iodide and acridine orange staining respectively. Expression of nestin and β-Tubulin III genes, as neural cell-specific markers, was studied reverse transcription polymerase chain reaction (RT-PCR. The data was statistically analyzed using One-Way ANOVA and Tukey’s test and p<0.05 was considered significant. Results: After 3 hours of treatment, neuron like morphology with a considerable expression of nestin and β-Tubulin III genes was apparent. The mean cell viability was not significantly different at 1, 2 and 3 hours following induction, compared with the control cells. Conclusion: Cysteine can induce neural features in rat bone marrow MSCs without reducing cell viability. Therefore, it can be considered as a safer alternative to toxic neural inducer agents such as β-mercaptoethanol.

  20. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    International Nuclear Information System (INIS)

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease

  1. Cadmium affects viability of bone marrow mesenchymal stem cells through membrane impairment, intracellular calcium elevation and DNA breakage

    Directory of Open Access Journals (Sweden)

    Abnosi Mohammad Hussein

    2010-01-01

    Full Text Available Background: Cadmium is an important heavy metal with occupational and environmental hazard. Cadmium toxicity results mainly in bone-related complication such as itai-itai disease. Mesenchymal stem cells of the bone marrow have the ability to differentiate to osteoblasts which ensure the well-being of the bone tissue. Thus the aim was to investigate the effect of cadmium on viability of rat bone marrow mesenchymal stem cells. Materials and Methods: The rat bone marrow mesenchymal stem cells were grown to confluency in DMEM medium supplemented with 15% fetal bovine serum and penicillin-streptomycin up to third passage. Then the cells were treated with 0, 5, 15, 25, 35, and 45 of CdCl 2 at 12, 24, 36, and 48 h, and their viability was investigated using trypan blue staining. In addition, after treatment with selected dose (15 and 45 μM and time (24 and 48 h the cell morphology, DNA damage and calcium content of the cells were evaluated. Data was analyzed using one and two-way ANOVA (Tukey test and the P2+ was observed. Conclusion: Cadmium chloride is a toxic compound which might affect the well-being of bone tissue through affecting the mesenchymal stem cells.

  2. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cell cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1

  3. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shaoqiang Chen; Bilian Wu; Jianhua Lin

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated,purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method.Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein.Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks).Expressions of choline acetyltransferase,glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation,determined by immunofluorescence staining and laser confocal scanning microscopy.Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase,glutamic acid decarboxylase and synapsins,3 weeks after transplantation.The Basso-Beattie-Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins.Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats,promote expression of choline acetyltransferase,glutamic acid decarboxylase and synapsins,and improve nerve function in rats with spinal cord injury.

  4. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways

    Directory of Open Access Journals (Sweden)

    Meihui Chen

    2016-01-01

    Full Text Available Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs death caused by hydrogen peroxide (H2O2, imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.

  5. Polydatin Protects Bone Marrow Stem Cells against Oxidative Injury: Involvement of Nrf 2/ARE Pathways.

    Science.gov (United States)

    Chen, Meihui; Hou, Yu; Lin, Dingkun

    2016-01-01

    Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:27022401

  6. Therapeutic potential of bone marrow-derived mesenchymal stem cells in cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2012-07-01

    Full Text Available Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies.

  7. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei;

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were...... chemistry had influence on the toxicity to some extent too. The intracellular reactive oxygen species (ROS) level of MSCs was then quantified. Finally, the genotoxicity of the CuO NPs was studied by comet assay. The results suggest that the genotoxicity of CuO NPs was mainly dependent on NPs concentration......, and was only slightly influenced by their surface chemistry. The osteogenic and adipogenic differentiation abilities of the MSCs exposed to different CuO NPs were studied by Alizarin Res S and Oil Red O staining. The preliminary results showed that the exposure to 10 μg/mL CuO NPs will not lead to...

  8. Bone marrow derived stem cells for the treatment of end-stage liver disease.

    Science.gov (United States)

    Margini, Cristina; Vukotic, Ranka; Brodosi, Lucia; Bernardi, Mauro; Andreone, Pietro

    2014-07-21

    End-stage disease due to liver cirrhosis is an important cause of death worldwide. Cirrhosis results from progressive, extensive fibrosis and impaired hepatocyte regeneration. The only curative treatment is liver transplantation, but due to the several limitations of this procedure, the interest in alternative therapeutic strategies is increasing. In particular, the potential of bone marrow stem cell (BMSC) therapy in cirrhosis has been explored in different trials. In this article, we evaluate the results of 18 prospective clinical trials, and we provide a descriptive overview of recent advances in the research on hepatic regenerative medicine. The main message from the currently available data in the literature is that BMSC therapy is extremely promising in the context of liver cirrhosis. However, its application should be further explored in randomized, controlled trials with large cohorts and long follow-ups. PMID:25083082

  9. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  10. Enhanced Adipogenicity of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Tripathy

    2014-01-01

    Full Text Available Fatty bone marrow (BM and defective hematopoiesis are a pathologic hallmark of aplastic anemia (AA. We have investigated adipogenic and osteogenic potential of BM mesenchymal stem cells (BM-MSC in 10 AA patients (08 males and 02 females with median age of 37 years (range: 06 to 79 years and in the same number of age and sex matched controls. It was observed that BM-MSC of AA patients had a morphology, phenotype, and osteogenic differentiation potential similar to control subjects but adipocytes differentiated from AA BM-MSC had a higher density and larger size of lipid droplets and they expressed significantly higher levels of adiponectin and FABP4 genes and proteins as compared to control BM-MSC (P<0.01 for both. Thus our data shows that AA BM-MSC have enhanced adipogenicity, which may have an important implication in the pathogenesis of the disease.

  11. Effects of bone marrow mesenchymal stem cells on healing of wound combined with local radiation injury

    International Nuclear Information System (INIS)

    Objective: To explore the effects of bone marrow mesenchymal stem cells (MSC) on healing of wounds combined with local skin irradiation injury. Methods: MSC were injected into the wound combined with local skin irradiation injury. Light and electron microscopy, fibroblast and capillary vessel counts, detection of hydroxyproline content in the wound and demonstration of MSC distribution by fluorescence examination were carried out. Results: MSC could accelerate the speed of wound healing. The number of fibroblasts and capillary vessels increased obviously during 5 to 20 days after wounding. Granular tissues were abundant in the wound, and the content of hydroxyproline increased in the MSC-treated groups. The fluorescence labelling showed that MSC could be found during 1 to 20 days after injection. Conclusion: MSC can remain alive in the wound for a long time and surely promote wound healing

  12. Cytocompatibility Evaluation of Grafted IKVAV PLEOF Hydrogels with Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    LI Binbin; ZHANG Ping; YIN Yixia; QIU Tong; TAO Yuan; WANG Xinyu; LI Shipu

    2014-01-01

    The novel hydrogels-grafted IKVAV poly (lactide-co-ethylene oxide-co-fumarate) (PLEOF) hydrogels (GIPHs) were developed. The rat bone marrow mesenchymal stem cells (BMMSCs) were employed, and the cell vitality and apoptosis assays were carried out to evaluate the cytocomptibility of GIPHs. Our data demonstrated that the influence of GIPHs on the proliferation of BMMSCs was in a concentration and time dependent manner. The proliferative ability of BMMSCs in GIPHs-treated group (100μg/mL) after 72 h presented a maximum response which was 30.1%more than that of control group. The numbers of apoptotic cells in GIPHs-treated group (100μg/mL) were just as much as that of control group after 24 h treatment. The GIPHs are able to provide an appropriate environment for BMMSCs survival and proliferation.

  13. Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Christine Richardson

    2015-01-01

    Full Text Available Reactive oxygen species (ROS can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.

  14. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  15. The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

    OpenAIRE

    Javad Baharara; Elaheh Amini; Mohammad Amin Kerachian; Mozhgan Soltani

    2014-01-01

    Objective(s): Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concentration of extract. After 21 days, Alizarin red staining, alkaline phosphatase assay and RT-PCR were ...

  16. Potential Spermatogenesis Recovery with Bone Marrow Mesenchymal Stem Cells in an Azoospermic Rat Model

    Directory of Open Access Journals (Sweden)

    Deying Zhang

    2014-07-01

    Full Text Available Non-obstructive azoospermia is the most challenging type of male infertility. Stem cell based therapy provides the potential to enhance the recovery of spermatogenesis following cancer therapy. Bone marrow-derived mesenchymal stem cells (BMSCs possess the potential to differentiate or trans-differentiate into multi-lineage cells, secrete paracrine factors to recruit the resident stem cells to participate in tissue regeneration, or fuse with the local cells in the affected region. In this study, we tested whether spermatogenically-induced BMSCs can restore spermatogenesis after administration of an anticancer drug. Allogeneic BMSCs were co-cultured in conditioned media derived from cultured testicular Sertoli cells in vitro, and then induced stem cells were transplanted into the seminiferous tubules of a busulfan-induced azoospermatic rat model for 8 weeks. The in vitro induced BMSCs exhibited specific spermatogonic gene and protein markers, and after implantation the donor cells survived and located at the basement membranes of the recipient seminiferous tubules, in accordance with what are considered the unique biological characteristics of spermatogenic stem cells. Molecular markers of spermatogonial stem cells and spermatogonia (Vasa, Stella, SMAD1, Dazl, GCNF, HSP90α, integrinβ1, and c-kit were expressed in the recipient testis tissue. No tumor mass, immune response, or inflammatory reaction developed. In conclusion, BMSCs might provide the potential to trans-differentiate into spermatogenic-like-cells, enhancing endogenous fertility recovery. The present study indicates that BMSCs might offer alternative treatment for the patients with azoospermatic infertility after cancer chemotherapy.

  17. Bone marrow-derived mesenchymal stem cell therapy for decompensated liver cirrhosis: A meta-analysis

    Science.gov (United States)

    Pan, Xing-Nan; Zheng, Lian-Qiu; Lai, Xiao-Huan

    2014-01-01

    AIM: To assess the efficacy and safety of bone marrow-derived mesenchymal stem cell (BM-MSC) in the treatment of decompensated liver cirrhosis. METHODS: The search terms “bone marrow stem cell” “chronic liver disease” “transfusion” and “injection” were used in the Cochrane Library, Med-Line (Pub-Med) and Embase without any limitations with respect to publication date or language. Journals were also hand-searched and experts in the field were contacted. The studies which used BM-MSC in the treatment of any chronic liver disease were included. Comprehensive Review Manager and Meta-Analyst software were used for statistical analysis. Publication bias was evaluated using Begg’s test. RESULTS: Out of 78 studies identified, five studies were included in the final analysis. The studies were conducted in China, Iran, Egypt and Brazil. Analysis of pooled data of two controlled studies by Review Manager showed that the mean decline in scores for the model for end-stage liver disease (MELD) was -1.23 [95%CI: -2.45-(-0.01)], -1.87 [95%CI: -3.16-(-0.58)], -2.01 [95%CI: -3.35-(-0.68)] at 2, 4 and 24 wk, respectively after transfusion. Meta-analysis of the 5 studies showed that the mean improvement in albumin levels was -0.28, 2.60, 5.28, 4.39 g/L at the end of 8, 16, 24, and 48 wk, respectively, after transfusion. MELD scores, alanine aminotransferase, total bilirubin levels and prothrombin times improved to some extent. BM-MSC injections resulted in no serious adverse events or complications. CONCLUSION: BM-MSC infusion in the treatment of decompensated liver cirrhosis improved liver function. At the end of year 1, there were no serious side effects or complications. PMID:25320545

  18. Morphology and morphometry of feline bone marrow-derived mesenchymal stem cells in culture

    Directory of Open Access Journals (Sweden)

    Bruno B. Maciel

    2014-11-01

    Full Text Available Mesenchymal stem cells (MSC are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs. The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes. To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3. The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6 cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h. The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h.The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h to 21.29µm (120h. However, at P3, the nucleus length was 26.35µm (24h and 25.22µm (120h. This information could be important for future application and use of feline BM-MSCs.

  19. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  20. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  1. Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells on Laser-Induced Retinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yuanfeng Jiang

    2014-05-01

    Full Text Available Stem cell therapy has shown encouraging results for neurodegenerative diseases. The retina provides a convenient locus to investigate stem cell functions and distribution in the nervous system. In the current study, we investigated the therapeutic potential of bone marrow mesenchymal stem cells (MSCs by systemic transplantation in a laser-induced retinal injury model. MSCs from C57BL/6 mice labeled with green fluorescent protein (GFP were injected via the tail vein into mice after laser photocoagulation. We found that the average diameters of laser spots and retinal cell apoptosis were decreased in the MSC-treated group. Interestingly, GFP-MSCs did not migrate to the injured retina. Further examination revealed that the mRNA expression levels of glial fibrillary acidic protein and matrix metalloproteinase-2 were lower in the injured eyes after MSC transplantation. Our results suggest that intravenously injected MSCs have the ability to inhibit retinal cell apoptosis, reduce the inflammatory response and limit the spreading of damage in the laser-injured retina of mice. Systemic MSC therapy might play a role in neuroprotection, mainly by regulation of the intraocular microenvironment.

  2. Application of Cell Penetrating Peptide in Magnetic Resonance Imaging of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Min LIU; You-Min GUO; Jun-Le YANG; Peng WANG; Lin-Yu ZHAO; Nian SHEN; Si-Cen WANG; Xiao-Juan GUO; Qi-Fei WU

    2006-01-01

    Tracking the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro. The cellpenetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by a solid-phase peptide synthesis method. Fluorescein imaging analysis confirmed that this new peptide could internalize into the cytoplasm and nucleus at room temperature, 4℃ and 37℃. Gadolinium were efficiently internalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements, which were obviously detected by 1.5 Tesla Magnetic Resonance Imaging. Cytotoxicity assay and flow cytometric analysis showed that the intercellular contrast medium incorporation did not affect cell viability at the tested concentrations. The in vitro experiment results suggested that the new constructed peptides could be a vector for tracking MSCs.

  3. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  4. Differential proteome analysis of bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients.

    Directory of Open Access Journals (Sweden)

    Qianyu Zhuang

    Full Text Available Adolescent idiopathic scoliosis (AIS is a complex three-dimensional deformity of the spine. The cause and pathogenesis of scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study, we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE coupled with mass spectrometry (MS to analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs from AIS patients. In total, 41 significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, γ-actin, and β-actin, were found to be dysregulated and therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS. In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis of AIS.

  5. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    Full Text Available Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC as mixed populations of cells including mesenchymal (MSC and neural crest stem cells (NCSC. Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application.

  6. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow.

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Poulet, Christophe; Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  7. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Zhang, Gechen; Ka, Ka; Huang, Wenhua

    2014-01-01

    In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone...

  8. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    M Ayatollahi

    2012-01-01

    Full Text Available Background: The ability of mesenchymal stem cells (MSCs to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering.Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential.Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells were layered over the Ficoll-Paque density-gradient and plated in tissue cultures dish. The adherent cells expanded rapidly and maintained with periodic passages until a relatively homogeneous population was established. The identification of adherent cells and the immune-surface markers was performed by flow cytometric analysis at the third passage. The in vitro differentiation of MSCs into osteoblast and adipocytes was also achieved.Results: The MSCs were CD11b (CR3, CD45, CD34, CD31 (PCAM-1, CD40, CD80 (B7-1, and HLA-class II negative because antigen expression was less than 5%, while they showed a high expression of CD90, and CD73. The differentiation of osteoblasts, is determined by deposition of a mineralized extracellular matrix in the culture plates that can be detected with Alizarin Red. Adipocytes were easily identified by their morphology and staining with Oil Red.Conclusion: MSCs can be isolated and expanded from most healthy donors, providing for a source of cell-based therapy.

  9. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  10. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  11. Autologous bone marrow stem cell transplantation for the treatment of type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    WANG Li; ZHAO Shi; MAO Hong; ZHOU Ling; WANG Zhong-jing; WANG Hong-xiang

    2011-01-01

    Background Autologous peripheral stem cell transplantation was first reported in 2007 to treat type 1 diabetes mellitus (DM) and achieved encouraging effect,but whether similar outcome can be achieved in type 2 DM is not well demonstrated.The objective of this study was to determine the effect of combination of autologous bone marrow stem cell transplantation (BMT) and hyperbaric oxygen treatment on type 2 DM.Methods The study involved 31 patients with type 2 DM (aged 33 to 62 years) from January 2009 to January 2011 in the Central Hospital of Wuhan,China.Clinical variables (body mass index,duration of DM,insulin requirement,oral hypoglycemic drugs,time free from insulin,time free from oral drugs) and laboratory variables (hemoglobin A1c (HbA1c)),mononuclear cells infused,and C-peptide in four time points) were assessed.Purified bone marrow stem cells were infused into major pancreatic arteries.Follow-up was performed at the 30,90,180,360,540 and 720 days (mean 321 days) after BMT.Results Mean HbA1c values showed a significant reduction during follow-up in all patients after BMT.It decreased by more than 1.5% (from 8.7% to 7.1%) as quickly as at 30 days after BMT.Afterwards mean HbA1c fluctuated between plus or minus 0.5% until 24 months rather than declined continuously.At 90 days after the combined therapy C-peptide increased significantly compared with baseline (P <0.0001).But in other time points C-peptide was similar with baseline data (P>0.3).All patients had insulin and/or oral hypoglycemic drugs reduced to different levels.The dose of insulin of 7 patients (7/26,27%) reduced for a period of time after BMT.Conclusions Combined therapy of intrapancreatic BMT and hyperbaric oxygen treatment can improve glucose control and reduce the dose of insulin and/or oral hypoglycemic drugs in type 2 DM patients,but it only improve pancreatic β-cell function transiently.Further randomized controlled clinical trials involved more patients will be required to

  12. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: ► Strontium ranelate (SrR) inhibits proliferation of BMMSCs. ► SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. ► SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. ► SrR decreases expression of PPARγ, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr2+) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPARγ2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPARγ in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.

  13. Potential of bone marrow mesenchymal stem cells in management of Alzheimer's disease in female rats.

    Science.gov (United States)

    Salem, Ahmed M; Ahmed, Hanaa H; Atta, Hazem M; Ghazy, Mohamed A; Aglan, Hadeer A

    2014-12-01

    Alzheimer's disease (AD) has been called the disease of the century with significant clinical and socioeconomic impacts. Pharmacological treatment has limited efficacy and only provides symptomatic relief without long-term cure. Accordingly, there is an urgent need to develop novel and effective medications for AD. Stem cell-based therapy is a promising approach to handling neurodegenerative diseases. Therefore, the current study aimed to explore the possible therapeutic role of single intravenous injection of bone marrow derived mesenchymal stem cells (BM-MSCs) after 4 months in management of AD in the experimental model. The work also extended to compare the therapeutic potential of BM-MSCs with 2 conventional therapies of AD; rivastigmine and cerebrolysin administered daily. BM-MSCs were able to home at the injured brains and produced significant increases in the number of positive cells for choline acetyltransferase (ChAT) and survivin expression, as well as selective AD indicator-1 (seladin-1) and nestin gene expression. Histopathological examination indicated that BM-MSCs could remove beta-amyloid plaques from hippocampus. Significant improvement in these biomarkers was similar to or better sometimes than the reference drugs, clearly showing the potential therapeutic role of BM-MSCs against AD through their anti-apoptotic, neurogenic and immunomodulatory properties. PMID:25044885

  14. A Modified Method of Insulin Producing Cells’ Generation from Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paweł Czubak

    2014-01-01

    Full Text Available Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells’ transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs. In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs. We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors’ concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  15. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells. PMID:25405207

  16. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  17. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  18. Effect of Electromagnetic Fields on Proliferation and Differentiation of Cultured Mouse Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to study the effects of electromagnetic fields (EMFs) on proliferation, differentiation and intercellular cyclic AMP (cAMP) in mouse bone marrow mesenchymal stem cells (MSCs) in vitro, the mouse bone MSCs were isolated and cultured in vitro. The third passage MSCs were divided into 4 groups and stimulated with EMFs. The cellular proliferation (MTT),the cellular differentiation (alkaline phosphatase activity, ALP), and the intercellular cAMP level were investigated at different time points. The results showed that EMF (50Hz pulse burst 2 mT peak) inhibited the cellular proliferation (P<0.05), enhanced the cellular differentiation (P<0.05), and increased the intercellular cAMP level (P<0.01) in the early time of the stimulation (1-3 days), but the intercellular cAMP level did not increased further in the later days. We are led to conclude that the cAMP may be involved in the mediation of the growth inhibitory and differentiation-inducing signals of specific EMFs in vitro.

  19. Osteogenic differentiation of human bone marrow mesenchymal stem cells in hydrogel containing nacre powder.

    Science.gov (United States)

    Flausse, Alicia; Henrionnet, Christel; Dossot, Manuel; Dumas, Dominique; Hupont, Sébastien; Pinzano, Astrid; Mainard, Didier; Galois, Laurent; Magdalou, Jacques; Lopez, Evelyne; Gillet, Pierre; Rousseau, Marthe

    2013-11-01

    Nacre (or mother of pearl) can facilitate bone cell differentiation and can speed up their mineralization. Here we report on the capability of nacre to induce differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) and the production of extracellular matrix. hBM-MSCs were encapsulated in an alginate hydrogel containing different concentrations of powdered nacre and cultured in the same environment until Day 28. Analysis of osteogenic gene expression, histochemistry, second harmonic generation (SHG) microscopy, and Raman scattering spectroscopy were used to characterize the synthesis of the extracellular matrix. In the presence of nacre powder, a significant increase in matrix synthesis from D21 in comparison with pure alginate was observed. Histochemistry revealed the formation of a new tissue composed of collagen fibers in the presence of nacre (immunostaining and SHG), and hydroxyapatite crystals (Raman) in the alginate beads. These results suggest that nacre is efficient in hBM-MSCs differentiation, extracellular matrix production and mineralization in alginate 3D biomaterials. PMID:23554327

  20. Bone Marrow Aspiration and Biopsy

    Science.gov (United States)

    ... Global Sites Search Help? Bone Marrow Aspiration and Biopsy Share this page: Was this page helpful? Also ... Examination Formal name: Bone Marrow Aspiration; Bone Marrow Biopsy Related tests: Complete Blood Count ; WBC Differential ; Reticulocyte ...

  1. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    汤亭亭; 徐小良; 戴尅戎; 郁朝锋; 岳冰; 楼觉人

    2005-01-01

    Objective: To evaluate the osteogenic potential of bone morphogenetic protein (BMP)-2 gene transfected goat bone marrow-derived mesenchymal stem cells (MSCs). Methods: Goat bone marrow- derived MSCs were transfected by Adv-human bone morphogenetic protein (hBMP)-2 gene(Group 1), Adv-beta gal transfected MSCs (Group 2)and uninfected MSCs(Group 3). Western blot analysis, alkaline phosphatase staining, Von Kossa staining and transmission electron microscopy were adopted to determine the phenotype of MSCs. Then the cells were injected into thigh muscles of the nude mice. Radiographical and histological evaluations were performed at different intervals. Results: Only Adv-hBMP-2 transfected MSCs produced hBMP-2. These cells were positive for alkaline phosphatase staining at the 12th day and were positive for Von Kossa staining at the 16th day after gene transfer. Electron microscopic observation showed that there were more rough endoplasmic reticulum, mitochondria and lysosomes in Adv-hBMP-2 transfected MSCs compared to MSCs of other two groups. At the 3rd and 6th weeks after cell injection, ectopic bones were observed in muscles of nude mice of Group 1. Only fibrous tissue or a little bone was found in other two groups. Conclusions: BMP-2 gene transfected MSCs can differentiate into osteoblasts in vitro and induce bone formation in vivo.

  2. Isolation and Assessment of Mesenchymal Stem Cells Derived From Bone Marrow: Histologic and Histomorphometric Study in a Canine Periodontal Defect.

    Science.gov (United States)

    Paknejad, Mojgan; Eslaminejad, Mohamadreza Baghaban; Ghaedi, Baharak; Rokn, Amir-Reza; Khorsand, Afshin; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Dehghan, Mohammad Mehdi; Moslemi, Neda; Nowzari, Hessam

    2015-06-01

    The aim of the present study was to investigate an isolation procedure to culture mesenchymal stem cells derived from bone marrow and evaluate their potential in periodontal regeneration. Potential stem cells from bone marrow, aspirated from the iliac crest of nine mongrel canines 1 to 2 years of age, were cultivated. After the examination of surface epitopes of the isolated cells, the total RNA from osteogenic, adipogenic, and chondrogenic cell cultures were analyzed by reverse transcription polymerase chain reaction (RT-PCR) to confirm stem cell gene expressions. 2 × 10(7) mL of the stem cells were loaded on 0.2 mL of anorganic bovine bone mineral (ABBM) granules. In each animal, bilateral acute/chronic intrabony periodontal defects were created surgically and by placement of ligatures around the cervical aspect of the teeth. At week 5, after flap debridement, the bilateral defects were randomly assigned to 2 treatment groups: the control group received ABBM, and the test group received BMSCs-loaded ABBM. Eight weeks after transplantation, regenerative parameters were analyzed histologically and histometrically. The RNA expressions confirmed the cultivation of mesenchymal stem cell. More new cementum and periodontal ligament (PDL) were measured in the test group (cementum: 3.33 ± 0.94 vs 2.03 ± 1.30, P = 0.027; PDL: 2.69 ± 0.73 vs 1.53 ± 1.21, P = 0.026). New bone formation was similar in both groups (2.70 ± 0.86 vs 1.99 ± 1.31; P = 0.193). Mesenchymal stem cells derived from bone marrow should be considered a promising technique for use in patients with periodontal attachment loss and merits further investigations. PMID:24383495

  3. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway

    OpenAIRE

    Na Li; Min Zhang; Gregor P. C. Drummen; Yu Zhao; Yin Fen Tan; Su Luo; Xiao Bo Qu

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone...

  4. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion.

    Science.gov (United States)

    Liao, Jen-Chung

    2016-01-01

    Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs) genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2) vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs) were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6) was implanted with collagen-β-tricalcium phosphate (TCP)-hydroxyapatite (HA), Group II (n = 6) was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6) was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA). Spinal fusion was examined using computed tomography (CT), manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12), 8 in Group II (67%, 8/12), and 12 in Group III (100%, 12/12). The fusion rate, determined by manual palpation, was 0% (0/6) in Group I, 0% (0/6) in Group II, and 83% (5/6) in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits. PMID:27399674

  5. Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion

    Directory of Open Access Journals (Sweden)

    Jen-Chung Liao

    2016-07-01

    Full Text Available Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMDMSCs genetically modified with baculoviral bone morphogenetic protein-2 (Bac-BMP-2 vectors could achieve successful fusion in a femur defect model or in a spinal fusion model. In this study, BMDMSCs expressing BMP-7 (Bac-BMP-7-BMDMSCs were generated. We hypothesized that Bac-BMP-7-BMDMSCs could secrete more BMP-7 than untransduced BMDMSCs in vitro and achieve spinal posterolateral fusion in a rabbit model. Eighteen rabbits underwent posterolateral fusion at L4-5. Group I (n = 6 was implanted with collagen-β-tricalcium phosphate (TCP-hydroxyapatite (HA, Group II (n = 6 was implanted with collagen-β-TCP-HA plus BMDMSCs, and Group III (n = 6 was implanted with collagen-β-TCP-HA plus Bac-BMP-7-BMDMSCs. In vitro production of BMP-7 was quantified with an enzyme-linked immunosorbent assay (ELISA. Spinal fusion was examined using computed tomography (CT, manual palpation, and histological analysis. ELISA demonstrated that Bac-BMP-7-BMDMSCs produced four-fold to five-fold more BMP-7 than did BMDMSCs. In the CT results, 6 fused segments were observed in Group I (50%, 6/12, 8 in Group II (67%, 8/12, and 12 in Group III (100%, 12/12. The fusion rate, determined by manual palpation, was 0% (0/6 in Group I, 0% (0/6 in Group II, and 83% (5/6 in Group III. Histology showed that Group III had more new bone and matured marrow formation. In conclusion, BMDMSCs genetically transduced with the Bac-BMP-7 vector could express more BMP-7 than untransduced BMDMSCs. These Bac-BMP-7-BMDMSCs on collagen-β-TCP-HA scaffolds were able to induce successful spinal fusion in rabbits.

  6. Bone marrow transplantation

    International Nuclear Information System (INIS)

    Peculiarities of clinico-hematologic pattern in patients with acute leukosis when ionizing radiation is used as prepration regime for hystocompatible bone marrow transplantation are listed. Chemico-radiopreparation of patients with acute leukosis is described, different techniques of bone marrow transplantation are presented, secondary signs of the disease are shown

  7. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  8. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  9. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  10. Study on human mesenchymal stem cells from bone marrow pretreated with low dose radiation

    International Nuclear Information System (INIS)

    Objective: To study effects of human bone marrow mesenchymal stem cells (hBM-MSC) from bone marrow pretreated with low dose radiation (LDR). Methods: The cells were the hBM-MSC. They were exposed to X rays at the dose of 50 mGy, 75 mGy, 100 mGy (dose rate 12.5 mGy/min). The growth curve, cell cycle and apoptosis of hBM-MSC treated by LDR were investigated. The content changes of stem cell factor(SCF), interleukin-6 (IL-6), macrophage colony stimulating factor(M-CSF) secreted by hBM-MSC after treated by LDR were determined by enzyme linked immunosorbent assay method. Results: The growth rates of hBM-MSC treated by LDR obviously increase from 72 h. The cell cycle and apoptosis were examined with FORTRAN Atomatic Checkout Systom. The results show that the G0/G1 stage cells decrease after exposure to LDR, the percent of G0/G1 stage cells of 75 mGy at 72 h is the lowest(30.86%). However, the S stage cells percentage gradually increase at 48 h and 72 h. The most one is 75 mGy group at 72 h, which reaches to 68.88%. The apoptosis percentages have increased tendency at 24 h and 48h in all dose groups, especially in 100 mGy at 24 h(25.99%), while have decreased tendency at 72 h and the most decreased group is the 50 mGy(6.8%), transient enhancement of apoptosis in the early stage and soon being decreased. The contents of SCF have increased tendency at 24 h, 48 h. As for IL-6, the contents in different dose groups at 24 h and 48 h have up-regulation. These groups, 50 mGy at 24 h, 48 h, 75 mGy at 24 h, 48 h, 100 mGy at 24 h have statistical difference compared with their control groups respectively. The content of IL-6 has greatest enhancement at dose of 50 mGy. The contents of M-SCF in all the groups at 24 h, 48 h and 72 h except for the 50 mGy dose at 72 h have also been found increased. The greatest increased content occur in the 75 mGy dose group at 72 h. Conclusion: This conclusion show that LDR has hormesis effect on hBM-MSC in cell growth, cell cycle and content of

  11. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Raquel Taléns-Visconti; Ana Bonora; Ramiro Jover; Vicente Mirabet; Francisco Carbonell; José Vicente Castell; María José Gómez-Lechón

    2006-01-01

    AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC.METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC,but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

  12. Effect of 5-azacytidine on the Protein Expression of Porcine Bone Marrow Mesenchymal Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Neng-Sheng Ye; Rong-Li Zhang; Yan-Feng Zhao; Xue Feng; Yi-Ming Wang; Guo-An Luo

    2006-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are pluripotent stem cells that show a vital potential in the clinical application for cell transplantation. In the present paper, proteomic techniques were used to approach the protein profiles associated with porcine bone marrow MSCs and investigate the regulation of MSC proteins on the effect of 5-azacytidine (5-aza). Over 1,700 protein species were separated from MSCs according to gel analysis. Compared with the expression profiling of control MSCs, there were 11 protein spots up-regulated and 26 downregulated in the protein pattern of 5-aza-treated cells. A total of 21 proteins were successfully identified by MALDI-TOF-MS analysis, among which some interesting proteins, such as alpha B-crystallin, annexin A2, and stathmin 1, had been reported to involve in cell proliferation and differentiation through different signaling pathways. Our data should be useful for the future study of MSC differentiation and apoptosis.

  13. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    OpenAIRE

    Wang, Yue-Xin; Sun, Jing-Jing; Zhang, Mei; Hou, Xiao-hua; Hong, Jun; Zhou, Ya-Jing; Zhang, Zhi-Yong

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via ...

  14. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia★

    OpenAIRE

    Wang, Dong; Zhang, Jianjun

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under no...

  15. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    OpenAIRE

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via ...

  16. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    OpenAIRE

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive fo...

  17. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  18. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    OpenAIRE

    Li Yan; Zhang Yu-Jiao; Li Wen-Jie; Zhang Yan-Qing; Ruan Jing-Wen; Yan Qing; Ding Ying; Dong Hongxin; Zeng Yuan-Shan

    2009-01-01

    Abstract Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spin...

  19. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  20. Effect of Neuroglobin Genetically Modified Bone Marrow Mesenchymal Stem Cells Transplantation on Spinal Cord Injury in Rabbits

    OpenAIRE

    Wen-Ping Lin; Xuan-Wei Chen; Li-Qun Zhang; Chao-Yang Wu; Zi-Da Huang; Jian-Hua Lin

    2013-01-01

    OBJECTIVE: This study aims to investigate the potentially protective effect of neuroglobin (Ngb) gene-modified bone marrow mesenchymal stem cells (BMSCs) on traumatic spinal cord injury (SCI) in rabbits. METHODS: A lentiviral vector containing an Ngb gene was constructed and used to deliver Ngb to BMSCs. Ngb gene-modified BMSCs were then injected at the SCI sites 24 hours after SCI. The motor functions of the rabbits were evaluated by the Basso-Beattie-Bresnahan rating scale. Fluorescence mic...

  1. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells

    OpenAIRE

    Li Min; Yu Aixue; Zhang Fangfang; Dai GuangHui; Cheng Hongbin; Wang Xiaodong; An Yihua

    2012-01-01

    Abstract Background Cerebral palsy is currently one of the major diseases that cause severe paralysis of the nervous system in children; approximately 9–30% of cerebral palsy patients are also visually impaired, for which no effective treatment is available. Bone marrow mesenchymal stem cells (BMSCs) have very strong self-renewal, proliferation, and pluripotent differentiation potentials. Therefore, autologous BMSC transplantation has become a novel method for treating cerebral palsy. Methods...

  2. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential

    OpenAIRE

    Barberini, Danielle Jaqueta; Freitas, Natália Pereira Paiva; Magnoni, Mariana Sartori; Maia, Leandro; Listoni, Amanda Jerônimo; Heckler, Marta Cristina; Sudano, Mateus Jose; Golim, Marjorie Assis; da Cruz Landim-Alvarenga, Fernanda; Amorim, Rogério Martins

    2014-01-01

    Introduction Studies with mesenchymal stem cells (MSCs) are increasing due to their immunomodulatory, anti-inflammatory and tissue regenerative properties. However, there is still no agreement about the best source of equine MSCs for a bank for allogeneic therapy. The aim of this study was to evaluate the cell culture and immunophenotypic characteristics and differentiation potential of equine MSCs from bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and umbilical cord (UC-MSCs) under identic...

  3. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    OpenAIRE

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline p...

  4. The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients

    OpenAIRE

    Tan, Hiang Boon; Giannoudis, Peter V.; Boxall, Sally A; McGonagle, Dennis; Jones, Elena

    2015-01-01

    Background Fracture healing is a complex process regulated by a variety of cells and signalling molecules which act both locally and systemically. The aim of this study was to investigate potential changes in patients’ mesenchymal stem cells (MSCs) in the iliac crest (IC) bone marrow (BM) and in peripheral blood (PB) in relation to the severity of trauma and to correlate them with systemic changes reflective of inflammatory and platelet responses following fracture. Methods ICBM samples were ...

  5. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    OpenAIRE

    Zariyantey Abdul Hamid; Winnie Hii Lin Lin; Basma Jibril Abdalla; Ong Bee Yuen; Elda Surhaida Latif; Jamaludin Mohamed; Nor Fadilah Rajab; Chow Paik Wah; Muhd Khairul Akmal Wak Harto; Siti Balkis Budin

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at var...

  6. Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    International Nuclear Information System (INIS)

    Recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC) implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective (before and after) design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology: this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to who transplant of stem cells derived from bone marrow mobilized with granulocyte colonies growth stimulating factor via coronary arteries or epicardium was realized. Two groups of patients were included: Ten patients with anterior wall infarct and 2. Five patients with chronic ischemic cardiopathy, all with extensive necrosis demonstrated by absence of myocardial viability through nuclear medicine and ejection fraction of less than 40%. Results: significant improvement of ejection fraction from 29.44 ± 3.36 to 37.6 ± 5.3 with p<0.001 and decrease of ventricular systolic and diastolic volume without statistical significance (p =0.31 and 0.4 respectively) were demonstrated. Exercise capacity evidenced by increment in the six minutes test, exercise time and the MET number achieved, increased in a significant way. There were significant changes in the perfusion defect from the second follow-up month and no complications directly related to the stem cells derived from bone marrow transplant or the use of stimulating granulocyte colony factor were presented. Conclusions: this is the first experience of stem cells derived from bone marrow transplant associated to the administration of stimulating granulocyte growth colony factor in which recovery of left ventricular function was demonstrated, as well as improvement in exercise capacity and in the perfusion defect

  7. Cytomegalovirus Viral Load and Virus-specific Immune Reconstitution after Peripheral Blood Stem Cell versus Bone Marrow Transplantation

    OpenAIRE

    Guerrero, A; Riddell, S. R.; Storek, J.; Stevens-Ayers, T; Storer, B; Zaia, J A; Forman, S; Negrin, R S; Chauncey, T.; Bensinger, W.; Boeckh, M.

    2011-01-01

    Peripheral blood stem cell (PBSC) products contain more T cells and monocytes when compared to bone marrow (BM), leading to fewer bacterial and fungal infections. CMV viral load and disease as well as CMV-specific immune reconstitution were compared in patients enrolled in a randomized trial comparing PSBC and BM transplantation. There was a higher rate of CMV infection and disease during the first 100 days after transplantation among PBSC recipients (any antigenemia/DNAemia: PBSC, 63% vs. BM...

  8. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Pietilä, Mika; Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2011-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donor...

  9. Radix Ilicis Pubescentis total flavonoids combined with mobilization of bone marrow stem cells to protect cerebral ischemia/reperfusion injury

    OpenAIRE

    Ming-san Miao; Lin Guo; Rui-qi Li; Xiao Ma

    2016-01-01

    Previous studies have shown that Radix Ilicis Pubescentis total flavonoids have a neuroprotective effect, but it remains unclear whether Radix Ilicis Pubescentis total flavonoids have a synergistic effect with the recombinant human granulocyte colony stimulating factor-mobilized bone marrow stem cell transplantation on cerebral ischemia/reperfusion injury. Rat ischemia models were administered 0.3, 0.15 and 0.075 g/kg Radix Ilicis Pubescentis total flavonoids from 3 days before modeling to 2 ...

  10. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma

    OpenAIRE

    Roubeix, Christophe; Godefroy, David; Mias, Céline; Sapienza, Anaïs; Riancho, Luisa; Degardin, Julie; Fradot, Valérie; Ivkovic, Ivana; Picaud, Serge; Sennlaub, Florian; Denoyer, Alexandre; Rostene, William; Sahel, José Alain; Parsadaniantz, Stéphane Melik; Brignole-Baudouin, Françoise

    2015-01-01

    Introduction Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs...

  11. What Is a Bone Marrow Transplant?

    Science.gov (United States)

    ... this page Print this page What is a bone marrow transplant? A bone marrow or cord blood transplant is ... with healthy bone marrow. Tweet What is a bone marrow transplant How a bone marrow transplant works Transplant process ...

  12. A Simplified Method for the Aspiration of Bone Marrow from Patients Undergoing Hip and Knee Joint Replacement for Isolating Mesenchymal Stem Cells and In Vitro Chondrogenesis

    OpenAIRE

    Juneja, Subhash C.; Sowmya Viswanathan; Milan Ganguly; Christian Veillette

    2016-01-01

    The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA) or total hip arthroplasty (THA) may vary from an OR (operating room) to OR based on the surgeon’s skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs) from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and chara...

  13. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yue Tang; Yongchun Cui; Fuliang Luo; Xiaopeng Liu; Xiaojuan Wang; Aili Wu; Junwei Zhao; Zhong Tian; Like Wu

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells.

  14. MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy

    Directory of Open Access Journals (Sweden)

    Guang-yu Zhang

    2015-01-01

    Full Text Available MicroRNA-9 (miR-9 has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the miR-9 + group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.

  15. MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy

    Institute of Scientific and Technical Information of China (English)

    Guang-yu Zhang; Jun Wang; Yan-jie Jia; Rui Han; Ping Li; Deng-na Zhu

    2015-01-01

    MicroRNA-9 (miR-9) has been shown to promote the differentiation of bone marrow mesen-chymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study conifrmed that increased autophagic activity improved the efifciency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3)-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Re-sults showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron speciifc enolase and microtubule-associated protein 2 increased in the miR-9+ group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.

  16. Experimental observation of human bone marrow mesenchymal stem cell transplantation into rabbit intervertebral discs

    Science.gov (United States)

    Tao, Hao; Lin, Yazhou; Zhang, Guoqing; Gu, Rui; Chen, Bohua

    2016-01-01

    Allogeneic bone marrow mesenchymal stem cell (BMSC) transplantation has been investigated worldwide. However, few reports have addressed the survival status of human BMSCs in the intervertebral discs (IVDs) in vivo following transplantation. The current study aimed to observe the survival status of human BMSCs in rabbit IVDs. The IVDs of 15 New Zealand white rabbits were divided into three groups: Punctured blank control group (L1-2); punctured physiological saline control group (L2-3); and punctured human BMSCs transfected with green fluorescent protein (GFP) group (L3-4, L4-5 and L5-6). One, 2, 4, 6 and 8 weeks after transplantation the IVDs were removed and a fluorescence microscope was used to observe the density of GFP-positive human BMSCs. The results indicated that in the sections of specimens removed at 1, 2, 4, 6 and 8 weeks post-transplantation, no GFP-positive cells were observed in the control groups, whereas GFP-positive cells were apparent in the nucleus pulposus at all periods in the GFP-labeled human BMSCs group, and the cell density at 6 and 8 weeks was significantly less than that at 1, 2 and 4 weeks post-transplantation (P<0.001). Thus, it was identified that human BMSCs were able to survive in the rabbit IVDs for 8 weeks.

  17. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    Science.gov (United States)

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  18. Tracking transplanted bone marrow stem cells and their effects in the rat MCAO stroke model.

    Directory of Open Access Journals (Sweden)

    Gregory V Goldmacher

    Full Text Available In this study, rat bone marrow stromal stem cells (BMSCs were tracked after IV administration to rats with experimental stroke caused by middle cerebral artery occlusion (MCAO. In addition, the effects of BMSC treatment on blood cell composition, brain glia and sensorimotor behavior was studied and compared to that which occurred spontaneously during the normal recovery process after stroke. We found that the vast majority of radiolabeled or fluorescently labeled BMSCs traveled to and remained in peripheral organs (lungs, spleen, liver 3 days after IV injection in the MCAO rat. Once in the circulation, BMSCs also produced rapid alterations in host blood cell composition, increasing both neutrophil and total white blood cell count by 6 hours post-injection. In contrast, few injected BMSCs traveled to the brain and almost none endured there long term. Nonetheless, BMSC treatment produced dramatic changes in the number and activation of brain astroglia and microglia, particularly in the region of the infarct. These cellular changes were correlated with a marked improvement in performance on tests of sensory and motor function as compared to the partial recovery of function seen in PBS-injected control rats. We conclude that the notable recovery in function observed after systemic administration of BMSCs to MCAO rats is likely due to the cellular changes in blood and/or brain cell number, activation state and their cytokine/growth factor products.

  19. Bone marrow mesenchymal stem cells improve myocardial function in a swine model of acute myocardial infarction.

    Science.gov (United States)

    Zhao, Jing-Jie; Liu, Xiao-Cheng; Kong, Feng; Qi, Tong-Gang; Cheng, Guang-Hui; Wang, Jue; Sun, Chao; Luan, Yun

    2014-09-01

    The aim of the current study was to confirm the effect and elucidate the mechanism of bone marrow mesenchymal stem cells (BMSCs) in acute myocardial infarction (AMI). AMI was induced in mini‑swine by ligating the left anterior descending coronary artery, and BMSCs (1x107) were injected via a sterile microinjection into the ischemic area. Six months postoperatively, electrocardiograph‑gated single photon emission computed tomography revealed that the myocardial filling defect was reduced and the left ventricular ejection fraction was improved in the BMSC group compared with the control group (P<0.05). Histopathological examination indicated that, in the BMSC treatment group, the percentage of survived myocardial tissue and the vessel density were increased, and the percentage of apoptosis was decreased compared with controls (P<0.05). Reverse transcription‑polymerase chain reaction results indicated that the expression levels of multiple inflammatory factors were significantly upregulated in the BMSC group compared with levels in the control group (P<0.05). In conclusion, the present study demonstrated that BMSC injection significantly improved cardiac function and reduced infarct size in six months, indicating that this method may be valuable for future study in clinical trials. PMID:25060678

  20. Diversity of ion channels in human bone marrow mesenchymal stem cells from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Park, Kyoung Sun; Choi, Mi Ran; Jung, Kyoung Hwa; Kim, Seunghyun; Kim, Hyun Young; Kim, Kyung Suk; Cha, Eun-Jong; Kim, Yangmi; Chai, Young Gyu

    2008-12-01

    Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to 10(th) passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of K(+) currents, including noise-like Ca(+2)-activated K(+) current (IK(Ca)), a transient outward K(+) current (I(to)), a delayed rectifier K(+) current (IK(DR)), and an inward-rectifier K(+) current (K(ir)) were heterogeneously present in these cells, and a TTX-sensitive Na(+) current (I(Na,TTX)) was also recorded. In the RT-PCR analysis, Kv1.1, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, I(Na,TTX) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs. PMID:19967076

  1. Effects of infrasound on the growth of bone marrow mesenchymal stem cells: a pilot study.

    Science.gov (United States)

    He, Renhong; Fan, Jianzhong

    2014-11-01

    Poor viability of transplanted bone marrow mesenchymal stem cells (BMSCs) is well‑known, but developing methods for enhancing the viability of BMSCs requires further investigation. The aim of the present study was to elucidate the effects of infrasound on the proliferation and apoptosis of BMSCs, and to determine the association between survivin expression levels and infrasound on BMSCs. Primary BMSCs were derived from Sprague Dawley rats. The BMSCs, used at passage three, were divided into groups that received infrasound for 10, 30, 60, 90 or 120 min, and control groups, which were exposed to the air for the same durations. Infrasound was found to promote proliferation and inhibit apoptosis in BMSCs. The results indicated that 60 min was the most suitable duration for applied infrasound treatment to BMSCs. The protein and mRNA expression levels of survivin in BMSCs from the two treatment groups that received 60 min infrasound or air, were examined by immunofluorescence and quantitative polymerase chain reaction. Significant differences in survivin expression levels were identified between the two groups, as infrasound enhanced the expression levels of survivin. In conclusion, infrasound promoted proliferation and inhibited apoptosis in BMSCs, and one mechanisms responsible for the protective effects may be the increased expression levels of survivin. PMID:25175368

  2. Cholinergic neuronal differentiation of bone marrow mesenchymal stem cells in rhesus monkeys

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The purpose of the present study was to determine the best cholinergic neuronal differentiation method of rhesus monkey bone marrow mesenchymal stem cells(BMSCs).Four methods were used to induce differentiation,and the groups were assigned accordingly:basal inducing group(culture media,bFGF,and forskolin);SHH inducing group(SHH,inducing group);RA inducing group(RA,basal inducing group);and SHH+RA inducing group(SHH,RA,and basal inducing group).All groups displayed neuronal morphology and increased expression of nestin and neuron-specific enolase.The basal inducing group did not express synapsin,and cells from the SHH inducing group did not exhibit neuronal resting membrane potential.In contrast,results demonstrated that BMSCs from the RA and SHH+RA inducing groups exhibited neuronal resting membrane potential,and cells from the SHH+RA inducing group expressed higher levels of synapsin and acetylcholine.In conclusion,the induction of cholinergic differentiation through SHH+RA was determined to be superior to the other methods.

  3. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Directory of Open Access Journals (Sweden)

    Ruifeng Liu

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp., including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  4. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin.

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types. PMID:27239202

  5. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  6. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells.

    Science.gov (United States)

    Al Ghrbawy, Nesrien M; Afify, Reham Abdel Aleem Mohamed; Dyaa, Nehal; El Sayed, Asmaa A

    2016-09-01

    Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease. PMID:27429519

  7. TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia.

    Science.gov (United States)

    Zhang, Haojian; Kozono, David E; O'Connor, Kevin W; Vidal-Cardenas, Sofia; Rousseau, Alix; Hamilton, Abigail; Moreau, Lisa; Gaudiano, Emily F; Greenberger, Joel; Bagby, Grover; Soulier, Jean; Grompe, Markus; Parmar, Kalindi; D'Andrea, Alan D

    2016-05-01

    Fanconi anemia (FA) is an inherited DNA repair disorder characterized by progressive bone marrow failure (BMF) from hematopoietic stem and progenitor cell (HSPC) attrition. A greater understanding of the pathogenesis of BMF could improve the therapeutic options for FA patients. Using a genome-wide shRNA screen in human FA fibroblasts, we identify transforming growth factor-β (TGF-β) pathway-mediated growth suppression as a cause of BMF in FA. Blocking the TGF-β pathway improves the survival of FA cells and rescues the proliferative and functional defects of HSPCs derived from FA mice and FA patients. Inhibition of TGF-β signaling in FA HSPCs results in elevated homologous recombination (HR) repair with a concomitant decrease in non-homologous end-joining (NHEJ), accounting for the improvement in cellular growth. Together, our results suggest that elevated TGF-β signaling contributes to BMF in FA by impairing HSPC function and may be a potential therapeutic target for the treatment of FA. PMID:27053300

  8. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  9. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  10. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2011-09-01

    Full Text Available Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17, which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. Results The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. Conclusions Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for

  11. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    Science.gov (United States)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  12. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  13. Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Xin-Qin Kang; Wei-Jin Zang; Tu-Sheng Song; Xiao-Li Xu; Xiao-Jiang Yu; Dong-Ling Li; Ke-Wei Meng; Sheng-Li Wu; Zhi-Ying Zhao

    2005-01-01

    AIM: To investigate the mechanism and regulation of differentiation from bone marrow mesenchymal stem cells (MSCs) into hepatocytes and to find a new source of celltypes for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. The cells were cultured in osteogenic or adipogenic differentiation medium and determined by histochemical staining. MSCs were plated in plastic culture flasks that were not coated with components of extracellular matrix (ECM). When MSCs reached 70% confluence, they were cultured in low glucose Dulbecco's modified Eagle's medium supplemented with 10 mL/L fetal bovine serum, 20 ng/mL hepatocyte growth factor (HGF) and 10 ng/mL fibroblast growth factor-4 (FGF-4). The medium was changed every 3 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Glycogen store of hepatocytes was determined by periodic acid-Schiff staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we isolated a homogeneous population of cells from rat bone marrow and differentiated them into osteocytes and adipocytes. When MSCs were cultured withFGF-4 and HGF, approximately 56.6% of cells became smallround and epithelioid on d 24 by morphology. Compared with the control, levels of AFP increased significantly from d 12 to 15.5±1.4 μg/L (t = 2.31, P<0.05) in MSCs cultured with FGF-4and HGF, and were higher (46.2±1.5 μg/L)ond 21 (t = 41.926, P<0.01), then decreased to 24.8±2.2 μg/L on d 24 (t = 10.345, P<0.01). Albumin increased significantly on d 21 (t= 3.325, P<0.01) to 1.4±0.2 μg/mL,and to 2.1±0.7 μg/mL on d 24 (t= 3.646, P<0.01). Urea(2.3±0.4 mmol/L) was first detected on d 21 (t = 6.739, P<0.01), and continued to increase to 2.6±0.9 mmol/Lon d 24 (t= 4.753, P<0.01). Glycogen storage was first seen on d 21.CONCLUSION: The method combining gradient density centrifugation with plastic adherence can isolate MSCs. Rat MSCs may be

  14. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunfeng; Li, Jihua; Zhu, Songsong; Luo, En; Feng, Ge; Chen, Qianming [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China); Hu, Jing, E-mail: drhu@vip.sohu.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Strontium ranelate (SrR) inhibits proliferation of BMMSCs. Black-Right-Pointing-Pointer SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. Black-Right-Pointing-Pointer SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. Black-Right-Pointing-Pointer SrR decreases expression of PPAR{gamma}, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr{sup 2+}) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPAR{gamma}2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPAR{gamma} in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.

  15. Assessment of the radiation sensitivity of patients after conditioning irradiation as preparation for bone marrow or stem cell transplantation

    International Nuclear Information System (INIS)

    The knowledge on the radiation sensitivity of individual patients would allow a better planning of conditioning irradiation including the possibility of dose increase that might enhance the chance of a successful bone marrow or stem cell transplantation. The study was focused on the search of reliable and fast laboratory test procedures to predict the individual radiation sensitivity. Several blood tests were evaluated with respect to their appropriateness: mostly flow-cytometric test on lymphocytes: micronuclei, cell proliferation, apoptosis activation of cytokines and the total number of leucocytes, blood stem cells CD4+ and CD8+ lymphocytes, and a spectro-photometric test of blood plasma for the determination of the antioxidative capacity

  16. Transplantation of Hypoxia Preconditioned Bone Marrow Mesenchymal Stem Cells Enhances Angiogenesis and Neurogenesis after Cerebral Ischemia in Rats

    OpenAIRE

    Wei, Ling; Jamie L. Fraser; Zhong-Yang, Lu; Hu, Xinyang; Yu, Shan Ping

    2012-01-01

    Hypoxic preconditioning of stem cells and neural progenitor cells has been tested for promoting cell survival after transplantation. The present investigation examined the hypothesis that hypoxic preconditioning of bone marrow mesenchymal stem cells (BMSCs) could not only enhance their survival but also reinforce regenerative properties of these cells. BMSCs from eGFP engineered rats or pre-labeled with BrdU were pre-treated with normoxia (20% O2, N-BMSCs) or sublethal hypoxia (0.5% O2. H-BMS...

  17. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    Science.gov (United States)

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  18. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.

    Science.gov (United States)

    Lin, Bo-Nian; Whu, Shu Wen; Chen, Chih-Hwa; Hsu, Fu-Yin; Chen, Jyh-Cheng; Liu, Hsia-Wei; Chen, Chien-Hao; Liou, Hau-Min

    2013-11-01

    Platelet rich plasma (PRP), which includes many growth factors, can activate osteoid production, collagen synthesis and cell proliferation. Nanohydroxyapatite-type I collagen beads (CIB), which mimetic natural bone components, are not only flexible fillers for bone defect but also encourage osteogenesis. Bone marrow mesenchymal stem cells (BMSCs) are often used as an abundant cell source for tissue engineering. We used a rabbit model to combine PRP, CIB and BMSCs (CIB+PRP+BMSC) into a bone-like substitute to study its impact on bone regeneration, when compared to defect alone, PRP, CIB+PRP, and PRP+BMSC. CIB+PRP upregulated more alkaline phosphatase (ALP) activity in BMSCs than PRP alone at 4 weeks postoperation. CIB+PRP+BMSC and PRP+BMSC did not differ significantly in DNA content, total collagen content, and ALP activity at 8 weeks. In histological assay, both CIB+PRP+BMSC and PRP+BMSC showed more bone regeneration at 4 and 8 weeks. Higher trabecular bone volume in tissue volume (BV/TV) (31.15±2.67% and 36.93±1.01%), fractal dimension (FD) (2.30±0.18 and 2.65±0.02) and lower trabecular separation (Tb.Sp) (2.30±0.18 and 1.35±0.16) of CIB+PRP+BMSC than of other groups at 4 and 8 weeks, and approach to of bone tissue (BV/TV=24.35±2.13%; FD=2.65±0.06; Tb.Sp=4.19±0.95). CIB+PRP+BMSC significantly enhanced new bone formation at 4 week. Therefore, nanohydroxyapatite-type I collagen beads combined with PRP and BMSCs produced a bone substitute with efficiently improved bone regeneration that shows promise to repair bone defects. PMID:22744907

  19. Bone Marrow Stem Cells Added to a Hydroxyapatite Scaffold Result in Better Outcomes after Surgical Treatment of Intertrochanteric Hip Fractures

    Directory of Open Access Journals (Sweden)

    Joao Torres

    2014-01-01

    Full Text Available Introduction. Intertrochanteric hip fractures occur in the proximal femur. They are very common in the elderly and are responsible for high rates of morbidity and mortality. The authors hypothesized that adding an autologous bone marrow stem cells concentrate (ABMC to a hydroxyapatite scaffold and placing it in the fracture site would improve the outcome after surgical fixation of intertrochanteric hip fractures. Material and Methods. 30 patients were randomly selected and divided into 2 groups of 15 patients, to receive either the scaffold enriched with the ABMC (Group A during the surgical procedure, or fracture fixation alone (Group B. Results. There was a statistically significant difference in favor of group A at days 30, 60, and 90 for Harris Hip Scores (HHS, at days 30 and 60 for VAS pain scales, for bedridden period and time taken to start partial and total weight bearing (P<0.05. Discussion. These results show a significant benefit of adding a bone marrow enriched scaffold to surgical fixation in intertrochanteric hip fractures, which can significantly reduce the associated morbidity and mortality rates. Conclusion. Bone marrow stem cells added to a hydroxyapatite scaffold result in better outcomes after surgical treatment of intertrochanteric hip fractures.

  20. Differentiation potential of bone marrow mesenchymal stem cells into retina in normal and laser-injured rat eye

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; SHAN Qing; MA Ping; JIANG Yanming; CHEN Peng; WEN Jingxia; ZHOU You; QIAN Huanwen; PEI Xuetao

    2004-01-01

    Bone marrow mesenchymal stem cells (MSCs) can develop into hematopoietic and mesenchymal lineages but have not been known to participate in the production of retina. Here we report that bone marrow mesenchymal stem cells, after being subretinally transplanted into normal or Nd: YAG laser-injured rat eye, can integrate into RPE layer, photoreceptor layer, bipolar cell layer and ganglion layer. DAPI-labeling detection was used to trace the origin of the repopulating cells. DAPI fluorescence was used to identify retina cells of bone marrow origin 10, 20, 35 and 50 days after transplantation. No formation of rosettes was found but some random cells were found at the end of the observation. MSCs-originated cells spread more widely in the injured retinas than in the normal ones. Immunohistochemical detection showed that though the cells could express neuronal nuclei (NeuN), neuron specific enolase (NSE), glial fibrillary acidic protein (GFAP) and cytokeratin (CK), the proteins expression in the injured transplantation group was abnormal in some region compared with that in the normal transplantation group. Electroretinogram (ERG) showed that ERG-b wave of the injured transplantation group is significantly higher than that of the two laser-injured control groups. These results suggest that a proportion of MSCs can differentiate into retina-like structure in vivo and the differentiation differs in normal and laser-injured retinas.

  1. Bone marrow MR imaging as predictors of outcome in hemopoietic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jun; Cheng, Li-Na; Duan, Xiao-Hui; Liang, Bi-Ling [Sun Yat-sen University, Department of Radiology, Guangzhou, Guangdong (China); Second Affiliated Hospital, Guangzhou, Guangdong (China); Griffith, James F. [Chinese University of Hong Kong, Prince of Wales Hospital, Department of Diagnostic Radiology and Organ Imaging, Shatin, Hong Kong SAR (China); Xu, Hong-Gui [Sun Yat-sen University, Department of Pediatrics, Guangzhou, Guangdong (China); Second Affiliated Hospital, Guangzhou, Guangdong (China)

    2008-09-15

    The purpose of this study is to investigate the role of femoral marrow MR imaging as predictor of outcome for hemopoietic stem cell transplantation (HSCT) in beta-thalassemia major. MR imaging of the proximal femur, including T1- and T2-weighted spin echo and short-tau inversion recovery and in-phase and out-of-phase fast field echo images, was prospectively performed in 27 thalassemia major patients being prepared for HSCT. The area of red marrow and its percentage of the proximal femur were measured, and the presence of marrow hemosiderosis was assessed. Age-adjusted multivariate logistic regression was used to determine the relationship between red marrow area percentage and marrow hemosiderosis and HSCT outcome. Red area percentage were less in patients with successful (90.25{+-}4.14%) compared to unsuccessful transplants (94.54% {+-}2.93%; p=0.01). Red marrow area percentage correlated positively with duration of symptoms(r=0.428, p=0.026) and serum ferritin (r=0.511, p=0.006). In multivariate-adjusted logistic regression analyses, red marrow area percentage was significantly inversely associated with successful HSCT (OR=1.383, 95% CI: 1.059-1.805, p=0.005). Marrow hemosidersosis and duration of sympotms and serum ferritin were not associated with HSCT outcome(p=0.174, 0.974, 0.762, respectively). Red marrow area percentage of proximal femur on MR imaging is a useful predictor of HSCT outcome. (orig.)

  2. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Directory of Open Access Journals (Sweden)

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  3. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M; Abdallah, Basem M; Kassem, Moustapha

    2012-01-01

    from E13.5 embryos after removing heads and viscera, followed by plastic adherence. Compared to BMSC, MEF exhibited telomerase activity and improved cell proliferation as assessed by q-PCR based TRAP assay and cell number quantification, respectively. FACS analysis revealed that MEF exhibited surface....../tricalcium phosphate, in immune deficient mice. In conclusion, MEF contain a population of stem cells that behave in ex vivo and in vivo assays, similar but not identical, to BMSC. Due to their enhanced cell growth, they may represent a good alternative for BMSC in studying molecular mechanisms of stem cell commitment......Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been...

  4. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells

    International Nuclear Information System (INIS)

    The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures

  5. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway.

    Science.gov (United States)

    Li, Na; Zhang, Min; Drummen, Gregor P C; Zhao, Yu; Tan, Yin Fen; Luo, Su; Qu, Xiao Bo

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic. PMID:27066099

  6. Effects of Guiyuanfang and autologous transplantation of bone marrow stem cells on rats with liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Mao Wu; Lian-Da Li; Hong Liu; Ke-Yong Ning; Yi-Kui Li

    2005-01-01

    AIM: To investigate the therapeutic effects of Guiyuanfang and bone marrow stem cells (BMSCs) on rats with liver fibrosis.METHODS: Liver fibrosis model was induced by carbon tetrachloride, ethanol, high lipid and assessed biochemically and histologically. Liver function and hydroxyproline contents of liver tissue were determined.Serum hyaluronic acid (HA) level and procollagen Ⅲ level were performed by radioimmunoassay. The VG staining was used to evaluate the collagen deposit in the liver.Immunohistochemical SABC methods were used to detect transplanted BMSCs and expression of urokinase plasminogen activator (uPA).RESULTS: Serum transaminase level and liver fibrosis in rats were markedly reduced by Guiyuanfang and BMSCs. HA level and procollagen Ⅲ level were also reduced obviously,compared to model rats (HA: 47.18±10.97 ng/mL,48.96±14.79 ng/mL; PCⅢ: 22.48±5.46 ng/mL, 26.90±3.35ng/mL; P<0.05).Hydroxyproline contents of liver tissue in both BMSCs group and Guiyuanfang group were far lower than that of model group (1 227.2±43.1 μg/g liver tissue, 1390.8±156.3 μg/g liver tissue; P<0.01). After treatment fibrosis scores were also reduced. Both Guiyuanfang and BMSCs could increase the expression of uPA. The transplanted BMSCs could engraft, survive, and proliferate in the liver.CONCLUSION: Guiyuanfang protects against liver fibrosis.Transplanted BMSCs may engraft, survive, and proliferate in the fibrosis livers indefinitely. Guiyuanfang may synergize with BMSCs to improve recovery from liver fibrosis.

  7. [Biological characteristics of exosomes secreted by human bone marrow mesenchymal stem cells].

    Science.gov (United States)

    Feng, Ying; Lu, Shi-Hong; Wang, Xin; Cui, Jun-Jie; Li, Xue; DU, Wen-Jing; Wang, Ying; Li, Juan-Juan; Song, Bao-Quan; Chen, Fang; Ma, Feng-Xia; Chi, Ying; Yang, Shao-Guang; Han, Zhong-Chao

    2014-06-01

    This study was aimed to explore the immunoregulatory function and capability supporting the angiogenesis of exosomes secreted by bone marrow mesenchymal stem cells (BMMSC) from healthy persons. Supernatant of BMMSC (P4-P6) was collected for exosome purification. Transmission electron microscopy (TEM) and Western blot were used to identify the quality of isolated exosomes. The amount of exosomes was quantified through bicinchoninic acid (BCA) protein assay. Human peripheral blood mononuclear cells (PBMNC) were isolated from healthy donor and added with isolating exosomes. After co-cultured for 72 h, IFN-γ from the co-culture system was detected by ELISA. The expression of miRNA-associated with immunity were detected by real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). The interactions between exosomes and human umbilical vein endothelial cells (HUVEC) were observed with confocal microscopy. Subconfluent HUVEC were harvested and treated with the indicated concentration of exosomes. Nude mice were injected subcutaneously with exosomes or PBS as control to verify the ability of angiogenesis. The results showed that diameter range of exosomes was range from 40 to 160 nm. The isolated exosomes expressed the CD9. There was approximately linear relation between the secretion of exosomes and cell density. The exosomes suppressed the production of IFN-γ from PBMNC, and contained miRNA associated with immune regulation such as miR301, miR22 and miR-let-7a. Exosomes induced vascular tube formation in vitro and vascularization of Matrigel plugs in vivo. It is concluded that the BMMSC-derived exosomes can regulate immunity and support vascularization. PMID:24989260

  8. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation.

    Science.gov (United States)

    Attar-Schneider, Oshrat; Zismanov, Victoria; Dabbah, Mahmoud; Tartakover-Matalon, Shelly; Drucker, Liat; Lishner, Michael

    2016-09-01

    Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc. PMID:26293751

  9. β-Cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Milanesi, Anna; Lee, Jang-Won; Li, Zhenhua; Da Sacco, Stefano; Villani, Valentina; Cervantes, Vanessa; Perin, Laura; Yu, John S.

    2012-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into β-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous β-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF) or pancreatic-duodenal homeobox 1 (PDX1) to reverse diabetes and whether these cells were differentiated into β-cells or mediated recovery through alternative mechanisms. Human BMSCs expressing VEGF and PDX1 reversed hyperglycemia in more than half of the diabetic mice and induced overall improved survival and weight maintenance in all mice. Recovery was sustained only in the mice treated with hBMSCs-VEGF. However, de novo β-cell differentiation from human cells was observed in mice in both cases, treated with either hBMSCs-VEGF or hBMSCs- PDX1, confirmed by detectable level of serum human insulin. Sustained reversion of diabetes mediated by hBMSCs-VEGF was secondary to endogenous β-cell regeneration and correlated with activation of the insulin/IGF receptor signaling pathway involved in maintaining β-cell mass and function. Our study demonstrated the possible benefit of hBMSCs for the treatment of insulin-dependent diabetes and gives new insight into the mechanism of β-cell recovery after injury mediated by hBMSC therapy. PMID:22879915

  10. Intramuscular injection of bone marrow mesenchymal stem cells with small gap neurorrhaphy for peripheral nerve repair.

    Science.gov (United States)

    Wang, Peiji; Zhang, Yong; Zhao, Jiaju; Jiang, Bo

    2015-01-12

    We had previously reported that small gap neurorrhaphy by scissoring and sleeve-jointing epineurium could enhance the rate and quality of peripheral nerve regeneration. To date, local implantation and systemic delivery of bone marrow mesenchymal stem cells (BMSCs) have been routinely used in nerve tissue engineering, but they each have some intrinsic limitations. We hypothesised that targeted muscular administration of BMSCs capable of reaching the damaged nerve would be advisable. Here, we investigated the therapeutic efficacy of transplantation of BMSCs through targeted muscular injection with small gap neurorrhaphy by scissoring and sleeve-jointing epineurium on repairing peripheral nerve injury in a rat model. One week after a rat model of peripheral nerve injury was established by small gap neurorrhaphy, thirty-six Sprague-Dawley rats were randomly divided into three groups (n=12): the intramuscular injection of BMSCs group (IM), the intravenous injection of BMSCs group (IV) and the intramuscular injection of phosphate-buffered solution group (PBS). The process of the nerve regeneration was assayed functionally and morphologically. The results indicated that compared to the IV-treated and PBS-treated groups, the targeted muscular injection therapy resulted in much more beneficial effects, as evidenced by increases in the sciatic function index, nerve conduction velocity, myelin sheath thickness and restoration rate of gastrocnemius muscle wet weight. In conclusion, the combination therapy of small gap neurorrhaphy and BMSC transplantation through targeted muscular injection can significantly promote the regeneration of peripheral nerve and improve the nerve's functional recovery, which may help establish a reliable approach for repairing peripheral nerve injury. PMID:25434870

  11. β-Cell regeneration mediated by human bone marrow mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Anna Milanesi

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into β-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous β-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF or pancreatic-duodenal homeobox 1 (PDX1 to reverse diabetes and whether these cells were differentiated into β-cells or mediated recovery through alternative mechanisms. Human BMSCs expressing VEGF and PDX1 reversed hyperglycemia in more than half of the diabetic mice and induced overall improved survival and weight maintenance in all mice. Recovery was sustained only in the mice treated with hBMSCs-VEGF. However, de novo β-cell differentiation from human cells was observed in mice in both cases, treated with either hBMSCs-VEGF or hBMSCs- PDX1, confirmed by detectable level of serum human insulin. Sustained reversion of diabetes mediated by hBMSCs-VEGF was secondary to endogenous β-cell regeneration and correlated with activation of the insulin/IGF receptor signaling pathway involved in maintaining β-cell mass and function. Our study demonstrated the possible benefit of hBMSCs for the treatment of insulin-dependent diabetes and gives new insight into the mechanism of β-cell recovery after injury mediated by hBMSC therapy.

  12. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder.

    Science.gov (United States)

    Jo, Hyogyeong; Jung, Minyoung; Seo, Dong Jin; Park, Dong Joon

    2015-11-13

    The purpose of the study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on olfactory epithelium (OE) of morphologic and functional restoration following neural Sensorineural Disorder in rats. Except the Normal group, twenty-one rats underwent Triton X-100 (TX-100) irrigation to induce degeneration of OE, and then BMSCs and PBS were treated from the both medial canthus to the rear part of the both nasal cavity into the experimental group and then were observed for restoration according to time point. At two and four weeks after transplantation with BMSCs, restoration of OE was observed with olfactory marker protein (OMP) and behavioral test. And we observed the expression of OMP, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). After TX-100 irrigation, the OE almost disappeared in 3 days. At four weeks after transplantation with BMSCs, the thickness and cellular composition of OE was considerably restored to normal group and expression of OMP was markedly increased when compared with PBS group and reduced the searching time in the behavioral test. Furthermore at two weeks after treatment with BMSCs, expression of NGF and BDNF was greatly increased when compared with PBS group. However at four weeks after treatment with BMSCs, expression of NGF and BDNF was slightly decreased. Our results suggest the BMSCs transplantation affect restoration of OE and olfaction, most likely via regulation of the neurotrophic factor expression, especially the expression of NGF and BDNF and has a possibility of a new therapeutic strategy for the treatment of olfactory disorder caused by the degeneration of OE. PMID:26427869

  13. Bone marrow and stem cell transplantation at King Hussein cancer center.

    Science.gov (United States)

    Abdel-Rahman, F; Hussein, Aa; Rihani, R; Hlalah, Oa; El Taani, H; Sharma, S; Nserat, T; Sarhan, Mm

    2008-08-01

    Bone marrow and stem cell transplantation in Jordan has been performed since the 1990s, but the first comprehensive program was established at King Hussein Cancer Center (KHCC) in March 2003. The program, in addition to other health care institutions in Amman, serves approximately 5.6 million Jordanians. Also, we treat several patients per year from neighboring Arab countries. The program at KHCC performs an average of 80 transplants per year. During the past 4 years 320 patients received transplants at KHCC; 26% of them received an autologous graft and 74% allogeneic grafts. Of the allogeneic grafts 91% were taken from matched family members, 6.7% were haploidentical from one of the parents, and 2.3% were from an unrelated donor or umbilical cord blood. The actuarial overall survival among all patients has been around 65%. The most common indication for transplantation at KHCC was leukemia/MDS followed by benign nonmalignant hematological/immune deficiency/metabolic disorders, with thalassemia major being the most common among this group. The cost of SCT is variable and depends on many factors including the type of transplant and the attending post-transplant complications. The average charge for autologous transplant (both adults and pediatrics) is 24,695 JD (one JD equals 1.42 USD), and the average charge for allogeneic transplant (both adults and pediatrics) excluding haploidentical transplant is 46,787 JD. We have not noticed any peculiar patterns of complications following BMT; however, we have seen a high incidence of chronic GVHD following minitransplant with fludarabine and single-dose TBI (Seattle protocol). At the inception of the program, invasive fungal infection mainly related to building construction, and central line complications were significant. Measures implemented to control such complications were successful to a large extent. We report our results to the EBMT group and we are accredited as an unrelated transplantation center. Although from a

  14. Effects of radiations on bone marrow

    International Nuclear Information System (INIS)

    After total body irradiation for kidney transplant, the initial decrease of circulating blood cells is more rapid, the nadir is reached sooner and the regeneration occurs earlier when the doses are higher than a few hundred rads. The LD 50 in man seems to be higher than 450 rads. The in vivo and in vitro assays of hemopoietic stem cells have greatly increasedd the understanding of acute and late effects. Multipotential stem cells are very radiosensitive, furthermore the differentiation of the surviving stem cells is accelerated after irradiation. This results in a severe depletion of the stem cell compartment. When this stem cell number falls below a critical value, the stem cell no longer differentiates till the completion of the regeneration of the stem cell compartment. Stem cell proliferation is regulated by inhibitors and stimulators. Release of stimulators by irradiated bone marrow has been demonstrated. Severe sequellae are observed after irradiation of animal and human bone marrow. They seem to be due either to the damage of the stromal cell or to the stem cell population. In patients, four compensating mechanisms are observed after a regional bone marrow irradiation: stimulation of non irradiated bone marrow, extension of hemopoietic areas, regeneration of irradiated bone marrow when the irradiated volume is large and increase in the amplification factor resulting in an increase in the output of mature cells for one stem cell input. Assay of progenitor cells provides useful information and a reduction in their number is still observed many years after a large regional irradiation

  15. The role of heat shock protein (HSP as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture

    Directory of Open Access Journals (Sweden)

    Sri Wigati Mardi Mulyani

    2014-03-01

    Full Text Available Background: The concept of stem cell therapy is one of the new hope as a medical therapy on salivary gland defect. However, the lack of viability of the transplanted stem cells survival rate led to the decrease of effectiveness of stem cell therapy. The underlying assumption in the decrease of viability and function of stem cells is an increase of apoptosis incidence. It suggests that the microenvironment in the area of damaged tissues is not conducive to support stem cell viability. One of the microenvironment is the hypoxia condition. Several scientific journals revealed that the administration of hypoxic cell culture can result in stress cells but on the other hand the stress condition of the cells also stimulates heat shock protein 27 (HSP 27 as antiapoptosis through inhibition of caspase 9. Purpose: The purpose of this study was to examine the role of heat shock protein 27 as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Methods: Stem cell culture was performed in hypoxic conditions (O2 1% and measured the resistance to apoptosis through HSP 27 and caspase 9 expression of bone marrow mesenchymal stem cells by using immunoflorecence and real time PCR. Results: The result of study showed that preconditioning hypoxia could inhibit apoptosis through increasing HSP 27 and decreasing level of caspase 9. Conclusion: The study suggested that hypoxic precondition could reduce apoptosis by increasing amount of heat shock protein 27 and decreasing caspase 9.Latar belakang: Konsep terapi stem cell merupakan salah satu harapan baru sebagai terapi medis kelainan kelenjar ludah. Namun, rendahnya viabilitas stem cell yang ditransplantasikan menyebabkan penurunan efektivitas terapi. Asumsi yang mendasari rendahnya viabilitas dan fungsi stem cell adalah tingginya kejadian apoptosis. Hal ini menunjukkan bahwa lingkungan mikro di daerah jaringan yang rusak tidak kondusif untuk mendukung viabilitas stem cell. Salah satu lingkungan

  16. The Three-Dimensional Collagen Scaffold Improves the Stemness of Rat Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Sufang Han; Yannan Zhao; Zhifeng Xiao; Jin Han; Bing Chen; Lei Chen; Jianwu Dai

    2012-01-01

    Mesenchymal stem cells (MSCs) show the great promise for the treatment of a variety of diseases because of their self-renewal and multipotential abilities.MSCs are generally cultured on two-dimensional (2D) substrate in vitro.There are indications that they may simultaneously lose their stemness and multipotentiality as the result of prolonged 2D culture.In this study,we used three-dimensional (3D) collagen scaffolds as rat MSCs carrier and compared the properties of MSCs on 3D collagen scaffolds with monolayer cultured MSCs.The results demonstrated that collagen scaffolds were suitable for rat MSCs adherence and proliferation.More importantly,compared to MSCs under 2D culture,3D MSCs significantly maintained higher expression levels of stemness genes (Oct4,Sox2,Rex-1 and Nanog),yielded high frequencies of colony-forming units-fibroblastic (CFU-F) and showed enhanced osteogenic and adipogenic differentiation efficiency upon induction.Thus,3D collagen scaffolds may be beneficial for expanding rat MSCs while maintaining the stem cell properties in vitro.

  17. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L. [Department of Hematology, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai Xuhui District Central Hospital, Shanghai (China)

    2015-01-20

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS.

  18. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    International Nuclear Information System (INIS)

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS

  19. Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    OpenAIRE

    Edda Francioso; Giacomo Rossi; Luca Lacitignola; Antonio Crovace

    2010-01-01

    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random or...

  20. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration.

    Directory of Open Access Journals (Sweden)

    Bo Qu

    Full Text Available BACKGROUND: The gastrointestinal (GI mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs and soluble stem cell factor (SCF in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD. METHODS: BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. RESULTS: PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA, Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. CONCLUSION: BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.

  1. Testing Stem Cell Therapy in a Rat Model of Inflammatory Bowel Disease: Role of Bone Marrow Stem Cells and Stem Cell Factor in Mucosal Regeneration

    Science.gov (United States)

    Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu

    2014-01-01

    Background The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). Methods BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. Results PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. Conclusion BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD. PMID:25309991

  2. Characterization and Differentiation into Adipocytes and Myocytes of Porcine Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    DU Min-qing; WANG Song-bo; JIANG Qing-yan; HUANG Yue-qin; LU Nai-Sheng; SHU Gang; ZHU Xiao-tong; WANG Li-na; GAO Ping; XI Qian-yun; ZHANG Yong-liang

    2014-01-01

    Bone marrow mesenchymal stem cells (BMSCs) could differentiate into various cell types including adipocytes and myocytes, which had important scientiifc signiifcance not only in the ifeld of tissue regeneration, but also in the ifeld of agricultural science. In an attempt to exhibit the characterization and differentiation into adipocytes and myocytes of porcine BMSCs, we isolated and puriifed porcine BMSCs by red blood cell lysis method and percoll gradient centrifugation. The puriifed cells presented a stretched ifbroblast-like phenotype when adhered to the culture plate. The results of lfow cytometry analysis and immunofluorescence staining demonstrated that the isolated cells were positive for mesenchymal surface markers CD29, CD44 and negative for hematopoietic markers CD45 and the adhesion molecules CD31. Cells were induced to differentiate into adipocytes with adipogenic medium containing insulin, dexamethasone, oleate and octanoate. Oil Red O staining demonstrated that the porcine BMSCs successfully differentiated to adipocytes. Moreover, the ifndings of real-time PCR and Western blotting indicated that the induced cells expressed adipogenic marker genes (PPAR-γ, C/EBP-α, perilipin, aP2) mRNA or proteins (PPAR-γ, perilipin, aP2). On the other hand, porcine BMSCs were induced into myoctyes with myogenic medium supplemented with 5-azacytidine, basic ifbroblast growth factor, chick embryo extract and horse serum. Morphological observation by hochest 33342 staining showed that the induced cells presented as multi-nucleus muscular tube structure. And myogenic marker genes (Myf5, desmin) mRNA or proteins (Myf5, MyoD, myogenin, desmin) were found in the induced cells. In addition, the results of immunolfuorescence staining revealed that myogenic marker (Myf5, MyoD, myogenin, desmin, S-MyHC) proteins was positive in the induced cells. Above all, these results suggested that the isolated porcine BMSCs were not only consistent with the characterization of

  3. Protective effects of transplanted and mobilized bone marrow stem cells on mice with severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fei Cui; Zeng-Liang Bai

    2003-01-01

    AIM: To evaluate the protective effects of transplanted and mobilized bone marrow stem cells (BMSCs) on mice with severe acute pancreatitis (SAP) and to probe into their possible mechanisms.METHODS: A mouse model of SAP induced by intraparitoneal injections of L-arginine was employed in the present study.Two hundred female Balb/c mice weighing 18-22 g were randomly assigned into 4 groups. Group A was the stem cell mobilized group treated by injection of granulocytecolony stimulating factor (G-CSF) into mice for 4 days at a dose of 40 μg@kg-1@d-1 before induction of SAP. Group B was the group of BMSCs transplantation, in which the mice were given the isolated BMSCs via the tail vein 4 days prior to induction of SAP. Group C served as the model control and only SAP was induced. The mice without induction of SAP in group D acted as the normal control. At the time of animal sacrifice at 24, 48 and 72 h after induction of SAP, blood samples were obtained and prepared to detect serum amylase, while the abdominal viscera were examined both grossly and microscopically for the observation of pathological changes.RESULTS: The mortality of mice in the model control, groups A and B was 34%, 8% and 10% respectively within 72 h after induction of SAP. The serum level of amylase in the model control was significantly increased at all time points after induction of SAP as compared with that of the normal control (P<0.05-0.01). When the mice were pretreated with BMSCs' transplantation or G-CSF injection, their serum level of amylase was significantly reduced at 48 h and 72 h after induction of SAP in comparison with that of the model control (P<0.05-0.01). In accordance with these observations,both gross and microscopic examinations revealed that the pathological changes of SAP in mice pretreated with BMSCs transplantation or G-CSF injection were considerably attenuated as compared with those in the model control at all observed time points.CONCLUSION: Both transplanted

  4. Autologous bone marrow stem cell transplantation in patients with liver failure: a meta-analytic review.

    Science.gov (United States)

    Wang, Kewei; Chen, Xiaopan; Ren, Jinma

    2015-01-15

    Autologous bone marrow stem cell (ABMSC) transplantation has been utilized in clinical practice to treat patients with liver failure, but the therapeutic effect remains to be defined. A meta-analysis is essential to assess clinical advantages of ABMSC transplantation in patients with liver failure. A systematic search of published works [eg, PubMed, Medline, Embase, Chin J Clinicians (Electronic edition), and Science Citation Index] was conducted to compare clinical outcomes of ABMSC transplantation in patients with liver failure. Meta-analytic results were tested by fixed-effects model or random-effects model, dependent on the characteristics of variables. A total of 534 patients from seven studies were included in final meta-analysis. Subsequent to ABMSC transplantation, there was no significant improvement in general symptom and signs such as loss of appetite, fatigue, and ascites. Activities of serum ALT were not significantly decreased with weighted mean difference (WMD) of -19.36 and 95% confidence interval (CI) -57.53 to 18.80 (P=0.32). Postoperative level of albumin (ALB) was expectedly enhanced by stem cell transplantation (WMD 2.97, 95% CI 0.52 to 5.43, P<0.05, I(2)=84%). Coagulation function was improved as demonstrated by a short prothrombin time (PT) (WMD -1.18, 95% CI -2.32 to -0.03, P<0.05, I(2)=6%), but was not reflected by prothrombin activity (PTA) (P=0.39). Total bilirubin (TBIL) was drastically diminished after ABMSC therapy (WMD -14.85, 95% CI -20.39 to -9.32, P<0.01, I(2)=73%). Model for end-stage liver disease (MELD) scores were dramatically reduced (WMD -2.27, 95% CI -3.53 to -1.02, P<0.01, I(2)=0%). The advantage of ABMSC transplantation could be maintained more than 24 weeks as displayed by time-courses of ALB, TBIL, and MELD score. ABMSC transplantation does provide beneficial effects for patients with liver failure. Therapeutic effects can last for 6 months. However, long-term effects need to be determined. PMID:25356526

  5. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  6. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury

    OpenAIRE

    Kakabadze, Zurab; Kipshidze, Nickolas; MARDALEISHVILI, KONSTANTINE; Chutkerashvili, Gocha; Chelishvili, Irakli; Harders, Albrecht; Loladze, George; Shatirishvili, Gocha; Kipshidze, Nodar; Chakhunashvili, David; Chutkerashvili, Konstantine

    2016-01-01

    Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and...

  7. ROLE OF MACROPHAGES IN REGULATION OF HEMATOPOIETIC STEM CELL MIGRATION IN BONE MARROW PERIPHERAL BLOOD SYSTEM

    Directory of Open Access Journals (Sweden)

    B. G. Yushkov

    2010-01-01

    Full Text Available Mechanisms by which HSCs mobilize into damaged organs are currently under scrutiny.Macrophage role in these processes is investigated. In this study, we performed a flow cytometry analysis ofCD117+CD38+ and CD117+CD90low HSCs quantity in murine peripheral blood and bone marrow after liverand kidney injury under stimulation of phagocyte mononuclear system by injection of tamerit. This study havedemonstrated increased levels of CD117+CD38+ HSCs in bone marrow after partial hepatectomy, along withtheir migration to peripheral blood in response to tamerit injection. We also demonstrated that peripheralblood CD117+CD38+ HSCs levels were elevated after kidney injury. After partial hepatectomy, nochangesof CD117+CD90low HSCs quantity in investigated tissues were detected. We observed increased number ofCD117+CD90low HSCs in murine blood following kidney injury. Thus, we observed different influence ofmacrophage stimulation on the quantity of CD117+CD38+ and CD117+CD90low cells. These data suggestthat HSCs mobilization from the bone marrow to peripheral blood depends, at least in part, on phagocytemononuclear system, and that macrophage stimulation is important for proliferation and migration of variousHSCs populations following liver and kidney injury.

  8. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  9. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Institute of Scientific and Technical Information of China (English)

    Peng Xie; Wen-Hui Ruan

    2016-01-01

    Objective:To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model.Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs) group, erythropoietin (EPO) group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected.Results:Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group.Conclusions:Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  10. Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments

    Directory of Open Access Journals (Sweden)

    Sanna Maria

    2006-02-01

    Full Text Available Abstract Background It has recently been demonstrated that the fate of adult cells is not restricted to their tissues of origin. In particular, it has been shown that bone marrow stem cells can give rise to cells of different tissues, including neural cells, hepatocytes and myocytes, expanding their differentiation potential. Results In order to identify factors able to lead differentiation of stem cells towards cells of neural lineage, we isolated stromal cells from human adult bone marrow (BMSC. Cells were treated with: (1 TPA, forskolin, IBMX, FGF-1 or (2 retinoic acid and 2-mercaptoethanol (BME. Treatment (1 induced differentiation into neuron-like cells within 24 hours, while a longer treatment was required when using retinoic acid and BME. Morphological modifications were more dramatic after treatment (1 compared with treatment (2. In BMSC both treatments induced the expression of neural markers such as NF, GFAP, TUJ-1 and neuron-specific enolase. Moreover, the transcription factor Hes1 increased after both treatments. Conclusion Our study may contribute towards the identification of mechanisms involved in the differentiation of stem cells towards cells of neural lineage.

  11. Electrophysiological study on differentiation of rat bone marrow stromal stem cells into neuron-like cells in vitro by edaravone

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; HU Zi-bing; GUO Wei-tao; LIN Hao; SUN Xin; WEI Jin-song; WU Shao-ke

    2009-01-01

    To explore the electrophysiological proper-ties of differentiation of rat bone marrow-derived stromal stem cells (rBMSCs) to neuron-like cells in vitro by edaravone, a new type of free radical scavenger. Methods: Stromal stem cells were separated from rat bone marrow with Ficoll-Paque reagent and expanded in different culture medium in vitro, rBMSCs were induced by edaravone containing serum-free L-DMEM. Morphologic observation and Western blot analysis including the ex-pression of Nav1.6, Kv1.2, Kv1.3, Cav1.2 were performed, and whole patch-clamp technique was used. Results: Cyton contraction and long processes were shown in differentiated stromal stem cells. Nav1.6, Kv1.2, Kv1.3 and Cav1.2 were expressed in both differentiated and undifferentiated cells. However, the expression of channel proteins in differentiated cells was up-regulated. Consistently, their resting potential and outward currents were also enhanced in the differentiated cells, which was especially significant in the outward rectifier potassium current. Conclusion: In vitro, neuron-like cells derived from rBMSCs, induced by edaravone, possess electrophysiologi-cal properties of neurons.

  12. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Yuichi [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Nishiyama, Masahiko, E-mail: yamacho@saitama-med.ac.jp [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan)

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  13. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  14. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation

    International Nuclear Information System (INIS)

    Disease recurrence following stem cell transplantation (SCT) remains a major problem. Despite the sensitivity of leukaemias to chemotherapy and irradiation, conventional conditioning before SCT is limited by significant organ toxicity. Targeted irradiation of bone marrow and spleen by radioimmunotherapy may provide considerable dose escalation, with limited toxicity to non-target organs. In this study, 27 patients with high-risk or relapsing leukaemia were treated with rhenium-188-labelled CD66a,b,c,e radioimmunoconjugates (188Re-mAb) specific for normal bone marrow in addition to conventional conditioning with high-dose chemotherapy and 12 Gy total body irradiation prior to SCT. A mean activity of 10.2±2.1 (range 6.9-15.8) GBq 188Re-mAb was administered intravenously. Acute side-effects were assessed according to the CTC classification and patient outcome was determined. Mean radiation doses (Gy; range in parentheses) to relevant organs and whole body were as follows: 13.1 (6.5-22) to bone marrow, 11.6 (1.7-31.1) to spleen, 5.0 (2.0-11.7) to liver, 7.0 (2.3-11.6) to kidneys, 0.7 (0.3-1.3) to lungs and 1.4 (0.8-2.1) to the whole body. Stem cells engrafted in all patients within 9-18 days post SCT. Acute organ toxicity of grade II or less was observed. During follow-up for 25.4±5.3 (range 18-34) months, 4/27 (15%) patients died from relapse, and 9/27 (33%) from transplantation-related complications. Fourteen patients (52%) are still alive and in ongoing complete clinical remission. Radioimmunotherapy with the bone marrow-seeking 188Re-labelled CD66 mAb can double the dose to bone marrow and spleen without undue extramedullary acute organ toxicity, when given in addition to high-dose chemotherapy and 12 Gy TBI before allogeneic SCT. This intensified conditioning regimen may reduce the relapse rate of high-risk leukaemia. (orig.)

  15. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Buchmann, I.; Seitz, U.; Glatting, G.; Neumaier, B.; Kotzerke, J.; Buck, A. [Ulm Univ. (Germany). Abt. Nuklearmedizin; Bunjes, D.; Doehner, H. [Abteilung Innere Medizin III, Haematologie und Onkologie, Universitaetsklinikum Ulm (Germany); Martin, H.; Bergmann, L. [Klinik fuer Haematologie und Onkologie, Johann-Wolfgang-Goethe Universitaet Frankfurt (Germany)

    2001-07-01

    Disease recurrence following stem cell transplantation (SCT) remains a major problem. Despite the sensitivity of leukaemias to chemotherapy and irradiation, conventional conditioning before SCT is limited by significant organ toxicity. Targeted irradiation of bone marrow and spleen by radioimmunotherapy may provide considerable dose escalation, with limited toxicity to non-target organs. In this study, 27 patients with high-risk or relapsing leukaemia were treated with rhenium-188-labelled CD66a,b,c,e radioimmunoconjugates ({sup 188}Re-mAb) specific for normal bone marrow in addition to conventional conditioning with high-dose chemotherapy and 12 Gy total body irradiation prior to SCT. A mean activity of 10.2{+-}2.1 (range 6.9-15.8) GBq {sup 188}Re-mAb was administered intravenously. Acute side-effects were assessed according to the CTC classification and patient outcome was determined. Mean radiation doses (Gy; range in parentheses) to relevant organs and whole body were as follows: 13.1 (6.5-22) to bone marrow, 11.6 (1.7-31.1) to spleen, 5.0 (2.0-11.7) to liver, 7.0 (2.3-11.6) to kidneys, 0.7 (0.3-1.3) to lungs and 1.4 (0.8-2.1) to the whole body. Stem cells engrafted in all patients within 9-18 days post SCT. Acute organ toxicity of grade II or less was observed. During follow-up for 25.4{+-}5.3 (range 18-34) months, 4/27 (15%) patients died from relapse, and 9/27 (33%) from transplantation-related complications. Fourteen patients (52%) are still alive and in ongoing complete clinical remission. Radioimmunotherapy with the bone marrow-seeking {sup 188}Re-labelled CD66 mAb can double the dose to bone marrow and spleen without undue extramedullary acute organ toxicity, when given in addition to high-dose chemotherapy and 12 Gy TBI before allogeneic SCT. This intensified conditioning regimen may reduce the relapse rate of high-risk leukaemia. (orig.)

  16. Two sittings of Autologous Bone Marrow Stem Cells within two years in a case of Ischemic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Rao YY

    2009-01-01

    Full Text Available A 66yrs old Diabetic and Hypertensive female, who had Anterior Wall MI 5yrs ago and had undergone PTCA with Stent to LAD, was admitted for refractory CHF with Severe LVD 2yrs ago and the LVEF then was 25%. Coronary Angiogram was done which showed Total Occlusion of LAD and 50% Stenosis of RCA. Method: 100ml of her bone marrow was harvested from posterior iliac crest and the BMMNCs were isolated as per cGMP protocols at NCRM, Chennai and 325X106 cells with a CD34+ count of 0.84% were injected the next day by transfemoral catheter into the coronary arteries. Post treatment she had clinical improvement. EF increased by 5%. She was in Class-II for 1 year. After 1 yr, she was admitted with severe CHF and EF had deteriorated to 20%. This time BMMNCs isolated from the bone marrow were subjected to in vitro expansion by which the initial 0.15% CD34+ cells increased by nearly 30 fold to 4.62%. Totally 315X106 cells were injected into the coronaries. Post treatment there is clinical as well as Echo evidence of improvement and BNP level has come down by 30%. Conclusion:  Isolated and expanded CD34+ cells from bone marrow mononuclear cells of autologous origin, administered into the coronaries in an Ischemic Cardiomyopathy patient has been proven to be safe. The clinical and Echo cardiographic improvement that has sustained for long-term, proves the feasibility and efficacy of two consecutive autologous bone marrow stem cell applications, one isolated and the second ex vivo expanded. More case studies may be undertaken to further evaluate the results.

  17. Aromatic amino acid activation of signaling pathways in bone marrow mesenchymal stem cells depends on oxygen tension.

    Directory of Open Access Journals (Sweden)

    Mona El Refaey

    Full Text Available The physiologic oxygen pressures inside the bone marrow environment are much lower than what is present in the peripheral circulation, ranging from 1-7%, compared to values as high as 10-13% in the arteries, lungs and liver. Thus, experiments done with bone marrow mesenchymal stem cells (BMMSCs using standard culture conditions may not accurately reflect the true hypoxic bone marrow microenvironment. However, since aging is associated with an increased generation of reactive oxygen species, experiments done under 21%O2 conditions may actually more closely resemble that of the aging bone marrow environment. Aromatic amino acids are known to be natural anti-oxidants. We have previously reported that aromatic amino acids are potent agonists for stimulating increases in intracellular calcium and phospho-c-Raf and in promoting BMMSC differentiation down the osteogenic pathway. Our previous experiments were performed under normoxic conditions. Thus, we next decided to compare a normoxic (21% O2 vs. a hypoxic environment (3% O2 alone or after treatment with aromatic amino acids. Reverse-phase protein arrays showed that 3% O2 itself up-regulated proliferative pathways. Aromatic amino acids had no additional effect on signaling pathways under these conditions. However, under 21%O2 conditions, aromatic amino acids could now significantly increase these proliferative pathways over this "normoxic" baseline. Pharmacologic studies are consistent with the aromatic amino acids activating the extracellular calcium-sensing receptor. The effects of aromatic amino acids on BMMSC function in the 21% O2 environment is consistent with a potential role for these amino acids in an aging environment as functional anti oxidants.

  18. Evaluation of stem cell reserve using serial bone marrow transplantation and competitive repopulation in a murine model of chronic hemolytic anemia

    International Nuclear Information System (INIS)

    Serial transplantation and competitive repopulation were used to evaluate any loss of self-replicative capacity of bone marrow stem cells in a mouse model with increased and persistent hemopoietic demands. Congenic marrows from old control and from young and old mice with hereditary spherocytic anemia (sphha/sphha) were serially transplanted at 35-day intervals into normal irradiated recipients. Old anemic marrow failed or reverted to recipient karyotype at a mean of 3.5 transplants, and young anemic marrow reverted at a mean of 4.0 transplants, whereas controls did so at a mean of 5.0 transplants. In a competitive assay in which a mixture of anemic and control marrow was transplanted, the anemic marrow persisted to 10 months following transplantation; anemic marrow repopulation was greater if anemic marrow sex matched with the host. It is possible that lifelong stress of severe anemia decreases stem cell reserve in the anemic sphha/sphha mouse marrow. However, marginal differences in serial transplantation number and the maintenance of anemic marrow in a competition assay would suggest that marrow stem cells, under prolonged stress, are capable of exhibiting good repopulating and self-replicating abilities

  19. Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant

    International Nuclear Information System (INIS)

    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher asurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo. (Author)

  20. Archival bone marrow samples

    DEFF Research Database (Denmark)

    Lund, Bendik; Najmi, Laeya A; Wesolowska-Andersen, Agata;

    2015-01-01

    AB Archival samples represent a significant potential for genetic studies, particularly in severe diseases with risk of lethal outcome, such as in cancer. In this pilot study, we aimed to evaluate the usability of archival bone marrow smears and biopsies for DNA extraction and purification, whole...... with samples stored for 4 to 10 years. Acceptable call rates for SNPs were detected for 7 of 42 archival samples. In conclusion, archival bone marrow samples are suitable for DNA extraction and multiple marker analysis, but WGA was less successful, especially when longer fragments were analyzed. Multiple SNP...

  1. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1−/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1−/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1−/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1−/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory capacity

  2. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  3. [Inhibitory effect of total saponins of Panax notoginseng on rat bone marrow mesenchymal stem cell apoptosis].

    Science.gov (United States)

    Ou, Yong-Fang; Fu, Xue-Kun; Mei, Xing-Sha; Zheng, Hui-Zhen

    2016-06-25

    The study was aimed to investigate the effects of total saponins of Panax notoginseng (tPNS) on cobalt chloride (CoCl2)-induced apoptosis of rat bone marrow mesenchymal stem cells (rBMSCs) and the underlying mechanism. rBMSCs were isolated by density gradient centrifugation from Sprague Dawley (SD) rats. After being incubated with different concentrations of tPNS (1, 10, 100 μg/mL) for 48 h, the rBMSCs were stained with EdU and PI for proliferation and cell cycle assay, respectively. CoCl2 group was treated with 300 μmol CoCl2 for 24 h, and different concentrations tPNS groups were treated with 300 μmol CoCl2 plus 1, 10 or 100 μg/mL tPNS. After Annexin V-FITC/PI staining, flow cytometry was applied to measure the cell apoptosis. For mitochondrial membrane potential assay, rhodamine123 and Hoechst33342 staining were used. qRT-PCR was applied to analyze gene expression of Bcl-2 family. The results showed that the proliferation rates of the three concentrations tPNS groups were all higher than that of the control group (all P < 0.05). Compared with control group, only 100 μg/mL tPNS group exhibited increased cell percentage of S and G2 phase. Compared with that in control group (without CoCl2), the apoptotic rate was increased by 14.2% in CoCl2 group. And the apoptotic rates were reduced by 14.4%, 12.8% and 13.9% in three concentrations tPNS groups, compared with that in CoCl2 group (all P < 0.01). CoCl2 could decrease the mitochondrial membrane potential, while different concentrations of tPNS reversed the inhibitory effect of CoCl2. Bcl-2 and Bcl-xl mRNA expressions in all tPNS groups were higher than those in CoCl2 group (all P < 0.05). Moreover, 10 and 100 μg/mL tPNS groups showed lower ratios of Bax/Bcl-2, compared with CoCl2 group. The results suggest that tPNS protects the rBMSCs against CoCl2-induced apoptosis through improving the cell mitochondrial membrane potential, up-regulating the expressions of anti-apoptosis genes Bcl-2 and Bcl-xl, and reducing

  4. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  5. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Dong-Chang Zhao; Jun-Xia Lei; Rui Chen; Wei-Hua Yu; Xiu-Ming Zhang; Shu-Nong Li; Peng Xiang

    2005-01-01

    AIM: Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to investigate the effect of infusion of bone marrow (BM)-derived MSCs on the experimental liver fibrosis in rats.METHODS: MSCs isolated from BM in male Fischer 344 rats were infused to female Wistar rats induced with carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN).There were two random groups on the 42nd d of CCl4:CCl4/MSCs, to infuse a dose of MSCs alone; CCl4/saline,to infuse the same volume of saline as control. There were another three random groups after exposure to DMN: DMN10/MSCs, to infuse the same dose of MSCs on d 10; DMN10/saline, to infuse the same volume of saline on d 10; DMN20/MSCs, to infuse the same dose of MSCson d 20. The morphological and behavioral changes ofrats were monitored everyday. After 4-6 wk of MSCs administration, all rats were killed and fibrosis index were assessed by histopathology and radioimmunoassay. Smooth muscle alpha-actin (alpha-SMA) of liver were tested by immunohistochemistry and quantified by IBAS 2.5 software. Male rats sex determination region on the Y chromosome (sry) gene were explored by PCR.RESULTS: Compared to controls, infusion of MSCsreduced the mortality rates of incidence in CCl4-induced model (10% vs 20%) and in DMN-induced model (2040% vs 90%).The amount of collagen deposition and alpha-SMA staining was about 40-50% lower in liver of rats with MSCs than that of rats without MSCs. The similar results were observed in fibrosis index. And the effect of the inhibition of fibrogenesis was greater in DMN10/MSCs than in DMN20/MSCs. The sry gene was positive in the liver of rats with MSCs treatment by PCR.CONCLUSION: MSCs treatment can protect against

  6. Cyclin A1 and P450 Aromatase Promote Metastatic Homing and Growth of Stem-like Prostate Cancer Cells in the Bone Marrow.

    Science.gov (United States)

    Miftakhova, Regina; Hedblom, Andreas; Semenas, Julius; Robinson, Brian; Simoulis, Athanasios; Malm, Johan; Rizvanov, Albert; Heery, David M; Mongan, Nigel P; Maitland, Norman J; Allegrucci, Cinzia; Persson, Jenny L

    2016-04-15

    Bone metastasis is a leading cause of morbidity and mortality in prostate cancer. While cancer stem-like cells have been implicated as a cell of origin for prostate cancer metastasis, the pathways that enable metastatic development at distal sites remain largely unknown. In this study, we illuminate pathways relevant to bone metastasis in this disease. We observed that cyclin A1 (CCNA1) protein expression was relatively higher in prostate cancer metastatic lesions in lymph node, lung, and bone/bone marrow. In both primary and metastatic tissues, cyclin A1 expression was also correlated with aromatase (CYP19A1), a key enzyme that directly regulates the local balance of androgens to estrogens. Cyclin A1 overexpression in the stem-like ALDH(high) subpopulation of PC3M cells, one model of prostate cancer, enabled bone marrow integration and metastatic growth. Further, cells obtained from bone marrow metastatic lesions displayed self-renewal capability in colony-forming assays. In the bone marrow, cyclin A1 and aromatase enhanced local bone marrow-releasing factors, including androgen receptor, estrogen and matrix metalloproteinase MMP9 and promoted the metastatic growth of prostate cancer cells. Moreover, ALDH(high) tumor cells expressing elevated levels of aromatase stimulated tumor/host estrogen production and acquired a growth advantage in the presence of host bone marrow cells. Overall, these findings suggest that local production of steroids and MMPs in the bone marrow may provide a suitable microenvironment for ALDH(high) prostate cancer cells to establish metastatic growths, offering new approaches to therapeutically target bone metastases. Cancer Res; 76(8); 2453-64. ©2016 AACR. PMID:26921336

  7. Bone-marrow transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series To use the sharing features on ... slide 4 out of 4 Normal anatomy Overview Bone-marrow is a soft, fatty tissue found inside of ...

  8. Infections after Transplantation of Bone Marrow or Peripheral Blood Stem Cells from Unrelated Donors.

    Science.gov (United States)

    Young, Jo-Anne H; Logan, Brent R; Wu, Juan; Wingard, John R; Weisdorf, Daniel J; Mudrick, Cathryn; Knust, Kristin; Horowitz, Mary M; Confer, Dennis L; Dubberke, Erik R; Pergam, Steven A; Marty, Francisco M; Strasfeld, Lynne M; Brown, Janice Wes M; Langston, Amelia A; Schuster, Mindy G; Kaul, Daniel R; Martin, Stanley I; Anasetti, Claudio

    2016-02-01

    Infection is a major complication of hematopoietic cell transplantation. Prolonged neutropenia and graft-versus-host disease are the 2 major complications with an associated risk for infection, and these complications differ according to the graft source. A phase 3, multicenter, randomized trial (Blood and Marrow Transplant Clinical Trials Network [BMT CTN] 0201) of transplantation of bone marrow (BM) versus peripheral blood stem cells (PBSC) from unrelated donors showed no significant differences in 2-year survival between these graft sources. In an effort to provide data regarding whether BM or PBSC could be used as a preferential graft source for transplantation, we report a detailed analysis of the infectious complications for 2 years after transplantation from the BMT CTN 0201 trial. A total of 499 patients in this study had full audits of infection data. A total of 1347 infection episodes of moderate or greater severity were documented in 384 (77%) patients; 201 of 249 (81%) of the evaluable patients had received a BM graft and 183 of 250 (73%) had received a PBSC graft. Of 1347 infection episodes, 373 were severe and 123 were life-threatening and/or fatal; 710 (53%) of these episodes occurred on the BM arm and 637 (47%) on the PBSC arm, resulting in a 2-year cumulative incidence 84.7% (95% confidence interval [CI], 79.6 to 89.8) for BM versus 79.7% (95% CI, 73.9 to 85.5) for PBSC, P = .013. The majority of these episodes, 810 (60%), were due to bacteria, with a 2-year cumulative incidence of 72.1% and 62.9% in BM versus PBSC recipients, respectively (P = .003). The cumulative incidence of bloodstream bacterial infections during the first 100 days was 44.8% (95% CI, 38.5 to 51.1) for BM versus 35.0% (95% CI, 28.9 to 41.1) for PBSC (P = .027). The total infection density (number of infection events/100 patient days at risk) was .67 for BM and .60 for PBSC. The overall infection density for bacterial infections was .4 in both arms; for viral infections

  9. Induction of allogeneic unresponsiveness in adult dogs by irradiation and bone marrow transplantation: Implication of Ia-positive bone marrow stem cells

    International Nuclear Information System (INIS)

    A number of investigators have suggested in recent years that placement of hemopoietic cells into an irradiated host milieu may trigger such cells to undergo a transient cycle of replication and differentiation which recapitulates the events of immunological ontogeny-including fetal erythropoiesis, production of newborn Υ-chains in adults, and generation of fetal and newborn-type lymphoid cells. In an extension of this hypothesis to transplantation, supralethally irradiated dogs were reconstituted with their own stored marrow, followed within 12 to 18 hr by the transplanation of a kidney allograft obtained from a DLA identical donor. This sequence resulted in long-term unresponsiveness to the transplanted kidneys in the recipients without further treatment. The 60% incidence of success obtained with this procedure could be improved further if the host's own stored marrow was treated in vitro with methylprednisolone (MPd) prior to replacement of the marrow following irradiation. In an attempt to analyze the possible changes in the cellular composition of marrow that might have been associated with this result, a serial cytofluorographic analysis of marrow before and after treatment with MPd was performed. For this purpose, cell samples obtained before and after exposure of bone marrow to MPd were studied in an Ortho 50H Cell Sorter after staining with acridine orange by using green fluorescence for DNA and red fluroescence for RNA, or, alternatively, using 900 scatter for the X axis and a narrow forward scatter for the Y axis, without addition of any stain

  10. Incidence of interstitial pneumonia after hyperfractionated total body irradiation before autologous bone marrow/stem cell transplantation

    International Nuclear Information System (INIS)

    Purpose/Objectives Interstitial pneumonia (IP) is a severe complication after allogenic bone marrow transplantation (BMT) with incidence rates between 10 % and 40 % in different series. It is a polyetiologic disease that occurs depending on age, graft vs. host disease (GvHD), CMV-status, total body irradiation (TBI) and immunosuppressive therapy after BMT. The effects of fractionation and dose rate are not entirely clear. This study evaluates the incidence of lethal IP after hyperfractionated TBI for autologous BMT or stem cell transplantation. Materials and Methods Between 1982 and 1992, 182 patients (60 % male, 40 % female) were treated with hyperfractionated total body irradiation (TBI) before autologous bone marrow transplantation. Main indications were leukemias and lymphomas (53 % AML, 21 % ALL, 22 % NHL, 4 % others) Median age was 30 ys (15 - 55 ys). A total dose of 14.4 Gy was applied using lung blocks (12 fractions of 1.2 Gy in 4 days, dose rate 7-18 cGy/min, lung dose 9 - 9.5 Gy). TBI was followed by cyclophosphamide (200 mg/kg). 72 % were treated with bone marrow transplantation, 28 % were treated with stem cell transplantation. Interstitial pneumonia was diagnosed clinically, radiologically and by autopsy. Results 4 patients died most likely of interstitial pneumonia. For another 12 patients interstitial pneumonia was not the most likely cause of death but could not be excluded. Thus, the incidence of lethal IP was at least 2.2 % but certainly below 8.8 %. Conclusion Lethal interstitial pneumonia is a rare complication after total body irradiation before autologous bone marrow transplantation in this large, homogeously treated series. In the autologous setting, total doses of 14.4 Gy can be applied with a low risk for developing interstitial pneumonia if hyperfractionation and lung blocks are used. This falls in line with data from series with identical twins or t-cell depleted marrow and smaller, less homogeneous autologous transplant studies. Thus

  11. Upregulated heme oxygenase-1 expression of mouse mesenchymal stem cells resists to chemotherapy-induced bone marrow suppression

    Institute of Scientific and Technical Information of China (English)

    Chen Shuya; Wang Jishi; Fang Qin; Gao Rui; Shi Qianying; Zhang Hui; Zhao Jiangyuan

    2014-01-01

    Background Bone marrow hematopoietic function suppression is one of the most common side effects of chemotherapy.After chemotherapy,the bone marrow structure gets destroyed and the cells died,which might cause the hematopoietic function suppression.Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism that associates with cell proliferation and resistance to apoptosis.The aim of this study was to restore or resist the bone marrow from the damage of chemotherapy by the HO-1 expression of mouse mesenchymal stem cells (mMSCs) homing to the mice which had the chemotherapy-induced bone marrow suppression.Methods One hundred and sixty female Balb/c mice (6-8-weeks old) were randomly divided into four groups.Each group was performed in 40 mice.The control group was intraperitoneally injected for 5 days and tail intravenously injected on the 6th day with normal saline.The chemotherapy-induced bone marrow suppression was established by intraperitoneally injecting cyclophosphamide (CTX) into the mice which performed as the chemotherapy group.The mMSCs were tail intravenously injected into 40 chemotherapically damaged mice which served as the mMSCs group.The difference between the HO-1 group and the mMSCs group was the injected cells.The HO-1 group was tail intravenously injected into the mMSCs that highly expressed HO-1 which was stimulated by hemin.The expression of HO-1 was analyzed by Western blotting and RT-PCR.Cell proliferation was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Histopathologic examinations were performed 1 week after injection.Results Compared with the control group,the expression levels of HO-1 mRNA and protein were significantly higher in the HO-1 group (all P <0.05),even obviously than the mMSCs group.CTX treatment induced apoptosis and inhibited proliferation.After injected,the white blood cell (WBC),red blood cell (RBC) and platelet (PLT) declined fast and down to the bottom at the 7th day

  12. Peripheral blood stem cell versus bone marrow transplantation: A perspective from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation.

    Science.gov (United States)

    Byrne, Michael; Savani, Bipin N; Mohty, Mohamad; Nagler, Arnon

    2016-07-01

    Over the past decade, transplantation of peripheral blood hematopoietic cells has increased and is now the predominant graft source for related or unrelated adult allogeneic hematopoietic stem cell transplantation. At the same time, increasing numbers of patients are receiving reduced-intensity conditioning (RIC) prior to hematopoietic stem cell infusion. In prior work using smaller patient numbers and limited data, RIC peripheral blood stem cell (PBSC) transplantation was shown to be noninferior to RIC bone marrow (BM) transplantation for acute leukemia. A recent, large registry analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation showed that peripheral blood grafts result in superior outcomes compared with BM after RIC regimens for acute leukemia. The T-cell-replete PBSC allografts are associated with significant graft-versus-leukemia (GVL) benefits that are important drivers of improved leukemia-free survival and overall survival. However, an increased risk of chronic graft-versus-host disease (cGVHD) after peripheral blood grafts is concerning and long-term follow-up comparing peripheral versus BM grafts after RIC regimens is needed. Further assessment of the long-standing risks should be undertaken in an effort to better understand whether the risk of cGVHD among peripheral blood graft recipients translates into continued GVL effects and long-term remissions and cures or if it results in late morbidity and mortality. PMID:27106798

  13. Impact of bone marrow on respiratory disease.

    Science.gov (United States)

    Rankin, Sara M

    2008-06-01

    The bone marrow is not only a site of haematopoiesis but also serves as an important reservoir for mature granulocytes and stem cells, including haematopoietic stem cells, mesenchymal stem cells and fibrocytes. In respiratory diseases, such as asthma and idiopathic pulmonary fibrosis these cells are mobilised from the bone marrow in response to blood-borne mediators and subsequently recruited to the lungs. Although the granulocytes contribute to the inflammatory reaction, stem cells may promote tissue repair or remodelling. Understanding the factors and molecular mechanisms that regulate the mobilisation of granulocytes and stem cells from the bone marrow may lead to the identification of novel therapeutic targets for the treatment of a wide range of respiratory disorders. PMID:18372214

  14. Combining Concentrated Autologous Bone Marrow Stem Cells Injection With Core Decompression Improves Outcome for Patients with Early-Stage Osteonecrosis of the Femoral Head: A Comparative Study.

    Science.gov (United States)

    Tabatabaee, Reza Mostafavi; Saberi, Sadegh; Parvizi, Javad; Mortazavi, Seyed Mohammad Javad; Farzan, Mahmoud

    2015-09-01

    The management of early-stage osteonecrosis of the femoral head (ONFH) remains challenging. This study aimed to evaluate the effects of core decompression and concentrated bone marrow implantation on ONFH. The study recruited 28 hips with early ONFH randomly assigned into two groups of core decompression with (group A) and without (group B) bone marrow injection. Patients were evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire, Visual Analogue Scale (VAS) pain index, and MRI. The mean WOMAC and VAS scores in all patients improved significantly (PBone marrow stem cell injection with core decompression can be effective in early ONFH. PMID:26143238

  15. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia;

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...... human skin (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and...

  16. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had hematoly......Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...... hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction...... failed to engraft irradiated recipient mice. Moreover, absence of beta1 integrin resulted in sequestration of HSCs in the circulation and their reduced adhesion to endothelioma cells. These findings define beta1 integrin as an essential adhesion receptor for the homing of HSCs....

  17. Effect of repeated intracoronary injection of bone marrow cells in patients with ischaemic heart failure the Danish stem cell study - congestive heart failure trial (DanCell-CHF)

    DEFF Research Database (Denmark)

    Diederichsen, A.C.; Møller, Jacob Eifer; Thayssen, P.;

    2008-01-01

    repeated infusions would have additional positive effects. AIMS: To assess whether two treatments of intracoronary infusion of bone marrow stem cells, administered 4 months apart, could improve left ventricular (LV) systolic function in patients with chronic ischaemic heart failure. METHODS: The study was......, NYHA class improved (p<0.0001). No deaths were observed. CONCLUSION: In this non-randomised study, no change in LV ejection fraction could be demonstrated after repeated intracoronary bone marrow stem cell treatment in patients with chronic ischaemic heart failure Udgivelsesdato: 2008/7...

  18. Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration

    OpenAIRE

    Colnot, Céline

    2008-01-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results...

  19. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury

    OpenAIRE

    Neirinckx, Virginie; Agirman, Gulistan; Coste, Cécile; Marquet, Alice; Dion, Valérie; Rogister, Bernard; Franzen, Rachelle; Wislet, Sabine

    2015-01-01

    Introduction Stem cells from adult tissues were considered for a long time as promising tools for regenerative therapy of neurological diseases, including spinal cord injuries (SCI). Indeed, mesenchymal (MSCs) and neural crest stem cells (NCSCs) together constitute the bone marrow stromal stem cells (BMSCs) that were used as therapeutic options in various models of experimental SCI. However, as clinical approaches remained disappointing, we thought that reducing BMSC heterogeneity should be a...

  20. Bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury An in vivo magnetic resonance imaging tracking study

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Boai Zhang; Yi Song; Yubin Deng; Yanjie Jia; Qiyong Gong

    2011-01-01

    Non-invasive tracing in vivo can be used to observe the migration and distribution of grafted stem cells, and can provide experimental evidence for treatment. This study utilized adenovirus-carrying enhanced green fluorescent protein (AD5/F35-eGFP) and superparamagnetic iron oxide (SPIO)-labeled bone marrow mesenchymal stem cells (BMSCs). BMSCs, double-labeled by AD5/F35-eGFP and SPIO, were transplanted into rats with spinal cord injury via the subarachnoid space. MRI tracing results demonstrated that BMSCs migrated to the injured spinal cord over time (T2 hypointensity signals). This result was verified by immunofluorescence. These results indicate that MRI can be utilized to trace in vivo the SPIO-labeled BMSCs after grafting.

  1. Synthesis of Chiral Oligomer-Grafted Biodegradable Polyurethanes and Their Chiral-Dependent Influence on Bone Marrow Stem Cell Behaviors.

    Science.gov (United States)

    Hu, Bin; Deng, Jun; Zheng, Honghao; Yu, Shan; Gao, Changyou

    2016-08-01

    Chirality is one of the most fascinating and ubiquitous features in nature, especially in biological systems. The effects of chiral surfaces, especially in combination with degradable materials of good biocompatibility, on stem cell behaviors has not yet been tackled. In this communication, the chiral monomers N-acryloyl-l(d)-valine (l(d)-AV) are synthesized and are polymerized to obtain chiral (l(d)-PAV-SH) oligomers, which are covalently immobilized onto electron-deficient poly(propylene fumarate) polyurethane (PPFU) via Michael addition. The PPFU-l-PAV can interact more strongly and actively with bone marrow stem cells (BMSCs) than PPFU-d-PAV, leading to a larger cell spreading area, faster migration velocity, and stronger osteodifferentiation tendency. PMID:27295370

  2. Hydroxyurea as a suppressor of the radioprotective effect of dextran sulfate on bone marrow hemopoietic stem cells in mice

    International Nuclear Information System (INIS)

    Changes were studied in hemopoiesis of mice following intraperitoneal administration of dextran sulfate (DS) 24 h before irradiation, as well as the effect of injection with hydroxyurea (HU). DS increased the proliferation activity and the number of hemopoietic stem cells (CFUs) in the bone marow. The content of CFUs in the bone marrow and the number of endogenous spleen colonies of hemopoietic tissue were higher after irradiation in mice treated with DS than in the control groups. The survival rate following a lethal radiation dose was also higher. The HU injection reduced the number of CFUs in animals injected with DS to the level of controls and suppressed its radioprotective effect. (author). 2 figs., 2 tabs., 27 refs

  3. Transplanting defrozen mouse bone marrow cells

    International Nuclear Information System (INIS)

    The regeneration was studied of blood formation in the spleen and the bone marrow of lethally irradiated mice 30 and 60 days after the transplantation of defrozen bone marrow. Also studied were the counts of leukocytes, thrombocytes and reticulocytes in the peripheral blood. Hematopoiesis changes were described and it was shown that after the transplantation of defrozen bone marrow, regeneration and progressive normalization of hematopoiesis took place in the lethally irradiated recipients. It was found that the freezing procedure used was tender and preserved the proliferation capacity of the stem hemopoietic cells. (author)

  4. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    Science.gov (United States)

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518

  5. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  6. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol-1 s-1, higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  7. Promotion of Hepatic Differentiation of Bone Marrow Mesenchymal Stem Cells on Decellularized Cell-Deposited Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Hongliang He

    2013-01-01

    Full Text Available Interactions between stem cells and extracellular matrix (ECM are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS, bone marrow mesenchymal stem cells (BM-MSCs cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.

  8. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells.

    Science.gov (United States)

    Wuchter, Patrick; Saffrich, Rainer; Giselbrecht, Stefan; Nies, Cordula; Lorig, Hanna; Kolb, Stephanie; Ho, Anthony D; Gottwald, Eric

    2016-06-01

    In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems. PMID:26829941

  9. Starvation marrow - gelatinous transformation of bone marrow.

    Science.gov (United States)

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  10. Pelleted Bone Marrow Derived Mesenchymal Stem Cells Are Better Protected from the Deleterious Effects of Arthroscopic Heat Shock

    Science.gov (United States)

    Kalamegam, Gauthaman; Abbas, Mohammed; Gari, Mamdooh; Alsehli, Haneen; Kadam, Roaa; Alkaff, Mohammed; Chaudhary, Adeel; Al-Qahtani, Mohammed; Abuzenadah, Adel; Kafienah, Wael; Mobasheri, Ali

    2016-01-01

    Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs) respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs) from osteoarthritis (OA) patients, and evaluated the effect of arthroscopic heat on cells in suspension and pellet cultures. Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 × 106 cells) cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20, or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20, or 30 min for 72 h decreased metabolic activity of the cells in suspensions (63.27% at 30 min) and increased metabolic activity in cell pellets (62.86% at 10 min and 68.57% at 20 min). hBMMSCs exposed to 37, 45, and 55°C for 120 s demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage regeneration. PMID

  11. ALLOGENEIC PERIPHERAL BLOOD AND BONE MARROW STEM CELL TRANSPLANTATION FOR CHRONIC MYELOGENOUS LEUKEMIA: A SINGLE CENTER STUDY

    Directory of Open Access Journals (Sweden)

    A. Ghavamzadeh

    2003-08-01

    Full Text Available In this center, from 1991 to 2002, 89 chronic myelogenous leukemic (CML patients, age ranging between 8-48 years with a median age of 29, underwent hematopoietic stem cell transplantation. Eighty-eight patients were in the first chronic phase of disease. Twenty-three patients received bone marrow transplantation (BMT and 66 patients received peripheral blood stem cell transplantations (PBSCT. Transplantation was performed at a median interval of 19 months post-diagnosis. All with five exceptions received busulfan + cyclophosphamide (Bu Cy conditioning regimens. To maintain graft vs. host disease (GVHD prophylaxis, all with three exceptions received cyclosporine + metothrexate. Administration of granulocyte colony stimulating factor (G-CSF, per protocol, was included in post-transplantation regimens from the year 1999 on 48 patients. All patients received marrow transplantations from sibling donors. Fifty seven of transplanted patients are alive. Disease free survivals (DFS from 6.2 to 9.5 and from 2.2 to 6.2 years for BMT group were 38.2% and 47.8%, respectively. DFS for PBSCT group was calculated as 54.3% in a period of 1.9 to 4.6 years.

  12. In vitro cultivation of rat bone marrow mesenchymal stem cells and establishment of pEGFP/Ang-1 transfection method

    Institute of Scientific and Technical Information of China (English)

    Xiu-Qun; Zhang; Long; Wang; Shu-Li; Zhao; Wei; Xu

    2014-01-01

    Objective:To obtain the bone marrow mesenchymal stem cells(BMSCs).complete phenotypic identification and successfully transfecl rat BMSCs by recombinant plasmid pF.GFP/Ang-1.Methods:BMSCs were isolated from bone marrow using density gradient centrifugation method and adherence screening method,and purified.Then the recombinant plasmid pEGFP/Ang-1was used to transfect BMSCs and the positive clones were obtained by the screen of C418 and observed under light microscopy inversely.Green fluorescent exhibited by protein was enhanced to measure the change time of the expression amount of Ang-1.Results:BMSCs cell lines were obtained successfully by adherence screening method and density gradient ccntrifugation.Ang-1 recombinant plasmid was transfected smoothly into rat BMSCs,which can express Ang-1 for 3 d and decreased after 7 d.Conclusions:Adherence screening method und density gradient ceiilrifugation can be effective methods lo obtain BMSCs with high purity and rapid proliferation.Besides,the expression of transfected recombinant plasmid pEGFP/Ang-1 in rat BMSCs is satisfactory.

  13. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    Science.gov (United States)

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  14. The effect of magnetic field during freezing and thawing of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Shikata, H; Kaku, M; Kojima, S-I; Sumi, H; Kojima, S-T; Yamamoto, T; Yashima, Y; Kawata, T; Tanne, K; Tanimoto, K

    2016-08-01

    Previous studies showed that a programmed freezer with magnetic field can maintain a high survival rate of mesenchymal stem cells (MSCs). The purpose of this study was to evaluate the influences of magnetic field during freezing and thawing on the survival of MSCs isolated from rat bone marrow. The cells were frozen by a normal programmed freezer or a programmed freezer with magnetic field (CAS-LAB1) and cryopreserved for 7 days at -150 °C. Then, the cells were thawed in the presence or absence of magnetic field. Immediately after thawing, the number of surviving or viable cells was counted. The cell proliferation was examined after 1-week culture. Cryopreserved MSCs which were frozen by a normal freezer or a CAS freezer were transplanted into bone defects artificially made in calvaria of 4-week-old rats. Non-cryopreserved MSCs were used as a control. The rats were sacrificed at 8, 16, or 24 weeks after transplantation and the bone regeneration area was measured. Proliferation rates of MSCs after 1 week were significantly higher in the CAS-freezing-thawing group than in the CAS-freezing group. The extent of new bone formation in the CAS-freezing-thawing group tended to be larger than in CAS-freezing group 24 weeks after transplantation. These results suggest that a magnetic field enhances cell survival during thawing as well as freezing. PMID:27346603

  15. Poly(lactic acid) porous scaffold with calcium phosphate mineralized surface and bone marrow mesenchymal stem cell growth and differentiation

    International Nuclear Information System (INIS)

    This work aims to modify the surface of a poly(lactic acid) (PLA) porous scaffold with calcium phosphate (CaP) via a simple solution-based technique, and to evaluate the effects of this modification on the responses of rat bone marrow mesenchymal stem cells (rBMMSCs). Under appropriate modification conditions involving stepwise-treatments in the Ca-and-P supersaturated solution under gentle agitation, a thin, poorly crystallized CaP layer was deposited. The BMMSCs derived from adult rats were shown to adhere quite well to the CaP-coated scaffold, and to proliferate actively with culturing time, although some down-regulation was noted with regard to the unmodified PLA scaffold. The osteogenic differentiation of rBMMSCs was significantly higher on the CaP-modified scaffold than on the unmodified scaffold, as confirmed by alkaline phosphatase (ALP) activity. Moreover, the expression of genes associated with bone, including collagen type I, osteopontin and bone sialoprotein, was stimulated better on the CaP-modified PLA scaffold. Based on these results, the currently used CaP-treatment was deemed effective in stimulating the osteogenic development of rBMMSCs on the PLA-based scaffold, and the CaP-treated PLA scaffold may be useful for future bone tissue engineering.

  16. Comparison of different busulfan analogues for depletion of hematopoietic stem cells and promotion of donor-type chimerism in murine bone marrow transplant recipients

    NARCIS (Netherlands)

    Westerhof, GR; Ploemacher, RE; Boudewijn, A; Blokland, [No Value; Dillingh, JH; McGown, AT; Hadfield, JA; Dawson, MJ; Down, JD

    2000-01-01

    Busulfan (1,4-butanediol dimethanesulfonate, BU) is relatively unique among other standard chemotherapy compounds in its ability to deplete noncycling primitive stem cells in the host and consequently to allow for high levels of long-term, donor-type engraftment after bone marrow transplantation (BM

  17. The changes of cardioelectrical activity of rat with myocardial infarction receiving sarcoplasmic reticulum Ca2+-ATPase gene modified bone marrow stem cell transplantation by microelectrode array technology

    Institute of Scientific and Technical Information of China (English)

    范平

    2012-01-01

    Objective Therapy effects and cardiac electrical activity comparison of bone marrow stem cells (BMSCs) transplantation and sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) gene modified BMSCs transplantation after acute myocardial infarction(AMI) in rats.Methods Rats with AMI were divided

  18. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2

    Science.gov (United States)

    Chen, Biao; Li, Bin; Qi, Yong-Jian; Ni, Qu-Bo; Pan, Zheng-Qi; Wang, Hui; Chen, Liao-Bin

    2016-01-01

    Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy. PMID:27173013

  19. Evaluation of the role of autogenous bone-marrow-derived mesenchymal stem cell transplantation for the repair of mandibular bone defects in rabbits.

    Science.gov (United States)

    Saad, Khaled Abd-Elhamid; Abu-Shahba, Ahmed Gamal Taha; El-Drieny, Ezzat Abd-Elaziz; Khedr, Mohamed Saad

    2015-09-01

    The repair of craniofacial bony defects by traditional grafting techniques requires substantial time and effort, with associated morbidity. Tissue engineering has therefore become a novel approach targeting application for bone regeneration. This study used the rabbit model for radiographic and histological evaluation of bone bioengineering for mandibular defects reconstruction using only β-tricalcium phosphate (β-TCP) and, when loaded with autogenous; bone marrow-derived undifferentiated mesenchymal stem cells (BM-MSCs). Critical-sized defects (10 × 15 mm) were created unilaterally in the mandibular body region of each rabbit (n = 16), to be filled with the BM-MSCs/β-TCP constructs for the study group (group I) (n1 = 8) and with scaffold devoid of cells for the control group (group II) (n2 = 8). Two rabbits from each group were sacrificed after healing periods of 2, 4, 12, and 24 weeks. The results revealed that the BM-MSCs endowed β-TCP scaffold with a better and more rapid bone regenerating potential: since the first evaluation period of 2 weeks, the regenerated bone tissue in group I was more mature, denser and homogeneously distributed. From these findings we could infer that the bone regeneration process was jump-started within the study group cases, which led to better quality of regenerated bone. PMID:26048107

  20. Intractable Diseases Treated with Intra-Bone Marrow-Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-09-01

    Full Text Available Bone marrow transplantation (BMT is used to treat hematological disorders, autoimmune diseases and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells but also mesenchymal stem cells (MSMCs. MSMCs are multi-potent stem cells that can be isolated from bone marrow, umbilical cord blood, and adipose tissue. MSMCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSMCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of bone marrow-derived- MSMCs, and the treatment of intractable diseases such as rheumatoid arthritis and malignant tumors with IBM-BMT.

  1. Carvedilol protects bone marrow stem cells against hydrogen peroxide-induced cell death via PI3K-AKT pathway.

    Science.gov (United States)

    Chen, Meihui; Chen, Shudong; Lin, Dingkun

    2016-03-01

    Carvedilol, a nonselective β-adrenergic receptor blocker, has been reported to exert potent anti-oxidative activities. In the present study, we aimed to investigate the effects of carvedilol against hydrogen peroxide (H2O2)-induced bone marrow-derived mesenchymal stem cells (BMSCs) death, which imitate the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. Carvedilol significantly reduced H2O2-induced reactive oxygen species production, apoptosis and subsequent cell death. LY294002, the PI3K inhibitor, blocked the protective effects and up-regulation of Akt phosphorylation of carvedilol. Together, our results showed that carvedilol protects H2O2-induced BMSCs cell death partly through PI3K-Akt pathway, suggesting carvedilol could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments. PMID:26898450

  2. Pleiotrophin Regulates the Retention and Self-Renewal of Hematopoietic Stem Cells in the Bone Marrow Vascular Niche

    Directory of Open Access Journals (Sweden)

    Heather A. Himburg

    2012-10-01

    Full Text Available The mechanisms through which the bone marrow (BM microenvironment regulates hematopoietic stem cell (HSC fate remain incompletely understood. We examined the role of the heparin-binding growth factor pleiotrophin (PTN in regulating HSC function in the niche. PTN−/− mice displayed significantly decreased BM HSC content and impaired hematopoietic regeneration following myelosuppression. Conversely, mice lacking protein tyrosine phosphatase receptor zeta, which is inactivated by PTN, displayed significantly increased BM HSC content. Transplant studies revealed that PTN action was not HSC autonomous, but rather was mediated by the BM microenvironment. Interestingly, PTN was differentially expressed and secreted by BM sinusoidal endothelial cells within the vascular niche. Furthermore, systemic administration of anti-PTN antibody in mice substantially impaired both the homing of hematopoietic progenitor cells to the niche and the retention of BM HSCs in the niche. PTN is a secreted component of the BM vascular niche that regulates HSC self-renewal and retention in vivo.

  3. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  4. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report

    OpenAIRE

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-01-01

    Introduction Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. Case presentation A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a ...

  5. Safety Profile, Feasibility and Early Clinical Outcome of Cotransplantation of Olfactory Mucosa and Bone Marrow Stem Cells in Chronic Spinal Cord Injury Patients

    OpenAIRE

    Goni, Vijay G.; Chhabra, Rajesh; Gupta, Ashok; Marwaha, Neelam; Dhillon, Mandeep S; Pebam, Sudesh; Gopinathan, Nirmal Raj; Bangalore Kantharajanna, Shashidhar

    2014-01-01

    Study Design Prospective case series. Purpose To study the safety and feasibility of cotransplantation of bone marrow stem cells and autologous olfactory mucosa in chronic spinal cord injury. Overview of Literature Stem cell therapies are a novel method in the attempt to restitute heavily damaged tissues. We discuss our experience with this modality in postspinal cord injury paraplegics. Methods The study includes 9 dorsal spine injury patients with American Spinal Injury Association (ASIA) I...

  6. The Osteogenesis of Bone Marrow Stem Cells on mPEG-PCL-mPEG/Hydroxyapatite Composite Scaffold via Solid Freeform Fabrication

    OpenAIRE

    2014-01-01

    The study described a novel bone tissue scaffold fabricated by computer-aided, air pressure-aided deposition system to control the macro- and microstructure precisely. The porcine bone marrow stem cells (PBMSCs) seeded on either mPEG-PCL-mPEG (PCL) or mPEG-PCL-mPEG/hydroxyapatite (PCL/HA) composite scaffold were cultured under osteogenic medium to test the ability of osteogenesis in vitro. The experimental outcomes indicated that both scaffolds possessed adequate pore size, porosity, and hydr...

  7. Cryopreservation of Rat Bone Marrow Derived Mesenchymal Stem Cells by Two Conventional and Open-pulled Straw Vitrification Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Bahadori

    2009-01-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs are obtained from a variety of sources, mainlythe bone marrow. These cells have a great potential for clinical research, however they cannotstay alive for long periods in culture. The aim of this study is to determine whether vitrificationcan be a useful freezing method for the storage of MSCs.Materials and Methods: Mesenchymal stem cells were isolated from rat bone marrow basedon their capacity to adhere to plastic culture surfaces. MSCs were cryopreserved using boththe vitrification method and open-pulled straw (OPS vitrification and stored in liquid nitrogenwith ethylene glycol ficoll (EFS as a cryoprotectant for two months. The morphology andviability of thawed MSCs were evaluated by trypan blue staining. Furthermore, pre and postcryopreserved MSCs were induced to osteocyte and adipocyte with corresponding osteogenicand adipogenic medium.Results: After thawing, the viability rates were 81.33% ± 6.83 for the vitrification method and80.83% ± 6.4 for OPS vitrification, while the values in the pre-vitrification control group were88.16% ± 6.3 (Mean ± SD, n = 6. Post-cryopreserved cells from both the vitrification methodand OPS vitrification also had a similar cellular morphology and colony-formation that wasindistinguishable from non-vitrified fresh MSCs. In addition, the resuscitated cells cultured ininduction medium showed osteogenesis. Mineral production and deposition was detectableby alizarine red S staining. Moreover, by applying an adipogenic differentiation condition,both pre and post cryopreserved cells differentiated into adipocyte and lipid vacuole accumulationthat was stained by oil red O.Conclusion: Vitrification is a reliable and effective method for the cryopreservation of MSCs.

  8. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  9. Preliminary Study on Biological Properties of Adult Human Bone Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    WU Tao; BAI Hai; WANG Jingchang; SHI Jingyun; WANG Cunbang; LU Jihong; OU Jianfeng; WANG Qian

    2006-01-01

    Objective: To establish a method of culture and expansion of adult human bone marrow-derived MSCs in vitro and to explore their biological properties. Methods: Mononuclear cells were obtained from 5 mL adult human bone marrow by density gradient centrifugation with Percoll solution. Adult human MSCs were cultured in Dulbecco's Modified Eagle's Medium with low glucose (LG-DMEM) containing 10% fetal calf serum at a density of 2× 105 cell/cm2. The morphocytology was observed under phase-contrast microscope. The cell growth was measured by MTT method. The flow cytometer was performed to examine the expression of cell surface molecules and cell cycle. The ultrastructure of MSCs was observed under transmission electron microscope. The immunomodulatory functions of MSCs were measured by MTT method. The effects of MSCs on the growth of K562 cells and the dynamic change of HA, Ⅳ-C, LN concentration in the culture supernatant of MSCs was also observed. Results: The MSCs harvested in this study were homogenous population and exhibited a spindle-shaped fibroblastic morphology. The cell growth curve showed that MSCs had a strong ability of proliferation. The cells were positive for CD44,while negative for hematopoietic cell surface marker such as CD3, CD4, CD7, CD13, CD14, CD15, CD19,CD22, CD33, CD34, CD45 and HLA-DR, which was closely related to graft versus host disease. Above 90% cells of MSCs were found at G0/G1 phase. The ultrastructure of MSCs indicated that there were plenty of cytoplasmic organelles. Allogeneic peripheral blood lymphocytes proliferation was suppressed by MSCs and the inhibition ratio was 60.68% (P<0.01). The suppressive effect was also existed in the culture supernatant of MSCs and the inhibition ratio was 9.00% (P<0.05). When lymphocytes were stimulated by PHA, the suppression effects of the culture supernatant were even stronger and the inhibition ratio was 20.91%(P<0.01). Compared with the cell growth curve of the K562 cells alone, the K562

  10. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    OpenAIRE

    Marcol, Wiesław; Slusarczyk, Wojciech; SIEROŃ, ALEKSANDER L.; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cor...

  11. Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission

    DEFF Research Database (Denmark)

    Nagler, Arnon; Labopin, Myriam; Shimoni, Avichai;

    2012-01-01

    Reduced-intensity conditioning (RIC)-alloSCT is increasingly used for acute myelogenous leukemia. Limited data are available for the comparison of peripheral blood stem cells with bone marrow for RIC-alloSCT. We used the European Group for Blood and Marrow Transplantation (EBMT) ALWP data to...... compare the outcome of mobilized peripheral blood stem cells (PBSC) (n = 1430) vs. bone marrow (BM) (n = 107) for acute myelogenous leukemia (AML) patients with complete remission that underwent RIC-alloSCT from compatible sibling donors. The leukemia features, the disease status, and the time from......-IV) and chronic GVHD did not differ between the groups. leukemia-free survival (LFS), relapse, and non-relapsed mortality (NRM) were 51 ± 2%, 32 ± 1%, and 17 ± 1% vs. 50 ± 6%, 38 ± 6%, and 12 ± 3% for the PBSC and BM groups, respectively. Our results indicate faster engraftment, but no difference in GVHD...

  12. Establishment of human-rhesus chimeric liver using adult bone marrow mesenchymal stem cells%应用成人骨髓间充质干细胞建立人-猴肝脏嵌合体

    Institute of Scientific and Technical Information of China (English)

    何保丽; 马丽花; 陈丽玲; 刘汝文; 杨仁华

    2013-01-01

    BACKGROUND:Human-mammal chimeric liver chimera has been a vital significance for the proliferation and differentiation of bone marrow mesenchymal stem cells. OBJECTIVE:To establish an animal model of human-rhesus chimeric liver using adult bone marrow mesenchymal stem cells. METHODS:Adult bone marrow mesenchymal stem cells were isolated, purified and cultured for the sixth generation. The number of bone marrow mesenchymal stem cells was no less than 5×108. Bone marrow mesenchymal stem cells labeled with green fluorescent protein were transplanted into the liver of the embryo rhesus with pregnancy of 10 weeks under guided by type-B ultrasound. At the 1st and 3rd months of birth, the liver tissue of the infant rhesus was taken for biopsy. After routine pathological section, histological specimens were observed under fluorescence microscope to confirm if there were adult bone marrow mesenchymal stem cells positive for green fluorescent protein and their distribution, and detected by immunohistochemical staining to identify if human albumin expressed in the liver of infant rhesus. RESULTS AND CONCLUSION:Fluorescence microscope observation indicated that at the 1st and 3rd months after birth, there were surviving bone marrow mesenchymal stem cells derived from human with green fluorescence in the liver of infant rhesus, and these cells migrated to form more concentrated distribution. The immunohistochemical results demonstrated that functional liver cells expressing human albumin were observed in the liver of infant rhesus at the 1st and 3rd months after birth, and their distribution was in accordance with bone marrow mesenchymal stem cells with green fluorescence. Human-rhesus chimeric liver can be established using adult bone marrow mesenchymal stem cells, which can generate functional liver cells in the liver of infant rhesus.%BACKGROUND:Human-mammal chimeric liver chimera has been a vital significance for the proliferation and differentiation of bone marrow

  13. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    Science.gov (United States)

    González-Fernández, Maria L; Pérez-Castrillo, Saúl; Sánchez-Lázaro, Jaime A; Prieto-Fernández, Julio G; López-González, Maria E; Lobato-Pérez, Sandra; Colaço, Bruno J; Olivera, Elías R; Villar-Suárez, Vega

    2016-07-01

    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans. PMID:27347833

  14. Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Fabian Duttenhoefer

    2015-01-01

    Full Text Available In bone tissue engineering (TE endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs are a rich source of mesenchymal stem cells (MSCs able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+ were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+ or medium containing platelet lysate (PL. MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs.

  15. Transformation of bone marrow stem-cells and radiation-induced myeloid leukemia in mice

    International Nuclear Information System (INIS)

    After a single whole-body X-irradiation of 300R to male RFM/MsNrs strain mice, the occurrence of myeloid leukemia initiated since four months and ceased at eleven months after irradiation. The cumulative incidence reached 24.5%. A time course study on the kinetics of pluripotential stem-cells (CFU-S) and granuloid committed stem-cells (CFU-C) in the marrow after 300R was also performed. The repopulation of CFU-S was accomplished within one month whereas that of CFU-C needed 210 days after irradiation. The incidence of leukemia was very rare after the complete repopulation of CFU-C. Simultaneously, collected spleen cells from the irradiated mice without overt leukemia were transplanted into 300-600R irradiated recipients of another sex. Three months thereafter, recipients were sacrificed to detect leukemic changes and the origin of leukemic cells by chromosome analysis. The results revealed that leukemic cell transformation of donor cells began 18 days after irradiation and on an average, 37.1% of the irradiated mice carried potentially leukemic cells for seven months after exposure, whereas none of the unirradiated mice carried leukemic cells at 7 months after irradiation. To investigate host factor(s) contributing to the proliferation of leukemic cells, the suppression of cellular immunity after 300R was measured by GVH mortality assay. However, the recovery of cellular immunity was observed until three months after irradiation and the role of cellular immunity to proliferation of leukemic cells after three months was negligible. (author)

  16. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    Science.gov (United States)

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  17. Our Experience in treating Ischemic Ulcer of a Lower Limb in 4 diabetic patients with Autologous Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Subrammaniyan SR

    2007-01-01

    started appearing in the areas which were previously unhealthy and ischemic. Slow granulation was found in-patient 3 and but the patient 4 died because of other factor such as renal failure, peritoneal dialysis and cardiac failure. Patients 1 and 2 had healthy granulation, uniform revascularization and after a period of 9 months, healing was completely possible. Conclusion: Stem cell therapy is definitely useful where, revascularization is not feasible at the same time, renal failure, cardiac failure, etc do present some difficulties. All the parameters need to be taken care. Growth factors or plastic surgery need not be used for stem cell therapy thus considering only the appropriate time of injections. As Autologous Bone Marrow stem cell therapy helps in neoangiogenesis and wound healing process in case of chronic ischemic wounds it can be applied in cases as reported herewith.

  18. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-an; FAN You-qi; LI Chang-ling; HE Hong; SUN Yong; LV Bin-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells.BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI)control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5× 106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplantation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and

  19. Haploidentical bone marrow and stem cell transplantation: experience with post-transplantation cyclophosphamide.

    Science.gov (United States)

    Robinson, Tara M; O'Donnell, Paul V; Fuchs, Ephraim J; Luznik, Leo

    2016-04-01

    Allogeneic blood or bone marrow transplantation (BMT) is a potentially curative therapy for high-risk hematologic malignancies not curable by standard chemotherapy, but the procedure is limited by the availability of human leukocyte antigen-matched donors for many patients, as well as toxicities including graft-versus-host disease (GVHD). Our group has developed the use of high-dose post-transplantation cyclophosphamide (PTCy) to selectively remove alloreactive T cells without compromising engraftment. This protocol has allowed for successful transplantation of human leukocyte antigen (HLA)-haploidentical (haplo) grafts, thus expanding the donor pool for the many patients who would not otherwise be a candidate for this life-saving procedure. In this review we will summarize the data that led to the development of PTCy, then focus on the outcomes of haploBMT trials with PTCy across different transplant platforms for patients with malignant hematologic diseases, and finally we will discuss emerging evidence that suggests equivalency of haploBMT with PTCy compared with more traditional transplants. PMID:27000732

  20. Effect of cotransplantation of hematopoietic stem cells and embryonic AGM stromal cells on hematopoietic reconstitution in mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Objective: To explore the effects of cotransplantation of hematopoietic stem cells and stromal cells derived from aorta-gonad-mesonephros (AGM) region on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods: The typical mice model of syngeneic BMT was established and the mice were randomly divided into 4 groups: the control group, the BMT group, the group of cotransplantation of HSC with AGM stromal cells (the cotransplantation group) and the ligustrazine group (the LT group). On days 3, 7, 10, 14, 21 and 28 after BMT, the peripheral blood cells and bone marrow mononuclear cells (BMMNC) were counted, and histology changes of bone marrow were detected. Results: The levels of peripheral WBC, RBC, platelet, and BMMNC in the contransplantation group were significantly higher than those in the single BMT group and the LT group (P<0.05). Conclusions: Cotransplantation with AGM stromal cells could significantly promote hematopoietic reconstruction in mice after BMT. (authors)

  1. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone.

    Science.gov (United States)

    Hafez, Pezhman; Jose, Shinsmon; Chowdhury, Shiplu R; Ng, Min Hwei; Ruszymah, B H I; Abdul Rahman Mohd, Ramzisham

    2016-01-01

    The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications. PMID:26289249

  2. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 105 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×105 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  3. Bone Marrow Stress Decreases Osteogenic Progenitors.

    Science.gov (United States)

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  4. The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat.

    Science.gov (United States)

    Fan, Dapeng; Liu, Shen; Jiang, Shichao; Li, Zhiwei; Mo, Xiumei; Ruan, Hongjiang; Zou, Gang-Ming; Fan, Cunyi

    2016-08-01

    Bone tissue engineering is a promising approach for bone regeneration, in which growth factors play an important role. The tyrosine phosphatase Src-homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by the PTPN11 gene, is essential for the differentiation, proliferation and metabolism of osteoblasts. However, SHP-2 has never been systematically studied for its effect in osteogenesis. We predicted that overexpression of SHP-2 could promote bone marrow-derived mesenchymal stem cell (BMSC)osteogenic differentiation and SHP-2 transduced BMSCs could enhance new bone formation, determined using the following study groups: (1) BMSCs transduced with SHP-2 and induced with osteoblast-inducing liquid (BMSCs/SHP-2/OL); (2) BMSCs transduced with SHP-2 (BMSCs/-SHP-2); (3) BMSCs induced with osteoblast-inducing liquid (BMSCs/OL) and (4) pure BMSCs. Cells were assessed for osteogenic differentiation by quantitative real-time polymerase chain reaction analysis, western blot analysis, alkaline phosphatase activity and alizarin red S staining. For in vivo assessment, cells were combined with beta-tricalcium phosphate scaffolds and transplanted into rat calvarial defects for 8 weeks. Following euthanasia, skull samples were explanted for osteogenic evaluation, including micro-computed tomography measurement, histology and immunohistochemistry staining. SHP-2 and upregulation of its gene promoted BMSC osteogenic differentiation and therefore represents a potential new therapeutic approach to bone repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1871-1881, 2016. PMID:26999642

  5. Cardiomyocyte-like differentiation of human bone marrow mesenchymal stem cells after exposure to 5-azacytidine in vitro

    Institute of Scientific and Technical Information of China (English)

    Feng CAO; Lili NIU; Ling MENG; Lianxu ZHAO; Dongmei Wang; Ming ZHENG; Cixian BAI; Guoliang JIA; Xuetao PEI

    2004-01-01

    Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. )

  6. Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes.

    Science.gov (United States)

    Wu, Guang-Wen; Liu, Xian-Xiang; Wu, Ming-Xia; Zhao, Jin-Yan; Chen, Wen-Lie; Lin, Ru-Hui; Lin, Jiu-Mao

    2009-04-01

    Low power millimeter wave irradiation is widely used in clinical medicine. We describe the effects of this treatment on cultured mesenchymal stem cells (MSCs) and attempted to identify the underlying mechanism. Cells cultured using the whole marrow attachment culture method proliferated dispersedly or in clones. Flow cytometric analyses showed that the MSCs were CD90 positive, but negative for CD45. The negative control group (A) did not express detectable levels of Cbfa1 or Sox9 mRNA at any time point, while cells in the millimeter wave-induced groups (B and C) increasingly expressed both genes after the fourth day post-induction. Statistical analysis showed that starting on the fourth day post-induction, there were very significant differences in the expression of Cbfa1 and Sox9 mRNA between groups A and B as well as A and C at any given time point, between treated groups B and C after identical periods of induction, and within each treated group at different induction times. Transition electron microscopy analysis showed that the rough endoplasmic reticulum of cells in the induced groups was richer and more developed than in cells of the negative control group, and that the shape of cells shifted from long-spindle to near ellipse. Toluidine blue staining revealed heterochromia in the cytoplasm and extracellular matrix of cells in the induced groups, whereas no obvious heterochromia was observed in negative control cells. Induced cells also exhibited positive immunohistochemical staining of collagen II, in contrast to the negative controls. These results show that millimeter wave treatment successfully induced MSCs to differentiate as chondrocytes and the extent of differentiation increased with treatment duration. Our findings suggest that millimeter wave irradiation can be employed as a novel non-drug inducing method for the differentiation of MSCs into chondrocytes. PMID:19288021

  7. Role of Bone Marrow-Derived Stem Cells in Polyps Development in Mice with ApcMin/+ Mutation

    Directory of Open Access Journals (Sweden)

    Michele Barone

    2015-01-01

    Full Text Available We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp could modify the differentiation program of bone marrow-derived stem cells (BMSCs, involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female ApcMin/+ mice were transplanted with bone marrow (BM cells obtained from either male age-matched ApcMin/+ (Apc-Tx-Apc or wild type (WT (WT-Tx-Apc mice. At 4 and 7 weeks after transplantation, BM-derived colonocytes were recognized by colocalization of Y-chromosome and Cdx2 protein (specific colonocyte marker. Polyp number, volume, and grade of dysplasia were not influenced by irradiation/transplantation procedures since they were similar in both untreated female ApcMin/+ and Apc-Tx-Apc mice. At 4 and 7 weeks after transplantation, a progressive significant reduction of polyp number and volume was observed in WT-Tx-Apc mice. Moreover, the number of WT-Tx-Apc mice with a high-grade dysplastic polyps significantly decreased as compared to Apc-Tx-Apc mice. Finally, at 4 and 7 weeks after transplantation, WT-Tx-Apc mice showed a progressive significant increase of Y+/Cdx2+ cells in “normal” mucosa, whereas, in the adenomatous tissue, Y+/Cdx2+ cells remained substantially unvaried. Our findings demonstrate that WT BMSCs do not participate in polyp development but rather inhibit their growth. The substitution of genotypically altered colonocytes with Y+/Cdx2+ cells probably contributes to this process.

  8. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  9. In vitro and in vivo MR imaging of SHU 555A-labelled swine bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Objective: To detect the feasibility of magnetically labeled swine bone marrow mesenchymal stem cells (MSCs) with SHU 555A combined with poly-L-arginine (PLL), under MR imaging in vitro and in vivo. Methods: Swine mesenchymal stem cells were isolated and culture-expanded 3 passages in vitro, then magnetically labeled by incubation with SHU 555A (25 μg Fe/ml, Resovist, Schering)for 24 hours with 750 ng/mL poly-L-lysine (PLL; average MW275 kDa) added 1 hour before incubation. Cellular iron incorporation and detention at 0 d, 4 d, 8 d, 12 d, 16 d, 20 d after labeling was qualitatively assessed using Prussian blue and quantified at atomic absorption spectrometry. Cell viability was assessed by trypan-blue exclusion test. Cell suspensions underwent MR imaging with T1-and T2-weighted spin-echo and fast field-echo sequences on a clinical 1.5 T MR system. At last, 1 x 106 SHU 555A labeled and unlabeled MSCs were transextracardially implanted into the infracted and normal myocardium approximately 2 week following the ligation of left anterior descending coronary artery in 1 swine respectively, and finally performed 1.5-T MRI within 1 week after infarction. Results: (1) Intracytoplasmic particles stained with Prussian blue stain were detected for all cells with mean cellular iron content of (13.13±2.30) pg per cell. With division of stem cells, the stained particles decreased gradually with iron content (0.68±0.20) pg per cell.at 16 days after labeling, approximately to the prelabeled baseline values. (0.21±0.06) pg per cell (P>0.05). The viability of the labeled cells at various time points were not significantly different with that of nonlabeled cells (P>0.05). (2) MR images showed signal intensity changed most obviouly in T2*WI in vitro. The percentage change of signal intensity increased with increasing cell numbers, and decreased with the time. As few as 5 x 104 - 1 x l05 cells could be detected by using this approach. (3)Two injected sites containing MR-MSCs were

  10. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  11. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RTPCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  12. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock

    Directory of Open Access Journals (Sweden)

    Gauthaman eKalamegam

    2016-05-01

    Full Text Available Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs from osteoarthritis (OA patients, and evaluated the effect of arthroscopic heat on cell viability in suspension and pellet cultures.Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 x 106 cells cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20 or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20 or 30 min for 72 h decreased cell proliferation in cell suspensions (63.27% at 30 min and increased cell proliferation in cell pellets (62.86% at 10 min and 68.57% at 20 min. hBMMSCs exposed to 37C, 45C and 55C for 120 seconds demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage

  13. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Zoleikha Golipoor

    2016-02-01

    Full Text Available Objective: Bone marrow (BM is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB in response to tissue injury. In this study we have attempted to investigate the ability of these cells to migrate toward an injured spinal cord after transplantation through the tail vein in a rat model. Materials and Methods: In this experimental study, VSELs were isolated from total BM cells using a fluorescent activated cell sorting (FACS system and sca1 and stage specific embryonic antigen (SSEA-1 antibodies. After isolation, VSELs were cultured for 7 days on C2C12 as the feeder layer. Then, VSELs were labeled with 1,1´-dioctadecyl-3,3,3´,3´- tetramethylindocarbocyanine perchlorate (DiI and transplanted into the rat spinal cord injury (SCI model via the tail vein. Finally, we sought to determine the presence of VSELs in the lesion site. Results: We isolated a high number of VSELs from the BM. After cultivation, the VSELs colonies were positive for SSEA-1, Oct4 and Sca1. At one month after transplantation, real-time polymerase chain reaction analysis confirmed a significantly increased expression level of Oct4 and SSEA-1 positive cells at the injury site. Conclusion: VSELs have the capability to migrate and localize in an injured spinal cord after transplantation.

  14. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    Science.gov (United States)

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. PMID:26038125

  15. Investigation of Telomerase/Telomeres system in Bone Marrow Mesenchymal Stem Cells derived from IPF and RA-UIP

    Directory of Open Access Journals (Sweden)

    Antoniou Katerina M

    2012-07-01

    Full Text Available Abstract Objective Idiopathic Pulmonary Fibrosis and Rheumatoid Arthritis associated usual interstitial pneumonia seem to have the same poor outcome as there is not an effective treatment. The aim of the study is to explore the reparative ability of bone marrow mesenchymal stem cells by evaluating the system telomerase/telomeres and propose a novel therapeutic approach. Methods BM-MSCs were studied in 6 IPF patients, 7 patients with RA-UIP and 6 healthy controls. We evaluated the telomere length as well as the mRNA expression of both components of telomerase (human telomerase reverse transcriptase, h-TERT and RNA template complementary to the telomeric loss DNA, h-TERC. Results We found that BM-MSCs from IPF, RA-UIP cases do not present smaller telomere length than the controls (p = 0.170. There was no significant difference regarding the expression of both h-TERT and h-TERC genes between patients and healthy controls (p = 0.107 and p = 0.634 respectively. Conclusions We demonstrated same telomere length and telomerase expression in BM-MSCs of both IPF and RA-UIP which could explain similarities in pathogenesis and prognosis. Maintenance of telomere length in these cells could have future implication in cell replacement treatment with stem cells of these devastating lung disorders.

  16. Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang

    Science.gov (United States)

    Zhou, Hong-Sheng; Carter, Bing Z.; Andreeff, Michael

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of circulating immature blasts that exhibit uncontrolled growth, lack the ability to undergo normal differentiation, and have decreased sensitivity to apoptosis. Accumulating evidence shows the bone marrow (BM) niche is critical to the maintenance and retention of hematopoietic stem cells (HSC), including leukemia stem cells (LSC), and an increasing number of studies have demonstrated that crosstalk between LSC and the stromal cells associated with this niche greatly influences leukemia initiation, progression, and response to therapy. Undeniably, stromal cells in the BM niche provide a sanctuary in which LSC can acquire a drug-resistant phenotype and thereby evade chemotherapy-induced death. Yin and Yang, the ancient Chinese philosophical concept, vividly portrays the intricate and dynamic interactions between LSC and the BM niche. In fact, LSC-induced microenvironmental reprogramming contributes significantly to leukemogenesis. Thus, identifying the critical signaling pathways involved in these interactions will contribute to target optimization and combinatorial drug treatment strategies to overcome acquired drug resistance and prevent relapse following therapy. In this review, we describe some of the critical signaling pathways mediating BM niche-LSC interaction, including SDF1/CXCL12, Wnt/β-catenin, VCAM/VLA-4/NF-κB, CD44, and hypoxia as a newly-recognized physical determinant of resistance, and outline therapeutic strategies for overcoming these resistance factors.

  17. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging

    Science.gov (United States)

    Cao, Juan; Hou, Shike; Ding, Hui; Liu, Ziquan; Song, Meijuan; Qin, Xiaojing; Wang, Xue; Yu, Mengyang; Sun, Zhiguang; Liu, Jinyang; Sun, Shuli; Xiao, Peixin

    2016-01-01

    Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs.

  18. Motivations, experiences, and perspectives of bone marrow and peripheral blood stem cell donors: thematic synthesis of qualitative studies.

    Science.gov (United States)

    Garcia, Maria C; Chapman, Jeremy R; Shaw, Peter J; Gottlieb, David J; Ralph, Angelique; Craig, Jonathan C; Tong, Allison

    2013-07-01

    Hematopoietic stem cell (HSC) transplantation using bone marrow and peripheral blood stem cells is a lifesaving treatment for patients with leukemia or other blood disorders. However, donors face the risk of physical and psychosocial complications. We aimed to synthesize qualitative studies on the experiences and perspectives of HSC donors. We searched MEDLINE, Embase, PsycINFO, CINAHL, Google Scholar, and reference lists of relevant articles to November 13, 2012. Thematic synthesis was used to analyze the findings. Thirty studies involving 1552 donors were included. The decision to donate included themes of saving life, family loyalty, building a positive identity, religious conviction, fear of invasive procedures, and social pressure and obligation. Five themes about the donation experience were identified: mental preparedness (pervasive pain, intense disappointment over recipient death, exceeding expectations, and valuing positive recipient gains), burden of responsibility (striving to be a quality donor, unresolved guilt, and exacerbated grief), feeling neglected (medical dismissiveness and family inattention), strengthened relationships (stronger family ties, establishing blood bonds), and personal sense of achievement (satisfaction and pride, personal development, hero status, and social recognition). Although HSC donation was appreciated as an opportunity to save life, some donors felt anxious and unduly compelled to donate. HSC donors became emotionally invested and felt responsible for their recipient's outcomes and were profoundly grieved and disappointed if the transplantation was unsuccessful. To maximize donor satisfaction and mitigate the psychosocial risks for HSC donors, strategies to address the emotional challenges of anxiety, sense of coercion, guilt, and grief in donors are warranted. PMID:23603456

  19. Micro-/Nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage

    Science.gov (United States)

    Huang, Yan; Zhou, Gang; Zheng, Lisha; Liu, Haifeng; Niu, Xufeng; Fan, Yubo

    2012-03-01

    Regenerative medicine consisting of cells and materials provides a new way for the repair and regeneration of tissues and organs. Nano-biomaterials are highlighted due to their advantageous features compared with conventional micro-materials. The aim of this study is to investigate the effects of micro-/nano- sized hydroxyapatite (μ/n-HA) on the osteogenic differentiation of rat bone marrow derived mesenchymal stem cells (rBMSCs). μ/n-HA were prepared by a microwave synthesizer and precipitation method, respectively. Different sizes of μ/n-HA were characterized by IR, XRD, SEM, TEM and co-cultured with rBMSCs. It was shown that rBMSCs expressed higher levels of osteoblast-related markers by n-HA than μ-HA stimulation. The size of HA is an important factor for affecting the osteogenic differentiation of rBMSCs. This provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated cells.

  20. Comparisons of Differentiation Potential in Human Mesenchymal Stem Cells from Wharton’s Jelly, Bone Marrow, and Pancreatic Tissues

    Directory of Open Access Journals (Sweden)

    Shih-Yi Kao

    2015-01-01

    Full Text Available Background. Type 1 diabetes mellitus results from autoimmune destruction of β-cells. Insulin-producing cells (IPCs differentiated from mesenchymal stem cells (MSCs in human tissues decrease blood glucose levels and improve survival in diabetic rats. We compared the differential ability and the curative effect of IPCs from three types of human tissue to determine the ideal source of cell therapy for diabetes. Methods. We induced MSCs from Wharton’s jelly (WJ, bone marrow (BM, and surgically resected pancreatic tissue to differentiate into IPCs. The in vitro differential function of these IPCs was compared by insulin-to-DNA ratios and C-peptide levels after glucose challenge. In vivo curative effects of IPCs transplanted into diabetic rats were monitored by weekly blood glucose measurement. Results. WJ-MSCs showed better proliferation and differentiation potential than pancreatic MSCs and BM-MSCs. In vivo, WJ-IPCs significantly reduced blood glucose levels at first week after transplantation and maintained significant decrease till week 8. BM-IPCs reduced blood glucose levels at first week but gradually increased since week 3. In resected pancreas-IPCs group, blood glucose levels were significantly reduced till two weeks after transplantation and gradually increased since week 4. Conclusion. WJ-MSCs are the most promising stem cell source for β-cell regeneration in diabetes treatment.

  1. Freeze-Dried Rat Bone Marrow Mesenchymal Stem Cell Paracrine Factors: A Simplified Novel Material for Skin Wound Therapy

    Science.gov (United States)

    Peng, Yan; Xuan, Min; Zou, Jiping; Liu, Hongwei; Zhuo, Ziyuan; Wan, Yu

    2015-01-01

    The mesenchymal stem cell (MSC) supernatant is well known as a rich source of autologous cytokines and universally used for tissue regeneration in current clinical medicine. However, the limitation of conditioned medium used in open-wound repair compels the need to find a more sophisticated way to take advantage of the trophic factors of MSCs. We have now fabricated a three-dimensional membrane from freeze-dried bone marrow mesenchymal stem cells-conditioned medium (FBMSC-CM) using a simple freeze-dried protocol. Scanning electron microscopy images showed the microstructure of the FBMSC-CM membrane (FBMSC-CMM) resembling a mesh containing growth factors. ELISA was used to test the paracrine factors retained in the FBMSC-CMM, and the results indicated that FBMSC-CMM withheld over 80% of the paracrine factors. Live/dead assays were adopted to test the toxicity of the FBMSC-CMM on cultured rat dermal fibroblasts, and the results confirmed its biological safety with low toxicity. Moreover, the FBMSC-CMM could significantly accelerate wound healing and enhance the neovascularization as well as epithelialization through strengthening the trophic factors in the wound bed as determined by immunohistochemical staining. Thus, the ability to maintain paracrine factors and enhance the effectiveness of these growth factors in the wound as well as the simple procedure and economical materials required for production qualifies the FBMSC-CMM to be a candidate biomaterial for open-wound regeneration. PMID:25343727

  2. Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration

    Science.gov (United States)

    An, Yulin; wei, Wei; Jing, Huan; Ming, Leiguo; Liu, Shiyu; Jin, Yan

    2015-01-01

    Cutaneous wounds are among the most common soft tissue injuries. Wounds involving dermis suffer more from outside influence and higher risk of chronic inflammation. Therefore the appearance and function restoration has become an imperative in tissue engineering research. In this study, cell-aggregates constructed with green fluorescent protein-expressing (GFP+) rat bone marrow mesenchymal stem cells (BMMSCs) were applied to rat acute full-layer cutaneous wound model to confirm its pro-regeneration ability and compare its regenerative efficacy with the currently thriving subcutaneous and intravenous stem cell administration strategy, with a view to sensing the advantages, disadvantages and the mechanism behind. According to results, cell-aggregates cultured in vitro enjoyed higher expression of several pro-healing genes than adherent cultured cells. Animal experiments showed better vascularization along with more regular dermal collagen deposition for cell-aggregate transplanted models. Immunofluorescence staining on inflammatory cells indicated a shorter inflammatory phase for cell-aggregate group, which was backed up by further RT-PCR. The in situ immunofluorescence staining manifested a higher GFP+-cell engraftment for cell-aggregate transplanted models versus cell administered ones. Thus it is safe to say the BMMSCs aggregate could bring superior cutaneous regeneration for full layer cutaneous wound to BMMSCs administration, both intravenous and subcutaneous. PMID:26594024

  3. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging.

    Science.gov (United States)

    Cao, Juan; Hou, Shike; Ding, Hui; Liu, Ziquan; Song, Meijuan; Qin, Xiaojing; Wang, Xue; Yu, Mengyang; Sun, Zhiguang; Liu, Jinyang; Sun, Shuli; Xiao, Peixin; Lv, Qi; Fan, Haojun

    2016-01-01

    Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs. PMID:27610137

  4. Role of Magnesium Transporter Subtype 1 (MagT1) in the Osteogenic Differentiation of Rat Bone Marrow Stem Cells.

    Science.gov (United States)

    Zheng, Jianmao; Mao, Xueli; Ling, Junqi; Chen, Chanchan; Zhang, Wen

    2016-05-01

    In the present study, we investigated the role of magnesium transporter subtype 1 (MagT1), a selective Mg transporter protein, in the osteogenic differentiation of rat bone marrow stem cells (rBMSCs). Osteogenic differentiation was monitored by the expressions of alkaline phosphatase (ALP), osteocalcin (OCN), collagen-1 (COL-1) and runt-related transcription factor 2 (RUNX2), and extracellular matrix mineralization of rBMSCs. The expression of MagT1 increased with osteogenic differentiation of rBMSCs, suggesting the importance of intracellular Mg homeostasis to cell differentiation. Alteration of intracellular Mg homeostasis by culture condition with low extracellular Mg significantly reduced the osteogenic differentiation markers ALP, OCN, COL-1, and RUNX2 gene expressions. MagT1 knockdown during the differentiation period also reduced osteogenic differentiation and the extent of matrix mineralization of rBMSCs. In conclusion, our results indicate that Mg and MagT1 play an important role in osteogenic differentiation of rBMSCs and may be involved in the bone regeneration. PMID:26358767

  5. The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesenchymal stem cells (MSCs) of nonembryortic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem ceils, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide historic H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways,cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.

  6. Stem Cell Transplant (Peripheral Blood, Bone Marrow, and Cord Blood Transplants)

    Science.gov (United States)

    ... are studied in cloning and other types of research. These stem cells are blood-forming stem cells. Stem cells mostly ... Preventing and managing GVHD are major priorities for research. Chronic ... 90 to 600 days after the stem cell transplant. A rash on the palms of the ...

  7. Upregulation of Renin-Angiotensin System in Bone Marrow Mesenchymal Stem Cells Under Hypoxia Conditions

    Institute of Scientific and Technical Information of China (English)

    XIAO Rong-rong; GAO Jing-hong; LI Qing-ping

    2014-01-01

    Objective:To investigate the expressions of AT1-R, AT2-R and angiotensin converting enzyme (ACE) in mesenchymal stem cells (MSCs) under hypoxia and serum deprivation condition. Methods:Bone MSCs were isolated, cultured and identiifed by anti-CD29 and anti-CD11b/c with flow cytometry. The ischemic injury model was established by exposing MSCs to hypoxia and serum deprivation (Hypoxia/SD). Cell viability and apoptotic rate were detected by trypan blue staining, CCK8 assays and Annexin V-FITC staining. The mRNA expressions of AT1-R, AT2-R and ACE were determined by Reverse Transcription-PCR and Real-time Quantitative PCR, The expression of AT1-R, AT2-R and ACE protein were measured by Western-blot. Results:MSCs expressed CD29, but not the CD11b/c. The purity of MSCs employed was up to 97%. The results of trypan blue staining along with CCK8 and Annexin V-FITC staining proved that the injury model induced by Hypoxia/SD was successfully established. MSCs under hypoxia and serum deprivation for 24 h induced a rapid increase in mRNA expression of AT1-R, AT2-R and ACE as well as their protein expressions. Conclusion:The local RAS in MSCs is activated by Hypoxia/SD stimulation and the mRNA and protein expressions of AT1-R, AT2-R and ACE are up-regulated.

  8. Mitogen activated protein kinase signaling pathways participate in the active principle region of Buyang Huanwu decoction-induced differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Jian Liang; Xin Deng; Xiaofeng Chen; Fasheng Wu; Xiaofang Zhao; Yuan Luo; Lei Fu; Zuling Jiang

    2012-01-01

    Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively. mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.

  9. Biochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with p-Nonylphenol

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Abnosi

    2015-04-01

    Full Text Available Objective(s:In previous investigations, we have shown para-nonylphenol (p-NP caused significant reduction of proliferation and differentiation of rat bone marrow mesenchymal stem cells (MSCs in vitro. In this study, we first treat the rats with p-NP, then carried out the biochemical and morphological studies on MSCs. Materials and Methods: Proliferation property of cells was evaluated with the help of MTT assay, trypan blue, population doubling number, and colony forming assay. Differentiation property was evaluated with quantitative alizarin red assay, measurement of alkaline phosphatase (ALP activity as well as intracellular calcium content. In addition; morphological study, TUNEL test, activated caspase assay, and comet assay were performed to evaluate the mechanism of the cell death. Results: The results showed significant reduction in the colony-forming-ability and population-doubling-number of extracted cells when compared to control ones. In addition, it was revealed that the p-NP treatment of rats caused significant reduction in nuclear diameter, cytoplasm shrinkage, and induction of caspase-dependent-apoptosis. Also there was significant reduction in ALP activity, intracellular calcium content, and intracellular matrix following osteogenic differentiation. Conclusion: As MSCs are the cellular back up for bone remodeling and repair, we suggest more investigations to be conducted regarding the correlation between the increasing number of patients suffering from osteoporosis and p-NP toxicity. Also, we strongly recommend WHO and local health organization to prevent industries of using p-NP in formulation of industrial products which may cause changes in proliferation and differentiation properties of stem cells.

  10. Estrogen preserves Fas ligand levels by inhibiting microRNA-181a in bone marrow-derived mesenchymal stem cells to maintain bone remodeling balance.

    Science.gov (United States)

    Shao, Bingyi; Liao, Li; Yu, Yang; Shuai, Yi; Su, Xiaoxia; Jing, Huan; Yang, Deqin; Jin, Yan

    2015-09-01

    Estrogen protects bone loss by promoting Fas ligand (FasL) transcription in osteoclasts and osteoblasts to induce apoptosis of osteoclasts. Bone marrow-derived mesenchymal stem cells (BMMSCs) express FasL protein, which is necessary for BMMSCs to induce T-cell apoptosis in cell therapy. However, the physiologic function of FasL in BMMSCs is unknown. In this study, using an in vitro coculture system and an in vivo BMMSC transplantation assay, we found that BMMSCs potently induced apoptosis of osteoclasts through the FasL/Fas pathway. Estrogen was necessary for this process as a promoter of FasL protein accumulation in BMMSCs. Furthermore, estrogen elevated FasL protein accumulation, not by increasing FasL gene transcription, but through microRNA-mediated posttranscriptional regulation. In brief, estrogen down-regulated expression of miR-181a, a negative modulator of FasL targeting the 3'-UTR of FasL mRNA. Estrogen deficiency resulted in excessive miR-181a, which decreased FasL protein levels to suppress BMMSC-induced osteoclast apoptosis. Furthermore, knockdown of miR-181a recovered the BMMSC defect to induce osteoclast apoptosis during estrogen deficiency. Taken together, our results showed that estrogen preserves FasL protein accumulation by inhibiting miR-181a expression in BMMSCs to maintain bone remodeling balance, suggesting a novel mechanism by which estrogen preserves bone mass. PMID:26062603

  11. Bone marrow stromal cell: mediated neuroprotection for spinal cord repair

    OpenAIRE

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic factors, enabling neuroprotection/tissue sparing in a rat model of spinal cord injury. In this model system, bone marrow stromal cell-mediated tissue sparing leads to motor and sensory function impr...

  12. Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    L.M.G. De Kroon (Laurie M.G.); R. Narcisi (Roberto); E.N. Blaney Davidson (Esmeralda); M.A. Cleary (Mairéad); H.M. van Beuningen (Henk); W.J.L.M. Koevoet (Wendy J.L.M.); G.J.V.M. van Osch (Gerjo); P.M. van der Kraan (Peter)

    2015-01-01

    textabstractIntroduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta; (TGFbeta;) is crucial for inducing chondrogenic differentiation of BMSCs

  13. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFbeta-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    NARCIS (Netherlands)

    Kroon, L.M.G. de; Narcisi, R.; Davidson, E.N.; Cleary, M.A.; Beuningen, H.M. van; Koevoet, W.J.; Osch, G.J. van; Kraan, P.M. van der

    2015-01-01

    INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta (TGFbeta) is crucial for inducing chondrogenic differentiation of BMSCs and is known

  14. Peripheral blood stem cell graft compared to bone marrow after reduced intensity conditioning regimens for acute leukemia: a report from the ALWP of the EBMT

    Science.gov (United States)

    Savani, Bipin N.; Labopin, Myriam; Blaise, Didier; Niederwieser, Dietger; Ciceri, Fabio; Ganser, Arnold; Arnold, Renate; Afanasyev, Boris; Vigouroux, Stephane; Milpied, Noel; Hallek, Michael; Cornelissen, Jan J.; Schwerdtfeger, Rainer; Polge, Emmanuelle; Baron, Frédéric; Esteve, Jordi; Gorin, Norbert C.; Schmid, Christoph; Giebel, Sebastian; Mohty, Mohamad; Nagler, Arnon

    2016-01-01

    Increasing numbers of patients are receiving reduced intensity conditioning regimen allogeneic hematopoietic stem cell transplantation. We hypothesized that the use of bone marrow graft might decrease the risk of graft-versus-host disease compared to peripheral blood after reduced intensity conditioning regimens without compromising graft-versus-leukemia effects. Patients who underwent reduced intensity conditioning regimen allogeneic hematopoietic stem cell transplantation from 2000 to 2012 for acute leukemia, and who were reported to the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation were included in the study. Eight hundred and thirty-seven patients receiving bone marrow grafts were compared with 9011 peripheral blood transplant recipients after reduced intensity conditioning regimen. Median follow up of surviving patients was 27 months. Cumulative incidence of engraftment (neutrophil ≥0.5×109/L at day 60) was lower in bone marrow recipients: 88% versus 95% (P<0.0001). Grade II to IV acute graft-versus-host disease was lower in bone marrow recipients: 19% versus 24% for peripheral blood (P=0.005). In multivariate analysis, after adjusting for differences between both groups, overall survival [Hazard Ratio (HR) 0.90; P=0.05] and leukemia-free survival (HR 0.88; P=0.01) were higher in patients transplanted with peripheral blood compared to bone marrow grafts. Furthermore, peripheral blood graft was also associated with decreased risk of relapse (HR 0.78; P=0.0001). There was no significant difference in non-relapse mortality between recipients of bone marrow and peripheral blood grafts, and chronic graft-versus-host disease was significantly higher after peripheral blood grafts (HR 1.38; P<0.0001). Despite the limitation of a retrospective registry-based study, we found that peripheral blood grafts after reduced intensity conditioning regimens had better overall and leukemia-free survival than bone marrow grafts. However

  15. Bone marrow stem cells assuage radiation-induced damage in a murine model of distraction osteogenesis: A histomorphometric evaluation.

    Science.gov (United States)

    Zheutlin, Alexander R; Deshpande, Sagar S; Nelson, Noah S; Kang, Stephen Y; Gallagher, Kathleen K; Polyatskaya, Yekaterina; Rodriguez, Jose J; Donneys, Alexis; Ranganathan, Kavitha; Buchman, Steven R

    2016-05-01

    The purpose of this study is to determine if intraoperatively placed bone marrow stem cells (BMSCs) will permit successful osteocyte and mature bone regeneration in an isogenic murine model of distraction osteogenesis (DO) following radiation therapy (XRT). Lewis rats were split into three groups, DO only (Control), XRT followed by DO (xDO) and XRT followed by DO with intraoperatively placed BMSCs (xDO-BMSC). Coronal sections from the distraction site were obtained, stained and analyzed via statistical analysis with analysis of variance (ANOVA) and subsequent Tukey or Games-Howell post-hoc tests. Comparison of the xDO-BMSC and xDO groups demonstrated significantly improved osteocyte count (87.15 ± 10.19 vs. 67.88 ± 15.38, P = 0.00), and empty lacunae number (2.18 ± 0.79 vs 12.34 ± 6.61, P = 0.00). Quantitative analysis revealed a significant decrease in immature osteoid volume relative to total volume (P = 0.00) and improved the ratio of mature woven bone to immature osteoid (P = 0.02) in the xDO-BMSC compared with the xDO group. No significant differences were found between the Control and xDO-BMSC groups. In an isogenic murine model of DO, BMSC therapy assuaged XRT-induced cellular depletion, resulting in a significant improvement in histological and histomorphometric outcomes. PMID:27059203

  16. Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells in irradiated bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Effects of cell concentrations on the survival and repopulation of haemopoietic stem cells after irradiation were studied in the long-term culture of mouse bone marrow cells in vitro. No difference was observed in the survival of the stem cells among cultures in which 0 - 107 cells were re-inoculated on the adherent cell colonies in the culture flask. Stem cells showed a significant proliferation within 1 week and the number of the stem cells exceeded the control in 3 weeks after irradiation in the cultures with less than 106 re-inoculated cells per flask. In contrast, there was a considerable delay in the onset of stem cell proliferation after irradiation in the culture with 107 cells per flask. Based on these results, a possibility that a stimulator of stem cell proliferation, released from irradiated stromal cells, is cancelled by an inhibitory factor produced by irradiated or unirradiated haemopoietic cells is postulated. (author)

  17. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    Directory of Open Access Journals (Sweden)

    Khayat Andre

    2011-01-01

    Full Text Available Abstract We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.

  18. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    Energy Technology Data Exchange (ETDEWEB)

    Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Rekstyte, Sima; Danilevicius, Paulius [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Pontikoglou, Charalampos; Papadaki, Helen [Hematology Laboratory, School of Medicine, University of Crete (Greece); Farsari, Maria [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece); Vamvakaki, Maria [Department of Materials Science and Technology, University of Crete (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH) (Greece)

    2015-03-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  19. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    International Nuclear Information System (INIS)

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  20. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.

    Science.gov (United States)

    Zahr, Abdallah Abou; Salama, Mohamed E; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-06-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  1. A Meta-Analysis of the Motion Function through the Therapy of Spinal Cord Injury with Intravenous Transplantation of Bone Marrow Mesenchymal Stem Cells in Rats

    OpenAIRE

    Duo Zhang; Xijing He

    2014-01-01

    Background To compare the efficacy of the therapy of spinal cord injury with intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) by Meta-analysis. Methods Studies of the BBB scores after intravenous transplantation of BMSCs were searched out from Pubmed, SCI, Cochrane Library, Chinese journal full-text database, China Biology Medicinedisc and Wanfang data-base and analyzed by Review Manager 5.2.5. Results Nine randomized controlled animal trials were selected with 235 ra...

  2. Conditioned Medium from Bone marrow-derived Mesenchymal Stem Cells improves recovery after Spinal Cord Injury in rats: an original strategy to avoid cell transplantation.

    OpenAIRE

    Dorothée Cantinieaux; Renaud Quertainmont; Silvia Blacher; Loïc Rossi; Thomas Wanet; Agnès Noël; Gary Brook; Jean Schoenen; Rachelle Franzen

    2013-01-01

    Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been ...

  3. MLL-rearranged acute lymphoblastic leukaemia stem cell interactions with bone marrow stroma promote survival and therapeutic resistance that can be overcome with CXCR4 antagonism

    OpenAIRE

    Sison, Edward Allan R; Rau, Rachel E.; McIntyre, Emily; LI Li; Small, Donald; Brown, Patrick

    2013-01-01

    Infants with MLL-rearranged (MLL-R) acute lymphoblastic leukaemia (ALL) have a dismal prognosis. While most patients achieve remission, approximately half of patients recur with a short latency to relapse. This suggests that chemotherapy-resistant leukaemia stem cells (LSCs) survive and can recapitulate the leukaemia. We hypothesized that interactions between LSCs and the bone marrow microenvironment mediate survival and chemotherapy resistance in MLL-R ALL. Using primary samples of infant ML...

  4. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Byron Deorosan; Nauman, Eric A.

    2011-01-01

    Mesenchymal stem cells (MSCs) have become a critical addition to all facets of tissue engineering. While most in vitro research has focused on their behavior in two-dimensional culture, relatively little is known about the cells' behavior in three-dimensional culture, especially with regard to their metabolic state. To evaluate MSC metabolism during twodimensional culture, murine bone marrow-derived MSCs were cultured for one week using twelve different medium compositions, varying in both gl...

  5. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    Directory of Open Access Journals (Sweden)

    Morteza Abouzaripour

    2016-02-01

    Full Text Available Objective: Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone marrow have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1 positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods: This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS followed by characterization with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR, immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results: The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4 detected by immunocytochemistry and C-X-C chemokine receptor type 4 (CXCR4 and stem cell antigen-1 (SCA-1 detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors, Ngn3 (endocrine progenitor marker, Insulin1 and Insulin2 (pancreaticβ-cell markers. Additionally, our results demonstrate expression of PDX1 and GLUT2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion: Our study clearly demonstrates the potential of SSEA-1

  6. Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton’s jelly of umbilical cord on PBMCs

    OpenAIRE

    Ayatollahi, Maryam; Talaei-khozani, Tahereh; Razmkhah, Mahboobeh

    2016-01-01

    Objective(s): Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton’s jelly (WJ) of human umbilical cord. The current study has compared immunomodulatory properties of human BM, AT, and WJ-MSCs. Materials and Methods: Three different types of hum...

  7. Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs

    OpenAIRE

    Maryam Ayatollahi; Tahereh Talaei-Khozani; Mahboobeh Razmkhah

    2016-01-01

    Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immunomodulatory properties of human BM, AT, and WJ-MSCs. Materials and Methods: Three different types o...

  8. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia

    OpenAIRE

    Gupta, Pawan K; Chullikana, Anoop; Parakh, Rajiv; Desai, Sanjay; Das, Anjan; Gottipamula, Sanjay; Krishnamurthy, Sagar; Anthony, Naveen; Pherwani, Arun; Majumdar, Anish S

    2013-01-01

    Background Peripheral vascular disease of the lower extremities comprises a clinical spectrum that extends from no symptoms to presentation with critical limb ischemia (CLI). Bone marrow derived Mesenchymal Stem Cells (BM- MSCs) may ameliorate the consequences of CLI due to their combinatorial potential for inducing angiogenesis and immunomodulatory environment in situ. The primary objective was to determine the safety of BM- MSCs in patients with CLI. Methods Prospective, double blind random...

  9. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes

    OpenAIRE

    Masako Nakano; Kanna Nagaishi; Naoto Konari; Yuki Saito; Takako Chikenji; Yuka Mizue; Mineko Fujimiya

    2016-01-01

    The incidence of dementia is higher in diabetic patients, but no effective treatment has been developed. This study showed that rat bone marrow mesenchymal stem cells (BM-MSCs) can improve the cognitive impairments of STZ-diabetic mice by repairing damaged neurons and astrocytes. The Morris water maze test demonstrated that cognitive impairments induced by diabetes were significantly improved by intravenous injection of BM-MSCs. In the CA1 region of the hippocampus, degeneration of neurons an...

  10. Implication of Ia-positive bone marrow interstitial stem cells in the induction of unresponsiveness to canine renal allografts

    International Nuclear Information System (INIS)

    The removal from stored autologous host bone marrow of a monocytoid cell population by exposure to methylprednisolone is associated with successful introduction of unresponsiveness to renal allografts in irradiated recipients reconstituted with such treated marrow. The eliminated cells are a prominent component of the canine long bone marrow interstitium and share a number of important properties with dendritic cells (DC), including size and shape; poor or nonadherence to plastic or glass surfaces; negative staining for neutral esterase, acid phosphatase, or peroxidase; nonphagocytic; Ia positive, but negative for IgG or IgM; ability to act as accessory cells in augmenting the intensity of allogeneic mixed-lymphocyte reactions. Both cell types are of bone marrow origin and are susceptible to steroids in vitro. The results suggest that the bone marrow interstitial cells identified in the course of this study may be enriched with populations of canine dendritic cell precursors and dendritic cells at various stages of differentiation. The detection of a receptor site for Helix promatia on the surface of such cells may be of usefulness in their further characterization and in the analysis of their precise role in the modulation of allogeneic unresponsiveness

  11. Implication of Ia-positive bone marrow interstitial stem cells in the induction of unresponsiveness to canine renal allografts

    Energy Technology Data Exchange (ETDEWEB)

    Rapaport, F.T.; Arnold, A.N.; Asari, H.; Sato, K.; Miura, S.; Chanana, A.; Cronkite, E.P.

    1987-02-01

    The removal from stored autologous host bone marrow of a monocytoid cell population by exposure to methylprednisolone is associated with successful introduction of unresponsiveness to renal allografts in irradiated recipients reconstituted with such treated marrow. The eliminated cells are a prominent component of the canine long bone marrow interstitium and share a number of important properties with dendritic cells (DC), including size and shape; poor or nonadherence to plastic or glass surfaces; negative staining for neutral esterase, acid phosphatase, or peroxidase; nonphagocytic; Ia positive, but negative for IgG or IgM; ability to act as accessory cells in augmenting the intensity of allogeneic mixed-lymphocyte reactions. Both cell types are of bone marrow origin and are susceptible to steroids in vitro. The results suggest that the bone marrow interstitial cells identified in the course of this study may be enriched with populations of canine dendritic cell precursors and dendritic cells at various stages of differentiation. The detection of a receptor site for Helix promatia on the surface of such cells may be of usefulness in their further characterization and in the analysis of their precise role in the modulation of allogeneic unresponsiveness.

  12. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    Institute of Scientific and Technical Information of China (English)

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantationvia tail vein injection and/or propofol injectionvia tail vein using an infusion pump. Four weeks after cell transplan-tation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve ifbers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electro-physiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  13. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies

    Directory of Open Access Journals (Sweden)

    Heng-feng Yuan

    2016-02-01

    Full Text Available The purpose of this study was to evaluate the clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation. We searched the PubMed, Embase and Web of Science databases and included all case-control trials that reported on the clinical outcomes of osteonecrosis progression, incidence of total hip arthroplasty and improvement in Harris hip scores. Overall, seven case-control trials were included. Compared with the controls, patients treated with the bone marrow stem cells implantation treatment showed improved clinical outcomes with delayed osteonecrosis progression (odds ratio = 0.17, 95% CI: 0.09 - 0.32; p<0.001, a lower total hip arthroplasty incidence (odds ratio = 0.30, 95% CI: 0.12 - 0.72; p<0.01 and increased Harris hip scores (mean difference = 4.76, 95% CI: 1.24 - 8.28; p<0.01. The heterogeneity, publication bias, and sensitivity analyses showed no statistical difference significant differences between studies. Thus, our study suggests that autologous bone marrow stem cells implantation has a good therapeutic effect on osteonecrosis of the femoral, resulting in beneficial clinical outcomes. However, trials with larger sample sizes are needed to confirm these findings.

  14. Clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation: a meta-analysis of seven case-control studies.

    Science.gov (United States)

    Yuan, Heng-Feng; Zhang, Jing; Guo, Chang-An; Yan, Zuo-Qin

    2016-02-01

    The purpose of this study was to evaluate the clinical outcomes of osteonecrosis of the femoral head after autologous bone marrow stem cell implantation. We searched the PubMed, Embase and Web of Science databases and included all case-control trials that reported on the clinical outcomes of osteonecrosis progression, incidence of total hip arthroplasty and improvement in Harris hip scores. Overall, seven case-control trials were included. Compared with the controls, patients treated with the bone marrow stem cells implantation treatment showed improved clinical outcomes with delayed osteonecrosis progression (odds ratio = 0.17, 95% CI: 0.09 - 0.32; p <0.001), a lower total hip arthroplasty incidence (odds ratio = 0.30, 95% CI: 0.12 - 0.72; p <0.01) and increased Harris hip scores (mean difference = 4.76, 95% CI: 1.24 - 8.28; p<0.01). The heterogeneity, publication bias, and sensitivity analyses showed no statistical difference significant differences between studies. Thus, our study suggests that autologous bone marrow stem cells implantation has a good therapeutic effect on osteonecrosis of the femoral, resulting in beneficial clinical outcomes. However, trials with larger sample sizes are needed to confirm these findings. PMID:26934241

  15. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  16. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    OpenAIRE

    Huber, Bruno C.; Grabmaier, Ulrich; Brunner, Stefan

    2014-01-01

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the...

  17. 骨髓间充质干细胞在骨组织工程中的应用%Bone marrow mesenchymal stem cell in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    涂强; 徐国洲; 钟润泉; 王少华

    2006-01-01

    外仍表达外源蛋白.它应用于骨组织工程的动物试验中已获得了成功.结论:以干细胞工程为代表的现代组织工程学近年来发展迅猛,但间充质干细胞组织工程学尚处于起步阶段.骨髓间充质干细胞具有易于取材、多组织分化潜能、遗传背景稳定、植入体内无排斥反应、高增殖的特性,决定了其将会成为细胞、基因治疗以及组织工程中十分有用的工具.%OBJECTIVE: To summarize the biocharacteristics, separation and purification as well as the culture technique of bone marrow mesenchymal stem cell, which has the potentiality of multiple cellular differentiations, locatedinduced differentiation of bone and cartilage, cellular carrying tray and application in bone tissue engineering.DATA SOURCES: Relative articles were retrieved through Medline database according to the key words of "mesenchymal stem cell, tissue engineer" in English between January 1990 and December 2004. Meanwhile,relative articles were also retrieved in Chinese journal full-text database and Wanfang database with the same key words in Chinese between January 1994 and December 2004.STUDY SELECTION: Articles were retrieved first to select those references which were related to the aspects of biology, isolation and culture of mesenchymal stem cell in tissue engineering. Representative and lated references were included; however, researches on non-bone tissue engineering and repetitive studies were excluded. The rest of articles were looked up for their full text.DATA EXTRACTION: There were 78 articles on mesenchymal stem cell in tissue engineering. Among them, 31 papers were included; the otherbut 47 papers including 13 articles of similar contents and 34 studies on nonbone tissue engineering were excluded.DATA SYNTHESIS: Mesenchymal stem cell mainly existed in bone marrow and could differentiated into multiple tissue cells and increase in vitro.① There were three methods for separation, purification

  18. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  19. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Cerebral palsy is currently one of the major diseases that cause severe paralysis of the nervous system in children; approximately 9–30% of cerebral palsy patients are also visually impaired, for which no effective treatment is available. Bone marrow mesenchymal stem cells (BMSCs have very strong self-renewal, proliferation, and pluripotent differentiation potentials. Therefore, autologous BMSC transplantation has become a novel method for treating cerebral palsy. Methods An 11-year-old boy had a clear history of dystocia and asphyxia after birth; at the age of 6 months, the family members observed that his gaze roamed and noted that he displayed a lack of attention. A brain MRI examination at the age of 7 years showed that the child had cerebral palsy with visual impairment (i.e., posterior visual pathway injury. The patient was hospitalized for 20 days and was given four infusions of intravenous autologous BMSCs. Before transplantation and 1, 6, and 12 months after transplantation, a visual evoked potential test, an electrocardiogram, routine blood tests, and liver and kidney function tests were performed. Results The patient did not have any adverse reactions during hospitalization or postoperative follow-up. After discharge, the patient could walk more smoothly than he could before transplantation; furthermore, his vision significantly improved 6 months after transplantation, which was also supported by the electrophysiological examinations. Conclusions The clinical application of BMSCs is effective for improving vision in a patient with cerebral palsy combined with visual impairment.

  20. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  1. Early Results of Clinical Application of Autologous Whole Bone Marrow Stem Cell Transplantation for Critical Limb Ischemia with Buerger's Disease.

    Science.gov (United States)

    Heo, Seon-Hee; Park, Yoong-Seok; Kang, Eun-Suk; Park, Kwang-Bo; Do, Young-Soo; Kang, Kyung-Sun; Kim, Dong-Ik

    2016-01-01

    Our goal was to evaluate early results of the clinical application of autologous whole bone marrow stem cell transplantation (AWBMSCT) for critical limb ischemia (CLI) in patients with Buerger's disease. We retrospectively analyzed the data of 58 limbs of 37 patients (mean age, 43.0 years; range, 28-63 years; male, 91.9%) with Buerger's disease with CLI who were treated with AWBMSCT from March 2013 to December 2014. We analyzed Rutherford category, pain score, pain-free walking time (PFWT), total walking time (TWT), ankle brachial pressure index (ABPI), and toe brachial pressure index (TBPI), and investigated wound healing and occurrence of unplanned amputations. The mean follow-up duration was 11.9 ± 7.2 months (range, 0.9-23.9 months) and 100%, 72.4%, and 74.1% of patients were available to follow-up 1, 3 and 6 months after AWBMST, respectively. At 6 months, patients demonstrated significant improvements in Rutherford category (P ABPI was increased compared to baseline, but the difference was not significant. A total of 76.5% ischemic wounds achieved complete or improved healing. AWBMSCT is a safe and effective alternative or adjunctive treatment modality to achieve clinical improvement in patients with CLI. PMID:26791280

  2. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.

    Science.gov (United States)

    Luan, Xi-Ying; Wang, Yong; Duan, Xiang; Duan, Qiao-Yan; Li, Ming-Zhong; Lu, Shen-Zhou; Zhang, Huan-Xiang; Zhang, Xue-Guang

    2006-12-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture. PMID:18458403

  3. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  4. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  5. Genistein induces adipogenic differentiation in human bone marrow mesenchymal stem cells and suppresses their osteogenic potential by upregulating PPARγ

    Science.gov (United States)

    ZHANG, LI-YAN; XUE, HAO-GANG; CHEN, JI-YING; CHAI, WEI; NI, MING

    2016-01-01

    Genistein is a soy isoflavone that exists in the form of an aglycone. It is the primary active component in soy isoflavone and has a number of biological activities (anti-inflammatory and anti-oxidative). However, the specific effect of genistein on human bone marrow mesenchymal stem cells (BMSCs) remains unclear. In the present study, the mechanism underlying the effect of genistein on the suppression of BMSC adipogenic differentiation and the enhancement of osteogenic potential was investigated using an MTT assay. It was observed that genistein significantly increased BMSC cell proliferation in a time- and dose-dependent manner (Pcell proliferation, suppress the expression of Runx2, Col I and OC mRNA, and reduce ALP and promote TG activity in BMSCs. Thus, the results of the present study conclude that genistein induces adipogenic differentiation in human BMSCs and suppresses their osteogenic potential by upregulating the expression of PPARγ. In conclusion, genistein may be a promising candidate drug for treatment against osteogenesis.

  6. Treatment of dystrophic epidermolysis bullosa with bone marrow non-hematopoeitic stem cells: a randomized controlled trial.

    Science.gov (United States)

    El-Darouti, Mohammad; Fawzy, Marwa; Amin, Iman; Abdel Hay, Rania; Hegazy, Rehab; Gabr, Hala; El Maadawi, Zeinab

    2016-03-01

    Patients with dystrophic epidermolysis bullosa (DEB) have mutations in type VII collagen gene. Type VII collagen is synthesized by keratinocytes and fibroblasts. Based on the ability of bone marrow non-hematopoeitic stem cells (NHBMSC) to develop into fibroblasts, we decided to investigate the use of NHBMSC in the treatment of recessive DEB (RDEB). This study included fourteen patients with RDEB; the first seven of them were given cyclosporine after the infusion of NHBMSC. As cyclosporine has been used for the treatment of RDEB we decided not to use cyclosporine for the second group of seven patients. Skin biopsies from the lesions were studied by electron microscopy before and after treatment. The number of new blisters decreased significantly after treatment in both groups (p = 0.003 and 0.004 respectively) and the rate of healing of new blisters became significantly faster after treatment in both groups (p treatment in both groups. No major side effects were reported during the 1-year follow-up period. Our findings highlight the efficacy as well as the safety of NHBMSC in the treatment of RDEB. PMID:26439431

  7. In Vivo Imaging and Tracking of Technetium-99m Labeled Bone Marrow Mesenchymal Stem Cells in Equine Tendinopathy.

    Science.gov (United States)

    Dudhia, Jayesh; Becerra, Patricia; Valdés, Miguel A; Neves, Francisco; Hartman, Neil G; Smith, Roger K W

    2015-01-01

    Recent advances in the application of bone marrow mesenchymal stem cells (BMMSC) for the treatment of tendon and ligament injuries in the horse suggest improved outcome measures in both experimental and clinical studies. Although the BMMSC are implanted into the tendon lesion in large numbers (usually 10 - 20 million cells), only a relatively small number survive (horses. Tc-99m is a short-lived (t1/2 of 6.01 hr) isotope that emits gamma rays and can be internalized by cells in the presence of the lipophilic compound hexamethylpropyleneamine oxime (HMPAO). These properties make it ideal for use in nuclear medicine clinics for the diagnosis of many different diseases. The fate of the labeled cells can be followed in the short term (up to 36 hr) by gamma scintigraphy to quantify both the number of cells retained in the lesion and distribution of the cells into lungs, thyroid and other organs. This technique is adapted from the labeling of blood leukocytes and could be utilized to image implanted BMMSC in other organs. PMID:26709915

  8. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Bai, Lin; Guo, Li

    2016-04-01

    Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms. PMID:26827767

  9. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  10. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal