WorldWideScience

Sample records for bone marrow mesenchymal

  1. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy...

  2. white leghorn chimeras based on bone marrow mesenchymal stem

    African Journals Online (AJOL)

    white leghorn chimeras based on bone marrow mesenchymal stem cells. Xinxin Qin, Lei Rui, Wenting Zhang, Zhuyu Qiu and Zandong Li*. State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Science,. China Agricultural University, Beijing 100193, China.

  3. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Shoichiro Kokabu

    2016-01-01

    Full Text Available Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3, which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment.

  4. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  5. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation.

    Science.gov (United States)

    Zhou, Ya-Jing; Liu, Jian-Min; Wei, Shu-Ming; Zhang, Yun-Hao; Qu, Zhen-Hua; Chen, Shu-Bo

    2015-08-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  7. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  8. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  9. Bone marrow-derived mesenchymal cells can rescue osteogenic capacity of devitalized autologous bone.

    Science.gov (United States)

    Tohma, Yasuaki; Ohgushi, Hajime; Morishita, Toru; Dohi, Yoshiko; Tadokoro, Mika; Tanaka, Yasuhito; Takakura, Yoshinori

    2008-01-01

    In clinical cases, many orthopaedists have been troubled with bone fragility, such as fractures after devitalization therapy for bone tumour, pathological fractures and metastatic tumours. The aim of this study was to determine whether loss of osteogenic capacity of devitalized autologous bones can be rescued using cultured bone marrow-derived mesenchymal cells. A devitalized bone model was produced from rat femur by irradiation and three groups were prepared: intact bone, irradiated bone and irradiated bone combined with cultured mesenchymal cells. Each bone was transplanted subcutaneously into a syngeneic rat. At 2 or 4 weeks after transplantation, biochemical analyses [alkaline phosphatase (ALP) activity and osteocalcin mRNA expression] and histological measurement were performed. Moreover, we verified the origin of newly formed bone, using the sex-determining region Y (sry) gene as a marker to distinguish between donor and recipient. In both intact bone and irradiated bone with mesenchymal cells, ALP activity and osteocalcin mRNA expression were detected and living osteoblasts together with newly formed bone were clearly seen histologically. Furthermore, analysis of the origin of de novo formed bone indicated that newly formed bone in irradiated bone with mesenchymal cells was derived from cultured bone marrow-derived mesenchymal cells. These results proved that the osteogenic capacity of devitalized autologous bone can be rescued using tissue-engineering techniques. This procedure should contribute to various clinical treatments, such as local metastatic tumours, pathological fracture after devitalization therapy and reconstruction after wide-margin tumour resection. The benefits would be applicable to all types of devitalized bone. Copyright (c) 2008 John Wiley & Sons, Ltd.

  10. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  11. Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Thibaud André

    Full Text Available BACKGROUND: In multiple myeloma, bone marrow mesenchymal stromal cells support myeloma cell growth. Previous studies have suggested that direct and indirect interactions between malignant cells and bone marrow mesenchymal stromal cells result in constitutive abnormalities in the bone marrow mesenchymal stromal cells. DESIGN AND METHODS: The aims of this study were to investigate the constitutive abnormalities in myeloma bone marrow mesenchymal stromal cells and to evaluate the impact of new treatments. RESULTS: We demonstrated that myeloma bone marrow mesenchymal stromal cells have an increased expression of senescence-associated β-galactosidase, increased cell size, reduced proliferation capacity and characteristic expression of senescence-associated secretory profile members. We also observed a reduction in osteoblastogenic capacity and immunomodulatory activity and an increase in hematopoietic support capacity. Finally, we determined that current treatments were able to partially reduce some abnormalities in secreted factors, proliferation and osteoblastogenesis. CONCLUSIONS: We showed that myeloma bone marrow mesenchymal stromal cells have an early senescent profile with profound alterations in their characteristics. This senescent state most likely participates in disease progression and relapse by altering the tumor microenvironment.

  12. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  13. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord.

    Science.gov (United States)

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-09-15

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.

  14. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Science.gov (United States)

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord. PMID:25374590

  15. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury.

    Science.gov (United States)

    Zhang, Rui-Ping; Xu, Cheng; Liu, Yin; Li, Jian-Ding; Xie, Jun

    2015-03-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  16. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  17. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy.

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-09-15

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  18. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  19. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  20. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  1. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were in...

  2. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  3. [Osteogenic potential of bone marrow mesenchymal stem cells from ovariectomied osteoporotic rat].

    Science.gov (United States)

    Li, Dong-ju; Ge, Dong-xia; Wu, Wen-chao; Wu, Jiang; Li, Liang

    2005-05-01

    To investigate the difference of osteogenic potential of bone marrow mesenchymal stem cells (MSCs) between healthy rats and osteoporotic rats. We established the animal model of osteoporosis by performing ovariectom on the 3-month-old female Sprague-Dawley rats. Bone marrow mesenchymal stem cells(MSCs) were isolated from the rats of control group and of ovariectomized (ovx) group by means of the density-gradient centrifugation method, and the 3rd-4th passage MSCs were used in all the experiments. The experiments comprised 4 groups: (1) Marrow mesenchymal stem cells control group (MSCs control group); (2) Marrow mesenchymal stem cells ovx group (MSCs ovx group); (3) Osteogenesis induction control group (OSI control group); (4) Osteogenesis induction ovx group (OSI ovx group). Cell cycle and proliferation index (PI) of MSCs were detected by flow cytometry. The expression of alkaline phosphatase (ALP) was detected by dynamics method with substrate of phosphoric acid para-Nitro benzene. The levels of osteocalcin were detected with the isotope labelling method. (1) PI of MSCs was lower in MSCs ovx group than in MSCs control group. (2) The expression of alkaline phosphatase (ALP) was much higher in OSI control group than in the MSCs control group; the expression of alkaline phosphatase (ALP) was much higher in the OSI control group than in OSI ovx group after 7-day and 14-day osteogenic induction. (3) The level of osteocalcin was much higher in the OSI control group than in the MSCs control group after 14-day, 21-day, 28-day osteogenic induction. The level of osteocalcin was much higher in the OSI control group than in the OSI ovx group. Both the proliferative potential and the osteogenic potential of bone marrow mesenchymal stem cells (MSCs) from the ovariectomized osteoporotic rat are decreased.

  4. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  5. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  6. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  7. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-04-15

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group.

  8. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. PMID:25206893

  9. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    OpenAIRE

    Babaei, Parvin; Soltani Tehrani, Bahram; Alizadeh, Arsalan

    2012-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs) grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months) were tested in Morris water maze (MWM) and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells ( 5 0 0 × 1 0 3 / ...

  10. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Qayyum, Abbas Ali; Jørgensen, Erik

    2015-01-01

    AIMS: Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe...... identified. CONCLUSION: Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure. STUDY REGISTRATION NUMBER: NCT00644410 (ClinicalTrials.gov)....

  11. [Protective effects of human bone marrow mesenchymal stem cells on hematopoietic organs of irradiated mice].

    Science.gov (United States)

    Chen, Ling-Zhen; Yin, Song-Mei; Zhang, Xiao-Ling; Chen, Jia-Yu; Wei, Bo-Xiong; Zhan, Yu; Yu, Wei; Wu, Jin-Ming; Qu, Jia; Guo, Zi-Kuan

    2012-12-01

    The objective of this study was to explore the protective effects of human bone marrow mesenchymal stem cells (MSC) on hematopoietic organs of irradiated mice. Human bone marrow MSC were isolated, ex vivo expanded, and identified by cell biological tests. Female BALB/c mice were irradiated with (60)Co γ-ray at a single dose of 6 Gy, and received different doses of human MSC and MSC lysates or saline via tail veins. The survival of mice was record daily, and the femurs and spleens were harvested on day 9 and 16 for pathologic examination. The histological changes were observed and the cellularity was scored. The results showed that the estimated survival time of MSC- and MSC lysate-treated mice was comparable to that of controls. The hematopoiesis in the bone marrow of mice that received high-dose (5×10(6)) of MSC or MSC lysates was partially restored on day 9 and the capacity of hemopoietic tissue and cellularity scorings were significantly elevated as compared with that of controls (P nudes were also obviously observed in the spleens of mice that received high-dose of MSC or MSC lysates on d 9 after irradiation. The histological structures of the spleen and bone marrow of the mice that received high-doses (5×10(6)) of MSC or MSC lysates were restored to normal, the cell proliferation displayed extraordinarily active. Further, the cellularity scores of the bone marrow were not significantly different between the high-dose MSC and MSC lysate-treated mice. It is concluded that the bone marrow MSC can promote the hematopoietic recovery of the irradiated mice, which probably is associated with the bioactive materials inherently existed in bone marrow cells.

  12. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury.

    Science.gov (United States)

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-04-15

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  13. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    Science.gov (United States)

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury. PMID:25206389

  14. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1 After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2 Our culture medium is not supplemented with any additional growth factor. (3 Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4 Our method has been carefully tested in several mouse strains and the results are reproducible. (5 We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.

  15. Mesenchymal stromal cells from bone marrow treated with bovine tendon extract acquire the phenotype of mature tenocytes

    Directory of Open Access Journals (Sweden)

    Lívia Maria Mendonça Augusto

    2016-02-01

    Full Text Available ABSTRACT OBJECTIVE: This study evaluated in vitro differentiation of mesenchymal stromal cells isolated from bone marrow, in tenocytes after treatment with bovine tendon extract. METHODS: Bovine tendons were used for preparation of the extract and were stored at -80 °C. Mesenchymal stromal cells from the bone marrow of three donors were used for cytotoxicity tests by means of MTT and cell differentiation by means of qPCR. RESULTS: The data showed that mesenchymal stromal cells from bone marrow treated for up to 21 days in the presence of bovine tendon extract diluted at diminishing concentrations (1:10, 1:50 and 1:250 promoted activation of biglycan, collagen type I and fibromodulin expression. CONCLUSION: Our results show that bovine tendon extract is capable of promoting differentiation of bone marrow stromal cells in tenocytes.

  16. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  17. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  18. Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses.

    Science.gov (United States)

    Maia, Leandro; da Cruz Landim-Alvarenga, Fernanda; Taffarel, Marilda Onghero; de Moraes, Carolina Nogueira; Machado, Gisele Fabrino; Melo, Guilherme Dias; Amorim, Rogério Martins

    2015-03-15

    Recent studies have demonstrated numerous biological properties of mesenchymal stem cells and their potential application in treating complex diseases or injuries to tissues that have difficulty regenerating, such as those affecting the central and peripheral nervous system. Thus, therapies that use mesenchymal stem cells are promising because of their high capacity for self-regeneration, their low immunogenicity, and their paracrine, anti-inflammatory, immunomodulatory, anti-apoptotic and neuroprotective effects. In this context, the purpose of this study was to evaluate the feasibility and safety of intrathecal transplantation of bone marrow-derived mesenchymal stem cells in horses, for future application in the treatment of neurological diseases. During the neurological evaluations, no clinical signs were observed that were related to brain and/or spinal cord injury of the animals from the control group or the treated group. The hematological and cerebrospinal fluid results from day 1 and day 6 showed no significant differences (P > 0.05) between the treated group and the control group. Additionally, analysis of the expression of matrix metalloproteinase (MMP) -2 and -9 in the cerebrospinal fluid revealed only the presence of pro-MMP-2 (latent), with no significant difference (P > 0.05) between the studied groups. The results of the present study support the hypothesis of the feasibility and safety of intrathecal transplantation of autologous bone marrow-derived mesenchymal stem cells, indicating that it is a promising pathway for cell delivery for the treatment of neurological disorders in horses.

  19. The role of bone marrow derived mesenchymal stem cells in ...

    African Journals Online (AJOL)

    Stroke is the third most common cause of death, and a leading cause of physical disability in adults. Recovery after a major stroke is usually limited, but cell therapy, especially by application of mesenchymal stem cells (MSCs) is emerging with fixed neurologic deficits. The aim of the current study was directed to isolation ...

  20. Human bone marrow-derived mesenchymal stem cells | Nasef ...

    African Journals Online (AJOL)

    Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of ...

  1. Gene expression profiling of bone marrow mesenchymal stem cells from Osteogenesis Imperfecta patients during osteoblast differentiation.

    Science.gov (United States)

    Kaneto, Carla Martins; Pereira Lima, Patrícia S; Prata, Karen Lima; Dos Santos, Jane Lima; de Pina Neto, João Monteiro; Panepucci, Rodrigo Alexandre; Noushmehr, Houtan; Covas, Dimas Tadeu; de Paula, Francisco José Alburquerque; Silva, Wilson Araújo

    2017-06-01

    Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Human bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Lopez M

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD. This review summarizes the knowledge and possible future clinical uses of MSCs.

  3. Cadaveric bone marrow mesenchymal stem cells: first experience treating a patient with large severe burns.

    Science.gov (United States)

    Mansilla, Eduardo; Marín, Gustavo H; Berges, Mirta; Scafatti, Silvia; Rivas, Jaime; Núñez, Andrea; Menvielle, Martin; Lamonega, Roberto; Gardiner, Cecilia; Drago, Hugo; Sturla, Flavio; Portas, Mercedes; Bossi, Silvia; Castuma, Maria Victoria; Peña Luengas, Sandra; Roque, Gustavo; Martire, Karina; Tau, Jose Maria; Orlandi, Gabriel; Tarditti, Adrian

    2015-01-01

    In January 2005, Rasulov et al. originally published "First experience in the use of bone marrow mesenchymal stem cells (MSCs) for the treatment of a patient with deep skin burns". Here, we present the first ever treated patient with cadaveric bone marrow mesenchymal stem cells (CMSCs) in the history of Medicine. A young man, who severely burned 60 % of his total body surface with 30 % of full-thickness burns while working with a grass trimmer that exploded, was involved in the study. MSCs were obtained from the bone marrow of a cadaver donor in a routine procurement procedure of CUCAIBA, the Province of Buenos Aires, Argentina, Ministry of Health, Transplantation Agency, cultured, expanded, and applied on the burned surfaces using a fibrin spray after early escharotomy. So far, our preliminary experience and our early results have been very impressive showing an outstanding safety data as well as some impressive good results in the use of CMSCs. Based on all this, we think that improvements in the use of stem cells for burns might be possible in the near future and a lot of time as well as many lives could be saved by many other research teams all over the world. CMSCs will probably be a real scientific opportunity in Regenerative Medicine as well as in Transplantation.

  4. Potential Role of Bone Marrow Mesenchymal Stem Cells in Obstructive Sleep Apnea

    Science.gov (United States)

    Carreras, Alba; Almendros, Isaac; Farré, Ramon

    2011-01-01

    Obstructive sleep apnea syndrome (OSA) is a prevalent disease caused by increased collapsibility of the upper airway. OSA induces oxidative stress, inflammation and endothelial dysfunction, with important clinical consequences such as neurocognitive alterations and cardiovascular diseases. Although it has been shown that bone marrow-derived stem cells play a protective and reparative function in several diseases involving inflammatory processes and endothelial dysfunction, the data currently available on the potential role of adult stem cells in OSA are scarce. The present review presents recent data on the potential role of bone marrow-derived mesenchymal stem cells (MSC) in OSA. The results obtained in animal models that realistically mimic the events characterizing this sleep breathing disorder strongly support the notion that MSC are mobilized in circulating blood and then activated to play an anti-inflammatory role in OSA. PMID:24298333

  5. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2012-01-01

    Full Text Available The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months were tested in Morris water maze (MWM and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500×103/ and PBS (phosphate buffer saline. In the second experiment, Ibotenic acid (Ibo was injected bilaterally into the nucleus basalis magnocellularis (NBM of young rats (3 months and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500×103/ and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  6. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    Science.gov (United States)

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p bone marrow-derived mesenchymal stem cells and platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow

  7. Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets.

    Science.gov (United States)

    Dvorakova, Jana; Hruba, Alena; Velebny, Vladimir; Kubala, Lukas

    2008-09-01

    Bone marrow is an important source of mesenchymal stem cells (MSCs), and a promising tool for cytotherapy. MSC utilization is limited by low cell yields obtained under standard isolation protocols. Herein, used bone marrow collection sets were evaluated as a valuable source of MSCs. Adherent cells washed from the collection sets were examined for widely accepted criteria defining MSCs. Significant numbers of cells (median 9million per set in passage 1) with colony-forming activity and high proliferative potential at low seeding densities were obtained. These cells were positive for essential MSC surface molecules (CD90, CD105, CD166, CD44, CD29) and negative for most haematopoietic and endothelial cell markers (CD45, CD34, CD11a, CD235a, HLA-DR, CD144). The cells were capable of differentiation along adipogenic, osteogenic and chondrogenic pathways. Washing out bone marrow collection sets may constitute a highly ethical source of MSCs for research purposes and may be utilized also in clinical applications.

  8. Activation of Cannabinoid Receptor 2 Enhances Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yong-Xin Sun

    2015-01-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs are considered as the most promising cells source for bone engineering. Cannabinoid (CB receptors play important roles in bone mass turnover. The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs. Alkaline phosphatase (ALP activity staining and real time PCR were performed to test the osteogenic differentiation. Alizarin red staining was carried out to examine the mineralization. Small interference RNA (siRNA was used to study the role of CB2 receptor in osteogenic differentiation. Results showed activation of CB2 receptor increased ALP activity, promoted expression of osteogenic genes, and enhanced deposition of calcium in extracellular matrix. Knockdown of CB2 receptor by siRNA inhibited ALP activity and mineralization. Results of immunofluorescent staining showed that phosphorylation of p38 MAP kinase is reduced by knocking down of CB2 receptor. Finally, bone marrow samples demonstrated that expression of CB2 receptor is much lower in osteoporotic patients than in healthy donors. Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs. Lack of CB2 receptor may be related to osteoporosis.

  9. Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model.

    Science.gov (United States)

    Chen, Dayong; Zeng, Wei; Fu, Yunfeng; Gao, Meng; Lv, Guohua

    2015-01-01

    The aims of this study were to assess that the effects of bone marrow mesenchymal stem cells (BMSCs) combination with minocycline improve spinal cord injury (SCI) in rat model. In the present study, the Wistar rats were randomly divided into five groups: control group, SCI group, BMSCs group, Minocycline group and BMSCs + minocycline group. Basso, Beattie and Bresnahan (BBB) test and MPO activity were used to assess the effect of combination therapy on locomotion and neutrophil infiltration. Inflammation factors, VEGF and BDNF expression, caspase-3 activation, phosphorylation-p38MAPK, proNGF, p75NTR and RhoA expressions were estimated using commercial kits or western blot, respectively. BBB scores were significantly increased and MPO activity was significantly undermined by combination therapy. In addition, combination therapy significantly decreased inflammation factors in SCI rats. Results from western blot showed that combination therapy significantly up-regulated the protein of VEGF and BDNF expression and down-regulated the protein of phosphorylation-p38MAPK, proNGF, p75NTR and RhoA expressions in SCI rats. Combination therapy stimulation also suppressed the caspase-3 activation in SCI rats. These results demonstrated that the effects of bone marrow mesenchymal stem cells combination with minocycline improve SCI in rat model.

  10. Isolation, expansion and differentiation of mesenchymal stromal cells from rabbits' bone marrow

    Directory of Open Access Journals (Sweden)

    Renato B. Eleotério

    2016-05-01

    Full Text Available Abstract: Tissue engineering has been a fundamental technique in the regenerative medicine field, once it permits to build tri-dimensional tissue constructs associating undifferentiated mesenchymal cells (or mesenchymal stromal cells - MSCs and scaffolds in vitro. Therefore, many studies have been carried out using these cells from different animal species, and rabbits are often used as animal model for in vivo tissue repair studies. However, most of the information available about MSCs harvesting and characterization is about human and murine cells, which brings some doubts to researchers who desire to work with a rabbit model in tissue repair studies based on MSCs. In this context, this study aimed to add and improve the information available in the scientific literature providing a complete technique for isolation, expansion and differentiation of MSCs from rabbits. Bone marrow mononuclear cells (BMMCs from humerus and femur of rabbits were obtained and to evaluate their proliferation rate, three different culture media were tested, here referred as DMEM-P, DMEM´S and α-MEM. The BMMCs were also cultured in osteogenic, chondrogenic and adipogenic induction media to prove their multipotentiality. It was concluded that the techniques suggested in this study can provide a guideline to harvest and isolate MSCs from bone marrow of rabbits in enough amount to allow their expansion and, based on the laboratory experience where the study was developed, it is also suggested a culture media formulation to provide a better cell proliferation rate with multipotentiality preservation.

  11. Origins and Properties of Dental, Thymic, and Bone Marrow Mesenchymal Cells and Their Stem Cells

    Science.gov (United States)

    Komada, Yukiya; Yamane, Toshiyuki; Kadota, Daiji; Isono, Kana; Takakura, Nobuyuki; Hayashi, Shin-Ichi; Yamazaki, Hidetoshi

    2012-01-01

    Mesenchymal cells arise from the neural crest (NC) or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled) and mesoderm-derived (Mesp1-labeled) cells contribute to the development of dental, thymic, and bone marrow (BM) mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F) assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet–derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC) chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ. PMID:23185234

  12. Spinal cord injury in rats treated using bone marrow mesenchymal stem-cell transplantation.

    Science.gov (United States)

    Chen, Yu-Bing; Jia, Quan-Zhang; Li, Dong-Jun; Sun, Jing-Hai; Xi, Shuang; Liu, Li-Ping; Gao, De-Xuan; Jiang, Da-Wei

    2015-01-01

    The aim of this study was to observe the effects of bone marrow mesenchymal stem-cell transplantation (BMSCs) in repairing acute spinal cord damage in rats and to examine the potential beneficial effects. 192 Wistar rats were randomized into 8 groups. Spinal cord injury was created. Behavior and limb functions were scored. Repairing effects of BMSCs transplantation was evaluated and compared. In vitro 4',6-diamidino-2-phenylindole (DAPI)-tagged BMSCs were observed, and whether they migrated to the area of spinal cord injury after intravenous tail injection was investigated. The expression of neuron-specific protein (NSE) on BMSCs was examined. Fifteen days after transplantation, the BMSCs-treated groups scored significantly higher in limb function tests than the untreated group. Pathological sections of the bone marrow after operation showed significant recovery in treated groups in comparison to the control group. After transplantation, small amounts of fluorescent-tagged BMSCs can be found in the blood vessels in the area of spinal cord injury, and fluorescent-tagged BMSCs were diffused in extravascular tissues, whereas the DAPI-tagged BMSCs could not be detected,and BrdU/NSE double-labeled cells were found in the injured marrow. BMSCs improve behavioral responses and can repair spinal cord injuries by migrating to the injured area, where they can differentiate into neurons.

  13. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Science.gov (United States)

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José; Albanese, Patricia; Chevallier, Nathalie

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  14. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Thibault Bouderlique

    Full Text Available Pleiotrophin (PTN is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  15. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    NARCIS (Netherlands)

    Cai, X; Yang, F.; Yan, X.; Yang, W; Yu, N.; Oortgiesen, D.A.; Wang, Y.; Jansen, J.A.; Walboomers, X.F.

    2015-01-01

    AIM: The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal

  16. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury.

    Science.gov (United States)

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-07-05

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury.

  17. Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK), Dresden (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Haagen, J.; Noack, R.; Siegemund, A.; Gabriel, P. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Doerr, W. [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Comprehensive Cancer Center, Medical University/AKH Vienna, Dept. of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Vienna (Austria)

    2014-04-15

    Oral mucositis is a severe and dose limiting early side effect of radiotherapy for head-and-neck tumors. This study was initiated to determine the effect of bone marrow- and mesenchymal stem cell transplantation on oral mucositis (mouse tongue model) induced by fractionated irradiation. Daily fractionated irradiation (5 x 3 Gy/week) was given over 1 (days 0-4) or 3 weeks (days 0-4, 7-11, 14-18). Each protocol was terminated (day 7 or 21) by graded test doses (5 dose groups, 10 animals each) in order to generate complete dose-effect curves. The incidence of mucosal ulceration, corresponding to confluent mucositis grade 3 (RTOG/EORTC), was analyzed as the primary, clinically relevant endpoint. Bone marrow or mesenchymal stem cells were transplanted intravenously at various time points within these fractionation protocols. Transplantation of 6 x 10{sup 6}, but not of 3 x 10{sup 6} bone marrow stem cells on day -1, +4, +8, +11 or +15 significantly increased the ED{sub 50} values (dose, at which an ulcer is expected in 50% of the mice); transplantation on day +2, in contrast, was ineffective. Mesenchymal stem cell transplantation on day -1, 2 or +8 significantly, and on day +4 marginally increased the ED{sub 50} values. Transplantation of bone marrow or mesenchymal stem cells has the potential to modulate radiation-induced oral mucositis during fractionated radiotherapy. The effect is dependent on the timing of the transplantation. The mechanisms require further investigation. (orig.)

  18. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis.

    Science.gov (United States)

    Frisbie, David D; Kisiday, John D; Kawcak, Chris E; Werpy, Natasha M; McIlwraith, C Wayne

    2009-12-01

    The purpose of this study was the assessment of clinical, biochemical, and histologic effects of intraarticular administered adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. Osteoarthritis was induced arthroscopically in the middle carpal joint of all horses, the contralateral joint being sham-operated. All horses received treatment on Day 14. Eight horses received placebo treatment and eight horses received adipose-derived stromal vascular fraction in their osteoarthritis-affected joint. The final eight horses were treated the in osteoarthritis-affected joint with bone marrow-derived mesenchymal stem cells. Evaluations included clinical, radiographic, synovial fluid analysis, gross, histologic, histochemical, and biochemical evaluations. No adverse treatment-related events were observed. The model induced a significant change in all but two parameters, no significant treatment effects were demonstrated, with the exception of improvement in synovial fluid effusion PGE2 levels with bone marrow-derived mesenchymal stem cells when compared to placebo. A greater improvement was seen with bone marrow-derived mesenchymal stem cells when compared to adipose-derived stromal vascular fraction and placebo treatment. Overall, the findings of this study were not significant enough to recommend the use of stem cells for the treatment of osteoarthritis represented in this model.

  19. Effects of bone marrow or mesenchymal stem cell transplantation on oral mucositis (mouse) induced by fractionated irradiation

    International Nuclear Information System (INIS)

    Schmidt, M.; Haagen, J.; Noack, R.; Siegemund, A.; Gabriel, P.; Doerr, W.

    2014-01-01

    Oral mucositis is a severe and dose limiting early side effect of radiotherapy for head-and-neck tumors. This study was initiated to determine the effect of bone marrow- and mesenchymal stem cell transplantation on oral mucositis (mouse tongue model) induced by fractionated irradiation. Daily fractionated irradiation (5 x 3 Gy/week) was given over 1 (days 0-4) or 3 weeks (days 0-4, 7-11, 14-18). Each protocol was terminated (day 7 or 21) by graded test doses (5 dose groups, 10 animals each) in order to generate complete dose-effect curves. The incidence of mucosal ulceration, corresponding to confluent mucositis grade 3 (RTOG/EORTC), was analyzed as the primary, clinically relevant endpoint. Bone marrow or mesenchymal stem cells were transplanted intravenously at various time points within these fractionation protocols. Transplantation of 6 x 10 6 , but not of 3 x 10 6 bone marrow stem cells on day -1, +4, +8, +11 or +15 significantly increased the ED 50 values (dose, at which an ulcer is expected in 50% of the mice); transplantation on day +2, in contrast, was ineffective. Mesenchymal stem cell transplantation on day -1, 2 or +8 significantly, and on day +4 marginally increased the ED 50 values. Transplantation of bone marrow or mesenchymal stem cells has the potential to modulate radiation-induced oral mucositis during fractionated radiotherapy. The effect is dependent on the timing of the transplantation. The mechanisms require further investigation. (orig.)

  20. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Science.gov (United States)

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. PMID:25657678

  1. Mesenchymal Stem Cells in Perichondrium Express Activated Leukocyte Cell Adhesion Molecule and Participate in Bone Marrow Formation

    Science.gov (United States)

    Arai, Fumio; Ohneda, Osamu; Miyamoto, Takeshi; Zhang, Xiu Qin; Suda, Toshio

    2002-01-01

    Perichondrium in fetal limb is composed of undifferentiated mesenchymal cells. However, the multipotency of cells in this region and the role of perichondrium in bone marrow formation are not well understood. In this report, we purified and characterized perichondrial cells using a monoclonal antibody against activated leukocyte cell adhesion molecule (ALCAM) and investigated the role of perichondrial cells in hematopoietic bone marrow formation. ALCAM is expressed on hematopoietic cells, endothelial cells, bone marrow stromal cells, and mesenchymal stem cells and mediates homophilic (ALCAM–ALCAM)/heterophilic (ALCAM-CD6) cell adhesion. Here we show by immunohistochemical staining that ALCAM is expressed in perichondrium. ALCAM+ perichondrial cells isolated by FACS® exhibit the characteristics of mesenchymal stem cells. ALCAM+ cells can differentiate into osteoblasts, adipocytes, chondrocytes, and stromal cells, which can support osteoclastogenesis, hematopoiesis, and angiogenesis. Furthermore, the addition of ALCAM-Fc or CD6-Fc to the metatarsal culture, the invasion of the blood vessels to a cartilage was inhibited. Our findings indicate that ALCAM+ perichondrial cells participate in vascular invasion by recruiting osteoclasts and vessels. These findings suggest that perichondrium might serve as a stem cell reservoir and play an important role in the early development of a bone and bone marrow. PMID:12070283

  2. Effects of adjuvant chemotherapy on bone marrow mesenchymal stem cells of colorectal cancer patients.

    Science.gov (United States)

    Cao, J; Tan, M H; Yang, P; Li, W L; Xia, J; Du, H; Tang, W B; Wang, H; Chen, X W; Xiao, H Q

    2008-05-18

    Chemotherapy damages the bone marrow and that is one of the most important problems in the treatment of malignancies, particularly colorectal cancer. The aim of the present study was to assess the effects of surgical adjuvant chemotherapy for CRC patients on human MSCs using an in vitro culture system. The bone marrows of 43 CRC patients were harvested for separation and culture of MSC at pre- and post-chemotherapy. The number of colonies forming unit-fibroblast (CFU-F) was counted. The adhesive function of MSC was assayed and the growth of colony-forming unit-mixed hematopoietic cell (CFU-Mix) on the MSC layer was observed. The concentration of IL-6, SCF and FLT-T3 proteins in the MSC culture supernatant were also detected by ELISA assay. In the CRC patients with chemotherapy, we have demonstrated that the CFU-F exhibit significantly decreased. We also showed that the adhesive rate of bone marrow mesenchymal stem cell (BMSC) was significantly decreased. The growth of CFU-Mix on the MSC layer was inhibited. Most importantly, decreased CFU-F and the adhesive rate of BMSC were correlated significantly with decreased interleukins and stem-cell factor (IL-6, SCF and FLT-3L) expressions in the CRC patients after chemotherapy. Our results suggest that MSCs of CRC patients can be damaged by chemotherapy. Our data also indicates that the decreased expression of haematogenesis factors may play an important role in the pathogenesis. In the future, the MSC refused may have a potential clinical application in chemotherapeutically treated patients.

  3. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure.

    Science.gov (United States)

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.

  4. Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury.

    Science.gov (United States)

    Gu, Chuanlong; Li, Heyangzi; Wang, Chao; Song, Xinghui; Ding, Yuemin; Zheng, Mingzhi; Liu, Wei; Chen, Yingying; Zhang, Xiaoming; Wang, Linlin

    2017-01-01

    Spinal cord injury (SCI) leads to irreversible neuronal loss and ultimately leads to paralysis. Bone marrow derived mesenchymal stem cells (BMSCs) have been demonstrated to be an effective approach to treat SCI. The present study was designed to investigate the role of BMSCs in rats with spinal cord injury and in oxygen-glucose deprivation (OGD) treated motor neurons. The results demonstrated that BMSCs could improve locomotor function and decrease expression of pro-apoptotic transcription factor C/EBP homologous protein (CHOP) and apoptosis after SCI. Furthermore, co-culture with BMSCs or conditioned medium from BMSCs could also decrease the expression of CHOP and apoptosis in post-OGD motor neurons, supporting that BMSCs exerts protective effects by decreasing the expression of CHOP in injured motor neurons. Our findings provide a potential novel mechanism for BMSCs treatments in patients with SCI. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Preliminary study on the freeze-drying of human bone marrow-derived mesenchymal stem cells*

    Science.gov (United States)

    Zhang, Shao-zhi; Qian, Huan; Wang, Zhen; Fan, Ju-li; Zhou, Qian; Chen, Guang-ming; Li, Rui; Fu, Shan; Sun, Jie

    2010-01-01

    Long-term preservation and easy transportation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) will facilitate their application in medical treatment and bioengineering. A pilot study on the freeze-drying of hBM-MSCs was carried out. hBM-MSCs were loaded with trehalose. The glass transition temperature of the freeze-drying suspension was measured to provide information for the cooling and primary drying experiment. After freeze-drying, various rehydration processes were tested. The highest recovery rate of hBM-MSCs was (69.33±13.08)%. Possible methods to improve freeze-drying outcomes are discussed. In conclusion, the present study has laid a foundation for the freeze-drying hBM-MSCs. PMID:21043058

  6. In vitro evaluation of cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells (MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Kang, Joo Hyun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Bone marrow derived mesenchymal stem cells (MSCs) are excellent candidate as therapeutic agent for cell therapy. MSCs can be expanded in vitro rapidly (more than 3-5 fold in a weeks), and maintained their stem cell properties for a long culture period. Recently, many investigators have suggested that MSCs have ability to differentiate into cardiomyocytes by given appropriate condition in vitro or in vivo. Although, MSCs may be useful cell therapeutic agents in heart disease, there are still exist major barriers to track their capacity to differentiate into functional cardiomyocytes. In our previous study, the transgenic mouse model expressing sodium iodide symporter (NIS) driven by {alpha}-myosin heavy chain ({alpha}-MHC) promoter was developed to image cardiomyocyte with {gamma}-camera and microPET in vivo. In this study, we investigate the monitoring availability of {alpha}-MHC driven NIS gene of MSCs from the transgenic mouse during cardiomyogenic differentiation in vitro

  7. Trophic Actions of Bone Marrow-Derived Mesenchymal Stromal Cells for Muscle Repair/Regeneration

    Directory of Open Access Journals (Sweden)

    Lucia Formigli

    2012-10-01

    Full Text Available Bone marrow-derived mesenchymal stromal cells (BM-MSCs represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is controversial; in fact, emerging evidence indicates that their therapeutic effects occur without signs of long-term tissue engraftment and involve the paracrine secretion of cytokines and growth factors with multiple effects on the injured tissue, including modulation of inflammation and immune reaction, positive extracellular matrix (ECM remodeling, angiogenesis and protection from apoptosis. Recently, a new role for BM-MSCs in the stimulation of muscle progenitor cells proliferation has been demonstrated, suggesting the potential ability of these cells to influence the fate of local stem cells and augment the endogenous mechanisms of repair/regeneration in the damaged tissues.

  8. Enhanced Adipogenicity of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Tripathy

    2014-01-01

    Full Text Available Fatty bone marrow (BM and defective hematopoiesis are a pathologic hallmark of aplastic anemia (AA. We have investigated adipogenic and osteogenic potential of BM mesenchymal stem cells (BM-MSC in 10 AA patients (08 males and 02 females with median age of 37 years (range: 06 to 79 years and in the same number of age and sex matched controls. It was observed that BM-MSC of AA patients had a morphology, phenotype, and osteogenic differentiation potential similar to control subjects but adipocytes differentiated from AA BM-MSC had a higher density and larger size of lipid droplets and they expressed significantly higher levels of adiponectin and FABP4 genes and proteins as compared to control BM-MSC (P<0.01 for both. Thus our data shows that AA BM-MSC have enhanced adipogenicity, which may have an important implication in the pathogenesis of the disease.

  9. Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives

    Directory of Open Access Journals (Sweden)

    Daniela Galli

    2014-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies, the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  10. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine.

    Science.gov (United States)

    Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N

    2017-01-01

    With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.

  11. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    Directory of Open Access Journals (Sweden)

    Hu Y

    2013-10-01

    Full Text Available Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC transplantation in preventing loss of visual function in aged rats with glaucoma caused by laser-induced ocular hypertension. We found that BMSCs promoted survival of retinal ganglion cells in the transplanted eye as compared with the control eye. Further, in swimming tests guided by visual cues, the rats with a BMSC transplant performed significantly better. We believe that BMSC transplantation therapy is effective in treating aged rats with glaucoma. Keywords: glaucoma, stem cell, transplantation, cell therapy, aging

  12. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  13. [Immune regulatory effect of human bone marrow mesenchymal stem cells on T lymphocyte].

    Science.gov (United States)

    Lu, Xiao-Xi; Liu, Ting; Meng, Wen-Tong; Zhu, Huan-Ling; Xi, Ya-Ming; Liu, Yong-Mei

    2005-08-01

    To investigate the immune regulatory effects of human bone marrow mesenchymal stem cells on alloantigen T lymphocyte in vitro, human MSCs were isolated and expanded from bone marrow cells, and identified with cell morphology, and the phenotypes were assessed by immunohistochemistry and flow cytometry. As the stimulation factor of T lymphocytes proliferation, either PHA or dendritic cells isolated from cord blood were cocultured with CD2(+) T lymphocytes from peripheral blood mononuclear cells by magnetic beads with or without MSC in 96-well plats for seven days. T cell proliferation was assessed by [(3)H]-thymidine incorporation using a liquid scintillation counter. T cell subsets, Th1, Th2, Tc1 and Tc2 were analyzed by flow cytometry after co-culture of CD2(+) T cells with MSCs for 10 days. The results showed that a significant decrease of CD2(+) T cell proliferation was evident when MSC were added back to T cells stimulated by DC or PHA, and an increase of Th2 and Tc2 subsets were observed after co-culture of MSC with T lymphocytes. It is suggested that allogeneic MSC can suppress T cell proliferation in vitro and the cause of that was partly depend on interaction of cells and the alteration of T cell subsets.

  14. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  15. The Role of Bone Marrow Mesenchymal Stem Cells in the Treatment of Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Shufang Yuan

    2013-01-01

    Full Text Available Objective. This study is to investigate the effects of bone marrow mesenchymal stem cell (BMSC transplantation on acute liver failure (ALF. Methods. BMSCs were separated from rat bone marrow, cultured, and identified by flow cytometry. Rat model with ALF was established by injecting D-galactosamine and lipopolysaccharide. Rats were randomly divided into the control group and BMSC transplantation group. The serum levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST were measured at 24 h, 120 h, and 168 h after BMSC transplantation. Apoptosis was detected by TUNEL assay. The expression of VEGF and AFP proteins was detected by immunofluorescence. Caspase-1 and IL-18 proteins and mRNA were detected by immunohistochemistry and RT-PCR. Results. Compared with the control group, levels of ALT, AST, caspase-1 and IL-18 proteins, and mRNA in the transplantation group were significantly lower at 120 h and 168 h after BMSCs transplantation. Apoptosis was inhibited by BMSCs transplantation. The VEGF protein levels were increased with the improvement of liver function, and the AFP protein levels were increased with the deterioration of the liver function after BMSCs transplantation. Conclusions. BMSCs transplantation can improve liver function and inhibit hepatocyte apoptosis as well as promote hepatocyte proliferation in rat model with ALF.

  16. Bone marrow mesenchymal stem cells ameliorate colitis-associated tumorigenesis in mice.

    Science.gov (United States)

    Chen, Zexian; He, Xiaowen; He, Xiaosheng; Chen, Xiuting; Lin, Xutao; Zou, Yifeng; Wu, Xiaojian; Lan, Ping

    2014-08-08

    Bone marrow-derived mesenchymal stem cell (MSC) is widely studied in inflammatory bowel disease (IBD) in basic and clinical research. However, patients with IBD have higher risk of developing colorectal cancer and MSC has dual effect on tumorigenesis. This study aims to evaluate the role of MSC on tumorigenesis of IBD. MSCs were isolated from the bone marrow of allogenic mice and identified by flow cytometry. Mice in the model of colitis-associated tumorigenesis induced by azoxymethane and dextran sulfate sodium were injected with MSCs. Colon length, spleen size and tumors formation were assessed macroscopically. Pro-inflammatory cytokines and STAT3 phosphorylation in colon tissues were analyzed. MSCs ameliorated the severity of colitis associated tumorigenesis compared with PBS control, with attenuated weight loss, longer colons and smaller spleens. Tumor number and tumor load were significantly less in the MSC group while tumor size remained comparable. Histological assessment indicated MSCs could reduce histological damage of the colon tissue. Decreased expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), and down-regulation of STAT3 phosphorylation in colon tissue were found after MSC treatment. MSCs might ameliorate the tumorigenesis of inflammatory bowel disease by suppression of expression of pro-inflammatory cytokines and STAT3 activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Adipose Stem Cells as Alternatives for Bone Marrow Mesenchymal Stem Cells in Oral Ulcer Healing

    Science.gov (United States)

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-01-01

    Background and Objectives Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Methods and Results Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Results: MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. Conclusions MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing. PMID:24298363

  18. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  19. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-01-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  20. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  1. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ming [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Wang, Yongchun [Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi' an 710032 (China); Yang, Min; Liu, Yanwu [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Qu, Bo [Chengdu Military General Hospital, Chengdu, 610083 (China); Ye, Zhengxu; Liang, Wei [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Sun, Xiqing, E-mail: sunxiqing@fmmu.edu.cn [Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, Xi' an 710032 (China); Luo, Zhuojing, E-mail: zjluo@fmmu.edu.cn [Department of Orthopaedic Surgery, XiJing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2015-05-01

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cell cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.

  2. Biopsy needle advancement during bone marrow aspiration increases mesenchymal stem cell concentration

    Directory of Open Access Journals (Sweden)

    Anne E Peters

    2016-03-01

    Full Text Available Point-of-care kits to concentrate bone marrow (BM derived mesenchymal stem cells (MSCs are used clinically in horses. A maximal number of MSCs per ml of marrow aspirated might be desired prior to use of a point-of-care system to concentrate MSCs. Our objective was to test a method to increase the number of MSCs per ml of marrow collected. We collected 2 BM aspirates using 2 different collection techniques from 12 horses. The first collection technique was to aspirate BM from a single site without advancement of the biopsy needle. The second collection technique was to aspirate marrow from multiple sites within the same sternal puncture by advancing the needle 5 mm 3 times for BM aspiration from 4 sites. Numbers of MSCs in collected BM were assessed by total nucleated cell count (TNCC of BM after aspiration, total Colony-Forming-Unit-fibroblast (CFU-F assay, and total MSC number at each culture passage. The BM aspiration technique of 4 needle advancements during BM aspiration resulted in higher initial nucleated cell counts, more CFU-Fs, and more MSCs at the first passage. There were no differences in the number of MSCs at later passages. Multiple advancements of the BM needle during BM aspiration resulted in increased MSC concentration at the time of BM collection. If a point-of-care kit is used to concentrate MSCs, multiple advancements may result in higher MSC numbers in the BM concentrate after preparation by the point-of-care kit. For culture expanded MSCs beyond the first cell passage, the difference is of questionable clinical relevance.

  3. Osteoblast Differentiation and Bone Formation Gene Expression in Strontium-inducing Bone Marrow Mesenchymal Stem Cell

    OpenAIRE

    SILA-ASNA, MONNIPHA; BUNYARATVEJ, AHNOND; Maeda, Sakan; Kitaguchi, Hiromichi; BUNYARATAVEJ, NARONG

    2007-01-01

    Osteoblastic differentiation from human mesenchymal stem cell (hMSCs) is animportant step of bone formation. We studied the in vitro induction of hMSCs byusing strontium ranelate, a natural trace amount in water, food and human skeleton.The mRNA synthesis of various osteoblast specific genes was assessed by means ofreverse transcription polymerase chain reaction (RT-PCR). In the hMSCs culture,strontium ranelate could enhance the induction of hMSCs to differentiate intoosteoblasts. Cbfa1 gene ...

  4. Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison

    Directory of Open Access Journals (Sweden)

    Karoline Pill

    2015-01-01

    Full Text Available Tissue-engineered constructs are promising to overcome shortage of organ donors and to reconstruct at least parts of injured or diseased tissues or organs. However, oxygen and nutrient supply are limiting factors in many tissues, especially after implantation into the host. Therefore, the development of a vascular system prior to implantation appears crucial. To develop a functional vascular system, different cell types that interact with each other need to be co-cultured to simulate a physiological environment in vitro. This review provides an overview and a comparison of the current knowledge of co-cultures of human endothelial cells (ECs with human adipose tissue-derived stem/stromal cells (ASCs or bone marrow-mesenchymal stem cells (BMSCs in three dimensional (3D hydrogel matrices. Mesenchymal stem cells (MSCs, BMSCs or ASCs, have been shown to enhance vascular tube formation of ECs and to provide a stabilizing function in addition to growth factor delivery and permeability control for ECs. Although phenotypically similar, MSCs from different tissues promote tubulogenesis through distinct mechanisms. In this report, we describe differences and similarities regarding molecular interactions in order to investigate which of these two cell types displays more favorable characteristics to be used in clinical applications. Our comparative study shows that ASCs as well as BMSCs are both promising cell types to induce vascularization with ECs in vitro and consequently are promising candidates to support in vivo vascularization.

  5. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  6. Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases.

    Science.gov (United States)

    Dimitriou, H; Linardakis, E; Martimianaki, G; Stiakaki, E; Perdikogianni, C H; Charbord, P; Kalmanti, M

    2008-01-01

    Mesenchymal stromal cells (MSC) have become the focus of cellular therapeutics but little is known regarding bone marrow (BM) MSC derived from children. As MSC constitute part of BM stroma, we examined their properties in children with hematologic diseases. BM MSC from children with non-malignant hematologic disorders and acute lymphoblastic leukemia (ALL) were isolated and expanded. MSC were immunophenotypically characterized and their functional characteristics were assessed by CFU-F assay and cell doubling time calculation. Their ability for trilineage differentiation was verified by molecular and histochemical methods. Apoptosis was evaluated and clonal analysis was performed. MSC were isolated from BM of all groups. They acquired the mesenchymal-related markers from the first passage, with a simultaneous decrease of hematopoietic markers. A very low percentage of apoptotic cells was detected in all passages. The proliferative and clonogenic capacity did not differ among groups, with the exception of ALL at diagnosis, in which they were defective. Histochemical and molecular analysis of differentiated MSC yielded characteristics for adipocytes, osteoblasts and chondrocytes. Clonal analysis in a number of BM samples revealed a highly heterogeneous population of cells within each clone. MSC from BM of children with hematologic disorders, with the exception of ALL at diagnosis, can be isolated in sufficient number and quality to serve as a potential source for clinical applications.

  7. Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yating; Li, Juan; Wang, Yanmin; Lei, Lei; Jiang, Chunmiao; An, Shu; Zhan, Yuxiang; Cheng, Qian; Zhao, Zhihe; Wang, Jun; Jiang, Lingyong

    2012-03-01

    Bone reconstruction is essential in orthodontic treatment that caters to the correction of malocclusion by bone reconstruction. Mesenchymal stem cells (MSCs) have been demonstrated a great potency of osteogenesis. The aim of this study was to investigate the effect of hypoxia on the rat bone marrow MSCs (rBMSCs) in vitro during osteogenesis. In this study, we found that temporary exposure of rBMSCs after osteogenic induction for 7 days to hypoxia (2% oxygen) led to a marked decrease in ALPase activity and the expression of osteocalcin and Runt related transcription factor 2/core binding factor a1 (Runx2/Cbfa1). Meanwhile, we found that exposure to hypoxia led to an early and transient increase in the level of phosphorylated ERK1/2 but had no obvious effects on mitogen-activated protein kinase (p38 MAPK) level. Based on these results, we concluded that hypoxia could inhibit osteogenic differentiation of rBMSCs possibly through MEK-ERK 1/2, while p38 MAPK may not participate in this regulation. Further exploration into the mechanisms of hypoxia on osteogenesis would surely provide reliable evidence for clinical practice.

  8. Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal cells does not affect their "stemness".

    Directory of Open Access Journals (Sweden)

    Arun Balakumaran

    2010-07-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are increasingly used to label human bone marrow stromal cells (BMSCs, also called "mesenchymal stem cells" to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the "stemness" of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the "gold standard" of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs.

  9. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow.

    Science.gov (United States)

    Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A

    2016-09-15

    Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and

  10. Establishment of mesenchymal stem cells derived from bone marrow and synovium of transgenic rats expressing dual reporter genes

    Science.gov (United States)

    Horie, Masafumi; Sekiya, Ichiro; Muneta, Takeshi; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because they can be harvested in a relatively less invasive manner, easily isolated, and expanded with multipotentiality. Bone marrow seems to be the most commonly used tissue as a source for MSCs at present. However, there are emerging reports to describe that MSCs exist in most mesenchymal tissues. We have recently compared in vivo chondrogenic potential in MSCs derived from various mesenchymal tissues and demonstrated that synovium-MSCs and bone marrow-MSCs possessed greater chondrogenic ability than other mesenchymal tissue-derived MSCs. This indicates that those MSCs are promising cellular sources for cartilage regeneration. As the fate of synovium-MSCs is unclear after transplantation, we herein established MSCs using double transgenic rats expressing either Luciferase/GFP or Luciferase/LacZ. The cellular fate of MSCs could be traced by an in vivo luciferase-based luminescent imaging system, and also followed histologically by green fluorescence and by X-gal staining, respectively. Thus, both synovium-MSCs and bone marrow-MSCs expressing Luciferase/GFP or Luciferase/LacZ provide powerful tools not only for cell tracking in vivo but also for histological analysis, leading to a compelling experimental model of cartilage regeneration with cell therapy.

  11. trans-10,cis-12 CLA promotes osteoblastogenesis via SMAD mediated mechanism in bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Kim, Jonggun; Park, Yooheon; Park, Yeonhwa

    2014-05-01

    The inverse relationship between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells has been linked to overall bone mass. It has previously been reported that conjugated linoleic acid (CLA) inhibits adipogenesis via a peroxisome-proliferator activated receptor-γ (PPARγ) mediated mechanism, while it increases osteoblastogenesis via a PPARγ-independent mechanism in mesenchymal stem cells. This suggests potential implication of CLA on improving bone mass. Thus the purpose of this study was to determine involvement of CLA on regulation of osteoblastogenesis in murine mesenchymal stem cells by focusing on the Mothers against decapentaplegic (MAD)-related family of molecules 8 (SMAD8), one of key regulators of osteoblastogenesis. The trans -10, cis -12 CLA, but not the cis -9, trans -11, significantly increased osteoblastogenesis via SMAD8, and inhibited adipogenesis independent of SMAD8, while inhibiting factors regulating osteoclastogenesis in this model. These suggest that CLA may help improve osteoblastogenesis via a SMAD8 mediated mechanism.

  12. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  13. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation.

    Science.gov (United States)

    Xue, Feng; Wu, Er-Jun; Zhang, Pei-Xun; Li-Ya, A; Kou, Yu-Hui; Yin, Xiao-Feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  14. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  15. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  16. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Ryu, Eunsook; Hong, Su; Kang, Jaeku; Woo, Junghoon; Park, Jungjun; Lee, Jongho; Seo, Jeong-Sun

    2008-01-01

    Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerase reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs

  18. Cigarette smoke challenges bone marrow mesenchymal stem cell capacities in guinea pig.

    Science.gov (United States)

    Tura-Ceide, Olga; Lobo, Borja; Paul, Tanja; Puig-Pey, Raquel; Coll-Bonfill, Núria; García-Lucio, Jéssica; Smolders, Valérie; Blanco, Isabel; Barberà, Joan A; Peinado, Víctor I

    2017-03-23

    Cigarette smoke (CS) is associated with lower numbers of circulating stem cells and might severely affect their mobilization, trafficking and homing. Our study was designed to demonstrate in an animal model of CS exposure whether CS affects the homing and functional capabilities of bone marrow-derived mesenchymal stem cells (BM-MSCs). Guinea pigs (GP), exposed or sham-exposed to CS, were administered via tracheal instillation or by vascular administration with 2.5 × 10 6 BM-MSCs obtained from CS-exposed or sham-exposed animal donors. Twenty-four hours after cell administration, animals were sacrificed and cells were visualised into lung structures by optical microscopy. BM-MSCs from 8 healthy GP and from 8 GP exposed to CS for 1 month were isolated from the femur, cultured in vitro and assessed for their proliferation, migration, senescence, differentiation potential and chemokine gene expression profile. CS-exposed animals showed greater BM-MSCs lung infiltration than sham-exposed animals regardless of route of administration. The majority of BM-MSCs localized in the alveolar septa. BM-MSCs obtained from CS-exposed animals showed lower ability to engraft and lower proliferation and migration. In vitro, BM-MSCs exposed to CS extract showed a significant reduction of proliferative, cellular differentiation and migratory potential and an increase in cellular senescence in a dose dependent manner. Short-term CS exposure induces BM-MSCs dysfunction. Such dysfunction was observed in vivo, affecting the cell homing and proliferation capabilities of BM-MSCs in lungs exposed to CS and in vitro altering the rate of proliferation, senescence, differentiation and migration capacity. Additionally, CS induced a reduction in CXCL9 gene expression in the BM from CS-exposed animals underpinning a potential mechanistic action of bone marrow dysfunction.

  19. Safety Assessment of Human Bone Marrow-derived Mesenchymal Stromal Cells Transplantation in Wistar Rats.

    Science.gov (United States)

    Aithal, Ashwini P; Bairy, Laxminarayana Kurady; Seetharam, Raviraja N

    2017-09-01

    Bone Marrow-derived Mesenchymal Stromal Cells (BM-MSCs) are multipotent stem cells isolated from adult human bone marrow. Properties of MSCs make them potentially ideal candidates for regenerative medicine. The preclinical data available in the literature regarding the safety assessment of MSCs at different dosage group is scanty. To evaluate the safety of BM-MSCs transplantation in Wistar rats. Eighteen adult female Wistar rats were used in the study. They were randomly divided into normal control, low dose MSCs and high dose MSCs groups. Low dose group received 3.25 million BM-MSCs/kg body weight; high dose group received 9.75 million BM-MSCs/kg body weight intravenously. Body weight, food and water intake of each rat were measured statistically using SPSS version 16.0; animals were observed for changes in behaviour, general clinical signs, presence of any abnormal response, mortality for thirty days. Repeated measures ANOVA indicated a significant increase in body weight, food, and water intake of all animals at all weeks of the study period compared to week zero (pfood and water intake in MSCs group when compared to normal control. All the animals survived for the entire duration of the study. Further, there was no change in the behaviour of the animals, no adverse clinical signs or complications following the MSCs treatment. Results indicate that administration of BM-MSCs is safe when given by a slow intravenous infusion as it did not alter the food and water intake behaviour of the animals and did not have any negative effect on its body weight.

  20. Expansion of Bone Marrow Mesenchymal Stromal Cells in Perfused 3D Ceramic Scaffolds Enhances In Vivo Bone Formation.

    Science.gov (United States)

    Hoch, Allison I; Duhr, Ralph; Di Maggio, Nunzia; Mehrkens, Arne; Jakob, Marcel; Wendt, David

    2017-12-01

    Bone marrow-derived mesenchymal stromal cells (BMSC), when expanded directly within 3D ceramic scaffolds in perfusion bioreactors, more reproducibly form bone when implanted in vivo as compared to conventional expansion on 2D polystyrene dishes/flasks. Since the bioreactor-based expansion on 3D ceramic scaffolds encompasses multiple aspects that are inherently different from expansion on 2D polystyrene, we aimed to decouple the effects of specific parameters among these two model systems. We assessed the effects of the: 1) 3D scaffold vs. 2D surface; 2) ceramic vs. polystyrene materials; and 3) BMSC niche established within the ceramic pores during in vitro culture, on subsequent in vivo bone formation. While BMSC expanded on 3D polystyrene scaffolds in the bioreactor could maintain their in vivo osteogenic potential, results were similar as BMSC expanded in monolayer on 2D polystyrene, suggesting little influence of the scaffold 3D environment. Bone formation was most reproducible when BMSC are expanded on 3D ceramic, highlighting the influence of the ceramic substrate. The presence of a pre-formed niche within the scaffold pores had negligible effects on the in vivo bone formation. The results of this study allow a greater understanding of the parameters required for perfusion bioreactor-based manufacturing of osteogenic grafts for clinical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model.

    Science.gov (United States)

    Chong, Alphonsus K S; Ang, Abel D; Goh, James C H; Hui, James H P; Lim, Aymeric Y T; Lee, Eng Hin; Lim, Beng Hai

    2007-01-01

    A repaired tendon needs to be protected for weeks until it has accrued enough strength to handle physiological loads. Tissue-engineering techniques have shown promise in the treatment of tendon and ligament defects. The present study tested the hypothesis that bone marrow-derived mesenchymal stem cells can accelerate tendon-healing after primary repair of a tendon injury in a rabbit model. Fifty-seven New Zealand White rabbits were used as the experimental animals, and seven others were used as the source of bone marrow-derived mesenchymal stem cells. The injury model was a sharp complete transection through the midsubstance of the Achilles tendon. The transected tendon was immediately repaired with use of a modified Kessler suture and a running epitendinous suture. Both limbs were used, and each side was randomized to receive either bone marrow-derived mesenchymal stem cells in a fibrin carrier or fibrin carrier alone (control). Postoperatively, the rabbits were not immobilized. Specimens were harvested at one, three, six, and twelve weeks for analysis, which included evaluation of gross morphology (sixty-two specimens), cell tracing (twelve specimens), histological assessment (forty specimens), immunohistochemistry studies (thirty specimens), morphometric analysis (forty specimens), and mechanical testing (sixty-two specimens). There were no differences between the two groups with regard to the gross morphology of the tendons. The fibrin had degraded by three weeks. Cell tracing showed that labeled bone marrow-derived mesenchymal stem cells remained viable and present in the intratendinous region for at least six weeks, becoming more diffuse at later time-periods. At three weeks, collagen fibers appeared more organized and there were better morphometric nuclear parameters in the treatment group (p tendon repair can improve histological and biomechanical parameters in the early stages of tendon-healing.

  2. MicroRNA-9 promotes the neuronal differentiation of rat bone marrow mesenchymal stem cells by activating autophagy

    Directory of Open Access Journals (Sweden)

    Guang-yu Zhang

    2015-01-01

    Full Text Available MicroRNA-9 (miR-9 has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the miR-9 + group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.

  3. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  4. Subpopulations of Bone Marrow Mesenchymal Stem Cells Exhibit Differential Effects in Delaying Retinal Degeneration.

    Science.gov (United States)

    Li, P; Tian, H; Li, Z; Wang, L; Gao, F; Ou, Q; Lian, C; Li, W; Jin, C; Zhang, J; Xu, J-Y; Wang, J; Zhang, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have a therapeutic role in retinal degeneration (RD). However, heterogeneity of BMSCs may be associated with differential therapeutic effects in RD. In order to confirm this hypothesis, two subsets of rat BMSCs, termed rBMSC1 and rBMSC2, were obtained, characterized and functionally evaluated in the treatment of RD of Royal College of Surgeons (RCS) rats. Both subpopulations expressed mesenchymal stem cells (MSC) markers CD29 and CD90, but were negative for hemacyte antigen CD11b and CD45 expression. In comparison with rBMSC2, rBMSC1 showed higher rate of proliferation, stronger colony formation, and increased adipogenic potential, whereas rBMSC2 exhibited higher osteogenic potential. Microarray analysis showed differential gene expression patterns between rBMSC1 and rBMSC2, including functions related to proliferation, differentiation, immunoregulation, stem cell maintenance and division, survival and antiapoptosis. After subretinal transplantation in RCS rats, rBMSC1 showed stronger rescue effect than rBMSC2, including increased b-wave amplitude, restored retinal nuclear layer thickness, and decreased number of apoptotic photoreceptors, whereas the rescue function of rBMSC2 was essentially not better than the control. Histological analysis also demonstrated that rBMSC1 possessed a higher survival rate than rBMSC2 in subretinal space. In addition, treatment of basic fibroblast growth factor, an accompanying event in subretinal injection, triggered more robust increase in secretion of growth factors by rBMSC1 as compared to rBMSC2. Taken together, these results have suggested that the different therapeutic functions of BMSC subpopulations are attributed to their distinct survival capabilities and paracrine functions. The underlying mechanisms responsible for the different functions of BMSC subpopulation may lead to a new strategy for the treatment of RD.

  5. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Noh, Minsoo

    2012-03-01

    Lineage commitment of human bone marrow mesenchymal stem cells (hBM-MSCs) to adipocytes or osteoblasts has been suggested as a model system to study the relationship between type II diabetes and abnormal bone metabolism. Leptin and IL-17A inhibit adipogenesis whereas they promote osteogenesis in MSCs. Due to pathophysiologic roles of IL-17A in human metabolic diseases and bone metabolism, it was evaluated whether IL-17A-dependent inverse regulation on adipogenesis and osteogenesis was related to endogenous leptin production in hBM-MSCs. In the analysis of adiponectin and leptin secretion profiles of hBM-MSCs in response to various combinations of differentiation inducing factors, it was found that dexamethasone, a common molecule used for both adipogenesis and osteogenesis, increased leptin production in hBM-MSCs. Importantly, the level of leptin production during osteogenesis in hBM-MSCs was higher than that during adipogenesis, implicating a significant leptin production in extra-adipose tissues. IL-17A increased leptin production in hBM-MSCs and also under the condition of osteogenesis. In spite of direct inhibition on adipogenesis, IL-17A up-regulated leptin production in hBM-MSC-derived adipocytes. Anti-leptin antibody treatment partially antagonized the IL-17A dependent inhibition of adipogenesis in hBM-MSCs, suggesting a role of leptin in mediating the inverse regulation of IL-17A on osteogenesis and adipogenesis in hBM-MSCs. Therefore, the IL-17A-induced leptin production may provide a key clue to understand a molecular mechanism on the lineage commitment of hBM-MSCs into adipocytes or osteoblasts. In addition, leptin production in extra-adipose tissues like MSCs and osteoblasts should be considered in future studies on leptin-associated human diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Bone Marrow-Derived Mesenchymal Stromal Cells from Patients with Sickle Cell Disease Display Intact Functionality.

    Science.gov (United States)

    Stenger, Elizabeth O; Chinnadurai, Raghavan; Yuan, Shala; Garcia, Marco; Arafat, Dalia; Gibson, Greg; Krishnamurti, Lakshmanan; Galipeau, Jacques

    2017-05-01

    Hematopoietic cell transplantation (HCT) is the only cure for sickle cell disease (SCD), but engraftment remains challenging in patients lacking matched donors. Infusion of mesenchymal stromal cells (MSCs) at the time of HCT may promote hematopoiesis and ameliorate graft-versus-host disease. Experimental murine models suggest MSC major histocompatibility complex compatibility with recipient impacts their in vivo function, suggesting autologous MSCs could be superior to third-party MSCs for promoting HCT engraftment. Here we tested whether bone marrow (BM)-derived MSCs from SCD subjects have comparable functionality compared with MSCs from healthy volunteers. SCD MSC doubling time and surface marker phenotype did not differ significantly from non-SCD. Third-party and autologous (SCD) T cell proliferation was suppressed in a dose-dependent manner by all MSCs. SCD MSCs comparably expressed indoleamine-2,3-dioxygenase, which based on transwell and blocking experiments appeared to be the dominant immunomodulatory pathway. The expression of key genes involved in hematopoietic stem cell (HSC)-MSC interactions was minimally altered between SCD and non-SCD MSCs. Expression was, however, altered by IFN-γ stimulation, particularly CXCL14, CXCL26, CX3CL1, CKITL, and JAG1, indicating the potential to augment MSC expression by cytokine stimulation. These data demonstrate the feasibility of expanding BM-derived MSCs from SCD patients that phenotypically and functionally do not differ per International Society of Cell Therapy essential criteria from non-SCD MSCs, supporting initial evaluation (primarily for safety) of autologous MSCs to enhance haploidentical HSC engraftment in SCD. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  7. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Science.gov (United States)

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  8. Induced bone marrow mesenchymal stem cells improve cardiac performance of infarcted rat hearts.

    Science.gov (United States)

    Li, Xiao-Hong; Fu, Yong-Heng; Lin, Qiu-Xiong; Liu, Zai-Yi; Shan, Zhi-Xin; Deng, Chun-Yu; Zhu, Jie-Ning; Yang, Min; Lin, Shu-Guang; Li, Yangxin; Yu, Xi-Yong

    2012-02-01

    We investigated whether transplantation of bone marrow mesenchymal stem cells (BMSC) with induced BMSC (iBMSC) or uninduced BMSC (uBMSC) into the myocardium could improve the performance of post-infarcted rat hearts. BMSCs were specified by flowcytometry. IBMSCs were cocultured with rat cardiomyocyte before transplantation. Cells were injected into borders of cardiac scar tissue 1 week after experimental infarction. Cardiac performance was evaluated by echocardiography at 1, 2, and 4 weeks after cellular or PBS injection. Langendorff working-heart and histological studies were performed 4 weeks after treatment. Myogenesis was detected by quantitative PCR and immunofluorescence. Echocardiography showed a nearly normal ejection fraction (EF) in iBMSC-treated rats and all sham control rats but a lower EF in all PBS-treated animals. The iBMSC-treated heart, assessed by echocardiography, improved fractional shortening compared with PBS-treated hearts. The coronary flow (CF) was decreased obviously in PBS and uBMSC-treated groups, but recovered in iBMSC-treated heart at 4 weeks (P < 0.01). Immunofluorescent microscopy revealed co-localization of Superparamagnetic iron oxide (SPIO)-labeled transplanted cells with cardiac markers for cardiomyocytes, indicating regeneration of damaged myocardium. These data provide strong evidence that iBMSC implantation is of more potential to improve infarcted cardiac performance than uBMSC treatment. It will open new promising therapeutic opportunities for patients with post-infarction heart failure.

  9. Transcriptome analysis of bone marrow mesenchymal stromal cells from patients with primary myelofibrosis

    Directory of Open Access Journals (Sweden)

    Christophe Martinaud

    2015-09-01

    Full Text Available Primary myelofibrosis (PMF is a clonal myeloproliferative neoplasm whose severity and treatment complexity are attributed to the presence of bone marrow (BM fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironmental niches. Within these niches, mesenchymal stromal cells (BM-MSC play a hematopoietic supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic stem/progenitor cells. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic stem/progenitor cell deregulation that features PMF.

  10. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  11. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  12. Effects of Dendrobium officinale polysaccharide on adipogenic differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yinjuan ZHAO

    Full Text Available Abstract This study investigated the effect of Dendrobium officinale polysaccharide (DOP on the adipogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs. DOP was extracted fresh Dendrobium officinale. Rat BMSCs were prepared, and then were treated with 0 (control, 50, 100, 200, 400, 800 μg/mL DOP, respectively. The cell viability was determined by MTT assay. The adipogenic differentiation was quantitatively analyzed by oil red O staining assay. The mRNA expressions of adipogenic differentiation related gene peroxisome proliferator-activated receptor gamma (PPARG, lipoprotein lipase (LPL and fatty acid binding protein 4 (FABP4 were detected by RT-PCR. Results showed that, DOP with 0-800 μg/mL concentration had no significant toxicity to BMSCs. 200-800 μg/mL DOP could obviously inhibit the adipogenic differentiation of BMSCs. Compared with control group, the expression levels of PPARG, LPL and FABP4 mRNA 200, 400 and 800 μg/mL DOP groups were significantly decreased (P < 0.05 or P < 0.01. DOP can inhibit the adipogenic differentiation of BMSCs, which may be related with its down-regulation of PPARG, LPL and FABP4 expressions in BMSCs.

  13. Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells.

    Science.gov (United States)

    Diaz, Miguel F; Vaidya, Abishek B; Evans, Siobahn M; Lee, Hyun J; Aertker, Benjamin M; Alexander, Alexander J; Price, Katherine M; Ozuna, Joyce A; Liao, George P; Aroom, Kevin R; Xue, Hasen; Gu, Liang; Omichi, Rui; Bedi, Supinder; Olson, Scott D; Cox, Charles S; Wenzel, Pamela L

    2017-05-01

    Mesenchymal stromal cells (MSCs) are believed to mobilize from the bone marrow in response to inflammation and injury, yet the effects of egress into the vasculature on MSC function are largely unknown. Here we show that wall shear stress (WSS) typical of fluid frictional forces present on the vascular lumen stimulates antioxidant and anti-inflammatory mediators, as well as chemokines capable of immune cell recruitment. WSS specifically promotes signaling through NFκB-COX2-prostaglandin E 2 (PGE 2 ) to suppress tumor necrosis factor-α (TNF-α) production by activated immune cells. Ex vivo conditioning of MSCs by WSS improved therapeutic efficacy in a rat model of traumatic brain injury, as evidenced by decreased apoptotic and M1-type activated microglia in the hippocampus. These results demonstrate that force provides critical cues to MSCs residing at the vascular interface which influence immunomodulatory and paracrine activity, and suggest the potential therapeutic use of force for MSC functional enhancement. Stem Cells 2017;35:1259-1272. © 2017 AlphaMed Press.

  14. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  15. Experimental observation of human bone marrow mesenchymal stem cell transplantation into rabbit intervertebral discs.

    Science.gov (United States)

    Tao, Hao; Lin, Yazhou; Zhang, Guoqing; Gu, Rui; Chen, Bohua

    2016-09-01

    Allogeneic bone marrow mesenchymal stem cell (BMSC) transplantation has been investigated worldwide. However, few reports have addressed the survival status of human BMSCs in the intervertebral discs (IVDs) in vivo following transplantation. The current study aimed to observe the survival status of human BMSCs in rabbit IVDs. The IVDs of 15 New Zealand white rabbits were divided into three groups: Punctured blank control group (L1-2); punctured physiological saline control group (L2-3); and punctured human BMSCs transfected with green fluorescent protein (GFP) group (L3-4, L4-5 and L5-6). One, 2, 4, 6 and 8 weeks after transplantation the IVDs were removed and a fluorescence microscope was used to observe the density of GFP-positive human BMSCs. The results indicated that in the sections of specimens removed at 1, 2, 4, 6 and 8 weeks post-transplantation, no GFP-positive cells were observed in the control groups, whereas GFP-positive cells were apparent in the nucleus pulposus at all periods in the GFP-labeled human BMSCs group, and the cell density at 6 and 8 weeks was significantly less than that at 1, 2 and 4 weeks post-transplantation (P<0.001). Thus, it was identified that human BMSCs were able to survive in the rabbit IVDs for 8 weeks.

  16. Reduction of acute rejection by bone marrow mesenchymal stem cells during rat small bowel transplantation.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Bone marrow mesenchymal stem cells (BMMSCs have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats.Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control, isogeneically transplanted rats (BN-BN and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg cells were assessed at each time point.Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF-α, and interferon (IFN-γ while upregulating IL-10 and transforming growth factor (TGF-β expression and increasing Treg levels.BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.

  17. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  18. Apoptosis of Bone Marrow Mesenchymal Stem Cells Caused by Homocysteine via Activating JNK Signal

    Science.gov (United States)

    Liu, Yanju; Yang, Fan; Chen, Hongyang; Yin, Kun; Tan, Xueying; Zhu, Jiuxin; Pan, Zhenwei; Wang, Baoqiu; Lu, Yanjie

    2013-01-01

    Bone marrow mesenchymal stem cells (BMSCs) are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases. PMID:23667638

  19. Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells on Laser-Induced Retinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yuanfeng Jiang

    2014-05-01

    Full Text Available Stem cell therapy has shown encouraging results for neurodegenerative diseases. The retina provides a convenient locus to investigate stem cell functions and distribution in the nervous system. In the current study, we investigated the therapeutic potential of bone marrow mesenchymal stem cells (MSCs by systemic transplantation in a laser-induced retinal injury model. MSCs from C57BL/6 mice labeled with green fluorescent protein (GFP were injected via the tail vein into mice after laser photocoagulation. We found that the average diameters of laser spots and retinal cell apoptosis were decreased in the MSC-treated group. Interestingly, GFP-MSCs did not migrate to the injured retina. Further examination revealed that the mRNA expression levels of glial fibrillary acidic protein and matrix metalloproteinase-2 were lower in the injured eyes after MSC transplantation. Our results suggest that intravenously injected MSCs have the ability to inhibit retinal cell apoptosis, reduce the inflammatory response and limit the spreading of damage in the laser-injured retina of mice. Systemic MSC therapy might play a role in neuroprotection, mainly by regulation of the intraocular microenvironment.

  20. Effect of antioxidant supplementation on the total yield, oxidative stress levels and multipotency of bone marrow-derived human mesenchymal stromal cells

    NARCIS (Netherlands)

    Alves, H.A.D.C.R.; Mentink-Leusink, Anouk; Le, B.Q.; van Blitterswijk, Clemens; de Boer, Jan

    2013-01-01

    Bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the most frequently investigated cell type for potential regenerative strategies because they are relatively easy to isolate and are able to differentiate into several mesenchymal lineages. Unfortunately, during ex vivo culture,

  1. Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis.

    Science.gov (United States)

    Sugaya, Hisashi; Mishima, Hajime; Gao, Ran; Kaul, Sunil C; Wadhwa, Renu; Aoto, Katsuya; Li, Meihua; Yoshioka, Tomokazu; Ogawa, Takeshi; Ochiai, Naoyuki; Yamazaki, Masashi

    2016-02-01

    Internalizing quantum dots (i-QDs) are a useful tool for tracking cells in vivo in models of tissue regeneration. We previously synthesized i-QDs by conjugating QDs with a unique internalizing antibody against a heat shock protein 70 family stress chaperone. In the present study, i-QDs were used to label rabbit mesenchymal stromal cells (MSCs) that were then transplanted into rabbits to assess differentiation potential in an osteonecrosis model. The i-QDs were taken up by bone marrow-derived MSCs collected from the iliac of 12-week-old Japanese white rabbits that were positive for cluster of differentiation (CD)81 and negative for CD34 and human leukocyte antigen DR. The average rate of i-QD internalization was 93.3%. At 4, 8, 12, and 24 weeks after transplantation, tissue repair was evaluated histologically and by epifluorescence and electron microscopy. The i-QDs were detected at the margins of the drill holes and in the necrotized bone trabecular. There was significant colocalization of the i-QD signal in transplanted cells and markers of osteoblast and mineralization at 4, 8, and 12 weeks post-transplantation, while i-QDs were detected in areas of mineralization at 12 and 24 weeks post-transplantation. Moreover, i-QDs were observed in osteoblasts in regenerated tissue by electron microscopy, demonstrating that the tissue was derived from transplanted cells. These results indicate that transplanted MSCs can differentiate into osteoblasts and induce tissue repair in an osteonecrosis model and can be tracked over the long term by i-QD labeling. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  3. Acquisition and Expansion of Adult Rat Bone Marrow Multipotent Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Šulla I.

    2017-03-01

    Full Text Available This study was initiated in order to test a mini-invasive method of mesenchymal stem/progenitor cells (MS/PCs isolation from a rat bone marrow (BM, and subsequently their expansion, differentiation, and evaluation of their immunophenotypic characteristics; and later their preservation as donor cells in an optimal condition for potential autotransplantation. The study group comprised of 6 adult male Sprague-Dawley (S-D rats, weighing 480—690 g. The rats were anaesthetised by isoflurane with room air in a Plexiglas box and maintained by inhalation of a mixture of isoflurane and O2. Their femurs were surgically exposed and their diaphyses double-trephined. Then BM cells were flushed out by saline with heparin and aspirated into a syringe with a solution of DMEM (Dulbecco’s modified eagle’s medium and heparin. The mononuclear cells from the BM were isolated by centrifugation and expanded in a standard culture medium supplemented with ES-FBS (es-cell-qualified foetal bovine serum, L-glutamine and rh LIF (recombinant human leukemia inhibitory factor. Following 14 days of passaging cultures, the cells were split into 2 equal parts. The first culture continued with the original medium. The second culture received additional supplementation with a human FGFβ (fibroblast growth factor beta and EGF (epidermal growth factor. The populations of these cells were analysed by light-microscopy, then the mean fluorescence intensities (MFIs of CD90 and Nestin were evaluated by a tricolour flow cytometry using monoclonal antibodies. The type of general anaesthesia used proved to be appropriate for the surgical phase of the experiments. All rats survived the harvesting of the BM without complications. The total number of mononuclear cells was 1.5—4.0 × 106 per sample and the proportion of CD90/Nestin expressing cells was < 1 %. Following 14 days of expansion, the cells became larger, adherent, with fibrillary morphology; the proportion of cells expressing

  4. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunfeng; Li, Jihua; Zhu, Songsong; Luo, En; Feng, Ge; Chen, Qianming [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China); Hu, Jing, E-mail: drhu@vip.sohu.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Strontium ranelate (SrR) inhibits proliferation of BMMSCs. Black-Right-Pointing-Pointer SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. Black-Right-Pointing-Pointer SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. Black-Right-Pointing-Pointer SrR decreases expression of PPAR{gamma}, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr{sup 2+}) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPAR{gamma}2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPAR{gamma} in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.

  5. Adipogenic Mesenchymal Stromal Cells from Bone Marrow and Their Hematopoietic Supportive Role: Towards Understanding the Permissive Marrow Microenvironment in Acute Myeloid Leukemia.

    Science.gov (United States)

    Le, Yevgeniya; Fraineau, Sylvain; Chandran, Priya; Sabloff, Mitchell; Brand, Marjorie; Lavoie, Jessie R; Gagne, Rémi; Rosu-Myles, Michael; Yauk, Carole L; Richardson, Richard B; Allan, David S

    2016-04-01

    The role of bone marrow-derived mesenchymal stem/stromal cells (MSCs) in creating a permissive microenvironment that supports the emergence and progression of acute myeloid leukemia (AML) is not well established. We investigated the extent to which adipogenic differentiation in normal MSCs alters hematopoietic supportive capacity and we undertook an in-depth comparative study of human bone marrow MSCs derived from newly diagnosed AML patients and healthy donors, including an assessment of adipogenic differentiation capacity. MSCs from healthy controls with partial induction of adipogenic differentiation, in comparison to MSCs undergoing partial osteogenic differentiation, expressed increased levels of hematopoietic factors and induced greater proliferation, decreased quiescence and reduced in vitro hematopoietic colony forming capacity of CD34(+) hematopoietic stem and progenitor cells (HSPCs). Moreover, we observed that AML-derived MSCs had markedly increased adipogenic potential and delayed osteogenic differentiation, while maintaining normal morphology and viability. AML-derived MSCs, however, possessed reduced proliferative capacity and decreased frequency of subendothelial quiescent MSCs compared to controls. Our results support the notion of a bone marrow microenvironment characterized by increased propensity toward adipogenesis in AML, which may negatively impact normal hematopoiesis. Larger confirmatory studies are needed to understand the impact of various clinical factors. Novel leukemia treatments aimed at normalizing bone marrow niches may enhance the competitive advantage of normal hematopoietic progenitors over leukemia cells.

  6. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H

    2012-01-01

    Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.

  7. [EFFECT OF Akt1 GENE TRANSFECTION ON HYPOXIA TOLERANCE OF BONE MARROW MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Yu, Fengxu; Chen, Yongen; Chen, Feng; Xia, Jiyi; Liu, Hongduan; Fu, Yong; Li, Miaoling; Liao, Bin

    2016-04-01

    To investigate whether Akt1 gene transfection mediated by recombinant lentivirus (LVs) in the bone marrow mesenchymal stem cells (BMSCs) could enhance the ability of hypoxia tolerance so as to provide a theoretical basis for improving the effectiveness of stem cells transplantation. LVs was used as transfection vector, enhanced green fluorescent protein (EGFP) was used as markers to construct the pLVX-EGFP-3FLAG virus vector carrying the Akt1 gene. The 3rd generation BMSCs from 3-5 weeks old Sprague Dawley rats were transfected with pLVX-EGFP virus solution as group B and with pLVX-EGFP-3PLAG virus solution as group C; and untransfected BMSCs served as control group (group A). At 2-3 days after transfection, the expression of green fluorescent was observed by fluorescence microscope; and at 48 hours after transfection, Western blot method was used to detect the expression of Akt1 protein in groups B and C. BMSCs of groups B and C were given hypoxia intervention with 94% N₂, 1% O₂, and 5% CO₂ for 0, 3, 6, 9, and 12 hours (group B1 and group C1). The flow cytometry was used to analyze the cell apoptosis rate and cell death rate, and the MTT method to analyze the cell proliferation, and Western blot to detect the expression of apoptosis related gene Caspase-3. After transfection, obvious green fluorescence was observed in BMSCs under fluorescence microscopy in groups B and C, the transfection efficiency was about 60%. Akt1 expression of group C was significantly higher than that of group B (t = 17.525, P = 0.013). The apoptosis rate and cell death rate of group B1 increased gradually with time, and difference was significant (P transfection mediated by recombinant LVs could significantly improve hypoxia tolerance of BMSCs by inhibiting the apoptosis, which could provide new ideas for improving the effectiveness of stem cells transplantation.

  8. Erythropoietin facilitates the recruitment of bone marrow mesenchymal stem cells to sites of spinal cord injury.

    Science.gov (United States)

    Li, Jun; Guo, Weichun; Xiong, Min; Zhang, Shuangjie; Han, Heng; Chen, Jie; Mao, Dan; Yu, Hualong; Zeng, Yun

    2017-05-01

    Despite the successes of bone marrow mesenchymal stem cell (BMSC) transplantation for the treatment of spinal cord injuries, only a small fraction of grafted cells migrate to the target areas. Therefore, there remains a need for more efficient strategies of BMSC delivery. The present study was designed to explore this. Rat models of spinal cord injury (SCI) were established and exposed to phosphate buffered saline (control), BMSCs or BMSCs + erythropoietin (EPO). Basso, Beattie and Bresnahan (BBB) locomotor scale and grid walk tests were then utilized to estimate neurological rehabilitation. Additionally, the following assays were performed: Immunofluorescence localization of BMSCs to the site of SCI; the transwell migration assay to detect in vitro cellular migration; the terminal deoxynucleotidyl transferase dUTP nick end labeling assay to determine the apoptotic index of the lesion; and western blotting analysis to evaluate the expression of vascular endothelial growth factor (VEGF) and brain derived neurotrophic factor (BDNF) at the site of SCI. The BBB scores of the BMSC + EPO treated group were significantly increased compared with the BMSC treatment group (P<0.05). For example, BMSC + EPO treated rats had a significantly decreased number of hind limb slips compared with the BMSC treatment group (P<0.05). Furthermore, EPO significantly increased the migration capacity of BMSCs compared with the control group (P<0.001). In addition, the apoptotic index of the BMSC + EPO group was significantly decreased compared with the BMSC group (P<0.05). Green fluorescent protein-labeled BMSCs were detected at the site of SCI in the BMSC and BMSCs + EPO groups, with the signal being notably stronger in the latter. Moreover, the expression of VEGF and BDNF in the BMSCs + EPO group was significantly increased compared with the BMSC group (P<0.05). In conclusion, the results of the present study indicate that EPO can facilitate the recruitment of BMSCs to sites of SCI

  9. Nitric Oxide Modulates Postnatal Bone Marrow-Derived Mesenchymal Stem Cell Migration

    Directory of Open Access Journals (Sweden)

    Valarmathi Mani Thiruvanamalai

    2016-11-01

    Full Text Available Nitric oxide (NO is a small free-radical gas molecule, which is highly diffusible and can activate a wide range of downstream effectors, with rapid and widespread cellular effects. NO is a versatile signaling mediator with a plethora of cellular functions. For example, NO has been shown to regulate actin, the microfilament, dependent cellular functions, and also acts as a putative stem cell differentiation-inducing agent. In this study, using a wound-healing model of cellular migration, we have explored the effect of exogenous NO on the kinetics of movement and morphological changes in postnatal bone marrow-derived mesenchymal stem cells (MSCs. Cellular migration kinetics and morphological changes of the migrating MSCs were measured in the presence of an NO donor (S-Nitroso-N-Acetyl-D, L-Penicillamine, SNAP, especially, to track the dynamics of single-cell responses. Two experimental conditions were assessed, in which SNAP (200 µM was applied to the MSCs. In the first experimental group (SN-1, SNAP was applied immediately following wound formation, and migration kinetics was determined for 24 hours. In the second experimental group (SN-2, MSCs were pretreated for 7 days with SNAP prior to wound formation and the determination of migration kinetics. The generated displacement curves were further analyzed by non-linear regression analysis. The migration displacement of the controls and NO treated MSCs (SN-1 and SN-2 were best described by a two parameter exponential functions expressing difference constant coefficients. Additionally, changes in the fractal dimension (D of migrating MSCs were correlated with their displacement kinetics for all the three groups. Overall, these data suggest that NO may evidently function as a stop migration signal by disordering the cytoskeletal elements required for cell movement and proliferation of MSCs.

  10. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents.

    Directory of Open Access Journals (Sweden)

    Melissa L M Khoo

    Full Text Available Bone marrow-derived human mesenchymal stem cells (hMSCs have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF, and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for

  11. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  12. Potential Spermatogenesis Recovery with Bone Marrow Mesenchymal Stem Cells in an Azoospermic Rat Model

    Directory of Open Access Journals (Sweden)

    Deying Zhang

    2014-07-01

    Full Text Available Non-obstructive azoospermia is the most challenging type of male infertility. Stem cell based therapy provides the potential to enhance the recovery of spermatogenesis following cancer therapy. Bone marrow-derived mesenchymal stem cells (BMSCs possess the potential to differentiate or trans-differentiate into multi-lineage cells, secrete paracrine factors to recruit the resident stem cells to participate in tissue regeneration, or fuse with the local cells in the affected region. In this study, we tested whether spermatogenically-induced BMSCs can restore spermatogenesis after administration of an anticancer drug. Allogeneic BMSCs were co-cultured in conditioned media derived from cultured testicular Sertoli cells in vitro, and then induced stem cells were transplanted into the seminiferous tubules of a busulfan-induced azoospermatic rat model for 8 weeks. The in vitro induced BMSCs exhibited specific spermatogonic gene and protein markers, and after implantation the donor cells survived and located at the basement membranes of the recipient seminiferous tubules, in accordance with what are considered the unique biological characteristics of spermatogenic stem cells. Molecular markers of spermatogonial stem cells and spermatogonia (Vasa, Stella, SMAD1, Dazl, GCNF, HSP90α, integrinβ1, and c-kit were expressed in the recipient testis tissue. No tumor mass, immune response, or inflammatory reaction developed. In conclusion, BMSCs might provide the potential to trans-differentiate into spermatogenic-like-cells, enhancing endogenous fertility recovery. The present study indicates that BMSCs might offer alternative treatment for the patients with azoospermatic infertility after cancer chemotherapy.

  13. Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial.

    Science.gov (United States)

    Vega, Aurelio; Martín-Ferrero, Miguel Angel; Del Canto, Francisco; Alberca, Mercedes; García, Veronica; Munar, Anna; Orozco, Lluis; Soler, Robert; Fuertes, Juan Jose; Huguet, Marina; Sánchez, Ana; García-Sancho, Javier

    2015-08-01

    Osteoarthritis is the most prevalent joint disease and a common cause of joint pain, functional loss, and disability. Conventional treatments demonstrate only modest clinical benefits without lesion reversal. Autologous mesenchymal stromal cell (MSC) treatments have shown feasibility, safety, and strong indications for clinical efficacy. We performed a randomized, active control trial to assess the feasibility and safety of treating osteoarthritis with allogeneic MSCs, and we obtain information regarding the efficacy of this treatment. We randomized 30 patients with chronic knee pain unresponsive to conservative treatments and showing radiological evidence of osteoarthritis into 2 groups of 15 patients. The test group was treated with allogeneic bone marrow MSCs by intra-articular injection of 40 × 10(6) cells. The control group received intra-articular hyaluronic acid (60 mg, single dose). Clinical outcomes were followed for 1 year and included evaluations of pain, disability, and quality of life. Articular cartilage quality was assessed by quantitative magnetic resonance imaging T2 mapping. Feasibility and safety were confirmed and indications of clinical efficacy were identified. The MSC-treated patients displayed significant improvement in algofunctional indices versus the active controls treated with hyaluronic acid. Quantification of cartilage quality by T2 relaxation measurements showed a significant decrease in poor cartilage areas, with cartilage quality improvements in MSC-treated patients. Allogeneic MSC therapy may be a valid alternative for the treatment of chronic knee osteoarthritis that is more logistically convenient than autologous MSC treatment. The intervention is simple, does not require surgery, provides pain relief, and significantly improves cartilage quality.

  14. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.; Ari, Krakowski; Luo, Kunxin; Chen, David J.; Li, Song

    2004-08-08

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.

  15. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Ranera Beatriz

    2012-08-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs derived from bone marrow (BM-MSCs and adipose tissue (AT-MSCs are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2. This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. Conclusions Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.

  16. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  17. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Yeh, Su-Peng; Lo, Wen-Jyi; Lin, Chiao-Lin; Liao, Yu-Min; Lin, Chen-Yuan; Bai, Li-Yuan; Liang, Ji-An; Chiu, Chang-Fang

    2012-02-01

    Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only "cytogenetic remission" but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

  18. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  19. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration

    Science.gov (United States)

    Almeida, Catarina R.; Almeida, Maria Inês; Silva, Andreia M.; Molinos, Maria; Lamas, Sofia; Pereira, Catarina L.; Teixeira, Graciosa Q.; Monteiro, António T.; Santos, Susana G.; Gonçalves, Raquel M.; Barbosa, Mário A.

    2016-01-01

    Abstract Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC‐transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT‐1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC‐transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL‐2, IL‐4, IL‐6, and IL‐10, and downregulation of the cytokines IL‐13 and TNF‐α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. Stem Cells Translational Medicine 2017;6:1029–1039 PMID:28297581

  20. Hepatitis B virus infection and replication in human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ma Ruiping

    2011-10-01

    Full Text Available Abstract Background Hepatitis B virus (HBV infection is a blood borne infectious disease that affects the liver. Human bone marrow mesenchymal stem cells (BMSCs may serve as a cell source for adult stem cell transplantation in liver repair. However, the susceptibility of human BMSCs to HBV infection is poorly understood. The aim of this study was to investigate the infection and replication of HBV in cultures of human BMSCs. Results Human BMSCs were confirmed using flow cytometry. Intracellular HBV DNA was detected at d 2 after infection and maintained at relatively high levels from d 6 to d 12. The maximal level of intracellular HBV DNA was 9.37 × 105 copies/mL. The extracellular HBV DNA was observed from d 3 to d 15, and the levels ranged from 3.792 × 102 copies/mL to 4.067 × 105 copies/mL. HBsAg in the culture medium was detected from d 2 to d 16. HBeAg secretion was positive from d 5 to d 13. HBcAg constantly showed positive signals in approximately 7%-20% of BMSCs from 2 days after exposure. Intracellular HBV covalently closed circular DNA (cccDNA could be detected as early as 2 days postinfection, and strong signals were obtained with increasing time. Conclusion HBV can infect and replicate in human BMSCs. Human BMSCs may be a useful tool for investigating HBV life-cycle and the mechanism of initial virus-cell interactions.

  1. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  2. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan Yu-Min

    2009-09-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a potential therapeutic option for tissue engineering and regenerative medicine, but many issues remain to be resolved, such as the amount of seed cells, committed differentiation and the efficiency. Several previous studies have focused on the study of chemical inducement microenvironments. In the present study, we investigated the effects of gravity on the differentiation of bone marrow mesenchymal stem cells (BMSCs into force-sensitive or force-insensitive cells. Methods and results Rat BMSCs (rBMSCs were cultured under hypergravity or simulated microgravity (SMG conditions with or without inducement medium. The expression levels of the characteristic proteins were measured and analyzed using immunocytochemical, RT-PCR and Western-blot analyses. After treatment with 5-azacytidine and hypergravity, rBMSCs expressed more characteristic proteins of cardiomyocytes such as cTnT, GATA4 and β-MHC; however, fewer such proteins were seen with SMG. After treating rBMSCs with osteogenic inducer and hypergravity, there were marked increases in the expression levels of ColIA1, Cbfa1 and ALP. Reverse results were obtained with SMG. rBMSCs treated with adipogenic inducer and SMG expressed greater levels of PPARgamma. Greater levels of Cbfa1- or cTnT-positive cells were observed under hypergravity without inducer, as shown by FACS analysis. These results indicate that hypergravity induces differentiation of rBMSCs into force-sensitive cells (cardiomyocytes and osteoblasts, whereas SMG induces force-insensitive cells (adipocytes. Conclusion Taken together, we conclude that gravity is an important factor affecting the differentiation of rBMSCs; this provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated or undifferentiated cells.

  3. Reconstruction of Drug-induced Cleft Palate Using Bone Marrow Mesenchymal Stem Cell in Rodents.

    Science.gov (United States)

    Amalraj, Julie Christy; Gangothri, Manasa; Babu, Hari

    2017-01-01

    Triamcinolone acetonide (TAC) (Kenacort*) is a commonly used synthetic glucocorticoid in today's medical practice. The drug is also a potential agent in inducing cleft palates in rats. This drug has been used to induce cleft palate in the fetus of the pregnant rats to bring out a suitable animal model for human cleft lip and palate. The drug was given intraperitoneally to induce congenital cleft palate in pregnant mother rats. The aim of this study is to induce congenital cleft palate in pregnant Wister albino rats and reconstruct the defect with bone marrow mesenchymal stem cells (BMSCs) isolated from the same species along with PLGA (poly lactic co glycolic acid) scaffold. Twenty female animals were divided into two groups. Each group contains 10 animals. The animals were allowed to mate with male rat during the esterase period and the day, in hich vaginal plug was noticed was taken to be day 0. The pregnant rats were given triamcinolone acetonide (Kenacort* 10 mg/1 ml intramuscularly/intravenous [IM/IV] injections) injection intraperitoneally at two different dosages as the existing literature. The injection was given on the 10, 12, and 14 th day of gestation. The clinical changes observed were recorded, and the change in the body weight was noted carefully. Group 1 which received 0.5 mg/kg body weight of TAC had many drug toxic effects. Group 2 which received 0.05 mg/kg body weight produced cleft palate in rat pups. The pups were divided into three groups. Group A control group without cell transplant, the cleft was allowed to close by itself. Group B containing palate reconstructed with plain PLGA scaffold (Bioscaffold, Singapore) without BMSC, Group C containing BMSC and PLGA scaffold (Bioscaffold, Singapore), Group C operated for the cleft palate reconstruction using BMSCs and PLGA scaffold. There was faster and efficient reconstruction of bone in the cleft defect in Group C while there was no defect closure in Group A and B. There was complete

  4. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  5. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway

    Directory of Open Access Journals (Sweden)

    Na Li

    2016-01-01

    Full Text Available Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic.

  6. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2016-01-01

    Full Text Available Objective: To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model. Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs group, erythropoietin (EPO group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected. Results: Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group. Conclusions: Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  7. [Progress of Clinical Trials on Bone Marrow Mesenchymal Stem Cells for Prevention and Therapy of Graft-Versus-Host Disease].

    Science.gov (United States)

    Zhong, Dan-Li; Tu, San-Fang; Li, Yu-Hua

    2015-12-01

    Graft-versus-host disease (GVHD) is a major complication following allogenetic hematopoietic stem cell transplantation, which shows a great threat to patients' survival and life quality. Along with multiple differentiation potential to various types of progenitor cells, bone marrow mesenchymal stem cells (BMMSC) have been confirmed to possess low immunogenicity and exert favorable immunomodulation. The recent studies show that the safety and high efficiency of BMMSC to prevent and cure GVHD greatly improved survival rate of the hosts. The most recent progress on prevention and therapy of GVHD is summarized in this review based on biology of BMMSC and pathogenesis of GVHD, so as to provide the effective evidence for further research.

  8. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  9. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy.

    Science.gov (United States)

    Liu, Xuebin; Fu, Xiaojun; Dai, Guanghui; Wang, Xiaodong; Zhang, Zan; Cheng, Hongbin; Zheng, Pei; An, Yihua

    2017-02-24

    Bone marrow mesenchymal stem cells (BMMSCs) and bone marrow mononuclear cells (BMMNCs) are both used to treat spastic cerebral palsy. However, the differences in therapeutic effect remain unknown. A total of 105 patients with spastic cerebral palsy were enrolled and randomly assigned to three groups: the BMMSC group, the BMMNC group and the control group. Patients in both transplantation groups received four intrathecal cell injections. Patients in the control group received Bobath therapy. The gross motor function measure (GMFM) and the fine motor function measure (FMFM) were used to evaluate the therapeutic efficacy before transplantation and 3, 6, and 12 months after transplantation. Three months after cell transplantation, scores in the A dimension of GMFM and the A and C dimensions of FMFM scores in the BMMSC group are all higher than those of the BMMNC and the control groups (P < 0.05). Six months after cell transplantation, scores in the A, B dimensions of GMFM and the A, B, C, D, and E dimensions of FMFM scores in the BMMSC group are higher than those of the BMMNC and the control groups (P < 0.05). Twelve months after cell transplantation, scores in the A, B, and C dimensions of GMFM and the A, B, C, D, and E dimensions of FMFM scores in the BMMSC group are all higher than those of the BMMNC and the control groups (P < 0.05). No obvious adverse effects were investigated during follow-up. BMMSC transplantation for the treatment of cerebral palsy is safe and feasible, and can improve gross motor and fine motor function significantly. In addition, compared with BMMNC, the motor function of children improved significantly in terms of gross motor and fine motor functions.

  10. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Yuichi [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Nishiyama, Masahiko, E-mail: yamacho@saitama-med.ac.jp [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan)

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  11. Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, J.; Hrubá, A.; Velebný, V.; Kubala, Lukáš

    2008-01-01

    Roč. 32, č. 9 (2008), s. 1116-1125 ISSN 1065-6995 R&D Projects: GA ČR(CZ) GA305/08/1704 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : bone marrow * cell isolation * differentiation Subject RIV: BO - Biophysics Impact factor: 1.619, year: 2008

  12. Neural ganglioside GD2(+) cells define a subpopulation of mesenchymal stem cells in adult murine bone marrow.

    Science.gov (United States)

    Xu, Jie; Fan, WenJun; Tu, Xi Xiang; Zhang, Teng; Hou, Zhi Jie; Guo, Tao; Shu, Xin; Luo, Xi; Liu, Yang; Peng, Fei; Wang, Chang; Xu, LingZhi; Zhou, Han; Liu, Quentin

    2013-01-01

    Due to the lack of specific markers, the isolation of pure mesenchymal stem cells (MSCs) from murine bone marrow remains an unsolved problem. The present study explored whether the neural ganglioside GD2 could serve as a single surface marker to uniquely distinguish murine bone marrow MSCs (mBM-MSCs) from other marrow elements. Immunocytochemistry and flow cytometry, in combination with quantitative RT-PCR, were used to identify the expression of GD2 on culture-expanded mBM-MSCs. GD2(+) and GD2(-) fractions from mBM-MSCs cultures were sorted by immunosorting. Flow cytometry was performed to further analyze the biomarkers of GD2-sorted and unsorted cells. Employing CFU-F assay and CCK-8 assay, we examined the clonogenic and proliferative capabilities of GD2-sorted and unsorted cells. Using oil red O and von Kossa staining assay, we also assessed the multi-lineage potential of GD2-sortedand unsorted cells. We found that mBM-MSCs expressed a novel surface marker the neural ganglioside GD2. Importantly, mBM-MSCs were the only cells within bone marrow that expressed this marker. Further studies demonstrated that a homogenous population of MSCs could be obtained from bone marrow cultures in early passages by GD2 immunosorting. Compared to parental cells, GD2(+)-sorted cells not only possessed much higher clonogenic and proliferative capabilities but also had significantly stronger differentiation potential to adipocytes and osteoblasts. Furthermore, GD2(+)-sorted cells displayed enhanced expression of ES markers SSEA-1 and Nanog. Our observations provide the first demonstration that GD2 may serve as a maker for identification and purification of mBM-MSCs. Meanwhile, our study indicates that the cells selected by GD2 are a subpopulation of MSCs with features of primitive precursor cells. © 2013 S. Karger AG, Basel

  13. Neural Ganglioside GD2+ Cells Define a Subpopulation of Mesenchymal Stem Cells in Adult Murine Bone Marrow

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-09-01

    Full Text Available Background/Aims: Due to the lack of specific markers, the isolation of pure mesenchymal stem cells (MSCs from murine bone marrow remains an unsolved problem. The present study explored whether the neural ganglioside GD2 could serve as a single surface marker to uniquely distinguish murine bone marrow MSCs (mBM-MSCs from other marrow elements. Methods: Immunocytochemistry and flow cytometry, in combination with quantitative RT-PCR, were used to identify the expression of GD2 on culture-expanded mBM-MSCs. GD2+ and GD2- fractions from mBM-MSCs cultures were sorted by immunosorting. Flow cytometry was performed to further analyze the biomarkers of GD2-sorted and unsorted cells. Employing CFU-F assay and CCK-8 assay, we examined the clonogenic and proliferative capabilities of GD2-sorted and unsorted cells. Using oil red O and von Kossa staining assay, we also assessed the multi-lineage potential of GD2-sortedand unsorted cells. Results: We found that mBM-MSCs expressed a novel surface marker the neural ganglioside GD2. Importantly, mBM-MSCs were the only cells within bone marrow that expressed this marker. Further studies demonstrated that a homogenous population of MSCs could be obtained from bone marrow cultures in early passages by GD2 immunosorting. Compared to parental cells, GD2+-sorted cells not only possessed much higher clonogenic and proliferative capabilities but also had significantly stronger differentiation potential to adipocytes and osteoblasts. Furthermore, GD2+-sorted cells displayed enhanced expression of ES markers SSEA-1 and Nanog. Conclusion: Our observations provide the first demonstration that GD2 may serve as a maker for identification and purification of mBM-MSCs. Meanwhile, our study indicates that the cells selected by GD2 are a subpopulation of MSCs with features of primitive precursor cells.

  14. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.

    Science.gov (United States)

    Xu, Liangliang; Liu, Yamei; Sun, Yuxin; Wang, Bin; Xiong, Yunpu; Lin, Weiping; Wei, Qiushi; Wang, Haibin; He, Wei; Wang, Bin; Li, Gang

    2017-12-06

    Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the assertion has also been lacking. Human bone marrow-derived MSCs (BMSCs) and adipose tissue-derived MSCs (ATSCs) were isolated from bone marrow and adipose tissue obtained after total hip arthroplasty. ATSCs and BMSCs were incubated in standard growth medium. Trilineage differentiation including osteogenesis, adipogenesis, and chondrogenesis was performed by addition of relevant induction mediums. The expression levels of trilineage differentiation marker genes were evaluated by quantitative RT-PCR. The methylation status of CpG sites of Runx2, PPARγ, and Sox9 promoters were checked by bisulfite sequencing. In addition, ectopic bone formation and calvarial bone critical defect models were used to evaluate the bone regeneration ability of ATSCs and BMSCs in vivo. The results showed that BMSCs possessed stronger osteogenic and lower adipogenic differentiation potentials compared to ATSCs. There was no significant difference in the chondrogenic differentiation potential. The CpG sites of Runx2 promoter in BMSCs were hypomethylated, while in ATSCs they were hypermethylated. The CpG sites of PPARγ promoter in ATSCs were hypomethylated, while in BMSCs they were hypermethylated. The methylation status of Sox9 promoter in BMSCs was only slightly lower than that in ATSCs. The epigenetic memory obtained from either bone marrow or adipose tissue favored MSC differentiation along an osteoblastic or adipocytic lineage. The methylation status of the main transcription factors controlling MSC fate contributes to the differential differentiation capacities of different source-derived MSCs.

  15. Low/Negative Expression of PDGFR-α Identifies the Candidate Primary Mesenchymal Stromal Cells in Adult Human Bone Marrow

    DEFF Research Database (Denmark)

    Li, Hongzhe; Ghazanfari, Roshanak; Zacharaki, Dimitra

    2014-01-01

    exhibited high levels of genes associated with mesenchymal lineages and HSC supportive function. Moreover, lin(-)/CD45(-)/CD271(+)/CD140a(low/-) cells effectively mediated the ex vivo expansion of transplantable CD34(+) hematopoietic stem cells. Taken together, these data indicate that CD140a is a key...... negative selection marker for adult human BM-MSCs, which enables to prospectively isolate a close to pure population of candidate human adult stroma stem/progenitor cells with potent hematopoiesis-supporting capacity.......Human bone marrow (BM) contains a rare population of nonhematopoietic mesenchymal stromal cells (MSCs), which are of central importance for the hematopoietic microenvironment. However, the precise phenotypic definition of these cells in adult BM has not yet been reported. In this study, we show...

  16. Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: donor influence on chondrogenesis.

    Science.gov (United States)

    Cicione, Claudia; Díaz-Prado, Silvia; Muiños-López, Emma; Hermida-Gómez, Tamara; Blanco, Francisco J

    2010-01-01

    The use of autologous or allogenic stem cells has recently been suggested as an alternative therapeutic approach for treatment of cartilage defects. Bone marrow mesenchymal stem cells (BM-MSCs) are well-characterized multipotent cells that can differentiate into different cell types. Understanding the potential of these cells and the molecular mechanisms underlying their differentiation should lead to innovative protocols for clinical applications. The aim of this study was to evaluate the usefulness of surface antigen selection of BM-MSCs and to understand the mechanisms underlying their differentiation. MSCs were isolated from BM stroma and expanded. CD105+ subpopulation was isolated using a magnetic separator. We compared culture-expanded selected cells with non-selected cells. We analyzed the phenotypic profiles, the expression of the stem cell marker genes Nanog, Oct3/4, and Sox2 and the multi-lineage differentiation potential (adipogenic, osteogenic, and chondrogenic). The multi-lineage differentiation was confirmed using histochemistry, immunohistochemistry and/or real-time polymerase chain reaction (qPCR) techniques. The selected and non-selected cells displayed similar phenotypes and multi-lineage differentiation potentials. Analyzing each cell source individually, we could divide the six donors into two groups: one with a high percentage of CD29 (β1-integrin) expression (HL); one with a low percentage of CD29 (LL). These two groups had different chondrogenic capacities and different expression levels of the stem cell marker genes. This study showed that phenotypic profiles of donors were related to the chondrogenic potential of human BM-MSCs. The chondrogenic potential of donors was related to CD29 expression levels. The high expression of CD29 antigen seemed necessary for chondrogenic differentiation. Further investigation into the mechanisms responsible for these differences in BM-MSCs chondrogenesis is therefore warranted. Understanding the mechanisms

  17. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  18. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-01-01

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1 −/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1 −/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1 −/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1 −/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory

  19. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  20. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  1. [Bone marrow mesenchymal stem cells in Sprague-Dawley rat model of osteoarthritis].

    Science.gov (United States)

    Cui, Y P; Cao, Y P; Liu, H; Yang, X; Meng, Z C; Wang, R

    2015-04-18

    To investigate the efficacy of single time intra-articular different concentration of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) injection in the treatment of Sprague-Dawley (SD) rat model of osteoarthritis (OA). In the study, 32 SD rats were equally randomized into 4 groups: control group, high concentration group (1×10(7)/mL BM-MSCs), low concentration group (5×10(6)/mL BM-MSCs) and high vs. low concentration group. The two knees of each rat were set up to a pair. The induction of OA was performed surgically randomly at one side in model group, and bilaterally in the other groups, which were through anterior cruciate ligament transaction (ACLT) and medial meniscus excising. After the operation, the SD rats were allowed free movement. Four weeks later, different concentrations of allogeneic BM-MSCs isolated from the SD rats, expanded in vitro and suspended in phosphate buffered solution (PBS) were delivered in the articular cavity of both knees; PBS was used as the control. After injection, we excised the femoral nerve and sciatic nerve to disuse the low limb. The cartilage histological sections of knees were scored by Mankin scoring system to assess the severity of the pathology. mRNA of collagen II was detected by real time polymerase chain reaction (RT-PCR). eGFP was detected by fluorescence microscope. Assessments were carried out 4 weeks after the operation in model group, and 3 weeks after injection in the other groups. Mankin scores of the BM-MSCs side and control side were 6.60±0.40 vs. 10.00±0.32 in low concentration group (P0.05). mRNA expression of collagen II of the BM-MSCs side in low concentration group was 106%±1% in contrast to the control side. As in high concentration group it was 108%±1%, and 102%±1% in high vs. low concentration group. Labeled BM-MSCs were detected unexpectedly in the synovial membrane but not in cartilage tissue three weeks from injection. BM-MSCs could promote cartilage repair and inhibit OA progression

  2. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice.

    Science.gov (United States)

    de Mayo, Tomas; Conget, Paulette; Becerra-Bayona, Silvia; Sossa, Claudia L; Galvis, Virgilio; Arango-Rodríguez, Martha L

    2017-01-01

    Mesenchymal stromal cells (MSCs) have shown to be a promising tool in cell therapies to treat different conditions. Several pre-clinical and clinical studies have proved that the transplantation of MSCs improves wound healing. Here, we compare the beneficial effects of mouse bone marrow-derived allogeneic MSCs (allo-mBM-MSCs) and their acelullar derivatives (allo-acd-mMSCs) on skin wound healing in Non-Obese Diabetic (NOD) mice. One dose of allo-mBM-MSCs (1×106 cells) or one dose of allo-acd-mMSCs (1X) were intradermally injected around wounds in 8-10 week old female NOD mice. Wound healing was evaluated macroscopically (wound closure) every two days, and microscopically (reepithelialization, dermoepidermal junction, skin appendage regeneration, leukocyte infiltration, vascularization, granulation tissue formation, and density of collagen fibers in the dermis) after 16 days of MSC injection. In addition, we measured growth factors and specific proteins that were present in the allo-acd-mMSCs. Results showed significant differences in the wound healing kinetics of lesions that received allo-acd-mMSCs compared to lesions that received vehicle or allo-mBM-MSCs. In particular, mice treated with allo-acd-mMSCs reached significantly higher percentages of wound closure at day 4, 6 and 8, relative to the allo-mBM-MSCs and vehicle groups (p healing process. Specifically, they caused a less pronounced inflammatory severe response (p hand, ELISA analyses indicated that the allo-acd-mMSCs contained growth factors and proteins relevant to wound healing such as IGF-1, KGF, HGF, VEGF, ANG-2, MMP-1, CoL-1 and PGE2. Compared to allo-acd-mMSCs, the administration of allo-mBM-MSCs is insufficient for wound healing in diabetic mice and delays the therapeutic effect, which maybe explained by the fact that trophic factors secreted by MSCs are critical for skin regeneration, and not the cells per se, suggesting that MSCs may require some time to secrete these factors after their

  3. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium.

    Directory of Open Access Journals (Sweden)

    Makiko Nakahara

    Full Text Available Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs, even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM obtained from human bone marrow-derived mesenchymal stem cells (MSCs (MSC-CM for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+/K(+-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1 for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary

  4. Hepatogenic and neurogenic differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses.

    Science.gov (United States)

    Dueñas, Fernando; Becerra, Víctor; Cortes, Yennifer; Vidal, Sonia; Sáenz, Leonardo; Palomino, Jaime; De Los Reyes, Mónica; Peralta, Oscar A

    2014-07-10

    Mesenchymal stem cells (MSC) are multipotent progenitor cells characterized by their ability to both self-renew and differentiate into tissues of mesodermal origin. The plasticity or transdifferentiation potential of MSC is not limited to mesodermal derivatives, since under appropriate cell culture conditions and stimulation by bioactive factors, MSC have also been differentiated into endodermal (hepatocytes) and neuroectodermal (neurons) cells. The potential of MSC for hepatogenic and neurogenic differentiation has been well documented in different animal models; however, few reports are currently available on large animal models. In the present study we sought to characterize the hepatogenic and neurogenic differentiation and multipotent potential of bovine MSC (bMSC) isolated from bone marrow (BM) of abattoir-derived fetuses. Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. Flow cytometric analysis demonstrated that bMSC populations were positive for MSC markers CD29 and CD73 and pluripotency markers OCT4 and NANOG; whereas, were negative for hematopoietic markers CD34 and CD45. Levels of mRNA of hepatic genes α-fetoprotein (AFP), albumin (ALB), alpha1 antitrypsin (α1AT), connexin 32 (CNX32), tyrosine aminotransferase (TAT) and cytochrome P450 (CYP3A4) were up-regulated in bMSC during a 28-Day period of hepatogenic differentiation. Functional analyses in differentiated bMSC cultures evidenced an increase (P < 0.05) in albumin and urea production and glycogen storage. bMSC cultured under neurogenic conditions expressed NESTIN and MAP2 proteins at 24 h of culture; whereas, at 144 h also expressed TRKA and PrPC. Levels of MAP2 and TRKA mRNA were up-regulated at the end of the differentiation period. Conversely, bMSC expressed lower levels of NANOG mRNA during both hepatogenic and neurogenic differentiation processes. The expression patterns of linage-specific markers and the production of

  5. Intravenous Infusion of Bone Marrow-Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats.

    Science.gov (United States)

    Matsuda, Yohei; Sasaki, Masanori; Kataoka-Sasaki, Yuko; Takayanagi, Akio; Kobayashi, Ko; Oka, Shinichi; Nakazaki, Masahito; Masumori, Naoya; Kocsis, Jeffery D; Honmou, Osamu

    2018-03-01

    Intravenous preload (delivered before cavernous nerve [CN] injury) of bone marrow-derived mesenchymal stem cells (MSCs) can prevent or decrease postoperative erectile dysfunction (J Sex Med 2015;12:1713-1721). In the present study, the potential therapeutic effects of intravenously administered MSCs on postoperative erectile dysfunction were evaluated in a rat model of CN injury. Male Sprague-Dawley rats were randomized into 2 groups after electric CN injury. Intravenous infusion of bone marrow-derived MSCs (1.0 × 10 6 cells in Dulbecco's modified Eagle's medium 1 mL) or vehicle (Dulbecco's modified Eagle's medium 1 mL) was performed 3 hours after electrocautery-induced CN injury. To assess erectile function, we measured intracavernous pressure at 4 weeks after MSC or vehicle infusion. Histologic examinations were performed to investigate neuronal innervation and inhibition of smooth muscle atrophy. Green fluorescent protein-positive bone marrow-derived MSCs were used for cell tracking. To investigate mRNA expression levels of neurotrophins in the major pelvic ganglia (MPGs), quantitative real-time polymerase chain reaction was performed. The decrease of intracavernous pressure corrected for arterial pressure and area under the curve of intracavernous pressure in the bone marrow-derived MSC group was significantly lower than that in the vehicle group at 4 weeks after infusion (P derived MSCs were detected in the MPGs and injured CNs using confocal microscopy, indicating homing of cells to the MPGs and injured CNs. Brain-derived neurotrophic factor and glial cell-derived neurotrophic factor expression levels in the MPGs were significantly higher in the MSC group than in the vehicle group (P derived MSCs after CN injury might have therapeutic efficacy in experimental erectile dysfunction. Matsuda Y, Sasaki M, Kataoka-Sasaki Y, et al. Intravenous Infusion of Bone Marrow-Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in

  6. Caloric restriction and the adipokine leptin alter the SDF-1 signaling axis in bone marrow and in bone marrow derived mesenchymal stem cells.

    Science.gov (United States)

    Periyasamy-Thandavan, Sudharsan; Herberg, Samuel; Arounleut, Phonepasong; Upadhyay, Sunil; Dukes, Amy; Davis, Colleen; Johnson, Maribeth; McGee-Lawrence, Meghan; Hamrick, Mark W; Isales, Carlos M; Hill, William D

    2015-07-15

    Growing evidence suggests that the chemokine stromal cell-derived factor-1 (SDF-1) is essential in regulating bone marrow (BM) derived mesenchymal stromal/stem cell (BMSC) survival, and differentiation to either a pro-osteogenic or pro-adipogenic fate. This study investigates the effects of caloric restriction (CR) and leptin on the SDF-1/CXCR4 axis in bone and BM tissues in the context of age-associated bone loss. For in vivo studies, we collected bone, BM cells and BM interstitial fluid from 12 and 20 month-old C57Bl6 mice fed ad-libitum (AL), and 20-month-old mice on long-term CR with, or without, intraperitoneal injection of leptin for 10 days (10 mg/kg). To mimic conditions of CR in vitro, 18 month murine BMSCs were treated with (1) control (Ctrl): normal proliferation medium, (2) nutrient restriction (NR): low glucose, low serum medium, or (3) NR + leptin: NR medium + 100 ng/ml leptin for 6-48 h. In BMSCs both protein and mRNA expression of SDF-1 and CXCR4 were increased by CR and CR + leptin. In contrast, the alternate SDF-1 receptor CXCR7 was decreased, suggesting a nutrient signaling mediated change in SDF-1 axis signaling in BMSCs. However, in bone SDF-1, CXCR4 and 7 gene expression increase with age and this is reversed with CR, while addition of leptin returns this to the "aged" level. Histologically bone formation was lower in the calorically restricted mice and BM adipogenesis increased, both effects were reversed with the 10 day leptin treatment. This suggests that in bone CR and leptin alter the nutrient signaling pathways in different ways to affect the local action of the osteogenic cytokine SDF-1. Studies focusing on the molecular interaction between nutrient signaling by CR, leptin and SDF-1 axis may help to address age-related musculoskeletal changes. Published by Elsevier Ireland Ltd.

  7. Amphiregulin-EGFR Signaling Mediates the Migration of Bone Marrow Mesenchymal Progenitors toward PTH-Stimulated Osteoblasts and Osteocytes

    Science.gov (United States)

    Zhu, Ji; Siclari, Valerie A.; Liu, Fei; Spatz, Jordan M.; Chandra, Abhishek; Divieti Pajevic, Paola; Qin, Ling

    2012-01-01

    Intermittent administration of parathyroid hormone (PTH) dramatically increases bone mass and currently is one of the most effective treatments for osteoporosis. However, the detailed mechanisms are still largely unknown. Here we demonstrate that conditioned media from PTH-treated osteoblastic and osteocytic cells contain soluble chemotactic factors for bone marrow mesenchymal progenitors, which express a low amount of PTH receptor (PTH1R) and do not respond to PTH stimulation by increasing cAMP production or migrating toward PTH alone. Conditioned media from PTH-treated osteoblasts elevated phosphorylated Akt and p38MAPK amounts in mesenchymal progenitors and inhibition of these pathways blocked the migration of these progenitors toward conditioned media. Our previous and current studies revealed that PTH stimulates the expression of amphiregulin, an epidermal growth factor (EGF)-like ligand that signals through the EGF receptor (EGFR), in both osteoblasts and osteocytes. Interestingly, conditioned media from PTH-treated osteoblasts increased EGFR phosphorylation in mesenchymal progenitors. Using several different approaches, including inhibitor, neutralizing antibody, and siRNA, we demonstrate that PTH increases the release of amphiregulin from osteoblastic cells, which acts on the EGFRs expressed on mesenchymal progenitors to stimulate the Akt and p38MAPK pathways and subsequently promote their migration in vitro. Furthermore, inactivation of EGFR signaling specifically in osteoprogenitors/osteoblasts attenuated the anabolic actions of PTH on bone formation. Taken together, these results suggest a novel mechanism for the therapeutic effect of PTH on osteoporosis and an important role of EGFR signaling in mediating PTH's anabolic actions on bone. PMID:23300521

  8. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.

    Science.gov (United States)

    Zhang, Cui; Li, Liang; Jiang, Yuanda; Wang, Cuicui; Geng, Baoming; Wang, Yanqiu; Chen, Jianling; Liu, Fei; Qiu, Peng; Zhai, Guangjie; Chen, Ping; Quan, Renfu; Wang, Jinfu

    2018-03-13

    Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite. The satellite returned to Earth after going through space experiments in orbit for 12 d, and cell samples were harvested and analyzed for differentiation potentials. The results showed that space microgravity inhibited osteogenic differentiation and resulted in adipogenic differentiation, even under osteogenic induction conditions. Under space microgravity, the expression of 10 genes specific for osteogenesis decreased, including collagen family members, alkaline phosphatase ( ALP), and runt-related transcription factor 2 ( RUNX2), whereas the expression of 4 genes specific for adipogenesis increased, including adipsin ( CFD), leptin ( LEP), CCAAT/enhancer binding protein β ( CEBPB), and peroxisome proliferator-activated receptor-γ ( PPARG). In the analysis of signaling pathways specific for osteogenesis, we found that the expression and activity of RUNX2 was inhibited, expression of bone morphogenetic protein-2 ( BMP2) and activity of SMAD1/5/9 were decreased, and activity of focal adhesion kinase (FAK) and ERK-1/2 declined significantly under space microgravity. These data indicate that space microgravity plays a dual role by decreasing RUNX2 expression and activity through the BMP2/SMAD and integrin/FAK/ERK pathways. In addition, we found that space microgravity increased p38 MAPK and protein kinase B (AKT) activities, which are important for the promotion of adipogenic differentiation of hMSCs. Space microgravity significantly

  9. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  10. Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds.

    Science.gov (United States)

    Zimolag, Eliza; Borowczyk-Michalowska, Julia; Kedracka-Krok, Sylwia; Skupien-Rabian, Bozena; Karnas, Elzbieta; Lasota, Slawomir; Sroka, Jolanta; Drukala, Justyna; Madeja, Zbigniew

    2017-02-01

    Bone marrow-derived cells are thought to participate and enhance the healing process contributing to skin cells or releasing regulatory cytokines. Directional cell migration in a weak direct current electric field (DC-EF), known as electrotaxis, may be a way of cell recruitment to the wound site. Here we examined the influence of electric field on bone marrow adherent cells (BMACs) and its potential role as a factor attracting mesenchymal stem cells to cutaneous wounds. We observed that in an external EF, BMAC movement was accelerated and highly directed with distinction of two cell populations migrating toward opposite poles: mesenchymal stem cells migrated toward the cathode, whereas macrophages toward the anode. Analysis of intracellular pathways revealed that macrophage electrotaxis mostly depended on Rho family small GTPases and calcium ions, but interruption of PI3K and Arp2/3 had the most pronounced effect on electrotaxis of MSCs. However, in all cases we observed only a partial decrease in directionality of cell movement after inhibition of certain proteins. Additionally, although we noticed the accumulation of EGFR at the cathodal side of MSCs, it was not involved in electrotaxis. Moreover, the cell reaction to EF was very dynamic with first symptoms occurring within <1min. In conclusion, the physiological DC-EF may act as a factor positioning bone marrow cells within a wound bed and the opposite direction of MSC and macrophage movement did not result either from utilizing different signalling or redistribution of investigated cell surface receptors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-01-01

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol -1 s -1 , higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  12. The role of bone marrow-derived mesenchymal stem cells in treating formocresol induced oral ulcers in dogs.

    Science.gov (United States)

    El-Menoufy, H; Aly, L A A; Aziz, M T A; Atta, H M; Roshdy, N K; Rashed, L A; Sabry, D

    2010-04-01

    Mesenchymal stem cells (MSCs), a subpopulation of adult somatic stem cells, are an attractive stem cell source in regenerative medicine because of their multipotentiality. In this study, the effects of MSCs transplantation on oral ulcer healing were examined. Mesenchymal stem cells were isolated from bone marrow aspirates of dogs by dish adherence and expanded in culture. Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Either autologous MSCs or vehicle (saline) was injected around the ulcer. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by reverse transcription-polymerase chain reaction. Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Mesenchymal stem cells expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared with controls. Mesenchymal stem cells transplantation may help accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression.

  13. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Koch, Thomas Gadegaard; Heerkens, T.

    2009-01-01

    including bone marrow and umbilical cord blood. The objective of this study was to provide an in vitro comparison of the chondrogenic potential in MSC derived from adult bone marrow (BM-MSC) and umbilical cord blood (CB-MSC). Results: MSC from both sources produced tissue with cartilage-like morphology...... CB- and BM-MSC pellets. Protein concentration of cartilage-derived retinoic acid sensitive protein was higher in culture medium from CB- than BM-MSC pellets. Conclusion: CB-MSC and BM-MSC were both capable of producting hyaline-like cartilage in vitro. Howeverm, in this study the MSC from umbilical...... cord blood appeared to have more chondrogenic potential than the BM-MSC based on the cells tested and parameters measured....

  15. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Keith A Russell

    Full Text Available Mesenchymal stromal cells (MSC hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies.We hypothesized that canine adipose tissue (AT and bone marrow (BM MSC (derived from the same dogs will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1 proliferation rate, 2 cell surface marker expression, 3 DNA methylation levels, 4 potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5 immunomodulatory potency in vitro.1 AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days for passage (P 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21. 2 Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3 Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4 Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3-based induction medium. 5 Immunomodulatory capacity was equal regardless of cell source when tested in

  16. A Simplified Method for the Aspiration of Bone Marrow from Patients Undergoing Hip and Knee Joint Replacement for Isolating Mesenchymal Stem Cells and In Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Subhash C. Juneja

    2016-01-01

    Full Text Available The procedure for aspiration of bone marrow from the femur of patients undergoing total knee arthroplasty (TKA or total hip arthroplasty (THA may vary from an OR (operating room to OR based on the surgeon’s skill and may lead to varied extent of clotting of the marrow and this, in turn, presents difficulty in the isolation of mesenchymal stem cells (MSCs from such clotted bone marrow. We present a simple detailed protocol for aspirating bone marrow from such patients, isolation, and characterization of MSCs from the aspirated bone marrow specimens and show that the bone marrow presented no clotting or exhibited minimal clotting. This represents an economical source and convenient source of MSCs from bone marrow for use in regenerative medicine. Also, we presented the detailed protocol and showed that the MSCs derived from such bone marrow specimens exhibited MSCs characteristics and generated micromass cartilages, the recipe for regenerative medicine for osteoarthritis. The protocols we presented can be used as standard operating procedures (SOPs by researchers and clinicians.

  17. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  18. Activation of Notch1 signaling alleviates dysfunction of bone marrow-derived mesenchymal stem cells induced by cigarette smoke extract

    Directory of Open Access Journals (Sweden)

    Cheng Y

    2017-10-01

    Full Text Available Yi Cheng,* Wen Gu,* Guorui Zhang, Xiaoming Li, Xuejun Guo Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Bone marrow-derived mesenchymal stem cells (BM-MSCs are considered attractive therapeutic agents for the treatment of COPD. However, little is known about the impact of Notch on the proliferation, migration, and survival of MSCs in a cigarette smoke (CS microenvironment. Here, we used CS extract to mimic the CS microenvironment in vitro, with the intention to investigate the effect of Notch in regulating proliferation, migration, and survival of BM-MSCs. Rat bone marrow mesenchymal stem cells were infected with lentivirus vector containing the intracellular domain of Notch1 (N1ICD and challenged with CS extract. Cell proliferation was detected by Ki67 staining and expression of cell cycle-related proteins. A transwell assay was used to measure cell migration and the expression of apoptotic proteins was examined. The proliferation of BM-MSCs overexpressing N1ICD significantly increased. Consistently, levels of cyclin D1, p-Rb, and E2F-1 increased in N1ICD overexpressing cells. N1ICD overexpression also increased cell migration compared with the control group. N1ICD overexpression equilibrated the expression of Bax and Bcl-2, and blocked caspase-3 cleavage, contributing to the inhibition of apoptosis. Moreover, blockade of the PI3K/Akt pathway suppressed the aforementioned cytoprotective effects of N1ICD. In conclusion, activation of Notch signaling improved proliferation, migration, and survival of BM-MSCs in a CS microenvironment partly through the PI3K/Akt pathway. Keywords: mesenchymal stem cells, chronic obstructive pulmonary disease, cigarette smoke extract, Notch

  19. Bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5 in culture and show enhanced chondrogenesis in hypoxic conditions.

    Science.gov (United States)

    Khan, Wasim S; Adesida, Adetola B; Tew, Simon R; Lowe, Emma T; Hardingham, Timothy E

    2010-06-01

    Bone marrow-derived mesenchymal stem cells are a potential source of cells for the repair of articular cartilage defects. Hypoxia has been shown to improve chondrogenesis in some cells. In this study, bone marrow-derived stem cells were characterized and the effects of hypoxia on chondrogenesis investigated. Adherent bone marrow colony-forming cells were characterized for stem cell surface epitopes, and then cultured as cell aggregates in chondrogenic medium under normoxic (20% oxygen) or hypoxic (5% oxygen) conditions. The cells stained strongly for markers of adult mesenchymal stem cells, and a high number of cells were also positive for the pericyte marker 3G5. The cells showed a chondrogenic response in cell aggregate cultures and, in lowered oxygen, there was increased matrix accumulation of proteoglycan, but less cell proliferation. In hypoxia, there was increased expression of key transcription factor SOX6, and of collagens II and XI, and aggrecan. Pericytes are a candidate stem cell in many tissue, and our results show that bone marrow-derived mesenchymal stem cells express the pericyte marker 3G5. The response to chondrogenic culture in these cells was enhanced by lowered oxygen tension. This has important implications for tissue engineering applications of bone marrow-derived stem cells. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Bone marrow mesenchymal stem cells differentiation and proliferation on the surface of coral implant

    International Nuclear Information System (INIS)

    Al-Salihi, K.A.; Samsudin, A.R.

    2004-01-01

    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher asurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo. (Author)

  1. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  2. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    International Nuclear Information System (INIS)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L.

    2015-01-01

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS

  3. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L. [Department of Hematology, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai Xuhui District Central Hospital, Shanghai (China)

    2015-01-20

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS.

  4. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia.

    Science.gov (United States)

    Wang, Dong; Zhang, Jianjun

    2012-04-05

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  5. Therapeutic effect of bone marrow mesenchymal stem cells pretreated with acetylsalicylic acid on experimental periodontitis in rats.

    Science.gov (United States)

    Zhang, Yixin; Xiong, Yi; Chen, Xiwen; Chen, Chenfeng; Zhu, Zhimin; Li, Lei

    2018-01-01

    Periodontitis is a local inflammatory environment with dysregulation of host responses, which results in destruction of periodontal tissues. Mesenchymal stem cells (MSCs) have been proven to play important roles in tissue regeneration by serving as progenitor cells, but its therapeutic outcomes are yet, evaluated variable and unpredictable because of the influence of local inflammation. Acetylsalicylic acid (ASA) has been reported to benefit for MSCs in terms of inflammation control and tissue regeneration. In this study, we aimed to explore the effect of bone marrow mesenchymal stem cells (BMMSCs) pretreated with ASA (ASA-BMMSCs) on periodontal bone repair in a ligature and bacteria-induced periodontitis model in rats. We show herein that, ASA-BMMSCs treatment reduced inflammatory infiltration and alveolar bone loss in periodontitis rats, reflected by immunohistochemistry staining of OPG/RANK-L and Micro-CT. Levels of TNF-α and IL-17 decreased while IL-10 increased after the treatment of ASA-BMMSCs in periodontitis rats. In addition, less osteoclasts number was detected in ASA-BMMSCs treated group. In vitro study showed that ASA facilitated BMMSCs proliferation and differentiation, which might explain the reduced bone loss in periodontitis. These results together suggest that local application of ASA-BMMSCs in periodontal lesion sites is capable of improving inflammatory microenvironment, promoting alveolar bone regeneration, thus leading to a recovery of periodontal homeostasis. Besides, this study also provides us a new idea that a combined application of ASA and BMMSCs may be a novel approach for periodontitis treatment and periodontal bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bone Marrow-Derived Mesenchymal Stromal Cells Enhanced by Platelet-Rich Plasma Maintain Adhesion to Scaffolds in Arthroscopic Simulation.

    Science.gov (United States)

    Hoberman, Alexander R; Cirino, Carl; McCarthy, Mary Beth; Cote, Mark P; Pauzenberger, Leo; Beitzel, Knut; Mazzocca, Augustus D; Dyrna, Felix

    2018-03-01

    To assess the response of bone marrow-derived mesenchymal stromal cells (bMSCs) enhanced by platelet-rich plasma (PRP) in the setting of a normal human tendon (NHT), a demineralized bone matrix (DBM), and a fibrin scaffold (FS) with simulated arthroscopic mechanical washout stress. Bone marrow was aspirated from the humeral head and concentrated. BMSCs were counted, plated, and grown to confluence. Cells were seeded onto 3 different scaffolds: (1) NHT, (2) DBM, and (3) FS. Each scaffold was treated with a combination of (+)/(-) PRP and (+)/(-) arthroscopic washout simulation. A period of 60 minutes was allotted before arthroscopic washout. Adhesion, proliferation, and differentiation assays were performed to assess cellular activity in each condition. Significant differences were seen in mesenchymal stromal cell adhesion, proliferation, and differentiation among the scaffolds. DBM and FS showed superior results to NHT for cell adhesion, proliferation, and differentiation. PRP significantly enhanced cellular adhesion, proliferation, and differentiation. Arthroscopic simulation did not significantly decrease bMSC adhesion. We found that the type of scaffold impacts bMSCs' behavior. Both scaffolds (DBM and FS) were superior to NHT. The use of an arthroscopic simulator did not significantly decrease the adhesion of bMSCs to the scaffolds nor did it decrease their biologic differentiation potential. In addition, PRP enhanced cellular adhesion, proliferation, and differentiation. Improved healing after tendon repair can lead to better clinical outcomes. BMSCs are attractive for enhancing healing given their accessibility and regenerative potential. Application of bMSCs using scaffolds as cell carriers relies on arthroscopic feasibility. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    Science.gov (United States)

    Granchi, Donatella; Ochoa, Gorka; Leonardi, Elisa; Devescovi, Valentina; Baglìo, Serena Rubina; Osaba, Lourdes; Baldini, Nicola; Ciapetti, Gabriela

    2010-06-01

    Bone marrow is commonly used as a source of adult multipotent mesenchymal stem cells (MSCs), defined for their ability to differentiate in vitro into multiple lineages. The ex vivo-expanded MSCs are currently being evaluated as a strategy for the restoration of function in damaged skeletal tissue, both in cell therapy and tissue engineering applications. The aim of this study was to define gene expression patterns underlying the differentiation of MSCs into mature osteoblasts during the expansion in vitro, and to explore a variety of cell functions that cannot be easily evaluated using morphological, cytochemical, and biochemical assays. Cell cultures were obtained from bone marrow samples of six individuals undergoing total hip replacement, and a large-scale transcriptome analysis, using Affymetrix HG-U133A Plus 2.0 array (Affymetrix((R)), Santa Clara, CA), was performed at the occurrence of specific events, including the appearance of MSC surface markers, formation of colonies, and deposition of mineral nodules. We focused our attention on 213 differentially upregulated genes, some belonging to well-known pathways and some having one or more Gene Ontology annotations related to bone cell biology, including angiogenesis, bone-related genes, cell communication, development and morphogenesis, transforming growth factor-beta signaling, and Wnt signaling. Twenty-nine genes, whose role in bone cell pathophysiology has not been described yet, were found. In conclusion, gene expression patterns that characterize the early, intermediate, and late phases of the osteogenic differentiation process of ex vivo-expanded MSCs were defined. These signatures represent a useful tool to monitor the osteogenic process, and to analyze a broad spectrum of functions of MSCs cultured on scaffolds, especially when the constructs are conceived for releasing growth factors or other signals to promote bone regeneration.

  8. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  9. Multiple Autologous Bone Marrow-Derived CD271+Mesenchymal Stem Cell Transplantation Overcomes Drug-Resistant Epilepsy in Children.

    Science.gov (United States)

    Milczarek, Olga; Jarocha, Danuta; Starowicz-Filip, Anna; Kwiatkowski, Stanislaw; Badyra, Bogna; Majka, Marcin

    2018-01-01

    There is a need among patients suffering from drug-resistant epilepsy (DRE) for more efficient and less toxic treatments. The objective of the present study was to assess the safety, feasibility, and potential efficacy of autologous bone marrow cell transplantation in pediatric patients with DRE. Two females and two males (11 months to 6 years) were enrolled and underwent a combined therapy consisting of autologous bone marrow nucleated cells (BMNCs) transplantation (intrathecal: 0.5 × 10 9 ; intravenous: 0.38 × 10 9 -1.72 × 10 9 ) followed by four rounds of intrathecal bone marrow mesenchymal stem cells (BMMSCs) transplantation (18.5 × 10 6 -40 × 10 6 ) every 3 months. The BMMSCs used were a unique population derived from CD271-positive cells. The neurological evaluation included magnetic resonance imaging, electroencephalography (EEG), and cognitive development assessment. The characteristics of BMMSCs were evaluated. Four intravenous and 20 intrathecal transplantations into the cerebrospinal fluid were performed. There were no adverse events, and the therapy was safe and feasible over 2 years of follow-up. The therapy resulted in neurological and cognitive improvement in all patients, including a reduction in the number of epileptic seizures (from 10 per day to 1 per week) and an absence of status epilepticus episodes (from 4 per week to 0 per week). The number of discharges on the EEG evaluation was decreased, and cognitive improvement was noted with respect to reactions to light and sound, emotions, and motor function. An analysis of the BMMSCs' characteristics revealed the expression of neurotrophic, proangiogenic, and tissue remodeling factors, and the immunomodulatory potential. Our results demonstrate the safety and feasibility of BMNCs and BMMSCs transplantations and the considerable neurological and cognitive improvement in children with DRE. Stem Cells Translational Medicine 2018;7:20-33. © 2017 The Authors Stem Cells Translational Medicine

  10. Bone Marrow Diseases

    Science.gov (United States)

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  11. Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice

    DEFF Research Database (Denmark)

    Niemeyer, P; Vohrer, J; Schmal, H

    2008-01-01

    INTRODUCTION: Mesenchymal stromal cells (MSC) represent an attractive cell population for tissue engineering purposes. As MSC are described as immunoprivileged, non-autologous applications seem possible. A basic requirement is the survival of MSC after transplantation in the host. The purpose...... of the current paper was to evaluate the survival of undifferentiated and osteogenically induced human MSC from different origins after transplantation in immunocompetent mice. METHODS: Human MSC were isolated from bone marrow (BMSC) and adipose tissue (ASC). After cultivation on mineralized collagen, MSC were...... osteogenic-induced MSC (group B) could be detected in only three of 24 cases. Quantification of lymphocytes and macrophages revealed significantly higher cell numbers in group B compared with group A (Pcell...

  12. Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

    Science.gov (United States)

    Jang, Dong-Kyu; Park, Sang-In; Han, Young-Min; Jang, Kyung-Sool; Park, Moon-Seo; Chung, Young-An; Kim, Min-Wook; Maeng, Lee-So; Huh, Pil-Woo; Yoo, Do-Sung; Jung, Seong-Whan

    2011-01-01

    This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs) on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP) in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (P < .05). MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway. PMID:21772790

  13. Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

    Directory of Open Access Journals (Sweden)

    Dong-Kyu Jang

    2011-01-01

    Full Text Available This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (<.05. MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway.

  14. Comparison among bone marrow mesenchymal stem and mononuclear cells to promote functional recovery after spinal cord injury in rabbits.

    Science.gov (United States)

    Fonseca, Antônio Filipe Braga; Scheffer, Jussara Peters; Giraldi-Guimarães, Arthur; Coelho, Bárbara Paula; Medina, Raphael Mansur; Oliveira, André Lacerda Abreu

    2017-12-01

    To investigate the efficacy of allogeneic mesenchymal stem-cells and autologous mononuclear cells to promote sensorimotor recovery and tissue rescue. Female rabbits were submitted to the epidural balloon inflation method and the intravenous cells administrations were made after 8 hours or seven days after injury induction. Sensorimotor evaluation of the hindlimbs was performed, and the euthanasia was made thirty days after the treatment. Spinal cords were stained with hematoxylin and eosin. Both therapies given 8 hours after the injury promoted the sensorimotor recovery after a week. Only the group treated after a week with mononuclear cells showed no significant recovery at post-injury day 14. In the days 21 and 28, all treatments promoted significant recovery. Histopathological analysis showed no difference among the experimental groups. Our results showed that both bone marrow-derived cell types promoted significant sensorimotor recovery after injury, and the treatment made at least a week after injury is efficient. The possibilities of therapy with bone marrow-derived cells are large, increasing the therapeutic arsenal for the treatment of spinal cord injury.

  15. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    , but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin...... (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13(+), CD29......Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...

  16. Mass Production of Early-Stage Bone-Marrow-Derived Mesenchymal Stem Cells of Rat Using Gelatin-Coated Matrix

    Science.gov (United States)

    Yun, Jung Im; Kim, Choonghyo; Lim, Jeong Mook

    2013-01-01

    Although preparation of early-stage bone-marrow-derived mesenchymal stem cells (BM-MSCs) is critical for successful cell transplantation therapy, no culture system offers a sufficient number of early-stage BM-MSCs for cell transplantation. Accordingly, we developed a culture system capable of producing a large number of early-stage BM-MSCs by using gelatin-coated matrix. The greatest retrieval and proliferation rates of the earliest-stage rat BM-MSCs were detected in bone-marrow-derived cells cultured on 1% (wt/v) gelatin-coated matrix, which showed significantly greater colony forming unit-fibroblast number, diameter, and total cell number. Moreover, continuous culture of the earliest-stage BM-MSCs on 1% (wt/v) gelatin-coated matrix resulted in a maximum of 21.2 ± 2.7 fold increase in the cumulative total number of early-stage BM-MSCs at passage 5. BM-MSCs generated in large quantities due to a reduced doubling time and an increased yield of cell population in S/G2/M phase showed typical fibroblast-like morphology and no significant differences in BM-MSC-related surface marker expression and differentiation potential, except for an increased ratio of differentiation into a neurogenic lineage. The use of gelatin-coated matrix in the retrieval and culture of BM-MSCs contributes greatly to the effective isolation and mass production of early-stage BM-MSCs. PMID:24288676

  17. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  18. Characterization and Expression of Senescence Marker in Prolonged Passages of Rat Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Ridzuan, Noridzzaida; Al Abbar, Akram; Yip, Wai Kien; Maqbool, Maryam

    2016-01-01

    The present study is aimed at optimizing the in vitro culture protocol for generation of rat bone marrow- (BM-) derived mesenchymal stem cells (MSCs) and characterizing the culture-mediated cellular senescence. The initial phase of generation and characterization was conducted using the adherent cells from Sprague Dawley (SD) rat's BM via morphological analysis, growth kinetics, colony forming unit capacity, immunophenotyping, and mesodermal lineage differentiation. Mesenchymal stem cells were successfully generated and characterized as delineated by the expressions of CD90.1, CD44H, CD29, and CD71 and lack of CD11b/c and CD45 markers. Upon induction, rBM-MSCs differentiated into osteocytes and adipocytes and expressed osteocytes and adipocytes genes. However, a decline in cell growth was observed at passage 4 onwards and it was further deciphered through apoptosis, cell cycle, and senescence assays. Despite the enhanced cell viability at later passages (P4-5), the expression of senescence marker, β-galactosidase, was significantly increased at passage 5. Furthermore, the cell cycle analysis has confirmed the in vitro culture-mediated cellular senescence where cells were arrested at the G0/G1 phase of cell cycle. Although the currently optimized protocols had successfully yielded rBM-MSCs, the culture-mediated cellular senescence limits the growth of rBM-MSCs and its potential use in rat-based MSC research. PMID:27579045

  19. Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Tao, Ke; Xiao, Deming; Weng, Jian; Xiong, Ao; Kang, Bin; Zeng, Hui

    2016-01-05

    Berberine (BBR) has recently been reported to be extensively used for musculoskeletal disorders such as osteoporosis through enhancing osteogenic differentiation, inhibiting osteoclastogenesis and bone resorption and repressing adipogenesis. Although canonical Wnt signaling plays a crucial role in suppressing bone marrow-derived mesenchymal stem cells (MSCs) commitment to the chondrogenic and adipogenic lineage and enhancing osteogenic differentiation, no previous reports have shown an association between BBR-induced osteogenesis and Wnt/β-catenin signaling pathway. In this study, we aimed to investigate the stimulatory effect and the mechanism of BBR on osteogenic differentiation of human bone marrow-derived MSCs. MSCs were isolated from bone marrow specimens and treated with different concentration of BBR. Cell viability was measured by the WST-8 assay. Effects of BBR on osteogenic differentiation of MSCs were assessed by von Kossa staining, ALP staining and ALP activity. Osteogenic specific genes, chondrogenic and adipogenic related marker genes were determined by quantitative real-time polymerase chain reaction analysis. Western blot and Immunofluorescence staining were performed to analyze OCN and OPN, and β-catenin expression in the presence or absence of BBR combined with DKK-1 or β-catenin siRNA transfection. Increasing concentration of BBR (3, 10 and 30 μM) promoted osteogenic differentiation and osteogenic genes expression after incubation for various days compared with DMSO group, whereas expression levels of chondrogenic and adipogenic related marker genes were dramatically suppressed. After treated with 10μM BBR for 7 days, β-catenin, OPN and OCN expression were significantly induced, which could be effectively suppressed by the addition of DKK-1 or β-catenin siRNA β-catenin. Interestingly, the expression level of Runx2 gene was also decreased by inhibiting the transduction of Wnt/β-catenin signaling. These findings suggest that BBR can

  20. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  1. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuli; Wu, Hongxia; Shen, Ming; Ding, Siyang; Miao, Jing; Chen, Ning, E-mail: 2927410849@qq.com

    2017-01-01

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.

  2. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  3. Comparative Study Between Mesenchymal Stem Cells Derived from Bone Marrow and from Adipose Tissue, Associated with Xenograft, in Appositional Reconstructions: Histomorphometric Study in Rabbit Calvaria.

    Science.gov (United States)

    Coelho de Faria, Andrea Baptista; Chiantia, Fernando Biolcati; Teixeira, Marcelo Lucchesi; Aloise, Antonio Carlos; Pelegrine, André Antonio

    This study analyzed the use of bone marrow-derived mesenchymal stem cells and adipose tissue-derived stem cells, associated with xenograft, in appositional reconstructions in rabbit calvaria using histomorphometry. Fifteen New Zealand rabbits, weighing 3.5 to 4.0 kg and aged between 10 and 12 months, were randomly divided into three groups. Appositional bone reconstruction situations were created in the calvaria of the animals using titanium cylinders, fitted with titanium occlusive caps. Bone decortication was performed to promote bleeding. Inside the cylinders, only xenograft was positioned in the control group (CG; n = 5); xenograft combined with mesenchymal bone marrow-derived stem cells was positioned in group 1 (G1; n = 5), and a xenograft combined with adult mesenchymal stem cells derived from adipose tissue was positioned in group 2 (G2; n = 5). After 56 days, all rabbits were euthanized and their parietal bones processed for histomorphometric analysis, and the following parameters were evaluated: newly formed bone; residual graft particles; soft tissue; vital bone titanium contact, also called the level of osseointegration; and the level of bone volume contained inside the cylinders, also called the internal bone volume. The histomorphometric study revealed the following for CG, G1, and G2: newly formed bone of 18.96% ± 9.00%, 27.88% ± 9.98%, and 22.32% ± 7.45%; residual graft particles of 28.43% ± 2.44%, 23.31% ± 3.11%, and 27.58% ± 3.98%; soft tissue of 52.61% ± 10.80%, 50.23% ± 8.72%, and 49.90% ± 8.76%; vital bone titanium contact of 4.98% ± 4.30%, 34.91% ± 7.82%, and 20.87% ± 5.43%; and internal bone volume of 88.36% ± 25.97%, 98.73% ± 19.05%, and 98.52% ± 19.87%, respectively. No statistical difference between groups for newly formed bone, residual graft particles, soft tissue, and internal bone volume (P > .05) were verified. Regarding vital bone titanium contact, it was observed that the use of bone marrow mesenchymal stem cells

  4. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.

    Science.gov (United States)

    Stanko, Peter; Kaiserova, Katarina; Altanerova, Veronika; Altaner, Cestmir

    2014-09-01

    Our aims were to characterize human mesenchymal stem cells isolated from various tissues by pluripotent stem cells gene expression profile. Four strains of dental pulp stem cells (DP-MSCs) were isolated from dental pulp tissue fragments adhered to plastic tissue culture dishes. Mesenchymal stem cells derived from umbilical cord tissue (UBC-MSCs) were isolated with the same technique. Bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated from nucleated cells of bone marrow obtained by density gradient centrifugation. Human mesenchymal stem cells from adipose tissue (AT-MSCs) were isolated by collagenase digestion. All kinds of MSCs used in this study were cultivated in low glucose DMEM containing 5% or human platelet extract. All stem cell manipulation was performed in GMP conditions. Expression of 15 pluripotent stem cells genes on the level of proteins was measured by Proteome Profiler Human Pluripotent Stem Cell Array. Induction of MSCs to in vitro differentiation to adipocytes, osteoblasts, chondroblasts was achieved by cultivation of cells in appropriate differentiation medium. All MSCs tested were phenotypically similar and of fibroblastoid morphology. DP-MSCs and UBC-MSCs were more proliferative than bone marrow BM-MSCs and AT-MSCs. Protein expression of 15 genes typical for pluripotent stem cells distinguished them into two groups. While the gene expression profiles of BM-MSC, AT-MSCs and UBC-MSCs were similar, DP-MSCS differed in relative gene expression on the level of their products in several genes. Dental pulp mesenchymal stem cells cultivated in vitro under the same conditions as MSCs from bone marrow, adipose tissue and umbilical cord tissue can be distinguished by pluripotent stem cell gene expression profile.

  5. Reconstruction of orbital defects by implantation of antigen-free bovine cancellous bone scaffold combined with bone marrow mesenchymal stem cells in rats.

    Science.gov (United States)

    Zhao, Jingjing; Yang, Chunbo; Su, Chang; Yu, Min; Zhang, Xiaomin; Huang, Shuo; Li, Gang; Yu, Meili; Li, Xiaorong

    2013-05-01

    Tissue-engineering approach can result in significant bone regeneration. We aimed to reconstruct the segmental orbital rim defects with antigen-free bovine cancellous bone (BCB) scaffolds combined with bone marrow mesenchymal stem cells (BMSCs) in rats. BCB was prepared by degreasing, deproteinization and partly decalcification. BMSCs isolated from green fluorescent protein (GFP) transgenic rats were osteogenically induced and seeded onto BCB scaffolds to construct induced BMSCs/BCB composites. An 8-mm full-thickness defect on the rat inferior-orbit rim was established. Induced BMSCs/BCB composites cultured for 5 days were implanted into the orbital defects as the experimental group. Noninduced BMSCs/BCB group, BCB group and exclusive group were set. General condition, spiral CT, 3D orbital reconstruction, histological and histomorphometric analysis were performed after implantation. BCB presented reticular porous structure. GFP-BMSCs adhering to BCB appeared bright green fluorescence and grew vigorously. Infection and graft dislocation were not observed. In induced BMSCs/BCB group, CT and 3D reconstruction showed perfect orbital repair situation. Histological analysis indicated BCB was mostly biodegraded; newly formed bone and complete synostosis were observed. The percentage of newly formed bone was (57.12 ± 6.28) %. In contrast, more residual BCB, less newly formed bone and nonunion were observed in the noninduced BMSCs/BCB group. Slowly absorbed BCB enwrapped by fibrous connective tissue and a small amount of new bone occurred in BCB group. Fibrous connective tissue appeared in exclusive group. Antigen-free bovine cancellous bone that retains natural bone porous structure and moderate mechanical strength with elimination of antigen is the ideal carrier for mesenchymal stem cells in vitro. BCB combined with BMSCs is a promising composite for tissue engineering, and can effectively reconstruct the orbit rim defects in rats.

  6. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Pang

    Full Text Available The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2, to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively (P<0.01. Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.

  7. Autologous platelet-rich plasma induces bone formation of tissue-engineered bone with bone marrow mesenchymal stem cells on beta-tricalcium phosphate ceramics.

    Science.gov (United States)

    Yu, Tengbo; Pan, Huazheng; Hu, Yanling; Tao, Hao; Wang, Kai; Zhang, Chengdong

    2017-11-21

    The purpose of the study is to investigate whether autologous platelet-rich plasma (PRP) can serve as bone-inducing factors to provide osteoinduction and improve bone regeneration for tissue-engineered bones fabricated with bone marrow mesenchymal stem cells (MSCs) and beta-tricalcium phosphate (β-TCP) ceramics. The current study will give more insight into the contradictory osteogenic capacity of PRP. The concentration of platelets, platelet-derived growth factor-AB (PDGF-AB), and transforming growth factor-β1 (TGF-β1) were measured in PRP and whole blood. Tissue-engineered bones using MSCs on β-TCP scaffolds in combination with autologous PRP were fabricated (PRP group). Controls were established without the use of autologous PRP (non-PRP group). In vitro, the proliferation and osteogenic differentiation of MSCs on fabricated constructs from six rabbits were evaluated with MTT assay, alkaline phosphatase (ALP) activity, and osteocalcin (OC) content measurement after 1, 7, and 14 days of culture. For in vivo study, the segmental defects of radial diaphyses of 12 rabbits from each group were repaired by fabricated constructs. Bone-forming capacity of the implanted constructs was determined by radiographic and histological analysis at 4 and 8 weeks postoperatively. PRP produced significantly higher concentration of platelets, PDGF-AB, and TGF-β1 than whole blood. In vitro study, MTT assay demonstrated that the MSCs in the presence of autologous PRP exhibited excellent proliferation at each time point. The results of osteogenic capacity detection showed significantly higher levels of synthesis of ALP and OC by the MSCs in combination with autologous PRP after 7 and 14 days of culture. In vivo study, radiographic observation showed that the PRP group produced significantly higher score than the non-PRP group at each time point. For histological evaluation, significantly higher volume of regenerated bone was found in the PRP group when compared with the non

  8. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  9. Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina — Final 3-year follow-up

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Haack-Sørensen, Mandana; Jørgensen, Erik

    2013-01-01

    The study assessed long-term safety and efficacy of intramyocardial injection of autologous bone-marrow derived mesenchymal stromal cells (BMMSCs) in patients with severe stable coronary artery disease (CAD) and refractory angina.......The study assessed long-term safety and efficacy of intramyocardial injection of autologous bone-marrow derived mesenchymal stromal cells (BMMSCs) in patients with severe stable coronary artery disease (CAD) and refractory angina....

  10. Vascular endothelial growth factor/bone morphogenetic protein-2 bone marrow combined modification of the mesenchymal stem cells to repair the avascular necrosis of the femoral head

    Science.gov (United States)

    Ma, Xiao-Wei; Cui, Da-Ping; Zhao, De-Wei

    2015-01-01

    Vascular endothelial cell growth factor (VEGF) combined with bone morphogenetic protein (BMP) was used to repair avascular necrosis of the femoral head, which can maintain the osteogenic phenotype of seed cells, and effectively secrete VEGF and BMP-2, and effectively promote blood vessel regeneration and contribute to formation and revascularization of tissue engineered bone tissues. To observe the therapeutic effect on the treatment of avascular necrosis of the femoral head by using bone marrow mesenchymal stem cells (BMSCs) modified by VEGF-165 and BMP-2 in vitro. The models were avascular necrosis of femoral head of rabbits on right leg. There groups were single core decompression group, core decompression + BMSCs group, core decompression + VEGF-165/BMP-2 transfect BMSCs group. Necrotic bone was cleared out under arthroscope. Arthroscopic observation demonstrated that necrotic bone was cleared out in each group, and fresh blood flowed out. Histomorphology determination showed that blood vessel number and new bone area in the repair region were significantly greater at various time points following transplantation in the core decompression + VEGF-165/BMP-2 transfect BMSCs group compared with single core decompression group and core decompression + BMSCs group (P < 0.05). These suggested that VEGF-165/BMP-2 gene transfection strengthened osteogenic effects of BMSCs, elevated number and quality of new bones and accelerated the repair of osteonecrosis of the femoral head. PMID:26629044

  11. Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Windhager Reinhard

    2007-03-01

    Full Text Available Abstract Background Human mesenchymal stem cells (MSC with the capacity to differentiate into osteoblasts provide potential for the development of novel treatment strategies, such as improved healing of large bone defects. However, their low frequency in bone marrow necessitate ex vivo expansion for further clinical application. In this study we asked if MSC are developing in an aberrant or unwanted way during ex vivo long-term cultivation and if artificial cultivation conditions exert any influence on their stem cell maintenance. To address this question we first developed human oligonucleotide microarrays with 30.000 elements and then performed large-scale expression profiling of long-term expanded MSC and MSC during differentiation into osteoblasts. Results The results showed that MSC did not alter their osteogenic differentiation capacity, surface marker profile, and the expression profiles of MSC during expansion. Microarray analysis of MSC during osteogenic differentiation identified three candidate genes for further examination and functional analysis: ID4, CRYAB, and SORT1. Additionally, we were able to reconstruct the three developmental phases during osteoblast differentiation: proliferation, matrix maturation, and mineralization, and illustrate the activation of the SMAD signaling pathways by TGF-β2 and BMPs. Conclusion With a variety of assays we could show that MSC represent a cell population which can be expanded for therapeutic applications.

  12. Inhibition of iron overload-induced apoptosis and necrosis of bone marrow mesenchymal stem cells by melatonin.

    Science.gov (United States)

    Yang, Fan; Li, Yuan; Yan, Gege; Liu, Tianyi; Feng, Chao; Gong, Rui; Yuan, Ye; Ding, Fengzhi; Zhang, Lai; Idiiatullina, Elina; Pavlov, Valentin; Han, Zhenbo; Ma, Wenya; Huang, Qi; Yu, Ying; Bao, Zhengyi; Wang, Xiuxiu; Hua, Bingjie; Du, Zhimin; Cai, Benzhi; Yang, Lei

    2017-05-09

    Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls' Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.

  13. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  14. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta.

    Science.gov (United States)

    Du, Wen Jing; Chi, Ying; Yang, Zhou Xin; Li, Zong Jin; Cui, Jun Jie; Song, Bao Quan; Li, Xue; Yang, Shao Guang; Han, Zhi Bo; Han, Zhong Chao

    2016-11-10

    Mesenchymal stem cells (MSCs) have been widely proven effective for therapeutic angiogenesis in ischemia animal models as well as clinical vascular diseases. Because of the invasive method, limited resources, and aging problems of adult tissue-derived MSCs, more perinatal tissue-derived MSCs have been isolated and studied as promising substitutable MSCs for cell transplantation. However, fewer studies have comparatively studied the angiogenic efficacy of MSCs derived from different tissues sources. Here, we evaluated whether the in-situ environment would affect the angiogenic potential of MSCs. We harvested MSCs from adult bone marrow (BMSCs), adipose tissue (AMSCs), perinatal umbilical cord (UMSCs), and placental chorionic villi (PMSCs), and studied their "MSC identity" by flow cytometry and in-vitro trilineage differentiation assay. Then we comparatively studied their endothelial differentiation capabilities and paracrine actions side by side in vitro. Our data showed that UMSCs and PMSCs fitted well with the minimum standard of MSCs as well as BMSCs and AMSCs. Interestingly, we found that MSCs regardless of their tissue origins could develop similar endothelial-relevant functions in vitro, including producing eNOS and uptaking ac-LDL during endothelial differentiation in spite of their feeble expression of endothelial-related genes and proteins. Additionally, we surprisingly found that BMSCs and PMSCs could directly form tubular structures in vitro on Matrigel and their conditioned medium showed significant proangiogenic bioactivities on endothelial cells in vitro compared with those of AMSCs and UMSCs. Besides, several angiogenic genes were upregulated in BMSCs and PMSCs in comparison with AMSCs and UMSCs. Moreover, enzyme-linked immunosorbent assay further confirmed that BMSCs secreted much more VEGF, and PMSCs secreted much more HGF and PGE2. Our study demonstrated the heterogeneous proangiogenic properties of MSCs derived from different tissue origins, and

  15. CELL EXPANSION-DEPENDENT INFLAMMATORY AND METABOLIC PROFILE OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    Directory of Open Access Journals (Sweden)

    PATRICIA PRIETO

    2016-11-01

    Full Text Available Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to cell aging related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression and to anti-inflammatory cytokines (i.e., HO1 and Arg1 until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6 and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies.

  16. Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model.

    Science.gov (United States)

    Song, Fanglong; Tang, Jilei; Geng, Rui; Hu, Hansheng; Zhu, Chunhui; Cui, Weiding; Fan, Weimin

    2014-01-01

    To evaluate the therapeutic efficacy of uncultured bone marrow mononuclear cells (BMMCs) and bone mesenchymal stem cells in an osteoarthritis (OA) model of sheep. Induction of sheep OA was performed surgically through anterior cruciate ligament transection and medial meniscectomy. After 12 weeks, concentrated BMMCs obtained from autologous bone marrow harvested from anterior iliac crest or a single dose of 10 million autologous bone mesenchymal stem cells (BMSCs) suspended in phosphate-buffered saline (PBS) was delivered to the injured knee via direct intra-articular injection. Animals of the PBS group received vehicle alone. The contra-lateral joints were selected randomly as the control group. Knees of the four groups were compared macroscopically and histologically, and glycosaminoglycan (GAG) contents normalized to cartilage wet weight were measured at lesions of cartilage from medial condyle of the femur head. Gene expression levels of type II collagen (Col2A1), Aggrecan and matrix metalloproteinase-13 (MMP-13) in cartilage were measured based on RT-PCR and prostaglandin E2 (PGE2), Tumor Necrosis Factor-α (TNF-α) and Transforming Growth Factor beta (TGF-β) concentrations in synovial fluid were determined with ELISA assays at 8 weeks after injection. At 8 weeks post cell transplantation, partial cartilage repair was observed in the cell therapy, but not the PBS group (Pcells showed therapeutic efficacy in a sheep model of OA. Despite similar therapeutic potential, the easier and faster process of collection and isolation of BMMCs supports their utility as an effective alternative for OA treatment in the clinic.

  17. Characterization of mesenchymal stem cells of "no-options" patients with critical limb ischemia treated by autologous bone marrow mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Cestmir Altaner

    Full Text Available BACKGROUND: Application of autologous bone marrow mononuclear cells to "no option" patients with advanced critical limb ischemia (CLI prevented major limb amputation in 73% patients during the 6-month follow-up. We examined which properties of bone marrow stromal cells also known as bone-marrow derived mesenchymal stem cells of responding and non-responding patients are important for amputation-free survival. METHODS AND FINDINGS: Mesenchymal stem cells of 41 patients with CLI unsuitable for revascularisation were isolated from mononuclear bone marrow concentrate used for their treatment. Based on the clinical outcome of the treatment, we divided patients into two groups: responders and non-responders. Biological properties of responders' and non-responders' mesenchymal stem cells were characterized according to their ability to multiply, to differentiate in vitro, quantitative expression of cell surface markers, secretion of 27 cytokines, chemokines and growth factors, and to the relative expression of 15 mesenchymal stem cells important genes. Secretome comparison between responders (n=27 and non-responders (n=14 revealed significantly higher secretion values of IL-4, IL-6 and MIP-1b in the group of responders. The expression of cell markers CD44 and CD90 in mesenchymal stem cells from responders was significantly higher compared to non-responders (p<0.01. The expression of mesenchymal stem cells surface markers that was analyzed in 22 patients did not differ between diabetic (n=13 and non-diabetic (n=9 patient groups. Statistically significant higher expression of E-cadherin and PDX-1/IPF1 genes was found in non-responders, while expression of Snail was higher in responders. CONCLUSIONS: The quality of mesenchymal stem cells shown in the expression of cell surface markers, secreted factors and stem cell genes plays an important role in therapeutic outcome. Paracrine mechanisms are main drivers in the induction of reparatory processes in CLI

  18. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  19. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock

    Directory of Open Access Journals (Sweden)

    Gauthaman eKalamegam

    2016-05-01

    Full Text Available Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs from osteoarthritis (OA patients, and evaluated the effect of arthroscopic heat on cell viability in suspension and pellet cultures.Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 x 106 cells cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20 or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20 or 30 min for 72 h decreased cell proliferation in cell suspensions (63.27% at 30 min and increased cell proliferation in cell pellets (62.86% at 10 min and 68.57% at 20 min. hBMMSCs exposed to 37C, 45C and 55C for 120 seconds demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage

  20. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Wang, Suna; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-01-01

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RT PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  1. Expression of chemokine receptor-4 in bone marrow mesenchymal stem cells on experimental rat abdominal aortic aneurysms and the migration of bone marrow mesenchymal stem cells with stromal-derived factor-1

    Directory of Open Access Journals (Sweden)

    Miao-Yun Long

    2014-05-01

    Full Text Available This study investigated the expression and role of chemokine receptor-4 (CXCR4 in bone marrow mesenchymal stem cells (BMSCs from experimental rats with abdominal aortic aneurysms (AAA for migration of BMSCs. Sprague–Dawley rats were divided into an experimental group and control group (n = 18 each. AAA was induced with 0.75 M solution infiltrate for 30 minutes, after which the abdomen was rinsed and closed. Saline was used in place of CaCl2 in the control group. CD34 and CD29 were detected by flow cytometry, the gene and protein expression of CXCR4 were detected by real-time polymerase chain reaction and western blot, respectively. The migration of BMSCs with stromal-derived factor-1 was detected by Transwell chamber. CD34 expression was negative and CD29 expression was positive. The gene and protein expression of CXCR4 were significantly higher in experimental group than them in control group (p < 0.05, the migration ability of BMSCs from the experimental group was significantly higher than that from the control group (p < 0.05. Stromal-derived factor -1/CXCR4 can enhance the migration of BMSCs in vitro in a rat AAA model.

  2. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy.

    Science.gov (United States)

    Wang, Yue-Xin; Sun, Jing-Jing; Zhang, Mei; Hou, Xiao-Hua; Hong, Jun; Zhou, Ya-Jing; Zhang, Zhi-Yong

    2015-04-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  3. Membrane complement regulatory protein reduces the damage of transplanting autologous bone marrow mesenchymal stem cells by suppressing the activation of complement.

    Science.gov (United States)

    Xiao, Kai; Fang, Zhenhua; Gao, Xinfeng; Zhao, Jingjing; Huang, Ruokun; Xie, Ming

    2017-10-01

    There are few studies on the interaction of transplanting autologous bone marrow mesenchymal stem cells (BMSCs) and complement. In order to further explore the effect of complement on BMSCs, BMSCs were obtained from bone marrow of 20 cases clinical patients, and then experimented in vitro. The cytotoxicity of complement on the mesenchymal stem cells in autologous human serum (AHS) was measured by Europium cytotoxicity assay. The complement membrane attack complex (MAC) deposited on the membrane surface was detected by flow cytometry. Finally, the cytotoxicity on BMSCs was measured after mCRPs overexpression or knockdown. We found that more than 90% of cells derived from bone marrow were identified to be mesenchymal stem cells through detection of cell membrane surface markers by flow cytometry. BMSCs harvested from the 20 patients all had cytotoxicity after incubated with AHS, and the cytotoxicity was significant higher than that incubated with complement inactivated autologous human serum (iAHS). Complement attack complex (MAC) could be detected on the BMSCs incubated with AHS, which implied the complement activation. We also found that mCRPs CD55 and CD59 overexpressions can resist the cytotoxicity induced by complement activation, while mCRPs CD55 and CD59 knockdown can enhance the cytotoxicity. Thus, the results indicated that mCRPs could effectively protect BMSCs from attacking by complement by suppressing the activation of complement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  5. Myogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Fetal Bovine Bone Marrow.

    Science.gov (United States)

    Okamura, Lucas Hidenori; Cordero, Paloma; Palomino, Jaime; Parraguez, Victor Hugo; Torres, Cristian Gabriel; Peralta, Oscar Alejandro

    2018-01-02

    The myogenic potential of bovine fetal MSC (bfMSC) derived from bone marrow (BM) remains unknown; despite its potential application for the study of myogenesis and its implications for livestock production. In the present study, three protocols for in vitro myogenic differentiation of bfMSC based on the use of DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza), myoblast-secreted factor Galectin-1 (Gal-1), and myoblast culture medium SkGM-2 BulletKit were used. Plastic-adherent bfMSC were isolated from fetal BM collected from abattoir-derived fetuses. Post-thaw viability analyses detected 85.6% bfMSC negative for propidium iodine (PI). Levels of muscle regulatory factors (MRF) MYF5, MYF6, MYOD, and DES mRNA were higher (P < 0.05) in bfMSC cultured under 100 µM of 5-Aza compared to 1 and 10 µM. Treatment of bfMSC with 10 µM of 5-Aza resulted in down-regulation of MYOD mRNA (Days 7 to 21) and up-regulation of MYF6 (Day 7), MYF5, and DES mRNA (Day 21). Gal-1 and SkGM-2 BulletKit induced sequential down-regulation of early MRF (MYF5) and up-regulation of intermediate (MYOD) and late MRF (DES) mRNA. Moreover, DES and MYF5 were immunodetected in differentiated bfMSC. In conclusion, protocols evaluated in bfMSC induced progress into myogenic differentiation until certain extent evidenced by changes in MRF gene expression.

  6. Repression of COUP-TFI Improves Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-09-01

    Full Text Available Identifying molecular mechanisms that regulate insulin expression in bone marrow-derived mesenchymal stem cells (bmMSCs can provide clues on how to stimulate the differentiation of bmMSCs into insulin-producing cells (IPCs, which can be used as a therapeutic approach against type 1 diabetes (T1D. As repression factors may inhibit differentiation, the efficiency of this process is insufficient for cell transplantation. In this study, we used the mouse insulin 2 (Ins2 promoter sequence and performed a DNA affinity precipitation assay combined with liquid chromatography-mass spectrometry to identify the transcription factor, chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI. Functionally, bmMSCs were reprogrammed into IPCs via COUP-TFI suppression and MafA overexpression. The differentiated cells expressed higher levels of genes specific for islet endocrine cells, and they released C-peptide and insulin in response to glucose stimulation. Transplantation of IPCs into streptozotocin-induced diabetic mice caused a reduction in hyperglycemia. Mechanistically, COUP-TFI bound to the DR1 (direct repeats with 1 spacer element in the Ins2 promoter, thereby negatively regulating promoter activity. Taken together, the data provide a novel mechanism by which COUP-TFI acts as a negative regulator in the Ins2 promoter. The differentiation of bmMSCs into IPCs could be improved by knockdown of COUP-TFI, which may provide a novel stem cell-based therapy for T1D. Keywords: siRNAs, differentiation, stem cell transplantation, diabetes, mesenchymal stem cells

  7. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling.

    Science.gov (United States)

    De Boeck, Astrid; Pauwels, Patrick; Hensen, Karen; Rummens, Jean-Luc; Westbroek, Wendy; Hendrix, An; Maynard, Dawn; Denys, Hannelore; Lambein, Kathleen; Braems, Geert; Gespach, Christian; Bracke, Marc; De Wever, Olivier

    2013-04-01

    Bone marrow-derived mesenchymal stem cells (BM-MSC) migrate to primary tumours and drive tumour progression. This study aimed to identify the molecular mechanisms associated with these heterotypic cellular interactions and analyse their relevance in colorectal cancer (CRC). Paracrine interactions of BM-MSC with CRC cells were studied using collagen invasion assays, cell counts, flow cytometric cell-cycle analysis and tumour xenograft models. The role of neuregulin 1 (NRG1) and the human epidermal growth factor receptor (HER) family pathways were investigated using tyrosine kinase assays, mass spectrometry, pharmacological inhibition, antibody-mediated neutralisation and RNA interference. Transmembrane neuregulin 1 (tNRG1), HER2 and HER3 expression was analysed in primary CRC (n=54), adjacent normal colorectal tissues (n=4), liver metastases (n=3) and adjacent normal liver tissues (n=3) by immunohistochemistry. BM-MSC stimulate invasion, survival and tumorigenesis of CRC through the release of soluble NRG1, activating the HER2/HER3-dependent PI3K/AKT signalling cascade in CRC cells. Similarly, tumour-associated mesenchymal cells (T-MC) in CRC demonstrate high tNRG1 expression, which is significantly associated with advanced Union for International Cancer Control stage (p=0.005) and invasion depth (p=0.04) and decreased 5-year progression-free survival (p=0.01). HER2 and HER3 show membrane localisation in cancer cells of CRC tissue. Paracrine NRG1/HER3 signals initiated by BM-MSC and T-MC promote CRC cell progression, and high tNRG1 expression is associated with poor prognosis in CRC.

  8. Effects of pro-inflammatory cytokines on chondrogenesis of equine mesenchymal stromal cells derived from bone marrow or synovial fluid.

    Science.gov (United States)

    Zayed, M N; Schumacher, J; Misk, N; Dhar, M S

    2016-11-01

    Mesenchymal stromal cells (MSCs) have the capacity to differentiate into cells of mesenchymal lineage, such as chondrocytes, and have potential for use in regeneration of equine articular cartilage. MSCs instilled intra-articularly would be exposed to the inflamed environment associated with equine osteoarthritis (OA), which may compromise their function and ability to heal a cartilaginous defect. The aim of this study was to assess the ability of equine adult MSCs to differentiate into chondrocytes when stimulated with pro-inflammatory cytokines. MSCs derived from equine bone marrow (BM) and from synovial fluid (SF) were cultured in chondrogenic induction medium containing transforming growth factor (TGF)-β1. BM-derived MSCs (BMMSCs) and SF-derived MSCs (SFMSCs) were stimulated with 100 ng/mL interferon (IFN)-γ and 10 ng/mL tumor necrosis factor (TNF)-α. Chondrogenic differentiation was measured quantitatively with the glycosaminoglycan (GAG) assay and qualitatively by immunofluorescence (IF) for SOX-9, TGF-β1, aggrecan and collagen II. The viability of equine MSCs was maintained in the presence of IFN-γ and TNF-α, but production of GAGs from both types of MSCs was decreased in stimulated medium. Exposure of BMMSCs to pro-inflammatory cytokines reduced the levels of SOX-9, TGF-β1, aggrecan and collagen II, whereas exposure of SFMSCs to these cytokines reduced the levels of aggrecan only. These data suggest that pro-inflammatory cytokines do not affect proliferation of MSCs, but could inhibit chondrogenesis of MSCs. Published by Elsevier Ltd.

  9. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin.

    Science.gov (United States)

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2018-01-01

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. © 2017 Wiley Periodicals, Inc.

  10. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro.

    Science.gov (United States)

    Tamaddon, M; Burrows, M; Ferreira, S A; Dazzi, F; Apperley, J F; Bradshaw, A; Brand, D D; Czernuszka, J; Gentleman, E

    2017-03-03

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  11. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration.

    Science.gov (United States)

    Lin, Liya; Lin, Hefeng; Bai, Shi; Zheng, Lianshun; Zhang, Xiaoming

    2018-05-01

    Spinal cord injury (SCI) disrupts the spinal cord and results in the loss of sensory and motor function below the lesion site. The treatment of SCI became a challenge because the injured neurons fail to axon regenerate and repair after injury. Promoting axonal regeneration plays a key role in the treatment strategies for SCI. It would meet the goal of reconstruction the injured spinal cord and improving the functional recovery. Bone marrow mesenchymal stem cells (BMSCs) are attractive therapeutic potential cell sources for SCI, and it could rebuild the injured spinal cord through neuroprotection, neural regeneration and remyelinating. Evidence has demonstrated that BMSCs play important roles in mediating axon regeneration, and glial scar formation after SCI in animal experiments and some clinical trials. We reviewed the role of BMSCs in regulating axon regeneration and glial scar formation after SCI. BMSCs based therapies may provide a therapeutic potential for the injured spinal cord by promoting axonal regeneration and repair. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury.

    Science.gov (United States)

    Han, Dongji; Wu, Chenglong; Xiong, Qiuju; Zhou, Ling; Tian, Yuke

    2015-04-01

    To explore the effect of bone marrow mesenchymal stem cell (BMSC) transplantation on the levels of toll-like receptor 4 (TLR4), interleukin-1β (IL-1β), and tumor necrosis factor (TNF-α) in spinal cord tissue of rat model of spinal cord injury (SCI). BMSCs from 4-week-old male SD rats were isolated, cultured, and characterized after three generations using specific surface markers CD34 and CD44. Fifty four SD male rats were divided into sham group, model group, and cell transplantation group (18 rats each group). SCI model was generated using an improved Allen's method. Rats in cell transplantation group were treated with BMSCs in caudal vein. Rats were sacrificed at 24 h, 72 h, and 7 d post-injury, and spinal cord tissues were taken out for detection of IL-1β and TNF-α tissue content by enzyme-linked immunosorbent assay. IL-1β and TNF-α mRNA expression was evaluated by qPCR and TLR4 protein expression was analyzed by Western blotting. IL-1β and TNF-α protein levels, as well as IL-1β, TNF-α mRNA, and TLR4 expression were significantly increased in rats with established SCI, and reached its peak in spinal cord tissues at 72 h after the initial injury (p spinal cord inflammation by weakening TLR4-mediated signaling pathways and reducing tissue content of IL-1β and TNF-α.

  13. Construction of ureteral grafts by seeding urothelial cells and bone marrow mesenchymal stem cells into polycaprolactone-lecithin electrospun fibers.

    Science.gov (United States)

    Shen, Jie; Fu, Xiaoling; Ou, Lailiang; Zhang, Min; Guan, Yong; Wang, Kai; Che, Yongzhe; Kong, Deling; Steinhof, Gustav; Li, Wenzhong; Yu, Yaoting; Ma, Nan

    2010-03-01

    The aim of the present study was to investigated the construction of polycaprolactone-lecithin (PCL-L) electrospun fibers as a novel scaffold material for a tissue-engineered ureter. The effect of bone marrow mesenchymal stem cells (BM-MSCs) on the neovascularization of the scaffolds and the viability of planted urothelial cells (UCs) on PCL-L were also studied. UCs were obtained from New Zealand rabbit bladders, cultured and then seeded onto the lumen of the tubular scaffolds before being subcutaneously transplanted into the space of nude mice. The cultured UCs showed vacuolar degeneration after 7 days of transplantation and they gradually degraded thereafter. To facilitate the regeneration of the tissue-engineered ureter and the survival of UCs in the implant, MSCs were seeded into the tubular grafts by rolling up the nanofibrous membrane, followed by the seeding of UCs. This facilitated the survival of the UCs, which formed several cellular layers after 30 days. The mean microvessel density was significantly increased in tissues seeded with MSCs. Cell-tracking experiments revealed that the transplanted MSCs did not integrate directly into capillaries for angiogenesis. Our results demonstrated that the PCL-L electrospun fibrous scaffold has a high potential for a tissue-engineered ureter especially when seeded with BM-MSCs, which enhanced angiogenesis.

  14. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Directory of Open Access Journals (Sweden)

    Euler Moraes Penha

    2014-01-01

    Full Text Available The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  15. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  16. Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Mehrzadi, Saeed; Safa, Majid; Kamrava, Seyed Kamran; Darabi, Radbod; Hayat, Parisa; Motevalian, Manijeh

    2017-07-01

    Many obstacles compromise the efficacy of bone marrow mesenchymal stem cells (BM-MSCs) by inducing apoptosis in the grafted BM-MSCs. The current study investigates the effect of melatonin on important mediators involved in survival of BM-MSCs in hydrogen peroxide (H 2 O 2 ) apoptosis model. In brief, BM-MSCs were isolated, treated with melatonin, and then exposed to H 2 O 2 . Their viability was assessed by MTT assay and apoptotic fractions were evaluated through Annexin V, Hoechst staining, and ADP/ATP ratio. Oxidative stress biomarkers including ROS, total antioxidant power (TAP), superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH), thiol molecules, and lipid peroxidation (LPO) levels were determined. Secretion of inflammatory cytokines (TNF-α and IL-6) were measured by ELISA assay. The protein expression of caspase-3, Bax, and Bcl-2, was also evaluated by Western blotting. Melatonin pretreatment significantly increased viability and decreased apoptotic fraction of H 2 O 2 -exposed BM-MSCs. Melatonin also decreased ROS generation, as well as increasing the activity of SOD and CAT enzymes and GSH content. Secretion of inflammatory cytokines in H 2 O 2 -exposed cells was also reduced by melatonin. Expression of caspase-3 and Bax proteins in H 2 O 2 -exposed cells was diminished by melatonin pretreatment. The findings suggest that melatonin may be an effective protective agent against H 2 O 2 -induced oxidative stress and apoptosis in MSC.

  17. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid (SF-GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF-GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF-GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF-GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  19. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Directory of Open Access Journals (Sweden)

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  20. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane.

    Science.gov (United States)

    Rohaina, Che Man; Then, Kong Yong; Ng, Angela Min Hwei; Wan Abdul Halim, Wan Haslina; Zahidin, Aida Zairani Mohd; Saim, Aminuddin; Idrus, Ruszymah B H

    2014-03-01

    The cornea can be damaged by a variety of clinical disorders or chemical, mechanical, and thermal injuries. The objectives of this study were to induce bone marrow mesenchymal stem cells (BMSCs) to corneal lineage, to form a tissue engineered corneal substitute (TEC) using BMSCs, and to treat corneal surface defects in a limbal stem cell deficiency model. BMSCs were induced to corneal lineage using limbal medium for 10 days. Induced BMSCs demonstrated upregulation of corneal stem cell markers; β1-integrin, C/EBPδ, ABCG2, and p63, increased protein expression of CK3 and p63 significantly compared with the uninduced ones. For TEC formation, passage 1 BMSCs were trypsinized and seeded on amniotic membrane in a transwell co-culture system and were grown in limbal medium. Limbal stem cell deficiency models were induced by alkaline injury, and the TEC was implanted for 8 weeks. Serial slit lamp evaluation revealed remarkable improvement in corneal regeneration in terms of corneal clarity and reduced vascularization. Histologic and optical coherence tomography analyses demonstrated comparable corneal thickness and achieved stratified epithelium with a compact stromal layer resembling that of normal cornea. CK3 and p63 were expressed in the newly regenerated cornea. In conclusion, BMSCs can be induced into corneal epithelial lineage, and these cells are viable for the formation of TEC, to be used for the reconstruction of the corneal surface in the limbal stem cell deficient model. Copyright © 2014 Mosby, Inc. All rights reserved.

  1. Protective effect of bone marrow mesenchymal stem cells on PC12 cells apoptosis mediated by TAG1.

    Science.gov (United States)

    Zhang, Yu-Zhen; Lou, Ji-Yu; Bai, Hong-Ying; Wang, Yun-Liang; Li, Jin-Feng; Yin, Hong-Lei

    2015-01-01

    This study aims to explore the protection effect of bone marrow mesenchymal stem cells (BMSCs) on PC12 cells apoptosis mediated by transient axonal glycoprotein 1 (TAG1). PC12 cells were divided into control group, Aβ25-35 group and BMSCs + Aβ25-35 group. The effects of BMSCs on PC12 cells treated by Aβ25-35 were detected using MTT, Hoechst 33258 and Annexin V-FITC/PI staining methods. The expression levels of TAG1, β-amyloid precursor protein (APP), AICD and p53 were determined by RT-PCR and Western blotting methods. The expression levels of Bax and Bcl-2 were determined by Western blotting method. The activity of Caspase 3 was detected by spectrophotometric method. MTT results showed that cell activity decreased after the treatment of 20 μM Aβ25-35 for 48 h (PPC12 cells while the apoptosis of PC12 cells was inhibited in BMSCs + Aβ25-35 group. RT-PCR and Western blotting methods showed that 20 μM Aβ25-35 could increase the expression levels of TAG1, APP, AICD and p53 (PPC12 cells, which maybe related with TAG1/APP/AICD signal pathway.

  2. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury.

    Science.gov (United States)

    Dai, Guanghui; Liu, Xuebin; Zhang, Zan; Yang, Zhijun; Dai, Yiwu; Xu, Ruxiang

    2013-10-02

    Neuronal injuries have been a challenging problem for treatment, especially in the case of complete and chronic cervical spinal cord injury (SCI). Recently, particular attention is paid to the potential of stem cell in treating SCI, but there are only few clinical studies and insufficient data. This study explored the efficacy of autologous bone marrow mesenchymal stem cells (BMMSCs) transplantation in the treatment of SCI. Forty patients with complete and chronic cervical SCI were selected and randomly assigned to one of the two experimental groups, treatment group and control group. The treatment group received BMMSCs transplantation to the area surrounding injury, while the control group was not treated with any cell transplantation. Both the transplant recipients and the control group were followed up to 6 months, postoperatively. Preoperative and postoperative neurological functions were evaluated with AIS grading, ASIA score, residual urine volume and neurophysiological examination. Results showed that in the treatment group 10 patients had a significant clinical improvement in terms of motor, light touch, pin prick sensory and residual urine volume, while nine patients showed changes in AIS grade. Neurophysiological examination was consistent with clinical observations. No sign of tumor was evident until 6 months postoperatively. In the control group, no improvement was observed in any of the neurological functions specified above. BMMSCs transplantation improves neurological function in patients with complete and chronic cervical SCI, providing valuable information on applications of BMMSCs for the treatment of SCI. © 2013 Published by Elsevier B.V.

  3. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Zheng, Zhenyang; Leng, Yan; Zhou, Chen; Ma, Zhenyu; Zhong, Zhigang; Shi, Xing-Ming; Zhang, Weixi

    2012-01-01

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  4. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Cerebral palsy is currently one of the major diseases that cause severe paralysis of the nervous system in children; approximately 9–30% of cerebral palsy patients are also visually impaired, for which no effective treatment is available. Bone marrow mesenchymal stem cells (BMSCs have very strong self-renewal, proliferation, and pluripotent differentiation potentials. Therefore, autologous BMSC transplantation has become a novel method for treating cerebral palsy. Methods An 11-year-old boy had a clear history of dystocia and asphyxia after birth; at the age of 6 months, the family members observed that his gaze roamed and noted that he displayed a lack of attention. A brain MRI examination at the age of 7 years showed that the child had cerebral palsy with visual impairment (i.e., posterior visual pathway injury. The patient was hospitalized for 20 days and was given four infusions of intravenous autologous BMSCs. Before transplantation and 1, 6, and 12 months after transplantation, a visual evoked potential test, an electrocardiogram, routine blood tests, and liver and kidney function tests were performed. Results The patient did not have any adverse reactions during hospitalization or postoperative follow-up. After discharge, the patient could walk more smoothly than he could before transplantation; furthermore, his vision significantly improved 6 months after transplantation, which was also supported by the electrophysiological examinations. Conclusions The clinical application of BMSCs is effective for improving vision in a patient with cerebral palsy combined with visual impairment.

  5. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro

    Science.gov (United States)

    Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.

    2017-03-01

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  6. Bone Marrow Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo

    Science.gov (United States)

    Amarnath, Shoba; Foley, Jason E.; Farthing, Don E.; Gress, Ronald E.; Laurence, Arian; Eckhaus, Michael A.; Métais, Jean-Yves; Rose, Jeremy J.; Hakim, Frances T.; Felizardo, Tania C.; Cheng, Austin V.; Robey, Pamela G.; Stroncek, David E.; Sabatino, Marianna; Battiwalla, Minoo; Ito, Sawa; Fowler, Daniel H.; Barrett, Austin J.

    2014-01-01

    The use of bone marrow derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic GVHD (x-GVHD) mediated by human CD4+ Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; further, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression. PMID:25532725

  7. Immune Suppressive Effects of Tonsil-Derived Mesenchymal Stem Cells on Mouse Bone-Marrow-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Minhwa Park

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are considered valuable sources for cell therapy because of their immune regulatory function. Here, we investigated the effects of tonsil-derived MSCs (T-MSCs on the differentiation, maturation, and function of dendritic cells (DCs. We examined the effect of T-MSCs on differentiation and maturation of bone-marrow- (BM- derived monocytes into DCs and we found suppressive effect of T-MSCs on DCs via direct contact as well as soluble mediators. Moreover, T cell proliferation, normally increased in the presence of DCs, was inhibited by T-MSCs. Differentiation of CD4+ T cell subsets by the DC-T cell interaction also was inhibited by T-MSCs. The soluble mediators suppressed by T-MSCs were granulocyte-macrophage colony-stimulating factor (GM-CSF, RANTES, interleukin-6 (IL-6, and monocyte chemoattractant protein-1 (MCP-1. Taken together, T-MSCs exert immune modulatory function via suppression of the differentiation, maturation, and function of BM-derived DCs. Our data suggests that T-MSCs could be used as a novel source of stem cell therapy as immune modulators.

  8. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yuning Zhou

    Full Text Available Bone marrow-derived mesenchymal stem cells (BMSCs are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs were examined by MTT assay, fluorescence activated cell sorter (FACS analysis, real-time quantitative PCR (RT-PCR analysis, alkaline phosphatase (ALP activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA. Moreover, whether mitogen-activated protein kinase (MAPK signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways.

  9. Restoration of osteogenic differentiation by overexpression of cannabinoid receptor 2 in bone marrow mesenchymal stem cells isolated from osteoporotic patients.

    Science.gov (United States)

    Wang, Bangjun; Lian, Kai; Li, Jun; Mei, Gang

    2018-01-01

    Cannabinoid receptor 2 (CNR2) has a critical role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). CNR2 expression was found to be downregulated in osteoporotic patients. The present study aimed to investigate the functionality of CNR2 in restoring osteogenic differentiation and mineralization of BMSCs isolated from osteoporotic patients. CNR2 was overexpressed in osteoporotic BMSCs by a lentivirus. Alkaline phosphatase (ALP) activity staining and alizarin red S staining were performed to examine the osteogenic differentiation of osteoporotic BMSCs. Reverse-transcription quantitative polymerase chain reaction analysis was performed to examine the expression of osteogenic genes in BMSCs. Western blot analysis was used to study the activation of p38 mitogen-activated protein kinase (MAPK) during osteogenic differentiation of osteoporotic BMSCs after lentivirus-mediated overexpression of CNR2. The results demonstrated that overexpression of CNR2 in osteoporotic BMSCs increased ALP activity, promoted expression of osteogenic genes and enhanced deposition of mineralized extracellular matrix. In addition, phosphorylation of p38 MAPK was found to be increased by overexpression of CNR2. In conclusion, the present study indicated that restoration of CNR2 recovered the osteogenic differentiation of BMSCs isolated from osteoporotic patients. This finding may provide a novel strategy for a treatment approach for osteoporosis.

  10. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  11. Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wu, Li-Fang; Wang, Ni-Na; Liu, Yuan-Sheng; Wei, Xing

    2009-10-01

    Primitive stromal cells can be isolated from umbilical cord Wharton's jelly (UC-PSCs). Umbilical cord can be easily obtained without causing pain to donors, and the procedure avoids ethical and technical issues. UC-PSCs are more primitive than mesenchymal stem cells (MSCs) isolated from some other tissue sources. In this study, UC-PSCs were induced to differentiate into insulin-producing cells, and compared with bone marrow-derived MSCs (BM-MSCs) for their pancreatic differentiation potential. UC-PSCs showed significantly higher proliferation than BM-MSCs. During pancreatic induction, UC-PSCs formed larger islet-like cell clusters than BM-MSCs. Immunocytochemical analysis showed that higher expression of the pancreatic-specific transcription factor PDX-1 was detected in differentiated UC-PSCs than in differentiated BM-MSCs. Flow cytometry analysis demonstrated that the percentage of differentiated UC-PSCs expressing pancreatic-specific marker C-peptide was 72% higher than differentiated BM-MSCs. Radioimmunoassay revealed that differentiated UC-PSCs secreted significantly more insulin than differentiated BM-MSCs. These results demonstrated that UC-PSCs had higher pancreatic differentiation potential than BM-MSCs. Therefore, UC-PSCs are more suitable for pancreatic tissue engineering in the treatment of type I diabetes than BM-MSCs.

  12. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  13. Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2014-01-01

    Full Text Available Introduction. Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs to form insulin-producing cells (IPCs. We compared the relative efficiency of three differentiation protocols. Methods. Human bone marrow-derived MSCs (HBM-MSCs were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol, trichostatin-A-based (two-step protocol, and β-mercaptoethanol-based (three-step protocol. At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. Results. By immunolabeling, the proportion of generated IPCs was modest (≃3% in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. Conclusion. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  14. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Science.gov (United States)

    Penha, Euler Moraes; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Mendonça, Marcus Vinícius Pinheiro; Gravely, Faye Alice; Pinheiro, Cláudia Maria Bahia; Pinheiro, Taiana Maria Bahia; Barrouin-Melo, Stella Maria; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury. PMID:24723956

  15. Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy.

    Science.gov (United States)

    Hao, Jie; Li, Shuangyue; Shi, Xiaoxia; Qian, Zhiqiang; Sun, Yijie; Wang, Dunjia; Zhou, Xueying; Qu, Hongxin; Hu, Shuhai; Zuo, Enjun; Zhang, Cong; Hou, Liyan; Wang, Qingshan; Piao, Fengyuan

    2018-03-14

    Chronic exposure to n-hexane, a widely used organic solvent in industry, induces central-peripheral neuropathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). We recently reported that transplantation of bone marrow-mesenchymal stem cells (BMSC) significantly ameliorated HD-induced neuronal damage and motor deficits in rats. However, the mechanisms remain unclear. Here, we reported that inhibition of HD-induced autophagy contributed to BMSC-afforded protection. BMSC transplantation significantly reduced the levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and the degradation of sequestosome-1 (p62) in the spinal cord and sciatic nerve of HD-intoxicated rats. Downregulation of autophagy by BMSC was also confirmed in VSC4.1 cells exposed to HD. Moreover, inhibition of autophagy by PIK III mitigated the neurotoxic effects of HD and, meanwhile, abolished BMSC-afforded neuroprotection. Furthermore, we found that BMSC failed to interfere with Beclin 1, but promoted activation of mammalian target of rapamycin (mTOR). Unc-like kinse 1 (ULK1) was further recognized as the downstream target of mTOR responsible for BMSC-mediated inhibition of autophagy. Altogether, BMSC transplantation potently ameliorated HD-induced autophagy through beclin 1-independent activation of mTOR pathway, providing a novel insight for the therapeutic effects of BMSC against n-hexane and other environmental toxicants-induced neurotoxicity.

  16. Bone Marrow Mesenchymal Stem Cells Ameliorates Seawater-Exposure-Induced Acute Lung Injury by Inhibiting Autophagy in Lung Tissue

    Directory of Open Access Journals (Sweden)

    Qiu-ping Liu

    2014-01-01

    Full Text Available Seawater drowning can lead to acute lung injury (ALI. Several studies have shown that bone marrow mesenchymal stem cells (BMSC treatment could attenuate ALI. However, the mechanisms underlying this phenomenon still remain elusive. Therefore, this study aimed to investigate whether BMSC treatment can ameliorate seawater-induced ALI and its underlying mechanisms in a rat model. In this study, arterial blood gas, lung weight coefficient, and TNF-α, and IL-8 in bronchoalveolar lavage fluid (BALF, as well as histopathology examination, were used to detect the lung injury of seawater exposure. Moreover, western blot and RT-PCR were used to explore autophagy in lung tissues. The results demonstrated that seawater exposure induced ALI including impaired arterial blood gas, pulmonary edema, histopathologic changes, and inflammatory response in lung tissues. What is more, these changes were partly ameliorated by BMSC treatment through inhibition of autophagy in lung tissues. The application of BMSC may be a potential effective treatment for seawater-induced ALI.

  17. Intractable diseases treated with intra-bone marrow-bone marrow transplantation

    OpenAIRE

    Li, Ming; Guo, Kuquan; Ikehara, Susumu

    2014-01-01

    Bone marrow transplantation (BMT) is used to treat hematological disorders, autoimmune diseases (ADs) and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT) has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells (HSCs) but also mesenchymal stromal cells (MSCs). MSCs are multi-potent stem cells that can be isolated from bone marrow (BM), umbilical co...

  18. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair

    International Nuclear Information System (INIS)

    Chatzinikolaidou, Maria; Rekstyte, Sima; Danilevicius, Paulius; Pontikoglou, Charalampos; Papadaki, Helen; Farsari, Maria; Vamvakaki, Maria

    2015-01-01

    Engineering biomaterial scaffolds that promote attachment and growth of mesenchymal stem cells in three dimensions is a crucial parameter for successful bone tissue engineering. Towards this direction, a lot of research effort has focused recently into the development of three-dimensional porous scaffolds, aiming to elicit positive cellular behavior. However, the fabrication of three-dimensional tissue scaffolds with a precise geometry and complex micro- and nano-features, supporting cell in-growth remains a challenge. In this study we report on a positive cellular response of human bone marrow-derived (BM) mesenchymal stem cells (MSCs) onto hybrid material scaffolds consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide, and 2-(dimethylamino)ethyl methacrylate (DMAEMA). First, we use Direct fs Laser Writing, a 3D scaffolding technology to fabricate the complex structures. Subsequently, we investigate the morphology, viability and proliferation of BM-MSCs onto the hybrid scaffolds and examine the cellular response from different donors. Finally, we explore the effect of the materials' chemical composition on cell proliferation, employing three different material surfaces: (i) a hybrid consisting of methacryloxypropyl trimethoxysilane, zirconium propoxide and 50 mol% DMAEMA, (ii) a hybrid material comprising methacryloxypropyl trimethoxysilane and zirconium propoxide, and (iii) a purely organic polyDMAEMA. Our results show a strong adhesion of BM-MSCs onto the hybrid material containing 50% DMAEMA from the first 2 h after seeding, and up to several days, and a proliferation increase after 14 and 21 days, similar to the polystyrene control, independent of cell donor. These findings support the potential use of our proposed cell–material combination in bone tissue engineering. - Graphical abstract: Scanning electron microscopy image depicting cell adhesion of bone marrow mesenchymal stem cells into a pore of a hybrid Direct Laser Writing

  19. Gametocytes of the Malaria ParasitePlasmodium falciparumInteract With and Stimulate Bone Marrow Mesenchymal Cells to Secrete Angiogenetic Factors.

    Science.gov (United States)

    Messina, Valeria; Valtieri, Mauro; Rubio, Mercedes; Falchi, Mario; Mancini, Francesca; Mayor, Alfredo; Alano, Pietro; Silvestrini, Francesco

    2018-01-01

    The gametocytes of Plasmodium falciparum , responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum , the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs). Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages.

  20. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of ..... Bone marrow stromal cell: Nature, Biology, and potential application. Stem cell,. 19(3): 180-192. Cao F, Sun DD, Li CX, Narsinh K, Zhao L, Li X Feng XY, Zhang J,. Duan YY, Wang J, ...

  1. Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    Science.gov (United States)

    Crovace, Antonio; Lacitignola, Luca; Rossi, Giacomo; Francioso, Edda

    2010-01-01

    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression. PMID:20445779

  2. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  3. [Protective effect of bone marrow mesenchymal stem cell-derived microvesicles on glutamate injured PC12 cells].

    Science.gov (United States)

    Lin, Shan-Shan; Zhu, Bo; Guo, Zi-Kuan; Huang, Guo-Zhi

    2014-08-01

    This study was aimed to investigate the protective effect of bone mesenchymal stem cell-derived microvesicles (BMMSC-MV) on glutamate injured PC12 cells so as to elucidate the mechanism of the neural damage repair. BMMSC were isolated and purified with density-gradient centrifugation method, BMMSC-MV were harvested from the supernatants of BMMSC by hypothermal ultracentrifugation method. The surface markers of BMMSC reacted against different antibodies were detected by flow cytometry. The morphology features of MV were observed under an electron microscope. Experiment was divided into three groups, one was a control group, and the other two were glutamate-injured group and co-culture group of BMMSC-MV and glutamate-damaged cells respectively. MTT test was used to evaluate the proliferative status of PC12 cells and the AnnexinV-FITC detecting kit and Hoechst33342 were used to detect the apoptosis of PC12 cells in different groups. The results showed that BMMSC isolated from rat bone marrow were highly positive for CD29, CD44 and negative for CD31, CD34 and CD45. The morphology of MV was round and the vesicles were homogenous in size. BMMSC-MV exhibited a protective effect on the excitotoxicity-injured PC12 cells, displaying increase of cell viability, decrease of Annexin-V/PI staining positive and nuclear condensed cells. It is concluded that BMMSC-MV can protect PC12 cells from glutamate-induced apoptosis, suggesting that BMMSC-MV may be a potential candidate for treatment of neurological diseases.This study provides the preliminary experimental and theoretical evidence for use of BMMSC-MV in treatment of neural excited damage.

  4. Culture conditions for equine bone marrow mesenchymal stem cells and expression of key transcription factors during their differentiation into osteoblasts

    Science.gov (United States)

    2013-01-01

    Background The use of equine bone marrow mesenchymal stem cells (BMSC) is a novel method to improve fracture healing in horses. However, additional research is needed to identify optimal culture conditions and to determine the mechanisms involved in regulating BMSC differentiation into osteoblasts. The objectives of the experiments were to determine: 1) if autologous or commercial serum is better for proliferation and differentiation of equine BMSC into osteoblasts, and 2) the expression of key transcription factors during the differentiation of equine BMSC into osteoblasts. Equine BMSC were isolated from the sterna of 3 horses, treated with purchased fetal bovine serum (FBS) or autologous horse serum (HS), and cell proliferation determined. To induce osteoblast differentiation, cells were incubated with L-ascorbic acid-2-phosphate and glycerol-2-phosphate in the presence or absence of human bone morphogenetic protein2 (BMP2), dexamethasone (DEX), or combination of the two. Alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was determined by ELISA. Total RNA was isolated from differentiating BMSC between d 0 to 18 to determine expression of runt-related transcription factor2 (Runx2), osterix (Osx), and T-box3 (Tbx3). Data were analyzed by ANOVA. Results Relative to control, FBS and HS increased cell number (133 ± 5 and 116 ± 5%, respectively; P  0.8). Runt-related transcription factor2 expression increased 3-fold (P equine BMSC into osteoblasts. In addition, expression of Runx2 and osterix increased and expression of Tbx3 is reduced during differentiation. PMID:24169030

  5. Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Huichao Wang

    2017-04-01

    Full Text Available Objective(s: Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay were used to measure the effect of naringin on cytotoxicity and proliferation of hBMSCs, respectively. Alkaline phosphatase activity analysis, Alizarin Red S staining, Western blotting, and real-time PCR assay were used to evaluate both the potential effect of naringin on osteogenic differentiation and the role of ERK signaling pathway in osteogenic differentiation. Results: Our results showed that naringin had no obvious toxicity on hBMSCs, and could significantly promote the proliferation of hBMSCs. Naringin also enhanced the osteogenic differentiation of hBMSCs and increased the protein and mRNA expression levels of osteogenic markers such as Runx-2, OXS, OCN, and Col1 in a dose-dependent manner. In addition, we found that the enhancing effect of naringin on osteogenic differentiation was related to the activation of phosphor-ERK, with an increase in duration of activity from 30 min to 120 min. More importantly, both the enhancing effect of naringin on osteogenic differentiation and the activity effect of naringin on ERK signaling pathway were reversed by U0126 addition. Conclusion: Our findings demonstrated that naringin promoted proliferation and osteogenesis of hBMSCs by activating the ERK signaling pathway and it might be a potential therapeutic agent for treating or preventing osteoporosis.

  6. Cotransplantation of bone marrow mononuclear cells and umbilical cord mesenchymal stem cells in avascular necrosis of the femoral head.

    Science.gov (United States)

    Cai, J; Wu, Z; Huang, L; Chen, J; Wu, C; Wang, S; Deng, Z; Wu, W; Luo, F; Tan, J

    2014-01-01

    We sought to investigate the therapeutic effects of cotransplantation of autologous bone marrow mononuclear cells (BMMNCs) and allogeneic umbilical cord mesenchymal stem cells (UC-MSCs) on avascular necrosis of the femoral head (ANFH). In all, 30 patients (49 hips; 24 males and 6 females) with ANFH were enrolled. According to the system of the Association Research Circulation Osseous, there were 24 hips in phase II and 25 hips in phase Ⅲ. Blood supply to the femoral head was evaluated by using digital subtraction angiography. Generally, 60 to 80 mL of autologous BMMNCs and 30 to 50 mL of UC-MSCs were infused into the femoral head artery. Harris scores including pain and joint function were used to evaluate the effects before and 3, 6, 9, and 12 months after transplantation. Computed tomography and radiographs were performed before and 12 months after the treatment. Clinical symptoms of pain and claudication were gradually improved. After the treatment, 93.3% (28/30), 86.7% (26/30), and 86.7% (26/30) of patients showed relief of hip pain, improvement of joint function, and extended walking distances, respectively. The Harris scores were increased significantly at 3, 6, and 12 months posttransplant compared with those pretransplant. In addition, the bone lesions in 89.7% of hips (44/49) were improved as showed on computed tomography after transplantation. Cotransplantation of autologous BMMNCs and allogeneic UC-MSCs showed therapeutic effect on ANFH without severe adverse effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. [EFFECTS OF BONE MARROW MESENCHYMAL STEM CELLS TRANSPLANTATION FOR TREATING RAT SPINAL CORD INJURY AND CYTOKINE EXPRESSION AT INJURY SITES].

    Science.gov (United States)

    Mo, Cuiping; Ren, Lijie; Zhao Zhenfu; Zhou, Guangqian; Yao, Xiaolu; Gong, Feipeng; Chen, Gang

    2016-03-01

    To investigate the effects of bone marrow mesenchymal stem cells (BMSCs) transplantation for treating spinal cord injury (SCI) in rat and the cytokine expression changes in the local injury tissues. BMSCs were separated from Sprague Dawley (SD) rat and cultured with the whole bone marrow culture method. rAd-EGFP was used to transfect the 5th generation BMSCs for green fluorescent protein (GFP) label. Twelve SD rats were randomly divided into experimental group (n = 6) and control group (n = 6). After the T10 SCI model was established with Allen's impact device in 2 groups, 1 x 1096) GFP-labeled BMSCs and PBS were administered by subarachnoid injection in situ in experimental group and control group, respectively. Basso-Beattie-Bresnahan (BBB) score was used to detect the motor function at immediat, 1, 2, 3, 4, and 5 weeks after SCI. At 5 weeks, the spinal cord tissues were harvested for the histological and immunofluorescent staining examinations to measure the expressions of neural marker molecules, including Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific nuclear protein (NeuN). Cytokine was analyzed with antibody array. At 5 weeks, 2 rats died of urinary tract infection in 2 groups respectively, the other rats survived to the end of experiment. BBB score of experimental group was significantly higher than that of control group at 1, 2, 3, 4, and 5 weeks (P < 0.05). At 5 weeks, histological results showed that there were many cells with regular arrangement in the experimental group; there were less cells with irregular arrangement in the control group. Compared with the control group, Nestin and NeuN expressions significantly increased (P < 0.05), and GFAP expression significantly decreased (P < 0.05) in the experimental group. Leptin and ciliary neurotrophic factor levels were higher in the experimental group than the control group, but granulocyte-macrophage colony-stimulating factor, tumor necrosis factor β, interleukin 1 β, and tissue

  8. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  9. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells via Ommaya Reservoir in Persistent Vegetative State Patients after Haemorrhagic Stroke: Report of Two Cases & Review of the Literature.

    Science.gov (United States)

    Fauzi, Asra Al; Suroto, Nur Setiawan; Bajamal, Abdul Hafid; Machfoed, Moh Hasan

    2016-01-01

    Background: One of the most devastating diseases, stroke, is a leading cause of death and disability worldwide with severe emotional and economic consequences. The purpose of this article is mainly to report the effect of intraventricular transplantation via an Ommaya reservoir using autologous bone marrow mesenchymal stem cells (BM-MSCs) in haemorrhagic stroke patients. Case Presentations: Two patients, aged 51 and 52, bearing sequels of haemorrhagic stroke were managed by intraventricular transplantation of BM-MSCs obtained from their own bone marrow. Before the procedure, both patients were bedridden, tracheostomised, on nasogastric (NG) tube feeding and in hemiparesis. The cells were transplanted intraventricularly (20 x 10 6 cells/2.5 ml) using an Ommaya reservoir, and then repeated transplantations were done after 1 and 2 months consecutively. The safety and efficacy of the procedures were evaluated 3, 6 and 12 months after treatment. The National Institute of Health Stroke Scale (NIHSS) was used to evaluate the patients' neurological status before and after treatment. No adverse events derived from the procedures or transplants were observed in the one-year follow-up period, and the neurological status of both patients improved after treatment. Conclusions: Our report demonstrates that the intraventricular transplantation of BM-MSCs via an Ommaya reservoir is safe and it improves the neurological status of post-haemorrhagic stroke patients. The repeated transplantation procedure is easier and safer to perform via a subcutaneously implanted Ommaya reservoir. Key Words: Haemorrhagic stroke, bone marrow mesenchymal stem cells (BM-MSCs), intraventricular transplantation.

  11. Comparison of the osteogenic differentiation potential of mesenchymal cells isolated from human bone marrow, umbilical cord blood and placenta derived stem cells

    Directory of Open Access Journals (Sweden)

    Shymaa Maher

    2015-03-01

    Full Text Available Bone marrow has been considered for long time as the main source for mesenchymal stem cells. However, bone marrow aspiration is an invasive process that can be associated with morbidity as well as few numbers of obtained cells. Umbilical cord blood and placental tissues are other potential sources for the same type of cells. These sources are abundant, accessible and associated with no harm to the donor. This study aimed at determining the differentiation of the three cell types towards the osteogenic lineage in short term culture and in classical osteogenic conditions. The gene expression profile showed that bone marrow derived cells were the most responsive to the culture conditions while umbilical cord blood derived cells were next, as shown by the expression by the osteogenic key transcription factors ‘Runx-2’ and osterix. At the meantime, umbilical cord blood and placenta derived cells showed significant enhancement of the gene expression over the study course, which denoted potential response of the cells. Based on these results and the availability of these two sources, umbilical cord blood and placenta should still be considered as potential sources for mesenchymal stem cells in osteogenic research program. However their differentiation potential will need further enhancement.

  12. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    OpenAIRE

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of t...

  13. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow- and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Radtke, Catherine L; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P; Stryhn, Henrik; McDuffee, Laurie A

    2013-05-01

    To characterize equine muscle tissue- and periosteal tissue-derived cells as mesenchymal stem cells (MSCs) and assess their proliferation capacity and osteogenic potential in comparison with bone marrow- and adipose tissue-derived MSCs. Tissues from 10 equine cadavers. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and adipose tissue from the left subcutaneous region. Mesenchymal stem cells were characterized on the basis of morphology, adherence to plastic, trilineage differentiation, and detection of stem cell surface markers via immunofluorescence and flow cytometry. Mesenchymal stem cells were tested for osteogenic potential with osteocalcin gene expression via real-time PCR assay. Mesenchymal stem cell cultures were counted at 24, 48, 72, and 96 hours to determine tissue-specific MSC proliferative capacity. Equine muscle tissue- and periosteal tissue-derived cells were characterized as MSCs on the basis of spindle-shaped morphology, adherence to plastic, trilineage differentiation, presence of CD44 and CD90 cell surface markers, and nearly complete absence of CD45 and CD34 cell surface markers. Muscle tissue-, periosteal tissue-, and adipose tissue-derived MSCs proliferated significantly faster than did bone marrow-derived MSCs at 72 and 96 hours. Equine muscle and periosteum are sources of MSCs. Equine muscle- and periosteal-derived MSCs have osteogenic potential comparable to that of equine adipose- and bone marrow-derived MSCs, which could make them useful for tissue engineering applications in equine medicine.

  14. Bone-marrow-derived mesenchymal stem cells as a target for cytomegalovirus infection: Implications for hematopoiesis, self-renewal and differentiation potential

    International Nuclear Information System (INIS)

    Smirnov, Sergey V.; Harbacheuski, Ryhor; Lewis-Antes, Anita; Zhu Hua; Rameshwar, Pranela; Kotenko, Sergei V.

    2007-01-01

    Mesenchymal stem cells (MSCs) in bone marrow (BM) regulate the differentiation and proliferation of adjacent hematopoietic precursor cells and contribute to the regeneration of mesenchymal tissues, including bone, cartilage, fat and connective tissue. BM is an important site for the pathogenesis of human cytomegalovirus (HCMV) where the virus establishes latency in hematopoietic progenitors and can transmit after reactivation to neighboring cells. Here we demonstrate that BM-MSCs are permissive to productive HCMV infection, and that HCMV alters the function of MSCs: (i) by changing the repertoire of cell surface molecules in BM-MSCs, HCMV modifies the pattern of interaction between BM-MSCs and hematopoietic cells; (ii) HCMV infection of BM-MSCs undergoing adipogenic or osteogenic differentiation impaired the process of differentiation. Our results suggest that by altering BM-MSC biology, HCMV may contribute to the development of various diseases

  15. Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles.

    Science.gov (United States)

    Wetteland, Cheyann Lee; Nguyen, Nhu-Y Thi; Liu, Huinan

    2016-04-15

    This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation. BMSCs density increased significantly when cultured in 200μg/mL of MgO in comparison to the Cells Only control without MgO. The density of BMSCs decreased significantly after culture in the media with 500μg/mL or more of MgO. Concentrations at or above 1000μg/mL of MgO resulted in complete BMSCs death. Quantification of colony forming units (CFU) revealed that the minimum bactericidal concentration (MBC) of MgO for E. coli and S. epidermidis was 1200μg/mL. The addition of MgO nanoparticles into the cultures increased the pH and Mg(2+) ion concentration in the respective culture media, which might have played a role in the observed cell responses but not the main factors. E. coli and S. epidermidis still proliferated significantly at alkaline pH up to 10 or with supplemental Mg(2+) dosages up to 50mM, indicating bactericidal properties of MgO are beyond the effects of increased media pH and Mg(2+) ion concentrations. MgO nanoparticles at a concentration of 200μg/mL provided dual benefits of promoting BMSC proliferation while reducing bacterial adhesion, which should be further studied for potential medical implant applications. The use of free MgO nanoparticles yielded detrimental effects to BMSCs in concentrations above 300μg/mL. We recommend further study into MgO nanoparticle as a coating material or as a part of a

  16. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy.

    Science.gov (United States)

    Li, Chun-yu; Wu, Xiao-yun; Tong, Jia-bei; Yang, Xin-xin; Zhao, Jing-li; Zheng, Quan-fu; Zhao, Guo-bin; Ma, Zhi-jie

    2015-04-13

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapies. Human platelet lysate represents an efficient alternative to fetal bovine serum for clinical-scale expansion of MSCs. Different media used in culture processes should maintain the biological characteristics of MSCs during multiple passages. However, bone marrow-derived MSCs and adipose tissue-derived MSCs have not yet been directly compared with each other under human platelet lysate conditions. This study aims to conduct a direct head-to-head comparison of the biological characteristics of the two types of MSCs under human platelet lysate-supplemented culture conditions for their ability to be used in regenerative medicine applications. The bone marrow- and adipose tissue-derived MSCs were cultured under human platelet lysate conditions and their biological characteristics evaluated for cell therapy (morphology, immunophenotype, colony-forming unit-fibroblast efficiency, proliferation capacity, potential for mesodermal differentiation, secreted proteins, and immunomodulatory effects). Under human platelet lysate-supplemented culture conditions, bone marrow- and adipose tissue-derived MSCs exhibited similar fibroblast-like morphology and expression patterns of surface markers. Adipose tissue-derived MSCs had greater proliferative potential than bone marrow-derived MSCs, while no significantly difference in colony efficiency were observed between the two types of cells. However, bone marrow-derived MSCs possessed higher capacity toward osteogenic and chondrogenic differentiation compared with adipose tissue-derived MSCs, while similar adipogenic differentiation potential wase observed between the two types of cells. There were some differences between bone marrow- and adipose tissue-derived MSCs for several secreted proteins, such as cytokine (interferon-γ), growth factors (basic fibroblast growth factor, hepatocyte growth factor, and insulin-like growth factor-1), and chemokine (stem

  17. Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation

    Directory of Open Access Journals (Sweden)

    Eric Cordeiro-Spinetti

    2014-03-01

    Full Text Available When it comes to regenerative medicine, mesenchymal stem cells (MSCs are considered one of the most promising cell types for use in many cell therapies and bioengineering protocols. The International Society of Cellular Therapy recommended minimal criteria for defining multipotential MSC is based on adhesion and multipotency in vitro, and the presence or absence of select surface markers. Though these criteria help minimize discrepancies and allow some comparisons of data generated in different laboratories, the conditions in which cells are isolated and expanded are often not considered. Herein, we propose and recommend a few procedures to be followed to facilitate the establishment of quality control standards when working with mesenchymal progenitors isolation and expansion. Following these procedures, the classic Colony-Forming Unit-Fibroblast (CFU-f assay is revisited and three major topics are considered to define conditions and to assist on protocol optimization and data interpretation. We envision that the creation of a guideline will help in the identification and isolation of long-term stem cells and short-term progenitors to better explore their regenerative potential for multiple therapeutic purposes.

  18. Prospective Isolation of Murine and Human Bone Marrow Mesenchymal Stem Cells Based on Surface Markers

    Directory of Open Access Journals (Sweden)

    Yo Mabuchi

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently defined as multipotent stromal cells that undergo sustained in vitro growth and can give rise to cells of multiple mesenchymal lineages, such as adipocytes, chondrocytes, and osteoblasts. The regenerative and immunosuppressive properties of MSCs have led to numerous clinical trials exploring their utility for the treatment of a variety of diseases (e.g., acute graft-versus-host disease, Crohn’s disease, multiple sclerosis, osteoarthritis, and cardiovascular diseases including heart failure and myocardial infarction. On the other hand, conventionally cultured MSCs reflect heterogeneous populations that often contain contaminating cells due to the significant variability in isolation methods and the lack of specific MSC markers. This review article focuses on recent developments in the MSC research field, with a special emphasis on the identification of novel surface markers for the in vivo localization and prospective isolation of murine and human MSCs. Furthermore, we discuss the physiological importance of MSC subtypes in vivo with specific reference to data supporting their contribution to HSC niche homeostasis. The isolation of MSCs using selective markers (combination of PDGFRα and Sca-1 is crucial to address the many unanswered questions pertaining to these cells and has the potential to enhance their therapeutic potential enormously.

  19. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  20. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Jia, Yijia; Wu, Dou; Zhang, Ruiping; Shuang, Weibing; Sun, Jiping; Hao, Haihu; An, Qijun; Liu, Qiang

    2014-06-24

    Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Hypoxic preconditioning increases the protective effect of bone marrow mesenchymal stem cells on spinal cord ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Zhilin; Fang, Bo; Tan, Zhibin; Zhang, Dong; Ma, Hong

    2016-03-01

    Transplantation of bone marrow mesenchymal stem cells (BMSCs) protect against spinal cord ischemia/reperfusion injury (SCIRI). However, a large number of transplanted BMSCs often undergo apoptosis, which severely affects the treatment outcome. Previous studies have demonstrated that hypoxic preconditioning effectively increases the survival rate of BMSCs following transplantation, and increases their protective effect on injured tissues. However, there have been few reports regarding roles of hypoxic preconditioning in SCIRI. The present study isolated rat BMSCs and separately transplanted hypoxia‑ and non‑hypoxia‑preconditioned BMSCs into the spinal cord tissues of rats with SCIRI. The role of hypoxic preconditioning in the promotion of the protective effect of BMSCs on SCIRI was investigated using neurological function scores, Evans blue staining, hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling. In addition, reverse transcription‑quantitative polymerase chain reaction and western blotting were used to detect the expression levels of hypoxia‑inducible factor 1α (HIF‑1α), and to investigate its possible underlying mechanism of action. The results indicated that hypoxic preconditioning effectively increased the protective effects of BMSCs on neurological function, blood spinal cord barrier and tissue damage following SCIRI, and inhibited apoptosis. Furthermore, hypoxic preconditioned BMSCs upregulated the expression of HIF‑1α in spinal cord tissues. Therefore, hypoxic preconditioning effectively increased the protective effect of BMSCs on SCIRI and may be associated with upregulation of the expression of HIF‑1α. Hypoxic preconditioning may serve as an effective means of increasing the protective effect of BMSCs on SCIRI.

  2. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo].

    Science.gov (United States)

    Duan, Wei; Da, Hu; Wang, Wentao; Lü, Shangjun; Xiong, Zhuo; Liu, Jian

    2013-05-01

    To investigate the feasibility of fabricating an oriented scaffold combined with chondrogenic-induced bone marrow mesenchymal stem cells (BMSCs) for enhancement of the biomechanical property of tissue engineered cartilage in vivo. Temperature gradient-guided thermal-induced phase separation was used to fabricate an oriented cartilage extracellular matrix-derived scaffold composed of microtubules arranged in parallel in vertical section. No-oriented scaffold was fabricated by simple freeze-drying. Mechanical property of oriented and non-oriented scaffold was determined by measurement of compressive modulus. Oriented and non-oriented scaffolds were seeded with chondrogenic-induced BMSCs, which were obtained from the New Zealand white rabbits. Proliferation, morphological characteristics, and the distribution of the cells on the scaffolds were analyzed by MTT assay and scanning electron microscope. Then cell-scaffold composites were implanted subcutaneously in the dorsa of nude mice. At 2 and 4 weeks after implantation, the samples were harvested for evaluating biochemical, histological, and biomechanical properties. The compressive modulus of oriented scaffold was significantly higher than that of non-oriented scaffold (t=201.099, P=0.000). The cell proliferation on the oriented scaffold was significantly higher than that on the non-oriented scaffold from 3 to 9 days (P fibers with chondrocyte-like cells on the oriented-structure constructs. Total DNA, glycosaminoglycan (GAG), and collagen contents increased with time, and no significant difference was found between 2 groups (P > 0.05). The compressive modulus of the oriented tissue engineered cartilage was significantly higher than that of the non-oriented tissue engineered cartilage at 2 and 4 weeks after implantation (P < 0.05). Total DNA, GAG, collagen contents, and compressive modulus in the 2 tissue engineered cartilages were significantly lower than those in normal cartilage (P < 0.05). Oriented extracellular

  3. Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis.

    Science.gov (United States)

    Arango, Julián Camilo; Puerta-Arias, Juan David; Pino-Tamayo, Paula Andrea; Salazar-Peláez, Lina María; Rojas, Mauricio; González, Ángel

    2017-10-01

    Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106 P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling.

  4. Fibroblast activation protein (FAP is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    Directory of Open Access Journals (Sweden)

    Kuei-Min Chung

    Full Text Available BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β and transforming growth factor-beta (TGF-β upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  5. Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence.

    Directory of Open Access Journals (Sweden)

    Monica Gunetti

    Full Text Available Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.

  6. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca.

    Directory of Open Access Journals (Sweden)

    Jun-Jie Wang

    Full Text Available It has been widely known that the giant panda (Ailuropoda melanoleuca is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF, a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  7. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock.

    Directory of Open Access Journals (Sweden)

    Shibani Pati

    Full Text Available Hemorrhagic shock (HS and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI and acute respiratory distress syndrome (ARDS, conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs reveal that conditioned media (CM from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin. Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1 are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat "fixed volume" model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury.

  8. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  9. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro

    Directory of Open Access Journals (Sweden)

    Lin Hou

    2016-01-01

    Full Text Available Infertility due to low testosterone levels has increased in recent years. This has impacted the social well-being of the patients. This study was undertaken to investigate the potential of gonadotropins in facilitating differentiation of human bone marrow mesenchymal stem cells (BMSCs into Leydig cells in vitro. BMSCs were isolated, cultured, and their biological characteristics were observed. BMSCs were induced with gonadotropins in vitro and their ability to differentiate into Leydig cells was studied. The level of expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD and secretion of testosterone were determined using flow cytometry and enzyme-linked immunosorbent assay, respectively, and the results were compared between the experimental and control groups. The cultured BMSCs showed a typical morphology of the fibroblast-like colony. The growth curve of cells formed an S-shape. After inducing the cells for 8–13 days, the cells in the experimental group increased in size and showed typical characteristics of Leydig cells, and the growth occurred in spindle or stellate shapes. Cells from the experimental group highly expressed 3β-HSD, and there was a gradual increase in the number of Leydig cells. The control group did not express 3β-HSD. The level of testosterone in the experimental group was higher than the control group (p < 0.05. Additionally, the cells in the experimental group secreted higher levels of testosterone with increased culture time. The expression of Leydig cell-specific markers in the experimental group was significantly higher (p < 0.05. With these findings, BMSCs can be considered a new approach for the treatment of patients with low androgen levels.

  10. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-01-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  11. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  12. Extracellular vesicles secreted by bone marrow- and adipose tissue-derived mesenchymal stromal cells fail to suppress lymphocyte proliferation.

    Science.gov (United States)

    Gouveia de Andrade, Ana Valéria; Bertolino, Giuliana; Riewaldt, Julia; Bieback, Karen; Karbanová, Jana; Odendahl, Marcus; Bornhäuser, Martin; Schmitz, Marc; Corbeil, Denis; Tonn, Torsten

    2015-06-01

    Recently, mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have been suggested as an alternative to MSCs for the treatment of various inflammatory disorders. However, while a first case report observed beneficial therapeutic effects of repeated MSC-EV infusions in a patient with therapy-refractory graft-versus-host disease, in vitro findings revealed that MSC-EVs were significantly less immunosuppressive than their parental cells. In this study, we compared the immunosuppressive potency of MSCs derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs), with their secreted EVs in a standardized lymphocyte proliferation assay (LPA). Both BM-MSCs and AT-MSCs exhibited a remarkable inhibition of lymphocyte proliferation (LP) (88.1%±1.5% and 75.5%±1.5%, respectively), while isolated EVs derived from them failed to suppress LP at dose levels up to 100 μg/mL. Thus, our data further substantiate previous reports suggesting that cell-cell contact plays an important role on the immunosuppressive potential mediated by MSCs. Hence, MSC-EVs are still a matter of debate and might not be a reasonable substitute for MSCs with regard to the immunosuppressive function. Collectively, these contrasting findings may also reflect the importance of relevant translational aspects when designing new studies. Standardization of MSC culture conditions before EV collection as well as isolation and characterization methods with regard to EV purity are urged. Moreover, before clinical use, dose-finding studies evaluating MSC-EV preparations in suitable preclinical models are warranted.

  13. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  14. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  15. In Vitro Study of the Effect of Vitamin E on Viability, Morphological Changes and Induction of Osteogenic Differentiation in Adult Rat Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    M Soleimani Mehranjani

    2014-10-01

    Full Text Available Introduction: Vitamin E as a strong antioxidant plays an important role in inhibiting free radicals. Therefore, this study aimed to investigate the effect of vitamin E on the viability, morphology and osteogenic differentiation in bone marrow mesenchymal stem cells of an adult rat. Methods: The bone marrow mesenchymal stem cells were extracted using the flashing-out method. At the end of the third passage, cells were divided into groups of control and experimental. Experimental cells were treated withVitamin E (5,10,15,25,50,100,150μM for a period of 21 days in the osteogenic media containing 10% of fetal bovine serum. The cell viability, bone matrix mineralization, intercellular and extracellular calcium deposition, alkaline phosphatase activity, expression of genes and synthesis of proteins of osteopontin and osteocalcin as well as morphological changes of the cells were investigated. The study data was analyzed using one-way ANOVA and T-Test setting the significant P value at P<0.05. Results: Within vitamin- E treated cells, the mean viability, mean bone matrix mineralization, calcium deposition, alkaline phosphatase activity, expression and synthesis of osteopontin and osteocalcin of the mesenchymal stem cells treated with vitamin E significantly increased in a dose dependent manner. Also cytoplasm extensions were observed in the cells treated with vitamin E. Conclusion: Since vitamin E caused a significant increase in cell viability and osteogenic differentiation in the mesenchymal stem cells, therefore it can be utilized in order to increase cell differentiation and cell survival.

  16. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Nhung Hai Truong

    2016-01-01

    Full Text Available Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold, transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  17. BONE MARROW TRANSPLANTATION

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. BONE MARROW TRANSPLANTATION. AUTOLOGOUS TRANSPLANTS: Oct 1986 - Dec 2007. Multiple Myeloma 90. NHL 39. Hodgkins lymphoma 19. AML 36. APML 9. ALL 2. Amyloidosis 2. Granulocytic Sarcoma 1.

  18. Bone marrow transplant - discharge

    Science.gov (United States)

    ... lymphoblastic leukemia (ALL) Acute myeloid leukemia - adult Aplastic anemia Bone marrow transplant Chronic lymphocytic leukemia (CLL) Chronic myelogenous leukemia (CML) Graft-versus-host disease Hodgkin lymphoma Multiple myeloma Non-Hodgkin lymphoma Patient ...

  19. Bone marrow biopsy

    Science.gov (United States)

    ... test is used to diagnose leukemia, infections, some types of anemia, and other blood disorders. It may also be ... the bone marrow contains the proper number and types of blood-forming (hematopoietic) cells, fat cells, and connective tissues.

  20. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report.

    Science.gov (United States)

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-04-09

    Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a pilot study aiming to track bone marrow-derived mesenchymal stem cells, labeled with superparamagnetic iron oxide nanoparticles, from intrathecal transplantation in chronic cervical spinal cord injury. He had been dependent on respiratory support since 2005. There had been no improvement in his neurological function for the past 54 months. Bone marrow-derived mesenchymal stem cells were retrieved from his iliac crest and repopulated to the target number. One half of the total cells were labeled with superparamagnetic iron oxide nanoparticles before transplantation to the intrathecal space between L4 and L5. Magnetic resonance imaging studies were performed immediately after the transplantation and at 48 hours, two weeks, one month and seven months after the transplantation. His magnetic resonance imaging scan performed immediately after the transplantation showed hyposignal intensity of paramagnetic substance tagged stem cells in the subarachnoid space at the lumbar spine area. This phenomenon was observed at the surface around his cervical spinal cord at 48 hours. A focal hyposignal intensity of tagged bone marrow-derived stem cells was detected at his cervical spinal cord with magnetic resonance imaging at 48 hours, which faded after two weeks, and then disappeared after one month. No clinical improvement of the neurological function had occurred at the end of this study. However, at 48 hours after the transplantation, he presented with a fever, headache, myalgia and worsening of his motor function (by one

  1. A new method for obtaining mesenchymal stem cells in children with burn injury: Tibial bone marrow aspiration by using the C-arm guidance scopy

    Directory of Open Access Journals (Sweden)

    Mehmet Bozkurt

    2017-03-01

    Full Text Available The utilization of stem cell therapies is a trending topic in plastic surgery and fat tissue is the most commonly used stem cell source. Stem cell injection has become popular in the treatment of burn wound, especially in the late term scar modulation. However, insufficient amounts of fat tissue in the pediatric age group is a major limitation. The present study reports the utilization of tibial bone marrow aspiration as a source of mesenchymal stem cells in the pediatric age group with the simultaneous usage of x-ray examination to avoid epiphyseal damage. [Arch Clin Exp Surg 2017; 6(1.000: 56-57

  2. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhang WJ

    2013-01-01

    Full Text Available Wenjie Zhang,1,2,* Zihui Li,3,* Qingfeng Huang,1 Ling Xu,1 Jinhua Li,3 Yuqin Jin,1,2 Guifang Wang,1,2 Xuanyong Liu,2 Xinquan Jiang11Department of Prosthodontics, 2Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China *These authors contributed equally to this workBackground and methods: Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells.Results: The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells.Conclusion: This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by

  3. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration.

    Science.gov (United States)

    Kawai, Takamasa; Katagiri, Wataru; Osugi, Masashi; Sugimura, Yukiko; Hibi, Hideharu; Ueda, Minoru

    2015-04-01

    Periodontal tissue regeneration with the use of mesenchymal stromal cells (MSCs) has been regarded as a future cell-based therapy. However, low survival rates and the potential tumorigenicity of implanted MSCs could undermine the efficacy of cell-based therapy. The use of conditioned media from MSCs (MSC-CM) may be a feasible approach to overcome these limitations. The aim of this study was to confirm the effect of MSC-CM on periodontal regeneration. MSC-CM were collected during their cultivation. The concentrations of the growth factors in MSC-CM were measured with the use of enzyme-linked immunoassay. Rat MSCs (rMSCs) and human umbilical vein endothelial cells cultured in MSC-CM were assessed on wound-healing and angiogenesis. The expressions of osteogenetic- and angiogenic-related genes of rMSCs cultured in MSC-CM were quantified by means of real-time reverse transcriptase-polymerase chain reaction analysis. In vivo, periodontal defects were prepared in the rat models and the collagen sponges with MSC-CM were implanted. MSC-CM includes insulin-like growth factor-1, vascular endothelial growth factor, transforming growth factor-β1 and hepatocyte growth factor. In vitro, wound-healing and angiogenesis increased significantly in MSC-CM. The levels of expression of osteogenetic- and angiogenic-related genes were significantly upregulated in rMSCs cultured with MSC-CM. In vivo, in the MSC-CM group, 2 weeks after implantation, immunohistochemical analysis showed several CD31-, CD105-or FLK-1-positive cells occurring frequently. At 4 weeks after implantation, regenerated periodontal tissue was observed in MSC-CM groups. The use of MSC-CM may be an alternative therapy for periodontal tissue regeneration because several cytokines included in MSC-CM will contribute to many processes of complicated periodontal tissue regeneration. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Ovariectomized Rats with Established Osteopenia have Diminished Mesenchymal Stem Cells in the Bone Marrow and Impaired Homing, Osteoinduction and Bone Regeneration at the Fracture Site.

    Science.gov (United States)

    Tewari, Deepshikha; Khan, Mohd Parvez; Sagar, Nitin; China, Shyamsundar P; Singh, Atul K; Kheruka, Subhash C; Barai, Sukanta; Tewari, Mahesh C; Nagar, Geet K; Vishwakarma, Achchhe L; Ogechukwu, Omeje E; Bellare, Jayesh R; Gambhir, Sanjay; Chattopadhyay, Naibedya

    2015-04-01

    We investigated deleterious changes that take place in mesenchymal stem cells (MSC) and its fracture healing competence in ovariectomy (Ovx)-induced osteopenia. MSC from bone marrow (BM) of ovary intact (control) and Ovx rats was isolated. (99m)Tc-HMPAO (Technitium hexamethylpropylene amine oxime) labeled MSC was systemically transplanted to rats and fracture tropism assessed by SPECT/CT. PKH26 labeled MSC (PKH26-MSC) was bound in scaffold and applied to fracture site (drill-hole in femur metaphysis). Osteoinduction was quantified by calcein binding and microcomputed tomography. Estrogen receptor (ER) antagonist, fulvestrant was used to determine ER dependence of osteo-induction by MSC. BM-MSC number was strikingly reduced and doubling time increased in Ovx rats compared to control. SPECT/CT showed reduced localization of (99m)Tc-HMPAO labeled MSC to the fracture site, 3 h post-transplantation in Ovx rats as compared with controls. Post-transplantation, Ovx MSC labeled with PKH26 (Ovx PKH26-MSC) localized less to fracture site than control PKH26-MSC. Transplantation of either control or Ovx MSC enhanced calcein binding and bone volume at the callus of control rats over placebo group however Ovx MSC had lower efficacy than control MSC. Fulvestrant blocked osteoinduction by control MSC. When scaffold bound MSC was applied to fracture, osteoinduction by Ovx PKH26-MSC was less than control PKH26-MSC. In Ovx rats, control MSC/E2 treatment but not Ovx MSC showed osteoinduction. Regenerated bone was irregularly deposited in Ovx MSC group. In conclusion, Ovx is associated with diminished BM-MSC number and its growth, and Ovx MSC displays impaired engraftment to fracture and osteoinduction besides disordered bone regeneration.

  5. Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; a safety study

    Directory of Open Access Journals (Sweden)

    Leila Satarian

    2017-01-01

    Conclusion: Intravitreal injection of autologous bone marrow MSCs into patients' eyes with advanced RP does not meet safety standards. Major side effects of this therapy can include fibrosis and TRD. We propose thorough evaluation of MSCs prior to transplantation by intravitreal injection in the laboratory animals.\\

  6. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

    Directory of Open Access Journals (Sweden)

    Miguel Espina

    2016-03-01

    Full Text Available Background. Mesenchymal stromal cells (MSCs are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal, (II seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C, four time frames (24 h vs. 48 h; 48 h vs. 72 h, and (III three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml. Cell viability (Trypan Blue exclusion; percent and total number viable cell, proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6 and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability. In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%; this was not significant. Contrary, viability was unacceptably

  7. [The process of heme synthesis in bone marrow mesenchymal stem cells cultured under fibroblast growth factor bFGF and hypoxic conditions].

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Mezhevikina, L M; Fesenko, E E; Volotkovskiĭ, I D

    2014-01-01

    It was demonstrated that fibroblast growth factor bFGF influences the process of heme synthesis, the proliferation activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/ml) to the medium under above conditions led to the accumulation of aminolevulinic acid--an early porphyrin and heme precursor, an increase in CD 71 expression--a transferrin receptor, and also a decrease in porphyrin pigments and heme contents--a late precursor and end products of heme synthesis, respectively. It was found that cultivation of the cells under hypoxic conditions and bFGF is an optimum to maintain high viability and proliferation capacity of the mesenchymal stem cells.

  8. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  9. INFLUENCE OF BONE MARROW ALLOGENEIC MULTIPOTENT MESENCHYMAL STROMAL CELLS ON THE FORMATION OF ANTI-ISCHEMIC KIDNEY PROTECTION

    Directory of Open Access Journals (Sweden)

    S. S. Mescherin

    2015-01-01

    Full Text Available Аim of this work was to study the influence of intravenous injection times of bone marrow allogeneic multipotent mesenchymal stromal cells (BM MMSCs on kidney function and morphology in modeled ischemicreperfusion injury of kidney (IRIK. Materials and methods. The study was conducted on 90 male Wistar rats. On the original IRI model of a single kidney (60 min, warm ischemia 4 groups of experiments were performed: in the first group the dose of 5 × 106 of BM MMSCs was administered intravenously 14 days before IRIK modeling; in the second group, the same dose of BM MMSCs was administered 7 days before IRIK; in the third group, the same dose of BM MMSCs was administered during kidney reperfusion after IRIK modeling; the fourth group served as the control group (IRIK without BM МMSCs. The study duration was 21 days since the start of IRIK modeling. In all groups the nitrogen secretory function of kidneys was examined and the histological condition of kidneys during the entire recovery period was evaluated. Besides, blood of rats of the first and the fourth groups was examined for proand anti-inflammatory cytokine levels and phagocytosis indices using the suspension of inactivated St. aureus. The significance of differences in these two groups was evaluated by Student's test at p < 0.05. Results. It has been demonstrated that the pretreatment with BM MMSCs (1 and 2 weeks before IRIK modeling increased the anti-ischemic resistance of kidney while the administration of BM MMSCs on the day of IRIK modeling (during reperfusion enhanced kidney damage, characterized by increased mortality, elevated levels of urea and creatinine in blood and structural injury of renal tissue, as compared to other groups. The comparative analysis of the first and fourth groups shows that BM MMSCs decrease the levels of pro-inflammatory cytokines and increase the levels of anti-inflammatory cytokines, as well as enhance potential of antimicrobial protection. Conclusion

  10. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  11. LIGHT (TNFSF14 Increases the Survival and Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available LIGHT (HVEM-L, TNFSF14, or CD258, an entity homologous to lymphotoxins, with inducible nature and the ability to compete with herpes simplex virus glycoprotein D for herpes virus entry mediator (HVEM/tumor necrosis factor (TNF-related 2, is a member of the TNF superfamily. It is expressed as a homotrimer on activated T cells and dendritic cells (DCs, and has three receptors: HVEM, LT-β receptor (LTβR, and decoy receptor 3 (DcR3. So far, three receptors with distinct cellular expression patterns are known to interact with LIGHT. Follicular DCs and stromal cells bind LIGHT through LTβR. We monitored the effects of LIGHT on human bone marrow-derived mesenchymal stem cells (BM-MSCs. At first, we checked the negative and positive differentiation markers of BM-MSCs. And we confirmed the quality of MSCs by staining cells undergoing adipogenesis (Oil Red O staining, chondrogenesis (Alcian blue staining, and osteogenesis (Alizarin red staining. After rhLIGHT treatment, we monitored the count, viability, and proliferation of cells and cell cycle distribution. PDGF and TGFβ production by rhLIGHT was examined by ELISA, and the underlying biological mechanisms were studied by immunoblotting by rhLIGHT treatment. LTβR was constitutively expressed on the surface of human BM-MSCs. Cell number and viability increased after rhLIGHT treatment. BM-MSC proliferation was induced by an increase in the S/G2/M phase. The expression of not only diverse cyclins such as cyclin B1, D1, D3, and E, but also CDK1 and CDK2, increased, while that of p27 decreased, after rhLIGHT treatment. RhLIGHT-induced PDGF and TGFβ production mediated by STAT3 and Smad3 activation accelerated BM-MSC proliferation. Thus, LIGHT and LTβR interaction increases the survival and proliferation of human BM-MSCs, and therefore, LIGHT might play an important role in stem cell therapy.

  12. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture.

    Directory of Open Access Journals (Sweden)

    Peter Muir

    Full Text Available Mid-substance rupture of the canine cranial cruciate ligament rupture (CR and associated stifle osteoarthritis (OA is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks and stifle synovial fluid (entry and 8 weeks were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint

  13. Bone marrow-derived mesenchymal stromal cells promote colorectal cancer cell death under low-dose irradiation.

    Science.gov (United States)

    Feng, Hao; Zhao, Jing-Kun; Schiergens, Tobias S; Wang, Pu-Xiongzhi; Ou, Bao-Chi; Al-Sayegh, Rami; Li, Ming-Lun; Lu, Ai-Guo; Yin, Shuai; Thasler, Wolfgang E

    2018-02-06

    Radiotherapy remains one of the cornerstones to improve the outcome of colorectal cancer (CRC) patients. Radiotherapy of the CRC not only help to destroy cancer cells but also remodel the tumour microenvironment by enhancing tumour-specific tropism of bone marrow-derived mesenchymal stromal cell (BM-MSC) from the peripheral circulation. However, the role of local MSCs and recruited BM-MSC under radiation were not well defined. Indeed, the functions of BM-MSC without irradiation intervention remained controversial in tumour progression: BM-MSC was previously shown to modulate the immune function of major immune cells, resulting in an impaired immunological sensitivity and to induce an increased risk of tumour recurrence. In contrast, it could also secrete various cytokines and possess anticancer effect. Three co-cultivation modules, 3D culture modules, and cancer organoids were established. The induction of cytokines secretion in hBM-MSCs after irradiation was analysed by ELISA array and flow cytometry. AutoMac separator was used to separate hBM-MSC and CRC automatically. Cells from the co-cultured group and the control group were then irradiated by UV-C lamp and X-ray. Proliferation assay and viability assay were performed. In this study, we show that BM-MSCs can induce the EMT progression of CRC cells in vitro. When irradiated with low doses of ultraviolet radiation and X-rays, BM-MSCs show an anti-tumour effect by secreting certain cytokine (TNF-α, IFN-γ) that lead to the inhibition of proliferation and induction of apoptosis of CRC cells. This was further verified in a 3D culture model of a CRC cell in vitro. Furthermore, irradiation on the co-culture system induced the cleavage of caspase3, and attenuated the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase in cancer cells. The signal pathways above might contribute to the cancer cell death. Taken together, we show that BM-MSC can potentially promote the

  14. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  15. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    Science.gov (United States)

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  16. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells in a swine hemi-facial allotransplantation model.

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    Full Text Available BACKGROUND: In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs, combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA model. METHODOLOGY/PRINCIPAL FINDINGS: Outbred miniature swine underwent hemi-facial allotransplantation (day 0. Group-I (n = 5 consisted of untreated control animals. Group-II (n = 3 animals received MSCs alone (given on days -1, +1, +3, +7, +14, and +21. Group-III (n = 3 animals received CsA (days 0 to +28. Group-IV (n = 5 animals received CsA (days 0 to +28 and MSCs (days -1, +1, +3, +7, +14, and +21. The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001. Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3(+T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. CONCLUSIONS: These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not

  17. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile.

    Directory of Open Access Journals (Sweden)

    Julian Maggini

    Full Text Available In recent years it has become clear that the therapeutic properties of bone marrow-derived mesenchymal stromal cells (MSC are related not only to their ability to differentiate into different lineages but also to their capacity to suppress the immune response. We here studied the influence of MSC on macrophage function. Using mouse thioglycolate-elicited peritoneal macrophages (M stimulated with LPS, we found that MSC markedly suppressed the production of the inflammatory cytokines TNF-alpha, IL-6, IL-12p70 and interferon-gamma while increased the production of IL-10 and IL-12p40. Similar results were observed using supernatants from MSC suggesting that factor(s constitutively released by MSC are involved. Supporting a role for PGE(2 we observed that acetylsalicylic acid impaired the ability of MSC to inhibit the production of inflammatory cytokines and to stimulate the production of IL-10 by LPS-stimulated M. Moreover, we found that MSC constitutively produce PGE2 at levels able to inhibit the production of TNF-alpha and IL-6 by activated M. MSC also inhibited the up-regulation of CD86 and MHC class II in LPS-stimulated M impairing their ability to activate antigen-specific T CD4+ cells. On the other hand, they stimulated the uptake of apoptotic thymocytes by M. Of note, MSC turned M into cells highly susceptible to infection with the parasite Trypanosoma cruzi increasing more than 5-fold the rate of M infection. Using a model of inflammation triggered by s.c. implantation of glass cylinders, we found that MSC stimulated the recruitment of macrophages which showed a low expression of CD86 and the MHC class II molecule Ia(b and a high ability to produce IL-10 and IL-12p40, but not IL-12 p70. In summary, our results suggest that MSC switch M into a regulatory profile characterized by a low ability to produce inflammatory cytokines, a high ability to phagocyte apoptotic cells, and a marked increase in their susceptibility to infection by

  18. Stromal cell-derived factor-1β potentiates bone morphogenetic protein-2-stimulated osteoinduction of genetically engineered bone marrow-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Herberg, Samuel; Fulzele, Sadanand; Yang, Nianlan; Shi, Xingming; Hess, Matthew; Periyasamy-Thandavan, Sudharsan; Hamrick, Mark W; Isales, Carlos M; Hill, William D

    2013-01-01

    Skeletal injuries are among the most prevalent clinical problems and bone marrow-derived mesenchymal stem/stromal cells (BMSCs) have successfully been used for the treatment thereof. Stromal cell-derived factor-1 (SDF-1; CXCL12) is a member of the CXC chemokine family with multiple splice variants. The two most abundant variants, SDF-1α and SDF-1β, share identical amino acid sequences, except for four additional amino acids at the C-terminus of SDF-1β, which may mediate surface stabilization via glycosaminoglycans and protect SDF-1β from proteolytic cleavage, rendering it twice as potent as SDF-1α. Increasing evidence suggests that SDF-1 is involved in bone formation through regulation of recruitment, engraftment, proliferation, and differentiation of stem/progenitor cells. The underlying molecular mechanisms, however, have not yet been fully elucidated. In this study, we tested the hypothesis that SDF-1β can potentiate bone morphogenetic protein-2 (BMP-2)-stimulated osteogenic differentiation and chemotaxis of BMSCs in vitro. Utilizing retrovirus-mediated gene transfer to generate novel Tet-Off-SDF-1β BMSCs, we found that conditional SDF-1β expression is tightly regulated by doxycycline in a dose-dependent and temporal fashion, leading to significantly increased SDF-1β mRNA and protein levels. In addition, SDF-1β was found to enhance BMP-2-stimulated mineralization, mRNA and protein expression of key osteogenic markers, and regulate BMP-2 signal transduction via extracellular signal-regulated kinases 1/2 (Erk1/2) phosphorylation in genetically engineered BMSCs in vitro. We also showed that SDF-1β promotes the migratory response of CXC chemokine receptor 4 (CXCR4)-expressing BMSCs in vitro. Taken together, these data support that SDF-1β can play an important role in BMP-2-stimulated osteogenic differentiation of BMSCs and may exert its biological activity in both an autocrine and paracrine fashion.

  19. Bone marrow mesenchymal stromal cells and olfactory ensheathing cells transplantation after spinal cord injury--a morphological and functional comparison in rats.

    Science.gov (United States)

    Torres-Espín, Abel; Redondo-Castro, Elena; Hernández, Joaquim; Navarro, Xavier

    2014-05-01

    Cell therapy for spinal cord injury (SCI) is a promising strategy for clinical application. Both bone marrow mesenchymal stromal cells (MSCs; also known as bone marrow-derived 'mesenchymal stem cells') and olfactory ensheathing cells (OECs) have demonstrated beneficial effects following transplantation in animal models of SCI. However, due to the large number of affecting parameters that determine the therapy success and the lack of methodological consensus, the comparison of different works is difficult. Therefore, we compared the effects of MSC and OEC transplants at early or delayed time after a spinal cord contusion injury in the rat. Functional outcomes for locomotion, sensory perception and electrophysiological responses were assessed. Moreover, the grafted cells survival and the amount of cavity and spared tissue were studied. The findings indicate that grafted cells survived until 7 days post-injection, but markedly disappeared in the following 2 weeks. Despite the low survival of the cells, MSC and OEC grafts provided tissue protection after early and delayed transplantation. Nevertheless, only acute MSC grafts improved locomotion recovery in treadmill condition and electrophysiological outcomes with respect to the other injured groups. These results, together with previous works, indicate that the MSC seem a better option than OEC for treatment of contusion injuries. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Protective Effects of Mouse Bone Marrow Mesenchymal Stem Cell Soup on Staurosporine Induced Cell Death in PC12 and U87 Cell Lines

    Directory of Open Access Journals (Sweden)

    Hossein Zhaleh

    2016-11-01

    Full Text Available Mouse bone marrow mesenchymal stem cells (mBMSCs soup is promising tool for the treatment of neurodegenerative diseases. mBMSCs soup is easily obtained and is capable of transplantation without rejection. We investigated the effects of mBMSC soup on staurosporine-induced cell death in PC12 and U87 cells lines. The percentage of cell viability, cell death, NO concentration, total neurite length (TNL and fraction of cell differentiation (f% were assessed. Viability assay showed that mBM soup (24 and 48h in time dependent were increased cell viability (p<0.05 and also cell death assay showed that cell death in time dependent were decreased, respectively (p<0.05. TNL and fraction of cell differentiation significantly were increased compared with treatment1 (p<0.05. Our data showed that mBM Soup protects cells, increases cell viability, suppresses cell death and improvement the neurite elongation. We concluded that Mouse bone marrow mesenchymal stem cell soup plays an important protective role in staurosporine-induced cell death in PC12 and U87 cell lines.

  1. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities

    International Nuclear Information System (INIS)

    Go, Masahiro J.; Takenaka, Chiemi; Ohgushi, Hajime

    2008-01-01

    Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs

  2. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    Science.gov (United States)

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-03-15

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties

    International Nuclear Information System (INIS)

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-01-01

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.

  4. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng-Yu [Department of Cell Therapy, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway); Nestvold, Janne, E-mail: j.m.nestvold@medisin.uio.no [Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo (Norway); Rekdal, Øystein [Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø (Norway); Kvalheim, Gunnar [Department of Cell Therapy, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway); Fodstad, Øystein [Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway)

    2017-03-15

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.

  5. Bone marrow transplantation

    International Nuclear Information System (INIS)

    Storb, R.; Santos, G.W.

    1979-01-01

    Bone marrow transplantation has been increasingly used to treat patients with severe combined immunodeficiency diseases, severe aplastic anemia, and malignant hematologic diseases, especially leukemia. At the Workshop a number of problems were discussed, e.g., conditioning regimens aimed at overcoming the problem of marrow graft rejection and reducing the incidence of recurrent leukemia, prevention of graft-versus-host disease (GVHD), possible mechanisms involved in stable graft-host tolerance, graft-versus-leukemia effect in mice, and finally, the possible use of autologous marrow transplantation

  6. Long-term Radiological and Clinical Outcomes After Using Bone Marrow Mesenchymal Stem Cells Concentrate Obtained With Selective Retention Cell Technology in Posterolateral Spinal Fusion.

    Science.gov (United States)

    Yousef, Mohamed Abdelhamid Ali; La Maida, Giovanni Andrea; Misaggi, Bernardo

    2017-12-15

    Retrospective study. The aim of this study was to evaluate the long-term clinical and radiological outcomes of the use of bone marrow mesenchymal stem cell concentrate obtained with selective cell retention technology using Cellect with a particular collagen scaffold, Healos for posterolateral spinal fusion. With the increasing rate of spinal fusion, the problem of pseudarthrosis, which contributes to recurrent pain with patient disability, is considered to be the most common cause of revision lumbar spine surgery. Intensive research is being carried out to develop an alternative source of bone grafting and improve the spinal fusion rate. A retrospective review of hospital records was performed. Identified patients were contacted to have a clinical and radiological evaluation follow-up. Clinical outcome was evaluated using visual analog scales for the back pain (VAS), Oswestry Disability Index (ODI) scores, and quality of life (EQ-5D) questionnaire. Radiological outcome was evaluated by performing dynamic flexion/extension lateral views and calculation of segmental Cobb angle. Any implant-associated complication was reported. Computed tomography (CT) scans were also performed. Twenty-one patients were included and all patients achieved successful fusion. The mean difference of the segmental Cobb angle was 0.48° (range 0.3°-0.7°). Computed tomography scans showed solid bilateral fusion with bridging bone (Grade I) in all patients, but solid unilateral fusion with bridging bone (Grade II) was detected for one patient at one level. Patients started to resume working activities within a mean period of 3.5 months. The VAS score for the residual back pain was 4.1 ± 2.1, whereas the ODI was 10.5 ± 5.6 points, and the mean disability index was 21.1%. The use of bone marrow mesenchymal stem cell concentrate obtained with selective cell retention technology could be considered as an effective means for augmenting spinal fusion. 3.

  7. Bone marrow aspiration

    Science.gov (United States)

    Bain, B

    2001-01-01

    Bone marrow aspiration biopsies are carried out principally to permit cytological assessment but also for immunophenotypic, cytogenetic, molecular genetic, and other specialised investigations. Often, a trephine biopsy is carried out as part of the same procedure. Bone marrow aspirations should be carried out by trained individuals who are aware of the indications, contraindications, and hazards of the procedure. They should follow a standard operating procedure. The operator should have made an adequate assessment of clinical and haematological features to ensure both that appropriate indications exist and that all relevant tests are performed. For the patient's comfort and safety, the posterior iliac crest is generally the preferred site of aspiration. Films of aspirated marrow and, when appropriate, films of crushed particles should be made and labelled. Once thoroughly dry, films should be fixed and stained. As a minimum, a Romanowsky stain and a Perls' stain are required. A cover slip should be applied. The bone marrow films should be assessed and reported in a systematic manner so that nothing of importance is overlooked, using a low power, then intermediate, then high power objective. A differential count should be performed. An interpretation of the findings, in the light of the clinical and haematological features, should be given. The report should be signed or computer authorised, using a secure password, and issued in a timely manner. Key Words: bone marrow aspirate • haematological diagnosis PMID:11533068

  8. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne Karijn; van Apeldoorn, Aart A.; Jukes, J.M.; Englund, Mikael C.O.; Hyllner, Johan; van Blitterswijk, Clemens; de Boer, Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  9. [EFFECT OF TRITON X-100 ON LIPOSOME MEDIATED BONE MORPHOGENETIC PROTEIN 2 BY TRANSFECTION OF RAT BONE MARROW MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Xia, Delin; Huang, Mingke; Fu, Guangxing; Ma, Zheng; Wu, Shuangjiang; Zhou, Hangyu

    2015-01-01

    To study the effect of Triton X-100 promoting liposome-mediated bone morphogenetic protein 2 (BMP-2) gene transfection of rat bone marrow mesenchymal stem cells (BMSCs). BMSCs were separated and cultured from the femur and tibia of healthy Wistar rats (8-week-old, male). The 3rd passage BMSCs identified by detecting the surface antigen were used to transfect. The optimum concentration of Triton X-100 for liposome mediated gene transfection was determined with ELISA meter by the way of MTT. In optimum concentration of Triton X-100, liposome mediated BMP-2 gene was transfected to BMSCs. The experiment was divided into 3 groups according to types of trasfection agents: BMSCs were transfected with Triton X-100+liposome+BMP-2 (experimental group), with liposome+ BMP-2 (conventional transfection group), and untransfected BMSCs served as blank control group. After 48 hours of transfecting, the green fluorescent protein (GFP) in cells was detected through inverted fluorescence microscope. After 72 hours of transfection, real-time fluorescence quantitative PCR was applied to measure the mRNA expression of BMP-2. 0.01% Triton X-100 was determined to be the optimum concentration for not only making the BMSCs maintain vitality, but also achieving a certain effect on BMSCs. After trasfecting for 48 hours, GFP was observed through inverted fluorescence microscope in the experimental group and conventional transfection group, but was not observed in the blank control group. After trasfecting for 72 hours, the relative BMP-2 mRNA expression level was 5.94 ± 0.12 in the experimental group, and was 4.99 ± 0.08 in the conventional transfection group, showing significant difference (t = 360.28, P = 0.02). The transfection efficiency was increased by 19% in the experimental group. 0.010% Triton X-100 can promote the liposome mediated BMP-2 gene transfection of rat BMSUs, and can improve the transfection efficiency.

  10. Osteogenic markers are reduced in bone-marrow mesenchymal cells and femoral bone of young spontaneously hypertensive rats.

    Science.gov (United States)

    Landim de Barros, Thamine; Brito, Victor Gustavo Balera; do Amaral, Caril Constante Ferreira; Chaves-Neto, Antonio Hernandes; Campanelli, Ana Paula; Oliveira, Sandra Helena Penha

    2016-02-01

    Spontaneously hypertensive rats (SHR) and normotensive rats (W) has significant changes in bone metabolism. The purpose of this study was to investigate whether, the genetic predisposition, is sufficient to induce changes in the osteoblast differentiation and osteogenic markers in the BMSCs or in the femoral bone. For this we use young SHR rats without hypertension, but, with genetic predisposition in compared with young W. BMSCs were cultured in a proliferation medium (MEM) or osteogenic medium. Osteogenic differentiation was analyzed by proliferation, total protein, alkaline phosphatase, mineralization, and the mRNA expression of RUNX-2, β-cathenin, osterix, bone morphogenetic protein-2(BMP-2), osteocalcin (OCN), bone sialoprotein (BSP), collagen type I (Col I), and osteopontin (OPN). Osteoblast differentiation in SHR BMSCs (SHRC) had an increased proliferation compared with W BMSCs (WC). After osteogenic induction, there was greater reduction in proliferation in SHR (SHROM) than in W, in the same condition (WOM). On day 7, although no significant difference in the ALP activity was observed between SHROM and WOM, poor mineralization and osteoblast differentiation was noted in SHROM. The Osterix and β-catenin are involved in the reduced osteoblast differentiation in SHROM. The decreased expression of osteoblast-associated proteins such as OCN, BSP, COL I and OPN revealed poor quality of extracellular matrix (ECM) in SHROM. In the femoral bone, the immunostaining of COL1, BALP, OPN and OCN in SHR was decreased compared with the W. TRAP-positive immunoreactions were observed in major extension in the SHR femur. This study is the first to compare osteoblast differentiation in vitro and femoral bone from SHR and W rats. Our results demonstrated that young SHR (4weeks old), without hypertension, but with genetic predisposition, had alterations in osteoblast differentiation of BMSCs and in the femoral bone when compared with their progenitor strain, W. Copyright

  11. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair.

    Science.gov (United States)

    Fu, Yin-Chih; Lin, Chih-Chun; Chang, Je-Ken; Chen, Chung-Hwan; Tai, I-Chun; Wang, Gwo-Jaw; Ho, Mei-Ling

    2014-01-01

    Pulsed electromagnetic field (PEMF) has been successfully applied to accelerate fracture repair since 1979. Recent studies suggest that PEMF might be used as a nonoperative treatment for the early stages of osteonecrosis. However, PEMF treatment requires a minimum of ten hours per day for the duration of the treatment. In this study, we modified the protocol of the single-pulsed electromagnetic field (SPEMF) that only requires a 3-minute daily treatment. In the in vitro study, cell proliferation and osteogenic differentiation was evaluated in the hBMSCs. In the in vivo study, new bone formation and revascularization were evaluated in the necrotic bone graft. Results from the in vitro study showed no significant cytotoxic effects on the hBMSCs after 5 days of SPEMF treatment (1 Tesla, 30 pulses per day). hBMSC proliferation was enhanced in the SPEMF-treated groups after 2 and 4 days of treatment. The osteogenic differentiation of hBMSCs was significantly increased in the SPEMF-treated groups after 3-7 days of treatment. Mineralization also increased after 10, 15, 20, and 25 days of treatment in SPEMF-treated groups compared to the control group. The 7-day short-course treatment achieved similar effects on proliferation and osteogenesis as the 25-day treatment. Results from the in vivo study also demonstrated that both the 7-day and 25-day treatments of SPEMF increased callus formation around the necrotic bone and also increased new vessel formation and osteocyte numbers in the grafted necrotic bone at the 2nd and 4th weeks after surgery. In conclusion, the newly developed SPEMF accelerates osteogenic differentiation of cultured hBMSCs and enhances bone repair, neo-vascularization, and cell growth in necrotic bone in mice. The potential clinical advantage of the SPEMF is the short daily application and the shorter treatment course. We suggest that SPEMF may be used to treat fractures and the early stages of osteonecrosis.

  12. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair.

    Directory of Open Access Journals (Sweden)

    Yin-Chih Fu

    Full Text Available Pulsed electromagnetic field (PEMF has been successfully applied to accelerate fracture repair since 1979. Recent studies suggest that PEMF might be used as a nonoperative treatment for the early stages of osteonecrosis. However, PEMF treatment requires a minimum of ten hours per day for the duration of the treatment. In this study, we modified the protocol of the single-pulsed electromagnetic field (SPEMF that only requires a 3-minute daily treatment. In the in vitro study, cell proliferation and osteogenic differentiation was evaluated in the hBMSCs. In the in vivo study, new bone formation and revascularization were evaluated in the necrotic bone graft. Results from the in vitro study showed no significant cytotoxic effects on the hBMSCs after 5 days of SPEMF treatment (1 Tesla, 30 pulses per day. hBMSC proliferation was enhanced in the SPEMF-treated groups after 2 and 4 days of treatment. The osteogenic differentiation of hBMSCs was significantly increased in the SPEMF-treated groups after 3-7 days of treatment. Mineralization also increased after 10, 15, 20, and 25 days of treatment in SPEMF-treated groups compared to the control group. The 7-day short-course treatment achieved similar effects on proliferation and osteogenesis as the 25-day treatment. Results from the in vivo study also demonstrated that both the 7-day and 25-day treatments of SPEMF increased callus formation around the necrotic bone and also increased new vessel formation and osteocyte numbers in the grafted necrotic bone at the 2nd and 4th weeks after surgery. In conclusion, the newly developed SPEMF accelerates osteogenic differentiation of cultured hBMSCs and enhances bone repair, neo-vascularization, and cell growth in necrotic bone in mice. The potential clinical advantage of the SPEMF is the short daily application and the shorter treatment course. We suggest that SPEMF may be used to treat fractures and the early stages of osteonecrosis.

  13. Physical Activity Increases the Total Number of Bone-Marrow-Derived Mesenchymal Stem Cells, Enhances Their Osteogenic Potential, and Inhibits Their Adipogenic Properties

    Directory of Open Access Journals (Sweden)

    Monika Marędziak

    2015-01-01

    Full Text Available Aging and sedentary lifestyle are common nowadays and are associated with the increasing number of chronic diseases. Thus, physical activity is recommended as one of three healthy behavior factors that play a crucial role in health prophylaxis. In the present study, we were interested whether physical activity influences the number and potential of bone-marrow-derived mesenchymal stem cells BMMSCs. In this study, four-week-old male C57Bl/6 mice were trained on a treadmill at progressive speeds over a 5-week period. Comparisons made between exercised (EX and sedentary animal groups revealed (i significantly higher number of MSCs in EX animals, (ii elevated alkaline phosphatase (ALP activity, (iii increased level of osteopontin (OPN and osteocalcin (OCL, and (iv reduced marrow cavity fat. The results obtained support the thesis that EX may play a substantial role in the regeneration of mesenchymal tissues. Therefore, EX may represent a novel, nonpharmacological strategy of slowing down age-related decline of the musculoskeletal functions.

  14. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.

    Science.gov (United States)

    Ortega, M T; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2016-02-01

    We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells

  15. Novel nanocomposite biomaterial to differentiate bone marrow mesenchymal stem cells to the osteogenic lineage for bone restoration

    OpenAIRE

    Kumar, Arun; Young, Chelsea; Farina, Juliana; Witzl, Ashley; Marks, Edward D.

    2015-01-01

    Background/Objective: As the bone engineering field moves away from nonviable implants to more biocompatible and natural structures, nanomedicine has emerged as a superior tool for developing implantable materials. Methods: Here, we describe the fabrication and testing of a nanocomposite structure composed of chitosan and a biocompatible thermoplastic (PMMA). Results: Our nanocomposite material displayed morphologically similar characteristics to an extracted murine femur during microsc...

  16. Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong

    2017-06-13

    Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.

  17. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic

  18. Recent progress in the differentiation of bone marrow derived ...

    African Journals Online (AJOL)

    Bone marrow mesenchymal stem cells (BMMSCs) are one of the cells found in bone marrow stromal. A large number of studies have shown that BMMSCs cannot only differentiate into hematopoietic stromal cells, but can migrate and position themselves in multiple non-hematopoietic organizations and differentiate into the ...

  19. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

    International Nuclear Information System (INIS)

    Aguirre, A.; Planell, J.A.; Engel, E.

    2010-01-01

    Research highlights: → BM-EPCs and MSCs establish complex, self-organizing structures in co-culture. → Co-culture decreases proliferation by cellular self-regulatory mechanisms. → Co-cultured cells present an activated proangiogenic phenotype. → qRT-PCR and cluster analysis identify new target genes playing important roles. -- Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

  20. Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived But Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells.

    Science.gov (United States)

    Hung, Ben P; Hutton, Daphne L; Kozielski, Kristen L; Bishop, Corey J; Naved, Bilal; Green, Jordan J; Caplan, Arnold I; Gimble, Jeffrey M; Dorafshar, Amir H; Grayson, Warren L

    2015-09-01

    Tissue engineering using mesenchymal stem cells (MSCs) holds great promise for regenerating critically sized bone defects. While the bone marrow-derived MSC is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/ml of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRβ within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration. © 2015 AlphaMed Press.

  1. [Effects of conditioned media for rat bone marrow-derived mesenchymal stem cells on palmitic acid-induced insulin resistance in HepG2 cells].

    Science.gov (United States)

    Sun, Xiaoya; Hao, Haojie; Han, Weidong; Mu, Yiming

    2015-05-01

    To study the effect of conditioned media for rat bone marrow mesenchymal stem cells (BMSCs-CM) on palmitic acid (PA)-induced insulin resistance (IR) in HepG2 cells and its underlying molecular mechanisms. HepG2 cells were treated with or without BMSCs-CM and L-DMEM in the presence or absence of PA.Glucose utilization in HepG2 cells were detected with PAS, glucose and glycogen measurements. Western blotting was used to assess the expression of phospho-insulin receptor substrate (p-IRS), phosphatidylinositol 3-kinase (PI3K) and p-AKT. (1) Incubation of HepG2 cells with 0.25 mmol/L PA for 24 hours significantly increased the glucose concentration and decreased the glycogen content (Palteration in cells pretreated with PA (Pinsulin sensitivity in HepG2 cells pretreated with PA through upregulation of insulin signaling component expression.

  2. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury.

    Science.gov (United States)

    Neirinckx, Virginie; Agirman, Gulistan; Coste, Cécile; Marquet, Alice; Dion, Valérie; Rogister, Bernard; Franzen, Rachelle; Wislet, Sabine

    2015-11-04

    Stem cells from adult tissues were considered for a long time as promising tools for regenerative therapy of neurological diseases, including spinal cord injuries (SCI). Indeed, mesenchymal (MSCs) and neural crest stem cells (NCSCs) together constitute the bone marrow stromal stem cells (BMSCs) that were used as therapeutic options in various models of experimental SCI. However, as clinical approaches remained disappointing, we thought that reducing BMSC heterogeneity should be a potential way to improve treatment efficiency and reproducibility. We investigated the impact of pure populations of MSCs and NCSCs isolated from adult bone marrow in a mouse model of spinal cord injury. We then analyzed the secretome of both MSCs and NCSCs, and its effect on macrophage migration in vitro. We first observed that both cell types induced motor recovery in mice, and modified the inflammatory reaction in the lesion site. We also demonstrated that NCSCs but especially MSCs were able to secrete chemokines and attract macrophages in vitro. Finally, it appears that MSC injection in the spinal cord enhance early inflammatory events in the blood and spinal cord of SCI mice. Altogether, our results suggest that both cell types have beneficial effects in experimental SCI, and that further investigation should be dedicated to the regulation of the inflammatory reaction following SCI, in the context of stem cell-based therapy but also in the early-phase clinical management of SCI patients.

  3. Intraventricular Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells via Ommaya Reservoir in Persistent Vegetative State Patients after Haemorrhagic Stroke: Report of Two Cases & Review of the Literature

    Directory of Open Access Journals (Sweden)

    Fauzi AA

    2016-11-01

    Full Text Available Background: One of the most devastating diseases, stroke, is a leading cause of death and disability worldwide with severe emotional and economic consequences. The purpose of this article is mainly to report the effect of intraventricular transplantation via an Ommaya reservoir using autologous bone marrow mesenchymal stem cells (BM-MSCs in haemorrhagic stroke patients. Case Presentations: Two patients, aged 51 and 52, bearing sequels of haemorrhagic stroke were managed by intraventricular transplantation of BM-MSCs obtained from their own bone marrow. Before the procedure, both patients were bedridden, tracheostomised, on nasogastric (NG tube feeding and in hemiparesis. The cells were transplanted intraventricularly (20 x 106 cells/2.5 ml using an Ommaya reservoir, and then repeated transplantations were done after 1 and 2 months consecutively. The safety and efficacy of the procedures were evaluated 3, 6 and 12 months after treatment. The National Institute of Health Stroke Scale (NIHSS was used to evaluate the patients' neurological status before and after treatment. No adverse events derived from the procedures or transplants were observed in the one-year follow-up period, and the neurological status of both patients improved after treatment. Conclusions: Our report demonstrates that the intraventricular transplantation of BM-MSCs via an Ommaya reservoir is safe and it improves the neurological status of post-haemorrhagic stroke patients. The repeated transplantation procedure is easier and safer to perform via a subcutaneously implanted Ommaya reservoir.

  4. Effects of Focused Extracorporeal Shock Waves on Bone Marrow Mesenchymal Stem Cells in Patients with Avascular Necrosis of the Femoral Head.

    Science.gov (United States)

    Zhai, Lei; Sun, Nan; Zhang, Bo; Liu, Shui-Tao; Zhao, Zhe; Jin, Hai-Chao; Ma, Xin-Long; Xing, Geng-Yan

    2016-03-01

    To observe the effect of extracorporeal shock waves (ESWs) on bone marrow mesenchymal stem cells (MSCs) in patients with avascular necrosis of the femoral head, we collected bone marrow donated by patients and then cultivated and passaged MSCs in vitro using density gradient centrifugation combined with adherence screening methods. The P3 generation MSCs were divided into the ESW group and the control group. The cell counting kit for MSCs detected some proliferation differences. Cytochemistry, alkaline phosphatase staining and Alizarin red staining were used to determine alkaline phosphatase content. Simultaneously, real-time polymerase factor α1, osteocalcin and peroxisome proliferator-activated receptor γ. Together, the results of our study first indicate that moderate ESW intensity, which is instrumental in enhancing MSC proliferation, inducing conversion of MSCs into osteoblasts, and inhibiting differentiation of MSCs into adipocytes from MSCs, is one of the effective mechanisms for treating avascular necrosis of the femoral head. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    Directory of Open Access Journals (Sweden)

    Juan Bayo

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs and human umbilical cord perivascular cells (HUCPVCs towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2 and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.

  6. Glial Cell Line-Derived Neurotrophic Factor-Transfected Placenta-Derived Versus Bone Marrow-Derived Mesenchymal Cells for Treating Spinal Cord Injury.

    Science.gov (United States)

    Lu, Yao; Gao, Hui; Zhang, Man; Chen, Bing; Yang, Huilin

    2017-04-14

    BACKGROUND Placenta-derived mesenchymal stem cells (PMSCs) were isolated from placenta and had differentiation and self-renewal potential. We transfected PMSCs with glial cell line-derived neurotrophic factor (GDNF) and compared their effect for repairing spinal cord injury (SCI) with that of GDNF-transfected bone marrow-derived mesenchymal stem cell (BMSC). MATERIAL AND METHODS The PMSCs were isolated from Sprague-Dawley rat placenta; BMSCs were isolated from Sprague-Dawley rat thigh bone marrow. Primary cultured BMSCs and PMSCs were uniformly spindle-shaped. Flow cytometry indicated that both cell types were CD29- and CD90-positive and CD34- and CD45-negative, confirming that they were MSCs. The PMSCs and BMSCs were transfected with recombinant lentivirus containing the GDNF gene in vitro. PMSC and BMSC viability was increased after transfection, and GDNF expression was increased until 10 d after transfection. SCI was created in the rats (n=64) and was repaired using transfected PMSCs and BMSCs or untransfected PMSCs and BMSCs. RESULTS The transfected PMSCs and BMSCs repaired the SCI. Flow cytometry, histology, immunohistochemical, kinesiology properties, and Basso-Beattie-Bresnahan locomotion score measurements determined no significant difference between transfected PMSCs and BMSCs at 7, 14, and 21 d post-transplantation (P>0.05); the injury healed better in transfected PMSCs and BMSCs than in untransfected PMSCs and BMSCs (P<0.05). CONCLUSIONS MSCs have similar biology characteristics and capacity for SCI repair to BMSCs and can be used as a new resource for treating SCI.

  7. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell.

    Science.gov (United States)

    Donnelly, Jessica M; Engevik, Amy C; Engevik, Melinda; Schumacher, Michael A; Xiao, Chang; Yang, Li; Worrell, Roger T; Zavros, Yana

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis. The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype. Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1(Cre) mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1(Cre) mice were paired to either an uninfected Vav-1(Cre) littermate or a BL/6 mouse inoculated with Helicobacter pylori. GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression. Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

  8. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  9. Autologous fat graft and bone marrow-derived mesenchymal stem cells assisted fat graft for treatment of Parry-Romberg syndrome.

    Science.gov (United States)

    Jianhui, Zhao; Chenggang, Yi; Binglun, Lu; Yan, Han; Li, Yang; Xianjie, Ma; Yingjun, Su; Shuzhong, Guo

    2014-09-01

    Progressive facial hemiatrophy, also called Parry-Romberg syndrome (PRS), is characterized by slowly progressive atrophy of one side of the face and primarily involves the subcutaneous tissue and fat. The restoration of facial contour and symmetry in patients affected by PRS still remains a challenge clinically. Fat graft is a promising treatment but has some shortcomings, such as unpredictability and low rate of graft survival due to partial necrosis. To obviate these disadvantages, fat graft assisted by bone marrow-derived mesenchymal stem cells (BMSCs) was used to treat PRS patients and the outcome was evaluated in comparison with the conventional treatment by autologous fat graft. Autologous fat graft was harvested by tumescent liposuction. Bone marrow-derived mesenchymal stem cells were then isolated by human Lymphocytes Separation Medium through density gradient centrifugation. Twenty-six patients were treated with autologous fat graft only (group A), whereas 10 other patients were treated with BMSC-assisted fat graft (group B). The Coleman technique was applied in all fat graft injections. The follow-up period was 6 to 12 months in this study, In group A, satisfactory outcome judged by symmetrical appearances was obtained with 1 injection in 12 patients, 2 injections in 8 patients, and 3 injections in 4 patients. However, the result of 1 patient was not satisfactory and 1 patient was overcorrected. In group B, 10 patients obtained satisfactory outcomes and almost reached symmetry by 1 injection. No complications (infection, hematoma, or subcutaneous mass) were observed. The results suggest that BMSC-assisted fat graft is effective and safe for soft tissue augmentation and may be superior to conventional lipoinjection. Additional study is necessary to further evaluate the efficacy of this technique.

  10. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    Science.gov (United States)

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin

  11. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.

    Science.gov (United States)

    Kroustalli, Anthoula A; Kourkouli, Souzana N; Deligianni, Despina D

    2013-12-01

    Multiwalled carbon nanotubes (MWCNTs) are considered to be excellent reinforcements for biorelated applications, but, before being incorporated into biomedical devices, their biocompatibility need to be investigated thoroughly. We investigated the ability of films of pristine MWCNTs to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts. Moreover, the selective integrin subunit expression and the adhesion mechanism to the substrate were evaluated on the basis of adherent cell number and adhesion strength, following the treatment of cells with blocking antibodies to a series of integrin subunits. Results indicated that MWCNTs accelerated cell differentiation to a higher extent than tissue culture plastic, even in the absence of additional biochemical inducing agents. The pre-treatment with anti-integrin antibodies decreased number of adherent cells and adhesion strength at 4-60%, depending on integrin subunit. These findings suggest that pristine MWCNTs represent a suitable reinforcement for bone tissue engineering scaffolds.

  12. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  13. Intractable Diseases Treated with Intra-Bone Marrow-Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-09-01

    Full Text Available Bone marrow transplantation (BMT is used to treat hematological disorders, autoimmune diseases and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells but also mesenchymal stem cells (MSMCs. MSMCs are multi-potent stem cells that can be isolated from bone marrow, umbilical cord blood, and adipose tissue. MSMCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSMCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of bone marrow-derived- MSMCs, and the treatment of intractable diseases such as rheumatoid arthritis and malignant tumors with IBM-BMT.

  14. Plasticity of mesenchymal stem cells from mouse bone marrow in the presence of conditioned medium of the facial nerve and fibroblast growth factor-2.

    Science.gov (United States)

    Lucena, Eudes Euler de Souza; Guzen, Fausto Pierdoná; Cavalcanti, José Rodolfo Lopes de Paiva; Marinho, Maria Jocileide de Medeiros; Pereira, Wogelsanger Oliveira; Barboza, Carlos Augusto Galvão; Costa, Miriam Stela Mariz de Oliveira; do Nascimento Júnior, Expedito Silva; Cavalcante, Jeferson Sousa

    2014-01-01

    A number of evidences show the influence of the growth of injured nerve fibers in peripheral nervous system as well as potential implant stem cells (SCs). The SCs implementation in the clinical field is promising and the understanding of proliferation and differentiation is essential. This study aimed to evaluate the plasticity of mesenchymal SCs from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants and fibroblast growth factor-2 (FGF-2). The growth and morphology were assessed for over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for glial fibrillary acidic protein (GFAP), protein OX-42 (OX-42), protein associated with microtubule MAP-2 (MAP-2), protein β-tubulin III (β-tubulin III), neuronal nuclear protein (NeuN), and neurofilament 200 (NF-200). Cells cultured with conditioned medium alone or combined with FGF-2 showed morphological features apparently similar at certain times to neurons and glia and a significant proliferative activity in groups 2 and 4. Cells cultivated only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200. This study improves our understanding of the plasticity of mesenchymal cells and allows the search for better techniques with SCs.

  15. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    Science.gov (United States)

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  16. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  17. A Reliable and Reproducible Model for Assessing the Effect of Different Concentrations of α-Solanine on Rat Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Adriana Ordóñez-Vásquez

    2017-01-01

    Full Text Available Αlpha-solanine (α-solanine is a glycoalkaloid present in potato (Solanum tuberosum. It has been of particular interest because of its toxicity and potential teratogenic effects that include abnormalities of the central nervous system, such as exencephaly, encephalocele, and anophthalmia. Various types of cell culture have been used as experimental models to determine the effect of α-solanine on cell physiology. The morphological changes in the mesenchymal stem cell upon exposure to α-solanine have not been established. This study aimed to describe a reliable and reproducible model for assessing the structural changes induced by exposure of mouse bone marrow mesenchymal stem cells (MSCs to different concentrations of α-solanine for 24 h. The results demonstrate that nonlethal concentrations of α-solanine (2–6 μM changed the morphology of the cells, including an increase in the number of nucleoli, suggesting elevated protein synthesis, and the formation of spicules. In addition, treatment with α-solanine reduced the number of adherent cells and the formation of colonies in culture. Immunophenotypic characterization and staining of MSCs are proposed as a reproducible method that allows description of cells exposed to the glycoalkaloid, α-solanine.

  18. The Effect of Vitamin E on the In Vitro Differentiation of Adult Rat Bone Marrow Mesenchymal Stem Cells to Osteoblast During Sodium Arsenite Exposure

    Directory of Open Access Journals (Sweden)

    M. Soleimani Mehranjani

    2016-01-01

    Full Text Available Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium containing 15% Fetal Bovine Serum and divided into: control, sodium arsenite (20 nM, vitamin E (50 µM and sodium arsenite + vitamin E for 21 days in the osteogenic media containing 10% of fetal bovine serum. Cell viability, bone matrix mineralization, intercellular and extracellular calcium, alkaline phosphatase activity, DNA damage and cell morphological changes were evaluated. Data were analyzed using one-way ANOVA and Tukey's test and means were considered significantly different at P<0.05. Results: Cell viability, bone matrix mineralization, calcium deposition, alkaline phosphatase activity and nuclei diameter decreased significantly in the sodium arsenite group. The mentioned parameters increased significantly in cells treated with sodium arsenite + vitamin E to the control level (P<0.05. Cytoplasmic extensions were also observed in the vitamin E group. Conclusions: Vitamin E reduces sodium arsenite toxicity, increasing osteogenic differentiation in rMSCs. Sci J Hamadan Univ Med Sci . 2016; 22 (4 :276-285

  19. Generation of PTEN knockout bone marrow mesenchymal stem cell lines by CRISPR/Cas9-mediated genome editing.

    Science.gov (United States)

    Shen, Youliang; Zhang, Jingjing; Yu, Tengbo; Qi, Chao

    2018-04-01

    The tumor suppressor PTEN is involved in the regulation of cell proliferation, lineage determination, motility, adhesion and apoptosis. Loss of PTEN in the bone mesenchymal stem cells (BMSCs) was shown to change their function in the repair tissue. So far, the CRISPR/Cas9 system has been proven extremely simple and flexible. Using this system to manipulate PTEN gene editing could produce the PTEN-Knocking-out (PTEN-KO) strain. We knocked out PTEN in MSCs and validated the expression by PCR and Western blot. To clarify the changes in proliferation, CCK-8 assay was applied. In support, living cell proportion was assessed by Trypan blue staining. For osteogenic and adipogenic induction, cells were cultured in different media for 2 weeks. Oil red staining and alizarin red staining were performed for assessment of osteogenic or adipogenic differentiation. The expression of Id4, Runx2, ALP and PPARγ was examined by qPCR and immunocytochemistry staining. The PTEN-KO strain was identified by sequencing. The PTEN-KO cells had an increased cell viability and higher survival compared with the wild type. However, decreased expression of Runx2 and PPARγ was found in the PTEN loss strain after induction, and consistently decreased osteogenic or adipogenic differentiation was observed by alizarin and oil red staining. Together, PTEN-KO strain showed an increased proliferation capability but decreased multi-directional differentiation potential. When BMSCs serve as seed cells for tissue engineering, the PTEN gene may be used as an indicator.

  20. [Inula Britannica flower total flavonoids reduces the apoptosis of aging bone marrow mesenchymal stem cells by anti-oxidation].

    Science.gov (United States)

    Long, Yuanyuan; Chen, Hui; Liu, Lu; Guo, Lei

    2017-05-01

    Objective To investigate the beneficial effect of Inula Britannica flower total flavonoids (IBFTF) on aging bone mesenchymal stem cell (BMSC) and its potential mechanism. Methods The aging BMSCs were induced by D-galactose, and then treated with 12.5, 25, 50 μg/mL IBFTF. The cell viability was detected by CCK-8 assay. The activity of catalase (CAT) and superoxide dismutase (SOD), the content of malondialdehyde (MDA) and reactive oxygen species (ROS) were measured by a commercial kit. The apoptosis was assessed by flow cytometry. The protein expressions of BAX, Bcl-2 and cleaved-caspase-3 (c-caspase-3) were determined by Western blotting. Results The cell viability and the activity of SOD and CAT in the aging group decreased significantly compared with the normal group, whereas different concentrations of IBFTF promoted the cell viability, and simultaneously increased the activity of SOD and CAT. The apoptosis, the ROS production, the content of MDA, BAX/Bcl-2 ratio and the protein expression of c-caspase-3 in the aging group increased obviously compared with the normal group. However, the treatment of different concentrations of IBFTF reduced the apoptosis, the ROS production, the content of MDA, BAX/Bcl-2 ratio and the protein expression of c-caspase-3. Conclusion IBFTF can attenuate the apoptosis of aging BMSCs by anti-oxidation.

  1. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    Science.gov (United States)

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Bone marrow edema syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Korompilias, Anastasios V.; Lykissas, Marios G.; Beris, Alexandros E. [University of Ioannina, Department of Orthopaedic Surgery, School of Medicine, Ioannina (Greece); Karantanas, Apostolos H. [University of Crete School of Medicine, Department of Radiology, Heraklion (Greece)

    2009-05-15

    Bone marrow edema syndrome (BMES) refers to transient clinical conditions with unknown pathogenic mechanism, such as transient osteoporosis of the hip (TOH), regional migratory osteoporosis (RMO), and reflex sympathetic dystrophy (RSD). BMES is primarily characterized by bone marrow edema (BME) pattern. The disease mainly affects the hip, the knee, and the ankle of middle-aged males. Many hypotheses have been proposed to explain the pathogenesis of the disease. Unfortunately, the etiology of BMES remains obscure. The hallmark that separates BMES from other conditions presented with BME pattern is its self-limited nature. Laboratory tests usually do not contribute to the diagnosis. Histological examination of the lesion is unnecessary. Plain radiographs may reveal regional osseous demineralization. Magnetic resonance imaging is mainly used for the early diagnosis and monitoring the progression of the disease. Early differentiation from other aggressive conditions with long-term sequelae is essential in order to avoid unnecessary treatment. Clinical entities, such as TOH, RMO, and RSD are spontaneously resolving, and surgical treatment is not needed. On the other hand, early differential diagnosis and surgical treatment in case of osteonecrosis is of crucial importance. (orig.)

  3. Blood and Bone MarrowTransplant?

    Science.gov (United States)

    ... Topics / Blood and Bone Marrow Transplant Blood and Bone Marrow Transplant Also known as Hematopoietic Stem Cell Transplant , Hematopoietic Cell Transplant , Autologous Transplant , Allogeneic Transplant A blood or bone marrow ...

  4. Comparison of therapeutic effects of bone marrow mesenchymal stem cells and liquid culture environment (secreta in the treatment of induced knee abrasion created in guinea pigs

    Directory of Open Access Journals (Sweden)

    MR Sadraie

    2015-11-01

    Full Text Available Background and aim: Osteoarthritis (OA is a common disease with unknown causes which is related to the age and is more common in middle and older age. The aim of this study was to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs and secreta in healing of induced OA in guinea pig. Methods: BM-MSCs were extracted from guinea pig bone and cultured. OA was induced by cutting the anterior cruciate ligament in 15 guinea pigs. Then, 106 BM-MSCs at 3rd passage were administered to 5 animals, secreta was injected to 5 other and 5 were kept as the control group as untreated. After three months, the healing processes were evaluated by testing of histopathology and radiological parameters. Results: The radiological assessment showed a significant reduction of OA in stem cells and secreta groups in comparison to the control group (P<0.05. Also, OA histological feature in stem cells and secreta groups was better than control group. However, the matrix distribution of articular cartilage and collagen types 1 and 2 in secreta group were significantly better than other groups (P<0.05. Conclusion: Our results showed that the use of BM-MSCs and their secreta in treatment of OA was associated with reduction of radiological and histological index of OA.

  5. The Fate and Distribution of Autologous Bone Marrow Mesenchymal Stem Cells with Intra-Arterial Infusion in Osteonecrosis of the Femoral Head in Dogs

    Directory of Open Access Journals (Sweden)

    Hongting Jin

    2016-01-01

    Full Text Available This study aimed to investigate if autologous bone marrow mesenchymal stem cells (MSCs could treat osteonecrosis of the femoral head (ONFH and what the fate and distribution of the cells are in dogs. Twelve Beagle dogs were randomly divided into two groups: MSCs group and SHAM operated group. After three weeks, dogs in MSCs group and SHAM operated group were intra-arterially injected with autologous MSCs and 0.9% normal saline, respectively. Eight weeks after treatment, the necrotic volume of the femoral heads was significantly reduced in MSCs group. Moreover, the trabecular bone volume was increased and the empty lacunae rate was decreased in MSCs group. In addition, the BrdU-positive MSCs were unevenly distributed in femoral heads and various vital organs. But no obvious abnormalities were observed. Furthermore, most of BrdU-positive MSCs in necrotic region expressed osteocalcin in MSCs group and a few expressed peroxisome proliferator-activated receptor-γ (PPAR-γ. Taken together, these data indicated that intra-arterially infused MSCs could migrate into the necrotic field of femoral heads and differentiate into osteoblasts, thus improving the necrosis of femoral heads. It suggests that intra-arterial infusion of autologous MSCs might be a feasible and relatively safe method for the treatment of femoral head necrosis.

  6. Heterogenic transplantation of bone marrow-derived rhesus macaque mesenchymal stem cells ameliorates liver fibrosis induced by carbon tetrachloride in mouse

    Directory of Open Access Journals (Sweden)

    Xufeng Fu

    2018-02-01

    Full Text Available Liver fibrosis is a disease that causes high morbidity and has become a major health problem. Liver fibrosis can lead to the end stage of liver diseases (livercirrhosisand hepatocellularcarcinoma. Currently, liver transplantation is the only effective treatment for end-stage liver disease. However, the shortage of organ donors, high cost of medical surgery, immunological rejection and transplantation complications severely hamper liver transplantation therapy. Mesenchymal stem cells (MSCs have been regarded as promising cells for clinical applications in stem cell therapy in the treatment of liver diseases due to their unique multipotent differentiation capacity, immunoregulation and paracrine effects. Although liver fibrosis improvements by MSC transplantation in preclinical experiments as well as clinical trials have been reported, the in vivo fate of MSCs after transportation and their therapeutic mechanisms remain unclear. In this present study, we isolated MSCs from the bone marrow of rhesus macaques. The cells exhibited typical MSC markers and could differentiate into chondrocytes, osteocytes, and adipocytes, which were not affected by labeling with enhanced green fluorescent protein (EGFP. The harvested MSCs respond to interferon-γ stimulation and have the ability to inhibit lymphocyte proliferation in vitro. EGFP-labeled MSCs (1 × 106 cells were transplanted into mice with carbon tetrachloride-induced liver fibrosis via tail vein injection. The ability of the heterogenic MSC infusion to ameliorate liver fibrosis in mice was evaluated by a blood plasma chemistry index, pathological examination and liver fibrosis-associated gene expression. Additionally, a small number of MSCs that homed and engrafted in the mouse liver tissues were evaluated by immunofluorescence analysis. Our results showed that the transplantation of heterogenic MSCs derived from monkey bone marrow can be used to treat liver fibrosis in the mouse model and that the

  7. MRI in bone marrow lesions

    International Nuclear Information System (INIS)

    Linden, A.; Theissen, P.; Schauerte, G.; Schicha, H.; Diehl, V.

    1989-01-01

    MRI has the potential to demonstrate bone marrow pathology due to its good soft tissue contrast. Inflammation and necrosis can be detected very early before there is evidence of radiological changes. In bone tumors intramedullary infiltration can be visualized in addition to soft tissue changes. Metastases of bone and bone marrow, especially in spinal and pelvic regions, are well depicted, often before bone scintigraphy yields pathological findings. In haematological disorders MRI permits follow-up studies due to its good reproducibility. Infiltration by malignant lymphoma and multiple myeloma and its extension in bone marrow can be visualized by MRI, too. However, the most common pathological MRI findings in bone marrow are not very specific, and final diagnosis requires further clinical or histological information. (orig.) [de

  8. Effects of Bone Marrow Multipotent Mesenchymal Stromal Cells and Their Secretory Products on Microcirculation in the Broad Ligament of the Uterus of Wistar Rats during Experimental Chronic Genital Inflammation.

    Science.gov (United States)

    Konenkov, V I; Borodin, Yu I; Dergacheva, T I; Shurlygina, A V; Tenditnik, M V; Starkova, E V; Poveshchenko, O V; Lykov, A P

    2017-05-01

    Effects of bone marrow multipotent mesenchymal stromal cells and their secretory products released into the conditioned medium on microcirculatory bed in the broad ligament of the uterus were studied in Wistar rats with chronic genital inflammation. Opposite changes in the parameters of microcirculation and lymphatic drainage in the broad ligament of the uterus were observed after administration of cells and conditioned medium via different routes, which should be taken into account during the treatment of inflammatory and degenerative processes in the pelvic organs.

  9. Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice.

    Science.gov (United States)

    Cruz, Fernanda F; Borg, Zachary D; Goodwin, Meagan; Sokocevic, Dino; Wagner, Darcy E; Coffey, Amy; Antunes, Mariana; Robinson, Kristen L; Mitsialis, S Alex; Kourembanas, Stella; Thane, Kristen; Hoffman, Andrew M; McKenna, David H; Rocco, Patricia R M; Weiss, Daniel J

    2015-11-01

    An increasing number of studies demonstrate that administration of either conditioned media (CM) or extracellular vesicles (EVs) released by mesenchymal stromal cells (MSCs) derived from bone marrow and other sources are as effective as the MSCs themselves in mitigating inflammation and injury. The goal of the current study was to determine whether xenogeneic administration of CM or EVs from human bone marrow-derived MSCs would be effective in a model of mixed Th2/Th17, neutrophilic-mediated allergic airway inflammation, reflective of severe refractory asthma, induced by repeated mucosal exposure to Aspergillus hyphal extract (AHE) in immunocompetent C57Bl/6 mice. Systemic administration of both CM and EVs isolated from human and murine MSCs, but not human lung fibroblasts, at the onset of antigen challenge in previously sensitized mice significantly ameliorated the AHE-provoked increases in airway hyperreactivity (AHR), lung inflammation, and the antigen-specific CD4 T-cell Th2 and Th17 phenotype. Notably, both CM and EVs from human MSCs (hMSCs) were generally more potent than those from mouse MSCs (mMSCs) in most of the outcome measures. The weak cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride was found to inhibit release of both soluble mediators and EVs, fully negating effects of systemically administered hMSCs but only partly inhibited the ameliorating effects of mMSCs. These results demonstrate potent xenogeneic effects of CM and EVs from hMSCs in an immunocompetent mouse model of allergic airway inflammation and they also show differences in mechanisms of action of hMSCs versus mMSCs to mitigate AHR and lung inflammation in this model. There is a growing experience demonstrating benefit of mesenchymal stromal cell (MSC)-based cell therapies in preclinical models of asthma. In the current study, conditioned media (CM) and, in particular, the extracellular vesicle fraction obtained from the CM were as potent as the MSCs

  10. Improving the osteogenesis of human bone marrow mesenchymal stem cell sheets by microRNA-21-loaded chitosan/hyaluronic acid nanoparticles via reverse transfection

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-05-01

    Full Text Available Zhongshan Wang,1 Guangsheng Wu,2,3 Mengying Wei,4 Qian Liu,1 Jian Zhou,1 Tian Qin,1 Xiaoke Feng,1 Huan Liu,1 Zhihong Feng,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, 2State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, 4Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, People’s Republic of China Abstract: Cell sheet engineering has emerged as a novel approach to effectively deliver seeding cells for tissue regeneration, and developing human bone marrow mesenchymal stem cell (hBMMSC sheets with high osteogenic ability is a constant requirement from clinics for faster and higher-quality bone formation. In this work, we fabricated biocompatible and safe chitosan (CS/hyaluronic acid (HA nanoparticles (NPs to deliver microRNA-21 (miR-21, which has been proved to accelerate osteogenesis in hBMMSCs; then, the CS/HA/miR-21 NPs were cross-linked onto the surfaces of culture plates with 0.2% gel solution to fabricate miR-21-functionalized culture plates for reverse transfection. hBMMSC sheets were induced continuously for 14 days using a vitamin C-rich method on the miR-21-functionalized culture plates. For the characterization of CS/HA/miR-21 NPs, the particle size, zeta potential, surface morphology, and gel retardation were sequentially investigated. Then, the biological effects of hBMMSC sheets on the miR-21-functionalized culture plates were evaluated. The assay results demonstrated that the hBMMSC sheets could be successfully induced via the novel

  11. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats.

    Science.gov (United States)

    Gabr, Hala; Rateb, Moshira Abdelhakiim; El Sissy, Maha Hamdi; Ahmed Seddiek, Hanan; Ali Abdelhameed Gouda, Sarah

    2016-10-01

    Chemotherapy targets rapidly dividing tissues in the body. It destroys the progenitor cells in gonads resulting in premature ovarian failure. Studies have suggested that bone marrow-derived stem cells can generate oocytes in chemotherapy treated female rats after transplantation. The present study aimed to assess mechanism of homing, the action of injected BM-MSCs on ovarian function after ovarian damage. Seventy two female albino rats were randomly allocated into Control and CTX group, The Experimental protocol was lasted for 12 weeks during which serum FSH and E2 were monitored twice at the end of the 2nd week (12 rats) and 8th week (6 rats). Stem cells identification and homing were evaluated by Flowcytometry and tagging of stem cells with iron oxide particles respectively. Also, histopathological examination was done to evaluate both degeneration (6 rats at 4th week) and regeneration (6 rats at 12th week) of ovarian tissue together with assessment of the levels of TNF-α in ovarian homogenate and IGF-I as a growth factor in ovarian tissue. Partial improvement of E2 and FSH levels as well as ovarian architecture. Elevation of ovarian TNF- α levels and of IGF-I immunohistochemical expressions in ovarian tissues of BM-MSCs injected rats were noticed following homing of BM- MSCs in the ovarian stroma in both control and chemotherapy groups. Injected BM- MSCs can home in the stroma of the injured ovaries. IGF-I and TNF- α may have a role in the attraction of stem cells in vivo. © 2016 Wiley Periodicals, Inc.

  12. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model.

    Science.gov (United States)

    Zamani Mazdeh, Delaram; Mirshokraei, Pezhman; Emami, Mohammadreza; Mirshahi, Ali; Karimi, Iraj

    2017-12-28

    Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E 2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (Punion bone fractures. Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group

  13. Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects.

    Science.gov (United States)

    Yun, Jeong-Ho; Han, Sang-Hyun; Choi, Seong-Ho; Lee, Myung-Hyun; Lee, Sang-Jin; Song, Sun U; Oh, Namsik

    2014-07-01

    Tissue engineering has been applied to overcome the obstacles encountered with bone regeneration for the placement of dental implants. The purpose of this study was to determine the bone formation ability of human bone marrow-derived mesenchymal stem cells (BMMSCs) and platelet-rich plasma (PRP) when applied separately or together to the intrabony defect around dental implants with a porous hydroxyapatite (HA) scaffold. Standardized three-wall intrabony defects (4 × 4 × 4 mm) were created at the mesial of each dental implant site in four mongrel dogs. Defects were then grafted with the following materials: HA + BMMSCs (HS group), HA + PRP (HP group), HA + BMMSCs + PRP (HSP group), and HA scaffold alone (HA group). The level of bone formation (bone density) and osseointegration (bone-to-implant contact [BIC]) in bone defects around the implants were evaluated by histological and histometric analysis at 6 and 12 weeks after the placement of implants. HA, HS, HP, and HSP groups generally showed an increase in bone density and BIC between 6 and 12 weeks, except BIC in the HS group. Although no statistically significant differences were found among HA, HS, HP, and HSP groups (p > 0.05), the highest level of bone density and BIC were observed in the HSP group after the 12-week healing period. Furthermore, the level of bone maturation was higher in the HSP group than in the other groups as determined histologically. The findings of this preliminary study suggest that BMMSCs and PRP combined with HA scaffold may provide additional therapeutic effects on bone regeneration and improve osseointegration in bone defects around dental implants. © 2013 Wiley Periodicals, Inc.

  14. The effects of therapeutic concentrations of gentamicin, amikacin and hyaluronic acid on cultured bone marrow-derived equine mesenchymal stem cells.

    Science.gov (United States)

    Bohannon, L K; Owens, S D; Walker, N J; Carrade, D D; Galuppo, L D; Borjesson, D L

    2013-11-01

    Joint inflammation and septic arthritis are both potential complications of intra-articular injections of bone marrow-derived mesenchymal stem cells (BM-MSCs). Clinicians may prophylactically co-inject BM-MSCs admixed with either antimicrobials or hyaluronic acid; however, the effect of these agents on cultured BM-MSCs is unknown. To determine the effects of therapeutic levels of gentamicin, amikacin and hyaluronic acid on cultured equine BM-MSCs in vitro. In vitro experimental study. Equine BM-MSCs from 4 healthy mature horses were isolated. Cultured BM-MSCs from each donor were incubated with gentamicin (150 mg), amikacin (250 mg), hyaluronic acid (22 mg) or 1% penicillin/streptomycin (control) under sterile conditions. Mesenchymal stem cells viability, proliferation, mediator secretion and culture media pH were measured. Incubation of BM-MSCs with gentamicin resulted in >95% MSC death after 45 min, and incubation of BM-MSCs with amikacin resulted in >95% MSC death after 2 h. Incubation of BM-MSCs with hyaluronic acid or penicillin/streptomycin (control) for up to 6 h resulted in sustained BM-MSC viability of 80% and >93%, respectively. All additives resulted in decreased media pH in the first minute; however, the pH then remained constant over the 6 h incubation period. No significant differences in BM-MSC proliferation or mediator secretion between the penicillin/streptomycin (control) and cells treated with hyaluronic acid were observed. Therapeutic concentrations of aminoglycoside antimicrobials are toxic to cultured equine BM-MSCs. The effects of hyaluronic acid on cultured MSC viability, proliferation and mediator secretion are minimal. Based on these findings, the mixing of aminoglycoside antimicrobials and cultured equine BM-MSCs prior to therapeutic use is not recommended. © 2013 EVJ Ltd.

  15. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology.

    Science.gov (United States)

    Hara, Kenji; Yamada, Yoichi; Nakamura, Sayaka; Umemura, Eri; Ito, Kenji; Ueda, Minoru

    2011-12-01

    Tissue engineering and regenerative medicine using stem cell biology has been a promising field for treatment of local and systemic intractable diseases. Recently, stem cells from human exfoliated deciduous teeth (SHED) have been identified as a novel population of stem cells. This study focused on the characterization of SHED as compared with bone marrow-derived mesenchymal stem cells (BMMSCs). We investigated potential characteristics of SHED by using DNA microarray, real-time reverse transcriptase polymerase chain reaction, and immunofluorescence analysis. Multiple gene expression profiles indicated that the expression of 2753 genes in SHED had changed by ≥2.0-fold as compared with that in BMMSCs. One of the most significant pathways that accelerated in SHED was that of bone morphogenetic protein (BMP) receptor signaling, which contains several cascades such as PKA, JNK, and ASK1. When the BMP signaling pathway was stimulated by BMP-2, the expression of BMP-2, BMP-4, Runx2, and DSPP was up-regulated significantly in SHED than that in BMMSCs. Furthermore, the BMP-4 protein was expressed much higher in SHED but not in BMMSCs, as confirmed by immunofluorescence. By using the gene expression profiles, this study indicates that SHED is involved in the BMP signaling pathway and suggests that BMP-4 might play a crucial role in this. These results might be useful for effective cell-based tissue regeneration, including that of bone, pulp, and dentin, by applying the characteristics of SHED. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. In vitro osteogenic potential of collagen/chitosan-based hydrogels-silica particles hybrids in human bone marrow-derived mesenchymal stromal cell cultures.

    Science.gov (United States)

    Filipowska, Joanna; Lewandowska-Łańcucka, Joanna; Gilarska, Adriana; Niedźwiedzki, Łukasz; Nowakowska, Maria

    2018-03-08

    The aim of this study was to assess osteogenic potential of three groups of biopolymeric hydrogel-based surfaces made of plain collagen, chitosan or collagen/chitosan, crosslinked with genipin or all three biopolymers modified with silica particles of two sizes (S1=240nm and S2=450nm). Biocompatibility and osteoinductive properties of the resulting composites were analyzed in the human bone marrow-derived mesenchymal stromal cells (hBMSCs) in vitro cultures. It was revealed that all tested materials are biocompatible and significantly enhance ALP activity in hBMSCs which was particularly pronounced for collagen/chitosan based hybrids. Gene expression (RUNX-2, COL-I, OC and VEGF mRNA) analyses performed in hBMSCs cultured at collagen/chitosan materials showed that ColChS1 hybrid the most effectively promotes osteogenic differentiation of hBMSCs. SEM and EDS analyses of materials carried out after 20days of hBMSCs culturing on ColCh-based hydrogels revealed that the hybrid materials enhanced hBMSCs-mediated mineralization of ECM. Our studies revealed that collagen/chitosan hydrogels modified with silica particles of smaller sizes (ColChS1) exhibit high pro-osteogenic properties without the need of applying any additional osteogenic inducers. That suggests that ColChS1 having the intrinsic osteoinductive activity holds great potential as material of choice for bone regeneration procedures, especially in regeneration of small bone losses. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells?

    Directory of Open Access Journals (Sweden)

    R. N. Bárcia

    2015-01-01

    Full Text Available MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs, the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2.

  18. Dual Delivery of rhPDGF-BB and Bone Marrow Mesenchymal Stromal Cells Expressing the BMP2 Gene Enhance Bone Formation in a Critical-Sized Defect Model

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo

    2013-01-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis. PMID:23901900

  19. Effect of Transplantation of Bone Marrow Derived Mesenchymal Stem Cells and Platelets Rich Plasma on Experimental Model of Radiation Induced Oral Mucosal Injury in Albino Rats

    Directory of Open Access Journals (Sweden)

    Basma Elsaadany

    2017-01-01

    Full Text Available Normal tissue damage following radiotherapy is still a major problem in cancer treatment. Therefore, the current work aimed at exploring the possible role of systemically injected bone marrow derived mesenchymal stem cells (BM-MSCs and/or locally injected platelet rich plasma (PRP in ameliorating the side effects of ionizing radiation on the rat’s tongue. Twelve rats served as control group (N and 48 rats received a single radiation dose of 13 Gy to the head and neck region; then, they were equally divided into 4 experimental groups: irradiated only (C, irradiated + MSCs (S, irradiated + (PRP (P, and combined group (PS. Animal scarification occurred in 3 and 7 days after radiation. Then, tongues were dissected and examined histologically and for expression of bcl-2 by RT-PCR. Histological examination of the treated groups (S, (P, and (PS revealed an obvious improvement in the histological structure of the tongue, compared to group (C, in addition to upregulated expression of bcl-2, indicating decreased apoptotic activity. Conclusion. BM-MSCs and PRP have shown positive effect in minimizing the epithelial atrophy of normal oral mucosa after regional radiotherapy, which was emphasized by decreasing apoptotic activity in these tissues. Nevertheless, combined use of BM-MSCs and PRP did not reveal the assumed synergetic effect in oral tissue protection.

  20. EF1α is a suitable housekeeping gene for RT-qPCR analysis during osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Chen, Xingyun; Zhang, Bo; Zhao, Yan; Liu, Ping; Zhou, Yuanguo

    2013-01-01

    The expression of predominant housekeeping genes used in RT-qPCR can vary during development and differentiation. The frequently used housekeeping genes (ACTB, GAPDH, 18S rRNA, EF1α and RPL 13a) were evaluated during an early stage of the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (mMSCs) (under normal conditions or treated with CCG-4986) to identify housekeeping genes whose expression remained constant during osteogenic differentiation. When we used RGS4 mRNA, which was determined as copy number per μg of total RNA, to normalize gene expression, we observed that the relative EF1α expression profile was consistent with RGS4 expression after treatment with CCG-4986. All the relative expression profiles of the EF1α, 18S rRNA, and RPL13a housekeeping genes were consistent with RGS4 profiles determined by measuring mRNA copies under normal osteogenic differentiation conditions. The expression profiles calibrated by ACTB and GAPDH were not consistent with those determined using mRNA copy number in untreated cells or cells treated with CCG-4986 under osteogenic differentiation conditions. Under normal osteogenic differentiation conditions, EF1α, 18S rRNA, and RPL 13a are suitable housekeeping genes for RT-qPCR analysis. However, EF1α is the only suitable gene upon CCG-4986 treatment.

  1. Thrombospondin-1 modified bone marrow mesenchymal stem cells (BMSCs) promote neurite outgrowth and functional recovery in rats with spinal cord injury.

    Science.gov (United States)

    Pu, Yujie; Meng, Ke; Gu, Chuanlong; Wang, Linlin; Zhang, Xiaoming

    2017-11-10

    Stem cell therapies are currently gaining momentum in the treatment of spinal cord injury (SCI). However, unsatisfied intrinsic neurite growth capacity constitutes significant obstacles for injured spinal cord repair and ultimately results in neurological dysfunction. The present study assessed the efficacy of thrombospondin-1 (TSP-1), a neurite outgrowth-promoting molecule, modified bone marrow mesenchymal stem cells (BMSCs) on promoting neurite outgrowth in vitro and in vivo of Oxygen-Glucose Deprivation (OGD) treated motor neurons and SCI rat models. The present results demonstrated that the treatment of BMSCs+TSP-1 could promote the neurite length, neuronal survival, and functional recovery after SCI. Additionally, TSP-1 could activate transforming growth factor-β1 (TGF-β1) then induced the smad2 phosphorylation, and expedited the expression of GAP-43 to promote neurite outgrowth. The present study for the first time demonstrated that BMSCs+TSP-1 could promote neurite outgrowth and functional recovery after SCI partly through the TGF-β1/p-Samd2 pathway. The study provided a novel encouraging evidence for the potential treatment of BMSCs modification with TSP-1 in patients with SCI.

  2. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta.

    Science.gov (United States)

    Li, Xiaoshuai; Yuan, Zhengwei; Wei, Xiaowei; Li, Hui; Zhao, Guifeng; Miao, Jiaoning; Wu, Di; Liu, Bo; Cao, Songying; An, Dong; Ma, Wei; Zhang, Henan; Wang, Weilin; Wang, Qiushi; Gu, Hui

    2016-04-01

    Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan-gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region.

  3. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Susan Louise Lindsay

    2016-05-01

    Full Text Available Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs derived from the olfactory mucosa (OM enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs. miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo.

  4. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    Science.gov (United States)

    Holmes, Benjamin; Castro, Nathan J.; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-01

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  5. Therapeutic doses of doxorubicin induce premature senescence of human mesenchymal stem cells derived from menstrual blood, bone marrow and adipose tissue.

    Science.gov (United States)

    Kozhukharova, Irina; Zemelko, Victoria; Kovaleva, Zoya; Alekseenko, Larisa; Lyublinskaya, Olga; Nikolsky, Nikolay

    2018-03-01

    Doxorubicin (Dox) is an effective anticancer drug with known activity against a wide spectrum of malignancies, hematologic malignancies in particular. Despite extensive clinical use, the mechanisms of its side effects and negative action on normal cells remain under study. The aim of this study was to investigate the effect of Dox on cultured human mesenchymal stem cells (MSCs) derived from menstrual blood (eMSCs), bone marrow (BMSCs) and adipose tissue (AMSCs). Dox treatment in high doses decreased the survival of MSCs in a dose-dependent manner. Clinically relevant low doses of Dox induced premature senescence of eMSCs, BMSCs and AMSCs, but did not kill the cells. Dox caused cell cycle arrest and formation of γ-H2AX foci, and increased the number of SA-β-gal-positive cells. BMSCs entered premature senescence earlier than other MSCs. It has been reported that neural-like cells differentiated from MSCs of various origins are more sensitive to Dox than their parent cells. Dox-treated differentiated MSCs exhibited lower viability and earlier generation of γ-H2AX foci. Dox administration inhibited secretory activity in neural-like cells. These findings suggest that a clinically relevant Dox dose damages cultured MSCs, inducing their premature senescence. MSCs are more resistant to this damage than differentiated cells.

  6. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    Science.gov (United States)

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  7. Homing of endogenous bone marrow mesenchymal stem cells to rat infarcted myocardium via ultrasound-mediated recombinant SDF-1α adenovirus in microbubbles.

    Science.gov (United States)

    Su, Gaofeng; Liu, Liyun; Yang, Lingjie; Mu, Yuming; Guan, Lina

    2018-01-02

    Stem cells can promote myocardial regeneration and accelerate the formation of new blood vessels. As such, transplanted stem cells represent a promising treatment modality for acute myocardial infarction (AMI). Stem cells spontaneously home to the infarcted myocardium using chemotaxis, in which the stromal cell-derived factor (SDF-1α) has been shown to be one of the most important chemokines. However, spontaneously secreted SDF-1α is short-lived, and therefore does not meet the needs of tissue repair. In this study, adenoviruses carrying SDF-1α genes were loaded on microbubble carriers and the adenoviruses were released into AMI rats by ultrasound targeted microbubble destruction. The possibility of in vivo self-transplantation of bone marrow mesenchymal stem cells (BMSCs) induced by overexpression of SDF-1α in the infarcted myocardium was explored by detecting the number of BMSCs homing from the peripheral blood to the myocardial infarcts. The concentration of SDF-1α in peripheral blood was significantly higher after transfection, and the number of BMSCs was significantly higher in the peripheral blood and infarcted area. Further analyses indicated that the number of homing BMSCs increased with increased SDF-1α expression. In conclusion, our results suggest that ultrasound mediated transduction of exogenous SDF-1α genes into myocardial infarcted AMI rats can effectively promote the homing of endogenous BMSCs into the heart. Moreover, the number of homing stem cells was controlled by the level of SDF-1α expression.

  8. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy

    Directory of Open Access Journals (Sweden)

    Yoon Sun Yang

    2013-09-01

    Full Text Available Various source-derived mesenchymal stem cells (MSCs have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM, adipose tissue (AT, and umbilical cord blood-derived MSCs (UCB-MSCs for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α, IL-6, and IL-8 via angiopoietin-1 (Ang-1. Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA, we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.

  9. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression.

    Science.gov (United States)

    Miwa, Hiroyuki; Era, Takumi

    2018-01-29

    Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.

  10. Acoustic-Frequency Vibratory Stimulation Regulates the Balance between Osteogenesis and Adipogenesis of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-01-01

    Full Text Available Osteoporosis can be associated with the disordered balance between osteogenesis and adipogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs. Although low-frequency mechanical vibration has been demonstrated to promote osteogenesis, little is known about the influence of acoustic-frequency vibratory stimulation (AFVS. BM-MSCs were subjected to AFVS at frequencies of 0, 30, 400, and 800 Hz and induced toward osteogenic or adipogenic-specific lineage. Extracellular matrix mineralization was determined by Alizarin Red S staining and lipid accumulation was assessed by Oil Red O staining. Transcript levels of osteogenic and adipogenic marker genes were evaluated by real-time reverse transcription-polymerase chain reaction. Cell proliferation of BM-MSCs was promoted following exposure to AFVS at 800 Hz. Vibration at 800 Hz induced the highest level of calcium deposition and significantly increased mRNA expression of COL1A1, ALP, RUNX2, and SPP1. The 800 Hz group downregulated lipid accumulation and levels of adipogenic genes, including FABP4, CEBPA, PPARG, and LEP, while vibration at 30 Hz supported adipogenesis. BM-MSCs showed a frequency-dependent response to acoustic vibration. AFVS at 800 Hz was the most favorable for osteogenic differentiation and simultaneously suppressed adipogenesis. Thus, acoustic vibration could potentially become a novel means to prevent and treat osteoporosis.

  11. [PDGFRα Participates in Basic Fibroblast Growth Factor-mediated Recovery of Human Bone Marrow Mesenchymal Stem Cell Proliferation and Osteogenic Differentiation after Irradiation].

    Science.gov (United States)

    Dai, Kai; Yang, Zhi; Xu, Shuang-Nian; Zhang, Jian-Min; Chen, Jie-Ping

    2015-12-01

    To explore the effects of basic fibroblast growth factor (bFGF) on human bone marrow mesenchymal stem cell (hBMMSC) damaged by irradiation and its underlying mechanisms. hBMMSC was irradiated with 0, 6, 12 Gy X ray, then flow cytometry, cell counting kit-8 (CCK-8), Western blot and alizarin red staining were used to detect the effects of X ray on apoptosis, proliferation and osteogenic differentiation of hBMMSC; 0, 1, 5, 10, 20 ng/ml bFGF was added to hBMMSC irradiated with X ray for selecting the suitable bFGF reaction concentration; then the Western blot was used to detect the expression of PDGFRα so as to evaluate whether the expression of PDGFRα participated in bFGF-mediated recovery of hBMMSC proliferation and osteogenic differentiation after irradiation. The proliferation and osteogenic differentiation of hBMMSC decreased remarkably after irradiation. bFGF promoted the recovery of proliferation and osteogenic differentiation of irradiated hBMMSC compared with untreated irradiated hBMMSC (P recovery of hBMMSC proliferation and osteogenic differentiation. The damage of hBMMSC proliferation and osteogenic differentiation associates with downregulation of PDGFRα expression induced by irrediation. PDGFRα involves in repairing effect of bFGF on irradiation damage of hBMMSC.

  12. Bone Marrow Mesenchymal Stem Cells Are an Attractive Donor Cell Type for Production of Cloned Pigs As Well As Genetically Modified Cloned Pigs by Somatic Cell Nuclear Transfer

    Science.gov (United States)

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua

    2013-01-01

    Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142

  13. Comparison of Long Noncoding RNA and mRNA Expression Profiles in Mesenchymal Stem Cells Derived from Human Periodontal Ligament and Bone Marrow

    Directory of Open Access Journals (Sweden)

    Rui Dong

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs in different anatomic locations possess diverse biological activities. Maintaining the pluripotent state and differentiation depend on the expression and regulation of thousands of genes, but it remains unclear which molecular mechanisms underlie MSC diversity. Thus, potential MSC applications are restricted. Long noncoding RNAs (lncRNAs are implicated in the complex molecular circuitry of cellular processes. We investigated differences in lncRNA and mRNA expression profiles between bone marrow stem cells (BMSCs and periodontal ligament stem cells (PDLSCs with lncRNA microarray assays and bioinformatics analysis. In PDLSCs, numerous lncRNAs were significantly upregulated (n=457 or downregulated (n=513 compared to BMSCs. Furthermore, 1,578 mRNAs were differentially expressed. These genes implicated cellular pathways that may be associated with MSC characteristics, including apoptosis, MAPK, cell cycle, and Wnt signaling pathway. Signal-net analysis indicated that phospholipase C beta 4, filamin B beta, calcium/calmodulin-dependent protein kinase II gamma, and the ionotropic glutamate receptor, AMPA 1, had the highest betweenness centrality among significant genes in the differential gene profile network. A comparison between the coding-noncoding gene coexpression networks of PDLSCs and BMSCs identified chemokine (C-X-C motif ligand 12 as a core regulatory factor in MSC biology. These results provided insight into the mechanisms underlying MSC biology.

  14. Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury

    Directory of Open Access Journals (Sweden)

    Bingke Lv

    2016-12-01

    Full Text Available In this study, we investigated interactions among microglia (MG, bone marrow mesenchymal stem cells (BMSCs and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD model. Rat BMSCs were incubated with conditioned medium (CM from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF on rat neuron viability, apoptosis, lactate dehydrogenase (LDH leakage and mitochondrial membrane potential (MMP were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01. TNFα, but not IL6 or IL1β, promoted GDNF production by BMSCs (P < 0.001. GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01; these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and PI3K/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2 and heat shock 60 kDa protein 1 (HSP60 levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.

  15. Role of human cardiac biopsy derived conditioned media in modulating bone marrow derived mesenchymal stem cells toward cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Anupama Kakkar

    2015-01-01

    Full Text Available Background: Mesenchymal stem cells (MSCs are multipotent and can be easily cultured and expanded. Therefore, these are considered to be an attractive therapeutic tool for cardiac repair. These have been found to have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. A number of chemicals and growth factors have been explored for the same. However, the effect of the paracrine factors released by cardiac tissue has not been studied much. Materials and Methods: In the present study, we have examined the differentiation capacity of conditioned media (CM derived from human cardiac tissue on human bone marrow-derived MSCs (BM-MSCs. BM-MSCs after characterization were induced by culture supernatant collected from human cardiac tissue (21 days. Parallel cultures treated with 5-azacytidine (AZA (30 days, were taken as controls. Results: MSCs treated with CM formed “muscle island” like structure and were found to be positive for cardiac-specific markers - myosin light chain-2v and cardiac troponin I proteins. However, uninduced BM-MSCs did not show positivity for any of these markers and maintained fibroblastic morphology. Conclusion: These findings demonstrate that cardiac CM is capable of effective induction of morphological and molecular changes in MSCs toward cardiac features. However, differentiation efficiency is less than that of 5-AZA and the mode of action and the components of CM are still to be known.

  16. TGF-β/MAPK signaling mediates the effects of bone marrow mesenchymal stem cells on urinary control and interstitial cystitis after urinary bladder transplantation.

    Science.gov (United States)

    Xiao, Ya; Song, Ya-Jun; Song, Bo; Huang, Chi-Bing; Ling, Qing; Yu, Xiao

    2017-01-01

    This study aimed to explore the role of the transforming growth factor-β/mitogen activated protein kinase (TGF-β/MAPK) signaling pathway in the effects of bone marrow mesenchymal stem cells (BMSCs) on urinary control and interstitial cystitis in a rat model of urinary bladder transplantation. A urinary bladder transplantation model was established using Sprague-Dawley rats. Rats were assigned to normal (blank control), negative control (phosphate-buffered saline injection), BMSCs (BMSC injection), sp600125 (MAPK inhibitor injection), or protamine sulfate (protamine sulfate injection) groups. Immunohistochemistry, urodynamic testing, hematoxylin-eosin staining, Western blotting, enzyme-linked immunosorbent assay, and MTT assay were used to assess BMSC growth, the kinetics of bladder urinary excretion, pathological changes in bladder tissue, bladder tissue ultrastructure, the expression of TGF-β/MAPK signaling pathway-related proteins, levels of inflammatory cytokines, and the effects of antiproliferative factor on cell proliferation. Compared with normal, negative control, BMSCs, and sp600125 groups, rats in the PS group exhibited decreased discharge volume, maximal micturition volume, contraction interval, and bladder capacity but increased residual urine volume, bladder pressure, bladder peak pressure, expression of TGF-β/MAPK signaling pathway-related proteins, levels of inflammatory cytokines, and growth inhibition rate. Levels of inflammatory cytokines and the growth inhibition rate were positively correlated with the expression of TGF-β/MAPK signaling pathway-related proteins. Our findings demonstrate that the TGF-β/MAPK signaling pathway mediates the beneficial effects of BMSCs on urinary control and interstitial cystitis.

  17. [Ferumoxide labeled Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells and its in vivo tracing in the brains of Macaca Fascicularis].

    Science.gov (United States)

    Feng, Ming; Wang, Ren-Zhi; Zhu, Hua; Zhang, Nan; Wang, Chang-Jun; Wei, Jun-Ji; Lu, Shan; Li, Qin; Yin, Xiao-Ming; Han, Qin; Ma, Wen-Bin; Qin, Chuang; Zhao, Chun-Hua; An, Yi-Hua; Kong, Yan-Guo

    2008-10-01

    To explore the method for labeling Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells (hBMSCs) with ferumoxide-PLL and evaluate the feasibility of its tracing after transplantation into the brains of Macaca Fascicularis. The hBMSCs were incubated with ferumoxide-PLL. Trypan blue staining, Prussian blue staining, and transmission electron microscope were performed to show intracellular iron, marking efficiency, and the vigor of the labeled cells. After the hBMSCs were transplanted into the brains of cynomolgus monkeys by stereotaxis, magnetic resonance imaging (MRI) was performed to trace the cells in vivo. Cell survival and differentiation were studied with immunohistochemistry, Prussian blue staining, and HE staining. The marking efficiency of the ferumoxide-PLL was 96%. Iron particles were found intracytoplasmic of the hBMSCs by Prussian blue staining and transmission electron microscopy. The relaxation rates of labeled cells in MRI were 4.4 and 4.2 times higher than those of the unlabeled cells. Hypointensity area was found by MRI three weeks after transplantation. Many hBMSCs and new vessels were found in the transplantation zone by pathological and immunofluorescence methods. Ferumoxide-PLL can effectively label hBMSCs and thus increase its contrast in MRI results. The cells can survive in the brains of cynomolgus monkeys. The labeled hBMSCs can be traced in vivo by MRI.

  18. 15-Deoxy-Δ12,14-Prostaglandin J2 Inhibits Homing of Bone Marrow-Derived Mesenchymal Stem Cells Triggered by Chronic Liver Injury via Redox Pathway

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-01-01

    Full Text Available It has been reported that bone marrow-derived mesenchymal stem cells (BMSCs have capacity to migrate to the damaged liver and contribute to fibrogenesis in chronic liver diseases. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARγ, is considered a new inhibitor of cell migration. However, the actions of 15d-PGJ2 on BMSC migration remain unknown. In this study, we investigated the effects of 15d-PGJ2 on the migration of BMSCs using a mouse model of chronic liver fibrosis and primary mouse BMSCs. Our results demonstrated that in vivo, 15d-PGJ2 administration inhibited the homing of BMSCs to injured liver by flow cytometric analysis and, in vitro, 15d-PGJ2 suppressed primary BMSC migration in a dose-dependent manner determined by Boyden chamber assay. Furthermore, the repressive effect of 15d-PGJ2 was blocked by reactive oxygen species (ROS inhibitor, but not PPARγ antagonist, and action of 15d-PGJ2 was not reproduced by PPARγ synthetic ligands. In addition, 15d-PGJ2 triggered a significant ROS production and cytoskeletal remodeling in BMSCs. In conclusion, our results suggest that 15d-PGJ2 plays a crucial role in homing of BMSCs to the injured liver dependent on ROS production, independently of PPARγ, which may represent a new strategy in the treatment of liver fibrosis.

  19. High-Dose {sup 111}In Induces G1 Cell Cycle Arrest and Cell Death in Rat Bone Marrow Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bok Nam; Shim, Woo Young; Ahn, Young Hwan; Lee, Jae Ho; Yoon, Joon Kee [Ajou Univ. School of Medicine, Suwon (Korea, Republic of)

    2012-06-15

    This study was performed to evaluate the effect of {sup 111}In-labeling on the cell growth, cycle and viability of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were labeled with various doses of {sup 111}In (0.4-11.1 Bq/cell). The growth curve of {sup 111}In-BMSCs was obtained up to 14th day of labeling. The cell cycle was evaluated by 5-bromo-2-deoxyuridine (BrdU) labeling or prospidium iodide (PI) staining. Senescent cells were counted under a light microscope after staining with 5-bromo-4-chloro-3-indolyl-{sup D-}galactopyranoside. Flow cytometry was performed to measure apoptotic and necrotic fractions after staining with annexin V-FITC and PI. The growth of BMSCs labeled with higher doses of {sup 111}In (4.4 or 11.1 Bq/cell) was significantly inhibited from the 3rd day of labeling. Flow cytometry revealed less BrdU-positive BMSCs at 11.1 Bq {sup 111}In/cell (9.07%/3.18%) on the 14th day (control=1.60%/0.39%). However, no cellular senescence was visualized up to the 14th day. A high dose of {sup 111}In-labeling induced cell cycle arrest and death in BMSCs; therefore, it should be used with a careful dosimetry in case of applying it to humans.

  20. Exogenous IL-4-Expressing Bone Marrow Mesenchymal Stem Cells for the Treatment of Autoimmune Sensorineural Hearing Loss in a Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    Chang-qiang Tan

    2014-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs expressing recombinant IL-4 have the potential to remediate inflammatory diseases. We thus investigated whether BMSCs expressing exogenous IL-4 could alleviate autoimmune sensorineural hearing loss. BMSCs isolated from guinea pigs were transfected with recombinant lentivirus expressing IL-4. A total of 33 animals were divided into three groups. Group A received scala tympani injection of IL-4-expressing BMSCs, and Group B received control vector-expressing BMSCs, and Group C received phosphate-buffered saline. The distribution of implanted BMSCs in the inner ears was assessed by immunohistochemistry and fluorescence microscopy. Auditory brain-stem response (ABR was monitored to evaluate the auditory changes. Following BMSCs transplantation, the threshold levels of ABR wave III decreased in Groups A and B and significant differences were observed between these two groups P<0.05. Transplanted BMSCs distributed in the scala tympani and scala vestibuli. In some ears with hearing loss, there was a decrease in the number of spiral ganglion cells and varying degrees of endolymphatic hydrops or floccule. Following transplantation, the lentivirus-infected BMSCs migrated to the inner ear and produced IL-4. Our results demonstrate that, upon transplantation, BMSCs and BMSCs expressing recombinant IL-4 have the ability to remediate the inflammatory injury in autoimmune inner ear diseases.

  1. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Science.gov (United States)

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  2. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation.

    Directory of Open Access Journals (Sweden)

    Dorothée Cantinieaux

    Full Text Available Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.

  3. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Wang, Aoli; Shi, Yisong; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2017-06-15

    Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Autologous Bone Marrow Mesenchymal Stem Cells Associated with Tantalum Rod Implantation and Vascularized Iliac Grafting for the Treatment of End-Stage Osteonecrosis of the Femoral Head

    Directory of Open Access Journals (Sweden)

    Dewei Zhao

    2015-01-01

    Full Text Available Tantalum rod implantation with vascularized iliac grafting has been reported to be an effective method for the treatment of young patients with osteonecrosis of the femoral head (ONFH to avert the need for total hip arthroplasty (THA. However, there have been unsatisfactory success rates for end-stage ONFH. The authors describe a modified technique using bone marrow mesenchymal stem cells (BMMSCs associated with porous tantalum rod implantation combined with vascularized iliac grafting for the treatment of end-stage ONFH. A total of 24 patients (31 hips with end-stage ONFH were treated with surgery; ARCO IIIc stage was observed in 19 hips and ARCO IV stage was observed in 12 hips. All patients were followed for a mean time of 64.35 ± 13.03 months (range 26–78. Operations on only five hips were converted to THA. The joint-preserving success rate of the entire group was 89.47% for ARCO stage IIIc and 75% for ARCO stage IV. The mean Harris hip score of the 31 hips improved significantly from 38.74 ± 5.88 points (range 22–50 to 77.23 ± 14.75 points (range 33–95. This intervention was safe and effective in delaying or avoiding total hip replacement for end-stage ONFH.

  5. Autologous Bone Marrow Mesenchymal Stem Cells Associated with Tantalum Rod Implantation and Vascularized Iliac Grafting for the Treatment of End-Stage Osteonecrosis of the Femoral Head

    Science.gov (United States)

    Zhao, Dewei; Liu, Baoyi; Wang, Benjie; Yang, Lei; Xie, Hui; Huang, Shibo; Zhang, Yao; Wei, Xiaowei

    2015-01-01

    Tantalum rod implantation with vascularized iliac grafting has been reported to be an effective method for the treatment of young patients with osteonecrosis of the femoral head (ONFH) to avert the need for total hip arthroplasty (THA). However, there have been unsatisfactory success rates for end-stage ONFH. The authors describe a modified technique using bone marrow mesenchymal stem cells (BMMSCs) associated with porous tantalum rod implantation combined with vascularized iliac grafting for the treatment of end-stage ONFH. A total of 24 patients (31 hips) with end-stage ONFH were treated with surgery; ARCO IIIc stage was observed in 19 hips and ARCO IV stage was observed in 12 hips. All patients were followed for a mean time of 64.35 ± 13.03 months (range 26–78). Operations on only five hips were converted to THA. The joint-preserving success rate of the entire group was 89.47% for ARCO stage IIIc and 75% for ARCO stage IV. The mean Harris hip score of the 31 hips improved significantly from 38.74 ± 5.88 points (range 22–50) to 77.23 ± 14.75 points (range 33–95). This intervention was safe and effective in delaying or avoiding total hip replacement for end-stage ONFH. PMID:25802840

  6. Inhibiting PHD2 in bone marrow mesenchymal stem cells via lentiviral vector-mediated RNA interference facilitates the repair of periodontal tissue defects in SD rats

    Science.gov (United States)

    Chen, Changxing; Li, Houxuan; Jiang, Jun; Zhang, Qian; Yan, Fuhua

    2017-01-01

    Hypoxia-inducible factors (HIFs) play an important role in angiogenesis, and they can activate the expression of several downstream angiogenic factors. HIF-1 is a major transcriptor of HIFs, composed of α and β subunits. Prolyl hydroxylase domain-containing protein 2 (PHD2) is the main catabolic enzyme for HIF-1α, and it can accelerate its degradation under normoxic conditions. PHD2 expression in bone marrow mesenchymal stem cells (BMMSCs) of SD rats was down-regulated under normoxic conditions in this study by utilizing lentiviral vector-mediated RNA interference to promote HIF-1α accumulation, thus enhancing the expression of angiogenic factors. A tissue-engineered compound was constructed using the composite collagen membrane of BMMSCs after PHD2 gene silencing to repair periodontal fenestration defects in SD rats. The results of this study indicated that, after PHD2 gene silencing, the osteogenic differentiation of BMMSCs was enhanced in vitro, the resistance of cells to oxidative stress was also validated in vitro, thereby illustrating the promotion of the repair of artificially constructed periodontal tissue defects in rats. The results of this study provide a reference and guidance for future applications of RNA interference in periodontal tissue engineering and serve as a basis for improving the survival of seed cells in recipient tissues. PMID:29069818

  7. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    Science.gov (United States)

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  8. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats

    Science.gov (United States)

    Fallahnezhad, Somaye; Piryaei, Abbas; Tabeie, Faraj; Nazarian, Hamid; Darbandi, Hasan; Amini, Abdoldllah; Mostafavinia, Ataroalsadat; Ghorishi, Seyed Kamran; Jalalifirouzkouhi, Ali; Bayat, Mohammad

    2016-09-01

    The purpose of this study was to evaluate the influences of helium-neon (He-Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He-Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4 J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6 J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6 J/cm2 with He-Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.

  9. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats.

    Science.gov (United States)

    Alexanian, Arshak R; Fehlings, Michael G; Zhang, Zhiying; Maiman, Dennis J

    2011-01-01

    Stem cell-based therapy for repair and replacement of lost neural cells is a promising treatment for central nervous system (CNS) diseases. Bone marrow (BM)-derived mesenchymal stem cells (MSCs) can differentiate into neural phenotypes and be isolated and expanded for autotransplantation with no risk of rejection. The authors examined whether transplanted neurally induced human MSCs (NI hMSCs), developed by a new procedure, can survive, differentiate, and promote tissue protection and functional recovery in injured spinal cord (ISC) rats. Neural induction was achieved by exposing cells simultaneously to inhibitors of DNA methylation, histone deacetylation, and pharmacological agents that increased cAMP levels. Three groups of adult female Sprague-Dawley rats were injected immediately rostral and caudal to the midline lesion with phosphate-buffered saline, MSCs, or NI hMSCs, 1 week after a spinal cord impact injury at T-8. Functional outcome was measured using the Basso Beattie Bresnahan (BBB) locomotor rating scale and thermal sensitivity test on a weekly basis up to 12 weeks postinjury. Graft integration and anatomy of spinal cord was assessed by stereological, histochemical, and immunohistochemical techniques. The transplanted NI hMSCs survived, differentiated, and significantly improved locomotor recovery of ISC rats. Transplantation also reduced the volume of lesion cavity and white matter loss. This method of hMSC modification may provide an alternative source of autologous adult stem cells for CNS repair.

  10. Chromatin organization regulated by EZH2-mediated H3K27me3 is required for OPN-induced migration of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2018-03-01

    Osteopontin (OPN) is a chemokine-like extracellular matrix-associated protein involved in the migration of bone marrow-derived mesenchymal stem cells (BMSCs). An increasing number of studies have found that chromatin organization may affect cellular migration. However, whether OPN regulates chromatin organization is not understood, nor are the underlying molecular mechanisms. In this study, we investigated the link between chromatin organization and BMSC migration and demonstrated that OPN-mediated BMSC migration leads to elevated levels of heterochromatin marker histone H3 lysine 27 trimethylation (H3K27me3) through the methyltransferase EZH2. The expression of EZH2 reorganizes the chromatin structure of BMSCs. Pharmacological inhibition or depletion of EZH2 blocks BMSC migration. Moreover, using an atomic force microscope (AFM), we found that chromatin decondensation alters the mechanical properties of the nucleus. In addition, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) signals represses OPN-promoted chromatin condensation and cell migration. Thus, our results identify a mechanism by which ERK1/2 signalling drives specific chromatin modifications in BMSCs, which alters chromatin organization and thereby enables OPN-mediated BMSC migration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  12. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Qi; Li, Kewen; Yan, Jinhong; Wang, Zhuo; Wu, Qi; Bi, Long; Yang, Min; Han, Yisheng

    2018-02-19

    The objective was to investigate whether a graphene coating could improve the surface bioactivity of a cobalt-chromium-molybdenum-based alloy (CoCrMo). Graphene was produced by chemical vapor deposition and transferred to the surface of the CoCrMo alloy using an improved wet transfer approach. The morphology of the samples was observed, and the adhesion force and stabilization of graphene coating were analyzed by a nanoscratch test and ultrasonication test. In an in vitro studies, the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) cultured on the samples were quantified via an Alamar Blue assay and cell counting kit-8 (CCK-8) assay. The results showed that it is feasible to apply graphene to modify the surface of a CoCrMo alloy, and the enhancement of the adhesion and proliferation of BMSCs was also shown in the present study. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivity of CoCrMo alloy. Copyright © 2018. Published by Elsevier Inc.

  13. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation

    International Nuclear Information System (INIS)

    Abdallah, Basem M.; Haack-Sorensen, Mandana; Burns, Jorge S.; Elsnab, Birgitte; Jakob, Franz; Hokland, Peter; Kassem, Moustapha

    2005-01-01

    Human bone marrow mesenchymal stem cells (hMSC) represent a population of stem cells that are capable of differentiation into multiple lineages. However, these cells exhibit senescence-associated growth arrest and phenotypic changes during long-term in vitro culture. We have recently demonstrated that overexpression of human telomerase reverse transcriptase (hTERT) in hMSC reconstitutes telomerase activity and extends life span of the cells [Nat. Biotechnol. 20 (2002) 592]. In the present study, we have performed extensive characterization of three independent cell lines derived from the parental hMSC-TERT cell line based on different plating densities during expansion in culture: 1:2 (hMSC-TERT2), 1:4 (hMSC-TERT4), and 1:20 (hMSC-TERT20). The 3 cell lines exhibited differences in morphology and growth rates but they all maintained the characteristics of self-renewing stem cells and the ability to differentiate into multiple mesoderm-type cell lineages: osteoblasts, adipocytes, chondrocytes, and endothelial-like cells over a 3-year period in culture. Also, surface marker studies using flow cytometry showed a pattern similar to that known from normal hMSC. Thus, telomerization of hMSC by hTERT overexpression maintains the stem cell phenotype of hMSC and it may be a useful tool for obtaining enough number of cells with a stable phenotype for mechanistic studies of cell differentiation and for tissue engineering protocols

  14. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    Science.gov (United States)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  15. Male and female rat bone marrow-derived mesenchymal stem cells are different in terms of the expression of germ cell specific genes.

    Science.gov (United States)

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohammadreza Baghaban; Batavani, Roozali; Ghasemzadeh-Hasankolaei, Maryam

    2015-06-01

    Recent studies have shown that mesenchymal stem cells (MSCs), under appropriate conditions, can differentiate into cell types including germ cells (GCs). These studies also show that MSCs without any induction express some GC-specific genes innately. Moreover, one report suggests that female MSCs have a greater tendency to differentiate into female instead of male GCs. Therefore, for the first time, this study attempts to assay and determine the differences between the expression levels of some important GC-specific genes (Stra8, Vasa, Dazl, Stella, Piwil2, Oct4, Fragilis, Rnf17 and c-Kit) in male and female bone marrow (BM)-MSCs of rats. BM sampling of the rate was performed by a newly established method. We cultured rat BM samples, then characterized male and female MSCs according to their adhesion onto the culture dish, their differentiation potential into bone, cartilage and fat cells, and phenotype analysis by flow cytometry. The expression of GC-specific genes and their expression levels were evaluated with reverse transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. Our results showed that Dazl and Rnf17 did not express in the cells. The majority of examined genes, except Piwil2, expressed at almost the same levels in male and female MSCs. Piwil2 had higher expression in male MSCs which was probably related to the more prominent role of Piwil2 in the male GC development process. Male BM-MSCs appeared more prone to differentiate into male rather than female GCs. Additional research should be performed to determine the exact role of different genes in the male and female GC development process.

  16. Local chemical sympathectomy of rat bone marrow and its effect on marrow cell composition.

    Science.gov (United States)

    Dubový, P; Klusáková, I; Kučera, L; Osičková, J; Chovancová, J; Loja, T; Mayer, J; Doubek, M; Joukal, M

    2017-09-01

    Existing experimental studies of the effect of sympathetic nerve fibers on bone marrow cells are based on the systemic administration of neurotoxic 6-hydroxydopamine. The method of global chemical sympathectomy has some serious disadvantages and could lead to questionable results. We describe a new method of local chemical sympathectomy of rat femoral bone marrow using guanethidine (Ismelin) delivery using an osmotic mini pump. Local guanethidine treatment for 14days led to complete elimination of sympathetic fibers in femoral bone marrow in contrast to bone marrow of contralateral or naïve femurs. Ablation of sympathetic fibers was associated with a loss of rat endothelial cell marker (RECA) indicating immunophenotype changes in blood vessel endothelial cells, but no significant effect of guanethidine was found on the survival of endothelial cells and mesenchymal stem cells in vitro. Moreover, local guanethidine treatment also elicited a significant reduction of Nestin+/SDF1+ mesenchymal stem cells and c-Kit+/CD90+ hematopoietic stem cells in femoral bone marrow. Tissue-specific chemical sympathectomy of rat bone marrow by guanethidine overcomes some of the drawbacks of systemic administration of neurotoxic compounds like 6-hydroxydopamine and delivers unequivocal evidence on the effects of sympathetic innervation on the cell content of bone marrow. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. HLA in bone marrow transplantation

    International Nuclear Information System (INIS)

    Tsuji, Kimiyoshi

    1989-01-01

    It has been well understood that human major histocompatibility antigen system, HLA is the most important role in the allo transplantation. Therefore, the structure of HLA genes was presented by the recent information (1987). Moreover, their functions in vitro and in vivo also were described. Finally, bone marrow transplantation and HLA network system in Japan against HLA mismatched case was proposed. It is eagerly expected that functional and clinical bone marrow transplantation in Japan could be succeeded. (author)

  18. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    DEFF Research Database (Denmark)

    Tormin, Ariane; Li, Ou; Brune, Jan Claas

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype of prim...

  19. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Naskou, Maria C; Sumner, Scarlett M; Chocallo, Anna; Kemelmakher, Hannah; Thoresen, Merrilee; Copland, Ian; Galipeau, Jacques; Peroni, John F

    2018-03-22

    Mesenchymal stem cells (MSCs) produced for clinical purposes rely on culture media containing fetal bovine serum (FBS) which is xenogeneic and has the potential to significantly alter the MSC phenotype, rendering these cells immunogenic. As a result of bovine-derived exogenous proteins expressed on the cell surface, MSCs may be recognized by the host immune system as non-self and be rejected. Platelet lysate (PL) may obviate some of these concerns and shows promising results in human medicine as a possible alternative to FBS. Our goal was to evaluate the use of equine platelet lysate (ePL) pooled from donor horses in place of FBS to culture equine MSCs. We hypothesized that ePL, produced following apheresis, will function as the sole media supplement to accelerate the expansion of equine bone marrow-derived MSCs without altering their phenotype and their immunomodulatory capacity. Platelet concentrate was obtained via plateletpheresis and ePL were produced via freeze-thaw and centrifugation cycles. Population doublings (PD) and doubling time (DT) of bone marrow-derived MSCs (n = 3) cultured with FBS or ePL media were calculated. Cell viability, immunophenotypic analysis, and trilineage differentiation capacity of MSCs were assessed accordingly. To assess the ability of MSCs to modulate inflammatory responses, E. coli lipopolysaccharide (LPS)-stimulated monocytes were cocultured with MSCs cultured in the two different media formulations, and cell culture supernatants were assayed for the production of tumor necrosis factor (TNF)-α. Our results showed that MSCs cultured in ePL media exhibited similar proliferation rates (PD and DT) compared with those cultured in FBS at individual time points. MSCs cultured in ePL showed a statistically significant increased viability following a single washing step, expressed similar levels of MSC markers compared to FBS, and were able to differentiate towards the three lineages. Finally, MSCs cultured in ePL efficiently suppressed

  20. Biocompatibility of various hydoxyapatite scaffolds evaluated by proliferation of rat’s bone marrow mesenchymal stem cells: an in vitro study

    Directory of Open Access Journals (Sweden)

    Achmad F. Kamal

    2013-12-01

    Full Text Available Background: Scaffold (biomaterial biocompatibility test should be performed in vitro prior to in vivo stem cell application in animal or clinical trial. These test consists of direct and indirect toxicity test (MTT assay [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide]. Those tests were used to identify cell morphological changes, cell-substrate adhesion impairment, and reduction in cell proliferation activity.Methods: The tested scaffolds were hydroxyapatite-calcium sulphate (HA-CaSO4 (scaffold I, nano-particular HA paste (scaffold II, synthetic HA granule (scaffold III, bovine HA granule (scaffold IV, and morsellized bovine xenograft (scaffold V. Direct contact toxicity test and MTT assay [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] were performed on those groups. In direct contact toxicity test, we put granules of various scaffolds within plates and incubated together with mesenchymal stem cells (MSCs. In MTT assay we included phenol 20 mg/mL and 100 mg/mL group as positive control. Morphology, cell adhesion impairment, and cell growth were monitored daily until day-7. Cells counting in the direct contact toxicity test was conducted on day-7.Results: There were no changes on 24 hours observation after direct contact. On day-7, an impairment of cell adhesion to plastic substrates, changes in cell morphology, and cell death were observed, especially in scaffold I, scaffold II, and scaffold V. In MTT assay, only scaffold I, phenol 20 mg/mL, and phenol 100 mg/mL showed more than 50% inhibition at 24-hour and 7-day-observation. Extracts from scaffold II, III, IV, and V did not affect the viability and proliferation of bone marrow MSCs (inhibition value < 50%. Scaffold II, III, IV and V were proven non-cytotoxic and have good biocompatibility in vitro,  no statistical significant differences were observed among the scaffold groups (p > 0.05.Conclusion: We understand which scaffold was nontoxic or the least toxic to

  1. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis.

    Science.gov (United States)

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thu