WorldWideScience

Sample records for bone marrow derivation

  1. Bone Marrow-Derived Macrophages (BMM)

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Porse, Bo

    2008-01-01

    of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929 cells...

  2. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  3. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vascu

  4. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  5. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  6. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  7. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    OpenAIRE

    Muschler, George F.; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal f...

  8. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    OpenAIRE

    1983-01-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. We have defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few...

  9. Bone marrow transplant

    Science.gov (United States)

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  10. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Koch, Thomas Gadegaard; Heerkens, T.;

    2009-01-01

    including bone marrow and umbilical cord blood. The objective of this study was to provide an in vitro comparison of the chondrogenic potential in MSC derived from adult bone marrow (BM-MSC) and umbilical cord blood (CB-MSC). Results: MSC from both sources produced tissue with cartilage-like morphology...

  11. Bone marrow-derived pancreatic stellate cells in rats.

    Science.gov (United States)

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  12. CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis.

    Directory of Open Access Journals (Sweden)

    Yunfeng Xia

    Full Text Available Recent studies have shown that bone marrow-derived fibroblasts contribute significantly to the pathogenesis of renal fibrosis. However, the molecular mechanisms underlying the recruitment of bone marrow-derived fibroblasts into the kidney are incompletely understood. Bone marrow-derived fibroblasts express the chemokine receptor--CCR2. In this study, we tested the hypothesis that CCR2 participates in the recruitment of fibroblasts into the kidney during the development of renal fibrosis. Bone marrow-derived collagen-expressing GFP⁺ fibroblasts were detected in the obstructed kidneys of chimeric mice transplanted with donor bone marrow from collagen α1(I-GFP reporter mice. These bone marrow-derived fibroblasts expressed PDGFR-β and CCR2. CCR2 knockout mice accumulated significantly fewer bone marrow-derived fibroblast precursors expressing the hematopoietic marker-CD45 and the mesenchymal markers-PDGFR-β or procollagen I in the obstructed kidneys compared with wild-type mice. Furthermore, CCR2 knockout mice displayed fewer bone marrow-derived myofibroblasts and expressed less α-SMA or FSP-1 in the obstructed kidneys compared with wild-type mice. Consistent with these findings, genetic deletion of CCR2 inhibited total collagen deposition and suppressed expression of collagen I and fibronectin. Moreover, genetic deletion of CCR2 inhibits MCP-1 and CXCL16 gene expression associated with a reduction of inflammatory cytokine expression and macrophage infiltration, suggesting a linear interaction between two chemokines/ligand receptors in tubular epithelial cells. Taken together, our results demonstrate that CCR2 signaling plays an important role in the pathogenesis of renal fibrosis through regulation of bone marrow-derived fibroblasts. These data suggest that inhibition of CCR2 signaling could constitute a novel therapeutic approach for fibrotic kidney disease.

  13. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina;

    2004-01-01

    . These discrepancies may reflect balance between immunoregulatory and neurocytopathologic roles for NO. We investigated selective effects of bone marrow-derived versus CNS parenchymal sources of iNOS in EAE in chimeric mice. Chimeras that selectively expressed or ablated iNOS in leukocytes both showed significant...... delay in disease onset, with no difference in disease severity. We conclude that bone marrow-derived and CNS parenchymal sources of iNOS-derived NO both play a regulatory role in EAE....

  14. Osteobiol (r) enhances osteogenic differentiation in bone marrow derived stem cells

    OpenAIRE

    D. Lauritano; Carinci, F.; Zollino, I; A. Hassanipour; Saggese, V; A. Palmieri; Girardi, A; Cura, F; A. Piras; Zamboni, P.; Brunelli, G

    2012-01-01

    OsteoBiol (R) (OsteoBiol, Tecnoss Dental, Turin, Italy) a cortical collagenated porcine bone is largely employed in oral implant techniques for bone regeneration thanks to its biocompatibility and osteoconductivity To study the mechanism by which cortical porcine bone promotes osteoblast differentiation and bone regeneration, changes in expression level of bone related genes were investigated by real time RT-PCR, in bone marrow derived stem cells and human osteoblasts cultivated with OsteoBio...

  15. Bone marrow-derived stem cells and respiratory disease.

    Science.gov (United States)

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  16. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  17. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration.

    OpenAIRE

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Tateya, Ichiro; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi

    2014-01-01

    [Objectives/Hypothesis]Vocal fold scarring presents therapeutic challenges. Recently, cell therapy with mesenchymal stromal cells has become a promising approach. The aim of this study was to compare the therapeutic potential of adipose-derived stem cells (ASC) with bone marrow-derived stem cells (BMSC) for vocal fold regeneration. [Study Design]Prospective animal experiments with controls. [Methods]The vocal folds of Sprague-Dawley rats were unilaterally injured. Two months after injury, rat...

  18. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  19. Clonal Characterization of Bone Marrow Derived Stem Cells and Their Application for Bone Regeneration

    OpenAIRE

    Xiao, Yin; Mareddy, Shobha; Crawford, Ross

    2010-01-01

    Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolat...

  20. COMPARISON OF HUMAN ADIPOSE-DERIVED STEM CELLS AND BONE MARROW-DERIVED STEM CELLS IN A MYOCARDIAL INFARCTION MODEL

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus;

    2012-01-01

    grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were......Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...

  1. Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Insulin-Dependent Diabetes

    OpenAIRE

    Fotino, Carmen; Ricordi, Camillo; Lauriola, Vincenzo; Alejandro, Rodolfo; Pileggi, Antonello

    2010-01-01

    The bone marrow is an invaluable source of adult pluripotent stem cells, as it gives rise to hematopoietic stem cells, endothelial progenitor cells, and mesenchymal cells, amongst others. The use of bone marrow-derived stem cell (BMC) transplantation (BMT) may be of assistance in achieving tissue repair and regeneration, as well as in modulating immune responses in the context of autoimmunity and transplantation. Ongoing clinical trials are evaluating the effects of BMC to preserve functiona...

  2. Bone marrow biopsy

    Science.gov (United States)

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  3. Bone marrow transplant - discharge

    Science.gov (United States)

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - discharge; ...

  4. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    Science.gov (United States)

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  5. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    Institute of Scientific and Technical Information of China (English)

    Bruno; C; Huber; Ulrich; Grabmaier; Stefan; Brunner

    2014-01-01

    Parathyroid hormone(PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.

  6. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration.

    Science.gov (United States)

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-11-26

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  7. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  8. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    OpenAIRE

    Ayatollahi, M.; Geramizadeh, B; Zakerinia, M; M Ramzi; Yaghobi, R.; Hadadi, P.; Rezvani, A. R.; Aghdai, M.; N Azarpira; Karimi, H.

    2012-01-01

    Background: The ability of mesenchymal stem cells (MSCs) to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering. Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential. Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells we...

  9. Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice

    International Nuclear Information System (INIS)

    Purpose: Bone marrow-derived cells have been shown to play roles in angiogenesis. Although these cells have been shown to promote angiogenesis, it is not yet clear whether these cells affect all types of angiogenesis. This study investigated the involvement of bone marrow-derived cells in pathological and physiological angiogenesis in the murine retina. Materials and methods: The oxygen-induced retinopathy (OIR) model was used as a retinal angiogenesis model in newborn mice. To block the influence of bone marrow-derived cells, the mice were irradiated with a 4-Gy dose of radiation from a 137Cs source. Irradiation was performed in four different conditions with radio dense 2-cm thick lead disks; (1) H group, the head were covered with these discs to protect the eyes from radiation; (2) A group, all of the body was covered with these discs; (3) N group, mice were completely unshielded; (4) C group, mice were put in the irradiator but were not irradiated. On P17, the retinal areas showing pathological and physiological retinal angiogenesis were measured and compared to the retinas of nonirradiated mice. Results: Although irradiation induced leukocyte depletion, it did not affect the number of other cell types or body weight. Retinal nonperfusion areas were significantly larger in irradiated mice than in control mice (P < 0.05), indicating that physiological angiogenesis was impaired. However, the formation of tuft-like angiogenesis processes was more prominent in the irradiated mice (P < 0.05), indicating that pathological angiogenesis was intact. Conclusions: Bone marrow-derived cells seem to be differentially involved in the formation of physiological and pathological retinal vessels. Pathological angiogenesis in the murine retina does not require functional bone marrow-derived cells, but these cells are important for the formation of physiological vessels. Our results add a new insight into the pathology of retinal angiogenesis and bolster the hypothesis that bone

  10. Bone marrow aspiration

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  11. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity

    OpenAIRE

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E.; Franquesa, Marcella; Engela, Anja U; Korevaar, Sander S; Roelofs, Helene; Genever, Paul G; IJzermans, Jan NM; Betjes, Michiel GH; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J.

    2013-01-01

    Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral ...

  12. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  13. Effects of salubrinal on development of osteoclasts and osteoblasts from bone marrow-derived cells

    OpenAIRE

    Yokota, Hiroki; Hamamura, Kazunori; Chen,Andy; Dodge, Todd R.; Tanjung, Nancy; Abedinpoor, Aysan; Zhang, Ping

    2013-01-01

    Background Osteoporosis is a skeletal disease leading to an increased risk of bone fracture. Using a mouse osteoporosis model induced by administration of a receptor activator of nuclear factor kappa-B ligand (RANKL), salubrinal was recently reported as a potential therapeutic agent. To evaluate the role of salubrinal in cellular fates as well as migratory and adhesive functions of osteoclast/osteoblast precursors, we examined the development of primary bone marrow-derived cells in the presen...

  14. Bone Marrow Diseases

    Science.gov (United States)

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  15. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    OpenAIRE

    Burdon, Tom J.; Arghya Paul; Nicolas Noiseux; Satya Prakash; Dominique Shum-Tim

    2010-01-01

    During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines ...

  16. Imaging of Bone Marrow.

    Science.gov (United States)

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  17. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural...

  18. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  19. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  20. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice.

    Directory of Open Access Journals (Sweden)

    Koji Ataka

    Full Text Available BACKGROUND: Microglia of the central nervous system act as sentinels and rapidly react to infection or inflammation. The pathophysiological role of bone marrow-derived microglia is of particular interest because they affect neurodegenerative disorders and neuropathic pain. The hypothesis of the current study is that chronic psychological stress (chronic PS induces the infiltration of bone marrow-derived microglia into hypothalamus by means of chemokine axes in brain and bone marrow. METHODS AND FINDINGS: Here we show that bone marrow-derived microglia specifically infiltrate the paraventricular nucleus (PVN of mice that received chronic PS. Bone marrow derived-microglia are CX3CR1(lowCCR2(+CXCR4(high, as distinct from CX3CR1(highCCR2(-CXCR4(low resident microglia, and express higher levels of interleukin-1β (IL-1β but lower levels of tumor necrosis factor-α (TNF-α. Chronic PS stimulates the expression of monocyte chemotactic protein-1 (MCP-1 in PVN neurons, reduces stromal cell-derived factor-1 (SDF-1 in the bone marrow and increases the frequency of CXCR4(+ monocytes in peripheral circulation. And then a chemokine (C-C motif receptor 2 (CCR2 or a β3-adrenoceptor blockade prevents infiltration of bone marrow-derived microglia in the PVN. CONCLUSION: Chronic PS induces the infiltration of bone marrow-derived microglia into PVN, and it is conceivable that the MCP-1/CCR2 axis in PVN and the SDF-1/CXCR4 axis in bone marrow are involved in this mechanism.

  1. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  2. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum

    Institute of Scientific and Technical Information of China (English)

    Yue Huang; Cheng Chang; Jiewen Zhang; Xiaoqun Gao

    2012-01-01

    Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson's disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function, tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson's disease.

  3. Bone Marrow Transplantation

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  4. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: A pilot study

    Directory of Open Access Journals (Sweden)

    Sudesh Prabhakar

    2012-01-01

    Full Text Available Background: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder with no effective treatment. Stem cell therapy may be one of the promising treatment options for such patients. Aim: To assess the feasibility, efficacy and safety of autologous bone marrow-derived stem cells in patients of ALS. Settings and Design: We conducted an open-label pilot study of autologous bone marrow-derived stem cells in patients with ALS attending the Neurology Clinic of a tertiary care referral centre. Materials and Methods: Ten patients with ALS with mean revised ALS Functional Rating Scale (ALSFRS-R score of 30.2 (± 10.58 at baseline received intrathecal autologous bone marrow-derived stem cells. Primary end point was improvement in the ALSFRS-R score at 90, 180, 270 and 365 days post therapy. Secondary endpoints included ALSFRS-R subscores, time to 4-point deterioration, median survival and reported adverse events. Paired t-test was used to compare changes in ALSFRS-R from baseline and Kaplan-Meier analysis was used for survival calculations. Results: There was no significant deterioration in ALSFRS-R composite score from baseline at one-year follow-up (P=0.090. The median survival post procedure was 18.0 months and median time to 4-point deterioration was 16.7 months. No significant adverse events were reported. Conclusion: Autologous bone marrow-derived stem cell therapy is safe and feasible in patients of ALS. Short-term follow-up of ALSFRS-R scores suggests a trend towards stabilization of disease. However, the benefit needs to be confirmed in the long-term follow-up period.

  5. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    OpenAIRE

    Ryoichi Tashima; Satsuki Mikuriya; Daisuke Tomiyama; Miho Shiratori-Hayashi; Tomohiro Yamashita; Yuta Kohro; Hidetoshi Tozaki-Saitoh; Kazuhide Inoue; Makoto Tsuda

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controver...

  6. Contribution of bone marrow derived cells to the pancreatic tumor microenvironment

    OpenAIRE

    Scarlett, Christopher J.

    2013-01-01

    Pancreatic cancer is a complex, aggressive, and heterogeneous malignancy driven by the multifaceted interactions within the tumor microenvironment. While it is known that the tumor microenvironment accommodates many cell types, each playing a key role in tumorigenesis, the major source of these stromal cells is not well-understood. This review examines the contribution of bone marrow-derived cells (BMDC) to pancreatic carcinogenesis, with respect to their role in constituting the tumor microe...

  7. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells

    OpenAIRE

    Chunfang Liu; Zhongwei Chen; Zhihong Chen; Tao Zhang; Yuan Lu

    2006-01-01

    It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs), which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form ma...

  8. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells1*

    OpenAIRE

    LIU, CHUNFANG; Chen, Zhongwei; Chen, Zhihong; Zhang, Tao; Lu, Yuan

    2006-01-01

    It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs), which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form ma...

  9. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    Science.gov (United States)

    de Carvalho, Felipe Gonçalves; de Freitas, Gabriel Rodriguez

    2016-01-01

    Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells) has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field. PMID:27698671

  10. Review of Preclinical and Clinical Studies of Bone Marrow-Derived Cell Therapies for Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Rosado-de-Castro

    2016-01-01

    Full Text Available Stroke is the second leading cause of mortality worldwide, causing millions of deaths annually, and is also a major cause of disability-adjusted life years. Hemorrhagic stroke accounts for approximately 10 to 27% of all cases and has a fatality rate of about 50% in the first 30 days, with limited treatment possibilities. In the past two decades, the therapeutic potential of bone marrow-derived cells (particularly mesenchymal stem cells and mononuclear cells has been intensively investigated in preclinical models of different neurological diseases, including models of intracerebral hemorrhage and subarachnoid hemorrhage. More recently, clinical studies, most of them small, unblinded, and nonrandomized, have suggested that the therapy with bone marrow-derived cells is safe and feasible in patients with ischemic or hemorrhagic stroke. This review discusses the available evidence on the use of bone marrow-derived cells to treat hemorrhagic strokes. Distinctive properties of animal studies are analyzed, including study design, cell dose, administration route, therapeutic time window, and possible mechanisms of action. Furthermore, clinical trials are also reviewed and discussed, with the objective of improving future studies in the field.

  11. Effect of allogeneic bone marrow derived stromal cells on induced third-degree skin burn healing in mouse

    Directory of Open Access Journals (Sweden)

    Leyla Soleymani

    2014-10-01

    Conclusion: This experimental modulation of wound healing suggests that bone marrow-derived stromal cells can significantly enhance the rate of wound healing possibly through stimulation of granulation tissue, angiogenesis, fibroblast proliferation and collagen deposition.

  12. EXPRESSION OF rhBMP-7 GENE IN TRANSDUCED BONE MARROW DERIVED STROMAL CELLS

    Institute of Scientific and Technical Information of China (English)

    段德宇; 杜靖远; 王洪; 刘勇; 郭晓东

    2002-01-01

    Objective. To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells(BMSCs). Methods. The marker gene , pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. Results. The exogenous gene could be expressed efficiently in transduced BMSCs. Conculsion. The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.

  13. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    OpenAIRE

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed ...

  14. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  15. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  16. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Science.gov (United States)

    Mesentier-Louro, Louise A.; Zaverucha-do-Valle, Camila; Rosado-de-Castro, Paulo H.; Silva-Junior, Almir J.; Pimentel-Coelho, Pedro M.; Mendez-Otero, Rosalia; Santiago, Marcelo F.

    2016-01-01

    Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. PMID:26649049

  17. IFITM1 increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells.

    Science.gov (United States)

    Kim, Beom-Su; Kim, Hyung-Jin; Kim, Jin Seong; You, Yong-Ouk; Zadeh, Homa; Shin, Hong-In; Lee, Seung-Jin; Park, Yoon-Jeong; Takata, Takashi; Pi, Sung-Hee; Lee, Jun; You, Hyung-Keun

    2012-09-01

    The exact molecular mechanisms governing the differentiation of bone marrow stromal stem/progenitor cells (BMSCs) into osteoblasts remain largely unknown. In this study, a highly expressed protein that had a high degree of homology with interferon-induced transmembrane protein 1 (IFITM1) was identified using differentially expressed gene (DEG) screening. We sought to determine whether IFITM1 influenced osteoblast differentiation. During differentiation, IFITM1 expression gradually increased from 5 to 10days and subsequently decreased at 15 days in culture. Analysis of IFITM1 protein expression in several cell lines as well as in situ studies on human tissues revealed its selective expression in bone cells and human bone. Proliferation of human alveolar-derived bone marrow stromal cells (hAD-BMSCs) was significantly inhibited by IFITM1 knockdown by using short hairpin RNA, as were bone specific markers such as alkaline phosphatase, collagen type I α 1, bone sialoprotein, osteocalcin, and osterix were decreased. Calcium accumulation also decreased following IFITM1 knockdown. Moreover, IFITM1 knockdown in hAD-BMSCs was associated with inhibition of Runx2 mRNA and protein expression. Collectively, the present data provide evidence for the role of IFITM1 in osteoblast differentiation. The exact mechanisms of IFITM1's involvement in osteoblast differentiation are still under investigation.

  18. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  19. Autologous bone marrow-derived progenitor cell transplantation for myocardial regeneration after acute infarction

    Directory of Open Access Journals (Sweden)

    Obradović Slobodan

    2004-01-01

    Full Text Available Background. Experimental and first clinical studies suggest that the transplantation of bone marrow derived, or circulating blood progenitor cells, may beneficially affect postinfarction remodelling processes after acute myocardial infarction. Aim. This pilot trial reports investigation of safety and feasibility of autologous bone marrow-derived progenitor cell therapy for faster regeneration of the myocardium after infarction. Methods and results. Four male patients (age range 47-68 years with the first extensive anterior, ST elevation, acute myocardial infarction (AMI, were treated by primary angioplasty. Bone marrow mononuclear cells were administered by intracoronary infusion 3-5 days after the infarction. Bone marrow was harvested by multiple aspirations from posterior cristae iliacae under general anesthesia, and under aseptic conditions. After that, cells were filtered through stainless steel mesh, centrifuged and resuspended in serum-free culture medium, and 3 hours later infused through the catheter into the infarct-related artery in 8 equal boluses of 20 ml. Myocardial viability in the infarcted area was confirmed by dobutamin stress echocardiography testing and single-photon emission computed tomography (SPECT 10-14 days after infarction. One patient had early stent thrombosis immediately before cell transplantation, and was treated successfully with second angioplasty. Single average ECG revealed one positive finding at discharge, and 24-hour Holter ECG showed only isolated ventricular ectopic beats during the follow-up period. Early findings in two patients showed significant improvement of left ventricular systolic function 3 months after the infarction. There were no major cardiac events after the transplantation during further follow-up period (30-120 days after infarction. Control SPECT for the detection of ischemia showed significant improvement in myocardial perfusion in two patients 4 months after the infarction

  20. Radioprotection against radiation induced bone marrow syndrome by a semi-synthetic derivative of chlorophyll

    International Nuclear Information System (INIS)

    A plethora of biological properties have been attributed to chlorophyllin (CHL), the water soluble derivative of the green plant pigment chlorophyll. Several studies are available describing its ability to modify genotoxic effects. It has been shown that administration CHL to human lymphopenic individuals led to the recovery and restoration of the immune system and also inhibited aflatoxin B1-DNA binding in individuals residing in high risk exposure to this liver carcinogen. The present study is aimed at establishing radioprotective efficacy of CHL against ionizing radiation induced hematopoietic syndrome. CHL offered complete protection against whole body irradiation (WBI, 7 Gy) induced mortality in mice. This observation was supported by increase in the number of macroscopic endogenous colonies enumerated on the surface of the spleens taken from CHL+WBI group as compared to WBI group. Radioprotection by CHL was found to be mediated by increasing the frequency of hematopoietic stem cells (HSCs) as evaluated by side population assay. Administration of CHL induced G1 arrest in bone marrow cells, increased number of granulocytes and neutrophils in the peripheral blood. At the molecular level, activation of ERK was observed in bone marrow cells obtained from CHL administered mice. In conclusion, CHL mediated radioprotection was attributed to increased stem cell numbers, G1 arrest in bone marrow cells, increased neutrophil numbers and ERK activation. (author)

  1. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  2. Bone Marrow-Derived Stem Cells:A Mixed Blessing in the Multifaceted World of Diabetic Complications

    OpenAIRE

    Mangialardi, Giuseppe; Madeddu, Paolo

    2016-01-01

    Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected b...

  3. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon

    OpenAIRE

    Brittan, M; Hunt, T.; Jeffery, R.; Poulsom, R.; Forbes, S.J.; K. Hodivala-Dilke; Goldman, J.; Alison, M R; Wright, N. A.

    2002-01-01

    Background and aims: In order to establish whether extraintestinal cells contribute to the turnover and repair of gastrointestinal tissues, we studied the colons and small intestines of female mice that had received a male bone marrow transplant, together with gastrointestinal biopsies from female patients that had developed graft versus host disease after receiving a bone marrow transplant from male donors.

  4. Selective Retention of Bone Marrow-Derived Cells to Enhance Spinal Fusion

    OpenAIRE

    Muschler, George F.; Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A.; Valdevit, Antonio D.; Kambic, Helen E.; Davros, William J.; Easley, Kirk A.; Powell, Kimerly A.

    2005-01-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal ...

  5. Bone Marrow Aspiration and Biopsy

    Science.gov (United States)

    ... Global Sites Search Help? Bone Marrow Aspiration and Biopsy Share this page: Was this page helpful? Also ... Examination Formal name: Bone Marrow Aspiration; Bone Marrow Biopsy Related tests: Complete Blood Count ; WBC Differential ; Reticulocyte ...

  6. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    OpenAIRE

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  7. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells

    OpenAIRE

    Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A.; Byrd, John C.; Satoskar, Abhay R.

    2015-01-01

    Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF...

  8. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  9. Reduction of radiation-induced damage to salivary gland by bone marrow derived stem cells

    International Nuclear Information System (INIS)

    Irradiation of the salivary glands can result in severe side effects that reduce the patient's quality of life. Late damage to the salivary glands is mainly caused by exhaustion of the tissue's stem cells. Post-irradiation replacement of salivary gland stem cells with healthy donor stem cells may reduce complications. Bone marrow derived stem cells (BMSC) have been show to be multipotent and engraft in many tissue after injury. In this study we assessed the potential of BMSC to reduce irradiation-induced salivary gland damage. The salivary glands of wild type C57Bl/6 mice were locally irradiated with 20 Gy. Thirty days later, BMSC from transgenic eGFP+ C57Bl/6 mice were transplanted by i.v. injection or by direct injection into the salivary glands. In addition, animals were transplanted with eGFP + bone marrow after 9.5 Gy TBI excluding the salivary glands. Subsequently, the animals were locally irradiated to the salivary gland with 20 Gy. Thirty days later i.v. G-CSF mobilised eGFP + bone marrow derived stem cells to the peripheral blood. Again thirty days after mobilisation, the salivary gland were harvested. eGFP + cells were detected by confocal laser fluorescence scanning microscopy and flow cytometry and H and E histology was performed. eGFP + cells were detected in the salivary gland after all protocols. The number of eGFP + cells in irradiated salivary glands was highest in animals treated with G-CSF. Intraglandular transplantation, in contrast, was successful only in 1 out of 8 attempts. Immuno-histochemistry using a-SM-actin antibodies showed the close vicinity of actin and eGFP within the cells, demonstrating the occurrence of BMSC derived myoepithelial cells in irradiated salivary gland. Further, cell-type specific antibodies will reveal the nature of all eGFP + cells. H and E histology revealed improved gland morphology in animals treated with G-CSF after irradiation when compared to the non-treated animals. These preliminary results indicate that bone

  10. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Directory of Open Access Journals (Sweden)

    Stolzing Alexandra

    2011-08-01

    Full Text Available Abstract Background Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L, astrocyte-conditioned medium (ACM and GM-CSF on the differentiation to microglia-like cells. Methods We assessed in vitro-derived microglia differentiation by marker expression (CD11b/CD45, F4/80, but also for the first time for functional performance (phagocytosis, oxidative burst and in situ migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices. Results The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation. Conclusion We conclude that in vitro-derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.

  11. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells☆

    OpenAIRE

    Tang, Yue; Cui, Yongchun; Luo, Fuliang; Liu, Xiaopeng; Wang, XiaoJuan; Wu, Aili; Zhao, Junwei; Tian, Zhong; Wu, Like

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and do...

  12. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yuxin Wu; Jinghan Zhang; Xiaoming Ben

    2013-01-01

    Non-adherent bone marrow cel-derived mesenchymal stem cel s from C57BL/6J mice were sepa-rated and cultured using the “pour-off” method. Non-adherent bone marrow cel-derived mesen-chymal stem cel s developed colony-forming unit-fibroblasts, and could be expanded by supple-mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cel-derived mesenchymal stem cel s exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cel-derived mesenchymal stem cel s fromβ-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cel s positive for LacZ andβ-galactosidase staining were observed in the ischemic tissues, and cel s co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cel-derived mesenchymal stem cel s could differentiate into neuronal-like cel s in vitro and in vivo.

  13. Engraftment of bone marrow-derived cells after nonlethal radiation in syngeneic C57BL/6mice%Engraftment of bone marrow-derived cells after nonlethal radiation in syngeneic C57BL/6 mice

    Institute of Scientific and Technical Information of China (English)

    Wu Liao; Tan Li; Wang Yu; Liu Dengqun; Shi Chunmeng

    2015-01-01

    Objective To study the characteristics of cell engraftment in mice at a lower dose under nonlethal radiated condition.Methods A syngeneic C57BL/6 mouse model,transplanted with 1 × 107 bone marrow cells and exposed to 2.5 Gy whole body irradiation (WBI),was selected to study the chimerism of cells from green fluorescent protein positive (GFP +) transgenic mice.The control group was injected with GFP + cells without receiving irradiation.In addition,an allogenic transplantation model of BALB/c mice was also investigated which was infused by GFP + cells from C57BL/6 mice.The engraftment of bone marrow-derived cells (BMDCs) was detected by immunohistochemistry in bone marrow,liver,lung,small intestine and spleen.Results The transplanted bone marrow cells successfully grafted in the haematopoietic tissues from syngeneic GFP transgenic mice.The transplanted GFP+ cells were also detected in the non-haematopoietic tissues,such as the small intestine,liver,spleen and lung,after irradiation.However,a lethal dose irradiation of 8 Gy was required to establish successful chimerism in allogeneic transplantation model by infusing the bone marrow cells from C57BL/6 mice to BALB/c mice.Conclusions Bone marrow-derived cells can be successfully grafted into various recipient tissues receiving a 2.5 Gy dose of radiation in syngeneic mice,but not in allogeneic mice.This nonlethal model may help to further study the plasticity and mechanism of bone marrow-derived cells in tissue repair and regeneration after radiation injury.

  14. EXPRESSION OF rhBMP—7 GENE IN TRANSDUCED BONE MARROW DERIVED STROMAL CELLS

    Institute of Scientific and Technical Information of China (English)

    段德宇; 杜靖远

    2002-01-01

    Objective:To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells(BMSCs).Methods:The marker gene,pbLacZ,was transferred into cultured BMSCs and the expression of transduced gene by x-gal staining was examined.Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs.Through immunohistochemical staining and RT-PCR assay,the expression of rhBMP7 gene was detected.Results:The exogenous gene could be expressed efficiently in transduced BMSCs.Conculsion:The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.

  15. Comparison of bone marrow-derived and mucosal mast cells in controlling intramacrophage Francisella tularensis replication

    Science.gov (United States)

    Hunter, Colleen; Rodriguez, Annette; Yu, Jieh-Juen; Chambers, James; Guentzel, M Neal; Arulanandam, Bernard

    2014-01-01

    Although the importance of mast cells (MCs) in response to allergens has been characterized extensively, the contribution of these cells in host defense against bacterial pathogens is not well understood. Previously, we have demonstrated that the release of interleukin-4 by bone marrow-derived MCs inhibits intramacrophage replication of Francisella tularensis live vaccine strain (LVS). Because pneumonic tularemia is one of the several manifestations of infection by Francisella, it is important to determine whether MCs present in mucosal tissues, i.e. the lung, exhibit similar effects on LVS replication. On the basis of this rationale, we phenotypically compared mucosal mast cells (MMCs) to traditional bone marrow-derived MCs. Both cell types exhibited similar levels of cell surface expression of fragment crystal epsilon receptor I (FcεRI), mast/ stem cell growth factor receptor (c-Kit) and major histocompatibility complex I (MHCI), as well as patterns of granulation. MMCs exhibited a comparable, but somewhat greater uptake of fluorescent-labeled beads compared with MCs, suggesting an increased phagocytic ability. MCs and MMCs co-cultured with primary macrophages exhibited comparable significant decreases in LVS replication compared with macrophages cultured alone. Collectively, these results suggest that MMCs are phenotypically similar to MCs and appear equally effective in the control of intramacrophage F. tularensis LVS replication. PMID:22688822

  16. Bone marrow fat.

    Science.gov (United States)

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  17. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury.

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  18. Passage of bone-marrow-derived liver stem cells in a proliferating culture system

    Institute of Scientific and Technical Information of China (English)

    Yun-Feng Cai; Ji-Sheng Chen; Shu-Ying Su; Zuo-Jun Zhen; Huan-Wei Chen

    2009-01-01

    AIM: To explore the feasibility of passage of bonemarrow-derived liver stem cells (BDLSCs) in culture systems that contain cholestatic serum. METHODS: Whole bone marrow cells of rats were purified with conditioning selection media that contained 50 mL/L cholestatic serum. The selected BDLSCs were grown in a proliferating culture system and a differentiating culture system. The culture systems contained factors that stimulated the proliferation and differentiation of BDLSCs. Each passage of the proliferated stem cells was subjected to flow cytometry to detect stem cell markers. The morphology and phenotypic markers of BDLSCs were characterized using immunohistochemistry, reverse transcription polymerase chain reaction (RT-PCR) and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. RESULTS: The conditioning selection medium isolated BDLSCs directly from cultured bone marrow cells. The selected BDLSCs could be proliferated for six passages and maintained stable markers in our proliferating system. When the culture system was changed to a differentiating system, hepatocyte-like colony-forming units (H-CFUs) were formed. H-CFUs expressed markers of embryonic hepatocytes (alpha-fetoprotein, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors 1α and -3β). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. CONCLUSION: BDLSCs can be selected directly from bone marrow cells, and pure BDLSCs can be proliferated for six passages. The differentiated cells have hepatocyte-like phenotypes and functions. BDLSCs represent a new method to provide a readily available alternate source of cells for clinical hepatocyte therapy.

  19. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  20. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells★

    OpenAIRE

    Huang, Yun; Lu, Mingnan; Guo, Weitao; Zeng, Rong; Wang, Bin; Wang, Huaibo

    2013-01-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, wi...

  1. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  2. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  3. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    Science.gov (United States)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  4. Development of donor-derived thymic lymphomas after allogeneic bone marrow transplantation in AKR/J mice

    International Nuclear Information System (INIS)

    The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/J mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis

  5. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells

    Directory of Open Access Journals (Sweden)

    Rubens Camargo Siqueira

    2010-10-01

    Full Text Available Bone marrow has been proposed as a potential source of stem cells for regenerative medicine. In the eye, degeneration of neural cells in the retina is a hallmark of such widespread ocular diseases as age-related macular degeneration (AMD and retinitis pigmentosa. Bone marrow is an ideal tissue for studying stem cells mainly because of its accessibility. Furthermore, there are a number of well-defined mouse models and cell surface markers that allow effective study of hematopoiesis in healthy and injured mice. Because of these characteristics and the experience of bone marrow transplantation in the treatment of hematological disease such as leukemia, bone marrow-derived stem cells have also become a major tool in regenerative medicine. Those cells may be able to restore the retina function through different mechanisms: A cellular differentiation, B paracrine effect, and C retinal pigment epithelium repair. In this review, we described these possible mechanisms of recovery of retinal function with the use of cell therapy with bone marrow-derived stem cells.

  6. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  7. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  8. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  9. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    汤亭亭; 徐小良; 戴尅戎; 郁朝锋; 岳冰; 楼觉人

    2005-01-01

    Objective: To evaluate the osteogenic potential of bone morphogenetic protein (BMP)-2 gene transfected goat bone marrow-derived mesenchymal stem cells (MSCs). Methods: Goat bone marrow- derived MSCs were transfected by Adv-human bone morphogenetic protein (hBMP)-2 gene(Group 1), Adv-beta gal transfected MSCs (Group 2)and uninfected MSCs(Group 3). Western blot analysis, alkaline phosphatase staining, Von Kossa staining and transmission electron microscopy were adopted to determine the phenotype of MSCs. Then the cells were injected into thigh muscles of the nude mice. Radiographical and histological evaluations were performed at different intervals. Results: Only Adv-hBMP-2 transfected MSCs produced hBMP-2. These cells were positive for alkaline phosphatase staining at the 12th day and were positive for Von Kossa staining at the 16th day after gene transfer. Electron microscopic observation showed that there were more rough endoplasmic reticulum, mitochondria and lysosomes in Adv-hBMP-2 transfected MSCs compared to MSCs of other two groups. At the 3rd and 6th weeks after cell injection, ectopic bones were observed in muscles of nude mice of Group 1. Only fibrous tissue or a little bone was found in other two groups. Conclusions: BMP-2 gene transfected MSCs can differentiate into osteoblasts in vitro and induce bone formation in vivo.

  10. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products.

    Science.gov (United States)

    Astori, Giuseppe; Soncin, Sabrina; Lo Cicero, Viviana; Siclari, Francesco; Sürder, Daniel; Turchetto, Lucia; Soldati, Gianni; Moccetti, Tiziano

    2010-05-15

    Bone marrow derived stem cells administered after minimal manipulation represent an important cell source for cell-based therapies. Clinical trial results, have revealed both safety and efficacy of the cell reinfusion procedure in many cardiovascular diseases. Many of these early clinical trials were performed in a period before the entry into force of the US and European regulation on cell-based therapies. As a result, conflicting data have been generated on the effectiveness of those therapies in certain conditions as acute myocardial infarction. As more academic medical centers and private companies move toward exploiting the full potential of cell-based medicinal products, needs arise for the development of the infrastructure necessary to support these investigations. This review describes the regulatory environment surrounding the production of cell based medicinal products and give practical aspects for cell isolation, characterization, production following Good Manufacturing Practice, focusing on the activities associated with the investigational new drug development.

  11. Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives.

    Science.gov (United States)

    Galli, Daniela; Vitale, Marco; Vaccarezza, Mauro

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies), the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  12. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  13. Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives

    Directory of Open Access Journals (Sweden)

    Daniela Galli

    2014-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies, the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  14. Therapeutic potential of bone marrow-derived mesenchymal stem cells in cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2012-07-01

    Full Text Available Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies.

  15. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    Science.gov (United States)

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  16. Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment

    Directory of Open Access Journals (Sweden)

    Rogério Pezato

    2014-01-01

    Full Text Available Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.

  17. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  18. Artemisinin-derived sesquiterpene lactones as potential antitumour compounds : Cytotoxic action against bone marrow and tumour cells

    NARCIS (Netherlands)

    Beekman, AC; Wierenga, PK; Woerdenbag, HJ; Van Uden, W; Pras, N; Konings, AWT; El-Feraly, FS; Galal, AM; Wikstrom, HV

    1998-01-01

    We determined the in vitro cytotoxic activity of the sesquiterpene lactone endoperoxide artemisinin (1) and some chemically prepared derivatives, which have been found to display cytotoxicity to cloned murine Ehrlich ascites tumour (EAT) cells and human HeLa cells and against murine bone marrow usin

  19. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  20. Effects of intermittent negative pressure on osteogenesis in human bone marrow-derived stroma cells

    Institute of Scientific and Technical Information of China (English)

    Zhi YANG; Miao LIU; Yin-gang ZHANG; Xiong GUO; Peng XU

    2009-01-01

    Objective: We investigated the effects of intermittent negative pressure on osteogenesis in human bone marrow-derived stroma cells (BMSCs) in vitro. Methods: BMSCs were isolated from adult marrow donated by a hip osteoarthritis patient with prosthetic replacement and cultured in vitro. The third passage cells were divided into negative pressure treatment group and control group. The treatment group was induced by negative pressure intermittently (pressure: 50 kPa, 30 rain/times, and twice daily). The control was cultured in conventional condition. The osteogenesis of BMSCs was examined by phase-contrast mi-croscopy, the determination of alkaline phosphatase (ALP) activities, and the immunohistochemistry of collagen type I. The mRNA expressions of osteoprotegerin (OPG) and osteoprotegerin ligand (OPGL) in BMSCs were analyzed by real-time poly-merase chain reaction (PCR). Results: BMSCs showed a typical appearance of osteoblast after 2 weeks of induction by intermit-tent negative pressure, the activity of ALP increased significantly, and the expression of collagen type 1 was positive. In the treatment group, the mRNA expression of OPG increased significantly (P<0.05) and the mRNA expression of OPGL decreased significantly (P<0.05) after 2 weeks, compared with the control. Conclusion: Intermittent negative pressure could promote os-teogenesis in human BMSCs in vitro.

  1. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  2. Morphology and morphometry of feline bone marrow-derived mesenchymal stem cells in culture

    Directory of Open Access Journals (Sweden)

    Bruno B. Maciel

    2014-11-01

    Full Text Available Mesenchymal stem cells (MSC are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs. The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes. To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3. The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6 cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h. The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h.The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h to 21.29µm (120h. However, at P3, the nucleus length was 26.35µm (24h and 25.22µm (120h. This information could be important for future application and use of feline BM-MSCs.

  3. Graft-derived anti-HPA-2b production after allogeneic bone-marrow transplantation

    DEFF Research Database (Denmark)

    Taaning, E; Jacobsen, N; Morling, N

    1994-01-01

    We report on a male who received a bone-marrow allograft from his HLA identical sister for acute myelogenous leukaemia. After transplantation, the patient suffered from refractoriness to the transfusions of HLA-matched platelets and a strong platelet-specific antibody, anti-HPA-2b, of IgG1 subclass...... was demonstrated in the patient's serum. In the serum of the bone-marrow donor a weak IgG1 anti-HPA-2b was demonstrated. IgG allotyping of the patient and donor showed identical results. We could not determine the origin of the anti-HPA-2b, although we hypothesize that the anti-HPA-2b was produced...... by immunocompetent donor lymphocytes infused with the suspension of bone-marrow cells....

  4. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yun Huang; Mingnan Lu; Weitao Guo; Rong Zeng; Bin Wang; Huaibo Wang

    2013-01-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.

  5. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases.

    Science.gov (United States)

    Kan, I; Melamed, E; Offen, D

    2007-01-01

    Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.

  6. Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Zhenjiu Zhu

    Full Text Available Prostaglandin E2 (PGE2 has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4(+/- mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease.

  7. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  8. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    DEFF Research Database (Denmark)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal;

    2016-01-01

    INTRODUCTION: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. METHODS: BMSCs and DPSCs were extracted from the tibia bone mar...

  9. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  10. Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment

    Directory of Open Access Journals (Sweden)

    Margarida Martins

    2016-03-01

    Full Text Available The effective osteogenic commitment of human bone marrow mesenchymal stem cells (hBMSCs is critical for bone regenerative therapies. Extracellular vesicles (EVs derived from hBMSCs have a regenerative potential that has been increasingly recognized. Herein, the osteoinductive potential of osteogenically induced hBMSC-EVs was examined. hBMSCs secreted negatively charged nanosized vesicles (∼35 nm with EV-related surface markers. The yield of EVs over 7 days was dependent on an osteogenic stimulus (standard chemical cocktail or RUNX2 cationic-lipid transfection. These EVs were used to sequentially stimulate homotypic uncommitted cells during 7 days, matching the seeding density of EV parent cells, culture time, and stimuli. Osteogenically committed hBMSC-EVs induced an osteogenic phenotype characterized by marked early induction of BMP2, SP7, SPP1, BGLAP/IBSP, and alkaline phosphatase. Both EV groups outperformed the currently used osteoinductive strategies. These data show that naturally secreted EVs can guide the osteogenic commitment of hBMSCs in the absence of other chemical or genetic osteoinductors.

  11. The Healing Effect of Bone Marrow-Derived Stem Cells in Knee Osteoarthritis: A Case Report

    Science.gov (United States)

    Mehrabani, Davood; Mojtahed Jaberi, Fereidoon; Zakerinia, Maryam; Hadianfard, Mohammad Javad; Jalli, Reza; Tanideh, Nader; Zare, Shahrokh

    2016-01-01

    Osteoarthritis (OA) is a prevalent chronic disease impacting on quality of life and has societal and economical burden increasing with age. Yet, no confirmed pharmacological, biological or surgical therapy could prevent the progressive destruction of OA joint. Mesenchymal stem cells (MSCs) with immunosuppressive activities emerged a potential therapy. We describe a magnetic resonance images (MRI) approved 47 years old nomad female suffering from a severe right knee OA. After intra-articular injection of 36×106 passage 2 of bone marrow-derived stem cells (BMSCs), the patient’s functional status of the knee, the number of stairs she could climb, the pain on visual analog scale (VAS) and walking distance improved after two months post-transplantation. MRI revealed an extension of the repaired tissue over subchondral bone. So as MSC transplantation is a simple technique, resulted into pain relief, minimized donor-site morbidity, provided a better quality of life, significantly improved cartilage quality with no need to hospitalization or surgery, cell transplantation can be considered as a reliable alternative treatment for chronic knee OA. Therefore these findings can be added to the literature on using BMSCs for treatment of OA. PMID:27579273

  12. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    Science.gov (United States)

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  13. Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice

    International Nuclear Information System (INIS)

    The transplantation of bone marrow (BM) derived cells to initiate pancreatic regeneration is an attractive but as-yet unrealized strategy. Presently, BM derived cells from green fluorescent protein transgenic mice were transplanted into diabetic mice. Repair of diabetic islets was evidenced by reduction of hyperglycemia, increase in number of islets, and altered pancreatic histology. Cells in the pancreata of recipient mice co-expressed BrdU and insulin. Double staining revealed β cells were in the process of proliferation. BrdU+ insulin- PDX-1+ cells, Ngn3+ cells and insulin+ glucagon+ cells, which showed stem cells, were also found during β-cell regeneration. The majority of transplanted cells were mobilized to the islet and ductal regions. In recipient pancreas, transplanted cells simultaneously expressed CD34 but did not express insulin, PDX-1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Pax6, and CD45. It is concluded that BM derived cells especially CD34+ cells can promote repair of pancreatic islets. Moreover, both proliferation of β cells and differentiation of pancreatic stem cells contribute to the regeneration of β cells

  14. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  15. Archival bone marrow samples

    DEFF Research Database (Denmark)

    Lund, Bendik; Najmi, Laeya A; Wesolowska-Andersen, Agata;

    2015-01-01

    AB Archival samples represent a significant potential for genetic studies, particularly in severe diseases with risk of lethal outcome, such as in cancer. In this pilot study, we aimed to evaluate the usability of archival bone marrow smears and biopsies for DNA extraction and purification, whole...... with samples stored for 4 to 10 years. Acceptable call rates for SNPs were detected for 7 of 42 archival samples. In conclusion, archival bone marrow samples are suitable for DNA extraction and multiple marker analysis, but WGA was less successful, especially when longer fragments were analyzed. Multiple SNP...

  16. Bone-marrow transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series To use the sharing features on ... slide 4 out of 4 Normal anatomy Overview Bone-marrow is a soft, fatty tissue found inside of ...

  17. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  18. Preliminary Study on Biological Properties of Adult Human Bone Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    WU Tao; BAI Hai; WANG Jingchang; SHI Jingyun; WANG Cunbang; LU Jihong; OU Jianfeng; WANG Qian

    2006-01-01

    Objective: To establish a method of culture and expansion of adult human bone marrow-derived MSCs in vitro and to explore their biological properties. Methods: Mononuclear cells were obtained from 5 mL adult human bone marrow by density gradient centrifugation with Percoll solution. Adult human MSCs were cultured in Dulbecco's Modified Eagle's Medium with low glucose (LG-DMEM) containing 10% fetal calf serum at a density of 2× 105 cell/cm2. The morphocytology was observed under phase-contrast microscope. The cell growth was measured by MTT method. The flow cytometer was performed to examine the expression of cell surface molecules and cell cycle. The ultrastructure of MSCs was observed under transmission electron microscope. The immunomodulatory functions of MSCs were measured by MTT method. The effects of MSCs on the growth of K562 cells and the dynamic change of HA, Ⅳ-C, LN concentration in the culture supernatant of MSCs was also observed. Results: The MSCs harvested in this study were homogenous population and exhibited a spindle-shaped fibroblastic morphology. The cell growth curve showed that MSCs had a strong ability of proliferation. The cells were positive for CD44,while negative for hematopoietic cell surface marker such as CD3, CD4, CD7, CD13, CD14, CD15, CD19,CD22, CD33, CD34, CD45 and HLA-DR, which was closely related to graft versus host disease. Above 90% cells of MSCs were found at G0/G1 phase. The ultrastructure of MSCs indicated that there were plenty of cytoplasmic organelles. Allogeneic peripheral blood lymphocytes proliferation was suppressed by MSCs and the inhibition ratio was 60.68% (P<0.01). The suppressive effect was also existed in the culture supernatant of MSCs and the inhibition ratio was 9.00% (P<0.05). When lymphocytes were stimulated by PHA, the suppression effects of the culture supernatant were even stronger and the inhibition ratio was 20.91%(P<0.01). Compared with the cell growth curve of the K562 cells alone, the K562

  19. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhao

    Full Text Available The objective of this study is to determine the role of perilipin 1 (Plin1 in whole body or bone marrow-derived cells on atherogenesis.Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/- females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/- were transplanted into LDL receptor deficient mice (LDLR-/-. Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1.Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.

  20. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Yoshinori Takemura

    Full Text Available Brain-derived neurotrophic factor (BDNF stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/- received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI, and motor nerve conduction velocity (MNCV simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/- mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/- BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/- mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.

  1. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  2. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice

    Science.gov (United States)

    Meurer, Steffen K.; Neß, Melanie; Weiskirchen, Sabine; Kim, Philipp; Tag, Carmen G.; Kauffmann, Marlies; Huber, Michael; Weiskirchen, Ralf

    2016-01-01

    Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research. PMID:27337047

  3. Immune Dysfunction Associated with Abnormal Bone Marrow-Derived Mesenchymal Stroma Cells in Senescence Accelerated Mice

    Science.gov (United States)

    Li, Ming; Guo, Kequan; Adachi, Yasushi; Ikehara, Susumu

    2016-01-01

    Senescence accelerated mice (SAM) are a group of mice that show aging-related diseases, and SAM prone 10 (SAMP10) show spontaneous brain atrophy and defects in learning and memory. Our previous report showed that the thymus and the percentage of T lymphocytes are abnormal in the SAMP10, but it was unclear whether the bone marrow-derived mesenchymal stroma cells (BMMSCs) were abnormal, and whether they played an important role in regenerative medicine. We thus compared BMMSCs from SAMP10 and their control, SAM-resistant (SAMR1), in terms of cell cycle, oxidative stress, and the expression of PI3K and mitogen-activated protein kinase (MAPK). Our cell cycle analysis showed that cell cycle arrest occurred in the G0/G1 phase in the SAMP10. We also found increased reactive oxygen stress and decreased PI3K and MAPK on the BMMSCs. These results suggested the BMMSCs were abnormal in SAMP10, and that this might be related to the immune system dysfunction in these mice. PMID:26840301

  4. A Modified Method of Insulin Producing Cells’ Generation from Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paweł Czubak

    2014-01-01

    Full Text Available Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells’ transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs. In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs. We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors’ concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  5. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells. PMID:25405207

  6. Rapamycin Modulates the Maturation of Rat Bone Marrow-derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Yingjun DING; Xiang CHENG; Tingting TANG; Rui YAO; Yong CHEN; Jiangjiao XIE; Xian YU; Yuhua LIAO

    2008-01-01

    The purpose of the study was to observe the effect of rapamycin (RAPA) on the differentiation and maturation of rat bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs from Wistar rats were cultured with granulocyte-macrophage colony-stimulating factor plus interleukin-4in the presence or absence of RAPA (20 ng/mL), and stimulated with lipopolysaccharide (LPS) for 24h before cells and supernatants were collected. Surface phenotype of BMDCs was flow-cytometrically detected to determine the expression of maturation markers, MHC class Ⅱ and CD86. Supematants were analyzed for the production of IL-12 and IFN-γ cytokines by using ELISA.BMDCs were co-cultured with T cells from Lewis rats and mixed lymphocyte reaction was assessed by MTT method. The morphology of BMDCs stimulated with LPS remained immature after RAPA pretreatment. RAPA significantly decreased the CD86 expression, impaired the IL-12 and IFN-γproduction of BMDCs stimulated with LPS, and inhibited the proliferation of allogeneic T cells. In conclusion, RAPA can inhibit the maturation of BMDCs stimulated with LPS in terms of the morphology, surface phenotype, cytokine production, and ability of BMDCs to stimulate the proliferation of allogeneic T cells in vitro.

  7. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells

    Directory of Open Access Journals (Sweden)

    Chunfang Liu

    2006-09-01

    Full Text Available It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs, which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form many tumor types, including epithelial tumors, neural tumors, muscular tumors, tumors of fibroblasts, blood vessel endothelial tumors, and tumors of poor differentiation in vivo. Moreover, a single transformed BMDC has the ability to self-renew, differentiate spontaneously into various types of tumor cells in vitro, express markers associated with multipotency, and form teratoma in vivo. These data suggest that multipotent cancer stem cells seemed to originate from transformed BMDCs. Conclusively, these findings reveal that BMDCs might be a source of many tumor types, even teratoma. In addition, multipotent cancer stem cells might originate from malignant transformed BMDCs.

  8. Multiple Tumor Types May Originate from Bone Marrow-Derived Cells1*

    Science.gov (United States)

    Liu, Chunfang; Chen, Zhongwei; Chen, Zhihong; Zhang, Tao; Lu, Yuan

    2006-01-01

    Abstract It was believed that tumors originated from the transformation of their tissue-specific stem cells. However, bone marrow-derived cells (BMDCs), which possess an unexpected degree of plasticity and often reside in other tissues, might also represent a potential source of malignancy. To study whether BMDCs play a role in the source of other tumors, BMDCs from mice were treated with 3-methycholanthrene until malignant transformation was achieved. Here we show that transformed BMDCs could form many tumor types, including epithelial tumors, neural tumors, muscular tumors, tumors of fibroblasts, blood vessel endothelial tumors, and tumors of poor differentiation in vivo. Moreover, a single transformed BMDC has the ability to self-renew, differentiate spontaneously into various types of tumor cells in vitro, express markers associated with multipotency, and form teratoma in vivo. These data suggest that multipotent cancer stem cells seemed to originate from transformed BMDCs. Conclusively, these findings reveal that BMDCs might be a source of many tumor types, even teratoma. In addition, multipotent cancer stem cells might originate from malignant transformed BMDCs. PMID:16984729

  9. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    Science.gov (United States)

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  10. Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines.

    Science.gov (United States)

    Van Goor, Angelica; Slawinska, Anna; Schmidt, Carl J; Lamont, Susan J

    2016-10-01

    Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function. PMID:27238770

  11. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Eren Çerman

    Full Text Available Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP labelled bone marrow derived stem cells (BMSC and left eyes with balanced salt solution (Sham. Animals were grouped as Baseline (n = 51, Diabetic (n = 45, Diabetic+BMSC (n = 45 eyes, Diabetic+Sham (n = 45 eyes, Healthy+BMSC (n = 6 eyes, Healthy+Sham (n = 6 eyes. Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.

  12. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells.

    Science.gov (United States)

    Al Ghrbawy, Nesrien M; Afify, Reham Abdel Aleem Mohamed; Dyaa, Nehal; El Sayed, Asmaa A

    2016-09-01

    Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease. PMID:27429519

  13. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    Science.gov (United States)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  14. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications.

    Science.gov (United States)

    Ahmed, Furqan; Dutta, Naba K; Zannettino, Andrew; Vandyke, Kate; Choudhury, Namita Roy

    2014-04-14

    The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications. PMID:24564790

  15. Targeting gallbladder carcinoma: bone marrow-derived stem cells as therapeutic delivery vehicles of myxoma virus

    Institute of Scientific and Technical Information of China (English)

    Weng Mingzhe; Zhang Mingdi; Qin Yiyu; Gong Wei; Tang Zhaohui; Quan Zhiwei; Wu Kejin

    2014-01-01

    Background Gallbladder carcinoma (GBC) has a high mortality rate,requiring synergistic anti-tumor management for effective treatment.The myxoma virus (MYXV) exhibits a modest clinical value through its oncolytic potential and narrow host tropism.Methods We performed viral replication assays,cell viability assays,migration assays,and xenograft tumor models to demonstrate that bone marrow-derived stem cells (BMSCs) may enhance efficiency of intravenous MYXV delivery.Results We examined the permissiveness of various GBC cell lines towards MYXV infection and found two supported single and multiple rounds of MYXV replication,leading to an oncolytic effect.Furthermore,we found that BMSCs exhibited tropism for GBC cells within a Matrigel migration system.BMSCs failed to affect the growth of GBC cells,in terms of tumor volume and survival time.Finally,we demonstrated in vivo that intravenous injection of MYXV-infected BMSCs significantly improves the oncolytic effect of MYXV alone,almost to the same extent as intratumoral injection of MYXV.Conclusion This study indicates that BMSCs are a promising novel vehicle for MYXV to clinically address gallbladder tumors.

  16. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  17. Bone marrow-derived macrophages exclusively expressed caveolin-2: The role of inflammatory activators and hypoxia.

    Science.gov (United States)

    Maceckova, Michaela; Martiskova, Hana; Koudelka, Adolf; Kubala, Lukas; Lojek, Antonin; Pekarova, Michaela

    2015-11-01

    Caveolins are specific proteins involved in regulation of signal transduction to intracellular space. Still, their contribution to immune functions has not been completely clarified. Thus, we decided to characterize the expression of caveolins in bone marrow-derived macrophages (BMDMs) under resting and inflammatory conditions. The effect of classical activators (lipopolysaccharide, LPS; interferon-gamma, IFN-γ) was further potentiated with hypoxic (5% O2) conditions. The activation of p44/42-extracellular signal-regulated kinases 1 and 2 (ERK1/2) and expression of caveolin-1, -2, and -3, hypoxia inducible factor-1 alpha (HIF-1α), as well as inducible nitric oxide synthase (iNOS) was monitored using the Western blot technique. The production of nitric oxide (NO) and tumor necrosis factor-alpha (TNFα) was analyzed by Griess method or ELISA, respectively. BMDMs were also transfected with siRNA against caveolin-2. Importantly, our study showed for the first time that BMDMs expressed only caveolin-2, and its level decreased after activation of macrophages with LPS, IFN-γ, and/or hypoxia. The expression of caveolin-2 negatively correlates with the iNOS and HIF-1α protein levels, as well as with the LPS/IFN-γ- and hypoxia-induced activation of ERK1/2. We concluded that caveolin-2 is most probably involved in regulation of pro-inflammatory responses of BMDMs, triggered via activation of ERK1/2. PMID:26215374

  18. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  19. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    Science.gov (United States)

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  20. Impaired function of bone marrow-derived endothelial progenitor cells in murine liver fibrosis.

    Science.gov (United States)

    Shirakura, Katsuya; Masuda, Haruchika; Kwon, Sang-Mo; Obi, Syotaro; Ito, Rie; Shizuno, Tomoko; Kurihara, Yusuke; Mine, Tetsuya; Asahara, Takayuki

    2011-01-01

    Liver fibrosis (LF) caused by chronic liver damage has been considered as an irreversible disease. As alternative therapy for liver transplantation, there are high expectations for regenerative medicine of the liver. Bone marrow (BM)- or peripheral blood-derived stem cells, including endothelial progenitor cells (EPCs), have recently been used to treat liver cirrhosis. We investigated the biology of BM-derived EPC in a mouse model of LF. C57BL/6J mice were subcutaneously injected with carbon tetrachloride (CCl(4)) every 3 days for 90 days. Sacrificed 2 days after final injection, whole blood (WB) was collected for isolation of mononuclear cells (MNCs) and biochemical examination. Assessments of EPC in the peripheral blood and BM were performed by flow cytometry and EPC colony-forming assay, respectively, using purified MNCs and BM c-KIT(+), Sca-1(+), and Lin(-) (KSL) cells. Liver tissues underwent histological analysis with hematoxylin/eosin/Azan staining, and spleens were excised and weighed. CCl(4)-treated mice exhibited histologically bridging fibrosis, pseudolobular formation, and splenomegaly, indicating successful induction of LF. The frequency of definitive EPC-colony-forming-units (CFU) as well as total EPC-CFU at the equivalent cell number of 500 BM-KSL cells decreased significantly (p changes in primitive EPC-CFU occurred in LF mice. The frequency of WB-MNCs of definitive EPC-CFU decreased significantly (p < 0.01) in LF mice compared with control mice. Together, these findings indicated the existence of impaired EPC function and differentiation in BM-derived EPCs in LF mice and might be related to clinical LF.

  1. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  2. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  3. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells

    Science.gov (United States)

    McAllister, T. N.; Du, T.; Frangos, J. A.

    2000-01-01

    Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.

  4. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    OpenAIRE

    Ribeiro-Resende Victor; Carrier-Ruiz Alvaro; R Lemes Robertha M; Reis Ricardo A M; Mendez-Otero Rosalia

    2012-01-01

    Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC), satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that s...

  5. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management

    OpenAIRE

    V. Remya; Naveen Kumar; Sharma, A. K.; Mathew, Dayamon D.; Mamta Negi; S.K. Maiti; Sameer Shrivastava; S. Sonal; KURADE, N.P.

    2014-01-01

    Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care. Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc) seeded extracellular matrix [ECM]) was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim ...

  6. Reprogramming of bone marrow-derived mesenchymal stem cells into functional insulin-producing cells by chemical regimen

    OpenAIRE

    Wang, Qiwei; Ye, Lingling; Liu, Hong; Liu, Xingmao; Li, Shichong; Chen, Zhaolie

    2012-01-01

    Beta-cell transplantation is considered to be the most effective approach to cure type 1 diabetes (T1D). Unfortunately, the scarce availability of donor tissue limits the applicability of this therapy. Recent stem cell research progress shows stem cell therapy may be a potential means to solve this problem. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewable and multipotent adult stem cells which can differentiate into the three germ layers. Here we aimed to investigate wheth...

  7. The Role of Hibiscus sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells

    OpenAIRE

    Zariyantey Abdul Hamid; Winnie Hii Lin Lin; Basma Jibril Abdalla; Ong Bee Yuen; Elda Surhaida Latif; Jamaludin Mohamed; Nor Fadilah Rajab; Chow Paik Wah; Muhd Khairul Akmal Wak Harto; Siti Balkis Budin

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at var...

  8. OPTIMIZATION OF ELECTROPORATION PARAMETERS FOR TRANSFECTION OF PLASMID DNA INTO MURINE BONE MARROW-DERIVED DENDRITIC CELL

    Institute of Scientific and Technical Information of China (English)

    KE Shan; CHEN Xue-hua; LI Hao; LI Jian-fang; GU Qin-long; ZHU Zheng-gang; LIU Bing-ya

    2006-01-01

    Objective To explore the optimal electroporation parameters for transfection of plasmid DNA into murine bone marrow-derived dendritic cells. Methods Murine bone marrow-derived dendritic cells (DCs) were electroporated with plasmid DNA in varied conditions, such as electrical voltage, pulse time,pre-electroporation cell condition and serum concentration in electrical buffer. Inverted fluorescence microscope and flow cytometer were used to determine the transfection efficiency. Some of the DCs genetically modified under different conditions were stained with trypan-blue and its viability was observed microscopically 48h after electroporation. Results Highest transfection efficiency (22.10%) could be reached when electrical voltage was 250V and pulse time was 20ms. Refreshing the culture medium pre-electroporation may help the cells recover more easily from gene transfer.Besides, electrical buffer containing serum may benefit the viability of DC after electroporation and temperature may has little influence on transfection efficiency. Conclusion Our observations demonstrated plasmid DNA could be efficiently transferred into murine bone marrow-derived DCs by electroporation. These data may helpful for cancer research related to murine DC transfection.

  9. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation.

    Science.gov (United States)

    Sumita, Yoshinori; Liu, Younan; Khalili, Saeed; Maria, Ola M; Xia, Dengsheng; Key, Sharon; Cotrim, Ana P; Mezey, Eva; Tran, Simon D

    2011-01-01

    Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells.

  10. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder.

    Science.gov (United States)

    Jo, Hyogyeong; Jung, Minyoung; Seo, Dong Jin; Park, Dong Joon

    2015-11-13

    The purpose of the study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on olfactory epithelium (OE) of morphologic and functional restoration following neural Sensorineural Disorder in rats. Except the Normal group, twenty-one rats underwent Triton X-100 (TX-100) irrigation to induce degeneration of OE, and then BMSCs and PBS were treated from the both medial canthus to the rear part of the both nasal cavity into the experimental group and then were observed for restoration according to time point. At two and four weeks after transplantation with BMSCs, restoration of OE was observed with olfactory marker protein (OMP) and behavioral test. And we observed the expression of OMP, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). After TX-100 irrigation, the OE almost disappeared in 3 days. At four weeks after transplantation with BMSCs, the thickness and cellular composition of OE was considerably restored to normal group and expression of OMP was markedly increased when compared with PBS group and reduced the searching time in the behavioral test. Furthermore at two weeks after treatment with BMSCs, expression of NGF and BDNF was greatly increased when compared with PBS group. However at four weeks after treatment with BMSCs, expression of NGF and BDNF was slightly decreased. Our results suggest the BMSCs transplantation affect restoration of OE and olfaction, most likely via regulation of the neurotrophic factor expression, especially the expression of NGF and BDNF and has a possibility of a new therapeutic strategy for the treatment of olfactory disorder caused by the degeneration of OE. PMID:26427869

  11. Effects of bone marrow-derived endothelial progenitor cell transplantation on vein microenvironment in a rat model of chronic thrombosis

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-qiang; MENG Qing-you; WU Hao-rong

    2007-01-01

    Background Endothelial progenitor cells(EPCs) have been used in both experimental studies and clinical treatments of limb ischemia,as well as in the construction of engineered vascular tissue.The objective of this study was to investigate the effects of transplanted bone marrow-derived EPCs on the vein microenvironment in a rat model of chronic vein thrombosis.Methods Mononuclear cells were isolated from the bone marrow of immature rats by density gradient centrifugation,cultured,and then transplanted into experimentally induced thrombi into inferior vena cava through the femoral vein.Vascular endothelial growth factor(VEGF),angiopoietin-1(ANG-1) and monocyte chemotactic protein-1(MCP-1) mRNA and protein expression levels were measured by real-time quantitative polymerase chain reaction and Western blotting of thrombi and adjacent caval walls 28 days post-transplantation.Results Levels of VEGF,ANG-1,and MCP-1 mRNA in EPC-transplanted thrombi were 100%,230.7%,and 212.5% of levels detected in the sham-operated group(P<0.01),and 99.9%,215.4%,and 177.8% of levels detected in the experimental control group(P<0.01).VEGF,ANG-1 and MCP-1 protein levels exhibited a similar trend.Conclusions Transplanted bone marrow-derived EPCs appear to alter the vein microenvironment in experimentally induced chronic vein thrombosis by upregulating cytokines associated with thrombic organization and recanalization.

  12. Differentiation of bone marrow derived Thy-1+β2M-cells into hepatocytes induced by coculture with transgenic CFSCs

    Institute of Scientific and Technical Information of China (English)

    WANG Yunfang; NAN Xue; ZHANG Rui; LI Yanhua; YUE Wen; YAN Fang; PEI Xuetao

    2004-01-01

    Studies of transplantation in vivo indicted that bone marrow derived stem cells had a potential to differentiate into mature hepatocytes. However, there are lots of doubts and uncertainties in the influencing factors and control agents of effectively inducing stem cell differentiation in vitro, the efficiency of stem cells' differentiation into hepatocytes and differentiated cells' life-span and functional state,etc. In this study, rat bone marrow derived Thy-1+β2M- cells (BDTCs) were induced to differentiate into hepatocytes by co-culturing with CFSC/HGF feeder layers which expressed hHGF efficiently and stably. RT-PCR and immunofluorescent texts proved induced BDTCs expressed infant and adult hepatocyte specific genes. Further more, these cells displayed functions of indocyanine green (ICG) uptake, ammonium metabolism and albumin production. It was shown that growth factors together with hepatic nonparenchyma cells provided a feasible microenvironment for differentiation of bone marrow stem cells into hepatocytes. The studies not only provided a significant biological model for going deep into the mechanism of stem cell plasticity, but also offered a theoretical and technical foundation of gene and stem cell engineering-based regenerative medicine for end-stage liver diseases.

  13. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    Science.gov (United States)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  14. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  15. Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells

    Institute of Scientific and Technical Information of China (English)

    Zhao Cheng; Sachiko Ito; Naomi Nishio; Hengyi Xiao; Rong Zhang; Haruhiko Suzuki; Yayoi Okawa; Toyoaki Murohara; Ken-ichi Isobe

    2011-01-01

    If induced pluripotent stem (iPS) cells are to be used to treat damaged tissues or repair organs in elderly patients, it will be necessaryto establish iPS cells from their tissues. To determine the feasibility of using this technology with elderly patients, we asked if itwas indeed possible to establish iPS cells from the bone marrow (BM) of aged mice. BM cells from aged C57BL/6 mice carrying thegreen fluorescence protein (GFP) gene were cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for 4 days.Four factors (Oct3/4, Sox2, Klf4 and c-Myc) were introduced into the BM-derived myeloid (BM-M) cells. The efficiency of generating iPS cells from aged BM cultured in GM-CSF was low. However, we succeeded in obtaining BM-M-iPS cells from aged C57BL/6 mice,which carried GFP. Our BM-M-iPS cells expressed SSEA-1 and Pou5f1 and were positive for alkaline phosphatase staining. The iPScells did make teratoma with three germ layers following injection into syngeneic C57BL/6 mice, and can be differentiated to threegerm layers in vitro. By co-culturing with OP9, the BM-M-iPS cells can be differentiated to the myeloid lineage. The differentiated BM-M-iPS cells proliferated well in the presence of GM-CSF, and lost expression of Nanog and Pou5f1, at least in part, due to methylation of their promoters. On the contrary, Tnf and Il1b gene expression was upregulated and their promoters were hypornethylated.

  16. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    Science.gov (United States)

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  17. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration

    International Nuclear Information System (INIS)

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation

  18. Matrine derivate MASM suppresses LPS-induced phenotypic and functional maturation of murine bone marrow-derived dendritic cells.

    Science.gov (United States)

    Xu, Jing; Qi, Yang; Xu, Wei-Heng; Liu, Ying; Qiu, Lie; Wang, Ke-Qi; Hu, Hong-Gang; He, Zhi-Gao; Zhang, Jun-Ping

    2016-07-01

    Dendritic cell (DC) maturation process is a crucial step for the development of T cell immune responses and immune tolerance. In this study, we evaluated MASM, a novel derivative of the natural compound matrine that possesses a significant anti-inflammatory and immune-regulating property, for its efficacy to inhibit lipopolysaccharides (LPS)-induced maturation of murine bone marrow-derived dendritic cells. Here we show that MASM profoundly suppresses LPS-induced phenotypic and functional DC maturation. MASM inhibited LPS-induced expression of costimulatory molecules CD80 and CD86 in a concentration-dependent manner. MASM also attenuated LPS-induced IL-12p70, TNF-α, IL-6 and NO release of DCs. The MASM-treated DCs were highly efficient at antigen capture via mannose receptor-mediated endocytosis but showed weak stimulatory capacity for allogeneic T cell proliferation. Furthermore, MASM inhibited LPS-induced PI3K/Akt, MAPK and NF-κB pathways. These novel findings provide new insight into the immunopharmacological role of MASM in impacting on the DCs.

  19. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yue Tang; Yongchun Cui; Fuliang Luo; Xiaopeng Liu; Xiaojuan Wang; Aili Wu; Junwei Zhao; Zhong Tian; Like Wu

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells.

  20. Isolation and Assessment of Mesenchymal Stem Cells Derived From Bone Marrow: Histologic and Histomorphometric Study in a Canine Periodontal Defect.

    Science.gov (United States)

    Paknejad, Mojgan; Eslaminejad, Mohamadreza Baghaban; Ghaedi, Baharak; Rokn, Amir-Reza; Khorsand, Afshin; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Dehghan, Mohammad Mehdi; Moslemi, Neda; Nowzari, Hessam

    2015-06-01

    The aim of the present study was to investigate an isolation procedure to culture mesenchymal stem cells derived from bone marrow and evaluate their potential in periodontal regeneration. Potential stem cells from bone marrow, aspirated from the iliac crest of nine mongrel canines 1 to 2 years of age, were cultivated. After the examination of surface epitopes of the isolated cells, the total RNA from osteogenic, adipogenic, and chondrogenic cell cultures were analyzed by reverse transcription polymerase chain reaction (RT-PCR) to confirm stem cell gene expressions. 2 × 10(7) mL of the stem cells were loaded on 0.2 mL of anorganic bovine bone mineral (ABBM) granules. In each animal, bilateral acute/chronic intrabony periodontal defects were created surgically and by placement of ligatures around the cervical aspect of the teeth. At week 5, after flap debridement, the bilateral defects were randomly assigned to 2 treatment groups: the control group received ABBM, and the test group received BMSCs-loaded ABBM. Eight weeks after transplantation, regenerative parameters were analyzed histologically and histometrically. The RNA expressions confirmed the cultivation of mesenchymal stem cell. More new cementum and periodontal ligament (PDL) were measured in the test group (cementum: 3.33 ± 0.94 vs 2.03 ± 1.30, P = 0.027; PDL: 2.69 ± 0.73 vs 1.53 ± 1.21, P = 0.026). New bone formation was similar in both groups (2.70 ± 0.86 vs 1.99 ± 1.31; P = 0.193). Mesenchymal stem cells derived from bone marrow should be considered a promising technique for use in patients with periodontal attachment loss and merits further investigations. PMID:24383495

  1. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  2. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  3. Growth of Bone Marrow Derived Osteoblast-Like Cells into Coral Implant Scaffold: Preliminary Study on Malaysian Coral

    Directory of Open Access Journals (Sweden)

    K. A. AL-Salihi

    2009-01-01

    Full Text Available Problem statement: Biomaterial fabrication in Malaysia started as a consequence of the demand for cheaper implant materials. Various biomaterials have been developed utilizing local resources like Malaysian coral. Locally processed Malaysian coral need to be complemented with proper evaluation and testing including toxicology, biocompatibility, mechanical properties, physicochemical characterization and in vivo testing. The present study was carried out to assess natural coral of porites species as scaffold combined with in vitro expanded Bone Marrow Derived Osteoblast-Like cells (BM-DOL, in order to develop a tissue-engineered bone graft in a rat model. Approach: Coral was used in a block shape with a dimension of 10 mm length × 5 mm width × 5 mm thickness. BM-DOL cells were seeded into porous coral scaffold in a density of 5×106 mL-1. After 7 days of in vitro incubation in osteogenic medium, one block was processed for light (LM and Scanning Electron Microscopy (SEM observations while the other blocks were implanted subcutaneously in the back of 5 weeks-old Sprague-Dawely rats for 3 months. Coral blocks without cells were implanted as a control. The implants harvested and processed for gross inspection, histological and scanning electron microscopy observations. Results: Both LM and SEM showed attachment of well arrangement multilayer cells inside the pores of in vitro seeded coral scaffolds. Gross inspection of all in vivo coral-cell complexes implants revealed vascularized like bone tissue formation. Histological sections revealed mature bone formation occurred in the manner resemble intramembraneous bone formation. SEM observations revealed multi-layer cellular proliferation with abundant collagen covered the surface of coral implants. Control group showed resorbed coral block. Conclusion: This study demonstrated that Malaysian coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal

  4. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    Science.gov (United States)

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  5. Bone marrow-derived hematopoietic stem and progenitor cells infiltrate allogeneic and syngeneic transplants.

    Science.gov (United States)

    Fan, Z; Enjoji, K; Tigges, J C; Toxavidis, V; Tchipashivili, V; Gong, W; Strom, T B; Koulmanda, M

    2014-12-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineage(negative) Sca-1(+) cKit(+) ("LSK") cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic "LSK" HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, "LSK" HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intramedullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs.

  6. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells.

    Science.gov (United States)

    Wang, Jinheng; De Veirman, Kim; De Beule, Nathan; Maes, Ken; De Bruyne, Elke; Van Valckenborgh, Els; Vanderkerken, Karin; Menu, Eline

    2015-12-22

    Exosomes, extracellular nanovesicles secreted by various cell types, modulate the bone marrow (BM) microenvironment by regulating angiogenesis, cytokine release, immune response, inflammation, and metastasis. Interactions between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells play crucial roles in MM development. We previously reported that BMSC-derived exosomes directly promote MM cell growth, whereas the other possible mechanisms for supporting MM progression by these exosomes are still not clear. Here, we investigated the effect of BMSC-derived exosomes on the MM BM cells with specific emphasis on myeloid-derived suppressor cells (MDSCs). BMSC-derived exosomes were able to be taken up by MM MDSCs and induced their expansion in vitro. Moreover, these exosomes directly induced the survival of MDSCs through activating STAT3 and STAT1 pathways and increasing the anti-apoptotic proteins Bcl-xL and Mcl-1. Inhibition of these pathways blocked the enhancement of MDSC survival. Furthermore, these exosomes increased the nitric oxide release from MM MDSCs and enhanced their suppressive activity on T cells. Taken together, our results demonstrate that BMSC-derived exosomes activate MDSCs in the BM through STAT3 and STAT1 pathways, leading to increased immunosuppression which favors MM progression.

  7. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo

    OpenAIRE

    Yunhao Qin; Lian Wang; Zhengliang Gao; Genyin Chen; Changqing Zhang

    2016-01-01

    Emerging evidence suggests that extracellular vesicles (EVs) are secreted by diverse tissues and play important roles in cell-cell communication, organ interactions and tissue homeostasis. Studies have reported the use of EVs to stimulate tissue regeneration, such as hepatic cell regeneration, and to treat diseases, such as pulmonary hypertension. However, little is known about the osteogenic effect of EVs. In this study, we explore the role of bone marrow stromal cell-derived EVs in the regu...

  8. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Dong-Chang Zhao; Jun-Xia Lei; Rui Chen; Wei-Hua Yu; Xiu-Ming Zhang; Shu-Nong Li; Peng Xiang

    2005-01-01

    AIM: Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to investigate the effect of infusion of bone marrow (BM)-derived MSCs on the experimental liver fibrosis in rats.METHODS: MSCs isolated from BM in male Fischer 344 rats were infused to female Wistar rats induced with carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN).There were two random groups on the 42nd d of CCl4:CCl4/MSCs, to infuse a dose of MSCs alone; CCl4/saline,to infuse the same volume of saline as control. There were another three random groups after exposure to DMN: DMN10/MSCs, to infuse the same dose of MSCs on d 10; DMN10/saline, to infuse the same volume of saline on d 10; DMN20/MSCs, to infuse the same dose of MSCson d 20. The morphological and behavioral changes ofrats were monitored everyday. After 4-6 wk of MSCs administration, all rats were killed and fibrosis index were assessed by histopathology and radioimmunoassay. Smooth muscle alpha-actin (alpha-SMA) of liver were tested by immunohistochemistry and quantified by IBAS 2.5 software. Male rats sex determination region on the Y chromosome (sry) gene were explored by PCR.RESULTS: Compared to controls, infusion of MSCsreduced the mortality rates of incidence in CCl4-induced model (10% vs 20%) and in DMN-induced model (2040% vs 90%).The amount of collagen deposition and alpha-SMA staining was about 40-50% lower in liver of rats with MSCs than that of rats without MSCs. The similar results were observed in fibrosis index. And the effect of the inhibition of fibrogenesis was greater in DMN10/MSCs than in DMN20/MSCs. The sry gene was positive in the liver of rats with MSCs treatment by PCR.CONCLUSION: MSCs treatment can protect against

  9. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  10. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program. METHODOLOGY/PRINCIPAL FINDINGS: We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators. CONCLUSIONS/SIGNIFICANCE: This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further

  11. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  12. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Yuichi [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Nishiyama, Masahiko, E-mail: yamacho@saitama-med.ac.jp [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan)

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  13. Demonstration of early functional compromise of bone marrow derived hematopoietic progenitor cells during bovine neonatal pancytopenia through in vitro culture of bone marrow biopsies

    Directory of Open Access Journals (Sweden)

    Laming Eleanor

    2012-10-01

    Full Text Available Abstract Background Bovine neonatal pancytopenia (BNP is a syndrome characterised by thrombocytopenia associated with marked bone marrow destruction in calves, widely reported since 2007 in several European countries and since 2011 in New Zealand. The disease is epidemiologically associated with the use of an inactivated bovine virus diarrhoea (BVD vaccine and is currently considered to be caused by absorption of colostral antibody produced by some vaccinated cows (“BNP dams”. Alloantibodies capable of binding to the leukocyte surface have been detected in BNP dams and antibodies recognising bovine MHC class I and β-2-microglobulin have been detected in vaccinated cattle. In this study, calves were challenged with pooled colostrum collected from BNP dams or from non-BNP dams and their bone marrow hematopoietic progenitor cells (HPC cultured in vitro from sternal biopsies taken at 24 hours and 6 days post-challenge. Results Clonogenic assay demonstrated that CFU-GEMM (colony forming unit-granulocyte/erythroid/macrophage/megakaryocyte; pluripotential progenitor cell colony development was compromised from HPCs harvested as early as 24 hour post-challenge. By 6 days post challenge, HPCs harvested from challenged calves failed to develop CFU-E (erythroid colonies and the development of both CFU-GEMM and CFU-GM (granulocyte/macrophage was markedly reduced. Conclusion This study suggests that the bone marrow pathology and clinical signs associated with BNP are related to an insult which compromises the pluripotential progenitor cell within the first 24 hours of life but that this does not initially include all cell types.

  14. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    OpenAIRE

    Shi-lei Guo; Zhi-ying Zhang; Yan Xu; Yun-xia Zhi; Chang-jie Han; Yu-hao Zhou; Fang Liu; Hai-yan Lin; Chuan-sen Zhang

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were...

  15. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    SUN Yu; LI Hui; WANG Ke-xin; CHEN Li; HOU Xin-guo; HOU Wei-kai; DONG Jian-jun; SUN Lei; TANG Kuan-xiao; WANG Bin; SONG Jun

    2007-01-01

    Bckground Stem cells, which have the ability to differentiate into insulin-producing cells (IPCs), would provide a potentially unlimited source of islet cells for transplantation and alleviate the major limitations of availability and allogeneic rejection. Therefore, the utilization of stem cells is becoming the most promising therapy for diabetes mellitus (DM). Here,we studied the differentiation capacity of the diabetic patient's bone marrow-derived mesenchymal stem cells (MSCs) and tested the feasibility of using MSCs for β-cell replacement.Methods Bone marrow-derived MSCs were obtained from 10 DM patients (5 type 1 DM and 5 type 2 DM) and induced to IPCs under a three-stage protocol. Representative cell surface antigen expression profiles of MSCs were analysed by flow cytometric analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect multiple genes related to pancreatic β-cell development and function. The identity of the IPCs was illustrated by the analysis of morphology, ditizone staining and immunocytochemistry. Release of insulin by these cells was confirmed by immunoradioassay.Results Flow cytometric analysis of MSCs at passage 3 showed that these cells expressed high levels of CD29 (98.28%), CD44 (99.56%) and CD106 (98.34%). Typical islet-like cell clusters were observed at the end of the protocol (18 days). Ditizone staining and immunohistochemistry for insulin were both positive. These differentiated cells at stage 2 (10 days) expressed nestin, pancreatic duodenal homeobox-1 (PDX-1), Neurogenin3, Pax4, insulin, glucagon, but at stage 3 (18 days) we observed the high expression of PDX-1, insulin, glucagon. Insulin was secreted by these cells in response to different concentrations of glucose stimulation in a regulated manner (P<0.05).Conclusions Bone marrow-derived MSCs from DM patients can differentiate into functional IPCs under certain conditions in vitro. Using diabetic patient's own bone marrow-derived MSCs as

  16. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells

    DEFF Research Database (Denmark)

    Pedersen, Charlotte Demuth; Fang, J J; Pedersen, Anders Elm

    2009-01-01

    Selective gene silencing using RNA interference (RNAi) has been shown to be an efficient method for manipulation of cellular functions. In this study, we compare three previously established methods for transfection of murine bone marrow-derived DC (BM-DC). We tested the efficacy of electroporation...... that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of CD80 surface...

  17. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  18. Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LU Zhuozhuang; WU Zuze(WU Chutse); ZHANG Qunwei; WANG Hua; JIA Xiangxu; DUAN Haifeng; WANG Lisheng

    2004-01-01

    Notch signaling is one of the most important pathways mediating cell determination and differentiation. In this study, the roles of Notch signal in the regulation of osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs) were investigated. The expression of Notch1, Jagged1 and DTX1 detected by reverse transcription polymerase chain reaction (RT-PCR) suggested that Notch signal might exhibit a physiological regulatory role in the differentiation of MSCs. Constitutive expression of the intracellular domain of Notch1 (ICN), the active form of Notch1 protein, can activate Notch signal in cells without ligands' binding. hMSCs were isolated, expanded, and infected with retrovirus carrying green fluorescent protein (GFP) gene or ICN. Overexpression of ICN in hMSCs resulted in enhanced osteogenic differentiation induced by dexamethasone (Dex), which was characterized by an increase of cellular alkaline phosphatase (ALP) activity and calcium deposition. These results indicate that Notch stimulates differentiation of MSCs into osteoblasts.

  19. Bone marrow derived stem cells for the treatment of end-stage liver disease.

    Science.gov (United States)

    Margini, Cristina; Vukotic, Ranka; Brodosi, Lucia; Bernardi, Mauro; Andreone, Pietro

    2014-07-21

    End-stage disease due to liver cirrhosis is an important cause of death worldwide. Cirrhosis results from progressive, extensive fibrosis and impaired hepatocyte regeneration. The only curative treatment is liver transplantation, but due to the several limitations of this procedure, the interest in alternative therapeutic strategies is increasing. In particular, the potential of bone marrow stem cell (BMSC) therapy in cirrhosis has been explored in different trials. In this article, we evaluate the results of 18 prospective clinical trials, and we provide a descriptive overview of recent advances in the research on hepatic regenerative medicine. The main message from the currently available data in the literature is that BMSC therapy is extremely promising in the context of liver cirrhosis. However, its application should be further explored in randomized, controlled trials with large cohorts and long follow-ups. PMID:25083082

  20. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  1. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    Directory of Open Access Journals (Sweden)

    Clifford Lin

    Full Text Available Smooth muscle cells (SMCs are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH at 0 d, SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH at 0 d and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH at 0 d. Bromodeoxyuridine (BrdU incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2, and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining. Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  2. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  3. Molecular characterisation of stromal populations derived from human embryonic stem cells: Similarities to immortalised bone marrow derived stromal stem cells

    Directory of Open Access Journals (Sweden)

    Linda Harkness

    2015-12-01

    Full Text Available Human bone marrow-derived stromal (skeletal stem cells (BM-hMSC are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT. Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited ≥2-fold change (FC in hESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial–mesenchymal transition (EMT were highly enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. hESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols.

  4. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  5. Bone Marrow-Derived, Neural-Like Cells Have the Characteristics of Neurons to Protect the Peripheral Nerve in Microenvironment

    Directory of Open Access Journals (Sweden)

    Shi-lei Guo

    2015-01-01

    Full Text Available Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that “neural-like cells” may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG, immunohistochemistry, and transmission electron microscopy (TEM were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve.

  6. Bone marrow-derived, neural-like cells have the characteristics of neurons to protect the peripheral nerve in microenvironment.

    Science.gov (United States)

    Guo, Shi-Lei; Zhang, Zhi-Ying; Xu, Yan; Zhi, Yun-Xia; Han, Chang-Jie; Zhou, Yu-Hao; Liu, Fang; Lin, Hai-Yan; Zhang, Chuan-Sen

    2015-01-01

    Effective repair of peripheral nerve defects is difficult because of the slow growth of new axonal growth. We propose that "neural-like cells" may be useful for the protection of peripheral nerve destructions. Such cells should prolong the time for the disintegration of spinal nerves, reduce lesions, and improve recovery. But the mechanism of neural-like cells in the peripheral nerve is still unclear. In this study, bone marrow-derived neural-like cells were used as seed cells. The cells were injected into the distal end of severed rabbit peripheral nerves that were no longer integrated with the central nervous system. Electromyography (EMG), immunohistochemistry, and transmission electron microscopy (TEM) were employed to analyze the development of the cells in the peripheral nerve environment. The CMAP amplitude appeared during the 5th week following surgery, at which time morphological characteristics of myelinated nerve fiber formation were observed. Bone marrow-derived neural-like cells could protect the disintegration and destruction of the injured peripheral nerve. PMID:25861281

  7. Orp8 deficiency in bone marrow-derived cells reduces atherosclerotic lesion progression in LDL receptor knockout mice.

    Directory of Open Access Journals (Sweden)

    Erik van Kampen

    Full Text Available INTRODUCTION: Oxysterol binding protein Related Proteins (ORPs mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown. METHODS AND RESULTS: LDL receptor knockout (KO mice were transplanted with bone marrow (BM from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity. CONCLUSIONS: Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.

  8. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  9. Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes.

    Directory of Open Access Journals (Sweden)

    Wojciech Wojakowski

    2005-12-01

    Full Text Available Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC. These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD. There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens, as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear

  10. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex vivo murine bone marrow-derived hematopoietic stem cells.

    Science.gov (United States)

    Abdul Hamid, Zariyantey; Lin Lin, Winnie Hii; Abdalla, Basma Jibril; Bee Yuen, Ong; Latif, Elda Surhaida; Mohamed, Jamaludin; Rajab, Nor Fadilah; Paik Wah, Chow; Wak Harto, Muhd Khairul Akmal; Budin, Siti Balkis

    2014-01-01

    Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs. PMID:25405216

  11. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages.

    Science.gov (United States)

    Garcia-Morales, Carla; Nandi, Sunil; Zhao, Debiao; Sauter, Kristin A; Vervelde, Lonneke; McBride, Derek; Sang, Helen M; Clinton, Mike; Hume, David A

    2015-03-01

    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome-specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN-responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes.

  12. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Directory of Open Access Journals (Sweden)

    Ruifeng Liu

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp., including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  13. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin.

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types. PMID:27239202

  14. Biological Characteristics of Foam Cell Formation in Smooth Muscle Cells Derived from Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Pengke Yan, Chenglai Xia, Caiwen Duan, Shihuang Li, Zhengrong Mei

    2011-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSC can differentiate into diverse cell types, including adipogenic, osteogenic, chondrogenic and myogenic lineages. There are lots of BMSC accumulated in atherosclerosis vessels and differentiate into VSMC. However, it is unclear whether VSMC originated from BMSC (BMSC-SMC could remodel the vessel in new tunica intima or promote the pathogenesis of atherosclerosis. In this study, BMSC were differentiated into VSMC in response to the transforming growth factor β (TGF-β and shown to express a number of VSMC markers, such as α-smooth muscle actin (α-SMA and smooth muscle myosin heavy chain1 (SM-MHC1. BMSC-SMC became foam cells after treatment with 80 mg/L ox-LDL for 72 hours. Ox-LDL could upregulate scavenger receptor class A (SR-A but downregulate the ATP-binding cassette transporter A1 (ABCA1 and caveolin-1 protein expression, suggesting that modulating relative protein activity contributes to smooth muscle foam cell formation in BMSC-SMC. Furthermore, we found that BMSC-SMC have some biological characteristics that are similar to VSMC, such as the ability of proliferation and secretion of extracellular matrix, but, at the same time, retain some biological characteristics of BMSC, such as a high level of migration. These results suggest that BMSC-SMC could be induced to foam cells and be involved in the development of atherosclerosis.

  15. Bone marrow transplantation enhances trafficking of host-derived myelomonocytic cells that rescue intestinal mucosa after whole body radiation

    International Nuclear Information System (INIS)

    Background: Bone marrow (BM)-derived cells were demonstrated within intestines after radiation damage and were reported to be responsible for intestine repair. However, there was a discrepancy between intestine epithelial clonogenic regeneration, and mouse survival after BM transplantation (BMT) and radiation. The contribution of BM to acute intestine repair after radiation needed further investigation. Methods: Mouse survival, intestine microcolony assay, immunohistochemical studies of both intestine and BM were evaluated in mice after whole body irradiation (WBI) and BMT. Immunoblotting, flowcytometry, and double immunostaining were used to evaluate the amount and the character of stroma cells within intestines of recipient mice after receiving gender-mismatched BMT or BMT from green fluorescence donors. Results: Stromal cell proliferation within the lamina propria correlated with the beneficial effect of BMT to intestine recovery and day-8 survival of mice. Few donor-derived cells were found before the completion of intestine repair. The number of host but not donor-derived myelomonocytic and stromal cells increased dramatically within one week after radiation and BMT. Depletion of myelomonocytic cells of recipient mice abolished the mitigating effect of BMT. Conclusions: Besides rescuing injured BM from aplasia, BMT triggers trafficking of host CD11b(+) myelomonocytic cells from the host marrow to the radiation-injured intestinal mucosa, enhancing the proliferation of intestinal stroma cells, leading secondarily to epithelial regeneration.

  16. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    International Nuclear Information System (INIS)

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments

  17. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Francis, W.R., E-mail: w.francis@swansea.ac.uk [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Owens, S.E.; Wilde, C. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Pallister, I. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Trauma and Orthopaedics, Morriston Hospital, Swansea (United Kingdom); Kanamarlapudi, V. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom); Zou, W., E-mail: weizou60@hotmail.com [College of Life Sciences, Liaoning Normal University, Dalian 116081 (China); Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian 116081 (China); Xia, Z. [Institute of Life Science, College of Medicine, Swansea University (United Kingdom)

    2014-10-24

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.

  18. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2

    Science.gov (United States)

    Chen, Biao; Li, Bin; Qi, Yong-Jian; Ni, Qu-Bo; Pan, Zheng-Qi; Wang, Hui; Chen, Liao-Bin

    2016-01-01

    Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy. PMID:27173013

  19. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2.

    Science.gov (United States)

    Chen, Biao; Li, Bin; Qi, Yong-Jian; Ni, Qu-Bo; Pan, Zheng-Qi; Wang, Hui; Chen, Liao-Bin

    2016-01-01

    Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy. PMID:27173013

  20. Efficient nano iron particle-labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhen-Yu Jia

    2011-03-01

    Full Text Available Rong Chen*, Hui Yu*, Zhen-Yu Jia, Qun-Li Yao, Gao-Jun TengJiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, People’s Republic of China *These authors have contributed equally to this workAbstract: In this study, we sought to label mouse bone marrow-derived endothelial progenitor cells (EPCs with Resovist® in vitro and to image them using 7.0 Tesla (T magnetic resonance imaging (MRI. Mouse bone marrow-derived EPCs were cultured in endothelial basal medium with endothelial growth supplement. They were then characterized by immunocytochemistry, flow cytometry, and fluorescence quantitative polymerase chain reaction. Their functions were evaluated by measuring their uptake of 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine-labeled acetylated low-density lipoprotein (Dil-Ac-LDL, binding of fluorine isothiocyanate (FITC-labeled Ulex europaeus agglutinin (UEA, and formation of capillary-like networks. EPCs were labeled with superparamagnetic iron oxide (SPIO and their proliferation was then assessed in a water-soluble tetrazolium (WST-8-based cell proliferation assay. Spin echo sequence (multislice, multiecho [MSME] and gradient echo sequence (2D-FLASH were used to detect differences in the numbers of labeled cells by 7.0 T MRI. The results showed that the cultured cells were of “cobblestone”-like shape and positive for CD133, CD34, CD31, von Willebrand factor, kinase domain receptor, and CD45, but negative for F4/80. They could take up Dil-Ac-LDL, bind FITC-UEA, and form capillary-like networks on Matrigel in vitro. Prussian-blue staining demonstrated that the cells were efficiently labeled with SPIO. The single-cell T2* effect was more obvious in the 2D-FLASH sequence than in the MSME sequence. Further, there were almost no adverse effects on cell vitality and proliferation. In conclusion, mouse bone marrow-derived EPCs can be

  1. GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC.

    Directory of Open Access Journals (Sweden)

    Natalie Fekete

    Full Text Available BACKGROUND: Mesenchymal stromal cells (MSC have gained importance in tissue repair, tissue engineering and in immunosupressive therapy during the last years. Due to the limited availability of MSC in the bone marrow, ex vivo amplification prior to clinical application is requisite to obtain therapeutic applicable cell doses. Translation of preclinical into clinical-grade large-scale MSC expansion necessitates precise definition and standardization of all procedural parameters including cell seeding density, culture medium and cultivation devices. While xenogeneic additives such as fetal calf serum are still widely used for cell culture, its use in the clinical context is associated with many risks, such as prion and viral transmission or adverse immunological reactions against xenogeneic components. METHODS AND FINDINGS: We established animal-free expansion protocols using platelet lysate as medium supplement and thereby could confirm its safety and feasibility for large-scale MSC isolation and expansion. Five different GMP-compliant standardized protocols designed for the safe, reliable, efficient and economical isolation and expansion of MSC was performed and MSC obtained were analyzed for differentiation capacity by qPCR and histochemistry. Expression of standard MSC markers as defined by the International Society for Cellular Therapy as well as expression of additional MSC markers and of various chemokine and cytokine receptors was analysed by flow cytometry. Changes of metabolic markers and cytokines in the medium were addressed using the LUMINEX platform. CONCLUSIONS: The five different systems for isolation and expansion of MSC described in this study are all suitable to produce at least 100 millions of MSC, which is commonly regarded as a single clinical dose. Final products are equal according to the minimal criteria for MSC defined by the ISCT. We showed that chemokine and integrin receptors analyzed had the same expression pattern

  2. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2011-09-01

    Full Text Available Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17, which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. Results The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. Conclusions Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for

  3. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-an; FAN You-qi; LI Chang-ling; HE Hong; SUN Yong; LV Bin-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells.BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI)control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5× 106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplantation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and

  4. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    Science.gov (United States)

    González-Fernández, Maria L; Pérez-Castrillo, Saúl; Sánchez-Lázaro, Jaime A; Prieto-Fernández, Julio G; López-González, Maria E; Lobato-Pérez, Sandra; Colaço, Bruno J; Olivera, Elías R; Villar-Suárez, Vega

    2016-07-01

    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans. PMID:27347833

  5. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

    Science.gov (United States)

    Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein anddaidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal s...

  6. Effect of NK4 Transduction in Bone Marrow-Derived Mesenchymal Stem Cells on Biological Characteristics of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yun-Peng Sun

    2014-03-01

    Full Text Available Pancreatic cancer usually has a poor prognosis, and no gene therapy has yet been developed that is effective to treat it. Since a unique characteristic of bone marrow-derived mesenchymal stem cells (MSCs is that they migrate to tumor tissues, we wanted to determine whether MSCs could serve as a vehicle of gene therapy for targeting pancreatic cancer. First, we successfully extracted MSCs from SD rats. Next, MSCs were efficiently transduced with NK4, an antagonist of hepatocyte growth factor (HGF which comprising the N-terminal and the subsequent four kringle domains of HGF, by an adenoviral vector. Then, we confirmed that rat MSCs preferentially migrate to pancreatic cancer cells. Last, MSCs expressing NK4 (NK4-MSCs strongly inhibited proliferation and migration of the pancreatic cancer cell line SW1990 after co-culture. These results indicate that MSCs can serve as a vehicle of gene therapy for targeting pancreatic cancer.

  7. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  8. Role of Bone Marrow-Derived Stem Cells in Polyps Development in Mice with ApcMin/+ Mutation

    Directory of Open Access Journals (Sweden)

    Michele Barone

    2015-01-01

    Full Text Available We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp could modify the differentiation program of bone marrow-derived stem cells (BMSCs, involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female ApcMin/+ mice were transplanted with bone marrow (BM cells obtained from either male age-matched ApcMin/+ (Apc-Tx-Apc or wild type (WT (WT-Tx-Apc mice. At 4 and 7 weeks after transplantation, BM-derived colonocytes were recognized by colocalization of Y-chromosome and Cdx2 protein (specific colonocyte marker. Polyp number, volume, and grade of dysplasia were not influenced by irradiation/transplantation procedures since they were similar in both untreated female ApcMin/+ and Apc-Tx-Apc mice. At 4 and 7 weeks after transplantation, a progressive significant reduction of polyp number and volume was observed in WT-Tx-Apc mice. Moreover, the number of WT-Tx-Apc mice with a high-grade dysplastic polyps significantly decreased as compared to Apc-Tx-Apc mice. Finally, at 4 and 7 weeks after transplantation, WT-Tx-Apc mice showed a progressive significant increase of Y+/Cdx2+ cells in “normal” mucosa, whereas, in the adenomatous tissue, Y+/Cdx2+ cells remained substantially unvaried. Our findings demonstrate that WT BMSCs do not participate in polyp development but rather inhibit their growth. The substitution of genotypically altered colonocytes with Y+/Cdx2+ cells probably contributes to this process.

  9. Enhancement of distribution of dermal multipotent stem cells to bone marrow in rats of total body irradiation by platelet-derived growth factor-AA treatment

    International Nuclear Information System (INIS)

    Objective: To observe whether dermal multipotent stem cells (dMSCs) treated with platelet-derived growth factor-AA (PDGF-AA) could distribute more frequently to the bone marrow in rats of total body irradiation (TBI). Methods: Male dMSCs were isolated and 10 μg/L PDGF-AA was added to the culture medium and further cultured for 2 h. Then the expression of tenascin-C were examined by Western blot, and the migration ability of dMSCs was assessed in transwell chamber. The pre-treated dMSCs were transplanted by tail vein injection into female rats administered with total body irradiation, and 2 weeks after transplantation, real-time PCR was employed to measure the amount of dMSCs in bone marrow. Non-treated dMSCs served as control.Results PDGF-AA treatment increased the expression of tenascin-C in dMSCs, made (1.79 ± 0.13) × 105 cells migrate to the lower chamber under the effect of bone marrow extract, and distributed to bone marrow in TBI rats, significantly more than (1.24 ± 0.09) ×105 in non-treated dMSCs (t=8.833, P<0.01). Conclusions: PDGF-AA treatment could enhance the migration ability of dMSCs and increase the amount of dMSCs in bone marrow of TBI rats after transplantation. (authors)

  10. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina;

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  11. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  12. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  13. Bone marrow stromal cell: mediated neuroprotection for spinal cord repair

    OpenAIRE

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic factors, enabling neuroprotection/tissue sparing in a rat model of spinal cord injury. In this model system, bone marrow stromal cell-mediated tissue sparing leads to motor and sensory function impr...

  14. Intractable Diseases Treated with Intra-Bone Marrow-Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Ming eLi

    2014-09-01

    Full Text Available Bone marrow transplantation (BMT is used to treat hematological disorders, autoimmune diseases and lymphoid cancers. Intra bone marrow-BMT (IBM-BMT has been proven to be a powerful strategy for allogeneic BMT due to the rapid hematopoietic recovery and the complete restoration of T cell functions. IBM-BMT not only replaces hematopoietic stem cells but also mesenchymal stem cells (MSMCs. MSMCs are multi-potent stem cells that can be isolated from bone marrow, umbilical cord blood, and adipose tissue. MSMCs play an important role in the support of hematopoiesis, and modify and influence the innate and adaptive immune systems. MSMCs also differentiate into mesodermal, endodermal and ectodermal lineage cells to repair tissues. This review aims to summarize the functions of bone marrow-derived- MSMCs, and the treatment of intractable diseases such as rheumatoid arthritis and malignant tumors with IBM-BMT.

  15. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice.

    Science.gov (United States)

    Filip, Stanislav; Mokrý, Jaroslav; Vávrová, Jiřina; Sinkorová, Zuzana; Mičuda, Stanislav; Sponer, Pavel; Filipová, Alžběta; Hrebíková, Hana; Dayanithi, Govindan

    2014-05-01

    Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.

  16. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Khanabdali, Ramin; Saadat, Anbarieh; Fazilah, Maizatul; Bazli, Khairul Fidaa' Khairul; Qazi, Rida-e-Maria; Khalid, Ramla Sana; Hasan Adli, Durriyyah Sharifah; Moghadamtousi, Soheil Zorofchian; Naeem, Nadia; Khan, Irfan; Salim, Asmat; Shamsuddin, ShamsulAzlin Ahmad; Mohan, Gokula

    2016-01-01

    Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin.

  17. Spatiotemporal control of gene expression in bone-marrow derived cells of the tumor microenvironment induced by MRI guided focused ultrasound.

    Science.gov (United States)

    Fortin, Pierre-Yves; Lepetit-Coiffé, Matthieu; Genevois, Coralie; Debeissat, Christelle; Quesson, Bruno; Moonen, Chrit T W; Konsman, Jan Pieter; Couillaud, Franck

    2015-09-15

    The tumor microenvironment is an interesting target for anticancer therapies but modifying this compartment is challenging. Here, we demonstrate the feasibility of a gene therapy strategy that combined targeting to bone marrow-derived tumor microenvironment using genetically modified bone-marrow derived cells and control of transgene expression by local hyperthermia through a thermo-inducible promoter. Chimera were obtained by engraftment of bone marrow from transgenic mice expressing reporter genes under transcriptional control of heat shock promoter and inoculated sub-cutaneously with tumors cells. Heat shocks were applied at the tumor site using a water bath or magnetic resonance guided high intensity focused ultrasound device. Reporter gene expression was followed by bioluminescence and fluorescence imaging and immunohistochemistry. Bone marrow-derived cells expressing reporter genes were identified to be mainly tumor-associated macrophages. We thus provide the proof of concept for a gene therapy strategy that allows for spatiotemporal control of transgenes expression by macrophages targeted to the tumor microenvironment. PMID:26299614

  18. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Science.gov (United States)

    Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana; O'Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B; Busik, Julia V

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  19. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Directory of Open Access Journals (Sweden)

    Harshini Chakravarthy

    Full Text Available Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs. We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  20. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Directory of Open Access Journals (Sweden)

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  1. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    OpenAIRE

    Huber, Bruno C.; Grabmaier, Ulrich; Brunner, Stefan

    2014-01-01

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the...

  2. Bone Marrow Transplants: "Another Possibility at Life"

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer ... year, and, for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan ...

  3. Transplant Outcomes (Bone Marrow and Cord Blood)

    Science.gov (United States)

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  4. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia;

    2012-01-01

    Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM)-d...

  5. An Improved Harvest and in Vitro Expansion Protocol for Murine Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Song Xu

    2010-01-01

    Full Text Available Compared to bone marrow (BM derived mesenchymal stem cells (MSCs from human origin or from other species, the in vitro expansion and purification of murine MSCs (mMSCs is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest, followed by an immunodepletion step using microbeads coated with CD11b, CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F assay showed that this modified isolation method could yield 70.0% more primary colonies. After immunodepletion, a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs are uniformly positive for stem cell antigen-1 (Sca-1, CD90, CD105 and CD73 cell surface markers, but negative for the hematopoietic surface markers CD14, CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic, osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time.

  6. Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Xiaofang Wang

    2014-07-01

    Full Text Available Current therapies for multiple sclerosis (MS are largely palliative, not curative. Mesenchymal stem cells (MSCs harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs significantly reduce clinical symptoms and prevent neuronal demyelination in a mouse experimental autoimmune encephalitis (EAE model of MS, and that the EAE disease-modifying effect of hES-MSCs is significantly greater than that of human bone-marrow-derived MSCs (BM-MSCs. Our evidence also suggests that increased IL-6 expression by BM-MSCs contributes to the reduced anti-EAE therapeutic activity of these cells. A distinct ability to extravasate and migrate into inflamed CNS tissues may also be associated with the robust therapeutic effects of hES-MSCs on EAE.

  7. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  8. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RTPCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  9. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  10. Aspiration and Biopsy: Bone Marrow

    Science.gov (United States)

    ... The person performing the bone marrow aspiration and biopsy will know your medical history, but might ask additional questions, such as what medicines you're taking or whether you have any allergies. Be sure to ... on the aspiration and biopsy site about 30 minutes before the procedure. You ...

  11. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  12. Autologous transplantation of CD34(+) bone marrow derived mononuclear cells in management of non-reconstructable critical lower limb ischemia.

    Science.gov (United States)

    Ismail, Ahmed M; Abdou, Said M; Aty, Hassan Abdel; Kamhawy, Adel H; Elhinedy, Mohammed; Elwageh, Mohammed; Taha, Atef; Ezzat, Amal; Salem, Hoda A; Youssif, Said; Salem, Mohamed L

    2016-08-01

    Patients with a decrease in limb perfusion with a potential threat to limb viability manifested by ischemic rest pain, ischemic ulcers, and/or gangrene are considered to have critical limb ischemia (CLI). Because of this generally poor outcome, there is a strong need for attempting any procedure to save the affected limb. The aim of this work is to evaluate the possibility to use stem cell therapy as a treatment option for patients with chronic critical lower limb ischemia with no distal run off. This study includes 20 patients with chronic critical lower limb ischemia with no distal run off who are unsuitable for vascular or endovascular option. These patients underwent stem cell therapy (SCT) by autologous transplantation of bone marrow derived mononuclear cells. 55 % of patients treated with SCT showed improvement of the rest pain after the first month, 60 % continued improvement of the rest pain after 6 months, 75 % after 1 year and 80 % after 2 years and continued without any deterioration till the third year. Limb salvage rate after STC was 80 % after the first year till the end of the second and third years. SCT can result in angiogenesis in patients with no-option CLI, providing a foundation for the application of this therapy to leg ischemia. PMID:25511801

  13. Intratracheal therapy with autologous bone marrow-derived mononuclear cells reduces airway inflammation in horses with recurrent airway obstruction.

    Science.gov (United States)

    Barussi, Fernanda C M; Bastos, Fernanda Z; Leite, Lidiane M B; Fragoso, Felipe Y I; Senegaglia, Alexandra C; Brofman, Paulo R S; Nishiyama, Anita; Pimpão, Cláudia T; Michelotto, Pedro V

    2016-10-01

    This research evaluated the effects of bone marrow-derived mononuclear cells (BMMCs) on the inflammatory process in the equine recurrent airway obstruction (RAO). Eight horses in RAO clinical score were divided into cell therapy group (Gcel) treated with a single intratracheal dose of BMMCs, and dexamethasone group (Gdex) treated with 21days of oral dexamethasone. The horses were clinically revaluated on days 7 and 21, together with cytological evaluation of the BALF, and detection of inflammatory markers (interleukins [IL]-10, -4, and -17, and interferon γ and α). There were decreases in respiratory effort and clinical score on days 7 and 21(p<0.05) for both groups. The percentage of neutrophils decreased and macrophages increased on days 7 and 21 (p<0.005) in both groups. IL-10 levels increased in the Gcel group on day 21 compared to days 0 and 7 (p<0.05), but this was not observed in the Gdex group. The quantification of IL-4, IL-17, IFN-γ, and IFN-α did not change between evaluations in both groups. These preliminary results suggest that BMMCs may ameliorate the inflammatory response of RAO.

  14. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  15. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  16. Application of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions in Rats

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2016-09-01

    Full Text Available Aims: To investigate the therapeutic effects of bone marrow-derived mesenchymal stem cells (BMSCs transplantation on intrauterine adhesions (IUA. Methods: BMSCs were isolated and labeled by green fluorescence protein. IUA model was established by mechanical injury. 48 rats were randomly divided into control, IUA model, BMSCs vein injection and BMSCs intrauterine injection groups (n=12 in each group. The third generation of BMSCs was injected through tail vein or intrauterine. Three rats were killed at time 0 h, 7 d, 14 d and 28 d and bilateral uterus were obtained at each time points for the subseqent experiments. Morphological changes were determined by hematoxylin-eosin staining or Masson staining. Estrogen receptor (ER and progesterone receptor (PR were detected by immunohistochemistry. Results: BMSCs were specifically stained by CD44 and CD90, but not by CD45. Before treatment, the numbers of endometrial glands were significantly decreased, while fibrosis area rate was increased in IUA model group (PConclusion: BMSCs transplantation was effective to repair the damaged endometrium likely through promoting the ER and PR expressions.

  17. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  18. Collection of Macaca fascicularis cDNAs derived from bone marrow, kidney, liver, pancreas, spleen, and thymus

    Directory of Open Access Journals (Sweden)

    Kameoka Yosuke

    2009-09-01

    Full Text Available Abstract Background Consolidating transcriptome data of non-human primates is essential to annotate primate genome sequences, and will facilitate research using non-human primates in the genomic era. Macaca fascicularis is a macaque monkey that is commonly used for biomedical and ecological research. Findings We constructed cDNA libraries of Macaca fascicularis, derived from tissues obtained from bone marrow, liver, pancreas, spleen, and thymus of a young male, and kidney of a young female. In total, 5'-end sequences of 56,856 clones were determined. Including the previously established cDNA libraries from brain and testis, we have isolated 112,587 cDNAs of Macaca fascicularis, which correspond to 56% of the curated human reference genes. Conclusion These sequences were deposited in the public sequence database as well as in-house macaque genome database http://genebank.nibio.go.jp/qfbase/. These data will become valuable resources for identifying functional parts of the genome of macaque monkeys in future studies.

  19. Effect of non-cell Corynebacterium Parvum on differentiation and maturation of bone marrow-derived dendritic cells.

    Science.gov (United States)

    Liu, Chenghu; Gao, Shangxian; Qu, Zhonghua; Guo, Chun; Wu, Ping; Shi, Yanping; Zhang, Lining

    2012-01-01

    Corynebacterium parvum (CP), with their potent anti-tumor activities, has been well documented. Non-cell Corynebacterium Parvum (NCPP) is a neotype of biological preparation, which based on manipulating CP with nanotechnology. The present study was designed to investigate the effect of NCPP/CP on bone marrow derived dendritic cells (BMDCs) in tumor-bearing mice, especially focused on the differentiation and maturation of these BMDCs. BM cells from tumor-bearing mice administrated with NCPP/CP were analyzed by flow cytometry, which exhibit enhanced numbers of DCs and macrophages. In the meanwhile, flow cytometry analysis showed mild but significant difference for CD80 expression on these LPS- treated BMDCs between NCPP/CP administrated mice and the control animals. Furthermore, antigen presenting assay for these LPS-treated BMDCs showed significant difference for cytolytic assay of CD8+T cells against B16 melanoma cells, which indicate that NCPP treatments have enhanced the cytolytic rates of CD8+T cells from 47.9%±2.3% to 54.2%±2.4%. The data suggest that NCPP/CP treatment can efficiently facilitate the generation of BMDCs in vivo and enhance the maturation of these BMDCs in vitro. PMID:22676053

  20. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells.

    Science.gov (United States)

    Chen, Hongfeng; Titushkin, Igor; Stroscio, Michael; Cho, Michael

    2007-02-15

    Functionalized quantum dots offer several advantages for tracking the motion of individual molecules on the cell surface, including selective binding, precise optical identification of cell surface molecules, and detailed examination of the molecular motion without photobleaching. We have used quantum dots conjugated with integrin antibodies and performed studies to quantitatively demonstrate changes in the integrin dynamics during osteogenic differentiation of human bone marrow derived progenitor cells (BMPCs). Consistent with the unusually strong BMPC adhesion previously observed, integrins on the surface of undifferentiated BMPC were found in clusters and the lateral diffusion was slow (e.g., approximately 10(-11) cm2/s). At times as early as those after a 3-day incubation in the osteogenic differentiation media, the integrin diffusion coefficients increased by an order of magnitude, and the integrin dynamics became indistinguishable from that measured on the surface of terminally differentiated human osteoblasts. Furthermore, microfilaments in BMPCs consisted of atypically thick bundles of stress fibers that were responsible for restricting the integrin lateral mobility. Studies using laser optical tweezers showed that, unlike fully differentiated osteoblasts, the BMPC cytoskeleton is weakly associated with its cell membrane. Based on these findings, it appears likely that the altered integrin dynamics is correlated with BMPC differentiation and that the integrin lateral mobility is restricted by direct links to microfilaments.

  1. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.

    Science.gov (United States)

    Luan, Xi-Ying; Wang, Yong; Duan, Xiang; Duan, Qiao-Yan; Li, Ming-Zhong; Lu, Shen-Zhou; Zhang, Huan-Xiang; Zhang, Xue-Guang

    2006-12-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture. PMID:18458403

  2. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  3. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  4. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    Science.gov (United States)

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.

  5. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  6. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  7. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    Science.gov (United States)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing.

  8. The susceptive alendronate-treatment timing and dosage for osteogenesis enhancement in human bone marrow-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Chang

    Full Text Available Recent studies indicated that alendronate enhanced osteogenesis in osteoblasts and human bone marrow-derived stem cells. However, the time- and dose-dependent effects of Aln on osteogenic differentiation and cytotoxicity of hBMSCs remain undefined. In present study, we investigated the effective dose range and timing of hBMSCs. hBMSCs were treated with various Aln doses (1, 5 and 10 µM according to the following groups: group A was treated with Aln during the first five days of bone medium, groups B, C and D were treated during the first, second, and final five days of osteo-induction medium and group E was treated throughout the entire experiment. The mineralization level and cytotoxicity were measured by quantified Alizarin Red S staining and MTT assay. In addition, the reversal effects of farnesyl pyrophosphate and geranylgeranyl pyrophosphate replenishment in group B were also investigated. The results showed that Aln treatment in groups A, B and E enhanced hBMSC mineralization in a dose-dependent manner, and the most pronounced effects were observed in groups B and E. The higher dose of Aln simultaneously enhanced mineralization and caused cytotoxicity in groups B, C and E. Replenishment of FPP or GGPP resulted in partial or complete reverse of the Aln-induced mineralization respectively. Furthermore, the addition of FPP or GGPP also eliminated the Aln-induced cytotoxicity. We demonstrated that hBMSCs are susceptible to 5 µM Aln during the initiation stage of osteogenic differentiation and that a 10 µM dose is cytotoxic.

  9. MEK1 dependent and independent ERK activation regulates IL-10 and IL-12 production in bone marrow derived macrophages.

    Science.gov (United States)

    Bouhamdan, Mohamad; Bauerfeld, Christian; Talreja, Jaya; Beuret, Laurent; Charron, Jean; Samavati, Lobelia

    2015-10-01

    The mitogen activated protein kinases ERK1/2 play an important role in response to toll like receptor (TLR) activation and cytokine production, including IL-10 and IL-12. Here, we examined the role of MEK1 in ERK1/2 activation in response to TLR4 agonist by using bone marrow-derived macrophages (BMDMs) from wild type (WT) and Mek1(d/d)Sox2(Cre) mice. Our data demonstrates that MEK1 is essential for ERK1/2 activation in response to LPS. Furthermore, stimulation of the TLR4 receptor of BMDMs derived from Mek1(d/d)Sox2(Cre) mice showed enhanced STAT4 phosphorylation and increased IL-12 secretion, but exhibited a significantly lower IL-10 production as compared to WT macrophages. Most interestingly, TLR ligation in the presence of recombinant IL-10 (rIL-10) or retinoic acid (RA) led to ERK1/2 activation independent of MEK1 in BMDMs derived from Mek1(d/d)Sox2(Cre) mice and led to inhibition of STAT4 and decreased IL-12 levels. Collectively, these data suggest that MEK1 is required for TLR4 mediated ERK activation and in turn regulates the production of IL-10 and IL-12. It also indicates that ERK1/2 can be activated independent of MEK1 in the presence of IL-10 and RA and this activation negatively regulates IL-12, but positively regulates IL-10 production. These findings may have significant implications for the development of drugs that modulate MEK1 activity in the treatment of inflammatory, autoimmune and proliferative diseases such as cancer. PMID:26208884

  10. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.

    Science.gov (United States)

    Toosi, S; Naderi-Meshkin, H; Kalalinia, F; Peivandi, M T; Hossein Khani, H; Bahrami, A R; Heirani-Tabasi, A; Mirahmadi, M; Behravan, J

    2016-01-01

    Mesenchymal stem cells (MSCs) have been considered promising tools for new clinical concepts in supporting cellular therapy and regenerative medicine. More recently, Ream/Irrigator/Aspirator (RIA) was introduced as a source of MSCs. In this study we compared MSCs derived from three different sources (iliac crest bone marrow (ICBM), adipose tissue (AT), and (RIA)) regarding the morphology, the success rate of isolating MSCs, colony frequency, expansion potential, osteogenic and chondrogenic differentiation capacity. MSCs were isolated from three different sources and flow cytometric analyses were performed for cell characterization. Colony-forming unit-fibroblast (CFU-F) assay and population doubling time (PDT) were evaluated for MSCs derived from three different sources and differentiation potential of RIA, ICBM-, and AT-MSCs were determined by staining. Additionally, gene expression profiles for tissue specific markers corresponding to osteogenesis and chondrogenesis were analyzed using real time polymerase chain reaction (RT-PCR). Cultured with the appropriate condition, osteogenic and chondrogenic differentiation could be confirmed in all MSC preparations. Flow cytometry analysis indicated that RIA- and AT-derived MSCs have more homogenous populations than ICBM-MSCs. A comparison of the colonogenic ability in different tissues by CFU-F assay after 10 days showed that more colonies are formed from RIA-MSCs than from ICBM-MSCs, and AT-MSCs. AT-MSCs, were dispersed with no obvious colonies. The RIA-MSCs underwent osteogenesis and chondrogenesis at a faster rate than ICBM and AT-MSCs. Direct comparisons of RIA- to ICBM- and AT-MSCs have shown the RIA-MSCs have higher differentiation toward osteoblast and chondrocytes compared to other sources of MSCs. Hence, RIA-MSCs may be recommended as a more suitable source for treating orthopedic disorders. PMID:27609477

  11. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  12. Distinct Lysosome Phenotypes Influence Inflammatory Function in Peritoneal and Bone Marrow-Derived Macrophages

    OpenAIRE

    Kassandra Weber; Schilling, Joel D.

    2014-01-01

    Lysosomes play a critical role in the degradation of both extracellular and intracellular material. These dynamic organelles also contribute to nutrient sensing and cell signaling pathways. Macrophages represent a heterogeneous group of phagocytic cells that contribute to tissue homeostasis and inflammation. Recently, there has been a renewed interest in understanding the role of macrophage autophagy and lysosome function in health and disease. Thioglycollate-elicited peritoneal and bone marr...

  13. Effects of 810-nm Laser on Murine Bone-Marrow-Derived Dendritic Cells

    OpenAIRE

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2011-01-01

    Objective: The purpose of this study was to Investigate the effect of 810-nm low level laser therapy (LLLT) on dendritic cells (DC) in vitro. Background data: LLLT can enhance wound healing and increase cell proliferation and survival, and is used to treat inflammatory conditions. However there are reports that LLLT can stimulate leukocytes and could therefore be pro-inflammatory. Recently, DC have been found to play an important role in inflammation and immune response. Methods: Murine bone-...

  14. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices

    OpenAIRE

    Endres, M; Hutmacher, D.W.; Salgado, A. J.; Kaps, C; RINGE, J; Reis, R. L.; Sittinger, M; Brandwood, A.; Schantz, J. T.

    2003-01-01

    The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated...

  15. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    OpenAIRE

    Zoleikha Golipoor; Fereshteh Mehraein; Fariba Zafari; Akram Alizadeh; Shima Ababzadeh; Maryam Baazm

    2016-01-01

    Objective: Bone marrow (BM) is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL) stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB) in response to tissue injury. In this study we ...

  16. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  17. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Pietilä, Mika; Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2011-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donor...

  18. The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients

    OpenAIRE

    Tan, Hiang Boon; Giannoudis, Peter V.; Boxall, Sally A; McGonagle, Dennis; Jones, Elena

    2015-01-01

    Background Fracture healing is a complex process regulated by a variety of cells and signalling molecules which act both locally and systemically. The aim of this study was to investigate potential changes in patients’ mesenchymal stem cells (MSCs) in the iliac crest (IC) bone marrow (BM) and in peripheral blood (PB) in relation to the severity of trauma and to correlate them with systemic changes reflective of inflammatory and platelet responses following fracture. Methods ICBM samples were ...

  19. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Byron Deorosan; Nauman, Eric A.

    2011-01-01

    Mesenchymal stem cells (MSCs) have become a critical addition to all facets of tissue engineering. While most in vitro research has focused on their behavior in two-dimensional culture, relatively little is known about the cells' behavior in three-dimensional culture, especially with regard to their metabolic state. To evaluate MSC metabolism during twodimensional culture, murine bone marrow-derived MSCs were cultured for one week using twelve different medium compositions, varying in both gl...

  20. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report

    OpenAIRE

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-01-01

    Introduction Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. Case presentation A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a ...

  1. Conditioned Medium from Bone marrow-derived Mesenchymal Stem Cells improves recovery after Spinal Cord Injury in rats: an original strategy to avoid cell transplantation.

    OpenAIRE

    Dorothée Cantinieaux; Renaud Quertainmont; Silvia Blacher; Loïc Rossi; Thomas Wanet; Agnès Noël; Gary Brook; Jean Schoenen; Rachelle Franzen

    2013-01-01

    Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been ...

  2. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    OpenAIRE

    Chen X-C; Luo Y.; Wu Y; Zhang X-W; Wang R; Jia Y-Q; Teng H; Yang J-L; Hu M; Zhang R.; Tian L; Zhao X; Wei Y-Q

    2008-01-01

    Abstract Background Bone marrow-derived stromal cells (BMSCs) are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Recept...

  3. Influence of intracoronary injections of bone-marrow-derived mononuclear cells on large myocardial infarction outcome: Quantum of initial necrosis is the key

    OpenAIRE

    Obradović Slobodan; Balint Bela; Romanović Radoslav; Trifunović Zoran; Rusović Siniša; Baškot Branislav; Dopuđa Marija; Trifunović Gordana; Rafajlovski Sašo; Jung Robert; Gligić Branko

    2009-01-01

    Background/Aim. Autologous bone-marrow-derived intracoronary injection of mononuclear cells (MNC) modestly improved left ventricular ejection fraction (LVEF) in the selected patients after acute ST elevation myocardial infarction (STEMI). Major determinants of stem cell therapy outcome in the subacute phase of STEMI still remain unknown. Therefore, the aim of this study was to determine modifying factors for the outcome of stem cell therapy after STEMI. Methods. Eighteen patients in the stem ...

  4. Bone Marrow Matters

    Science.gov (United States)

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  5. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    International Nuclear Information System (INIS)

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP+) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP+ cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin

  6. Epidermis–dermis junction as a novel location for bone marrow-derived cells to reside in response to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Junko, E-mail: jokano@belle.shiga-med.ac.jp [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Kojima, Hideto; Katagi, Miwako [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakae, Yuki [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Terashima, Tomoya [Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga (Japan); Nakagawa, Takahiko [TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto (Japan); Kurakane, Takeshi; Okamoto, Naoki; Morohashi, Keita [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan); Maegawa, Hiroshi [Department of Internal Medicine, Shiga University of Medical Science, Shiga (Japan); Udagawa, Jun [Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga (Japan)

    2015-06-12

    Bone marrow-derived cells (BMDCs) can migrate into the various organs in the mice irradiated by ionizing radiation (IR). However, it may not be the case in the skin. While IR is used for bone marrow (BM) transplantation, studying with the epidermal sheets demonstrated that the BMDC recruitment is extraordinarily rare in epidermis in the mouse. Herein, using the chimera mice with BM from green fluorescent protein (GFP) transgenic mice, we simply examined if BMDCs migrate into any layers in the total skin, as opposed to the epidermal sheets, in response to IR. Interestingly, we identified the presence of GFP-positive (GFP{sup +}) cells in the epidermis-dermis junction in the total skin sections although the epidermal cell sheets failed to have any GFP cells. To examine a possibility that the cells in the junction could be mechanically dissociated during separating epidermal sheets, we then salvaged such dissociated cells and examined its characteristics. Surprisingly, some GFP{sup +} cells were found in the salvaged cells, indicating that these cells could be derived from BM. In addition, such BMDCs were also associated with inflammation in the junction. In conclusion, BMDCs can migrate to and reside in the epidermis-dermis junction after IR. - Highlights: • Bone marrow-derived cells (BMDCs) migrate in the epidermis due to ionizing radiation (IR). • BMDCs dissociate from the epidermis-dermis junction in preparing epidermal sheets. • The doses of IR determine the location and the number of migrating BMDCs in the skin.

  7. Bone marrow: its contribution to heme catabolism.

    Science.gov (United States)

    Mähönen, Y; Anttinen, M; Vuopio, P; Tenhunen, R

    1976-01-01

    Heme oxygenase (HO) and biliverdin reductase (BR), the two NADPH-dependent enzymes involved in the degradation of hemoglobin and its derivatives, were measured in bone marrow aspirates from 5 hematologically normal persons, 4 patients with chronic leucemia (CL), 11 patients with acute leucemia (AL), 8 patients with refractory sideroblastic anemia (RA), 7 patients with iron-deficiency anemia (IA), 5 patients with hemolytic anemia (HA), and 7 patients with secondary anemia (SA) to determine the enzymatic capacity of the bone marrow in different hematologic disorders for heme catabolism. HO activity in the bone marrow of normal persons was 0.42 +/- 0.28 (SD) nmoles bilirubin/10 mg protein/min; in CL, 2.15 +/- 1.34; in AL, 0.39 +/- 0.25; in RA, 0.58 +/- 0.37; in IA, 0.41 +/- 0.28; in HA, 2.56 +/- 1.40; and in SA, 1.72 +/- 1.06. BR activity, respectively, was in normal persons 8.7 +/- 2.4 (SD) nmoles bilirubin/10 mg protein/min; in CL, 13.6 +/- 9.1; in AL, 3.8 +/- 3.1 in RA, 5.1 +/- 2.7; in IA, 5.5 +/- 3.7; in HA, 17.0 +/- 7.2; and in SA, 10.5 +/- 4.2. On the basis of these findings it seems evident that both oxygenase and biliverdin reductase activities of the bone marrow are capable of adaptive regulation. The physiologic role of bone marrow in heme catabolism seems to be of significant importance.

  8. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFbeta-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    NARCIS (Netherlands)

    Kroon, L.M.G. de; Narcisi, R.; Davidson, E.N.; Cleary, M.A.; Beuningen, H.M. van; Koevoet, W.J.; Osch, G.J. van; Kraan, P.M. van der

    2015-01-01

    INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta (TGFbeta) is crucial for inducing chondrogenic differentiation of BMSCs and is known

  9. Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    L.M.G. De Kroon (Laurie M.G.); R. Narcisi (Roberto); E.N. Blaney Davidson (Esmeralda); M.A. Cleary (Mairéad); H.M. van Beuningen (Henk); W.J.L.M. Koevoet (Wendy J.L.M.); G.J.V.M. van Osch (Gerjo); P.M. van der Kraan (Peter)

    2015-01-01

    textabstractIntroduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta; (TGFbeta;) is crucial for inducing chondrogenic differentiation of BMSCs

  10. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  11. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Science.gov (United States)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal; Foldager, Casper Bindzus; Lysdahl, Helle; Kraft, David Christian Evar; Chen, Muwan; Baas, Jorgen; Le, Dang Quang Svend; Bünger, Cody Eric

    2016-01-01

    Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering. PMID:27163105

  12. Bone marrow edema in sports: General concepts

    International Nuclear Information System (INIS)

    This paper will discuss the value of medical imaging in the detection and follow-up of bone marrow edema (BME), resulting from acute and chronic trauma in sports. MR imaging is the only imaging technique that allows direct evaluation of bone marrow edema in sports medicine. The use of fat suppressed T2-weighted or STIR images is particularly appropriate to detect bone marrow edema. The extent of bone marrow edema reflects the biomechanics of trauma. Compressive forces between two bony structures will result in extensive areas of bone marrow edema, whereas distraction forces provoke more subtle areas of bone marrow edema at the insertion of supporting structures of joints. In most clinical situations, a combination of compression and distraction forces is present, causing a complex pattern of bone marrow edema. A meticulous pattern approach of the distribution of these bone marrow changes around a joint can reveal in most instances the underlying mechanism of trauma. This may be helpful to analyze which joint supporting structures may be at risk. In the acute setting, plain radiography and CT scan may have an additional role in the detection of small avulsion fractures occurring at the site of minor areas of bone marrow edema. The clinical significance and natural history of bone marrow edema is still a matter of debate

  13. Bone marrow edema in sports: General concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoenacker, F.M. [AZ Sint-Maarten Duffel-Mechelen, Department of Radiology, Rooienberg 25, B-2570 Duffel (Belgium) and University Hospital Antwerp, Department of Radiology, Wilrijkstraat 10, B-2650 Edegem (Belgium)]. E-mail: filip.vanhoenacker@telenet.be; Snoeckx, A. [AZ Sint-Maarten Duffel-Mechelen, Department of Radiology, Rooienberg 25, B-2570 Duffel (Belgium); University Hospital Antwerp, Department of Radiology, Wilrijkstraat 10, B-2650 Edegem (Belgium)

    2007-04-15

    This paper will discuss the value of medical imaging in the detection and follow-up of bone marrow edema (BME), resulting from acute and chronic trauma in sports. MR imaging is the only imaging technique that allows direct evaluation of bone marrow edema in sports medicine. The use of fat suppressed T2-weighted or STIR images is particularly appropriate to detect bone marrow edema. The extent of bone marrow edema reflects the biomechanics of trauma. Compressive forces between two bony structures will result in extensive areas of bone marrow edema, whereas distraction forces provoke more subtle areas of bone marrow edema at the insertion of supporting structures of joints. In most clinical situations, a combination of compression and distraction forces is present, causing a complex pattern of bone marrow edema. A meticulous pattern approach of the distribution of these bone marrow changes around a joint can reveal in most instances the underlying mechanism of trauma. This may be helpful to analyze which joint supporting structures may be at risk. In the acute setting, plain radiography and CT scan may have an additional role in the detection of small avulsion fractures occurring at the site of minor areas of bone marrow edema. The clinical significance and natural history of bone marrow edema is still a matter of debate.

  14. Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor.

    Science.gov (United States)

    Nold, Philipp; Brendel, Cornelia; Neubauer, Andreas; Bein, Gregor; Hackstein, Holger

    2013-01-01

    Mesenchymal stroma cells (MSC) are increasingly recognized for various applications of cell-based therapies such as regenerative medicine or immunomodulatory treatment strategies. Standardized large-scale expansions of MSC under good manufacturing practice (GMP)-compliant conditions avoiding animal derived components are mandatory for further evaluation of these novel therapeutic approaches in clinical trials. We applied a novel automated hollow fiber cell expansion system (CES) for in vitro expansion of human bone marrow derived MSC employing a GMP-compliant culture medium with human platelet lysate (HPL). Between 8 and 32 ml primary bone marrow aspirate were loaded into the hollow fiber CES and cultured for 15-27 days. 2-58 million MSC were harvested after primary culture. Further GMP-compliant cultivation of second passage MSC for 13 days led to further 10-20-fold enrichment. Viability, surface antigen expression, differentiation capacity and immunosuppressive function of MSC cultured in the hollow fiber CES were in line with standard criteria for MSC definition. We conclude that MSC can be enriched from primary bone marrow aspirate in a GMP-conform manner within a closed hollow fiber bioreactor and maintain their T lymphocyte inhibitory capacity. Standardized and reliable conditions for large scale MSC expansion pave the way for safe applications in humans in different therapeutic approaches.

  15. Effect of pimecrolimus vs. corticosteroids on murine bone marrow-derived dendritic cell differentiation, maturation and function.

    Science.gov (United States)

    Krummen, Mathias B W; Varga, Georg; Steinert, Meike; Stuetz, Anton; Luger, Thomas A; Grabbe, Stephan

    2006-01-01

    Pimecrolimus (SDZ ASM981) is a non-steroid member of calcineurin inhibitors recently developed for the treatment of inflammatory skin diseases. In this study, we compared the effect of pimecrolimus and corticosteroids on the differentiation, maturation and function of murine bone marrow-derived dendritic cells (BM-DC). We added pimecrolimus at concentrations of 5-500 ng/ml or 0.5 ng/ml mometasone furoate at different timepoints to the BM-DC culture and checked (i) the number of matured cells, (ii) the expression of activation markers, (iii) the release of cytokines and (iv) the stimulatory capacity of the resulting BM-DC in vivo. Even at the highest concentration, pimecrolimus treatment resulted in only modest effects. In the pimecrolimus-treated culture, we observed a decrease in the numbers of matured cells but no significant effects on the expression of activation markers. The release of some inflammatory cytokines was reduced, but the stimulatory capacity in vivo was not affected. In contrast, mometasone furoate has pronounced effects on BM-DC at a concentration ten to 1000 times lower than those used with pimecrolimus. Furthermore, topical treatment of mice with clobetasole cream 0.05% resulted in almost complete depletion of splenic DC and a severe hyposplenia, while high-dose oral pimecrolimus treatment did not show any effects on the spleen or on splenic DC. These results support that pimecrolimus, unlike corticosteroids, has little effects on dendritic cells. To the best of our knowledge, this is the first study of this type with use of BM-DC.

  16. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  17. Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation.

    Directory of Open Access Journals (Sweden)

    Ke Yan

    Full Text Available Many studies have shown that microglia in the activated state may be neurotoxic. It has been proven that uncontrolled or over-activated microglia play an important role in many neurodegenerative disorders. Bone marrow-derived mesenchymal stem cells (BMSCs have been shown in many animal models to have a therapeutic effect on neural damage. Such a therapeutic effect is attributed to the fact that BMSCs have the ability to differentiate into neurons and to produce trophic factors, but there is little information available in the literature concerning whether BMSCs play a therapeutic role by affecting microglial activity. In this study, we triggered an inflammatory response situation in vitro by stimulating microglia with the bacterial endotoxin lipopolysaccharide (LPS, and then culturing these microglia with BMSC-conditioned medium (BMSC-CM. We found that BMSC-CM significantly inhibited proliferation and secretion of pro-inflammatory factors by activated microglia. Furthermore, we found that the phagocytic capacity of microglia was also inhibited by BMSC-CM. Finally, we investigated whether the induction of apoptosis and the production of nitric oxide (NO were involved in the inhibition of microglial activation. We found that BMSC-CM significantly induced apoptosis of microglia, while no apoptosis was apparent in the LPS-stimulated microglia. Our study also provides evidence that NO participates in the inhibitory effect of BMSCs. Our experimental results provide evidence that BMSCs have the ability to maintain the resting phenotype of microglia or to control microglial activation through their production of several factors, indicating that BMSCs could be a promising therapeutic tool for treatment of diseases associated with microglial activation.

  18. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  19. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  20. Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kalomoiris, Stefanos; Cicchetto, Andrew C; Lakatos, Kinga; Nolta, Jan A; Fierro, Fernando A

    2016-09-01

    Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888666

  1. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands

    Institute of Scientific and Technical Information of China (English)

    CAI Sa; PAN Yu; HAN Bing; SUN Tong-zhu; SHENG Zhi-yong; FU Xiao-bing

    2011-01-01

    Background Patients with severe full-thickness burn injury suffer from their inability to maintain body temperature through perspiration because the complete destructed sweat glands can not be regenerated. Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an ideal stem-cell source for cell therapy because of their easy purification and multipotency. In this study, we attempted to induce human BM-MSCs to differentiate into sweat gland cells for sweat gland regeneration through ectodysplasin (EDA) gene transfection. Methods The dynamic expression of EDA and EDA receptor (EDAR) were firstly observed in the sweat gland formation during embryological development. After transfection with EDA expression vector, human BM-MSCs were transplanted into the injured areas of burn animal models. The regeneration of sweat glands was identified by perspiration test and immunohistochemical analysis. Results Endogenous expression of EDA and EDAR correlated with sweat gland development in human fetal skin. After EDA transfection, BM-MSC acquired a sweat-gland-cell phenotype, evidenced by their expression of sweat gland markers by flow cytometry analysis. Immunohistochemical staining revealed a markedly contribution of EDA-transfected BM-MSCs to the regeneration of sweat glands in the scalded paws. Positive rate for perspiration test for the paws treated with EDA-transfected BM-MSCs was significantly higher than those treated with BM-MSCs or EDA expression vector (P <0.05). Conclusions Our results confirmed the important role of EDA in the development of sweat gland. BM-MSCs transfected with EDA significantly improved the sweat-gland regeneration. This study suggests the potential application of EDA-modified MSCs for the repair and regeneration of injured skin and its appendages.

  2. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.

    Science.gov (United States)

    Piryaei, Abbas; Soleimani, Masoud; Heidari, Mohammad Hassan; Saheli, Mona; Rohani, Razieh; Almasieh, Mohammadali

    2015-05-01

    Adult cardiomyocytes lack the ability to proliferate and are unable to repair damaged heart tissue, therefore differentiation of stem cells to cardiomyocytes represents an exceptional opportunity to study cardiomyocytes in vitro and potentially provides a valuable source for replacing damaged tissue. However, characteristic maturity of the in vitro differentiated cardiomyocytes and methods to achieve it are yet to be optimized. In this study, differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs) into cardiomyocytes is accomplished and the process investigated ultrastructurally. The hBM-MSCs were alternatively treated with 5 μM of 5-azacytidine (5-aza) for 8 weeks resulting in differentiation to cardiomyocytes. Expressions of cardiomyocyte-specific genes [cardiac α-actinin, cardiac β-myosin heavy chain (MHC) and connexin-43] and proteins (cardiac α-actinin, cardiac troponin and connexin-43) were confirmed in a time-dependent manner from the first to the fifth weeks post-induction. Ultrastructural maturation of hBM-MSCs-derived cardiomyocyte (MSCs-CM) corresponded with increase in number and organization of myofilaments in cells over time. Starting from week five, organized myofibrils along with developing sarcomeres were detectable. Later on, MSCs-CM were characterized by the presence of sarcoplasmic reticulum, T-tubules and diads as cardiomyocytes connected to each other by intercalated disc-like structures. Here, we showed the potential of hBM-MSCs as a source for the production of cardiomyocytes and confirmed mature ultrastructural characteristics of these cells using our alternative incubation method. PMID:25573851

  3. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua

    2008-01-01

    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  4. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.

    Science.gov (United States)

    Han, Sufang; Wang, Bin; Li, Xing; Xiao, Zhifeng; Han, Jin; Zhao, Yannan; Fang, Yongxiang; Yin, Yanyun; Chen, Bing; Dai, Jianwu

    2016-07-01

    Accumulating evidence has revealed three-dimensional (3D) culture could better mimic the stem cell niche in vivo in comparison with conventional two-dimensional (2D) culture. In this study, we found that bone marrow derived mesenchymal stem cells (BMSCs) cultured in 3D collagen scaffold (3D BMSCs) exhibited distinctive features including significantly enhancing neurotrophic factor secretions and reducing macrophage activations challenged by lipopolysaccharide (LPS) in vitro. To further evaluate 3D BMSCs' potential benefits to the regeneration of spinal cord injury (SCI), the 3D and 2D BMSCs were respectively implanted in rat hemisected SCI. Compared with 2D cohort, 3D BMSCs transplantation significantly reduced the expressions of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 at 5 days after transplantation, markedly enhanced axonal regeneration, and promoted motor functional recovery during 8 weeks of observation. When Nocodazole was used to depolymerize the cytoskeleton of 3D BMSCs, the changed expressions of neurotrophic factors and inflammatory cytokines were blunted, at least partially. Thus synergistic effects of neuronal protection and immunomodulation of 3D BMSCs may lead to a better functional recovery of SCI and the underlying mechanism may involve the alteration of their cellular morphology because of 3D culture. This study contributes to a better understanding of the cellular characteristics of 3D BMSCs and provides a novel strategy to promote the repair of the injured spinal cord. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1759-1769, 2016. PMID:26990583

  5. Isolation and expression profiling of genes upregulated in bone marrow-derived mononuclear cells of rheumatoid arthritis patients.

    Science.gov (United States)

    Nakamura, Nobuo; Shimaoka, Yasunori; Tougan, Takahiro; Onda, Hiroaki; Okuzaki, Daisuke; Zhao, Hanjun; Fujimori, Azumi; Yabuta, Norikazu; Nagamori, Ippei; Tanigawa, Akie; Sato, Jun; Oda, Takenori; Hayashida, Kenji; Suzuki, Ryuji; Yukioka, Masao; Nojima, Hiroshi; Ochi, Takahiro

    2006-08-31

    We have comprehensively identified the genes whose expressions are augmented in bone marrow-derived mononuclear cells (BMMC) from patients with Rheumatoid Arthritis (RA) as compared with BMMCs from Osteoarthritis (OA) patients, and named them AURA after augmented in RA. Both stepwise subtractive hybridization and microarray analyses were used to identify AURA genes, which were confirmed by northern blot analysis and/or reverse transcription polymerase chain reaction (RT-PCR). We also assessed their expression levels in individual patients by quantitative real-time RT-PCR. Of 103 AURA genes we have identified, the mRNA levels of the following 10 genes, which are somehow related to immune responses, were increased in many of the RA patients: AREG (=AURA9), FK506-binding protein 5 (FKBP5 = AURA45), C-type lectin superfamily member 9 (CLECSF9 = AURA24), tyrosylprotein sulfotransferase 1 (TPST1 = AURA52), lymphocyte G0/G1 switch gene (G0S2 = AURA8), chemokine receptor 4 (CXCR4 = AURA86), nuclear factor-kappa B (NF-kappaB = AURA25) and two genes of unknown function (FLJ11106 = AURA1, BC022398 = AURA2 and XM_058513 = AURA17). Since AREG was most significantly increased in many of the RA patients, we subjected it to further analysis and found that AREG-epidermal growth factor receptor signaling is highly activated in synovial cells isolated from RA patients, but not in OA synoviocytes. We propose that the expression profiling of these AURA genes may improve our understanding of the pathogenesis of RA. PMID:17082220

  6. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses.

    Science.gov (United States)

    Bellini, Alberto; Mattoli, Sabrina

    2007-09-01

    Human fibrocytes are mesenchymal progenitors that exhibit mixed morphological and molecular characteristics of hematopoietic stem cells, monocytes and fibroblasts. They likely represent the obligate intermediate stage of differentiation into mature mesenchymal cells of a bone marrow-derived precursor of the monocyte lineage under permissive conditions. On in vitro stimulation with pro-fibrotic cytokines and growth factors, human fibrocytes produce large quantities of extracellular matrix components and further differentiate into cells identical to the contractile myofibroblasts that emerge at the tissue sites during repair processes and in some fibrotic lesions. Studies in various animal models of wound healing or fibrotic diseases have confirmed the ability of fibrocytes to differentiate into mature mesenchymal cells in vivo and have suggested a causal link between fibrocyte accumulation and ongoing tissue fibrogenesis or vascular remodeling in response to tissue damage or hypoxia. Fibrocytes synthesizing new collagen or acquiring myofibroblast markers have been detected in human hypertrophic scars, in the skin of patients affected by nephrogenic systemic fibrosis, in human atherosclerotic lesions, and in pulmonary diseases characterized by repeated cycles of inflammation and repair, like asthma. The presence of fibrocyte-like cells has been reported in human chronic pancreatitis and chronic cystitis. Similar cells also populate the stroma surrounding human benign tumors. The available data indicate that human fibrocytes serve as a source of mature mesenchymal cells during reparative processes and in fibrotic disorders or stromal reactions predominantly associated with a persistent inflammatory infiltrate or with the selective recruitment of monocytes induced by ischemic changes and tumor development. A deeper understanding of the mechanisms involved in fibrocyte differentiation in these pathological conditions may lead to the development of novel therapies for

  7. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  8. Therapeutic Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Models of Pulmonary and Extrapulmonary Acute Lung Injury.

    Science.gov (United States)

    Liu, Ling; He, Hongli; Liu, Airan; Xu, Jingyuan; Han, Jibin; Chen, Qihong; Hu, Shuling; Xu, Xiuping; Huang, Yingzi; Guo, Fengmei; Yang, Yi; Qiu, Haibo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapy for acute lung injury (ALI). However, whether the same MSC treatments possess similar potential for different ALI models is not fully clear. The present study evaluated the distribution and therapeutic effects of intravenous MSC administration for the treatment of intratracheal lipopolysaccharide (LPS)-induced intrapulmonary ALI and intravenous LPS/zymosan-induced extrapulmonary ALI, matched with lung injury severity, at 30 min and 1, 3, and 7 days. We found that MSC transplantation attenuated lung injury and inhibited lung inflammation in both ALI models. The benefits of MSCs were more significant in the intrapulmonary ALI mice. In vivo and ex vivo fluorescence imaging showed that MSCs primarily homed into the lung. However, more MSCs were recruited into the lungs of the intrapulmonary ALI mice than those of the extrapulmonary ALI mice over the time course. A few MSCs were also detected in the liver and spleen at days 3 and 7. In addition, the two ALI models showed different extrapulmonary organ dysfunction. A lower percentage of cell apoptosis and SDF-1α levels was found in the liver and spleen of the intrapulmonary ALI mice than in those of the extrapulmonary ALI mice. These results suggested that the two ALI models were accompanied with different degrees of extrapulmonary organ damage, which resulted in differences in the trafficking and accumulation of MSCs to the injured lung and consequently accounted for different therapeutic effects of MSCs for lung repair in the two ALI models. These data suggest that intravenous administration of MSCs has a greater potential for the treatment of intrapulmonary ALI than extrapulmonary ALI matched with lung injury severity; these differences were due to more recruitment of MSCs in the lungs of intrapulmonary ALI mice than those of extrapulmonary ALI mice. This finding may contribute to the clinical use of MSCs for the treatment of ALI. PMID

  9. Engineered myocardial tissues constructed in vivo using cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells in rats

    Directory of Open Access Journals (Sweden)

    Xing Yujie

    2012-01-01

    Full Text Available Abstract Background To explore the feasibility of constructing engineered myocardial tissues (EMTs in vivo, using polylactic acid -co-glycolic acid (PLGA for scaffold and cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells (BMMSCs for seeded cells. Methods BMMSCs were isolated from femur and tibia of Sprague-Dawley (SD rats by density-gradient centrifugation. The third passage cells were treated with 10 μmol/L 5-azacytidine (5-aza and 0.1 μmol/L angiotensin II (Ang II for 24 h, followed by culturing in complete medium for 3 weeks to differentiated into cardiomyocyte-like cells. The cardiomyocyte-like cells were seeded into PLGA scaffolds to form the grafts. The grafts were cultured in the incubator for three days and then implanted into the peritoneal cavity of SD rats. Four weeks later, routine hematoxylin-eosin (HE staining, immunohistochemical staining for myocardium-specific cardiac troponin I (cTnI, scanning electron microscopy and transmission electron microscopy were used to analyze the morphology and microconstruction of the EMTs in host rats. Results HE staining showed that the cardiomyocyte-like cells distributed equally in the PLGA scaffold, and the nuclei arranged in the spindle shape. Immunohistochemical staining revealed that majority of engrafted cells in the PLGA -Cardiomyocyte-like cells group were positive for cTnI. Scanning electron microscopy showed that the inoculated cells well attached to PLGA and grew in 3 dimensions in construct. Transmission electron microscopy showed that the EMTs contained well arranged myofilaments paralleled to the longitudinal cell axis, the cells were rich in endoplasmic reticulum and mitochondria, while desmosomes, gap junction and Z line-like substances were also can be observed as well within the engrafted cells. Conclusion We have developed an in vivo method to construct engineered myocardial tissue. The in vivo microenvironment helped engrafted cells/tissue survive and

  10. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Bita; Kong, Yen P. [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Kaigler, Darnell [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109 (United States); Putnam, Andrew J., E-mail: putnam@umich.edu [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.

  11. Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    Science.gov (United States)

    Granchi, Donatella; Ochoa, Gorka; Leonardi, Elisa; Devescovi, Valentina; Baglìo, Serena Rubina; Osaba, Lourdes; Baldini, Nicola; Ciapetti, Gabriela

    2010-06-01

    Bone marrow is commonly used as a source of adult multipotent mesenchymal stem cells (MSCs), defined for their ability to differentiate in vitro into multiple lineages. The ex vivo-expanded MSCs are currently being evaluated as a strategy for the restoration of function in damaged skeletal tissue, both in cell therapy and tissue engineering applications. The aim of this study was to define gene expression patterns underlying the differentiation of MSCs into mature osteoblasts during the expansion in vitro, and to explore a variety of cell functions that cannot be easily evaluated using morphological, cytochemical, and biochemical assays. Cell cultures were obtained from bone marrow samples of six individuals undergoing total hip replacement, and a large-scale transcriptome analysis, using Affymetrix HG-U133A Plus 2.0 array (Affymetrix((R)), Santa Clara, CA), was performed at the occurrence of specific events, including the appearance of MSC surface markers, formation of colonies, and deposition of mineral nodules. We focused our attention on 213 differentially upregulated genes, some belonging to well-known pathways and some having one or more Gene Ontology annotations related to bone cell biology, including angiogenesis, bone-related genes, cell communication, development and morphogenesis, transforming growth factor-beta signaling, and Wnt signaling. Twenty-nine genes, whose role in bone cell pathophysiology has not been described yet, were found. In conclusion, gene expression patterns that characterize the early, intermediate, and late phases of the osteogenic differentiation process of ex vivo-expanded MSCs were defined. These signatures represent a useful tool to monitor the osteogenic process, and to analyze a broad spectrum of functions of MSCs cultured on scaffolds, especially when the constructs are conceived for releasing growth factors or other signals to promote bone regeneration.

  12. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, Eamon J.; Buckley, Conor T. [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland); Kelly, Daniel J., E-mail: kellyd9@tcd.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland)

    2012-01-06

    chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.

  13. Mouse bone marrow-derived dendritic cells can phagocytize the Sporothrix schenckii, and mature and activate the immune response by secreting interleukin-12 and presenting antigens to T lymphocytes.

    Science.gov (United States)

    Kusuhara, Masahiro; Qian, Hua; Li, Xiaoguang; Tsuruta, Daisuke; Tsuchisaka, Atsunari; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-05-01

    In sporotrichosis, dermal dendritic cells were considered to participate in induction of the immune responses against Sporothrix schenckii infection. However, it is still unclear whether and how dermal dendritic cells were involved in the progress. To clarify the pathogenic role of dermal dendritic cells (DC) in sporotrichosis, we examined the phagocytosis, maturation stages, cytokine production and antigen-presenting ability of mouse bone marrow-derived DC after stimulation with S. schenckii. By analysis of flow cytometry, electron microscope and confocal microscope, mouse bone marrow-derived DC were proved to be able to phagocytize the S. schenckii. The increased expression of CD40, CD80 and CD86 on the surface of S. schenckii-pulsed mouse bone marrow-derived DC was detected by flow cytometer, indicating that the S. schenckii-pulsed mouse bone marrow-derived DC underwent the maturation program. The secretory enhancement of interleukin (IL)-12, but not IL-4, was found in S. schenckii-pulsed mouse bone marrow-derived DC, suggesting the possible activation of T-helper 1 prone immune responses. Furthermore, S. schenckii-pulsed mouse bone marrow-derived DC were demonstrated to be capable of inducing the proliferation of T lymphocytes from BALB/c mice that were pre-sensitized with S. schenckii. Together, all the results implied that dermal DC may participate in the induction of immune responses against S. schenckii infection in sporotrichosis.

  14. Bone marrow reconversion – imaging of physiological changes in bone marrow

    International Nuclear Information System (INIS)

    Reconversion of bone marrow is a reverse process of natural replacement of red marrow by yellow marrow. The occurrence of reconversion can be misleading and challenging in interpretation of musculoskeletal system imaging. Changes of signal intensity in bone marrow are frequently observed in radiological routine and its diversity can cause a suspicion of pathologic findings. Therefore, the knowledge about distribution of red and yellow bone marrow depending on age, concomitant diseases and presentation of the patient are essential for MR image interpretation

  15. [The modulation of low-level laser on polarization of mouse bone marrow-derived macrophages].

    Science.gov (United States)

    Dai, Chen; Song, Jiwei; Liang, Zhuowen; Zhang, Qian; Zhang, Kun; Wang, Zhe; Hu, Xueyu

    2016-08-01

    Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification. After lipopolysaccharide-γ interferon (LPS-IFN-γ) induced polarization status in the macrophages, the mRNA expressions of inducible nitric oxide synthase (iNOS), arginase 1 (Arg1) and CD86 were detected by reverse transcription PCR, and the protein expressions of iNOS and Arg1 were tested by Western blotting. Thereafter, the M1 macrophages were exposed to 810 nm low-level laser of (1, 2, 3, 4) J/cm(2), and then the cell viability was evaluated by MTT assay; the expressions of iNOS and Arg1 were observed by immunofluorescent cytochemical staining; the mRNA and protein levels of iNOS and Arg1 were studied by reverse transcription PCR and Western blotting. Results Flow cytometry showed that the percentage of F4/80 positive cells cultured with M-CSF conditioned medium was 99.9%. The mRNA and protein levels of iNOS and CD86 in macrophages were both significantly raised after induction by LPS-IFN-γ. Compared with the control cells, the viability of M1 cells significantly decreased when the energy of the low-level laser exposure was 4 J/cm(2), while the viability remained unchanged when the energy was 1, 2 or 3 J/cm(2). Immunocytochemistry revealed that the percentage of Arg1 positive cells that represent M2 macrophages was not significantly different from the control group when the irradiation dose was 1 or 2 J/cm(2), however, the Arg1 positive cells significantly increased and the iNOS positive cells that represent M1 macrophages significantly decreased when the irradiation dose was 3 or 4 J/cm(2). When the irradiation dose was 1 or 2 J/cm(2), the mRNA and protein levels of iNOS and Arg1 remained unchanged

  16. Effect of growth and differentiation factor 6 on the tenogenic differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    CHAI Wei; NI Ming; RUI Yun-feng; ZHANG Kai-yi; ZHANG Qiang; XU Liang-liang; CHAN Kai-ming

    2013-01-01

    Background Recent studies showed that bone marrow-derived mesenchymal stem cells (BMSCs) had risk of ectopic bone formation.In this study,we aimed to investigate the effect of growth and differentiation factor 6 (GDF-6) on the tenogenic differentiation of BMSCs in vitro,and then combined with small intestine submucous (SIS) to promote tendon regeneration in vivo.Methods The BMSCs were isolated from the green fluorescent protein (GFP) rats,and were characterized by multi-differentiation assays following our previous study protocol.BMSCs cultured with different concentrations of GDF-6,without growth factors served as control.After 2 weeks,mRNA expression and protein expression of tendon specific markers were examined by qRT-PCR and Western blotting to define an optimal concentration of GDF-6.Mann-Whitney U-test was used to compare the difference in relative mRNA expression among all groups; P ≤0.05 was regarded as statistically significant.The GDF-6 treated BMSCs combined with SIS were implanted in nude mice and SD rat acute patellar tendon injury model,the BMSCs combined with SIS served as control.After 12 and 4 weeks in nude mice and tendon injury model,the samples were collected for histology.Results After the BMSCs were treated with different concentration of GDF-6 for 2 weeks,the fold changes of the specific markers (Tenomodulin and Scleraxis) mRNA expression were significantly higher in GDF-6 (20 ng/ml) group (P ≤0.05),which was also confirmed by Western blotting result.The BMSCs became parallel in orientation after GDF-6 (20 ng/ml) treatment,but the BMSCs in control group were randomly oriented.The GDF-6 (20 ng/ml) treated BMSCs were combined with SIS,and were implanted in nude mice for 12 weeks,the histology showed neo-tendon formation.In the SD rat patellar tendon window injury model,the histology also indicated the GDF-6 (20 ng/ml) treated BMSCs combined with SIS could promote tendon regeneration.Conclusions GDF-6 has tenogenic effect on the tenogenic

  17. Dynamic scintigraphy of bone and bone marrow in multiple myeloma patients with bone-marrow transplants

    International Nuclear Information System (INIS)

    Purpose: To determine whether dynamic registration at bone and bone-marrow scintigraphy produces additional information compared to subsequent static registrations of bone-marrow transplants in multiple myeloma patients. Material and Methods: In a prospective study, 8 dynamic bone and 6 dynamic bone-marrow scintigraphies were performed in 10 patients. The dynamic scintigraphies were compared with conventional radiography, MR images, and static scintigraphies of bone and bone marrow. Results: No additional information was revealed by the dynamic registration method; on the contrary, 4 of the 8 known lesions were not discerned at dynamic registration. An incidental observation was that the time-activity curves of both radiopharmaceuticals had a specific pattern. (orig.)

  18. MR appearances of bone marrow in children following bone marrow transplantation

    International Nuclear Information System (INIS)

    Two cases are presented of children who demonstrated complete absence of bone marrow signal on MR imaging of the spine following bone marrow transplantation. The possible causes for these appearances are discussed. (orig.)

  19. Increased stromal-cell-derived factor 1 enhances the homing of bone marrow derived mesenchymal stem cells in dilated cardiomyopathy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-li; Michael Fu; ZHANG Hai-feng; LI Xin-li; DI Ruo-min; YAO Wen-ming; LI Dian-fu; FENG Jian-lin; HUANG Jun; CAO Ke-jiang

    2010-01-01

    Background Stem cell transplantation has been shown to have beneficial effects on dilated cardiomyopathy. However,mechanism for stem cell homing to cardiac tissue in dilated cardiomyopathy has not yet been elucidated.Methods Mesenchymal stem cells were obtained from rat bone marrow, expanded in vitro, and labeled with 99mTc.Cardiomyopathy model was induced by doxorubicin in rats. 99mTc labeled cells were infused into the left ventricles in cardiomyopathy and control rats. Sixteen hours after injection, animals were sacrificed and different tissues were harvested to measure specific radioactivity. By use of real-time polymerase chain reaction and immunohistochemistry,Mrna and protein expressions for stromal-cell-derived factor 1 in cardiac tissue were measured.Results Labeling efficiency of mesenchymal stem cells was (70.0±11.2)%. Sixteen hours after mesenchymal stem cell transplantation, the heart-to-muscle radioactivity ratio was increased significantly in cardiomyopathy hearts as compared to control hearts. Both Mrna and rotein expressions of stromal-cell-derived factor 1 were up-regulated in cardiomyopathy hearts as compared with control hearts.Conclusion In dilated cardiomyopathy induced by doxorubicin up-regulated expression of stromal-cell-derived factor 1in heart may induce mesenchymal stem cells home to the heart.

  20. Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Gangyong Zhao; Xianjiang Kang; Likai Su

    2012-01-01

    In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.

  1. Bone marrow aluminium storage in renal failure.

    OpenAIRE

    Kaye, M.

    1983-01-01

    Using the staining method for aluminium with the ammonium salt of aurine tricarboxylic acid, aluminon, 18 patients with end stage renal disease gave positive reactions in iliac crest bone biopsies and 11 of these had positive staining in the bone marrow. In one the marrow was positive and the bone negative. The marrow reaction is putatively regarded as caused by aluminium storage in unidentified cells, possibly of the macrophage system which are strongly fluorescent when examined after prior ...

  2. Preservation of Bone Marrow for Clinical Use

    International Nuclear Information System (INIS)

    The author describes the results of many years' research into the problems of obtaining and preserving bone marrow in the quantities required for clinical use. Particular attention is paid to the preservation and long-term storage of bone marrow at ultra- low temperatures (-196°C), its separation from the protective medium and methods of determining whether the biological functions of thawed bone marrow have been impaired. (author)

  3. Diabetes mellitus induces bone marrow microangiopathy

    OpenAIRE

    Oikawa, Atsuhiko; Siragusa, Mauro; Quaini, Federico; Mangialardi, Giuseppe; Katare, Rajesh G.; Caporali, Andrea; van Buul, Jaap D.; van Alphen, Floris P. J.; Graiani, Gallia; Spinetti, Gaia; Kraenkel, Nicolle; Prezioso, Lucia; Emanueli, Costanza; Madeddu, Paolo

    2009-01-01

    The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis.

  4. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    Science.gov (United States)

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  5. Phenotypic and functional properties of murine thymocytes. II. Quantitation of host- and donor-derived cytolytic T lymphocyte precursors in regenerating radiation bone marrow chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Ceredig, R.; McDonald, H.R.

    1982-02-01

    Thymocytes from radiation bone marrow chimeras, in which donor bone marrow and irradiated recipient differed at the Thy-1 locus, were stained by indirect immunofluorescence with monoclonal anti-Thy-1 antibodies and analyzed by flow microfluorometry (FMF). Kinetic studies indicated an early appearance of host-derived (CBA, Thy-1.2/sup +/) thymocytes, which reaches maximum number of 10 to 20 x 10/sup 6/ cells at 12 to 16 days after bone marrow reconstitution. Donor-derived (AKR, Thy-1.1/sup +/) cells were not detectable until 10 to 12 days after reconstitution; subsequently, they increased exponentially in number until 28 days, when they accounted for essentially all cells in the thymus (50 x 10/sup 6/). Concomitant with the appearance and disappearance of host-derived cells was a change in their Thy-1 surface phenotype. In particular, the proportion of host cells having a ''mature'' phenotype (weakly Thy-1.2 staining) increased progressively with time after irradiation. Functional studies using a sensitive mixed leukocyte microculture system to quantitate cytolytic T lymphocyte precursors (CTL-P) were also carried out in regenerating chimeric thymuses. Initially, the regenerating thymus contained few CTL-P, but by 4 wk after reconstitution, frequencies similar to control adult thymuses were obtained. Analysis of the CTL-P content of host and donor-derived subpopulations, separated either by appropriate anti-Thy-1 antibody plus complement or by direct cell sorting, indicated that both host- and donor-derived cells contained appreciable numbers of CTL-P. Furthermore, increases in CTL-P frequency of both host and donor subpopulations correlated with changes in their surface Thy-1 phenotype.

  6. Effect of AGM and fetal liver-derived stromal cell lines on globin expression in adult baboon (P. anubis bone marrow-derived erythroid progenitors.

    Directory of Open Access Journals (Sweden)

    Donald Lavelle

    Full Text Available This study was performed to investigate the hypothesis that the erythroid micro-environment plays a role in regulation of globin gene expression during adult erythroid differentiation. Adult baboon bone marrow and human cord blood CD34+ progenitors were grown in methylcellulose, liquid media, and in co-culture with stromal cell lines derived from different developmental stages in identical media supporting erythroid differentiation to examine the effect of the micro-environment on globin gene expression. Adult progenitors express high levels of γ-globin in liquid and methylcellulose media but low, physiological levels in stromal cell co-cultures. In contrast, γ-globin expression remained high in cord blood progenitors in stromal cell line co-cultures. Differences in γ-globin gene expression between adult progenitors in stromal cell line co-cultures and liquid media required cell-cell contact and were associated with differences in rate of differentiation and γ-globin promoter DNA methylation. We conclude that γ-globin expression in adult-derived erythroid cells can be influenced by the micro-environment, suggesting new potential targets for HbF induction.

  7. The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Antonio Carrasco-Yalan

    2011-04-01

    Full Text Available Mesenchymal stem cells (MSCs are of great interest for their potential use in cellular therapies. To define the population more precisely, diverse surface markers have been used. We propose here to use CD271 as the sole marker for MSCs in fresh bone marrow. We compared CD271+ populations to the presence or absence of five defined markers for MSCs: CD90+, CD105+, CD45-, CD34- and CD79. The correlations between markers were evaluated and analyzed with a Pearson's correlation test. We found that the average percentage of cells expressing the combination of markers CD90+, CD105+, CD45-, CD34- and CD79- was 0.54%, and that the average percentage average of CD271+ cells was 0.53%. The results were significant (p<0.05. The exclusive use of CD271 as a marker for MSCs from fresh samples of bone marrow appears to be highly selective. Using CD271 as the sole identification marker for MSCs could reduce costs and accelerate the process of identifying MSCs for the field of cellular therapy.

  8. Starvation marrow – gelatinous transformation of bone marrow

    Directory of Open Access Journals (Sweden)

    Eric Osgood

    2014-09-01

    Full Text Available Gelatinous bone marrow transformation (GMT, also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management.

  9. The effect of magnetic field during freezing and thawing of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Shikata, H; Kaku, M; Kojima, S-I; Sumi, H; Kojima, S-T; Yamamoto, T; Yashima, Y; Kawata, T; Tanne, K; Tanimoto, K

    2016-08-01

    Previous studies showed that a programmed freezer with magnetic field can maintain a high survival rate of mesenchymal stem cells (MSCs). The purpose of this study was to evaluate the influences of magnetic field during freezing and thawing on the survival of MSCs isolated from rat bone marrow. The cells were frozen by a normal programmed freezer or a programmed freezer with magnetic field (CAS-LAB1) and cryopreserved for 7 days at -150 °C. Then, the cells were thawed in the presence or absence of magnetic field. Immediately after thawing, the number of surviving or viable cells was counted. The cell proliferation was examined after 1-week culture. Cryopreserved MSCs which were frozen by a normal freezer or a CAS freezer were transplanted into bone defects artificially made in calvaria of 4-week-old rats. Non-cryopreserved MSCs were used as a control. The rats were sacrificed at 8, 16, or 24 weeks after transplantation and the bone regeneration area was measured. Proliferation rates of MSCs after 1 week were significantly higher in the CAS-freezing-thawing group than in the CAS-freezing group. The extent of new bone formation in the CAS-freezing-thawing group tended to be larger than in CAS-freezing group 24 weeks after transplantation. These results suggest that a magnetic field enhances cell survival during thawing as well as freezing. PMID:27346603

  10. Magnetic resonance imaging of the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Baur-Melnyk, Andrea (ed.) [Klinikum der Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2013-08-01

    The first book devoted to MRI of the bone marrow. Describes the MRI appearances of normal bone marrows and the full range of bone marrow disorders. Discusses the role of advanced MRI techniques and contrast enhancement. On account of its unrivalled imaging capabilities and sensitivity, magnetic resonance imaging (MRI) is considered the modality of choice for the investigation of physiologic and pathologic processes affecting the bone marrow. This book describes the MRI appearances of both the normal bone marrow, including variants, and the full range of bone marrow disorders. Detailed discussion is devoted to malignancies, including multiple myeloma, lymphoma, chronic myeloproliferative disorders, leukemia, and bone metastases. Among the other conditions covered are benign and malignant compression fractures, osteonecrosis, hemolytic anemia, Gaucher's disease, bone marrow edema syndrome, trauma, and infective and non-infective inflammatory disease. Further chapters address the role of MRI in assessing treatment response, the use of contrast media, and advanced MRI techniques. Magnetic Resonance Imaging of the Bone Marrow represents an ideal reference for both novice and experienced practitioners.

  11. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Osch, G.J.V.M. van; Dolder, J. van den; Jansen, J.A.

    2008-01-01

    The aim of this study was to compare the ability of hard tissue regeneration of four types of stem cells or precursors under both in vitro and in vivo situations. Primary cultures of rat bone marrow, rat dental pulp, human bone marrow, and human dental pulp cells were seeded onto a porous ceramic sc

  12. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells in a swine hemi-facial allotransplantation model.

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    Full Text Available BACKGROUND: In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs, combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA model. METHODOLOGY/PRINCIPAL FINDINGS: Outbred miniature swine underwent hemi-facial allotransplantation (day 0. Group-I (n = 5 consisted of untreated control animals. Group-II (n = 3 animals received MSCs alone (given on days -1, +1, +3, +7, +14, and +21. Group-III (n = 3 animals received CsA (days 0 to +28. Group-IV (n = 5 animals received CsA (days 0 to +28 and MSCs (days -1, +1, +3, +7, +14, and +21. The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001. Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3(+T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. CONCLUSIONS: These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not

  13. Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells generated in vitro from murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Júlia Kurkó

    Full Text Available Myeloid-derived suppressor cells (MDSCs are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF of mice with proteoglycan (PG-induced arthritis (PGIA, a T cell-dependent autoimmune model of rheumatoid arthritis (RA. However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA.Murine bone marrow (BM cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF, interleukin-6 (IL-6, and granulocyte colony-stimulating factor (G-CSF. The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined.BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels.Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in MDSCs could improve the

  14. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture.

    Science.gov (United States)

    Muir, Peter; Hans, Eric C; Racette, Molly; Volstad, Nicola; Sample, Susannah J; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L; Bloom, Debra D; Bleedorn, Jason A; Hao, Zhengling; Amene, Ermias; Suresh, M; Hematti, Peiman

    2016-01-01

    Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response

  15. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Directory of Open Access Journals (Sweden)

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  16. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  17. Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart

    Institute of Scientific and Technical Information of China (English)

    王建安; 李长岭; 樊友启; 何红; 孙勇

    2004-01-01

    Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=17). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn Ⅰ) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)]. Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21cm and 0.74±0.13cm, and remarkably lower than those of the model group, which were 1.64±0.14cm and 1.19±0.12cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group, which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%), the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.

  18. Prognostic value of circulating VEGFR2+ bone marrow-derived progenitor cells in patients with advanced cancer.

    Science.gov (United States)

    Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise

    2012-06-01

    We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. PMID:22370181

  19. Allograftic bone marrow-derived mesenchymal stem cells transplanted into heart infarcted model of rabbit to renovate infarcted heart

    Institute of Scientific and Technical Information of China (English)

    王建安; 李长岭; 樊友启; 何红; 孙勇

    2004-01-01

    Objective: To investigate the directed transplantation of allograftic bone marrow-derived mesenchymal stem cells (MSCs) in myocardial infarcted (MI) model rabbits. Materials and Methods: Rabbits were divided into 3 groups, heart infarcted model with MSCs transplanted treatment (MSCs group, n=12), heart infarcted model with PBS injection (control group, n=20), sham operation with PBS injection (sham group, n=l 7). MSCs labelled by BrdUrd were injected into the MI area of the MSCs group. The same volume of PBS was injected into the MI area of the control group and sham group. The mortality, LVIDd, LVIDs and LVEF Of the two groups were compared 4 weeks later. Tropomyosin inhibitory component (Tn I) and BrdUrd immunohistochemistry identified the engrafted cells 4 weeks after transplantation. Result: The mortality of the MSCs group was 16.7% (2/12), and remarkably lower than the control group's mortality [35% (7/20) (P<0.05)].Among the animals that survived for 4 weeks, the LVIDd and LVIDs of the MSCs group after operation were 1.17±0.21 cm and 0.74±0.13 cm, and remarkably lower than those of the model group, which were 1.64±0.14 cm and 1.19±0.12 cm (P<0.05); the LVEF of the MSCs group after operation was 63±6%, and remarkably higher than that of the model group,which was 53±6% (P<0.05). Among the 10 cases of animals that survived for 4 weeks in the MSCs group, in 8 cases (80%),the transplanted cells survived in the non MI, MI region and its periphery, and even farther away; part of them differentiated into cardiomyocytes; in 7 cases (70%), the transplanted cells participated in the formation of blood vessel tissue in the MI region. Conclusion: Transplanted allograftic MSCs can survive and differentiate into cardiomyocytes, form the blood vessels in the MI region. MSCs transplantation could improve the heart function after MI.

  20. Autologous Bone Marrow-Derived Mesenchymal Stem Cells Modulate Molecular Markers of Inflammation in Dogs with Cruciate Ligament Rupture

    Science.gov (United States)

    Muir, Peter; Hans, Eric C.; Racette, Molly; Volstad, Nicola; Sample, Susannah J.; Heaton, Caitlin; Holzman, Gerianne; Schaefer, Susan L.; Bloom, Debra D.; Bleedorn, Jason A.; Hao, Zhengling; Amene, Ermias; Suresh, M.; Hematti, Peiman

    2016-01-01

    Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the contralateral ACL is also common. This suggests that both genetic and environmental factors may increase ligament rupture risk. We investigated use of bone marrow-derived mesenchymal stem cells (BM-MSCs) to reduce systemic and stifle joint inflammatory responses in dogs with CR. Twelve dogs with unilateral CR and contralateral stable partial CR were enrolled prospectively. BM-MSCs were collected during surgical treatment of the unstable CR stifle and culture-expanded. BM-MSCs were subsequently injected at a dose of 2x106 BM-MSCs/kg intravenously and 5x106 BM-MSCs by intra-articular injection of the partial CR stifle. Blood (entry, 4 and 8 weeks) and stifle synovial fluid (entry and 8 weeks) were obtained after BM-MSC injection. No adverse events after BM-MSC treatment were detected. Circulating CD8+ T lymphocytes were lower after BM-MSC injection. Serum C-reactive protein (CRP) was decreased at 4 weeks and serum CXCL8 was increased at 8 weeks. Synovial CRP in the complete CR stifle was decreased at 8 weeks. Synovial IFNγ was also lower in both stifles after BM-MSC injection. Synovial/serum CRP ratio at diagnosis in the partial CR stifle was significantly correlated with development of a second CR. Systemic and intra-articular injection of autologous BM-MSCs in dogs with partial CR suppresses systemic and stifle joint inflammation, including CRP concentrations. Intra-articular injection of autologous BM-MSCs had profound effects on the correlation and conditional dependencies of cytokines using causal networks. Such treatment effects could ameliorate risk of a second CR by modifying the stifle joint inflammatory response

  1. Brain-derived neurotrophic factor genes transfect rat bone marrow mesenchymal stem cells based on cationic polymer vector

    Institute of Scientific and Technical Information of China (English)

    Zunsheng Zhang; Kun Zan; Yonghai Liu; Xia Shen

    2009-01-01

    BACKGROUND: Gene therapy is an effective expression of genes within target cells after transferring exogenous target genes. Both vector selection and transfection method are important factors for gene transfection. An ideal gene vector is required for a high transfusion of target gene and an exact introduction of target gene into specific target cells so as to express gene products. OBJECTIVE: To study the expression of mRNA and protein after transfecting rat bone marrow mesenchymal stem cells (BMSCs) with brain-derived neurotrophic factor (BDNF) genes based on cationic polymer vector. DESIGN, TIME AND SETTING: A randomized, controlled in vitro study using gene engineering, performed at the Neurobiology Laboratory, Xuzhou Medical College between October 2007 and April 2008. MATERIALS: PcDNA3.1 BDNF was obtained from Youbiai Biotechnological Company, Beijing and cationic polymer vector used was the SofastTM gene transfection reagent that was made by Taiyangma Biotechnological Co., Ltd., Xiamen. METHODS: BMSCs extracted from six Sprague Dawley (SD) rats aged 1 month were isolated and cultured in vitro. Third passage BMSCs were inoculated on a 6-well culture plate at the density of 1×106 cells/L. At about 80% confluence, BMSCs were transfected with PcDNA3.1-BDNF (2 μg) combined with SofastTM gene transfection reagent (6 μg) (BDNF group) or with PcDNA3.1 (2 μg) combined with SofastTM gene transfection reagent (6 μg) (blank vector group). Cells that were not transfected with any reagents but still cultured under primary culture conditions were used as a non-transfection group.MAIN OUTCOME MEASURES: Enzyme linked immunosorbent assay was used to measure time efficiency of BMSC-secreted BDNF protein. Twenty-four hours after gene transfection, RT-PCR was used to detect expression of BDNF mRNA in the BMSCs. Immunohistochemistry was used to determine expression of BDNF protein in the BMSCs.RESULTS: BDNF protein expression was detected at day 1 after gene transfection

  2. Nasopharyngeal carcinoma with bone marrow metastasis.

    Science.gov (United States)

    Zen, H G; Jame, J M; Chang, A Y; Li, W Y; Law, C K; Chen, K Y; Lin, C Z

    1991-02-01

    Five of 23 patients with recurrent nasopharyngeal carcinoma (NPC) were diagnosed to have bone marrow metastasis. They all had advanced local-regional disease, and were treated with neoadjuvant chemotherapy and definitive radiotherapy after the initial diagnosis. Bone marrow metastasis developed 4-24 months later. The clinical features were anemia (5 of 5), leukopenia (3 of 5), thrombocytopenia (4 of 5), sepsis (3 of 5), tenderness of the sternum (3 of 5), and fever (4 of 5). Patients frequently had elevation of serum lactic dehydrogenase (LDH), alkaline phosphatase (ALK-P), and IgG and IgA antibody titers to Epstein-Barr viral capsid antigen when bone marrow involvement was diagnosed. However, clinical manifestations and laboratory tests were not specific. It is important that three patients had normal bone scans. All five patients had a rapid downhill course; four patients died within 23 days, and the fifth 3 months after the diagnosis of bone marrow metastasis. We concluded that bone marrow was a common metastatic site in NPC patients. Bone marrow metastasis adversely affected patients' survival and required a high index of suspicion for diagnosis. We suggested that bone marrow biopsy should be considered as a routine staging procedure in NPC patients and indicated especially when patients presented with abnormal blood counts, sepsis, bone pain, or tenderness of the sternum. It may be positive in the face of a normal bone scan. PMID:1987743

  3. Characterization of murine macrophages from bone marrow, spleen and peritoneum

    OpenAIRE

    Wang Changqi; Yu Xiao; Cao Qi; Wang Ya; Zheng Guoping; Tan Thian Kui; Zhao Hong; Zhao Ye; Wang Yiping; Harris David CH

    2013-01-01

    Abstract Background Macrophages have heterogeneous phenotypes and complex functions within both innate and adaptive immune responses. To date, most experimental studies have been performed on macrophages derived from bone marrow, spleen and peritoneum. However, differences among macrophages from these particular sources remain unclear. In this study, the features of murine macrophages from bone marrow, spleen and peritoneum were compared. Results We found that peritoneal macrophages (PMs) app...

  4. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Science.gov (United States)

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  5. How to exhaust your bone marrow

    DEFF Research Database (Denmark)

    Salomo, Louise; Salomo, Morten; Andersen, Steven A W;

    2013-01-01

    at work and in his spare time, and kept a very thorough training and weight diary. Owing to a high intake of energy and protein drinks he tried to optimise his physical performance and kept a normal body mass index  at 23.7. A bone marrow biopsy showed gelatinous bone marrow transformation, normally...

  6. Legal issues in bone marrow transplantation.

    OpenAIRE

    Holder, A. R.

    1990-01-01

    The article discusses some of the more common legal issues involved in bone marrow transplantation. These include malpractice claims, testing prospective donors for AIDS, sale of bone marrow, informed consent for both donor and recipient, and questions that arise when the donor is a child.

  7. Functional bone marrow scintigraphy in psoriatics

    International Nuclear Information System (INIS)

    24 psoriatics as well as 24 normal healthy adults were studied by functional bone marrow scintigraphy using Tc-99m-labeled human serum albumin millimicrospheres (Tc-99m-HSA-MM). Functional bone marrow scintigraphy is an in vivo test system for the assessment of various functional properties of fixed macrophages. 58% of psoriatics who had no systemic drug treatment demonstrated peripheral extension of the bone marrow space indicating hyperplasia of bone marrow macrophages. This phenomenon could be observed only in one normal subject who was a high-performance sportsman. 83% (n=6) of psoriatics with cirrhosis of liver demonstrated bone marrow extension. The 'capacity' of bone marrow macrophages to engulf Tc-99m-HSA-MM ('uptake ratio') was diminished in 42% of non-treated as well as 66% of psoriatics treated with aromatic retinoid. The phagocytic and proteolytic turnover of Tc-99m-HSA-MM in bone marrow, spleen, and liver was found to be accelerated in 66% of non-treated psoriatics, normal, accelerated or delayed in psoriatics treated with aromatic retinoid as well as considerably delayed in all of the psoriatics with cirrhosis of liver. Functional bone marrow scintigraphy proved to be an appropriate in vivo test system to reveal abnormalities of fixed macrophages in psoriatics. Furthermore, theratpeutic effects as well as influences of pre-existing disorders on different macrophage populations can be assessed. (Author)

  8. Cross-talk between Bone Marrow and Tissue Injury : Novel Regenerative Therapy for Severely Damaged Tissues by Mobilizing Bone Marrow Mesenchymal Stem Cells in Vivo

    OpenAIRE

    Tamai, Katsuto; Kaneda, Yasufumi

    2013-01-01

    group box 1 (HMGB1), which mobilizes a sub-population of non-hematopoietic cells from bone marrow into the circulation to repair skin and restore Col 7 expression. These bone marrow-derived epithelial stem/progenitor cells are derived from a lineage-negative, platelet-derived growth factor alpha-positive mesenchymal stem cell pool in bone marrow, which represents less than 0.3% of the total bone marrow cell population. In addition, systemic administration of HMGB1 to wounded wild-type mice le...

  9. Immunomodulatory effects of bone marrow mesenchymal stem cells derived from homologous recipients in rats after heart transplantation

    Directory of Open Access Journals (Sweden)

    De-zhong LIU

    2012-03-01

    Full Text Available Objective To observe the immunomodulatory effects of homologous bone marrow mesenchymal stem cells (MSCs obtained from the bone marrow in rats after heart transplantation. Methods Twenty adult male Lewis rats were used as donors for the heart transplantation, whereas twenty adult male Wistar rats served as recipients. The recipients with cervical heart transplantation were randomly divided into two groups (10 each. Approximately 3ml 0.9% NaCl solution was injected through the tail vein 24h after heart transplantation in the control group (group A. About 2×106 MSCs (suspended in 3ml 0.9% NaCl solution were injected through the tail vein 24h after heart transplantation in the MSCs treatment group (group B. Four recipient rats from each group were randomly chosen one week after transplantation for determining proportion of CD4+ T, CD8+ T, CD4+CD25high T, and CD4+CD25highfoxp3+ T cells in the lymphocytes in the venous blood and grafts. Subsequently, the CD4+/CD8+ ratio was calculated. The survival time of the grafts were observed in the remaining six rats in each group. Results (1The survival time of the transplanted hearts was 7.2±1.3d in group A, and 14.8±2.9d in group B, showing a significant difference between the two groups (P 0.05. The ratios of CD4+CD25high T cells/total lymphocytes and CD4+CD25highFoxp3+ T cells/ total lymphocytes in the allografts were evidently higher in group B (2.74%±0.28%, 2.54%±0.31% than in group A (0.61%±0.06%, 0.53%±0.06%, showing a significant statistical difference (P < 0.01. Conclusion Intravenous infusion with MSCs from the bone marrow of the recipients can induce immune tolerance and prolong the survival time of transplanted heart in rats.

  10. Bone-Marrow Storage and Transplantation

    International Nuclear Information System (INIS)

    The authors present some results from their experiments on bone-marrow storage and transplantation. The main problems with preservation of stored bone marrow are the duration, temperature, adjuvant substances and the significance of viability tests during the conservation processes. The results showed that: • Storage of bone marrow at +4eC produces a progressive decrease in its restoring capacity versus storage time. • While bone marrow stored for 24 h is able to restore 100% of dogs lethally irradiated with 600 rad, after 10 days of storage only 20% of the animals can be restored. • No correlation exists between the actual survival of dogs and that calculated by dye exclusion tests, which indicate a rather high (70%) viability, even after 10 days bone-marrow storage at +4°C. • DNA degradation (depolymerization) measurements of the bone marrow may be used as a supplementary test for checking the viability or restoration potency of bone-marrow cells after storage. • In the freezing process, the optimum contact time between glycerol and the bone-marrow cells is 15 min. Results of experiments regarding certain bone-marrow transplantation problems showed that: • The best time to administer bone marrow is between 24 and 48 h after irradiation. • No survivors were obtained with dogs lethally irradiated with 600 rad by administering autogenic or allogenic DNA extracted from bone marrow, spleen or liver. • Histocompatibility related to sex may play an important role in the bone-marrow graft. The lowest survival of C57BL mice was obtained when the donors were males and the recipients females. • In radioprotection with foetal haemocytopoietic tissues, the donor's age represents one of the main factors. The best results were obtained in experiments on rats, with 19- to 20-day foetal liver (period of complete and maximum haemocytopoietic activity). The tissues mentioned below may be connected with the appearance of certain typical signs of secondary syndrome

  11. Epigallocatechin-3-gallate Inhibits LPS-Induced NF-κB and MAPK Signaling Pathways in Bone Marrow-Derived Macrophages

    OpenAIRE

    Joo, So-Young; Song, Young-A; Park, Young-Lan; Myung, Eun; Chung, Cho-Yun; Park, Kang-Jin; Cho, Sung-Bum; Lee, Wan-Sik; Kim, Hyun-Soo; Rew, Jong-Sun; Kim, Nack-Sung; Joo, Young-Eun

    2012-01-01

    Background/Aims Epigallocatechin-3-gallate (EGCG), the primary catechin in green tea, has anti-inflammatory and anti-oxidative properties. The aim of the current study was to characterize the impact of EGCG on lipopolysaccharide (LPS)-induced innate signaling in bone marrow-derived macrophages (BMMs) isolated from ICR mice. Methods The effect of EGCG on LPS-induced pro-inflammatory gene expression and nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling was examined...

  12. Cryopreservation of Rat Bone Marrow Derived Mesenchymal Stem Cells by Two Conventional and Open-pulled Straw Vitrification Methods

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Bahadori

    2009-01-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs are obtained from a variety of sources, mainlythe bone marrow. These cells have a great potential for clinical research, however they cannotstay alive for long periods in culture. The aim of this study is to determine whether vitrificationcan be a useful freezing method for the storage of MSCs.Materials and Methods: Mesenchymal stem cells were isolated from rat bone marrow basedon their capacity to adhere to plastic culture surfaces. MSCs were cryopreserved using boththe vitrification method and open-pulled straw (OPS vitrification and stored in liquid nitrogenwith ethylene glycol ficoll (EFS as a cryoprotectant for two months. The morphology andviability of thawed MSCs were evaluated by trypan blue staining. Furthermore, pre and postcryopreserved MSCs were induced to osteocyte and adipocyte with corresponding osteogenicand adipogenic medium.Results: After thawing, the viability rates were 81.33% ± 6.83 for the vitrification method and80.83% ± 6.4 for OPS vitrification, while the values in the pre-vitrification control group were88.16% ± 6.3 (Mean ± SD, n = 6. Post-cryopreserved cells from both the vitrification methodand OPS vitrification also had a similar cellular morphology and colony-formation that wasindistinguishable from non-vitrified fresh MSCs. In addition, the resuscitated cells cultured ininduction medium showed osteogenesis. Mineral production and deposition was detectableby alizarine red S staining. Moreover, by applying an adipogenic differentiation condition,both pre and post cryopreserved cells differentiated into adipocyte and lipid vacuole accumulationthat was stained by oil red O.Conclusion: Vitrification is a reliable and effective method for the cryopreservation of MSCs.

  13. Local transplantation of ex vivo expanded bone marrow-derived CD34-positive cells accelerates fracture healing.

    Science.gov (United States)

    Kawakami, Yohei; Ii, Masaaki; Alev, Cantas; Kawamoto, Atsuhiko; Matsumoto, Tomoyuki; Kuroda, Ryosuke; Shoji, Taro; Fukui, Tomoaki; Masuda, Haruchika; Akimaru, Hiroshi; Mifune, Yutaka; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Kurosaka, Masahiro; Asahara, Takayuki

    2012-01-01

    Transplantation of bone marrow (BM) CD34(+) cells, an endothelial/hematopoietic progenitor-enriched cell population, has shown therapeutic efficiency in the treatment of ischemic diseases enhancing neovascularization. However, the number of CD34(+) cells obtained from bone marrow is not sufficient for routine clinical application. To overcome this issue, we developed a more efficient and clinically applicable CD34(+) cell expansion method. Seven-day ex vivo expansion culture of BM CD34(+) cells with a cocktail of five growth factors containing VEGF, SCF, IL-6, Flt-3 ligand, and TPO resulted in reproducible more than 20-fold increase in cell number. The favorable effect of the local transplantation of culture expanded (cEx)-BM CD34(+) cells on rat unhealing fractures was equivalent or higher than that of nonexpanded (fresh) BM CD34(+) cells exhibiting sufficient therapeutic outcome with frequent vasculogenic/osteogenic differentiation of transplanted cEx-BM CD34(+) cells and fresh BM CD34(+) cells as well as intrinsic enhancement of angiogenesis/osteogenesis at the treated fracture sites. Specifically, cEx-BM CD34(+) cell treatment demonstrated the best blood flow recovery at fracture sites compared with the nonexpanded BM CD34(+) cells. In vitro, cEx-BM CD34(+) cells showed higher colony/tube-forming capacity than nonexpanded BM CD34(+) cells. Both cells demonstrated differentiation potential into osteoblasts. Since fresh BM CD34(+) cells can be easily collected from fracture sites at the time of primary operation and stored for future use, autologous cEx-BM CD34(+) cell transplantation would be not only a simple but also a promising therapeutic strategy for unhealing fractures in the field of orthopedic trauma surgery.

  14. Bone marrow oedema associated with benign and malignant bone tumours

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham, B31 2AP (United Kingdom)], E-mail: steven.james@roh.nhs.uk; Panicek, D.M. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Davies, A.M. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham, B31 2AP (United Kingdom)

    2008-07-15

    Bone marrow oedema is associated with a wide variety of pathological processes including both benign and malignant bone tumours. This imaging finding in relation to intraosseous tumours can aid in providing a more focused differential diagnosis. In this review, we will discuss the MR imaging of bone marrow oedema surrounding intraosseous neoplasms. The different pulse sequences used in differentiating underlying tumour from surrounding oedema are discussed along with the role of dynamic contrast enhanced MRI. Benign lesions commonly associated with bone marrow oedema include osteoid osteoma, osteoblastoma, chondroblastoma and Langerhan's cell histiocytosis. Metastases and malignant primary bone tumours such as osteosarcoma, Ewing's sarcoma and chondrosarcoma may also be surrounded by bone marrow oedema. The imaging findings of these conditions are reviewed and illustrated. Finally, the importance of bone marrow oedema in assessment of post chemotherapeutic response is addressed.

  15. [Effect of laminar shear stress on the expression of matrix metalloproteinases-9 in rat bone marrow-derived mesenchymal stem cells].

    Science.gov (United States)

    Chen, Longju; Sun, Xiaodong; Tang, Jie; Ding, Yan; Li, Jing; Li, Wenchun; Gong, Jian; Wang, Hanqin

    2010-12-01

    This paper was designed to investigate the effect of laminar shear stress on matrix metalloproteinase -9 (MMP-9) expression in rat bone marrow-derived mesenchymal stem cells (MSCs), and the possible signal transduction mechanism involved. Rat bone marrow MSCs were isolated and cultured, then, exposed to laminar shear stress at indicated strengths such as low (5dyne/cm2), medium (15 dyne/cm2) and high (30 dyne/cm2) via parallel plate flow chamber. RT-PCR was used to analyze the expression of MMP-9. The signaling inhibitors such as Wortmannin (PI3K specific inhabitor), SB202190 (p38MAPK specific inhabitor), and PD98059 (ERK1/2 specific inhabitor) were used to investigate the possible mechanical signal transduction pathway. The results showed: (1) The expression of MMP-9 was weak in static state, however, MMP-9 expression increased when MSCs were exposed to 15 dyne/cm2 shear stress for 2 hours, and MMP-9 expression increased with the extension of stimulating time, and it reached the peak at 24 h; (2) MSCs were stimulated by shear stress for 2 hours at different strengths (5 dyne/cm2, 15 dyne/cm2, 30 dyne/cm2), and under all these conditions, the expression of MMP-9 increased, and reached the peak at 15 dyne/cm2; (3) After MSCs were pretreated by three kinds of signal pathway inhibitors, the expression of MMP-9 did not change obviously in Wortmannin group and PD98059 group, but it was significantly inhibited in SB202190 group. This study demonstrated that shear stress could induce the expression of MMP-9 in rat bone marrow-derived mesenchymal stem cells; the amount of MMP-9 expression was closely related to stimulating time and the strengths of shear stress; and p38MAPK signal pathway played a critical role during the process.

  16. Ex vivo differentiation of human bone marrow-derived stem cells into neuronal cell-like lineages

    Directory of Open Access Journals (Sweden)

    Al-Zoubi A

    2016-06-01

    Full Text Available Adeeb Al-Zoubi,1,2 Feras Altwal,3 Farah Khalifeh,2 Jamil Hermas,4 Ziad Al-Zoubi,5 Emad Jafar,5 Mohammed El-Khateeb,6,7 1Department of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA; 2Stem Cells of Arabia, Amman, Jordan; 3Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; 4Stem Cell Division, Al-Yamama Company, 5Jordan Orthopedic and Spinal Center, 6National Center for Diabetes, Endocrinology and Genetics, 7Department of Pathology, Faculty of Medicine, University of Jordan, Amman, Jordan Background: Methods to obtain safe and practical populations of stem cells (SCs at a clinical grade that are able to differentiate into neuronal cell lineages are yet to be developed. In a previous study, we showed that mouse bone marrow-derived SCs (BM-SCs differentiated into neuronal cell-like lineages when put in a neuronal-like environment, which is a special media supplemented with the necessary growth factors needed for the differentiation of SCs into neuronal cell-like lineages. Aim: In this study, we aim to assess the potentials of adult human CD34+ and CD133+ SCs to differentiate into neuronal cell-like lineages ex vivo when placed in a neuronal-like microenvironment. Methods: The neuronal-like microenvironment was created by culturing cells in nonhematopoietic expansion media (NHEM supplemented with growth factors that favor differentiation into neuronal cell lineages (low-affinity nerve growth factor [LNGF], mouse spinal cord extract [mSpE], or both. Cultured cells were assessed for neuronal differentiation by cell morphologies and by expression of GFAP. Results: Our results show that culturing unpurified human BM-derived mononuclear cells (hBM-MNCs in NHEM+LNGF+mSpE did not lead to neuronal differentiation. In contrast, culturing of purified CD34+ hBM-SCs in NHEM+LNGF+mSpE favored their differentiation into astrocyte

  17. BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Ying-Ying; Yue, Jianbo; Che, Hui; Sun, Hai-Ying; Tse, Hung-Fat; Li, Gui-Rong

    2014-02-01

    Human bone marrow-derived mesenchymal stem cells (MSCs) serve as a reservoir for the continuous renewal of various mesenchymal tissues; however, cellular physiology of ion channels is not fully understood. The present study investigated potential roles of large-conductance Ca(2+) -activated potassium (BKCa ) channels and ether-à-go-go potassium (hEag1 or Kv10.1) channels in regulating cell proliferation and differentiation in human MSCs. We found that inhibition of BKCa with paxilline or hEag1 with astemizole, or knockdown of BKCa with shRNAs targeting KCa1.1 or hEag1 channels with shRNAs targeting KCNH1 arrested the cells at G0/G1 phase. In addition, silencing BKCa or hEag1 channels significantly reduced adipogenic differentiation with decrease of lipid accumulation and expression of the adipocyte marker PPARγ, and decreased osteogenic differentiation with reduction of mineral precipitation and osteocalcin. These effects were accompanied with a reduced cyclin D1, cyclin E, p-ERK1/2, and p-Akt. Our results demonstrate that BKCa and hEag1 channels not only regulate cell proliferation, but also participate in the adipogenic and osteogenic differentiations in human MSCs, which indicates that BKCa and hEag1 channels may be essential in maintaining bone marrow physiological function and bone regeneration. PMID:23881642

  18. The CD271 expression could be alone for establisher phenotypic marker in Bone Marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Edgardo Flores-Torales

    2010-04-01

    Full Text Available Mesenchymal stem cells (MSCs are of great interest for their potential use in cellular therapies. To define thepopulation more precisely, diverse surface markers have been used. We propose here to use CD271 as the sole marker forMSCs in fresh bone marrow. We compared CD271+ populations to the presence or absence of five defined markers forMSCs: CD90+, CD105+, CD45-, CD34- and CD79. The correlations between markers were evaluated and analyzed with aPearson's correlation test. We found that the average percentage of cells expressing the combination of markers CD90+,CD105+, CD45-, CD34- and CD79- was 0.54%, and that the average percentage average of CD271+ cells was 0.53%. Theresults were significant (p<0.05. The exclusive use of CD271 as a marker for MSCs from fresh samples of bone marrowappears to be highly selective. Using CD271 as the sole identification marker for MSCs could reduce costs and acceleratethe process of identifying MSCs for the field of cellular therapy.

  19. Bone marrow examination in pancytopenia.

    Science.gov (United States)

    Rangaswamy, M; Prabhu; Nandini, N M; Manjunath, G V

    2012-08-01

    Pancytopenia is defined by reduction of all the three formed elements of blood below the normal reference. It may be a manifestation of a wide variety of disorders, which primarily or secondarily affect the bone marrow. Haematological investigation forms the bedrock in the management of patients with pancytopenia and therefore needs detailed study. The total number of cases studied were 100 over a period of two years in the department of pathology, JSS Hospital, Mysore. Megaloblastic anaemia (33%) was the commonest cause of pancytopenia. Other causes were nutritional anaemia (16%), aplastic anaemia (14%), hypersplenism (10%), sepsis (9%) and leukaemia (5%). Less common causes were alcoholic liver disease, haemolytic anaemia, HIV, dengue, systemic lupus erythematosus, viral hepatitis, disseminated TB and multiple myeloma. Most of the patients were in the age group of 11-30 years with a male:female ratio of 1.6:1.Generalised weakness and fatigue (88%) were the commonest presenting complaints. Haemoglobin level varied from 1-10 g/dl with majorIty (70%) of them in the range of 5.1-10 g/dI. TLC was in the range of 500-4000 cells/cmm. Most (34%) of them had 3100-4000 cells/cmm. Platelet count was in the range of 4000-1,40,000 cells/cmm. Reticulocyte count varied from 0.1%-15% with majority (82%) of them ranging from 0.1%-2%. The bone marrow cellularity was hypocellular in 14%, hypercellular in 75%, and normocellular in 11% of the patients. Pancytopenia is a relatively common entity with inadequate attention in Indian subcontinent. A comprehensive clinical and haematological study of patients with pancytopenia will usually help in the identification of the underlying cause. However in view of wide array of aetiologies, pancytopenia continues to be a diagnostic challenge for haematologists.

  20. Monosomy 7 in donor cell-derived leukemia after bone marrow transplantation for severe aplastic anemia: report of a new case and review of the literature

    Directory of Open Access Journals (Sweden)

    Luize Otero

    2012-01-01

    Full Text Available Monosomy 7 arises as a recurrent chromosome aberration in donor cell leukemia after hematopoietic stem cell transplantation. We report a new case of donor cell leukemia with monosomy 7 following HLA-identical allogenic bone marrow transplantation for severe aplastic anemia (SAA. The male patient received a bone marrow graft from his sister, and monosomy 7 was detected only in the XX donor cells, 34 months after transplantation. The patient's bone marrow microenvironment may have played a role in the leukemic transformation of the donor hematopoietic cells.

  1. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.

    Science.gov (United States)

    Ortega, M T; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2016-02-01

    We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells. PMID

  2. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis.

    Science.gov (United States)

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  3. Proinflammatory cytokine response and viral replication in mouse bone marrow derived macrophages infected with influenza H1N1 and H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available The pathogenesis of human influenza H5N1 virus infection remains poorly understood and controversial. Cytokine dysregulation in human infection has been hypothesized to contribute to disease severity. We developed in vitro cultures of mouse bone marrow derived macrophages (BMDMΦ from C57BL/6N mouse to compare influenza A (H5N1 and H1N1 virus replication and pro-inflammatory cytokine and chemokine responses. While both H1N1 and H5N1 viruses infected the mouse bone marrow derived macrophages, only the H1N1 virus had showed evidence of productive viral replication from the infected cells. In comparison with human seasonal influenza H1N1 (A/HK/54/98 and mouse adapted influenza H1N1 (A/WSN/33 viruses, the highly pathogenic influenza H5N1 virus (A/HK/483/97 was a more potent inducer of the chemokine, CXCL 10 (IP-10, while there was not a clear differential TNF-α protein expression pattern. Although human influenza viruses rarely cause infection in mice without prior adaption, the use of in vitro cell cultures of primary mouse cells is of interest, especially given the availability of gene-defective (knock-out mice for specific genes.

  4. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Nhung Hai Truong

    2016-01-01

    Full Text Available Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold, transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  5. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis.

    Science.gov (United States)

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment. PMID:26839564

  6. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system

    Directory of Open Access Journals (Sweden)

    Matthew R. Miller

    2015-08-01

    Full Text Available Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30–70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.

  7. Bone marrow transplantation in the rat

    International Nuclear Information System (INIS)

    We have isolated inflammatory leukocytes from various lymphoid and parenchymal organs after total body irradiation and bone marrow transplantation from either an allogeneic or syngeneic strain and tested their ability to perform lytic functions in vitro. No direct lytic activity (i.e. cytotoxic T lymphocytes, CTL) to relevant strain-derived target cells in the lymphoid or parenchymal target organs was seen preceding or during acute graft-versus-host disease (aGVHD). Instead, the leukocytes of the spleen and blood and the inflammatory cells of liver and lungs were efficient effector cells against recipient-derived target cells in the presence of relevant antibody (antibody dependent cellular cytotoxicity, ADCC). The NK activity against YAC-1 (natural killer, NK) target cells was first high in the spleen, but when the aGHVD appeared in the allograft marrow recipients the NK activity decreased in the spleen with a concomitant increase in the liver, but not in the other parenchymal target organs. At the same time no NK acitivity was seen in the syngeneic marrow graft recipients' parenchymal organs. These observations suggest functional differences in the structure of inflammation in the different target organs of aGVHD. (author)

  8. Therapy Effect: Impact on Bone Marrow Morphology.

    Science.gov (United States)

    Li, K David; Salama, Mohamed E

    2016-03-01

    This article highlights the most common morphologic features identified in the bone marrow after chemotherapy for hematologic malignancies, growth-stimulating agents, and specific targeted therapies. The key is to be aware of these changes while reviewing post-therapeutic bone marrow biopsies and to not mistake reactive patterns for neoplastic processes. In addition, given the development and prevalent use of targeted therapy, such as tyrosine kinase inhibitors and immune modulators, knowledge of drug-specific morphologic changes is required for proper bone marrow interpretation and diagnosis.

  9. Bone- and bone marrow scintigraphy in Gaucher disease type 1

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Zitter, F. [Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Gallowitsch, H.J.; Lind, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Wuertz, F. [Dept. of Pathology, State Hospital Klagenfurt (Austria); Mehta, A.B.; Hughes, D.A. [Lysosomal Storage Disorder Unit, Dept. of Academic Haematology, Royal Free and Univ. Coll. Medical School, London (United Kingdom)

    2008-07-01

    Scintigraphy is a method for imaging metabolism and should be viewed as complimentary to morphological imaging. Bone and bone marrow scintigraphy can particularly contribute to the detection of focal disease in Gaucher disease. In bone crises it can discriminate within three days after pain onset between local infection and aseptic necrosis. A further advantage of bone- and bone marrow scintigraphy is the visualization of the whole skeleton within one setting. Whole body imaging for focal lesions might thus be an objective in GD, in particular in patients complaining of several painful sites. Direct imaging of bone marrow deposits in GD by MIBI scintigraphy might be of special interest in children in whom bone marrow undergoes a developmental conversion from red to yellow marrow in the ap-pendicular skeleton. MRI interpretation in young GD patients is thus difficult in order to estimate the exact amount and extent of bone marrow infiltration by Gaucher cells. 99mTc-MIBI scintigraphy with its direct visualization of lipid storage could thus add interesting additional information not shown with other methods including MRI. Although MRI is the most accepted imaging modality in assessing the skeletal status in GD, a selective use of scintigraphy for imaging bone and bone marrow may add information in the evaluation of patients with Gaucher disease.

  10. Effect of bone marrow mesenchymal stem cells on the proliferation of bone marrow CD34~+ cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王荣

    2013-01-01

    Objective To investigate the effect on the marrow CD34+ cells by bone marrow mesenchymal stem cells(BMMSC),VarioMACS was used to sort bone marrow CD34+ cells,and then the purity of CD34+ cell was tested by FCM. Marrow mononuclear cells from abortion fetal bone marrow were isolated,and BMMSC were

  11. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  12. Effects of histamine and its antagonists on murine T-cells and bone marrow-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Hu XF

    2015-08-01

    Full Text Available Xiufen Hu,1,* Mohammad Ishraq Zafar,2,* Feng Gao2 1Department of Paediatrics, Tongji Hospital, 2Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: We determined the effects of histamine and its antagonists on the surface marker expression of dendritic cells (DCs and the influence of lipopolysaccharide (LPS, histamine, and histamine receptor antagonists on DCs and T-cells. The bone marrow was extracted from the femurs and tibiae of 6- to 8-week-old female Balb/c mice and cultured in medium containing penicillin, streptomycin, L-glutamine, fetal calf serum, or granulocyte macrophage colony-stimulating factor (GM-CSF alone or with interleukin (IL-4. The cells received three different doses of LPS and histamine, plus three different doses of descarboethoxyloratadine (DCL. We assayed the supernatant for various cytokines. The spleen cells of DO11.10 mice were examined by flow cytometry, which included labeling and sorting CD4+ T-cells, as well as coculture of DCs and T-cells with ovalbumin (OVA323–339 peptide. Histamine or histamine plus DCL did not affect the expression of major histocompatibility complex class II, CD11c, CD11b, CD86, and CD80. However, GM-CSF increased the expression of all markers except CD80. Histamine increased interferon-γ production in GM-CSF + IL-4-cultured cells; it also enhanced IL-10 production, but suppressed IL-12 production in LPS-stimulated DCs with no DCL. Cimetidine inhibited IL-10 production and restored IL-12 secretion in LPS-treated DCs. LPS increased IL-10 and decreased IL-12 levels. GM-CSF + IL-4-generated DCs had a stronger stimulatory effect on DO11.10 T-cell proliferation than GM-CSF-generated DCs. Inducible costimulator ligand expression was higher in GM-CSF + IL-4- than in GM-CSF-generated DC groups after 2 days of coculture, but decreased 4 days

  13. Pelleted bone marrow derived mesenchymal stem cells are better protected from the deleterious effects of arthroscopic heat shock

    Directory of Open Access Journals (Sweden)

    Gauthaman eKalamegam

    2016-05-01

    Full Text Available Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs from osteoarthritis (OA patients, and evaluated the effect of arthroscopic heat on cell viability in suspension and pellet cultures.Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness. hBMMSCs (1 x 106 cells cultured as single cell suspensions or cell pellets were exposed to an illuminated arthroscope for 10, 20 or 30 min. This was followed by analysis of cellular proliferation and heat shock related gene expression. Results: hBMMSCs were viable and exhibited population doubling, short spindle morphology, MSC related CD surface markers expression and tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts. Chondrogenic and osteogenic differentiation increased collagen production and alkaline phosphatase activity. Exposure of hBMMSCs to an illuminated arthroscope for 10, 20 or 30 min for 72 h decreased cell proliferation in cell suspensions (63.27% at 30 min and increased cell proliferation in cell pellets (62.86% at 10 min and 68.57% at 20 min. hBMMSCs exposed to 37C, 45C and 55C for 120 seconds demonstrated significant upregulation of BAX, P53, Cyclin A2, Cyclin E1, TNF-α, and HSP70 in cell suspensions compared to cell pellets. Conclusions: hBMMSC cell pellets are better protected from temperature alterations compared to cell suspensions. Transplantation of hBMMSCs as pellets rather than as cell suspensions to the cartilage defect site would therefore support their viability and may aid enhanced cartilage

  14. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  15. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia★

    OpenAIRE

    Wang, Dong; Zhang, Jianjun

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under no...

  16. Bone Marrow Stress Decreases Osteogenic Progenitors.

    Science.gov (United States)

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  17. Effects of Simian Betaretrovirus Serotype 1 (SRV1) Infection on the Differentiation of Hematopoietic Progenitor Cells (CD34+) Derived from Bone Marrow of Rhesus Macaques (Macaca mulatta)

    Science.gov (United States)

    Montiel, Nestor A; Todd, Patricia A; Yee, JoAnn; Lerche, Nicholas W

    2012-01-01

    Peripheral blood cytopenias, particularly persistent anemia and neutropenia, are commonly associated with simian betaretrovirus infection of Asian monkeys of the genus Macaca. The pathogenetic mechanisms underlying these hematologic abnormalities are not well understood. The current study investigated the in vitro tropism of simian betaretrovirus (SRV) for both hematopoietic progenitor (CD34+) and stromal cells obtained from rhesus macaque bone marrow and assessed the effects of infection on hematopoietic progenitor cell differentiation in vitro. After in vitro exposure, SRV proviral DNA could be demonstrated by real-time PCR in cells and the reverse transcriptase assay in supernatants from SRV-exposed progenitor-associated stroma, but not in differentiated colonies derived from SRV-exposed progenitors. Furthermore, in vitro exposure involving cell–cell contact of uninfected CD34+ progenitor cells with SRV-infected stromal cells resulted in a statistically significant reduction in granulocyte–macrophage colony formation in absence of detectable SRV-infection of progenitor cells. Reduction in colony formation occurred in a ‘dose-dependent’ fashion with increasing contact time. No effects on erythroid lineages and RBC differentiation were noted. Our results suggest that hematologic abnormalities observed during SRV disease (natural or experimental) of rhesus macaques may not result from direct effects of viral infection of progenitor cell populations, but rather be (at least in part) a consequence of SRV infection of supportive bone marrow stroma with secondary effects on differentiation of associated progenitor cells. PMID:22330653

  18. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2012-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donors younger than 18 years of age (BMMSC 50). Changes of ultrastructure and energy metabolism during osteogenic differentiation in all hMSC types were studied in detail. Results show that despite similar surface antigen characteristics, the UCBMSCs had smaller cell surface area and possessed more abundant rough endoplasmic reticulum than BMMSC >50. BMMSC 50 and BMMSC 50 showed a lower level of mitochondrial maturation and differentiation capacity. UCBMSCs and BMMSCs also showed a different pattern of exocytosed proteins and glycoproteoglycansins. These results indicate that hMSCs with similar cell surface antigen expression have different mitochondrial and functional properties, suggesting different maturation levels and other significant biological variations of the hMSCs. Therefore, it appears that mitochondrial analysis presents useful characterization criteria for hMSCs intended for clinical use. PMID:21615273

  19. Investigation of Telomerase/Telomeres system in Bone Marrow Mesenchymal Stem Cells derived from IPF and RA-UIP

    Directory of Open Access Journals (Sweden)

    Antoniou Katerina M

    2012-07-01

    Full Text Available Abstract Objective Idiopathic Pulmonary Fibrosis and Rheumatoid Arthritis associated usual interstitial pneumonia seem to have the same poor outcome as there is not an effective treatment. The aim of the study is to explore the reparative ability of bone marrow mesenchymal stem cells by evaluating the system telomerase/telomeres and propose a novel therapeutic approach. Methods BM-MSCs were studied in 6 IPF patients, 7 patients with RA-UIP and 6 healthy controls. We evaluated the telomere length as well as the mRNA expression of both components of telomerase (human telomerase reverse transcriptase, h-TERT and RNA template complementary to the telomeric loss DNA, h-TERC. Results We found that BM-MSCs from IPF, RA-UIP cases do not present smaller telomere length than the controls (p = 0.170. There was no significant difference regarding the expression of both h-TERT and h-TERC genes between patients and healthy controls (p = 0.107 and p = 0.634 respectively. Conclusions We demonstrated same telomere length and telomerase expression in BM-MSCs of both IPF and RA-UIP which could explain similarities in pathogenesis and prognosis. Maintenance of telomere length in these cells could have future implication in cell replacement treatment with stem cells of these devastating lung disorders.

  20. Planning for a Bone Marrow Transplant (BMT)

    Science.gov (United States)

    ... Favorites Del.icio.us Digg Facebook Google Bookmarks Planning for a Bone Marrow Transplant (BMT) If you' ... help you find answers to financial questions: See Planning for Transplant Costs . Contact a patient services coordinator ...

  1. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  2. Glucose-Dependent Insulinotropic Peptide Prevents Serum Deprivation-Induced Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells and Osteoblastic Cells.

    Science.gov (United States)

    Berlier, J L; Kharroubi, I; Zhang, J; Dalla Valle, A; Rigutto, S; Mathieu, M; Gangji, V; Rasschaert, J

    2015-12-01

    Human bone marrow-derived mesenchymal stem cells (hBMSC) are able to differentiate into cells of connective tissue lineages, including bone and cartilage. They are therefore considered as a promising tool for the treatment of bone degenerative diseases. One of the major issues in regenerative cell therapy is the biosafety of fetal bovine serum used for cell culture. Therefore, the development of a culture medium devoid of serum but preserving hBMSC viability will be of clinical value. The glucose-dependent insulinotropic peptide (GIP) has an anti-apoptotic action in insulin-producing cells. Interestingly, GIP also exerts beneficial effects on bone turnover by acting on osteoblasts and osteoclasts. We therefore evaluated the ability of GIP to prevent cell death in osteoblastic cells cultured in serum-free conditions. In hBMSC and SaOS-2 cells, activation of the GIP receptor increased intracellular cAMP levels. Serum deprivation induced apoptosis in SaOS-2 and hBMSC that was reduced by 30 and 50 %, respectively, in the presence of GIP. The protective effect of GIP involves activation of the adenylate cyclase pathway and inhibition of caspases 3/7 activation. These findings demonstrate that GIP exerts a protective action against apoptosis in hBMSC and suggest a novel approach to preserve viability of hBMSC cultured in the absence of serum. PMID:26254594

  3. Bone Marrow Transplantation for Feline Mucopolysaccharidosis I

    OpenAIRE

    Ellinwood, N. Matthew; Colle, Marie-Anne; Weil, Margaret A.; Casal, Margret L.; Charles H Vite; Wiemelt, Staci; Hasson, Christopher W.; O’Malley, Thomas M.; He, Xingxuan; Prociuk, Ulana; Verot, Lucie; Melniczek, John R.; Lannon, Anne; Aguirre, Gustavo D.; Knox, Van W.

    2007-01-01

    Severe mucopolysaccharidosis type I (MPS I) is a fatal neuropathic lysosomal storage disorder with significant skeletal involvement. Treatment involves bone marrow transplantation (BMT), and although effective, is suboptimal, due to treatment sequelae and residual disease. Improved approaches will need to be tested in animal models and compared to BMT. Herein we report on bone marrow transplantation to treat feline mucopolysaccharidosis I (MPS I). Five MPS I stably engrafted kittens, transpla...

  4. Bone marrow osteoblast vulnerability to chemotherapy

    OpenAIRE

    Gencheva, Marieta; Hare, Ian; Kurian, Susan; Fortney, Jim; Piktel, Debbie; Wysolmerski, Robert; Gibson, Laura F.

    2013-01-01

    Osteoblasts are a major component of the bone marrow microenvironment which provide support for hematopoietic cell development. Functional disruption of any element of the bone marrow niche, including osteoblasts, can potentially impair hematopoiesis. We have studied the effect of two widely used drugs with different mechanisms of action, etoposide (VP16) and melphalan, on murine osteoblasts at distinct stages of maturation. VP16 and melphalan delayed maturation of preosteoblasts and altered ...

  5. Bone Marrow Engraftment Analysis after Granulocyte Transfusion

    OpenAIRE

    Swierczynski, Sharon L.; Hafez, Michael J.; Philips, Juliet; Higman, Meghan A.; Berg, Karin D.; Murphy, Kathleen M.

    2005-01-01

    We present the case of a 6-year-old male who received an allogeneic bone marrow transplant as part of treatment for acute lymphoblastic leukemia. The patient relapsed 5 months after transplantation and received additional chemotherapy. He acquired an angioinvasive fungal infection that required transfusion of granulocytes. Approximately 5 weeks after relapsing (181 days after transplant), a bone marrow specimen was taken for molecular engraftment analysis and flow cytometry to assess graft lo...

  6. Bone marrow lesions: A systematic diagnostic approach

    Directory of Open Access Journals (Sweden)

    Filippo Del Grande

    2014-01-01

    Full Text Available Bone marrow lesions on magnetic resonance (MR imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI, to achieve accurate final diagnosis has been highlighted.

  7. Vascular remodeling and mobilization of bone marrow-derived cells in cuff-induced vascular injury in LDL receptor knockout muce

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Vascular remodeling is an important pathologic process in vascular injury for various vascular disorders such as atherosclerosis,postangioplasty restenosis and transplant arteriopathy.Recently,pathologic change and the role of bone marrow derived cells were wildly studied in atherosclerosis and restenosis.But the manner of lesion formation in neointima and cell recruitment in vascular remodeling lesion in the present of hypercholesterolemia is not Vet fully understood. Methods Double-transgenic mice knockout of LDL receptor gene (LDL-/-) and expressing ubiquitously green fluorescent protein (GFP) were obtained by cross-breeding LDL-/-mice with the GFP-expressing transgenic mice. LDL-/- mice (22-24 weeks of age) fed high fat diet containing 1.25% (w/w) cholesterol were subjected to 9Gy irradiation and received bone marrow (BM) cells from the double-transgenic mice.Four weeks later,a nonconstrictive cuff was Dlaced around the right femoral artery.After another 2 weeks,both right and left femoral arteries were harvested and subjected to histochemical analysis.Apoptosis was analyzed in situ using TUNEL assay.Resuits Two weeks after cuff placement,atherosclerotic lesions developed in the intima consisting of a massive accumulation of foam cells, The tissue stained with anti-α smooth muscle actin (SMA) antibody,showed a number of SMA-positive cells in the intimal lesion area.They were also positive for GFP,indicating that BM-derived cells can differentiate to SMCs in the intima in cuff-induced vascular remodeling lesions.Numerous small vessels in the adventitia as well as the endothelial lining of the intima were positive both for CD31 and GFP.The intima and media showed a larae number of TUNEL-positive signals after 2 weeks cuff injury,indicating the presence of apoptosis in vascular remodelina.Conclusions Atherosclerotic lesions in mice can be developed in the intima after 2 weeks of cuff-induced vascular inJury under the hypercholesterolemic conditions

  8. Bone marrow dosimetry for monoclonal antibody therapy

    International Nuclear Information System (INIS)

    Immunoglobulins must permeate through the basement membrane of capillaries in order to enter the extracellular space (ECS) of tissue. Since the process is quite slow, the blood plasma activity in various organs contributes considerably to the radiation dose of the dose-limiting tissues. In bone marrow the basement membrane is absent and the blood circulation is functionally open. Therefore, blood plasma and marrow ECS maintain equal concentrations of labeled immunoglobulins. A combination of factors including intravenous administration, slow absorption into most tissues, slow breakdown and elimination of labeled immunoglobulin, and rapid entry into bone marrow ECS as well as known radiosensitivity of marrow led the authors to expect this tissue would prove to be the primary tissue at risk for systemic monoclonal antibody therapy. They have developed and applied in a Phase I clinical study of 131I labeled CEA antibody a procedure for estimation of radiation dose to red bone marrow. Serieal measurements of blood plasma and total body retention are carried out. Binding of labeled antibody to the cellular components of blood is verified to be very low. They have observed bone marrow depression at doses greater than 400 rad. If no special procedures are used to reconstitute marrow after radiation treatment, this level represents a much greater than generally recognized limitation to radiolabeled monoclonal antibody therapy. 25 references, 4 tables

  9. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Zoleikha Golipoor

    2016-02-01

    Full Text Available Objective: Bone marrow (BM is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB in response to tissue injury. In this study we have attempted to investigate the ability of these cells to migrate toward an injured spinal cord after transplantation through the tail vein in a rat model. Materials and Methods: In this experimental study, VSELs were isolated from total BM cells using a fluorescent activated cell sorting (FACS system and sca1 and stage specific embryonic antigen (SSEA-1 antibodies. After isolation, VSELs were cultured for 7 days on C2C12 as the feeder layer. Then, VSELs were labeled with 1,1´-dioctadecyl-3,3,3´,3´- tetramethylindocarbocyanine perchlorate (DiI and transplanted into the rat spinal cord injury (SCI model via the tail vein. Finally, we sought to determine the presence of VSELs in the lesion site. Results: We isolated a high number of VSELs from the BM. After cultivation, the VSELs colonies were positive for SSEA-1, Oct4 and Sca1. At one month after transplantation, real-time polymerase chain reaction analysis confirmed a significantly increased expression level of Oct4 and SSEA-1 positive cells at the injury site. Conclusion: VSELs have the capability to migrate and localize in an injured spinal cord after transplantation.

  10. Xenogeneic transfer of fetal liver and adult bone marrow-derived haemopoietic cells in rodents: changes in spleen colony differentials with increased doses of cells.

    Science.gov (United States)

    Gulya, E; Gábor Szabó, L; Kelemen, E

    1997-01-01

    The effect of very high haemopoietic cell doses were investigated on the composition of splenic cell colonies/clusters in irradiated animals under xenogeneic circumstances. Differential cluster/colony counts from serial histological sections of the spleen were investigated before, and 9-12 days after transplantation of fetal liver- or adult bone marrow-derived haemopoietic cells following 5.0 to 8.5 Gy total body irradiation. Syngeneic as well as xenogeneic (mouse to rat and rat to mouse) transplantations were carried out. Cluster/colony differentials changed with the increase of the injected cell mass from 10(5) to 10(6) and 10(7) or more, i.e. the overwhelming erythroid pattern became trilinear even with xenogeneic transplants.

  11. Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Qin; Wang Han; Zhigang Yu

    2012-01-01

    A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.

  12. Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic cells.

    Science.gov (United States)

    Tung, Nguyen Huu; Quang, Tran Hong; Son, Jeong-Hyun; Koo, Jung-Eun; Hong, Hye-Jin; Koh, Young-Sang; Song, Gyu Yong; Kim, Young Ho

    2011-04-01

    Interleukin-12, a heterodimeric cytokine comprising p40 and p35 subunits, plays an essential role in the regulating the differentiation of Th cells, which establish and maximize the capabilities of the immune system. The aim of present study is to screen the effect of 21 ginsenosides from steamed ginseng-leaves and flowers on IL-12 production in bone marrow-derived dendritic cells induced by lipopolysaccharide. Noticeably, ginsenoside Rg(6) (12) and ginsenoside F(4) (13) exhibited particularly inhibitory effect on LPS-induced IL-12 production with the inhibition values of 80 and 82%; and ginsenoside ST(1) (4), ginsenoside SL(2) (8), ginsenoside SL(3) (9), ginsenoside Rh(3) (14), ginsenoside Rk(2) (15), and ginsenoside Rs(4) (18) showed moderate effects with inhibition rates of 63, 65, 67, 68, 71, 73, and 67%, respectively. These results warrant further studies concerning potential of saponin extracts of steamed ginseng-leaves and flowers for medicinal uses. PMID:21544734

  13. Haemopoiesis in murine bone marrow and spleen after fractionated irradiation and repeated bone marrow transplantation. II

    International Nuclear Information System (INIS)

    Granulopoiesis was studied in mice repeatedly exposed to doses of 3 Gy of 60Co γ-rays at 4-day intervals up to a total dose of 24 Gy on the basis of total bone marrow cellularity follow-up and analysis of myelograms and splenograms. Half the number of the mice received lO6 nuclear cells of syngeneic bone marrow after each fractional radiation dose. After an initial steep decrease, the number of granuloid cells in the spleen increased about 30-fold between days 12 and 16 of the experiment (total dose 9 and 12 Gy, respectively). This increase was temporary and between days 20 and 24 (total dose 15 and 18 Gy, respectively) a steep decrease again occurred. At a low level (below 10% of the control value) the granuloid cells remained in the spleens of bone marrow recipients until the end of the experiment (day 37, total dose 24 Gy). The behavior of the granuloid compartment of hemopoiesis thus contrasts with findings in the erythroid compartment (Hofer et al., 1989) when high numbers of erythroid nuclear cells remained in the spleens of bone marrow recipients until the end of the experiment. On the whole, the influence of repeated bone marrow transplantation on granulopoiesis in the bone marrow and spleen is positive. Of the 22 comparisons made between bone marrow recipients and mice only irradiated, 14 differences are statistically significant, always in favor of bone marrow recipients. (author)

  14. Antigen-pulsed bone marrow-derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine Mycoplasma pneumonia.

    Science.gov (United States)

    Dobbs, Nicole A; Zhou, Xia; Pulse, Mark; Hodge, Lisa M; Schoeb, Trenton R; Simecka, Jerry W

    2014-08-01

    Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but they have exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, whereas Th2 responses contribute to immunopathology. The purpose of the present study was to evaluate the capacity of cytokine-differentiated dendritic cell (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma Ag-pulsed bone marrow-derived DCs could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with Ag-pulsed DCs resulted in enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with Ag-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with Ag-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either Ag-pulsed bone marrow-derived DCs or pulmonary DCs were shown to be IL-13(+) Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DCs most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination.

  15. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use. PMID:25777046

  16. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Sang-Hyug Park

    Full Text Available Adipose tissue-derived stem cells (ASCs are considered as an attractive stem cell source for tissue engineering and regenerative medicine. We compared human bone marrow-derived mesenchymal stem cells (hMSCs and hASCs under dynamic hydraulic compression to evaluate and compare osteogenic abilities. A novel micro cell chip integrated with microvalves and microscale cell culture chambers separated from an air-pressure chamber was developed using microfabrication technology. The microscale chip enables the culture of two types of stem cells concurrently, where each is loaded into cell culture chambers and dynamic compressive stimulation is applied to the cells uniformly. Dynamic hydraulic compression (1 Hz, 1 psi increased the production of osteogenic matrix components (bone sialoprotein, oateopontin, type I collagen and integrin (CD11b and CD31 expression from both stem cell sources. Alkaline phosphatase and Alrizarin red staining were evident in the stimulated hMSCs, while the stimulated hASCs did not show significant increases in staining under the same stimulation conditions. Upon application of mechanical stimulus to the two types of stem cells, integrin (β1 and osteogenic gene markers were upregulated from both cell types. In conclusion, stimulated hMSCs and hASCs showed increased osteogenic gene expression compared to non-stimulated groups. The hMSCs were more sensitive to mechanical stimulation and more effective towards osteogenic differentiation than the hASCs under these modes of mechanical stimulation.

  17. Role of bone marrow-derived mesenchymal stem cells in a rat model of severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Huang Tu; Jing-Xiang Song; Xiao-Jun Xue; Xian-Wei Guo; Yun-Xia Ma; Zhi-Yao Chen; Zhong-Dong Zou; Lie Wang

    2012-01-01

    AIM:To investigate the role and potential mechanisms of bone marrow mesenchymal stem cells (MSCs) in severe acute peritonitis (SAP).METHODS:Pancreatic acinar cells from Sprague Dawley rats were randomly divided into three groups:nonsodium deoxycholate (SDOC) group (non-SODC group),SDOC group,and a MSCs intervention group (i.e.,a co-culture system of MSCs and pancreatic acinar cells + SDOC).The cell survival rate,the concentration of malonaldehyde (MDA),the density of superoxide dismutase (SOD),serum amylase (AMS) secretion rate and lactate dehydrogenase (LDH) leakage rate were detected at various time points.In a separate study,Sprague Dawley rats were randomly divided into either an SAP group or an SAP + MSCs group.Serum AMS,MDA and SOD,interleukin (IL)-6,IL-10,and tumor necrosis factor (TNF)-α levels,intestinal mucosa injury scores and proliferating cells of small intestinal mucosa were measured at various time points after injecting either MSCs or saline into rats.In both studies,the protective effect of MSCs was evaluated.RESULTS:In vitro,The cell survival rate of pancreatic acinar cells and the density of SOD were significantly reduced,and the concentration of MDA,AMS secretion rate and LDH leakage rate were significantly increased in the SDOC group compared with the MSCs intervention group and the Non-SDOC group at each time point.In vivo,Serum AMS,IL-6,TNF-α and MAD level in the SAP + MSCs group were lower than the SAP group;however serum IL-10 level was higher than the SAP group.Serum SOD level was higher than the SAP group at each time point,whereas a significant betweengroup difference in SOD level was only noted after 24 h.Intestinal mucosa injury scores was significantly reduced and the proliferating cells of small intestinal mucosa became obvious after injecting MSCs.CONCLUSION:MSCs can effectively relieve injury to pancreatic acinar cells and small intestinal epithelium,promote the proliferation of enteric epithelium and repair of the mucosa

  18. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    OpenAIRE

    Sabine Wislet-Gendebien; Emerence Laudet; Virginie Neirinckx; Bernard Rogister

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In th...

  19. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo microcomputed tomographic and histologic experiment in rats

    Institute of Scientific and Technical Information of China (English)

    Khalid Al-Hezaimi; Sundar Ramalingam; Mansour Al-Askar; Aws S ArRejaie; Nasser Nooh; Fawad Jawad; Abdullah Aldahmash; Muhammad Atteya; Cun-Yu Wang

    2016-01-01

    The aimof the present real time in vivo micro-computed tomography (mCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo mCT. At the 10th week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness ofNFBwas similar to that of the native bone in groups 1 and 2 as compared to theNFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical “lock” between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adjunct BMSC therapy.

  20. Homing of bone marrow lymphoid cells

    International Nuclear Information System (INIS)

    DNA labeling, bone marrow fractionation, and radioautography were used to follow the fate of transfused, newly formed marrow lymphocytes in irradiated hosts. After infusing donor Hartley guinea pigs with 3H-thymidine for 3 to 5 days, high concentrations of labeled small lymphocytes and large lymphoid cells were separated from marrow by sedimentation in sucrose-serum gradients and injected into lethally x-irradiated syngeneic recipients. Most labeled small lymphocytes and large lymphoid cells rapidly left the circulation. They appeared to be mainly in the marrow and spleen, increasing in incidence from 1 to 3 days, but declining in mean grain count. Labeled cells were scattered throughout the recipient marrow; in the spleen they localized initially in the red pulp, and subsequently in peripheral areas of white pulp, often in clusters. Labeled small lymphocytes showed a delayed migration into the mesenteric lymph node, mainly in the superficial cortex and medulla; they also appeared in small numbers in Peyer's patches, but rarely in the thymus or thoracic duct lymph. It is concluded that a rapid selective homing of newly formed marrow lymphoid cells occurs in both the marrow and certain areas of the spleen of irradiated hosts, followed by a continuing proliferation of large lymphoid cells and production of small lymphocytes. The results are discussed with respect to the life history of marrow lymphocytes and the use of adoptive immune assays of marrow cells to characterize B lymphocyte maturation

  1. Mac-1low early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration

    International Nuclear Information System (INIS)

    Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1low cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1high) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1low cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1low early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles

  2. OXIDIZED HIGH-DENSITY LIPOPROTEIN PROMOTES MATURATION AND MIGRATION OF BONE MARROW DERIVED DENDRITIC CELLS FROM C57BL/6J MICE

    Institute of Scientific and Technical Information of China (English)

    Zeng-xiang Xu; Yong-zong Yang; Da-ming Feng; Shuang Wang; Ya-ling Tang; Fan He; Yan Xia; Fang Li

    2008-01-01

    Objective To explore the influence of oxidized high-density lipoprotein (oxHDL) on the maturation and migration of bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice.Methods The C57BL/6J mice bone marrow cell suspension was prepared and purified.Recombinant granulocyte-maerophage colony-stimulating factor (rmGM-CSF) and recombinant interleukin-4 (rmIL-4) were used to promote monocytes to differentiate and suppress lymphoeytes.Then 50 μg/mL oxHDL was added to stimulate BMDCs,using 50 μg/mL high-density lipoprotein (HDL) as homologous protein control,PBS as negative control,and 1 μg/mL lipopolysaccharide (LPS) as positive control.The CD86 and MHCII expression rates were detected with fluorescence-activated cell sorting (FACS).Liquid seintillatiun counting (LSC) was used in mixed lymphocyte reactions (MLRs) to reflect the ability of BMDCs in stimulating the proliferation of homologous T cells.Levels of eytokines IL-12 and IL-10 were detected by ELISA.The cell migration was evaluated with the transwell system.Results Compared with PBS group,the expressions of CD86 and MHCII,counts per minute of MLRs,secretion of IL-12 and IL-10,and number of migrated cells in oxHDL group and LPS group significantly increased (all P<0.05),while the increment was less in oxHDL group than LPS group.The number of migrated cells in oxHDL group was about twice of that in HDL group.Conclusion OxHDL may promote the maturation and migration of BMDCs in vitro.

  3. Determining the minimum number of detectable cardiac-transplanted 111In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT

    Science.gov (United States)

    Jin, Yuan; Kong, Huafu; Stodilka, Rob Z.; Wells, R. Glenn; Zabel, Pamela; Merrifield, Peter A.; Sykes, Jane; Prato, Frank S.

    2005-10-01

    In this work, we determined the minimum number of detectable 111In-tropolone-labelled bone-marrow-derived stem cells from the maximum activity per cell which did not affect viability, proliferation and differentiation, and the minimum detectable activity (MDA) of 111In by SPECT. Canine bone marrow mesenchymal cells were isolated, cultured and expanded. A number of samples, each containing 5 × 106 cells, were labelled with 111In-tropolone from 0.1 to 18 MBq, and cell viability was measured afterwards for each sample for 2 weeks. To determine the MDA, the anthropomorphic torso phantom (DataSpectrum Corporation, Hillsborough, NC) was used. A point source of 202 kBq 111In was placed on the surface of the heart compartment, and the phantom and all compartments were then filled with water. Three 111In SPECT scans (duration: 16, 32 and 64 min; parameters: 128 × 128 matrix with 128 projections over 360°) were acquired every three days until the 111In radioactivity decayed to undetectable quantities. 111In SPECT images were reconstructed using OSEM with and without background, scatter or attenuation corrections. Contrast-to-noise ratio (CNR) in the reconstructed image was calculated, and MDA was set equal to the 111In activity corresponding to a CNR of 4. The cells had 100% viability when incubated with no more than 0.9 MBq of 111In (80% labelling efficiency), which corresponded to 0.14 Bq per cell. Background correction improved the detection limits for 111In-tropolone-labelled cells. The MDAs for 16, 32 and 64 min scans with background correction were observed to be 1.4 kBq, 700 Bq and 400 Bq, which implies that, in the case where the location of the transplantation is known and fixed, as few as 10 000, 5000 and 2900 cells respectively can be detected.

  4. Glutamine supplementation in bone marrow transplantation.

    Science.gov (United States)

    Ziegler, Thomas R

    2002-01-01

    An increasing number of clinical investigations have focused on supplementation of specialized enteral and parenteral nutrition with the amino acid glutamine. This interest derives from strong evidence in animal models and emerging clinical data on the efficacy of glutamine administration following chemotherapy, trauma, sepsis and other catabolic conditions. Glutamine has protein-anabolic effects in stressed patients and, among many key metabolic functions, is used as a major fuel/substrate by cells of the gastrointestinal epithelium and the immune system. These effects may be particularly advantageous in patients undergoing bone marrow transplantation (BMT), who exhibit post-transplant body protein wasting, gut mucosal injury and immunodeficiency. Studies to date indicate that enteral and parenteral glutamine supplementation is well tolerated and potentially efficacious after high-dose chemotherapy or BMT for cancer treatment. Although not all studies demonstrate benefits, sufficient positive data have been published to suggest that this nutrient should be considered as adjunctive metabolic support of some individuals undergoing marrow transplant. However, BMT is a rapidly evolving clinical procedure with regard to the conditioning and supportive protocols utilized. Thus, additional randomized, double-blind, controlled clinical trials are indicated to define the efficacy of glutamine with current BMT regimens.

  5. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells.

    Directory of Open Access Journals (Sweden)

    Kazumasa Nakamura

    Full Text Available BACKGROUND: The hedgehog (Hh pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC. Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity. CONCLUSIONS/SIGNIFICANCE: We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial

  6. TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis.

    Science.gov (United States)

    Liao, Li; Su, Xiaoxia; Yang, Xiaohong; Hu, Chenghu; Li, Bei; Lv, Yajie; Shuai, Yi; Jing, Huan; Deng, Zhihong; Jin, Yan

    2016-04-01

    Decline of antioxidant defense after estrogen deficiency leads to oxidative damage in bone marrow-derived mesenchymal stem cells (BMMSCs), resulting a defect of bone formation in osteoporosis. Forkhead box O1 (FoxO1) protein is crucial for defending physiological oxidative damage in bone. But whether FoxO1 is involved in the oxidative damage during osteoporosis is largely unknown. In this study, we found that FoxO1 protein accumulation was decreased in BMMSCs of ovariectomized mice. The decrease of FoxO1 resulted in the suppression of manganese superoxide dismutase (Sod2) and catalase (Cat) expression and accumulation of reactive oxygen species (ROS), inhibiting the osteogenic differentiation of BMMSCs. The decline of FoxO1 protein was caused by tumor necrosis factor-alpha (TNF-α) accumulated after estrogen deficiency. Mechanistically, TNF-α activated NF-κB pathway to promote microRNA-705 expression, which function as a repressor of FoxO1 through post-transcriptional regulation. Inhibition of NF-κB pathway or knockdown of miR-705 largely prevented the decline of FoxO1-mediated antioxidant defense caused by TNF-α and ameliorated the oxidative damage in osteoporotic BMMSCs. Moreover, the accumulated ROS further activated NF-κB pathway with TNF-α, which formed a feed-forward loop to persistently inhibiting FoxO1 protein accumulation in BMMSCs. In conclusion, our study revealed that the decline of FoxO1 is an important etiology factor of osteoporosis and unclosed a novel mechanism of FoxO1 regulation by TNF-α. These findings suggested a close correlation between inflammation and oxidative stress in stem cell dysfunction during degenerative bone diseases. Stem Cells 2016;34:1054-1067. PMID:26700816

  7. Impact of bone marrow on respiratory disease.

    Science.gov (United States)

    Rankin, Sara M

    2008-06-01

    The bone marrow is not only a site of haematopoiesis but also serves as an important reservoir for mature granulocytes and stem cells, including haematopoietic stem cells, mesenchymal stem cells and fibrocytes. In respiratory diseases, such as asthma and idiopathic pulmonary fibrosis these cells are mobilised from the bone marrow in response to blood-borne mediators and subsequently recruited to the lungs. Although the granulocytes contribute to the inflammatory reaction, stem cells may promote tissue repair or remodelling. Understanding the factors and molecular mechanisms that regulate the mobilisation of granulocytes and stem cells from the bone marrow may lead to the identification of novel therapeutic targets for the treatment of a wide range of respiratory disorders. PMID:18372214

  8. Chondrogenic potential of adipose-derived stem cells versus bone marrow mesenchymal stem cells%脂肪干细胞与骨髓间充质干细胞成软骨能力的比较**

    Institute of Scientific and Technical Information of China (English)

    安荣泽; 赵俊延; 王兆杰

    2013-01-01

    BACKGROUND:Adipose-derived stem cel s and bone marrow mesenchymal stem cel s are used widely in cartilage tissue engineering, and there are many similarities in biological characteristics between two kinds of cel s. OBJECTIVE:To compare the chondrogenic potential of bone marrow mesenchymal stem cel s and adipose-derived stem cel s in vitro. METHODS:Adipose-derived stem cel s were isolated from the 3-month-old New Zealand white rabbits’ abdomen. Bilateral femurs of rabbits were obtained, and then the bone marrow mesenchymal stem cel s were separated with the adherence screening method. The growth curve of the passage 3 adipose-derived stem cel s and bone marrow mesenchymal stem cel s were drawn, and the doubling time of two kinds of cel s was compared. Then the passage 3 adipose-derived stem cel s and bone marrow mesenchymal stem cel s were treated with chondrogenic induction. After induced for 14 days, the adipose-derived stem cel s and bone marrow mesenchymal stem cel s were treated with toluidine blue staining and type Ⅱ immunohistochemistry staining respectively. RESULTS AND CONCLUSION:Primary bone marrow mesenchymal stem cel s showed aggregative growth, while the primary adipose-derived stem cel s were in single and scattered growth. The proliferation speed of adipose-derived stem cel s was faster than that of bone marrow mesenchymal stem cel s, while the doubling time of adipose-derived stem cel s was shorter than that of the bone marrow mesenchymal stem cel s. After chondrogenic induction for 14 days, both adipose-derived stem cel s and bone marrow mesenchymal stem cel s could express glycosaminoglycans and type Ⅱcol agen, and the expression level of type Ⅱ col agen in bone marrow mesenchymal stem cel s after chondrogenic induction was higher than that in the adipose-derived stem cel s. The in vitro proliferation of adipose-derived stem cel s and bone marrow mesenchymal stem cel s was rapid and stable, but the proliferative ability of adipose-derived

  9. Combined Effects of Mechanical Strain and Hydroxyapatite/Collagen Composite on Osteogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising source for bone repair and regeneration. Recent lines of evidence have shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that hydroxyapatite/collagen (HA/Col composite also played an important role in the osteogenic differentiation of MSCs. The aim of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone marrow derived MSCs (rBMSCs in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription polymerase chain reaction (RT-PCR, alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts, which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

  10. Comparative functional characterization of mouse bone marrow-derived mast cells and peritoneal mast cells in response to non-immunological stimuli.

    Science.gov (United States)

    Singh, R; Kumar, P; Gupta, P P

    2001-04-01

    The cultured mouse mast cells that are dependent on spleen-derived factor for their proliferation and maintenance and have been shown to be similar to mucosal mast cells in terms of their T-cell dependence and histochemical staining characteristics. Mast cell heterogeneity has been confirmed by functional characterization of mouse bone marrow-derived mast cells (MBMMC) and mouse peritoneal mast cells (MPMCs). MPMCs released around 30% of histamine when stimulated with compound 48/80 whereas MBMMC were almost unresponsive to the same stimulus. Calcium Ionophore A23187 on the other hand, released histamine in dose-dependent manner from MBMMC. The study was undertaken to investigate the effect of antiallergic drug, disodium cromoglycate (DSCG), a synthetic cromone and quercetin, a plant-derived flavonoid on Ca ionophore A23187 induced histamine release from MBMMC. MBMMCs were almost unresponsive to DSCG whereas Ca Ionophore induced histamine release was blocked by Quercetin. The results indicate that response of mast cells at one anatomic site to a given stimulus does not necessarily predict the response of mast cells at a different anatomic location to the same stimulus. It shows functional heterogeneity within a single species. So, it cannot be assumed that antiallergic compounds stabilizing mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites. PMID:11491575

  11. Cystoid macular edema after bone marrow transplantation

    OpenAIRE

    Khetan Vikas; Chaudhary S; Gopal Lingam

    2009-01-01

    We report a case of cystoid macular edema in a patient who underwent bone marrow transplant for aplastic anemia. After having ruled out all the other causes of cystoid macular edema, we concluded that it was secondary to the bone marrow transplant. The patient had mild visual impairment and did not recover the lost vision. In this case report, we describe in detail the clinical presentation, follow-up, and course of medication that this patient had. It is an illustrated case report of cystoid...

  12. Understanding Bone Marrow Transplantation as a Treatment Option

    Science.gov (United States)

    ... Talking with Your Doctor Diseases Treatable with a Bone Marrow Transplant or Cord Blood Transplant Diseases that may be treated with a bone marrow or cord blood transplant include: Leukemias and lymphomas ...

  13. A Survey of Bacterial Infections in Bone Marrow Transplant Recipients

    OpenAIRE

    Shirazi MH; R Ranjbar; A. Ghasemi; S Paktarigh; N Sadeghifard; Pourmand MR

    2007-01-01

    "nBackground: Bone marrow transplant (BMT) recipients are prone to bacterial, viral and fungal infections. Bacterial infec­tion is considered as one of the common and serious complications in bone marrow transplant recipients. The aim of this study was to determine the rate of bacterial infections in bone marrow transplant recipients."nMethods: Fifty-two blood and 25 catheter samples were obtained from 23 patients who were hospitalized in bone marrow trans­plantation...

  14. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway

    OpenAIRE

    Li, Xiao-Li; Li, Heng; Zhang, Min; Xu, Hua; Yue, Long-Tao; Zhang, Xin-Xin; Wang, Shan; Wang, Cong-Cong; Li, Yan-Bin; Dou, Ying-Chun; Duan, Rui-Sheng

    2016-01-01

    Background Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown. Methods Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry...

  15. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Science.gov (United States)

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics. PMID:24547891

  16. Periostin: A Downstream Mediator of EphB4-Induced Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Fei Zhang

    2016-01-01

    Full Text Available Erythropoietin-producing hepatocyte B4 (EphB4 has been reported to be a key molecular switch in the regulation of bone homeostasis, but the underlying mechanism remains poorly understood. In this study, we investigated the role of EphB4 in regulating the expression of periostin (POSTN within bone marrow-derived mesenchymal stem cells (MSCs and assessed its effect and molecular mechanism of osteogenic induction in vitro. Treatment with ephrinB2-FC significantly increased the expression of POSTN in MSCs, and the inhibition of EphB4 could abrogate this effect. In addition, osteogenic markers were upregulated especially in MSCs overexpressing EphB4. To elucidate the underlying mechanism of cross talk between EphB4 and the Wnt pathway, we detected the change in protein expression of phosphorylated-glycogen synthase kinase 3β-serine 9 (p-GSK-3β-Ser9 and β-catenin, as well as the osteogenic markers Runx2 and COL1. The results showed that GSK-3β activation and osteogenic marker expression levels were downregulated by ephrinB2-FC treatment, but these effects were inhibited by blocking integrin αvβ3 in MSCs. Our findings demonstrate that EphB4 can promote osteogenic differentiation of MSCs via upregulation of POSTN expression. It not only helps to reveal the interaction mechanism between EphB4 and Wnt pathway but also brings a better understanding of EphB4/ephrinB2 signaling in bone homeostasis.

  17. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets.

    Science.gov (United States)

    Gao, Li-Na; An, Ying; Lei, Ming; Li, Bei; Yang, Hao; Lu, Hong; Chen, Fa-Ming; Jin, Yan

    2013-12-01

    Cell sheet engineering is a scaffold-free delivery concept that has been shown to improve mesenchymal stem cell-mediated regeneration of injured or pathologically damaged periodontal tissues in preclinical studies and several clinical trials. However, the best strategy for cell sheet production remains to be identified. The aim of this study was to investigate the biological effects of osthole, a coumarin-like derivative extracted from Chinese herbs, on the cell sheet formation and osteogenic properties of human periodontal ligament stem cells (PDLSCs) and jaw bone marrow mesenchymal stem cells (JBMMSCs). Patient-matched PDLSCs and JBMMSCs were isolated, and an appropriate concentration of osthole for cell culture was screened for both cell types in terms of cell proliferation and alkaline phosphatase (ALP) activity. Next, the best mode of osthole stimulation for inducing the formation of sheets by each cell type was selected by evaluating the amount of their extracellular matrix (ECM) protein production as well as osteogenic-related gene expression. Furthermore, both PDLSC and JBMMSC sheets obtained from each optimized technique were transplanted subcutaneously into nude mice to evaluate their capacity for ectopic bone regeneration. The results revealed that 10(-5) m/L osthole significantly enhanced the proliferation of both PDLSCs and JBMMSCs (P osthole groups (P > 0.05). In addition, 10(-5) m/L osthole was the best concentration to promote the ALP activities of both cells (P osthole throughout the entire culture stage (10 days) for PDLSCs or at the early stage (first 3 days) for JBMMSCs was the most effective osthole administration mode for cell sheet formation (P osthole-mediated PDLSC and JBMMSC sheets formed more new bone than those obtained without osthole intervention (P osthole stimulation may enhance ECM production and positively affect cell behavior in cell sheet engineering. PMID:24095254

  18. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter;

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  19. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    NARCIS (Netherlands)

    S. James (Sally); J. Fox (James); F. Afsari (Farinaz); J. Lee (Jennifer); S. Clough (Sally); C. Knight (Charlotte); J. Ashmore (James); P. Ashton (Peter); O. Preham (Olivier); M.J. Hoogduijn (Martin); R.D.A.R. Ponzoni (Raquel De Almeida Rocha); Y. Hancock; M. Coles (Mark); P.G. Genever (Paul)

    2015-01-01

    textabstractBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis

  20. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways.

    Directory of Open Access Journals (Sweden)

    I-Ping Lee

    Full Text Available The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1 T. gondii relies on glutamine for optimal infection, replication and viability, and 2 T. gondii-infected bone marrow-derived dendritic cells (DCs display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2 is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1 in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1 blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.

  1. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion.

    Science.gov (United States)

    Fontanella, Raffaela; Pelagalli, Alessandra; Nardelli, Anna; D'Alterio, Crescenzo; Ieranò, Caterina; Cerchia, Laura; Lucarelli, Enrico; Scala, Stefania; Zannetti, Antonella

    2016-01-01

    Recent findings suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into the microenvironment of developing tumors, where they contribute to metastatic processes. The aim of this study was to investigate the role of BM-MSCs in promoting osteosarcoma and hepatocellular carcinoma cell progression in vitro and the possible mechanisms involved in these processes. U2OS and SNU-398 are osteosarcoma and hepatocellular carcinoma cell lines, respectively, that can be induced to proliferate when cultured in the presence of BM-MSCs. To determine the effect of BM-MSCs on U2OS and SNU-398 cells, the AKT and ERK signaling pathways were investigated, and increases were observed in active P-Akt and P-Erk forms. Moreover, BM-MSCs caused an increase in tumor cell migration and invasion that was derived from the enhancement of CXCR4 levels. Thus, when tumor cells were treated with the CXCR4 antagonist AMD3100, a reduction in their migration and invasion was observed. Furthermore, a new CXCR4 inhibitor, Peptide R, which was recently developed as an anticancer agent, was used to inhibit BM-MSC-mediated tumor invasion and to overcome AMD3100 toxicity. Taken together, these results suggest that inhibiting CXCR4 impairs the cross-talk between tumor cells and BM-MSCs, resulting in reduced metastatic potential in osteosarcoma and hepatocellular carcinoma cells. PMID:26517945

  2. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. PMID:26971678

  3. Interleukin 10 Suppresses the Function of Mouse Bone Marrow-Derived Dendritic Cells Infected with Classical Swine Fever Virus C-Strain

    Directory of Open Access Journals (Sweden)

    Fu-Ying Zheng, Guo-Zhen Lin* and Zhi-Zhong Jing

    2013-07-01

    Full Text Available Interleukin (IL-10 inhibits the functions of antigen-presenting cells (APCs, including dendritic cells (DCs, however, the precise mechanism of action of IL-10 has not been fully elucidated. In this work, the effects of IL-10 on classical swine fever virus (CSFV C-strain-infected mouse bone marrow-derived immature DCs (BM-imDCs were studied. Additional IL-10 suppressed the maturation of the infected BM-imDCs by down-regulating the expression levels of the surface molecules CD80, CD86 and major histocompatibility complex (MHC classII, while the autocrine IL-10 had no significant effect on the maturation status of the cells. Both additional and autocrine IL-10 markedly inhibited the secretion production of IL-12P40 derived from the BM-imDCs infected with the C-strain, and reduced the capacity of DCs to promote allogeneic naive T cell proliferation. These results showed that IL-10 may play an important role in the DCs-dependent immune response induced by CSFV C-strain.

  4. Regenerate augmentation with bone marrow concentrate after traumatic bone loss

    OpenAIRE

    Jan Gessmann; Manfred Köller; Holger Godry; Thomas Armin Schildhauer; Dominik Seybold

    2012-01-01

    Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC) for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64) with an average posttraumatic bone defect ...

  5. Malignant osteopetrosis: hypercalcaemia after bone marrow transplantation.

    OpenAIRE

    Rawlinson, P S; Green, R H; Coggins, A M; Boyle, I T; Gibson, B.E.

    1991-01-01

    A 3 year old girl presented with malignant osteopetrosis, which was treated by allogeneic bone marrow transplantation. Successful engraftment was complicated by prolonged hypercalcaemia, which was controlled by a combination of a bisphosphonate, phosphate infusions, vigorous resalination, and salmon calcitonin. She was alive and well 16 months after the transplant.

  6. Allogeneic and Autologous Bone-Marrow Transplantation

    OpenAIRE

    Deeg, H. Joachim

    1988-01-01

    The author of this paper presents an overview of the current status of bone marrow transplantation, including indications, pre-transplant considerations, the transplant procedure, acute and delayed transplant-related problems, results currently attainable, and a short discussion of possible future developments.

  7. Engraftment of allogeneic dog bone marrow

    International Nuclear Information System (INIS)

    Resistance to allogeneic bone-marrow grafts (AR) was found to occur in many species, including the dog. The i.v. administration of silica particles suppressed Ar in vivo in this species. Genetic studies provide suggestive evidence for the existence of a previously unrecognized system or systems in the canine major histocompatibility complex controlling AR

  8. Effects of Ligustrazine on Expression of Bone Marrow Heparan Sulfates in Syngeneic Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    任天华; 刘文励; 孙汉英; 戴琪琳; 孙岚

    2003-01-01

    To explore the effects of ligustrazine on bone marrow heparan sulfates (HS) expression in bone marrow transplantation (BMT) mice, the syngeneic BMT mice were orally given 2 mg ligustrazine twice a day. On the 7th, 10th, 14th, 18th day after BMT, peripheral blood cells and bone marrow nuclear cells (BMNC) were counted, and the expression levels of HS in bone marrow and on the stromal cell surfaces were detected by immunohistochemistry and flow cytometry assay respectively. In ligustrazine-treated group, the white blood cells (WBC) and BMNC on the 7th, 10th, 14th, 18th day and platelets (PLT) on the 7th, 10th day were all significantly more than those in control group (P<0.05). The bone marrow HS expression levels in ligustrazine-treated group were higher than those in control group (P<0. 05) on the 7th, 10th, 14th, 18th day. However, the HS expression levels on the stromal cell surfaces showed no significant difference between the two groups on the 18th day (P>0. 05). It was concluded that ligustrazine could up-regulate HS expression in bone marrow, which might be one of the mechanisms contributing to ligustrazine promoting hematopoietic reconstitution after BMT.

  9. Derivation of an equation to estimate marrow content of bovine cervical vertebrae.

    Science.gov (United States)

    Gebault, R A; Field, R A; Means, W J; Russell, W C

    1998-08-01

    Marrow content of bovine cervical vertebrae from Choice- and Select-grade carcasses weighing 294 to 343 kg was determined so that a method to monitor the amount of marrow in meat from advanced meat/bone separation machinery and recovery (AMR) systems could be developed. The marrow determination requires cleaning and then ashing bones. Because a large difference in ash content of bone and bone marrow exists and because cartilage content of cervical vertebrae in Choice and Select beef is relatively constant, it was possible to derive the following equation: Weight of marrow = [weight of cartilage (% ash in cartilage - % ash in bone) + % ash in bone (total weight) - (total ash)]/[(% ash in bone - % ash in marrow)]. Constants for ash in fresh bone, marrow, and cartilage were 58.51, .57, and 2.14% with SD of 2.23, .15, and .30%, respectively. A cartilage content of 9.5% along with cervical vertebrae weight and total ash weight were also used to calculate 33.9% marrow in cervical vertebrae. Means for marrow pressed or centrifuged from bovine cervical vertebrae were lower than those obtained from the equation. Therefore, pressing and centrifuging left some marrow in spongy bone. Our ashing method for determining the amount of marrow in whole cervical vertebrae should be useful for determining marrow remaining in cervical vertebrae of bone cakes from AMR systems. Percentage ash in pressed bones is higher and the calculated marrow content is lower when pressed bones are compared to cervical vertebrae that are not pressed. The amount of marrow in whole cervical vertebrae minus the amount left in cervical vertebrae from bone cakes equals the amount in meat from AMR systems.

  10. Deficiency of ACE2 in Bone-Marrow-Derived Cells Increases Expression of TNF-α in Adipose Stromal Cells and Augments Glucose Intolerance in Obese C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Sean E. Thatcher

    2012-01-01

    Full Text Available Deficiency of ACE2 in macrophages has been suggested to promote the development of an inflammatory M1 macrophage phenotype. We evaluated effects of ACE2 deficiency in bone-marrow-derived stem cells on adipose inflammation and glucose tolerance in C57BL/6 mice fed a high fat (HF diet. ACE2 activity was increased in the stromal vascular fraction (SVF isolated from visceral, but not subcutaneous adipose tissue of HF-fed mice. Deficiency of ACE2 in bone marrow cells significantly increased mRNA abundance of F4/80 and TNF-α in the SVF isolated from visceral adipose tissue of HF-fed chimeric mice, supporting increased presence of inflammatory macrophages in adipose tissue. Moreover, deficiency of ACE2 in bone marrow cells modestly augmented glucose intolerance in HF-fed chimeric mice and increased blood levels of glycosylated hemoglobin. In summary, ACE2 deficiency in bone marrow cells promotes inflammation in adipose tissue and augments obesity-induced glucose intolerance.

  11. Resveratrol protects bone marrow mesenchymal stem cell derived chondrocytes cultured on chitosan-gelatin scaffolds from the inhibitory effect of interleukin-1β

    Institute of Scientific and Technical Information of China (English)

    Ming LEI; Shi-qing LIU; Yu-lan LIU

    2008-01-01

    Aim: To investigate the effects of resveratrol on interleukin-lbeta (IL-1β) induced catabolism in bone marrow mesenchymal stem cell (MSC) derived chon-drocytes cultured on chitosan-gelatin scaffolds (CGS). Methods: The chondro-genesis of alginate-encapsulated MSCs was evaluated by toluidine blue staining, RT-PCR, and immunostaing. MSC-derived chondrocyte morphology cultured on CGS was evaluated by a scanning electron microscope (SEM) and a laser confocal microscope (LCM). When these cells on CGS were pre-stimulated with IL-1β or co-treated with IL-1β and resveratrol in the absence and presence of the specific β1-integrin blocking antibody, collagen type Ⅱ, aggrecan, matrix metalloproteinase-13 (MMP-13) expression, and the translocation of nuclear factor kappaB (NF-κB) were analyzed by Western blot analysis. Results: Transforming growth factor beta 3 (TGF-β3) combined with insulin-like growth factor Ⅰ (IGF-Ⅰ) induced the cartilage-specific collagen type Ⅱ, aggrecan expression and extracellular matrix (ECM) accumulation at the end of a 3-week culture. CGS supported those differentiated chondrocytes' attachment, proliferation, migration, and ECM formation. When those cells cultured on CGS were stimulated with IL-1β alone, collagen type Ⅱ and aggrecan expression was inhibited. However, MMP-13 expression increased. Resveratrol reversed the catabolic effects by reducing the translocation of NF-κB. A specific β1-integrin blocking antibody abrogated the effects of resveratrol on IL-1β stimulated MSC-derived chondrocytes. Conclusion: These results indicated that resveratrol acta as a NF-κB inhibitor to protect MSC-derived chondrocytes on the CGS from the IL-1β catabolism and these effects are mediated by β1-integrin.

  12. The effects of chloroquine and hydroxychloroquine on nitric oxide production in RAW 264.7 and bone marrow-derived macrophages.

    Science.gov (United States)

    Perečko, T; Kassab, R B; Vašíček, O; Pekarová, M; Jančinová, V; Lojek, A

    2014-01-01

    Chloroquine, an antimalarial drug, can also be used in the regulation of the immune system, e.g. it is used in the treatment of autoimmune diseases. In this study we investigated the effects of chloroquine and its hydroxy-derivative on nitric oxide (NO) production in two different cell types: (i) immortalized mouse macrophage cell line RAW 264.7 and (ii) mouse bone marrow-derived macrophages (BMDM). The cells were treated with different concentrations (1-100 μM) of chloroquine or hydroxychloroquine and stimulated with lipopolysaccharide for 24 h to induce NO production. Measurement of nitrites by the Griess reaction was used to evaluate the production of NO. Expression of inducible NO synthase was evaluated with Western blot and ATPcytotoxicity test was used to measure the viability of the cells. Our results showed that both chloroquine and its hydroxy-derivative inhibited NO production in both cell types. However, based on the results of LD50 these inhibitory effects of both derivatives were due to their cytotoxicity. The LD50 values for chloroquine were 24.77 μM (RAW 264.7) and 24.86 μM (BMDM), the LD50 for hydroxychloroquine were 13.28 μM (RAW 264.7) and 13.98 μM (BMDM). In conclusion, hydroxychloroquine was more cytotoxic than its parent molecule. Comparing the two cell types tested, our data suggest that there are no differences in cytotoxicity of chloroquine or hydroxychloroquine for primary cells (BMDM) or immortalized cell line (RAW 264.7). PMID:25369339

  13. [Bone marrow involvement and eosinophilia in paracoccidioidomycosis].

    Science.gov (United States)

    Shikanai-Yasuda, M A; Higaki, Y; Uip, D E; Mori, N S; Del Negro, G; Melo, N T; Hutzler, R U; Amato Neto, V

    1992-01-01

    The authors described three acute paracoccidioidomycosis patients with bone marrow involvement. P. brasiliensis yeast forms were observed in bone marrow smears of all them, and in one case, culture also revealed fungus growth. The mononuclear phagocytic system involvement, the blood eosinophilia and the negative skin hypersensibility responses were emphasized in all of them, as well as the severity of the disease in one case, with disseminated bone lesions and 20.260 eosinophils/mm3 in peripheral blood. The authors discuss the possible role of eosinophil in the host-parasite interaction in paracoccidioidomycosis, suggesting that TH 2 subpopulation activation and increased IL 5 and GM-CSF secretions may be responsible by eosinophilia in the most severe case. PMID:1340036

  14. Bone marrow micrometastasis detected by flow cytometry is associated bone, bone marrow, lung macrometastasis in breast cancer

    Directory of Open Access Journals (Sweden)

    Mustafa Salih Akin

    2014-04-01

    Material and Methods: Bone marrow samples were obtained from 52 breast cancer patients and 16 control patients via aspiration from the iliac spine at the time of first diagnosis after the surgery. Epithelial cells were identified with anti-cytokeratin monoclonal antibody, and double-staining with propidium iodide and CD45using flow cytometry. Results: In all, 2 (12.5% of the 16 control patients and 11 (21% of the 52 breast cancer patients had cytokeratin-18 positive cells in their bone marrow. A relationship between the presence of occult metastatic cells in bone marrow, and the presence/absence of lymph node metastases, tumor size, stage, menopausal status, hormone receptor status, histological grade, c-erb-B2 expression, tumor subtype, lymphovascular invasion, Ductal carcinoma in situ (DCIS component, and gender was not observed. Significant positive relationships were observed between bone marrow micrometastasis, and age, and bone, bone marrow, lung, and liver metastases. Conclusion: Bone marrow micrometastasis was associated with age, bone, bone marrow, lung, and liver metastases at the time of diagnosis.. [Cukurova Med J 2014; 39(2.000: 305-314

  15. Bone marrow scintigraphy in hemopoietic depletion states

    International Nuclear Information System (INIS)

    Bone marrow scintigraphy was performed in 29 patients with hemopoietic depletion states of various etiology. Two tracers were used for visualization, viz., sup(99m)Tc-sulfur-colloid and 111InCl3;some patients were examined using both indicators. 111InCl3 is bound to transferrin and is adsorbed on the surface of reticulocytes and erythroblasts. A scintillation camera PHO GAMMA SEARLE IV fitted with a moving table and computer CLINCOM were used to obtain whole-body images. The comparison of all scans and marrow puncture smears was done. In patients with aplastic anemia with both hyperplastic or hypoplastic marrow good correlation of bone marrow scans and sternal puncture smears was found. In several cases the scintigraphic examination helped to establish the diagnosis of marrow depletion. A peculiar disadvantage of the imaging method with either sup(99m)Tc-sulfur-colloid or 111InCl3 is that it shows the disorders in erythropoietic and reticuloendothelial cells whereas the defects in myelopoietic cell series and platelet precursors are not provable. According to literature data, great attention is paid to the prognostic value of scintigraphic examination in aplastic anemia. (author)

  16. Perfusion Method for Intra-bone Marrow Collection and Stem Cell Transplantation: A Critical Review.

    Science.gov (United States)

    Korrapati, Narasimhulu; Nanganuru, Harikrishna Yadav

    2014-03-19

    A bone marrow transplant is a procedure to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Bone marrow is the soft, fatty tissue inside our bones. Bone marrow transplantation (BMT) is a powerful strategy for the treatment of leukemia, aplastic anemia, congenital immunodeficiency and autoimmune diseases. In humans, bone marrow cells (BMCs) have usually been collected by multiple bone marrow aspirations from the iliac crest. We have established a new "perfusion" method for collecting BMCs with minimal contamination with the peripheral blood using the long bones of cynomolgus monkeys. This method has proven to be a simple and safe method for harvesting BMCs and reduces the risk of acute graft versus host disease in allogeneic BMT. Intra-bone marrow-BMT (IBM-BMT) provides distinct advantages because it recruits donor-derived hematopoietic stem cells and mesenchymal stem cells. IBM-BMT has been shown to currently be the best strategy for allogeneic BMT. Here we review the perfusion method (for harvesting BMCs) and IBM-BMT (for their transplantation) and show that this combination will become a powerful new clinical strategy for allogeneic BMT.

  17. Experimental study on cultivation and purification of bone marrow-derived mesenchymal stem cells and its co-culture with chitosan porous scaffolds in vitro

    Directory of Open Access Journals (Sweden)

    Feng YAN

    2014-12-01

    Full Text Available Background As commonly used scaffold material in tissue engineering, chitosan has many advantages, such as strong biodegradability, low antigenicity, good biocompatibility and no pyrogen reaction. This study aims to isolate, cultivate and purify Sprague-Dawley (SD rat bone marrow-derived mesenchymal stem cells (BMSCs, and to observe the growth of BMSCs when co-cultured with self-made chitosan porous scaffold in vitro and to test the biocompatibility of this tissue engineering scaffold, so as to lay the foundation for promoting nerve regeneration of transplant treatment.  Methods Three-week-old healthy male SD rats were used in this study, and BMSCs were isolated and purified through bone marrow adherent culture method. The surface markers of BMSCs at Passage 3 were detected and identified by flow cytometry (FCM and the BMSCs were three?dimensionally cultured in vitro on chitosan porous scaffolds produced by freeze-drying method. Ethanol alternative method was used to detect the chitosan scaffold porosity. Scanning electron microscope was used to explore the internal structure of the scaffold, measure the size of its aperture, and observe the morphology and development of the cells within the scaffold. Methyl thiazolyl tetrazolium (MTT method was used to determine the cells' proliferation.  Results The cultured BMSCs were uniform and similiar to fibrous arrangement, and mixed cells reduced obviously. The identification result of FCM showed the CD29 positive rate was 98.49% and CD45RA positive rate was only 0.85%. The chitosan scaffold had an interlinked, uniform similar three-dimensional porous structure and its aperture porosity was 90%. Some cells stretched out pseudopod and infiltrated into the porous structure of scaffold, even fusing with them. The BMSCs were seeded in the scaffold successfully. The chitosan scaffold had no obvious effect on BMSCs' proliferation. Conclusions Chitosan porous scaffolds have good structural character and

  18. Migration and differentiation of bone marrow-derived multipotent adult progenitor cells through tail vein injection in a rat model of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Lei; Ruixiang Zhou

    2009-01-01

    BACKGROUND: Multipotent adult progenitor cells (MAPCs) from the bone marrow have been shown to differentiate into neurons.OBJECTIVE: To observe migration, survival, and neuronal-like differentiation of MAPCs by tail vein injection.DESIGN, TIME AND SETTING: Randomized, controlled experiment of neural tissue engineering was performed at the Laboratory for Cardio-Cerebrovascular Disease, Hospital of Integrated Traditional and Western Medicine, Tongji Medical College of Huazhong University of Science and Technology between September 2006 and August 2007.MATERIALS: Eighty Sprague Dawley rats, 3-6 months old, underwent cerebral ischemia/reperfusion by thread technique, and were randomly divided into model and MAPCs groups (n = 40).METHODS: Mononuclear cells were harvested from bone marrow using the Ficoll-Paque density gradient centrifugation method. After removing CD45 and glycophorin A-positive cells (GLYA+) with immunomagnetic beads, CD45 GLYA adult progenitor cells were labeled with bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU). A total of 1 mL cell suspension, containing 5 ×106 MAPCs, was injected into the MAPCs group through the tail vein. A total of 1 mL normal saline was injected into the model rats.MAIN OUTCOME MEASURES: After 60 days, BrdU and neuron-specific enolase double-positive cells were observed using immunofluorescence. Cell morphology was observed under electron microscopy, and nerve growth factor mRNA was measured through RT-PCR. In addition, rat neurological functions were measured with behavioral tests.RESULTS: Immunofluorescence revealed that MAPCs positive for BrdU and neuron specific enolase were found surrounding the ischemic focus in the MAPCs group. Microscopic observation suggested that MAPCs-derived neuronal-like cells connected with other nerve cells to form synapses, Compared with the model animals, the level of nerve growth factor mRNA was significantly upregulated in rats injected with MAPCs (P < 0.05). In addition, rats in the MAPCs

  19. Dominance and persistence of donor marrow in long-lived allogeneic radiation chimeras obtained with unmanipulated bone marrow

    International Nuclear Information System (INIS)

    Allogeneic, H-2-incompatible irradiation chimeras (H-2sup(d) → H-2sup(b)) constructed with normal, unmanipulated bone marrow and with marrow-derived factors live long and do not manifest a GvH disease. Their response to primary immunization is deficient but their alloreactivity is normal. This chimeric allotolerance cannot be passively transferred from chimeric donors to normal irradiated recipients. Passive transfer of both donor- or recipient-type immuno-competent T-cells into the chimeric mice does not lead to syngeneic reconstitution, rejection of the engrafted marrow or GvH disease, and the mice maintain permanently their chimerism. This new model demonstrates that chimerism is not eradicable in long-lived chimeras reconstituted with unmanipulated bone marrow, and that the bone marrow itself plays a dominant role in maintenance of chimerism. (Auth.)

  20. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Daniela Belotti

    2015-01-01

    Full Text Available According to the European Medicine Agency (EMA regulatory frameworks, Advanced Therapy Medicinal Products (ATMP represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs. In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM, ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106, with a viability ranged between 96,03% and 99,97% (median 99,87% and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%. Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial.

  1. Full GMP-compliant validation of bone marrow-derived human CD133(+) cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy.

    Science.gov (United States)

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133(+) cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 10(6) of CD133(+) cells (range 2.85 × 10(6)-30.84 × 10(6)), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133(+) cells of 90,60% (range 81,40%-96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 10(6) cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial).

  2. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study

    Directory of Open Access Journals (Sweden)

    Shan-zheng Wang

    2015-01-01

    Full Text Available The interests in platelet-rich plasma (PRP and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs. We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1, dexamethasone (DEX, and vitamin C (Vc was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  3. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation.

    Directory of Open Access Journals (Sweden)

    Dorothée Cantinieaux

    Full Text Available Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.

  4. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  5. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    Science.gov (United States)

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion.

  6. Stimulation of chondrogenic differentiation of adult human bone marrow-derived stromal cells by a moderate-strength static magnetic field.

    Science.gov (United States)

    Amin, Harsh D; Brady, Mariea Alice; St-Pierre, Jean-Philippe; Stevens, Molly M; Overby, Darryl R; Ethier, C Ross

    2014-06-01

    Tissue-engineering strategies for the treatment of osteoarthritis would benefit from the ability to induce chondrogenesis in precursor cells. One such cell source is bone marrow-derived stromal cells (BMSCs). Here, we examined the effects of moderate-strength static magnetic fields (SMFs) on chondrogenic differentiation in human BMSCs in vitro. Cells were cultured in pellet form and exposed to several strengths of SMFs for various durations. mRNA transcript levels of the early chondrogenic transcription factor SOX9 and the late marker genes ACAN and COL2A1 were determined by reverse transcription-polymerase chain reaction, and production of the cartilage-specific macromolecules sGAG, collage type 2 (Col2), and proteoglycans was determined both biochemically and histologically. The role of the transforming growth factor (TGF)-β signaling pathway was also examined. Results showed that a 0.4 T magnetic field applied for 14 days elicited a strong chondrogenic differentiation response in cultured BMSCs, so long as TGF-β3 was also present, that is, a synergistic response of a SMF and TGF-β3 on BMSC chondrogenic differentiation was observed. Further, SMF alone caused TGF-β secretion in culture, and the effects of SMF could be abrogated by the TGF-β receptor blocker SB-431542. These data show that moderate-strength magnetic fields can induce chondrogenesis in BMSCs through a TGF-β-dependent pathway. This finding has potentially important applications in cartilage tissue-engineering strategies. PMID:24506272

  7. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  8. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation.

    Science.gov (United States)

    Kalaiyarasu, Semmannan; Bhatia, Sandeep; Mishra, Niranjan; Sood, Richa; Kumar, Manoj; SenthilKumar, D; Bhat, Sushant; Dass Prakash, M

    2016-09-01

    The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes. PMID:27344111

  9. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Directory of Open Access Journals (Sweden)

    Chen X-C

    2008-10-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (BMSCs are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1. The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. Results BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. Conclusion We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.

  10. Autologous Bone-Marrow-Derived-Mononuclear-Cells-Enriched Fat Transplantation in Breast Augmentation: Evaluation of Clinical Outcomes and Aesthetic Results in a 30-Year-Old Female

    Directory of Open Access Journals (Sweden)

    Dmitry Bulgin

    2013-01-01

    Full Text Available Autologous fat transfer (lipofilling is becoming an invaluable tool for breast augmentation as well as for breast reconstruction. Autologous lipofilling has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main limitation is unpredictable fat graft resorption, which ranges from 25% to 80%, probably as a result of ischaemia and lack of neoangiogenesis. To obviate these disadvantages, several studies have searched for new ways of increasing the viability of the transplanted fat tissue. One promising approach is to enrich the fat graft with autologous bone-marrow-derived mononuclear cells (BMMNCs before transplantation. BMMNCs produce many angiogenic and antiapoptotic growth factors, and their secretion is significantly enhanced by hypoxia. All of these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by BMMNCs administration. In our aesthetic surgery practice, we use fat transplantation enriched with BMMNCs, which caused a significant improvement in survival of fat grafts, compared with that of traditional lipofilling. Our experience with freshly isolated autologous fat enriched with BMMNCs for breast augmentation procedures is presented. The concept of this surgical and tissue handling technique is based on ability of BMMNCs to stimulate blood vessel growth.

  11. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  12. Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid

    International Nuclear Information System (INIS)

    In this study, metal-based biomaterials were functionalized with ascorbic acid (LAA). Two types of substrates were used: austenitic steel 316L and titanium Ti6Al4V. Coatings were prepared with the sol–gel method and applied on metal surfaces using the dip-coating technique. Ascorbic acid was delivered with SiO2-coating at concentrations of 0.1 and 0.4 M. The morphology of the surfaces and coatings was determined using scanning electron microscope (SEM), whereas their elemental composition by SEM-EDX. Immobilization of ascorbic acid in the coatings was confirmed with Raman spectroscopy. The biocompatibility of the materials obtained was tested in vitro using both bone marrow- and adipose-derived mesenchymal stem cells (BMMSC and ADMSC, respectively). Proliferation rate and morphology of cells cultured in the presence of designed biomaterials were monitored after 24, 48, 120 and 168 h of propagation. The results obtained indicated that silica coatings doped with 0.4 M LAA had a positive effect on the proliferation rate of investigated cells, and in some cases on the growth pattern of culture. (paper)

  13. Peroxisome Proliferator-Activated Receptor Gamma Negatively Regulates the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Toward Myofibroblasts in Liver Fibrogenesis

    Directory of Open Access Journals (Sweden)

    Shuangshuang Jia

    2015-11-01

    Full Text Available Background/Aims: Bone marrow-derived mesenchymal stem cells (BMSCs have been confirmed to have capacity to differentiate toward hepatic myofibroblasts, which contribute to fibrogenesis in chronic liver diseases. Peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor, has gained a great deal of recent attention as it is involved in fibrosis and cell differentiation. However, whether it regulates the differentiation of BMSCs toward myofibroblasts remains to be defined. Methods: Carbon tetrachloride or bile duct ligation was used to induce mouse liver fibrosis. Expressions of PPARγ, α-smooth muscle actin, collagen α1 (I and collagen α1 (III were detected by real-time RT-PCR and Western blot or immunofluorescence assay. Results: PPARγ expression was decreased in mouse fibrotic liver. In addition, PPARγ was declined during the differentiation of BMSCs toward myofibroblasts induced by transforming growth factor β1. Activation of PPARγ stimulated by natural or synthetic ligands suppressed the differentiation of BMSCs. Additionally, knock down of PPARγ by siRNA contributed to BMSC differentiation toward myofibroblasts. Furthermore, PPARγ activation by natural ligand significantly inhibited the differentiation of BMSCs toward myofibroblasts in liver fibrogenesis and alleviated liver fibrosis. Conclusions: PPARγ negatively regulates the differentiation of BMSCs toward myofibroblasts, which highlights a further mechanism implicated in the BMSC differentiation.

  14. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  15. Ox-LDL Promotes Migration and Adhesion of Bone Marrow-Derived Mesenchymal Stem Cells via Regulation of MCP-1 Expression

    Directory of Open Access Journals (Sweden)

    Fenxi Zhang

    2013-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (bmMSCs are the most important cell source for stem cell transplant therapy. The migration capacity of MSCs is one of the determinants of the efficiency of MSC-based transplant therapy. Our recent study has shown that low concentrations of oxidized low-density lipoprotein (ox-LDL can stimulate proliferation of bmMSCs. In this study, we investigated the effects of ox-LDL on bmMSC migration and adhesion, as well as the related mechanisms. Our results show that transmigration rates of bmMSCs and cell-cell adhesion between bmMSCs and monocytes are significantly increased by treatments with ox-LDL in a dose- and time-dependent manner. Expressions of ICAM-1, PECAM-1, and VCAM-1 as well as the levels of intracellular Ca2+ are also markedly increased by ox-LDL in a dose-dependent manner. Cytoskeleton analysis shows that ox-LDL treatment benefits to spreading of bmMSCs and organization of F-actin fibers after being plated for 6 hours. More interestingly, treatments with ox-LDL also markedly increase expressions of LOX-1, MCP-1, and TGF-β; however, LOX-1 antibody and MCP-1 shRNA markedly inhibit ox-LDL-induced migration and adhesion of bmMSCs, which suggests that ox-LDL-induced bmMSC migration and adhesion are dependent on LOX-1 activation and MCP-1 expression.

  16. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    Science.gov (United States)

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  17. 15-Deoxy-Δ12,14-Prostaglandin J2 Inhibits Homing of Bone Marrow-Derived Mesenchymal Stem Cells Triggered by Chronic Liver Injury via Redox Pathway

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-01-01

    Full Text Available It has been reported that bone marrow-derived mesenchymal stem cells (BMSCs have capacity to migrate to the damaged liver and contribute to fibrogenesis in chronic liver diseases. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARγ, is considered a new inhibitor of cell migration. However, the actions of 15d-PGJ2 on BMSC migration remain unknown. In this study, we investigated the effects of 15d-PGJ2 on the migration of BMSCs using a mouse model of chronic liver fibrosis and primary mouse BMSCs. Our results demonstrated that in vivo, 15d-PGJ2 administration inhibited the homing of BMSCs to injured liver by flow cytometric analysis and, in vitro, 15d-PGJ2 suppressed primary BMSC migration in a dose-dependent manner determined by Boyden chamber assay. Furthermore, the repressive effect of 15d-PGJ2 was blocked by reactive oxygen species (ROS inhibitor, but not PPARγ antagonist, and action of 15d-PGJ2 was not reproduced by PPARγ synthetic ligands. In addition, 15d-PGJ2 triggered a significant ROS production and cytoskeletal remodeling in BMSCs. In conclusion, our results suggest that 15d-PGJ2 plays a crucial role in homing of BMSCs to the injured liver dependent on ROS production, independently of PPARγ, which may represent a new strategy in the treatment of liver fibrosis.

  18. Biochemical properties of norepinephrine as a kind of neurotransmitter secreted by bone marrow-derived neural stem cells induced and differentiated in vitro

    Institute of Scientific and Technical Information of China (English)

    Jianrong Chen; Xiaodan Jiang; Ruxiang Xu; Peng Jin; Yuxi Zou; Lianshu Ding

    2006-01-01

    BACKGROUND: It has been proved by many experimental studies from the aspects of morphology and immunocytochemistry in recent years that bone marrow stromal cells (BMSCs) can in vitro induce and differentiate into the cells possessing the properties of nerve cells. But the functions of BMSCs-derived neural stem cells(NSCs) and the differentiated neuron-like cells are still unclear.OBJECTIVE: To observe whether bone marrow-derived NSCs can secrete norepinephrine (NE) under the condition of in vitro culture, induce and differentiation, and analyze the biochemical properties of BMSCs-derived NSCs.DESIGN: A non-randomized and controlled experimental observation.SETTING: Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University.MATERIALS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5-month-old healthy New Zealand white rabbits.METHODS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5 month-old healthy New Zealand white rabbits. BMSCs of rabbits were isolated and performed in vitro culture, induce and differentiation with culture medium of NSCs and differentiation-inducing factor, then identified with immunocy-tochemical method. Experimental grouping: ①Negative control group: L-02 hepatic cell and RPMI1640 culture medium were used. ② Background culture group: Only culture medium of NSCs as culture solution was added into BMSCs to perform culture, and 0.1 volume fraction of imported fetal bovine serum was supplemented 72 hours later. ③Differentiation inducing factor group: After culture for 72 hours, retinoic acid and glial cell line-derived neurotrophic factors were added in the culture medium of BMSCs and NSCs as corresponding inducing factors. The

  19. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    Directory of Open Access Journals (Sweden)

    Ali Mota

    2014-03-01

    Full Text Available Objective: We introduce an RGD (Arg-Gly-Asp-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electron microscopy (SEM and fourier transform infrared spectroscopy (FTIR. We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs. In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and 4',6-diamidino-2-phenylindole (DAPI staining, and the results compared with tissue culture plate, as the control. Results: FTIR results showed that the peptide successfully immobilized on the scaffold. MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.

  20. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    Gu, Zhifeng; Jiang, Jinxia; Tan, Wei; Xia, Yunfei; Cao, Haixia; Meng, Yan; Da, Zhanyun; Liu, Hong; Cheng, Chun

    2013-01-01

    Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs) from systemic lupus erythematosus (SLE) patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  1. p53/p21 Pathway Involved in Mediating Cellular Senescence of Bone Marrow-Derived Mesenchymal Stem Cells from Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Zhifeng Gu

    2013-01-01

    Full Text Available Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs from systemic lupus erythematosus (SLE patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  2. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    International Nuclear Information System (INIS)

    Bone marrow-derived stromal cells (BMSCs) are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1). The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment

  3. Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo

    Science.gov (United States)

    Qiao, Hongyu; Zhang, Ran; Gao, Lina; Guo, Yanjie; Wang, Jinda; Zhang, Rongqing; Li, Xiujuan; Li, Congye; Chen, Yundai; Cao, Feng

    2016-01-01

    Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc+ transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106 BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway. PMID:27419126

  4. The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-01-01

    Full Text Available The α-chemokine stromal derived factor 1 (SDF-1, which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs to bone marrow (BM and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P and ceramide-1-phosphate (C1P, and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP and adenosine triphosphate (ATP. Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin as well as prostaglandin E2 (PGE2. Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.

  5. Cellular behaviour of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid).

    Science.gov (United States)

    Roh, Hyun; Yang, Dae Hyeok; Chun, Heung Jae; Khang, Gilson

    2015-07-01

    Previously, the galactosylation of poly(d,l-lactic-co-glycolic acid) (PLGA) surface was accomplished by grafting allylamine (AA), using inductively coupled plasma-assisted chemical vapour deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation for hepatic tissue-engineering purposes. As a continuation study, the cellular behaviour of hepatocyte-like cells (HLCs) on the surface of the galactosylated PLGA were investigated. Nude mouse bone marrow-derived mesenchymal stem cells (MSCs) were cultured under hepatogenic conditions and the differentiated cells were characterized by reverse-transcription polymerase chain reaction (RT-PCR), immunofluorescence and periodic acid-Schiff (PAS) staining. Galactosylated PLGA enhanced the proliferation rate of HLCs compared to the control; HLCs on the surface of the sample became aggregated and formed spheroids after 3 days of culture. A large number of cells on the surface of the sample exhibited increased liver-specific functional activities, such as albumin and urea secretions. In addition, multicellular spheroids in the sample strongly expressed phospholyated focal adhesion kinase (pFAK) (cell-matrix interactions), E-cadherin (cell-cell interactions) and connexin 32 (Cox32; gap junction).

  6. Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing

    Directory of Open Access Journals (Sweden)

    H Worch

    2011-01-01

    Full Text Available The communication of bone-forming osteoblasts and bone-resorbing osteoclasts is a fundamental requirement for balanced bone remodelling. For biomaterial research, development of in vitro models is necessary to investigate this communication. In the present study human bone marrow stromal cells and human monocytes were cultivated in order to differentiate into osteoblasts and osteoclasts, respectively. Finally, a cultivation regime was identified which firstly induces the differentiation of the human bone marrow stromal cells followed by the induction of osteoclastogenesis through the osteoblasts formed – without the external addition of the factors RANKL and M-CSF. As a feedback on osteoblasts enhanced gene expression of BSP II was detected for modifications which facilitated the formation of large multinuclear osteoclasts. Phenotype characterization was performed by biochemical methods (DNA, LDH, ALP, TRAP 5b, gene expression analysis (ALP, BSP II, RANKL, IL-6, VTNR, CTSK, TRAP, OSCAR, CALCR as well as light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. After establishing this model on polystyrene, similar positive results were obtained for cultivation on a relevant bone substitution material – a composite xerogel of silica, collagen, and calcium phosphate.

  7. Expression of genetically determined diabetes and insulitis in the nonobese diabetic (NOD) mouse at the level of bone marrow-derived cells. Transfer of diabetes and insulitis to nondiabetic (NOD X B10) F1 mice with bone marrow cells from NOD mice

    International Nuclear Information System (INIS)

    The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by at least three recessive loci, including one linked to the MHC. To determine whether any of these genetic loci exert their effects via the immune system, radiation bone marrow chimeras were constructed in which (NOD X B10)F1-irradiated recipients were reconstituted with NOD bone marrow cells. Unmanipulated (NOD X B10)F1 mice, or irradiated F1 mice reconstituted with F1 or B10 bone marrow, did not display insulitis or diabetes. In contrast, insulitis was observed in a majority of the NOD----F1 chimeras and diabetes developed in 21% of the mice. These data demonstrate that expression of the diabetic phenotype in the NOD mouse is dependent on NOD-derived hematopoietic stem cells. Diabetogenic genes in the NOD mouse do not appear to function at the level of the insulin-producing beta cells since NOD----F1 chimeras not only developed insulitis and diabetes but also rejected beta cells within pancreas transplants from newborn B10 mice. These data suggest that the beta cells of the NOD mouse do not express a unique antigenic determinant that is the target of the autoimmune response

  8. Scanning of Bone Marrow in Haematopoietic Disorders

    International Nuclear Information System (INIS)

    Scanning can help evaluate size and distribution of the haematopoietic marrow, a difficult task by aspiration or biopsy. With the 61-hole focusing gold-tungsten Oak Ridge National Laboratory Scanner, the marrow organ has been clearly delineated by means of intravenous colloidal Au198, it being known that reticulo-endothelial function in the marrow correlates with areas of haematopoiesis. Patients with normal haematopoiesis and with a variety of blood disorders such as focal marrow lesions, acute and chronic leukaemia, polycythaemiavera, myelofibrosis, multiple myeloma, and lymphoma have been scanned. Because of the reticulo-endothelial activity in liver and spleen, the marrow pattern is obscured in the mid-trunk. Vertebral bodies, intervertebral discs, pelvis and long bones are outlined, and, in the thorax, the sternum and thoracic vertebrae. Focal lesions have also been found. Because of respiratory motion, individual ribs are not seen. In expanded marrow, the knee region can be shown, including the joint space. It has been possible to correlate these scans with aspiration biopsy and with linear scans. Because relatively large doses of Au198 are required, other isotopes are being investigated. An improved whole- body scanner is being tested for more practical scans. (author)

  9. [Prolonged acute pancreatitis after bone marrow transplantation].

    Science.gov (United States)

    De Singly, B; Simon, M; Bennani, J; Wittnebel, S; Zagadanski, A-M; Pacault, V; Gornet, J-M; Allez, M; Lémann, M

    2008-04-01

    Acute pancreatitis is not infrequent after allogenic marrow transplantation. Several causes can predispose to pancreatitis, including Graft-Versus-Host Disease (GVHD), a condition which is probably underestimated. In the literature, few description of pancreatic GVHD can be found. Pancreatic GVHD diagnosis can be difficult if pancreatic involvement occurs without other typical manifestations of GVHD. We report the case of a woman, 54 years old, suffering from prolonged, painful pancreatitis two months after allogenic bone marrow transplantation for acute myeloid leucemia. Pancreatic GVHD diagnosis was performed after five weeks on duodenal biopsies despite the absence of diarrheoa. The patient dramatically improved within few days on corticosteroids.

  10. Neural Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stem Cells Treated with Sex Steroid Hormones and Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Kazem Parivar

    2015-04-01

    Full Text Available Objective: There are several factors, like environmental agents, neurotrophic factors, serotonin and some hormones such as estrogen, affecting neurogenesis and neural differentiation. Regarding to importance of proliferation and regeneration in central nervous system, and a progressive increase in neurodegenerative diseases, cell therapy is an attractive approach in neuroscience. The aim of the present study was to investigate the effects of sex steroid hormones and basic fibroblast growth factor (bFGF on neuronal differentiation of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs. Materials and Methods: This experimental study was established in Kharazmi University. BM was isolated from the bones of femur and tibia of 4-6-week old Naval Medical Research Institute (NMRI mice, and the cells were cultured. The cells were divided into following 4 groups based on the applied treatments: I. control (no treatment, II. steroid hormones (β-estradiol, progesterone and testosterone, III. bFGF and IV. combination of steroid hormones and bFGF. Immunocytochemistry and flow cytometery analyses were applied for beta III-tubulin (β-III tubulin and microtubule-associated proteins-2 (MAP-2 in 4 days of treatment for all groups. Results: The cells treated with combination of bFGF and steroid hormones represented more expressions of neural markers as compared to control and to other two groups treated with either bFGF or steroid hormones. Conclusion: This study showed that BM-MSCs can express specific neural markers after receiving bFGF pretreatment that was followed by sex steroid hormones treatment. More investigations are necessary to specify whether steroid hormones and bFGF can be considered for treatment of CNS diseases and disorders.

  11. Platelet-rich plasma and fibrin glue-coated bioactive ceramics enhance growth and differentiation of goat bone marrow-derived stem cells.

    Science.gov (United States)

    Nair, Manitha B; Varma, H K; John, Annie

    2009-07-01

    New biotechnologies such as tissue engineering require functionally active cells within supportive matrices where the physical and chemical stimulus provided by the matrix is indispensable to determine the cellular behavior. This study has investigated the influence of platelet-rich plasma (PRP) and fibrin glue (FG) on the functional activity of goat bone marrow-derived mesenchymal stem cells (gBMSCs) that differentiated into the osteogenic lineage. To achieve this goal, PRP and FG were separately coated on bioactive ceramics like hydroxyapatite (HA) and silica-coated HA (HASi), on which gBMSCs were seeded and induced to differentiate into the osteogenic lineage for 28 days. The cells were then analyzed for viability (lactate dehydrogenase assay: acridine orange and ethidium bromide staining), morphology (scanning electron microscopy), proliferation (picogreen assay), cell cycle assay (propidium iodide staining), and differentiation (alkaline phosphatase [ALP] activity and real-time PCR analysis of ALP, osteocalcin, and osteopontin gene). It has been observed that PRP and FG have appreciably favored the viability, spreading, and proliferation of osteogenic-induced gBMSCs. The osteopontin and osteocalcin expression was significantly enhanced on PRP- and FG-coated HA and HASi, but PRP had effect on neither ALP expression nor ALP activity. The results of this study have depicted that FG-coated ceramics were better than PRP-coated and bare matrices. Among all, the excellent performance was shown by FG coated HASi, which may be attributed to the communal action of the stimulus emanated by Si in HASi and the temporary extracellular matrix provided by FG over HASi. Thus, we can conclude that PRP or FG in combination with bioactive ceramics could possibly enhance the functional activity of cells to a greater extent, promoting the hybrid composite as a promising candidate for bone tissue engineering applications.

  12. Karyotype of cryopreserved bone marrow cells

    Directory of Open Access Journals (Sweden)

    M.L.L.F. Chauffaille

    2003-07-01

    Full Text Available The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis. Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05. Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05. GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

  13. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    International Nuclear Information System (INIS)

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker® staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: ► Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. ► p53 expression does not appreciably influence the biology of Schwann or stem cells. ► Notch 2 expression was similar in cells derived from animals of different ages. ► Proliferation rates of dMSC varied little over time or with animal age.

  14. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Cristina [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden); Raimondo, Stefania [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Haneef, Maryam S. [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Geuna, Stefano [Dipartimento di Scienze Cliniche e Biologiche, University of Turin (Italy); Terenghi, Giorgio [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Shawcross, Susan G., E-mail: sue.shawcross@manchester.ac.uk [Blond McIndoe Laboratories, School of Biomedicine, The University of Manchester, Room 3,106 Stopford Building, Oxford Road, Manchester M13 9PT, Academic Health Science Centre, Faculty of Medicine and Human Sciences (United Kingdom); Wiberg, Mikael [Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea (Sweden); Department of Surgical and Perioperative Science, Umea University, Umea (Sweden)

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 at similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.

  15. The active principle region of Buyang Huanwu decoction induced differentiation of bone marrow-derived mesenchymal stem cells into neural-like cells Superior effects over original formula of Buyang Huanwu decoction

    Institute of Scientific and Technical Information of China (English)

    Jinghui Zheng; Yi Wan; Jianhuai Chi; Dekai Shen; Tingting Wu; Weimin Li; Pengcheng Du

    2012-01-01

    The present study induced in vitro-cultured passage 4 bone marrow-derived mesenchymal stem cells to differentiate into neural-like cells with a mixture of alkaloid, polysaccharide, aglycone, glycoside, essential oils, and effective components of Buyang Huanwu decoction (active principle region of decoction for invigorating yang for recuperation). After 28 days, nestin and neuron-specific enolase were expressed in the cytoplasm. Reverse transcription-PCR and western blot analyses showed that nestin and neuron-specific enolase mRNA and protein expression was greater in the active principle region group compared with the original formula group. Results demonstrated that the active principle region of Buyang Huanwu decoction induced greater differentiation of rat bone marrow-derived mesenchymal stem cells into neural-like cells in vitro than the original Buyang Huanwu decoction formula.

  16. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    Directory of Open Access Journals (Sweden)

    Morteza Abouzaripour

    2016-02-01

    Full Text Available Objective: Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone marrow have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1 positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods: This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS followed by characterization with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR, immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results: The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4 detected by immunocytochemistry and C-X-C chemokine receptor type 4 (CXCR4 and stem cell antigen-1 (SCA-1 detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors, Ngn3 (endocrine progenitor marker, Insulin1 and Insulin2 (pancreaticβ-cell markers. Additionally, our results demonstrate expression of PDX1 and GLUT2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion: Our study clearly demonstrates the potential of SSEA-1

  17. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes

    OpenAIRE

    Masako Nakano; Kanna Nagaishi; Naoto Konari; Yuki Saito; Takako Chikenji; Yuka Mizue; Mineko Fujimiya

    2016-01-01

    The incidence of dementia is higher in diabetic patients, but no effective treatment has been developed. This study showed that rat bone marrow mesenchymal stem cells (BM-MSCs) can improve the cognitive impairments of STZ-diabetic mice by repairing damaged neurons and astrocytes. The Morris water maze test demonstrated that cognitive impairments induced by diabetes were significantly improved by intravenous injection of BM-MSCs. In the CA1 region of the hippocampus, degeneration of neurons an...

  18. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold

    OpenAIRE

    Bornes, Troy D.; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B.

    2016-01-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seedin...

  19. Effect of CXCR4-overexpressing bone marrow-derived mesenchymal stem cells on the repair of the co-cultured hypoxia /re-oxygenation renal tubular epithelial cells and its possible mechanism

    Institute of Scientific and Technical Information of China (English)

    刘楠梅

    2014-01-01

    Objective CXCR4-overexpressing bone marrow-derived mesenchymal stem cells(CXCR4-BMSC)were constructed and co-cultured with hypoxia/re-oxygenation pretreated renal tubular epithelial cells(HR-RTEC).Repair of HR-RTEC was detected and the possible mechanism was also discussed.Methods CXCR4-BMSC(CXCR4-BMSC/eGFP,eGFP as the tracer gene)and

  20. Ex vivo expansion of Primate CD34+ Cells isolated from Bone Marrow and Human Bone Marrow Mononuclear Cells using a Novel Scaffold

    Directory of Open Access Journals (Sweden)

    Devaprasad D

    2009-01-01

    Full Text Available Bone marrow derived CD34+ cells have been in clinical application in patients with haematological malignancies. One of the major problems with this treatment is the non-availability of matched donors or the necessity of multiple transfusions depending upon the pathology. Recently evidences have been accumulating to prove the safety and efficacy of autologous CD34+ cells in diseases such as myocardial dysfunction, peripheral vascular diseases and neurological certain conditions. However there are only a few reports in the literature on ex vivo expansion of the bone marrow derived CD34+ cells. We have in two different studies proven that isolated CD34+ cells from baboon bone marrow and non-isolated BMMNCs from human bone marrow could be expanded with increase in percentage of CD34+ cells using a novel scaffold.

  1. Improved method for assessing iron stores in the bone marrow

    NARCIS (Netherlands)

    K.S. Phiri; J.C.J. Calis; D. Kachala; E. Borgstein; J. Waluza; I. Bates; B. Brabin; M. Boele van Hensbroek

    2009-01-01

    BACKGROUND: Bone marrow iron microscopy has been the "gold standard" method of assessing iron deficiency. However, the commonly used method of grading marrow iron remains highly subjective. AIM: To improve the bone marrow grading method by developing a detailed protocol that assesses iron in fragmen

  2. Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice

    Directory of Open Access Journals (Sweden)

    Rothenberg Marc E

    2009-06-01

    Full Text Available Abstract Background Arginase is significantly upregulated in the lungs in murine models of asthma, as well as in human asthma, but its role in allergic airway inflammation has not been fully elucidated in mice. Results In order to test the hypothesis that arginase has a role in allergic airway inflammation we generated arginase I-deficient bone marrow (BM chimeric mice. Following transfer of arginase I-deficient BM into irradiated recipient mice, arginase I expression was not required for hematopoietic reconstitution and baseline immunity. Arginase I deficiency in bone marrow-derived cells decreased allergen-induced lung arginase by 85.8 ± 5.6%. In contrast, arginase II-deficient mice had increased lung arginase activity following allergen challenge to a similar level to wild type mice. BM-derived arginase I was not required for allergen-elicited sensitization, recruitment of inflammatory cells in the lung, and proliferation of cells. Furthermore, allergen-induced airway hyperresponsiveness and collagen deposition were similar in arginase-deficient and wild type mice. Additionally, arginase II-deficient mice respond similarly to their control wild type mice with allergen-induced inflammation, airway hyperresponsiveness, proliferation and collagen deposition. Conclusion Bone marrow cell derived arginase I is the predominant source of allergen-induced lung arginase but is not required for allergen-induced inflammation, airway hyperresponsiveness or collagen deposition.

  3. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Danna Ye

    2016-01-01

    Full Text Available Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi 5-aza-2′-deoxycytidine (5-aza-dC and the histone deacetylase inhibitor (HDACi trichostatin A (TSA promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.

  4. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M., E-mail: milva.battaglia@ior.it [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Rimondi, E. [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Monti, C. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Guaraldi, F. [Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD (United States); Sant' Andrea, A. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Buda, R.; Cavallo, M.; Giannini, S.; Vannini, F. [Clinical Orthopaedic and Traumatology Unit II, Rizzoli Orthopaedic Institute, Bologna (Italy)

    2011-11-15

    Objective: Bone marrow derived cell transplantation (BMDCT) has been recently suggested as a possible surgical technique to repair osteochondral lesions. To date, no qualitative MRI studies have evaluated its efficacy. The aim of our study is to investigate the validity of MRI T2-mapping sequence in characterizing the reparative tissue obtained and its ability to correlate with clinical results. Methods and materials: 20 patients with an osteochondral lesion of the talus underwent BMDCT and were evaluated at 2 years follow up using MRI T2-mapping sequence. 20 healthy volunteers were recruited as controls. MRI images were acquired using a protocol suggested by the International Cartilage Repair Society, MOCART scoring system and T2 mapping. Results were then correlated with AOFAS clinical score. Results: AOFAS score increased from 66.8 {+-} 14.5 pre-operatively to 91.2 {+-} 8.3 (p < 0.0005) at 2 years follow-up. T2-relaxation time value of 35-45 ms was derived from healthy ankles evaluation and assumed as normal hyaline cartilage value and used as a control. Regenerated tissue with a T2-relaxation time value comparable to hyaline cartilage was found in all the cases treated, covering a mean of 78% of the repaired lesion area. A high clinical score was related directly to isointense signal in DPFSE fat sat (p = 0.05), and percentage of regenerated hyaline cartilage (p = 0.05), inversely to the percentage of regenerated fibrocartilage. Lesion's depth negatively related to the integrity of the repaired tissue's surface (tau = -0.523, p = 0.007), and to the percentage of regenerated hyaline cartilage (rho = -0.546, p = 0.013). Conclusions: Because of its ability to detect cartilage's quality and to correlate to the clinical score, MRI T2-mapping sequence integrated with Mocart score represent a valid, non-invasive technique for qualitative cartilage assessment after regenerative surgical procedures.

  5. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    Science.gov (United States)

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  6. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis.

    Science.gov (United States)

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohammadreza Baghaban; Sedighi-Gilani, Mohammadali

    2016-01-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into germ cells (GCs). This research, for the first time, has evaluated the fate of in vitro MSC-derived GCs generated by three different induction methods and compared them after transplantation into the testes of rams. Passage-3 ram bone marrow (BM)-MSCs were divided into three treatment groups: (1) 14-d treatment with 10 μM retinoic acid (RA; RA14), (2) 21-d treatment with 10 μM RA (RA21), and (3) 21-d treatment with 10 ng/ml transforming growth factor beta-1 (TGFb1). After confirmation of the existence of germ-like cells in the culture, the treated cells were labeled and transplanted into the testes of ram lambs. After 2 mo, we conducted histological evaluations of the rams' testes. Results showed that in vitro-derived GCs from all treatment groups survived in the testes. Some of these GCs homed at the basement membrane of seminiferous tubules and formed colonies. The homed cells and cell colonies were similar to testicular native spermatogonia and expressed PGP9.5. TGFb1 exhibited the highest efficiency for in vitro production of GCs as well as the highest capability for homing and colony formation in the testes. RA21 was less efficient than TGFb1, particularly in colony formation. RA14 was the weakest group. No further differentiation of the transplanted GCs was observed. From our results, it could be concluded that a 21-d treatment period of BM-MSCs with TGFb1 is the most efficient method for in vitro generation of spermatogonia-like cells that survive, home, and form colonies in the testes.

  7. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis.

    Science.gov (United States)

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohammadreza Baghaban; Sedighi-Gilani, Mohammadali

    2016-01-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into germ cells (GCs). This research, for the first time, has evaluated the fate of in vitro MSC-derived GCs generated by three different induction methods and compared them after transplantation into the testes of rams. Passage-3 ram bone marrow (BM)-MSCs were divided into three treatment groups: (1) 14-d treatment with 10 μM retinoic acid (RA; RA14), (2) 21-d treatment with 10 μM RA (RA21), and (3) 21-d treatment with 10 ng/ml transforming growth factor beta-1 (TGFb1). After confirmation of the existence of germ-like cells in the culture, the treated cells were labeled and transplanted into the testes of ram lambs. After 2 mo, we conducted histological evaluations of the rams' testes. Results showed that in vitro-derived GCs from all treatment groups survived in the testes. Some of these GCs homed at the basement membrane of seminiferous tubules and formed colonies. The homed cells and cell colonies were similar to testicular native spermatogonia and expressed PGP9.5. TGFb1 exhibited the highest efficiency for in vitro production of GCs as well as the highest capability for homing and colony formation in the testes. RA21 was less efficient than TGFb1, particularly in colony formation. RA14 was the weakest group. No further differentiation of the transplanted GCs was observed. From our results, it could be concluded that a 21-d treatment period of BM-MSCs with TGFb1 is the most efficient method for in vitro generation of spermatogonia-like cells that survive, home, and form colonies in the testes. PMID:26395124

  8. Immunologic studies of canine bone marrow chimeras

    International Nuclear Information System (INIS)

    When prospective male or female recipients from the Cooperstown colony were exposed to supralethal total body irradiation and were reconstituted with bone marrow obtained from genotypically DL-A-identical littermate or nonlittermate donors such treatment resulted, in regularly reproducible fashion, in the establishment of a long-term state of chimerism with no evidence of graft-versus-host disease in any of the recipients. The resulting chimeras have survived thus far for 882-1466 days, with donor red cell antigen and leukocyte sex marker evidence of the persistence of chimerism. Subsequent challenge of the chimeras with renal and skin allografts obtained from the specific donor of marrow resulted in the long-term survival of such transplants without any evidence of rejection for 833--1402 days. Skin allografts obtained from other dogs were, however, accorded first-set rejection times. Recent studies indicate that the state of allogeneic unresponsiveness produced by supralethal total body irradiation and bone marrow transplantation also extends to other organs from the donor of marrow, including heart, liver, pancreas and duodenum, and lung

  9. Bone marrow transplantation for childhood malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Yasunori (Kanagawa Children' s Medical Center, Yokohama (Japan))

    1992-10-01

    As of June 30, 1991, 1013 pediatric patients had registrated to The Bone Marrow Transplantation Committee of the Japanese Society of Pediatric Hematology. Bone marrow transplantation (BMT) from HLA-matched siblings is now reasonably safe and an established method of treatment in acute leukemia. Total body irradiation, which is major part of preparative regimen for BMT, affect endocrine function, subsequent growth, gonadal function, development of secondary malignancies. We propose the indication of TBI for children and young adults as follows; those who are at high risk for leukemic relapse after BMT such as Phl-positive-All, leukemia-lymphoma syndrome, AML with monocytic component, BMT in elapse, BMT from other than HLA-matched siblings. (author).

  10. Platelet-rich concentrate in serum free medium enhances osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells

    Science.gov (United States)

    Ramasamy, Thamil Selvee; Karunanithi, Puvanan; Naveen, Sangeetha Vasudevaraj; Murali, Malliga Raman; Abbas, Azlina A.; Kamarul, Tunku

    2016-01-01

    Previous studies have shown that platelet concentrates used in conjunction with appropriate growth media enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs). However, their potential in inducing osteogenesis of hMSCs when cultured in serum free medium has not been explored. Furthermore, the resulting osteogenic molecular signatures of the hMSCs have not been compared to standard osteogenic medium. We studied the effect of infrequent supplementation (8-day interval) of 15% non-activated platelet-rich concentrate (PRC) in serum free medium on hMSCs proliferation and differentiation throughout a course of 24 days, and compared the effect with those cultured in a standard osteogenic medium (OM). Cell proliferation was analyzed by alamar blue assay. Gene expression of osteogenic markers (Runx2, Collagen1, Alkaline Phosphatase, Bone morphogenetic protein 2, Osteopontin, Osteocalcin, Osteonectin) were analyzed using Q-PCR. Immunocytochemical staining for osteocalcin, osteopontin and transcription factor Runx2 were done at 8, 16 and 24 days. Biochemical assays for the expression of ALP and osteocalcin were also performed at these time-points. Osteogenic differentiation was further confirmed qualitatively by Alizarin Red S staining that was quantified using cetylpyridinium chloride. Results showed that PRC supplemented in serum free medium enhanced hMSC proliferation, which peaked at day 16. The temporal pattern of gene expression of hMSCs under the influence of PRC was comparable to that of the osteogenic media, but at a greater extent at specific time points. Immunocytochemical staining revealed stronger staining for Runx2 in the PRC-treated group compared to OM, while the staining for Osteocalcin and Osteopontin were comparable in both groups. ALP activity and Osteocalcin/DNA level were higher in the PRC group. Cells in the PRC group had similar level of bone mineralization as those cultured in OM, as reflected by the intensity of Alizarin red

  11. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter;

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and...... prospective isolation of mouse bone marrow osteoprogenitors....... prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic...

  12. hTERT- and hCTLA4Ig-expressing human bone marrow-derived mesenchymal stem cells: in vitro and in vivo characterization and osteogenic differentiation.

    Science.gov (United States)

    Dai, Fei; Yang, Sisi; Zhang, Fei; Shi, Dongwen; Zhang, Zehua; Wu, Jun; Xu, Jianzhong

    2014-07-22

    Multipotent mesenchymal stem cells (MSCs) are commonly used as seed cells in studies of tissue engineering and regenerative medicine but their clinical application is limited, due to insufficient numbers of autogeneic MSCs, immune rejection of allogeneic MSCs and replicative senescence. We constructed two gene expression vectors for transfection of the human telomerase reverse transcriptase (hTERT) and cytotoxic T lymphocyte-associated antigen 4-Ig (CTLA4Ig) genes into human bone marrow-derived stem cells (hBMSCs). Successful transfection of both genes generated hTERT-CTLA4Ig hBMSCs that expressed both telomerase (shown by immunohistochemistry and a TRAPeze assay) and CTLA4Ig (demonstrated by immunocytochemistry and western blotting) without apparent mutual interference. Both hTERT BMSCs (92 population doublings) and hTERT-CTLA4Ig hBMSCs (60 population doublings) had an extended lifespan compared with hBMSCs (18 population doublings). Cell cycle analysis revealed that, compared with hBMSCs, a lower proportion of hTERT hBMSCs were in G0 /G1 phase but a higher proportion were in S phase; compared with hTERT hBMSCs, a higher proportion of hTERT-CTLA4Ig hBMSCs were in G0 /G1 phase, while a lower proportion were in S and G2 /M phases. hTERT-CTLA4Ig hBMSCs retained their capacity for osteogenic differentiation in vitro, shown by the detection of hydroxyapatite mineral deposition (labelled tetracycline fluorescence staining), calcareous nodules (alizarin red S staining), alkaline phosphatase (calcium-cobalt method) and osteocalcin (immunocytochemistry). Furthermore, subcutaneous transplantation of hTERT-CTLA4Ig hBMSCs in a rat xenotransplantation model resulted in the successful generation of bone-like tissue, confirmed using radiography and histological assessment. We propose that allogeneic hTERT-CTLA4Ig hBMSCs may be ideal seed cells for bone tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25047146

  13. Recent advances in bone marrow biopsy pathology

    OpenAIRE

    van der Walt, Jon

    2009-01-01

    The second quarter of 2009 saw steady advances in bone marrow biopsy (BMB) pathology. The following publications are a personal selection of the highlights. Quality issues in diagnostic immunohistochemistry for BMB have largely been ignored in external quality assurance programmes, and this issue is highlighted. In other areas, publications reflecting advances in flow cytometry and aspirate morphology are discussed where translation to the BMB is possible. Classifications undergo constant cha...

  14. Acceleration of Immune Reconstitution after Bone Marrow Transplantation in Mice by Bone Marrow Stromal

    Institute of Scientific and Technical Information of China (English)

    秦凤华; 蒋激扬; 李爱玲; 金永柱; 郝洁; 谢蜀生

    2003-01-01

    To observe potential effect of the engineered bone marrow stromal cell line QXMSC1 secreting IL-6 (QXMSCIL-6) on accelerating immnune reconstitution in syngeneic bone marrow transplantation in mice, QXMSC1 was transfected with the eukaryocytic expression vector pcDNAIL-6, which contained hIL-6 cDNA by liposome-mediated gene transfecting technique. G418-resistance clone was selected by limiting dilution. The highest secreting clone was selected by ELISA assay and used in animal experiments. The recipient mice (BALB/c) were lethally irradiated and cotransplanted syngeneic bone marrow (107/mice) and the QXMSCIIL-6 (5×105/mice). Lymphocyte proliferation induced by ConA and LPS, helper T lymphocyte precursor (HTLp), cytotoxic T lymphocyte precursor (CTLp), plaque-forming cell (PFC), delayed type hypersensitivity (DTH) were examined 30, 60 days in post transplantation respectively. The results showed that lymphocytes proliferation to ConA and LPS, HTLp, CTLp increased, DTH and PFC were improved by cografted stromal cells QXMSCIIL-6 on 30, 60 days after BMT. These results demonstrated that the bone marrow stromal cell line QXMSC1 IL-6 transfected with IL-6 (QXMSC11L-6) accelerated immnune reconstitution in syngeneic bone marrow transplantation.

  15. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia;

    2012-01-01

    )-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We...... provide evidence that one third of BM-derived GFP(+) cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker) or α-smooth muscle actin (α-SMA, myofibroblast marker), whereas almost 90% of Thy1(+) fibroblasts were originating from resident GFP-negative cells. MMP13......producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained...

  16. Methods of bone marrow dose calculation

    International Nuclear Information System (INIS)

    Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author)

  17. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  18. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  19. Psychiatric disorders in bone marrow transplant patients

    International Nuclear Information System (INIS)

    To identify the psychiatric illnesses in patients with hematological/oncological disorders encountered during blood and bone marrow transplantation. All consecutive patients, aged 15 years and above, who fulfilled inclusion and exclusion criteria and underwent blood and bone marrow transplantation, were enrolled in this study. Psychiatric assessment comprised of a semi-structured interview based on Present Status Examination (PSE). The psychiatric diagnosis was made on the basis of International Classification of Diseases (ICD-10) system of classification devised by W.H.O. Eighty patients, who fulfilled the inclusion criteria, were inducted in this study. Thirty (37.5%) cases were found to have psychiatric disorders. Out of the total, 60 (75%) were males and 20 (25%) females. Adjustment disorder was the most frequent diagnosis (n=12), followed by major depression (n=7). Rest of the diagnoses made were generalized anxiety disorder, acute psychotic disorder, delirium and depressive psychosis. High psychiatric morbidity associated with blood and bone marrow transplantation was observed. It indicates the importance of psychiatric intervention during the isolation period of BMT as well as pre-transplant psychiatric assessment and counseling regarding procedure. (author)

  20. Radionuclide imaging of bone marrow in hematologic systemic disease

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, F.; Hahn, K.; Gamm, H.

    1987-02-01

    Radionuclide imaging studies of the bone marrow were carried out in 164 patients suffering from hematologic systemic disease. One third of 90 patients with Hodgkin lymphoma (HL) or Non Hodgkin lymphoma (NHL) displayed a pathological distribution pattern representing bone marrow expansion. In HL there were 17% accumulation defects caused by metastases in contrast to only 7% in NHL. Among 30 patients with chronic myelocytic leukemia bone marrow expansion was found in 60%, bone marrow displacement and aplasia 10%. Focal bone marrow defects were found in 3 patients. All patients with primary polycythemia rubra vera displayed a pathologic bone marrow distribution pattern as well as splenomegaly. All patients with acute myelocytic leukemia (AML) and one patient with an acute lymphatic leukemia (ALL) had a pathological distribution pattern with bone marrow expansion and displacement. Focal bone marrow defects were not seen. Multiple myeloma with bone marrow expansion was found in 6 of 12 patients and focal accumulation defects were found in 40%, the latter lesions being not visible or equivocal on skeletal imaging studies. Pathological changes in liver and spleen were found in a high percentage of the total collective. The results document the important clinical value of bone marrow scintigraphy among the hematologic diseases studied.

  1. In Vitro Uptake of Silver Nanoparticles and Their Toxicity in Human Mesenchymal Stem Cells Derived from Bone Marrow.

    Science.gov (United States)

    He, Wei; Liu, Xujie; Kienzle, Arne; Müller, Werner E G; Feng, Qingling

    2016-01-01

    During the last decade, the usage of silver nanoparticles in biomedical fields has increased rapidly, mainly due to their excellent antibacterial effects. They are used in many medical products such as wound dressings, catheters, bone cement and artificial cardiac valves. In tissue engineering, silver nanoparticles are often loaded as a filler for fabrication of nanocomposite scaffolds which subsequently are seeded with human mesenchymal stem cells. Thus, possible adverse effects of silver nanoparticles on human stem cells should be investigated carefully to ensure a safe usage. In this study, silver nanoparticles with a mean diameter of ~30 nm were prepared and their toxicity in human mesenchymal stem cells was investigated. Transmission electron microscopic images reveal the uptake and localization of the silver nanoparticles in the cytoplasm. Upon internalization of Ag NPs inside the cells, an increase in the release of lactate dehydrogenase and the production of reactive oxygen species was quantified. Furthermore, they caused a reduction in both cell viability and mitochondrial membrane potential in a dose-dependent manner. Annexin V-FITC/PI staining implied that silver nanoparticles did not only induce apoptosis but also cause necrosis. Based on cell cycle analysis, G2/M arrest was detected in cells treated with silver nanoparticles, implicating DNA damage. The high level of reactive oxygen species induced by nanoparticles is considered to be the main cause of their toxicity. PMID:27398448

  2. Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis

    OpenAIRE

    Xiaofang Wang; Erin A. Kimbrel; Kumiko Ijichi; Debayon Paul; Adam S. Lazorchak; Jianlin Chu; Nicholas A. Kouris; Gregory J. Yavanian; Shi-Jiang Lu; Joel S. Pachter; Crocker, Stephen J.; Robert Lanza; Ren-He Xu

    2014-01-01

    Summary Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stem cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs) may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs sign...

  3. EFFECT OF BONE MARROW MESENCHYMAL STEM CELLS-DERIVED EXTRACELLULAR MATRIX SCAFFOLD ON CHONDROGENIC DIFFERENTIATION OF MARROW CLOT AFTER MICROFRACTURE OF BONE MARROW STIMULATION IN VITRO%BMSCs来源细胞外基质支架对微骨折骨髓刺激术后血凝块体外软骨化分化的作用研究

    Institute of Scientific and Technical Information of China (English)

    魏波; 金成哲; 徐燕; 唐成; 胡文浩; 王黎明

    2013-01-01

    Objective To evaluate the feasibility and validity of chondrogenic differentiation of marrow clot after microfracture of bone marrow stimulation combined with bone marrow mesenchymal stem cells (BMSCs)-derived extracellular matrix (ECM) scaffold in vitro. Methods BMSCs were obtained and isolated from 20 New Zealand white rabbits (5-6 months old). The 3rd passage cells were cultured and induced to osteoblasts, chondrocytes, and adipocytes in vitro, respectively. ECM scaffold was manufactured using the 3rd passage cells via a freeze-dying method. Microstructure was observed by scanning electron microscope (SEM). A full-thickness cartilage defect (6 mm in diameter) was established and 5 microholes (1 mm in diameter and 3 mm in depth) were created with a syringe needle in the trochlear groove of the femur of rabbits to get the marrow clots. Another 20 rabbits which were not punctured were randomly divided into groups A (n=10) and B (n=10): culture of the marrow clot alone (group A) and culture of the marrow clot with transforming growth factor (33 (TGF-B3) (group B). Twenty rabbits which were punctured were randomly divided into groups C (n=10) and D (n=10): culture of the ECM scaffold and marrow clot composite (group C) and culture of the ECM scaffold and marrow clot composite with TGF-p3 (group D). The cultured tissues were observed and evaluated by gross morphology,histology, immunohistochemistry, and biochemical composition at 1,2, 4, and 8 weeks after culture. Results Cells were successfully induced into osteoblasts, chondrocytes, and adipocytes in vitro. Highly porous microstructure of the ECM scaffold was observed by SEM. The cultured tissue gradually reduced in size with time and disappeared at 8 weeks in group A. Soft and loose structure developed in group C during culturing. Chondroid tissue with smooth surface developed in groups B and D with time. The cultured tissue size of groups C and D were significantly larger than that of group B at 4 and 8 weeks (P

  4. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne K.; Apeldoorn, van Aart A.; Jukes, Jojanneke M.; Englund, Mikael C.O.; Hyllner, Johan; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  5. Protective effect of bone marrow-derived mesenchymal stem cells on dopaminergic neurons against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in rat brain slices

    Institute of Scientific and Technical Information of China (English)

    Lirong Jin; Zhen Hong; Chunjiu Zhong; Yang Wang

    2009-01-01

    BACKGROUND: To date, the use of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of Parkinson's disease have solely focused on in vivo animal models. Because of the number of influencing factors, it has been difficult to determine a consistent outcome. OBJECTIVE: To establish an injury model in brain slices of substantia nigra and striatum using 1-methyl-4-phenylpytidinium ion (MPP+), and to investigate the effect of MSCs on dopaminergic neurons following MPP+ induced damage.DESIGN, TIME AND SETTING: An in vitro, randomized, controlled, animal experiment using immunohistochemistry was performed at the Laboratory of the Department of Anatomy, Fudan University between January 2004 and December 2006.MATERIALS: Primary MSC cultures were obtained from femurs and tibias of adult Sprague Dawley rats. Organotypic brain slices were isolated from substantia nigra and striatum of 1-day-old Sprague Dawley rat pups. Monoclonal antibodies for tyrosine hydroxylase (TH, 1:5 000) were from Santa Cruz (USA); goat anti-rabbit IgG antibodies labeled with FITC were from Boster Company (China).METHODS: Organotypic brain slices were cultured for 5 days in whole culture medium supplemented with 50% DMEM, 25% equine serum, and 25% Tyrode's balanced salt solution. The medium was supplemented with 5 μg/mL Ara-C, and the culture was continued for an additional 5 days. The undergrowth of brain slices was discard