WorldWideScience

Sample records for bone formation capacity

  1. Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zaher, Walid; Larsen, Kenneth H

    2015-01-01

    by bioluminescence imaging (BLI). In order to identify the molecular phenotype associated with enhanced migration, we carried out comparative DNA microarray analysis of gene expression of hBMSC-derived high bone forming (HBF) clones versus low bone forming (LBF) clones. RESULTS: HBF clones were exhibited higher ex...

  2. Assessment of bone formation capacity using in vivo transplantation assays: procedure and tissue analysis

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ditzel, Nicholas; Kassem, Moustapha

    2008-01-01

    , by employing human specific antibodies or in situ hybridization using human specific Alu-repeat probes. Recently, several methods have been developed to quantitate the newly formed bone using histomorphometric methods or using non-invasive imaging methods. This chapter describes the use of in vivo...

  3. Molecular mechanism of bone formation and regeneration

    Institute of Scientific and Technical Information of China (English)

    Akira Yamaguchi

    2008-01-01

    @@ Bone formation and regeneration are mediated by the coordinate action of various factors. Among these, bone morphogenetic protein (BMP) and runt-related gene 2 (Runx2) play crucial roles in bone formation.

  4. Bone balance within a cortical BMU: local controls of bone resorption and formation.

    Directory of Open Access Journals (Sweden)

    David W Smith

    Full Text Available Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the 'integration of information' occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable

  5. Bone balance within a cortical BMU: local controls of bone resorption and formation.

    Science.gov (United States)

    Smith, David W; Gardiner, Bruce S; Dunstan, Colin

    2012-01-01

    Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the 'integration of information' occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors.

  6. Understanding coupling between bone resorption and formation

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Abdelgawad, Mohamed Essameldim; Kristensen, Helene Bjørg

    2013-01-01

    . Collectively, our observations suggest that arrested reversal cells reflect aborted remodeling cycles that did not progress to the bone formation step. We, therefore, propose that bone loss in postmenopausal osteoporosis does not only result from a failure of the bone formation step, as commonly believed......Bone remodeling requires bone resorption by osteoclasts, bone formation by osteoblasts, and a poorly investigated reversal phase coupling resorption to formation. Likely players of the reversal phase are the cells recruited into the lacunae vacated by the osteoclasts and presumably preparing...... these lacunae for bone formation. These cells, called herein reversal cells, cover >80% of the eroded surfaces, but their nature is not identified, and it is not known whether malfunction of these cells may contribute to bone loss in diseases such as postmenopausal osteoporosis. Herein, we combined...

  7. Bone char quality and defluoridation capacity in contact precipitation

    DEFF Research Database (Denmark)

    Albertus, J.; Bregnhøj, Henrik; Kongpun, M.

    2002-01-01

    Samples from six different brands of bone char are tested for their capacity to remove fluoride from water in batch. Initial concentrations of 10 mg/L and contact times of 6 hours are used. The removal capacities observed are 0.6-1.1 mg/g on an average, s.d. being 0.16. Addition of calcium and ph...

  8. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J;

    2004-01-01

    an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8...... weeks, the implants were removed and embedded un-decalcified in methyl methacrylate (MMA). Sections were stained histochemically with Goldner's Trichrome stain and immuno-histochemically using human-specific antibodies against known osteogenic markers. Implanted human marrow stromal cells (hMSC) were...... able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24...

  9. The Hedgehog signalling pathway in bone formation

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Philipp Andre; Ling Ye; Ying-Zi Yang

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.

  10. Mechanism of mineral formation in bone.

    Science.gov (United States)

    Anderson, H C

    1989-03-01

    The mechanism of mineral formation in bone is seen best where active new bone formation is occurring, e.g., in newly forming subperiosteal bone of the embryo, in the growing bone of young animals, and in healing rickets where the calcification process in osteoid is reactivated. A large body of ultrastructural evidence, using conventional and anhydrous methods for tissue preparation, has shown convincingly that extracellular matrix vesicles are present at or near the mineralization front in all of the above, and that these vesicles are the initial site of apatite mineral deposition. Thus bone resembles growth plate cartilage, predentin, and turkey tendon in having calcification initiated by matrix vesicles. Once the calcification cascade is begun, matrix vesicles are no longer needed to support mineralization and are consumed by the advancing mineralization front in which performed crystals serve as nuclei for the formation of new crystals. The rate of crystal proliferation is promoted by the availability of Ca2+, PO4(3-), and the presence of collagen, and retarded by naturally occurring inhibitors of mineralization such as proteoglycans and several noncollagenous calcium-binding proteins of bone including bone-Gla protein (osteocalcin), phosphoproteins, osteonectin, and alpha-2HS-glycoproteins. New electron microscopic immunocytochemical findings in our laboratory suggest that the origin of alkaline phosphatase-positive bone matrix vesicles is polarized to the mineral-facing side of osteoblasts and may be concentrated near the intercellular junctions of human embryonic osteoblasts.

  11. Heterotopic bone formation following total shoulder arthroplasty

    DEFF Research Database (Denmark)

    Kjaersgaard-Andersen, P.; Frich, Lars Henrik; Sjøbjerg, J.O.

    1989-01-01

    The incidence and location of heterotopic bone formation following total shoulder arthroplasty were evaluated in 58 Neer Mark-II total shoulder replacements. One year after surgery, 45% had developed some ectopic ossification. In six shoulders (10%) the ossifications roentgenographically bridged...... the glenohumeral and/or the glenoacromial space. There was no correlation between shoulder pain and the development of ossification. Shoulders with grade III heterotopic bone formation had a limited range of active elevation compared with shoulders without or with only a milder lesion. Men and patients...... with osteoarthritis of the shoulder joint were significantly disposed to the development of heterotopic bone. Heterotopic bone formation following total shoulder arthroplasty is frequent, but disabling heterotopic ossifications seem to be rare....

  12. Substituted Borosilicate Glasses with Improved Osteogenic Capacity for Bone Tissue Engineering.

    Science.gov (United States)

    Fernandes, João S; Gentile, Piergiorgio; Crawford, Aileen; Pires, Ricardo A; Hatton, Paul V; Reis, Rui L

    2017-03-27

    Borosilicate bioactive glasses (BBGs) have shown the capacity to promote higher formation of new bone when compared with silicate bioactive glasses. Herein, we assessed the capacity of BBGs to induce osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) as a function of their substituted divalent cations (Mg(2+), Ca(2+), Sr(2+)). To this purpose, we synthesized BBG particles by melt quenching. The cell viability, proliferation, and morphology (i.e., PrestoBlue(®), PicoGreen(®), and DAPI and Phalloidin stainings, respectively), as well as protein expression (i.e., alkaline phosphatase, ALP; osteopontin, OP; and osteocalcin, OC), of BM-MSCs in contact with BBGs were evaluated for 21 days. We observed an enhanced expression of bone-specific proteins (ALP, OP, and OC) and high mineralization of BM-MSCs under BBG-Mg and BBG-Sr-conditioned osteogenic media for concentrations of 20 and 50 mg/mL with low cytotoxic effects. Moreover, BBG-Sr, at a concentration of 50 mg/mL, was able to increase the mineralization and expression of the same bone-specific proteins even under basal medium conditions. These results indicated that the proposed BBGs improved osteogenic differentiation of BM-MSCs, therefore showing their potential as relevant biomaterials for bone tissue regeneration, not only by bonding to bone tissue but also by stimulating new bone formation.

  13. Does simvastatin stimulate bone formation in vivo?

    Directory of Open Access Journals (Sweden)

    Chorev Michael

    2003-04-01

    Full Text Available Abstract Background Statins, potent compounds that inhibit cholesterol synthesis in the liver have been reported to induce bone formation, both in tissue culture and in rats and mice. To re-examine potential anabolic effects of statins on bone formation, we compared the activity of simvastatin (SVS to the known anabolic effects of PTH in an established model of ovariectomized (OVX Swiss-Webster mice. Methods Mice were ovariectomized at 12 weeks of age (T0, remained untreated for 5 weeks to allow development of osteopenia (T5, followed by treatment for 8 weeks (T13. Whole, trabecular and cortical femoral bone was analyzed by micro-computed tomography (micro CT. Liquid chromatography/mass spectrometry (LC/MS was used to detect the presence of SVS and its active metabolite, simvastatin β-hydroxy acid (SVS-OH in the mouse serum. Results Trabecular BV/TV at T13 was 4.2 fold higher in animals treated with PTH (80 micro-g/kg/day compared to the OVX-vehicle treated group (p in vivo study. Conclusions While PTH demonstrated the expected anabolic effect on bone, SVS failed to stimulate bone formation, despite our verification by LC/MS of the active SVS-OH metabolite in mouse serum. While statins have clear effects on bone formation in vitro, the formulation of existing 'liver-targeted' statins requires further refinement for efficacy in vivo.

  14. Rescuing loading induced bone formation at senescence.

    Directory of Open Access Journals (Sweden)

    Sundar Srinivasan

    Full Text Available The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.

  15. Erythropoietin couples hematopoiesis with bone formation.

    Directory of Open Access Journals (Sweden)

    Yusuke Shiozawa

    Full Text Available BACKGROUND: It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where the molecular basis for this activity is the production of BMP2 and BMP6 by HSCs. Yet, what stimulates HSCs to produce BMPs is unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we demonstrate that erythropoietin (Epo activates Jak-Stat signaling pathways in HSCs which leads to the production of BMPs. Critically, Epo also directly activates mesenchymal cells to form osteoblasts in vitro, which in vivo leads to bone formation. Importantly, Epo first activates osteoclastogenesis which is later followed by osteoblastogenesis that is induced by either Epo directly or the expression of BMPs by HSCs to form bone. CONCLUSIONS/SIGNIFICANCE: These data for the first time demonstrate that Epo regulates the formation of bone by both direct and indirect pathways, and further demonstrates the exquisite coupling between hematopoiesis and osteopoiesis in the marrow.

  16. Bone-Forming Capacity and Biodistribution of Bone Marrow-Derived Stromal Cells Directly Loaded Into Scaffolds: A Novel and Easy Approach for Clinical Application of Bone Regeneration.

    Science.gov (United States)

    Léotot, Julie; Lebouvier, Angélique; Hernigou, Philippe; Bierling, Philippe; Rouard, Hélène; Chevallier, Nathalie

    2015-01-01

    In the context of clinical applications of bone regeneration, cell seeding into scaffolds needs to be safe and easy. Moreover, cell density also plays a crucial role in the development of efficient bone tissue engineering constructs. The aim of this study was to develop and evaluate a simple and rapid cell seeding procedure on hydroxyapatite/β-tricalcium phosphate (HA/βTCP), as well as define optimal cell density and control the biodistribution of grafted cells. To this end, human bone marrow-derived stromal cells (hBMSCs) were seeded on HA/βTCP scaffolds, and we have compared bone formation using an ectopic model. Our results demonstrated a significantly higher bone-forming capacity of hBMSCs directly loaded on HA/βTCP during surgery compared to hBMSCs preseeded for 7 days in vitro on HA/βTCP before ectopic implantation. The extent of new bone formation increases with increasing hBMSC densities quantitatively, qualitatively, and in frequency. Also, this study showed that grafted hBMSCs remained confined to the implantation site and did not spread toward other tissues, such as liver, spleen, lungs, heart, and kidneys. In conclusion, direct cell loading into a scaffold during surgery is more efficient for bone regeneration, as well as quick and safe. Therefore direct cell loading is suitable for clinical requirements and cell production control, making it a promising approach for orthopedic applications. Moreover, our results have provided evidence that the formation of a mature bone organ containing hematopoietic islets needs a sufficiently high local density of grafted hBMSCs, which should guide the optimal dose of cells for clinical use.

  17. Bone formation on synthetic precursors of hydroxyapatite.

    Science.gov (United States)

    Suzuki, O; Nakamura, M; Miyasaka, Y; Kagayama, M; Sakurai, M

    1991-05-01

    The aim of this study was to investigate the reaction of skeletal tissue to various synthetic calcium phosphate (Ca-P) compounds in vivo. Five synthetic Ca-P compounds were implanted into the subperiosteal area of the calvaria of 7-week-old BALB/c mice for one to 15 weeks. Synthetic compounds were dicalcium phosphate (DCP), octacalcium phosphate (OCP), amorphous calcium phosphate (ACP), Ca-deficient hydroxyapatite and hydroxyapatile (HA). Implanted DCP, OCP and ACP were found to be converted to apatitic phase by x-ray microdiffraction analysis using undecalcified specimens. Structure of bone was found out on all of Ca-P compounds eventually at late stage under the light microscope, but the rate of bone formation calculated from a number of experiments varied on respective synthetic Ca-P compound. It was high as 80% for DCP, OCP and ACP, but was low as 5.6% for Ca-deficient HA, and no reaction was found for HA at the stage of 3 weeks. Fine filaments and granular materials in the newly formed bone matrix were detected at 7 days around the remnants of OCP particles which already converted to apatitic phase by ultrastructural study of decalcified specimens. These structures were very similar to the components of bone nodules seen in intramembranous osteogenesis. It is postulated that the precursors of HA have an important role in intramembranous osteogenesis.

  18. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S;

    2015-01-01

    formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  19. The Effect of Bone Loss Pattern on the Structural Capacity of the Proximal Femur

    Institute of Scientific and Technical Information of China (English)

    FAN Li-xia; Eric Wang

    2006-01-01

    The effect of age-related bone loss on the structural capacity of the proximal femur were investigated by Finite Element Analysis(FEA). Four bone loss patterns were considered. These were "uniform cortical bone loss", "neck cortical bone loss", "intertrochanteric cortical bone loss" and "uniform trabecular bone loss". The results show that the two "non-uniform cortical bone loss" patterns are more dangerous than the "uniform cortical bone loss" pattern, and that the cortical bone loss in intertrochanteric region is associated with a greater reduction in cortical failure load than the cortical bone loss in the femoral neck. The trabecular bone loss causes a limited decrease in both cortical failure and trabecular failure loads. This research should be helpful to the clinical assessment of femur fracture risk due to age-related bone loss.

  20. The molecular clock mediates leptin-regulated bone formation.

    Science.gov (United States)

    Fu, Loning; Patel, Millan S; Bradley, Allan; Wagner, Erwin F; Karsenty, Gerard

    2005-09-01

    The hormone leptin is a regulator of bone remodeling, a homeostatic function maintaining bone mass constant. Mice lacking molecular-clock components (Per and Cry), or lacking Per genes in osteoblasts, display high bone mass, suggesting that bone remodeling may also be subject to circadian regulation. Moreover, Per-deficient mice experience a paradoxical increase in bone mass following leptin intracerebroventricular infusion. Thus, clock genes may mediate the leptin-dependent sympathetic regulation of bone formation. We show that expression of clock genes in osteoblasts is regulated by the sympathetic nervous system and leptin. Clock genes mediate the antiproliferative function of sympathetic signaling by inhibiting G1 cyclin expression. Partially antagonizing this inhibitory loop, leptin also upregulates AP-1 gene expression, which promotes cyclin D1 expression, osteoblast proliferation, and bone formation. Thus, leptin determines the extent of bone formation by modulating, via sympathetic signaling, osteoblast proliferation through two antagonistic pathways, one of which involves the molecular clock.

  1. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption, ...... secrete non-bone derived factors, which induce preosteoblasts to form bone-like nodules, potentially explaining the imbalanced coupling seen in osteopetrotic patients....

  2. Cthrc1 is a positive regulator of osteoblastic bone formation.

    Directory of Open Access Journals (Sweden)

    Hiroaki Kimura

    Full Text Available BACKGROUND: Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors. METHODOLOGY/PRINCIPAL FINDINGS: We identified collagen triple helix repeat containing-1 (Cthrc1 as a downstream target of bone morphogenetic protein-2 (BMP2 in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice. Microcomputed tomography (micro-CT and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the

  3. Effect of coating Straumann Bone Ceramic with Emdogain on mesenchymal stromal cell hard tissue formation.

    Science.gov (United States)

    Mrozik, Krzysztof Marek; Gronthos, Stan; Menicanin, Danijela; Marino, Victor; Bartold, P Mark

    2012-06-01

    Periodontal tissue engineering requires a suitable biocompatible scaffold, cells with regenerative capacity, and instructional molecules. In this study, we investigated the capacity of Straumann Bone Ceramic coated with Straumann Emdogain, a clinical preparation of enamel matrix protein (EMP), to aid in hard tissue formation by post-natal mesenchymal stromal cells (MSCs) including bone marrow stromal cells (BMSCs) and periodontal ligament fibroblasts (PDLFs). MSCs were isolated and ex vivo-expanded from human bone marrow and periodontal ligament and, in culture, allowed to attach to Bone Ceramic in the presence or absence of Emdogain. Gene expression of bone-related proteins was investigated by real time RT-PCR for 72 h, and ectopic bone formation was assessed histologically in subcutaneous implants of Bone Ceramic containing MSCs with or without Emdogain in NOD/SCID mice. Alkaline phosphatase activity was also assessed in vitro, in the presence or absence of Emdogain. Collagen-I mRNA was up-regulated in both MSC populations over the 72-h time course with Emdogain. Expression of BMP-2 and the osteogenic transcription factor Cbfa-1 showed early stimulation in both MSC types after 24 h. In contrast, expression of BMP-4 was consistently down-regulated in both MSC types with Emdogain. Up-regulation of osteopontin and periostin mRNA was restricted to BMSCs, while higher levels of bone sialoprotein-II were observed in PDLFs with Emdogain. Furthermore, alkaline phosphatase activity levels were reduced in both BMSCs and PDLFs in the presence of Emdogain. Very little evidence was found for ectopic bone formation following subcutaneous implantation of MSCs with Emdogain-coated or -uncoated Bone Ceramic in NOD/SCID mice. The early up-regulation of several important bone-related genes suggests that Emdogain may have a significant stimulatory effect in the commitment of mesenchymal cells to osteogenic differentiation in vitro. While Emdogain inhibited AP activity and appeared

  4. High-dose therapy improved the bone remodelling compartment canopy and bone formation in multiple myeloma

    DEFF Research Database (Denmark)

    Hinge, Maja; Delaissé, Jean-Marie; Plesner, Torben;

    2015-01-01

    . Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell...... transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed......Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling...

  5. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  6. Lanthanum carbonate stimulates bone formation in a rat model of renal insufficiency with low bone turnover.

    Science.gov (United States)

    Fumoto, Toshio; Ito, Masako; Ikeda, Kyoji

    2014-09-01

    Control of phosphate is important in the management of chronic kidney disease with mineral and bone disorder (CKD-MBD), for which lanthanum carbonate, a non-calcium phosphate-binding agent, has recently been introduced; however, it remains to be determined whether it has any beneficial or deleterious effect on bone remodeling. In the present study, the effects of lanthanum carbonate were examined in an animal model that mimics low turnover bone disease in CKD, i.e., thyroparathyroidectomized (TPTX) and 5/6 nephrectomized (NX) rats undergoing a constant infusion of parathyroid hormone (PTH) and thyroxine injections (TPTX-PTH-5/6NX). Bone histomorphometry at the second lumbar vertebra and tibial metaphysis revealed that both bone formation and resorption were markedly suppressed in the TPTX-PTH-5/6NX model compared with the sham-operated control group, and treatment with lanthanum carbonate was associated with the stimulation of bone formation but not an acceleration of bone resorption. Lanthanum treatment caused a robust stimulation of bone formation with an activation of osteoblasts on the endosteal surface of femoral diaphysis, leading to an increase in cortical bone volume. Thus, lanthanum carbonate has the potential to stimulate bone formation in cases of CKD-MBD with suppressed bone turnover.

  7. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects.

    Science.gov (United States)

    Chatterjea, Anindita; van der Stok, Johan; Danoux, Charlène B; Yuan, Huipin; Habibovic, Pamela; van Blitterswijk, Clemens A; Weinans, Harrie; de Boer, Jan

    2014-05-01

    In the present study, two open porous calcium phosphate ceramics, β-tricalcium phosphate (β-TCP), and hydroxyapatite (HA) were compared in a critical-sized femoral defect in rats. Previous comparisons of these two ceramics showed significantly greater osteoinductive potential of β-TCP upon intramuscular implantation and a better performance in a spinal fusion model in dogs. Results of the current study also showed significantly more bone formation in defects grafted with β-TCP compared to HA; however, both the ceramics were not capable of increasing bone formation to such extend that it bridges the defect. Furthermore, a more pronounced degradation of β-TCP was observed as compared to HA. Progression of inflammation and initiation of new bone formation were assessed for both materials at multiple time points by histological and fluorochrome-based analyses. Until 12 days postimplantation, a strong inflammatory response in absence of new bone formation was observed in both ceramics, without obvious differences between the two materials. Four weeks postimplantation, signs of new bone formation were found in both β-TCP and HA. At 6 weeks, inflammation had subsided in both ceramics while bone deposition continued. In conclusion, the two ceramics differed in the amount of bone formed after 8 weeks of implantation, whereas no differences were found in the duration of the inflammatory phase after implantation or initiation of new bone formation.

  8. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  9. A physical mechanism for coupling bone resorption and formation in adult human bone

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Sondergaard, Teis Esben; Skorzynska, Katarzyna Ewa

    2009-01-01

    During skeletal remodeling, pre-osteoclasts and pre-osteoblasts are targeted to critical sites of the bone to resorb and reconstruct bone matrix, respectively. Coordination of site-specific recruitment of these two cell types is a prerequisite to maintain the specific architecture of each bone...... within strict limits throughout adult life. Here, we determined that the bone marrow microanatomy adjacent to remodeling areas is a central player in this process. By using histomorphometry and multiple immunostainings, we demonstrated in biopsies exhibiting coupled bone resorption and formation...... that osteoclasts and osteoblasts on the bone surface were always covered by a canopy of flat cells expressing osteoblast markers. In contrast, in biopsies in which this canopy was disrupted, bone formation was deficient. Three-dimensional visualizations revealed that this canopy covered the entire remodeling site...

  10. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro.

    Science.gov (United States)

    Zhou, Jian; Ma, Xiao-Ni; Gao, Yu-Hai; Yan, Juan-Li; Shi, Wen-Gui; Xian, Cory J; Chen, Ke-Ming

    2016-01-01

    Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.

  11. Disassociation of bone resorption and formation by GLP-2

    DEFF Research Database (Denmark)

    Henriksen, Dennis B; Alexandersen, Peter; Hartmann, Bolette

    2007-01-01

    of collagen type I (s-CTX and u-CTX) and u-DPD, markers of bone resorption. In contrast, bone formation, as assessed by serum osteocalcin and procollagen type I N-terminal propeptide (PINP), appeared to be unaffected by treatment with exogenous GLP-2. These effects were further investigated in a 14-day study...

  12. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Li, Xiaodong; Ominsky, Michael S; Warmington, Kelly S; Morony, Sean; Gong, Jianhua; Cao, Jin; Gao, Yongming; Shalhoub, Victoria; Tipton, Barbara; Haldankar, Raj; Chen, Qing; Winters, Aaron; Boone, Tom; Geng, Zhaopo; Niu, Qing-Tian; Ke, Hua Zhu; Kostenuik, Paul J; Simonet, W Scott; Lacey, David L; Paszty, Chris

    2009-04-01

    The development of bone-rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostin's role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl-AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six-month-old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency-induced bone loss, at which point Scl-AbII was administered for 5 wk. Scl-AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency-induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non-ovariectomized control rats. Taken together, these preclinical results establish sclerostin's role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody-mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone-related disorders, such as postmenopausal osteoporosis.

  13. Evaluation of heterotopic bone formation induced by squalane and bone morphogenetic protein composite.

    Science.gov (United States)

    Kawakami, T; Kawai, T; Takei, N; Kise, T; Eda, S; Urist, M R

    1997-04-01

    Bone morphogenetic protein is an important molecule whose bioactivity depends on the carrier. Squalane is used in the formulation of various kinds of cosmetics because it is easily emulsified and has the property of spreading well. Thus, squalane might be effective as a bone morphogenetic protein delivery system. As a test for this possibility, gelatin capsules containing squalane and bone morphogenetic protein (bovine derived partially purified) composite were implanted under the hind-quarter perimuscular membrane of ddY mice. Control capsules containing only bone morphogenetic protein were used for controls. The implants were radiographically and histologically examined at 1 to 4 weeks after the operation. According to the radiographic analysis, squalane and bone morphogenetic protein composite and bone morphogenetic protein only control specimens formed widespread heterotopic bone tissues. The amount of heterotopic bone formation in the composite experimental specimens was approximately 40% greater than that in the controls. Histologic examination of experimental and control specimens revealed varying amounts of perichondral ossification by 2 weeks. By 3 and 4 weeks, the bone deposits were colonized by hematopoietic bone marrow. Squalane was effective for the slow local release of bone morphogenetic protein. Furthermore, the squalane and bone morphogenetic protein composite was a reliable osteoinductive biomaterial.

  14. ANA deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events.

    Science.gov (United States)

    Miyai, Kentaro; Yoneda, Mitsuhiro; Hasegawa, Urara; Toita, Sayaka; Izu, Yayoi; Hemmi, Hiroaki; Hayata, Tadayoshi; Ezura, Yoichi; Mizutani, Shuki; Miyazono, Kohei; Akiyoshi, Kazunari; Yamamoto, Tadashi; Noda, Masaki

    2009-04-17

    Ectopic bone formation after joint replacement or brain injury in humans is a serious complication that causes immobility of joints and severe pain. However, mechanisms underlying such ectopic bone formation are not fully understood. Bone morphogenetic protein (BMPs) are defined as inducers of ectopic bone formation, and they are regulated by several types of inhibitors. ANA is an antiproliferative molecule that belongs to Tob/BTG family, but its activity in bone metabolism has not been known. Here, we examined the role of ANA on ectopic bone formation activity of BMP. In ANA-deficient and wild-type mice, BMP2 was implanted to induce ectopic bone formation in muscle. ANA deficiency increased mass of newly formed bone in vivo compared with wild-type based on 3D-muCT analyses. ANA mRNA was expressed in bone in vivo as well as in osteoblastic cells in vitro. Such ANA mRNA levels were increased by BMP2 treatment in MC3T3-E1 osteoblastic cells. Overexpression of ANA suppressed BMP-induced expression of luciferase reporter gene linked to BMP response elements in these cells. Conversely, ANA mRNA knockdown by small interference RNA enhanced the BMP-dependent BMP response element reporter expression. It also enhanced BMP-induced osteoblastic differentiation in muscle-derived C2C12 cells. Immunoprecipitation assay indicated that ANA interacts with Smad8. Thus, ANA is a suppressor of ectopic bone formation induced by BMP, and this inhibitory ANA activity is a part of the negative feedback regulation of BMP function.

  15. EFFECT OF CALCIUM ADDITION ON THE DEFLUORIDATION CAPACITY OF BONE CHAR

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    Dosage of small amounts of calcium chloride to fluoride water prior to contact with bone char which has already been saturated with fluoride is shown to provide an additional fluoride removal capacity. The additionally obtained removal capacity increases with slower filtration velocities and incr...

  16. Intracystic negative pressure may promote bone formation around jaw cysts

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; HAN Qi-bing; LIU Bing

    2011-01-01

    The growth and enlargement of jaw cysts are associated with raised intracystic pressure and bone resorption surrounding the cysts. The major bone-resorbing cells are the osteoclasts. They are acting under the influence of local bone-resorbing factors: prostaglandins, proteinases and cytokines. It was found that positive pressure enhanced the expression of IL-1αmRNA and protein in epithelial cells of odontogenic keratocyst, and increased the secretion of matrix metalloproteinase and PGE in a co-culture of odontogenic keratocyst fibroblasts and epithelial cells. However, the signal intensities for IL-1α mRNA and protein in the epithelium were significantly decreased after marsupialization which relived intracystic pressure. Experimental study indicated that intermittent negative pressure could promote osteogenesis in human bone marrow-derived stroma cells (BMSCs) in vitro. We propose a hypothesis that bone formation around the cyst of the jaws would be stimulated by intracystic negative pressure.

  17. Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model.

    Science.gov (United States)

    Rendina, Elizabeth; Hembree, Kelsey D; Davis, McKale R; Marlow, Denver; Clarke, Stephen L; Halloran, Bernard P; Lucas, Edralin A; Smith, Brenda J

    2013-01-01

    Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.

  18. Osteogenesis Capacity of a Novel BMP/α-TCP Bioactive Composite Bone Cement

    Institute of Scientific and Technical Information of China (English)

    YANG Wei-zhong; ZHOU Da-li; YIN Shao-ya; YIN Guang-fu; GAO Li-da; ZHANG Yun

    2004-01-01

    To improve the osteogenesis ability of α-tricalcium phosphate (α-TCP) bone cement,a novel BMP/α-TCP composite bone cement was prepared.By measuring the setting time and compressive strength,the hydration characteristic of bone cement was evaluated.Animal experiments including histological observation,radiographic investigation as well as digital image analyses reveal the difference of osteogenesis ability among BMP,α-TCP bone cement and BMP/α-TCP composite bone cement.Results show that α-TCP bone cement possesses excellent hydration and setting properties as well as high mechanical property.Comparison experiments show that BMP/α-TCP composite bone cement has a stronger osteogenesis ability.The gross observation of the implant site does not exhibit any inflammation or necrosis.Histological analyses reveal that the material has good osteointegration with host bone,and new bone formation is detected within the materials,which are degrading.Strong osteogenesis ability of the composite is due to not only the excellent osteoconductive potential but also the osteoinductive potential contributed by active BMP releasing and the material degradation.Large skull defect could be well-healed by filling BMP/α-TCP composite bone cement.This novel material proves itself to be an absorbable and bioactive bone cement with an osteogenesis ability.

  19. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  20. Vibration acceleration promotes bone formation in rodent models

    Science.gov (United States)

    Uchida, Ryohei; Nakata, Ken; Kawano, Fuminori; Yonetani, Yasukazu; Ogasawara, Issei; Nakai, Naoya; Mae, Tatsuo; Matsuo, Tomohiko; Tachibana, Yuta; Yokoi, Hiroyuki; Yoshikawa, Hideki

    2017-01-01

    All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the

  1. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    Science.gov (United States)

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  2. Bone formation by autogenous grafting of cultured bone/porous ceramic constructs in a dog

    Energy Technology Data Exchange (ETDEWEB)

    Iida, J.; Ueda, Y.; Ohgushi, H.; Takakura, Y. [Nara Medical Univ., Kashihara (Japan). Dept. of Orthopedic Surgery; Yoshikawa, T. [Nara Medical Univ., Kashihara (Japan). Dept. of Orthopedic Surgery; Nara Medical Univ., Kashihara (Japan). Dept. of Phathology; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara (Japan). Dept. of Phathology

    2001-07-01

    Five ml of bone marrow was collected from the humerus of a 6 month old female dog by needle aspiration. The marrow was cultured in T-75 flask and expand the marrow mesenchymal cells. After 1 week in primary culture, cells were released by trypsin treatment, concentrated and loaded onto porous hydroxyapatite (HA) blocks. The marrow/HA constructs were subcultured in the presence of dexamethasone and beta-glycerophosphate (osteogenic medium). After 2 weeks of subculture, the autogenous cultured bone/HA constructs were subcutaneously implanted into the back of the dog. Histological findings of the constructs at 3 weeks after implantation revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the HA. High alkaline phosphatase activity could be detected in the construct. These results indicate that autogenous cultured bone/HA constructs can produce extensive bone formation after implantation in a large animal(dog). Therefore, based upon the fact that human marrow-derived culture bone/HA construct possesses osteogenic potential when it is grafted into nude mice, it can be expected that autogenous human cultured bone/ceramic grafts may be useful to reconstruct bone in the clinical setting. (orig.)

  3. Bone mineral density in cystic fibrosis: benefit of exercise capacity.

    Science.gov (United States)

    Dodd, Jonathan D; Barry, Sinead C; Barry, Rupert B M; Cawood, Tom J; McKenna, Malachi J; Gallagher, Charles G

    2008-01-01

    The aim of this study was to evaluate the association between bone mineral density (BMD) and objective maximal exercise measurements in adults with cystic fibrosis (CF). Twenty-five CF patients (19 males, 6 females, mean age 25.5 yr, range: 17-52) underwent BMD assessment and maximal-cycle ergometer exercise testing. We examined the relationship between gas exchange (% peak-predicted O(2) uptake, CO(2) output, O(2) saturation), exercise performance (maximum power, exercise duration), and respiratory mechanics (tidal volume, rate) with lumbar spine and total proximal femur BMD. The strongest clinical correlate with BMD was forced expiratory volume at 1s (lumbar spine Z-score, r=0.36; total proximal femur Z-score, r=0.68, pexercise correlate was % peak-predicted O(2) uptake (lumbar spine Z-score, r=0.44, pexercise parameters and total proximal femur BMD (r=0.43-0.60) than with lumbar spine BMD (r=0.04-0.45). Multiple regression analysis revealed VO(2) to be the strongest independent predictor of BMD (R(2)=0.86, pExercise appears to influence total proximal femur BMD more than lumbar spine BMD in CF. Exercise rehabilitation programs focusing on peripheral strength training may benefit those CF patients with low total proximal femur BMD.

  4. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation

    DEFF Research Database (Denmark)

    Trinquier, Anne Marie-Pierre Emilie; Kassem, Moustapha

    2011-01-01

    the mechanisms involved in the age-related defective bone formation. Evidence Acquisition: The mechanisms discussed in this review are based on a PubMed search and knowledge of the authors in the field. Evidence Synthesis: Available basic and clinical studies indicate that multiple mechanisms are involved...

  5. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  6. Immunolocalization of markers for bone formation during guided bone regeneration in osteopenic rats

    Directory of Open Access Journals (Sweden)

    Tábata de Mello TERA

    2014-12-01

    Full Text Available Objective The aim of this paper was to evaluate the repair of onlay autogenous bone grafts covered or not covered by an expanded polytetrafluoroethylene (e-PTFE membrane using immunohistochemistry in rats with induced estrogen deficiency. Material and Methods Eighty female rats were randomly divided into two groups: ovariectomized (OVX and with a simulation of the surgical procedure (SHAM. Each of these groups was again divided into groups with either placement of an autogenous bone graft alone (BG or an autogenous bone graft associated with an e-PTFE membrane (BGM. Animals were euthanized on days 0, 7, 21, 45, and 60. The specimens were subjected to immunohistochemistry for bone sialoprotein (BSP, osteonectin (ONC, and osteocalcin (OCC. Results All groups (OVX+BG, OVX+BMG, SHAM+BG, and SHAM+BMG showed greater bone formation, observed between 7 and 21 days, when BSP and ONC staining were more intense. At the 45-day, the bone graft showed direct bonding to the recipient bed in all specimens. The ONC and OCC showed more expressed in granulation tissue, in the membrane groups, independently of estrogen deficiency. Conclusions The expression of bone forming markers was not negatively influenced by estrogen deficiency. However, the markers could be influenced by the presence of the e-PTFE membrane.

  7. LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling

    Institute of Scientific and Technical Information of China (English)

    Changjun Li; Bart O Williams; Xu Cao; Mei Wan

    2014-01-01

    Lipoprotein receptor-related protein 6 (LRP6) plays a critical role in skeletal development and homeostasis in adults. However, the role of LRP6 in mesenchymal stem cells (MSCs), skeletal stem cells that give rise to osteoblastic lineage, is unknown. In this study, we generated mice lacking LRP6 expression specifically in nestin1 MSCs by crossing nestin-Cre mice with LRP6flox mice and investigated the functional changes of bone marrow MSCs and skeletal alterations. Mice with LRP6 deletion in nestin1 cells demonstrated reductions in body weight and body length at 1 and 3 months of age. Bone architecture measured by microCT (mCT) showed a significant reduction in bone mass in both trabecular and cortical bone of homozygous and heterozygous LRP6 mutant mice. A dramatic reduction in the numbers of osteoblasts but much less significant reduction in the numbers of osteoclasts was observed in the mutant mice. Osterix1 osteoprogenitors and osteocalcin1 osteoblasts significantly reduced at the secondary spongiosa area, but only moderately decreased at the primary spongiosa area in mutant mice. Bone marrow MSCs from the mutant mice showed decreased colony forming, cell viability and cell proliferation. Thus, LRP6 in bone marrow MSCs is essential for their survival and proliferation, and therefore, is a key positive regulator for bone formation during skeletal growth and remodeling.

  8. Bone cutting capacity and osseointegration of surface-treated orthodontic mini-implants

    Science.gov (United States)

    Kim, Ho-Young

    2016-01-01

    Objective The objective of the study was to evaluate the practicality and the validity of different surface treatments of self-drilling orthodontic mini-implants (OMIs) by comparing bone cutting capacity and osseointegration. Methods Self-drilling OMIs were surface-treated in three ways: Acid etched (Etched), resorbable blasting media (RBM), partially resorbabla balsting media (Hybrid). We compared the bone cutting capacity by measuring insertion depths into artificial bone (polyurethane foam). To compare osseointegration, OMIs were placed in the tibia of 25 rabbits and the removal torque value was measured at 1, 2, 4, and 8 weeks after placement. The specimens were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Results The bone cutting capacity of the etched and hybrid group was lower than the machined (control) group, and was most inhibited in the RBM group (p < 0.05). At 4 weeks, the removal torque in the machined group was significantly decreased (p < 0.05), but was increased in the etched group (p < 0.05). In the hybrid group, the removal torque significantly increased at 2 weeks, and was the highest among all measured values at 8 weeks (p < 0.05). The infiltration of bone-like tissue surface was evaluated by SEM, and calcium and phosphorus were detected via EDS only in the hybrid group. Conclusions Partial RBM surface treatment (hybrid type in this study) produced the most stable self-drilling OMIs, without a corresponding reduction in bone cutting capacity. PMID:27896213

  9. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis.

    Science.gov (United States)

    Lories, Rik J U; Luyten, Frank P; de Vlam, Kurt

    2009-01-01

    Targeted therapies that neutralize tumour necrosis factor are often able to control the signs and symptoms of spondyloarthritis. However, recent animal model data and clinical observations indicate that control of inflammation may not be sufficient to impede disease progression toward ankylosis in these patients. Bone morphogenetic proteins and WNTs (wingless-type like) are likely to play an important role in ankylosis and could be therapeutic targets. The relationship between inflammation and new bone formation is still unclear. This review summarizes progress made in our understanding of ankylosis and offers an alternative view of the relationship between inflammation and ankylosis.

  10. CHARACTERIZATION OF REACTIVE FORMATIONS: A VISION FOR THE CAPACITY EXPANSION

    Directory of Open Access Journals (Sweden)

    Danielly Vieira de Lucena

    2013-12-01

    Full Text Available All classes of clay minerals absorb water, but the smectite absorb much larger volumes than the other classes because of its expanded network. During the drilling of oil wells it is common for the detection of layers consisting of clay minerals high grade of hydration arranged in laminar packages. When in contact with water, the packets are separated clay as the water enters the basal spacing. This phenomenon is known as expansion or swelling. Given this, this paper aims to characterize shales in two regions of the country to explain the susceptibility of hydration of each of these formations. The characterization was done by making use of Exchange cation capacity (ECC, X-ray fluorescence (XRF, diferential thermal analysis (DTA, Thermogravimetry (TGA and X-ray diffraction (XRD. The results obtained showed that among the shales studied, those with the greatest degree of clay fractions (smectite in its composition showed higher swelling index according to the methodology of Foster.

  11. Bone Formation in Maxillary Sinus Lift Using Autogenous Bone Graft at 2 and 6 Months

    Science.gov (United States)

    Netto, Henrique Duque; Miranda Chaves, Maria das Graças Alfonso; Aatrstrup, Beatriz; Guerra, Renata; Olate, Sergio

    2016-01-01

    SUMMARY The aim of this study is to compare the bone formation in maxillary sinus lift with an autogenous bone graft in histological evaluation at 2 or 6 months. A comparative study was designed where 10 patients with missing teeth bilaterally in the posterior zone of the maxilla were selected. Patients received a particulate autogenous bone graft under the same surgical conditions, selecting a site to collect a biopsy and histological study at two months and another at six months postoperatively. Histomorphometry was performed and were used Kolmogorov-Smirnov test, student’s t-test and Spearman’s correlation coefficient, considering a value of p<0.05. Differences were observed in inflammatory infiltrate and vascularization characteristics; however, the group analyzed at two months presented 38.12% ± 6.64 % of mineralized tissue, whereas the group studied at 6 months presented an average of 38.45 ± 9.27 %. There were no statistical differences between the groups. It is concluded that the bone formation may be similar in intrasinus particulate autogenous bone grafts in evaluations at two or six months; under these conditions, early installation of implants is viable. PMID:27867255

  12. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  13. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate.

    NARCIS (Netherlands)

    Song, G.; Habibovic, P.; Bao, C.; Hu, J.; Blitterswijk, van C.A.; Yuan, H.; Chen, W.; Xu, H.H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched beagl

  14. Calcification preceding new bone formation induced by demineralized bone matrix gelatin.

    Science.gov (United States)

    Yamashita, K; Takagi, T

    1992-03-01

    Demineralized bone matrix gelatin (BMG) was implanted into the skeletal muscle of Sprague-Dawley (S.D.) rats, and histological changes were examined 3, 5, 7, 10 and 15 days later. Before bone formation, a specific calcification process was found in most of the BMG from day 5 and 7 after implantation. The heterotopic calcified sites were not always consistent with the sites of the alkaline phosphatase activity. It was considered that this calcification progresses without any cellular components, and we distinguished this type of calcification as "acellular mineral deposition" from the calcification which occurs in new bone formation. This "acellular mineral deposition" was first observed as small spherical calcified deposits in the BMG on day 7 after implantation; these deposits then gradually grew and fused with each other. Some multinucleated cells appeared near the site of calcification on day 7 after implantation, but osteoblasts or osteoblast-like cells were scarcely observed around the calcified deposits in BMG until day 7. Vascularization was often observed near the "acellular mineral deposition" and the new bone formation. Fourier transform infrared spectroscopy showed that the calcified deposits in BMG were composed of hydroxyapatite, carbonateapatite and other calcium phosphate components, and that the first two components became prominent with time. It is believed that the "acellular mineral deposition" is due to the deposition of calcium and phosphate into the BMG by a process of heterogenic nucleation that does not involve osteoblasts or matrix vesicles. Bone formation induced by the BMG occurred after the "acellular mineral deposition." The experimental calcification shown in this paper seems a useful model for the study of biocalcification.

  15. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  16. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model.

    Science.gov (United States)

    Arai, Yuki; Aoki, Kazuhiro; Shimizu, Yasuhiro; Tabata, Yasuhiko; Ono, Takashi; Murali, Ramachandran; Mise-Omata, Setsuko; Wakabayashi, Noriyuki

    2016-07-05

    Tooth extraction causes bone resorption of the alveolar bone volume. Although recombinant human bone morphogenetic protein 2 (rhBMP-2) markedly promotes de novo bone formation after tooth extraction, the application of high-dose rhBMP-2 may induce side effects, such as swelling, seroma, and an increased cancer risk. Therefore, reduction of the necessary dose of rhBMP-2 which can still obtain sufficient bone mass is necessary by developing a new osteogenic reagent. Recently, we showed that the systemic administration of OP3-4 peptide, which was originally designed as a bone resorption inhibitor, had osteogenic ability both in vitro and in vivo. This study evaluated the ability of the local application of OP3-4 peptide to promote bone formation in a murine tooth extraction model with a very low-dose of BMP. The mandibular incisor was extracted from 10-week-old C57BL6/J male mice and a gelatin hydrogel containing rhBMP-2 with or without OP3-4 peptide (BMP/OP3-4) was applied to the socket of the incisor. Bone formation inside the socket was examined radiologically and histologically at 21 days after the extraction. The BMP/OP3-4-group showed significant bone formation inside the mandibular extraction socket compared to the gelatin-hydrogel-carrier-control group or rhBMP-2-applied group. The BMP/OP3-4-applied mice showed a lower reduction of alveolar bone and fewer osteoclast numbers, suggesting that the newly formed bone inside the socket may prevent resorption of the cortical bone around the extraction socket. Our data revealed that OP3-4 peptide promotes BMP-mediated bone formation inside the extraction socket of mandibular bone, resulting in preservation from the loss of alveolar bone.

  17. Normal tempo of bone formation in Turner syndrome despite signs of accelerated bone resorption

    DEFF Research Database (Denmark)

    Cleemann, Line Hartvig; Holm, Kirsten Bagge; Kobbernagel, Hanne;

    2011-01-01

    Aims: To evaluate area bone mineral density (aBMD) and volumetric BMD (vBMD) by dual-energy X-ray absorptiometry, and relations to bone markers and hormones in adolescent women with Turner syndrome (TS). Methods: Cross-sectional study in TS patients (n = 37, 16.7 ± 3.4 years) and control group (n......' TS, compared to controls. vBMD(hip) was lower in 'ongoing GH' TS, but similar in 'previous GH'. z scores for aBMD were uniformly reduced in 'ongoing TS', but near-normalized in 'previous GH' TS. Bone formation and resorption markers were increased in 'ongoing GH' TS, while 'previous GH' TS had...

  18. Normal Tempo of Bone Formation in Turner Syndrome despite Signs of Accelerated Bone Resorption

    DEFF Research Database (Denmark)

    Cleemann, Line; Holm, Kirsten; Kobbernagel, Hanne;

    2011-01-01

    Aims: To evaluate area bone mineral density (aBMD) and volumetric BMD (vBMD) by dual-energy X-ray absorptiometry, and relations to bone markers and hormones in adolescent women with Turner syndrome (TS). Methods: Cross-sectional study in TS patients (n = 37, 16.7 ± 3.4 years) and control group (n......' TS, compared to controls. vBMD(hip) was lower in 'ongoing GH' TS, but similar in 'previous GH'. z scores for aBMD were uniformly reduced in 'ongoing TS', but near-normalized in 'previous GH' TS. Bone formation and resorption markers were increased in 'ongoing GH' TS, while 'previous GH' TS had...

  19. A short-term zinc-deficient diet decreases bone formation through down-regulated BMP2 in rat bone.

    Science.gov (United States)

    Suzuki, Takako; Katsumata, Shin-Ichi; Matsuzaki, Hiroshi; Suzuki, Kazuharu

    2016-07-01

    We investigated the effects of a short-term dietary zinc deficiency on bone metabolism. Zinc deficiency increased the mRNA expression of zinc uptake transporters such as Zip1, Zip13, and Zip14 in bone. However, zinc deficiency might not maintain zinc storage in bone, resulting in a decrease in bone formation through downregulation of the expression levels of osteoblastogenesis-related genes.

  20. Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption

    Science.gov (United States)

    Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin

    2016-05-01

    Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2

  1. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    formation. This study indicates that chloride channel inhibitors are highly promising for treatment of osteoporosis. INTRODUCTION: The chloride channel inhibitor, NS3736, blocked osteoclastic acidification and resorption in vitro with an IC50 value of 30 microM. When tested in the rat ovariectomy model......: In conclusion, we show for the first time that chloride channel inhibitors can be used for prevention of ovariectomy-induced bone loss without impeding bone formation. We speculate that the coupling of bone resorption to bone formation is linked to the acidification of the resorption lacunae, thereby enabling...

  2. Discoidin Receptor 2 Controls Bone Formation and Marrow Adipogenesis.

    Science.gov (United States)

    Ge, Chunxi; Wang, Zhengyan; Zhao, Guisheng; Li, Binbin; Liao, Jinhui; Sun, Hanshi; Franceschi, Renny T

    2016-12-01

    Cell-extracellular matrix (ECM) interactions play major roles in controlling progenitor cell fate and differentiation. The receptor tyrosine kinase, discoidin domain receptor 2 (DDR2), is an important mediator of interactions between cells and fibrillar collagens. DDR2 signals through both ERK1/2 and p38 MAP kinase, which stimulate osteoblast differentiation and bone formation. Here we show that DDR2 is critical for skeletal development and differentiation of marrow progenitor cells to osteoblasts while suppressing marrow adipogenesis. Smallie mice (Ddr2(slie/slie) ), which contain a nonfunctional Ddr2 allele, have multiple skeletal defects. A progressive decrease in tibial trabecular bone volume/total volume (BV/TV) was observed when wild-type (WT), Ddr2(wt/slie) , and Ddr2(slie/slie) mice were compared. These changes were associated with reduced trabecular number (Tb.N) and trabecular thickness (Tb.Th) and increased trabecular spacing (Tb.Sp) in both males and females, but reduced cortical thickness only in Ddr2(slie/slie) females. Bone changes were attributed to decreased bone formation rather than increased osteoclast activity. Significantly, marrow fat and adipocyte-specific mRNA expression were significantly elevated in Ddr2(slie/slie) animals. Additional skeletal defects include widened calvarial sutures and reduced vertebral trabecular bone. To examine the role of DDR2 signaling in cell differentiation, bone marrow stromal cells (BMSCs) were grown under osteogenic and adipogenic conditions. Ddr2(slie/slie) cells exhibited defective osteoblast differentiation and accelerated adipogenesis. Changes in differentiation were related to activity of runt-related transcription factor 2 (RUNX2) and PPARγ, transcription factors that are both controlled by MAPK-dependent phosphorylation. Specifically, the defective osteoblast differentiation in calvarial cells from Ddr2(slie/slie) mice was associated with reduced ERK/MAP kinase and RUNX2-S319 phosphorylation and could

  3. New bone formation in a bone defect associated to dental implant using absorbable or non-absorbable membrane in a dog model

    Science.gov (United States)

    Lopez, Maria de Almeida; Olate, Sergio; Lanata-Flores, Antonio; Pozzer, Leandro; Cavalieri-Pereira, Lucas; Cantín, Mario; Vásquez, Bélgica; de Albergaria-Barbosa, José

    2013-01-01

    The aim of this research was to determine the bone formation capacity in fenestration defects associated with dental implants using absorbable and non-absorbable membranes. Six dogs were used in the study. In both tibias of each animal 3 implants were installed, and around these 5 mm circular defects were created. The defects were covered with absorbable membranes (experimental group 1), non-absorbable membranes (experimental group 2), and the third defect was not covered (control group). At 3 and 8 weeks post-surgery, the animals were euthanized and the membranes with the bone tissue around the implants were processed for histological analysis. The statistical analysis was conducted with Tukey’s test, considering statistical significance when p0.1). In the defects without membrane, continuous connective tissue invasions and bone repair deficiency were observed. There were no significant differences in the characteristics and volume of the neoformed bone in the defects around the implants covered by the different membranes, whereas the control defects produced significantly less bone. The use of biological membranes contributes to bone formation in three-wall defects. PMID:24228090

  4. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    Science.gov (United States)

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  5. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement.

    Science.gov (United States)

    Ko, Chia-Ling; Chen, Jian-Chih; Tien, Yin-Chun; Hung, Chun-Cheng; Wang, Jen-Chyan; Chen, Wen-Cheng

    2015-01-01

    Calcium phosphate cement (CPC) is a widely used bone substitute. However, CPC application is limited by poor bioresorption, which is attributed to apatite, the stable product. This study aims to systematically survey the biological performance of dicalcium phosphate (DCP)-rich CPC. DCP-rich CPC exhibited a twofold, surface-modified DCP anhydrous (DCPA)-to-tetracalcium phosphate (TTCP) molar ratio, whereas conventional CPC (c-CPC) showed a onefold, surface unmodified DCPA-to-TTCP molar ratio. Cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity in the two CPCs were examined with bone cell progenitor D1 cultured in vitro. Microcomputed tomography and histological observation were conducted after CPC implantation in vivo to analyze the residual implant ratio and new bone formation rate. D1 cells cultured on DCP-rich CPC surfaces exhibited higher cell viability, ALP activity, and ALP quantity than c-CPC. Histological evaluation indicated that DCP-rich CPC showed lesser residual implant and higher new bone formation rate than c-CPC. Therefore, DCP-rich CPC can improve bioresorption. The newly developed DCP-rich CPC exhibited potential therapeutic applications for bone reconstruction.

  6. Direct bone formation during distraction osteogenesis does not require TNF alpha receptors and elevated serum TNF alpha fails to inhibit bone formation in TNFR1 deficient mice

    Science.gov (United States)

    Distraction osteogenesis (DO) is a process which induces direct new bone formation as a result of mechanical distraction. Tumor necrosis factor-alpha (TNF) is a cytokine that can modulate osteoblastogenesis. The direct effects of TNF on direct bone formation in rodents are hypothetically mediated th...

  7. Coupling of Bone Resorption and Formation in Real Time

    DEFF Research Database (Denmark)

    Lassen, Nicolai Ernlund; Andersen, Thomas Levin; Pløen, Gro Grunnet;

    2017-01-01

    and osteoclasts alternate, thus revealing the existence of a mixed "reversal-resorption" phase. 3D reconstructions obtained from serial sections indicated that initial resorption is mainly involved in elongating the canal and the additional resorption events in widening it. Canal diameter measurements show...... that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the "reversal/resorption" surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal/resorption surface...

  8. Quick and inexpensive paraffin-embedding method for dynamic bone formation analyses

    Science.gov (United States)

    Porter, Amy; Irwin, Regina; Miller, Josselyn; Horan, Daniel J.; Robling, Alexander G.; McCabe, Laura R.

    2017-01-01

    We have developed a straightforward method that uses paraffin-embedded bone for undemineralized thin sectioning, which is amenable to subsequent dynamic bone formation measurements. Bone has stiffer material properties than paraffin, and therefore has hereforto usually been embedded in plastic blocks, cured and sectioned with a tungsten carbide knife to obtain mineralized bone sections for dynamic bone formation measures. This process is expensive and requires special equipment, experienced personnel, and time for the plastic to penetrate the bone and cure. Our method utilizes a novel way to prepare mineralized bone that increases its compliance so that it can be embedded and easily section in paraffin blocks. The approach is simple, quick, and costs less than 10% of the price for plastic embedded bone sections. While not effective for static bone measures, this method allows dynamic bone analyses to be readily performed in laboratories worldwide which might not otherwise have access to traditional (plastic) equipment and expertise. PMID:28198415

  9. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  10. Bone formation is not impaired by hibernation (disuse) in black bears Ursus americanus

    Science.gov (United States)

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse by bed rest, limb immobilization or space flight causes rapid bone loss by arresting bone formation and accelerating bone resorption. This net bone loss increases the risk of fracture upon remobilization. Bone loss also occurs in hibernating ground squirrels, golden hamsters, and little brown bats by arresting bone formation and accelerating bone resorption. There is some histological evidence to suggest that black bears Ursus americanus do not lose bone mass during hibernation (i.e. disuse). There is also evidence suggesting that muscle mass and strength are preserved in black bears during hibernation. The question of whether bears can prevent bone loss during hibernation has not been conclusively answered. The goal of the current study was to further assess bone metabolism in hibernating black bears. Using the same serum markers of bone remodeling used to evaluate human patients with osteoporosis, we assayed serum from five black bears, collected every 10 days over a 196-day period, for bone resorption and formation markers. Here we show that bone resorption remains elevated over the entire hibernation period compared to the pre-hibernation period, but osteoblastic bone formation is not impaired by hibernation and is rapidly accelerated during remobilization following hibernation.

  11. New simulation model for bone formation markers in osteoporosis patients treated with once-weekly teriparatide

    Institute of Scientific and Technical Information of China (English)

    Sakae Tanaka; Taiji Adachi; Tatsuhiko Kuroda; Toshitaka Nakamura; Masataka Shiraki; Toshitsugu Sugimoto; Yasuhiro Takeuchi; Mitsuru Saito; John P Bilezikian

    2014-01-01

    Daily 20-mg and once-weekly 56.5-mg teriparatide (parathyroid hormone 1–34) treatment regimens increase bone mineral density (BMD) and prevent fractures, but changes in bone turnover markers differ between the two regimens. The aim of the present study was to explain changes in bone turnover markers using once-weekly teriparatide with a simulation model. Temporary increases in bone formation markers and subsequent decreases were observed during once-weekly teriparatide treatment for 72 weeks. These observations support the hypothesis that repeated weekly teriparatide administration stimulates bone remodeling, replacing old bone with new bone and leading to a reduction in the active remodeling surface. A simulation model was developed based on the iterative remodeling cycle that occurs on residual old bone. An increase in bone formation and a subsequent decrease were observed in the preliminary simulation. For each fitted time point, the predicted value was compared to the absolute values of the bone formation and resorption markers and lumbar BMD. The simulation model strongly matched actual changes in bone turnover markers and BMD. This simulation model indicates increased bone formation marker levels in the early stage and a subsequent decrease. It is therefore concluded that remodeling-based bone formation persisted during the entire treatment period with once-weekly teriparatide.

  12. Blocking the ZZ Domain of Sequestosome1/p62 Suppresses Myeloma Growth and Osteoclast Formation In Vitro and Induces Dramatic Bone Formation in Myeloma-Bearing Bones In Vivo

    Science.gov (United States)

    Teramachi, Jumpei; Silbermann, Rebecca; Yang, Peng; Zhao, Wei; Mohammad, Khalid S.; Guo, Jianxia; Anderson, Judith L.; Zhou, Dan; Feng, Rentian; Myint, Kyaw-Zeyar; Maertz, Nathan; Beumer, Jan H.; Eiseman, Julie L.; Windle, Jolene J.; Xie, Xiang-Qun; Roodman, G. David; Kurihara, Noriyoshi

    2015-01-01

    We reported that p62 (sequestosome 1) serves as a signaling hub in bone marrow stromal cells (BMSC) for the formation of signaling complexes, including NFκB, p38MAPK, and JNK, that are involved in the increased osteoclastogenesis and multiple myeloma (MM) cell growth induced by BMSC that are key contributors to myeloma bone disease (MMBD), and demonstrated that the ZZ-domain of p62 (p62-ZZ) is required for BMSC enhancement of MMBD. We recently identified a novel p62-ZZ inhibitor, XRK3F2, that inhibits MM cell growth and BMSC growth enhancement of human MM cells. In the current study we evaluate the relative specificity of XRK3F2 for p62-ZZ, characterize XRK3F2’s capacity to inhibit growth of primary MM cells and human MM cell lines, and test the in vivo effects of XRK3F2 in the immunocompetent 5TGM1 MM model. We found that XRK3F2 induces dramatic cortical bone formation that is restricted to MM containing bones and blocked the effects and upregulation of TNFα, an OBL differentiation inhibitor that is increased in the MM bone marrow microenvironment and utilizes signaling complexes formed on p62-ZZ, in BMSC. Interestingly, XRK3F2 had no effect on non-MM bearing bone. These results demonstrate that targeting p62 in MM models has profound effects on MMBD. PMID:26286116

  13. Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography.

    Science.gov (United States)

    Lambers, F M; Stuker, F; Weigt, C; Kuhn, G; Koch, K; Schulte, F A; Ripoll, J; Rudin, M; Müller, R

    2013-02-01

    Bone research often focuses on anatomical imaging of the bone microstructure, but in order to gain better understanding in how bone remodeling is modulated through interventions also bone formation and resorption processes should be investigated. With this in mind, the purpose of this study was to establish a longitudinal in vivo imaging approach of bone formation and resorption using fluorescence molecular tomography (FMT). In this study the reproducibility, accuracy and sensitivity of FMT for bone imaging were assessed by performing longitudinal measurements with FMT and comparing it to in vivo micro-computed tomography on a set of control mice, and mice in which load-adaptation was induced in the sixth caudal vertebra. The precision error for FMT measurements, expressed as coefficient of variation, was smaller than 16%, indicating acceptable reproducibility. A correlation was found between bone resorption measured with FMT and bone resorption rate measured with in vivo micro-computed tomography only over the first 14days (R=0.81, pbone formation measured with FMT and bone formation rate measured with in vivo micro-CT. Bone formation measured by FMT was 89-109% greater (pBone resorption was 5-8% lower, but did not reach a significant difference between groups, indicating moderate sensitivity for FMT. In conclusion, in vivo FMT in mouse tail bones is feasible but needs to be optimized for monitoring load adaptation in living mice.

  14. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Sang-Heon Song

    2014-01-01

    Full Text Available The objective of this study was to assess whether carboxymethyl cellulose- (CMC- based hydrogel containing BioC (biphasic calcium phosphate (BCP; tricalcium phosphate (TCP : hydroxyapatite (Hap = 70 : 30 and bone morphogenic protein-2 (BMP-2 led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg. Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg. Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects.

  15. Marked increase in bone formation markers after cinacalcet treatment by mechanisms distinct from hungry bone syndrome in a haemodialysis patient

    Science.gov (United States)

    Goto, Shunsuke; Fujii, Hideki; Matsui, Yutaka; Fukagawa, Masafumi

    2010-01-01

    A 59-year-old female who was on dialysis due to diabetic nephropathy was referred to our hospital for severe hyperparathyroidism refractory to intravenous vitamin D receptor activator treatment. With subsequent cinacalcet hydrochloride treatment, parathyroid hormone (PTH) levels were only slightly suppressed. However, progressive increases were observed in serum alkaline phosphatase (ALP) and bone-specific alkaline phosphatase (BAP) levels with mild hypocalcaemia. A bone biopsy, obtained immediately before surgical parathyroidectomy after 3 months of cinacalcet treatment, revealed no disappearance of osteoclasts. These data suggest that cinacalcet hydrochloride treatment may induce a marked promotion of bone formation by mechanisms distinct from hungry bone syndrome that usually develops after parathyroidectomy. PMID:25949410

  16. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Henriksen, Kim; Sørensen, Mette G;

    2005-01-01

    Patients with defective osteoclastic acidification have increased numbers of osteoclasts, with decreased resorption, but bone formation that remains unchanged. We demonstrate that osteoclast survival is increased when acidification is impaired, and that impairment of acidification results...... in inhibition of bone resorption without inhibition of bone formation. We investigated the role of acidification in human osteoclastic resorption and life span in vitro using inhibitors of chloride channels (NS5818/NS3696), the proton pump (bafilomycin) and cathepsin K. We found that bafilomycin and NS5818 dose...... dependently inhibited acidification of the osteoclastic resorption compartment and bone resorption. Inhibition of bone resorption by inhibition of acidification, but not cathepsin K inhibition, augmented osteoclast survival, which resulted in a 150 to 300% increase in osteoclasts compared to controls. We...

  17. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    Science.gov (United States)

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  18. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation.

    Directory of Open Access Journals (Sweden)

    Sunita Sharma

    Full Text Available Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC. This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2 in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone{poly(LLA-co-CL}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2 and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo.

  19. The use of bovine screws to promote bone formation using a tibia model in dogs

    Science.gov (United States)

    Bianchini, Marco Aurélio; Pontual, Marco Antônio B; Bez, Leonardo; Benfatti, César Augusto M; Boabaid, Fernanda; Somerman, Martha J; Magini, Ricardo S

    2013-01-01

    The objective of this study was to evaluate the use of a unique resorbable bovine bone screw, to stimulate bone formation. Bovine bone screws were inserted in the tibia beagle dogs. Each animal received 8 screws, divided into Groups A (screws + no membranes), B (screws + titanium reinforced membranes) and C (bone defects treated with autogenous bone grafts). Animals were sacrificed at 2, 4 and 6 months. New bone was measured with a periodontal probe and reported an average of 7.4 mm in vertical bone gain for Group B, 3.6 mm for Group A and 1.7 mm for Group C. Submission to Kruskal-Wallis test showed statistical differences between groups (p<0,05). Histological examination revealed an intimate contact between the newly formed bone and the resorbing bone screws. Conclusion: Bovine bone screws provide environment for new bone formation and thus may provide an alternative therapy for enhancing bone formation vertically, including for regenerative procedures as well as prior to implant therapy. PMID:23058228

  20. The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation.

    Science.gov (United States)

    Donos, Nikolaos; Kostopoulos, Lambros; Tonetti, Maurizio; Karring, Thorkild; Lang, Niklaus P

    2006-08-01

    To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

  1. Methodology developed for the simultaneous measurement of bone formation and bone resorption in rats based on the pharmacokinetics of fluoride.

    Science.gov (United States)

    Lupo, Maela; Brance, Maria Lorena; Fina, Brenda Lorena; Brun, Lucas Ricardo; Rigalli, Alfredo

    2015-01-01

    This paper describes a novel methodology for the simultaneous estimation of bone formation (BF) and resorption (BR) in rats using fluoride as a nonradioactive bone-seeker ion. The pharmacokinetics of flouride have been extensively studied in rats; its constants have all been characterized. This knowledge was the cornerstone for the underlying mathematical model that we used to measure bone fluoride uptake and elimination rate after a dose of fluoride. Bone resorption and formation were estimated by bone fluoride uptake and elimination rate, respectively. ROC analysis showed that sensitivity, specificity and area under the ROC curve were not different from deoxypiridinoline and bone alkaline phosphatase, well-known bone markers. Sprague-Dawley rats with modified bone remodelling (ovariectomy, hyper, and hypocalcic diet, antiresorptive treatment) were used to validate the values obtained with this methodology. The results of BF and BR obtained with this technique were as expected for each biological model. Although the method should be performed under general anesthesia, it has several advantages: simultaneous measurement of BR and BF, low cost, and the use of compounds with no expiration date.

  2. Establishment of an Early Vascular Network Promotes the Formation of Ectopic Bone

    NARCIS (Netherlands)

    Eman, Rhandy M.; Meijer, Henriette A W; Öner, F. Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2016-01-01

    Vascularization is crucial for the induction of bone formation. In this study, we investigated the application of two subtypes of peripheral blood-derived endothelial progenitor cells (EPCs) to stimulate vessel formation in ectopic bone constructs. Early and late outgrowth EPCs (E-EPC and L-EPC, res

  3. Assessment of activated porous granules on implant fixation and early bone formation in sheep

    Directory of Open Access Journals (Sweden)

    Ming Ding

    2016-04-01

    Conclusion: In conclusion, despite nice bone formation and implant fixation in all groups, bioreactor activated graft material did not convincingly induce early implant fixation similar to allograft, and neither bioreactor nor by adding BMA credited additional benefit for bone formation in this model.

  4. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E. (USDA, College Station, TX (USA)); Phillips, T.D. (Texas A M Univ., College Station (USA))

    1988-05-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B{sub 1}, B{sub 2}, G{sub 1}, and G{sub 2}, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  5. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E.; Phillips, I.D.

    1988-04-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B/sub 1/, B/sup 2/, G/sup 1/, and G/sup 2/, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  6. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    Science.gov (United States)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  7. Bone loss in rheumatoid arthritis. Influence of disease activity, duration of the disease, functional capacity, and corticosteroid treatment

    DEFF Research Database (Denmark)

    Hansen, M; Florescu, A; Stoltenberg, M;

    1996-01-01

    Axial and appendicular bone mass were studied in 95 patients with rheumatoid arthritis. The aims were to quantify bone mineral density (BMD) and to evaluate the importance of disease activity, duration of disease, functional capacity, and corticosteroid treatment for bone loss in patients...... BMDARM. The decreased BMD in patients with rheumatoid arthritis seems primarily to be caused by an impaired physical activity which may be related to disease activity. Corticosteroids did not decrease BMD in neither the axial nor the appendicular skeleton. The antiinflammatory effect of steroids lead...

  8. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  9. Heterotopic bone formation in the musculus latissimus dorsi of sheep using β-tricalcium phosphate scaffolds: evaluation of an extended prefabrication time on bone formation and matrix degeneration.

    Science.gov (United States)

    Spalthoff, S; Jehn, P; Zimmerer, R; Möllmann, U; Gellrich, N-C; Kokemueller, H

    2015-06-01

    We previously generated viable heterotopic bone in living animals and found that 3 months of intrinsic vascularization improved bone formation and matrix degeneration. In this study, we varied the pre-vascularization time to determine its effects on the kinetics of bone formation and ceramic degradation. Two 25-mm-long cylindrical β-tricalcium phosphate scaffolds were filled intraoperatively with autogenous iliac crest bone marrow and implanted in the latissimus dorsi muscle in six sheep. To examine the effect of axial perfusion, one scaffold was surgically implanted with (group C) or without (group D) a central vascular bundle. All animals were sacrificed 6 months postoperatively and histomorphometric measurements were compared to previous results. All implanted scaffolds exhibited ectopic bone growth. However, bone growth was not significantly different between the 3-month (group A, 0.191±0.097 vs. group C, 0.237±0.075; P=0.345) and 6-month (group B, 0.303±0.105 vs. group D, 0.365±0.258; P=0.549) pre-vascularization durations, regardless of vessel supply; early differences between surgically and extrinsically vascularized constructs disappeared after 6 months. Here, we describe a reliable procedure for generating ectopic bone in vivo. A 3-month pre-vascularization duration appears sufficient and ceramic degradation proceeds in accordance with bone generation, supporting the hypothesis of cell-mediated resorption.

  10. Chinese red yeast rice (Monascus purpureus-fermented rice promotes bone formation

    Directory of Open Access Journals (Sweden)

    Rabie Bakr

    2008-03-01

    Full Text Available Abstract Background Statin can induce the gene expression of bone morphogenetic protein-2. Red yeast rice (RYR, Hongqu, i.e. rice fermented with Monascus purpureus, contains a natural form of statin. This study demonstrates the effects of RYR extract on bone formation. Methods Bone defects were created in the parietal bones of two New Zealand white rabbits. In the test animal, two defects were grafted with collagen matrix mixed with RYR extract. In the control animal, two defects were grafted with collagen matrix alone. UMR 106 cell line was used to test RYR extract in vitro. In the control group, cells were cultured for three durations (24 hours, 48 hours and 72 hours without any intervention. In the RYR group, cells were cultured for the same durations with various concentrations of RYR extract (0.001 g/ml, 0.005 g/ml and 0.01 g/ml. Bicinchoninic acid (BCA assay, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and alkaline phosphatase (ALP assay were performed to measure total protein, mitochondrial activity and bone cell formation respectively. Results The test animal showed more formation of new bone in the defects than the control animal. RYR significantly increased the optical density in the MTT assay and ALP activity in vitro. Conclusion RYR extract stimulated new bone formation in bone defects in vivo and increased bone cell formation in vitro.

  11. Effect of Alendronate on Bone Formation during Tooth Extraction Wound Healing.

    Science.gov (United States)

    Tanoue, R; Koi, K; Yamashita, J

    2015-09-01

    Alendronate (ALN) is an antiresorptive agent widely used for the treatment of osteoporosis. Its suppressive effect on osteoclasts has been extensively studied. However, the effect of ALN on bone formation is not as clear as its effect on resorption. The objective was to determine the effect of short-term ALN on bone formation and tooth extraction wound healing. Molar tooth extractions were performed in mice. ALN, parathyroid hormone (PTH), or saline (vehicle control) was administered. PTH was used as the bone anabolic control. Mice were euthanized at 3, 5, 7, 10, and 21 d after extractions. Hard tissue healing was determined histomorphometrically. Neutrophils and lymphatic and blood vessels were quantified to evaluate soft tissue healing. Gene expression in the wounds was assessed at the RNA level. Furthermore, the vossicle bone transplant system was used to verify findings from extraction wound analysis. Alkaline phosphatase (ALP) was visualized in the vossicles to assess osteoblast activity. ALN exhibited no negative effect on bone formation. In intact tibiae, ALN increased bone mass significantly more than PTH did. Consistently, significantly elevated osteoblast numbers were noted. In the extraction sockets, bone fill in the ALN-treated mice was equivalent to the control. Genes associated with bone morphogenetic protein signaling, such as bmp2, nog, and dlx5, were activated in the extraction wounds of the ALN-treated animals. Bone formation in vossicles was significantly enhanced in the ALN versus PTH group. In agreement with this, ALN upregulated ALP activity considerably in vossicles. Neutrophil aggregation and suppressed lymphangiogenesis were evident in the soft tissue at 21 d after extraction, although gross healing of extraction wounds was uneventful. Bone formation was not impeded by short-term ALN treatment. Rather, short-term ALN treatment enhanced bone formation. ALN did not alter bone fill in extraction sockets.

  12. Bone formation in cranial, mandibular, tibial and iliac bone grafts in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Talsnes, O;

    1995-01-01

    Several studies have suggested that grafts from membranous derived bone (e.g., calvarial grafts) retain their volume better than those from endochondral derived bone (e.g., iliac bone grafts). Increased osteogenesis in grafts of the former type has been offered as the explanation. However, simple...

  13. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    Science.gov (United States)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  14. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2.

    Directory of Open Access Journals (Sweden)

    Jochen Schulze

    Full Text Available Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2 is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2 results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.

  15. Premature loss of bone remodeling compartment canopies is associated with deficient bone formation

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Søe, Kent;

    2011-01-01

    A remarkable property of bone remodeling is that osteoblasts form bone matrix exactly where and when osteoclasts have removed it. The bone remodeling compartment (BRC) canopies that cover bone surfaces undergoing remodeling, were proposed to be critical players in this mechanism. Here, we provide...... support to this hypothesis by analyzing the changes in prevalence of BRC canopies during the progress of the remodeling cycle in a cohort of healthy individuals and in patients with endogenous Cushing's syndrome (CS), and by relating these changes in prevalence with the extent of bone forming surfaces...

  16. Recombinant human bone morphogenetic protein-2 suspended in fibrin glue enhances bone formation during distraction osteogenesis in rabbits

    Science.gov (United States)

    Li, Yunfeng; Li, Rui; Hu, Jing; Song, Donghui; Jiang, Xiaowen

    2016-01-01

    Introduction Bone morphogenetic protein-2 (BMP-2) has high potential for bone formation, but its in vivo effects are unpredictable due to the short life time. This study was designed to evaluate the effects of recombinant human (rh) BMP-2 suspended in fibrin on bone formation during distraction osteogenesis (DO) in rabbits. Material and methods The in vitro release kinetics of rhBMP-2 suspended in fibrin was tested using an enzyme-linked immunosorbent assay. Unilateral tibial lengthening for 10 mm was achieved in 48 rabbits. At the completion of osteodistraction, vehicle, fibrin, rhBMP-2 or rhBMP-2 suspended in fibrin (rhBMP-2 + fibrin) was injected into the center of the lengthened gap, with 12 animals in each group. Eight weeks later, the distracted callus was examined by histology, micro-CT and biomechanical testing. Radiographs of the distracted tibiae were taken at both 4 and 8 weeks after drug treatment. Results It was found that fibrin prolonged the life span of rhBMP-2 in vitro with sustained release during 17 days. The rhBMP-2 + fibrin treated animals showed the best results in bone mineral density, bone volume fraction, cortical bone thickness by micro-CT evaluation and mechanical properties by the three-point bending test when compared to the other groups (p < 0.05). In histological images, rhBMP-2 + fibrin treatment showed increased callus formation and better gap bridging compared to the other groups. Conclusions The results of this study suggest that fibrin holds promise to be a good carrier of rhBMP-2, and rhBMP-2 suspended in fibrin showed a stronger promoting effect on bone formation during DO in rabbits. PMID:27279839

  17. Low-intensity pulsed ultrasound prompts tissue-engineered bone formation after implantation surgery

    Institute of Scientific and Technical Information of China (English)

    Wang Juyong; Wang Juqiang; Asou Yoshinori; Paul Fu; Shen Huiliang; Chen Jiani; Sotome Shinichi

    2014-01-01

    Background A practical problem impeding clinical translation is the limited bone formation seen in artificial bone grafts.Low-pressure/vacuum seeding and dynamic culturing in bioreactors have led to a greater penetration into the scaffolds,enhanced production of bone marrow cells,and improved tissue-engineered bone formation.The goal of this study was to promote more extensive bone formation in the composites of porous ceramics and bone marrow stromal cells (BMSCs).Methods BMSCs/β-tricalcium phosphate (β-TCP) composites were subcultured for 2 weeks and then subcutaneously implanted into syngeneic rats that were split into a low-intensity pulsed ultrasound (LIPUS) treatment group and a control group.These implants were harvested at 5,10,25,and 50 days after implantation.The samples were then biomechanically tested and analyzed for alkaline phosphate (ALP) activity and osteocalcin (OCN) content and were also observed by light microscopy.Results The levels of ALP activity and OCN content in the composites were significantly higher in the LIPUS group than in the control group.Histomorphometric analysis revealed a greater degree of soft tissue repair,increased blood flow,better angiogenesis,and more extensive bone formation in the LIPUS groups than in the controls.No significant difference in the compressive strength was found between the two groups.Conclusion LIPUS treatment appears to enhance bone formation and angiogenesis in the BMSCs/β3-TCP composites.

  18. The circadian modulation of leptin-controlled bone formation

    Science.gov (United States)

    Mice with circadian gene Period and Cryptochrome mutations develop high bone mass early in life. Such a phenotype is accompanied by an increase in osteoblast numbers in mutant bone and cannot be corrected by leptin intracerebroventricular infusion. Thus, the molecular clock plays a key role in lepti...

  19. Osseous metaplasia and mature bone formation with extramedullary hematopoiesis in follicular adenoma of thyroid gland

    Directory of Open Access Journals (Sweden)

    Harsh Mohan

    2009-07-01

    Full Text Available Follicular adenomas of the thyroid may be subjected to degenerative changes like hemorrhagic and cystic changes, fibrosis, and calcification. Mature bone formation is a rare phenomenon, but extramedullary hematopoiesis (EMH has also been rarely reported in thyroid gland. The combination of mature bone formation and EMH is rarer and has been reported, in a single case report, in a multinodular goitre. We describe a case of follicular adenoma with histologically proven osseous metaplasia and mature bone formation with EMH in a middle- aged woman, which, to our knowledge, is the first case in English language literature.

  20. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    Science.gov (United States)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    The best documented change in bone during space flight is the near cessation of bone formation. Space flight leads to a decrease in osteoblast number and activity, likely the result of altered differentiation of osteoblast precursors. The net result of these space flight induced changes is weaker bone. To understand the mechanism for these changes poses a challenge. Space flight studies must overcome enormous technical problems, and are necessarily limited in size and frequency. Therefore, ground based models have been developed to evaluate the effects of skeletal unloading. The hindlimb elevation (tail suspension) model simulates space flight better than other models because it reproduces the fluid shifts seen in space travel, is reversible, and is well tolerated by the animals with minimal evidence of stress as indicated by continued weight gain and normal levels and circadian rhythms of corticosterone. This is the model we have used for our experiments. Skeletal unloading by the hindlimb elevation method simulates a number of features of space flight in that bone formation, mineralization, and maturation are inhibited, osteoblast number is decreased, serum and skeletal osteocalcin levels fall, the ash content of bone decreases, and bone strength diminishes. We and others have shown that when osteoblasts or osteoprogenitor cells from the bones of the unloaded limbs are cultured in vitro they proliferate and differentiate more slowly, suggesting that skeletal unloading causes a persistent change in cell function which can be assessed in vitro. In contrast to the unweighted bones of the hindlimbs, no significant change in bone mass or bone formation is observed in the humeri, mandible, and cervical vertebrae during hindlimb elevation. The lack of effect of hindlimb elevation on bones like the humeri, mandible, and cervical vertebrae which are not unloaded by this procedure suggests that local factors rather than systemic effects dominate the response of bone to

  1. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  2. Space Maintenance and New Bone Formation with Polyurethane Biocomposites in a Canine Saddle Defect

    Science.gov (United States)

    2014-05-01

    osteoblast differentiation, and enhance new bone formation. Biodegradable polyurethane ( PUR ) biocomposites containing allograft bone particles are...used effectively in a variety of bone regeneration applications.4 In the present study, we investigated the ability of injectable PUR /MG and PUR /BG...The lyophilized rhBMP-2 was hand-mixed with the PUR and injected into saddle defects (4/animal) measuring approximately 7-8 mm apicocoronal by 8-10

  3. Young Coconut Juice Supplementation Results in Greater Bone Mass and Bone Formation Indices in Ovariectomized Rats: A Preliminary Study.

    Science.gov (United States)

    Morii, Yuko; Matsushita, Hiroshi; Minami, Akira; Kanazawa, Hiroaki; Suzuki, Takashi; Subhadhirasakul, Sanan; Watanabe, Kazushi; Wakatsuki, Akihiko

    2015-12-01

    Young coconut juice (Cocos nucifera Linn.) (YCJ) has traditionally been consumed to alleviate symptoms associated with menopause by women in Southeast Asia. The aim of the present study was to determine the effects of YCJ on bone metabolism in ovariectomized rats. Female 10-week-old Wistar rats were randomly assigned to the following 4 groups: Baseline, Sham, Ovx, and Ovx + YCJ (n = 10 rats per group). Rats in the Baseline group were sacrificed immediately, and those in the other groups were subjected to either sham operation (Sham) or bilateral ovariectomy (Ovx and Ovx + YCJ). The Ovx + YCJ rats were administered 5×-concentrated YCJ at a dose of 10 mL/kg body weight per day. Six weeks after surgery, the rats were sacrificed, and indices of bone mass and bone histomorphometry were measured. The bone mineral density of the left femur was significantly higher in the Ovx + YCJ group compared with the Ovx group. In addition, the Ovx + YCJ group showed significantly higher measurements for bone formation rate compared with the Ovx group. These findings suggest that YCJ supplementation has a positive effect on bone metabolism and thus represents a possible intervention to slow the bone loss observed following menopause.

  4. The effect of semelil (angipars® on bone resorption and bone formation markers in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Hasani-Ranjbar Shirin

    2012-12-01

    Full Text Available Abstract Background and purpose of the study Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers. Methods In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months. Result 31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α. Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029 Conclusion In conclusion, the findings of this study indicate that Semelil (Angipars® had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered.

  5. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  6. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing.

    Science.gov (United States)

    Liu, Tie; Zheng, Yuanna; Wu, Gang; Wismeijer, Daniel; Pathak, Janak L; Liu, Yuelian

    2017-01-31

    Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.

  7. Bone Morphogenetic Protein-2 Nonviral Gene Therapy in a Goat Iliac Crest Model for Bone Formation

    NARCIS (Netherlands)

    Loozen, Loek D.; van der Helm, Yvonne J. M.; Oner, F. Cumhur; Dhert, W.J.A.; Kruyt, Moyo C.; Alblas, Jacqueline

    2015-01-01

    Treatment and reconstruction of large bone defects, delayed unions, and nonunions is challenging and has resulted in an ongoing search for novel tissue-engineered therapies. Bone morphogenetic protein-2 (BMP-2) gene therapy is a promising strategy to provide sustained production of BMP-2 locally. Al

  8. Finite element analysis of steel fiber-reinforced concrete (SFRC): validation of experimental tensile capacity of dog-bone specimens

    Science.gov (United States)

    Islam, Md. Mashfiqul; Chowdhury, Md. Arman; Sayeed, Md. Abu; Hossain, Elsha Al; Ahmed, Sheikh Saleh; Siddique, Ashfia

    2014-09-01

    Finite element analyses are conducted to model the tensile capacity of steel fiber-reinforced concrete (SFRC). For this purpose dog-bone specimens are casted and tested under direct and uniaxial tension. Two types of aggregates (brick and stone) are used to cast the SFRC and plain concrete. The fiber volume ratio is maintained 1.5 %. Total 8 numbers of dog-bone specimens are made and tested in a 1000-kN capacity digital universal testing machine (UTM). The strain data are gathered employing digital image correlation technique from high-definition images and high-speed video clips. Then, the strain data are synthesized with the load data obtained from the load cell of the UTM. The tensile capacity enhancement is found 182-253 % compared to control specimen to brick SFRC and in case of stone SFRC the enhancement is 157-268 %. Fibers are found to enhance the tensile capacity as well as ductile properties of concrete that ensures to prevent sudden brittle failure. The dog-bone specimens are modeled in the ANSYS 10.0 finite element platform and analyzed to model the tensile capacity of brick and stone SFRC. The SOLID65 element is used to model the SFRC as well as plain concretes by optimizing the Poisson's ratio, modulus of elasticity, tensile strength and stress-strain relationships and also failure pattern as well as failure locations. This research provides information of the tensile capacity enhancement of SFRC made of both brick and stone which will be helpful for the construction industry of Bangladesh to introduce this engineering material in earthquake design. Last of all, the finite element outputs are found to hold good agreement with the experimental tensile capacity which validates the FE modeling.

  9. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wuchen; Guo, Dayong; Harris, Marie A; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S; Edwards, James R; Mundy, Gregory R; Lichtler, Alex; Kream, Barbara E; Rowe, David W; Kalajzic, Ivo; David, Val; Quarles, Darryl L; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S; Martin, James F; Mishina, Yuji; Harris, Stephen E

    2013-09-15

    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.

  10. Is suppression of bone formation during simulated weightlessness related to glucocorticoid levels

    Science.gov (United States)

    Morey-Holton, E. R.; Bomalaski, M. D.; Enayati-Gordon, E.; Gonsalves, M. R.; Wronski, T. J.

    1982-01-01

    To investigate the hypothesis that suppression of bone formation in the suspended rat model was the result of increased levels of corticosterone, experiments were performed on young, growing, male rats exposed either to 4 C or suspended for two weeks. Rats suspended on the model system, designed to simulate certain aspects of spaceflight, gained weight at a rate at least equal to control animals but still showed a significant suppression of bone formation within 7 days. Cold-exposed rats gained less weight than their corresponding control group and did not demonstrate any suppression of bone formation. These findings suggest: (1) tail suspension is less stressful than previously used harness systems; (2) suspension in young, rapidly growing rats causes a significant suppression of cortical bone formation; (3) cold exposure does not alter bone formation rate in rats of a similar age and strain to those suspended in this study; and (4) suppression of bone formation provoked by unloading the rear limbs is not due solely to sustained stimulation of the pituitary-adrenal system.

  11. P2X7 receptors: role in bone cell formation and function.

    Science.gov (United States)

    Agrawal, Ankita; Gartland, Alison

    2015-04-01

    The role of the P2X7 receptor (P2X7R) is being explored with intensive interest in the context of normal bone physiology, bone-related diseases and, to an extent, bone cancer. In this review, we cover the current understanding of P2X7R regulation of bone cell formation, function and survival. We will discuss how the P2X7R drives lineage commitment of undifferentiated bone cell progenitors, the vital role of P2X7R activation in bone mineralisation and its relatively unexplored role in osteocyte function. We also review how P2X7R activation is imperative for osteoclast formation and its role in bone resorption via orchestrating osteoclast apoptosis. Variations in the gene for the P2X7R (P2RX7) have implications for P2X7R-mediated processes and we review the relevance of these genetic variations in bone physiology. Finally, we highlight how targeting P2X7R may have therapeutic potential in bone disease and cancer.

  12. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa;

    2012-01-01

    ) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass....... This effect was phenocopied, at an even stronger level, by overexpressiong of a dominant-negative DNJunD, a pure AP1 antagonist. Taken together these results suggest that downregulation of AP1 activity in the hypothalamus profoundly increases energy expenditure and bone formation, leading to both a decrease...... in adipose mass and an increase in bone mass. These findings may have physiological implications since ¿FosB is expressed and regulated in the hypothalamus. © 2012 American Society for Bone and Mineral Research....

  13. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.

    Science.gov (United States)

    Strobel, L A; Rath, S N; Maier, A K; Beier, J P; Arkudas, A; Greil, P; Horch, R E; Kneser, U

    2014-03-01

    Bone tissue engineering strategies mainly depend on porous scaffold materials. In this study, novel biphasic calcium phosphate (BCP) matrices were generated by 3D-printing. High porosity was achieved by starch consolidation. This study aimed to characterise the porous BCP-scaffold properties and interactions of osteogenic cells and growth factors under in vivo conditions. Five differently treated constructs were implanted subcutaneously in syngeneic rats: plain BCP constructs (group A), constructs pre-treated with BMP-2 (group B; 1.6 µg BMP-2 per scaffold), seeded with primary osteoblasts (OB) (group C), seeded with OB and BMP-2 (group D) and constructs seeded with OB and pre-cultivated in a flow bioreactor for 6 weeks (group E). After 2, 4 and 6 weeks, specimens were explanted and subjected to histological and molecular biological analyses. Explanted scaffolds were invaded by fibrovascular tissue without significant foreign body reactions. Morphometric analysis demonstrated significantly increased bone formation in samples from group D (OB + BMP-2) compared to all other groups. Samples from groups B-E displayed significant mRNA expression of bone-specific genes after 6 weeks. Pre-cultivation in the flow bioreactor (group E) induced bone formation comparable with group B. In this study, differences in bone distribution between samples with BMP-2 or osteoblasts could be observed. In conclusion, combination of osteoblasts and BMP-2 synergistically enhanced bone formation in novel ceramic scaffolds. These results provide the basis for further experiments in orthotopic defect models with a focus on future applications in orthopaedic and reconstructive surgery.

  14. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

    Science.gov (United States)

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Li, Feijiang; Xu, Qiaoling; Xie, Kangning; Tang, Chi; Liu, Juan; Guo, Wei; Wu, Xiaoming; Jiang, Maogang; Luo, Erping

    2014-10-01

    A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb-unloaded (HU) rats. Thirty young mature (3-month-old), male Sprague-Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2-hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro-computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three-point bending test showed that PEMF mitigated HU-induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N-terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C-terminal crosslinked telopeptides of type I collagen (CTX-I) and tartrate-resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real-time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β-catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse-induced osteopenia were further confirmed in 8-month-old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse-induced bone loss by promoting skeletal anabolic activities

  15. Alveolar Ridge Conservation by Early Bone Formation After Tooth Extraction in Rabbits. A Histomorphological Study

    Science.gov (United States)

    Cantín, Mario; Olate, Sergio; Fuentes, Ramón; Vásquez, Bélgica

    2016-01-01

    SUMMARY Alveolar ridge volume loss is an irreversible process. To prevent this physiological event, which typically result in significant local anatomical changes in both the horizontal and the vertical dimension, some strategies are indicated to minimize the loss of ridge volume that typically follows tooth extraction. The purpose of this study was to evaluate if three different bone grafts could promote new bone formation in the alveolar socket following tooth extraction for the alveolar ridge conservation. First mandibular molars of male adults rabbits were extracted and the extraction sockets were randomly treated with three different bone grafts, one xenograft and two alloplastic grafts, and a group that received no treatment (blood clot). The extraction sockets of selected rabbits from each group were evaluated at 4, 6, or 8-week post-extraction. The results indicated that the extraction sockets treated with alloplastic graft (biphasic calcium phosphate) exhibited lamellar bone formation (6.5%) as early as four weeks after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P<0.05) in the extraction sockets treated with biphasic calcium phosphate at 8-week post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model is useful to evaluate the bone formation after tooth extraction and the alveolar ridge conservation is feasible. The new bone formation and alveolar ridge preservation with bone graft after extraction of molar teeth, could result in the maintenance of sufficient bone volume to place an implant in an ideal restorative position without the need for ancillary implant site development procedures. PMID:27840551

  16. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  17. Relation between Silver Nanoparticle Formation Rate and Antioxidant Capacity of Aqueous Plant Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Azat Akbal

    2016-01-01

    Full Text Available Correlation between the antioxidant capacity and silver nanoparticle formation rates of pomegranate (Punica granatum, quince (Cydonia oblonga, chestnut (Castanea sativa, fig (Ficus carica, walnut (Juglans cinerea, black mulberry (Morus nigra, and white mulberry (Morus alba leaf extracts is investigated at a fixed illumination. Silver nanoparticles formed in all plant leaf extracts possess round shapes with average particle size of 15 to 25 nm, whereas corresponding surface plasmon resonance peak wavelengths vary between 422 nm and 451 nm. Cupric reducing antioxidant capacity technique is used as a reference method to determine total antioxidant capacity of the plant leaf extracts. Integrated absorbance over the plasmon resonance peaks exhibits better linear relation with antioxidant capacities of various plant leaf extracts compared to peak absorbance values, with correlation coefficient values of 0.9333 and 0.7221, respectively.

  18. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    A Roshan-Ghias

    2010-02-01

    Full Text Available In clinical situations, bone defects are often located at load bearing sites. Tissue engineering scaffolds are future bone substitutes and hence they will be subjected to mechanical stimulation. The goal of this study was to test if cyclic loading can be used as stimulatory signal for bone formation in a bone scaffold. Poly(L-lactic acid (PLA/ 5% beta-tricalcium phosphate (beta-TCP scaffolds were implanted in both distal femoral epiphyses of eight rats. Right knees were stimulated (10N, 4Hz, 5 min five times, every two days, starting from the third day after surgery while left knees served as control. Finite element study of the in vivo model showed that the strain applied to the scaffold is similar to physiological strains. Using micro-computed tomography (CT, all knees were scanned five times after the surgery and the related bone parameters of the newly formed bone were quantified. Statistical modeling was used to estimate the evolution of these parameters as a function of time and loading. The results showed that mechanical stimulation had two effects on bone volume (BV: an initial decrease in BV at week 2, and a long-term increase in the rate of bone formation by 28%. At week 13, the BV was then significantly higher in the loaded scaffolds.

  19. Comparison of hematopoietic supportive capacity between human fetal and adult bone marrow mesenchymal stem cells in vitro.

    Science.gov (United States)

    Liu, Meng; Yang, Shao-Guang; Xing, Wen; Lu, Shi-Hong; Zhao, Qin-Jun; Ren, Hong-Ying; Chi, Ying; Ma, Feng-Xia; Han, Zhong-Chao

    2011-08-01

    Hematopoietic stem cells (HSC) shift from fetal liver and spleen to bone marrow at neonatal stages and this movement may be due to inductive signals from different microenvironments. Mesenchymal stem cells (MSC) are the precursors of stromal cells in bone marrow microenvironments such as osteoblasts and endothelial cells. Some researchers speculated that fetal bone marrow before birth might be not perfectly suit HSC growth. However, it is still lack of direct evidence to prove this hypothesis. This study was aimed to compare the hematopoietic supportive capacity between human fetal and adult bone marrow MSC in vitro. Adult bone marrow MSC (ABM-MSC) were isolated from three healthy donors and fetal bone marrow MSC (FBM-MSC) were isolated from three fetuses between gestations of 19 to 20 weeks. After irradiation, MSC were co-cultured with CD34(+) cells isolated from umbilical cord blood in long-term culture-initiating cell (LTC-IC) assay. The colony number of colony forming cells (CFC) was counted and the phenotypic changes of co-cultured CD34(+) cells were analyzed by flow cytometry. Cytokine expressions in both kinds of MSC were detected by reverse transcription polymerase chain reaction (RT-PCR). The results showed that ABM-MSC had a stronger hematopoietic supportive capacity than FBM-MSC. Both of them enhanced the differentiation of CD34(+) cells into myeloid lineages. Cytokines were expressed differently in ABM-MSC and FBM-MSC. It is concluded that ABM-MSC possess more potential application in some treatments than FBM-MSC, especially in hematopoietic reconstitution.

  20. Interleukin-32 Gamma Stimulates Bone Formation by Increasing miR-29a in Osteoblastic Cells and Prevents the Development of Osteoporosis

    Science.gov (United States)

    Lee, Eun-Jin; Kim, Sang-Min; Choi, Bongkun; Kim, Eun-Young; Chung, Yeon-Ho; Lee, Eun-Ju; Yoo, Bin; Lee, Chang-Keun; Hong, Seokchan; Kim, Beom-Jun; Koh, Jung-Min; Kim, Soo-Hyun; Kim, Yong-Gil; Chang, Eun-Ju

    2017-01-01

    Interleukin-32 gamma (IL-32γ) is a recently discovered cytokine that is elevated in inflamed tissues and contributes to pathogenic features of bone in human inflammatory rheumatic diseases. Nevertheless, the role of IL-32γ and its direct involvement in bone metabolism is unclear. We investigated the molecular mechanism of IL-32γ in bone remodeling and the hypothetical correlation between IL-32γ and disease activity in osteoporosis patients. Transgenic (TG) mice overexpressing human IL-32γ showed reduced bone loss with advancing age, increased bone formation, and high osteogenic capacity of osteoblast compared to wild-type (WT) mice through the upregulation of miR-29a, which caused a reduction of Dickkopf-1 (DKK1) expression. IL-32γ TG mice were protected against ovariectomy (OVX)induced osteoporosis compared with WT mice. Decreased plasma IL-32γ levels were associated with bone mineral density (BMD) in human patients linked to increased DKK1 levels. These results indicate that IL-32γ plays a protective role for bone loss, providing clinical evidence of a negative correlation between IL-32γ and DKK1 as bone metabolic markers. PMID:28079119

  1. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo

    Directory of Open Access Journals (Sweden)

    E Wernike

    2010-02-01

    Full Text Available Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.

  2. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs.

    Directory of Open Access Journals (Sweden)

    Liao Wang

    Full Text Available Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic bone formation. Three bioceramics were used for the study: phase-pure hydroxyapatite (HA sintered at 1200°C and two biphasic calcium phosphate (BCP ceramics, consisting of 60 wt.% HA and 40 wt.% TCP (β-Tricalcium phosphate, sintered at either 1100°C or 1200°C. 108 samples of each ceramic were intramuscularly implanted in dogs, rabbits, and rats for 6, 12, and 24 weeks respectively. Histological and histomorphometrical analyses illustrated that ectopic bone and/or osteoid tissue formation was most pronounced in BCP sintered at 1100°C and most limited in HA, independent of the animal model. Concerning the effect of animal species, ectopic bone formation reproducibly occurred in dogs, while in rabbits and rats, new tissue formation was mainly limited to osteoid. The results of this study confirmed that the incidence and the extent of material-induced bone formation are related to both the physicochemical properties of calcium phosphate ceramics and the animal model.

  3. The orphan nuclear receptor SHP is a positive regulator of osteoblastic bone formation.

    Science.gov (United States)

    Jeong, Byung-Chul; Lee, Yong-Soo; Bae, In-Ho; Lee, Chul-Ho; Shin, Hong-In; Ha, Hyun Jung; Franceschi, Renny T; Choi, Hueng-Sik; Koh, Jeong-Tae

    2010-02-01

    The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) interacts with a diverse array of transcription factors and regulates a variety of cellular events such as cell proliferation, differentiation, and metabolism. However, the role of SHP in bone formation has not yet been elucidated. SHP expression is significantly increased during osteoblast differentiation, and its expression is partially regulated by bone morphogenetic protein 2 (BMP-2), which plays an important role in bone formation. In our study, inhibition of SHP expression significantly repressed BMP-2-induced osteoblast differentiation and ectopic bone formation. In accordance with these in vitro and in vivo results, osteoblast differentiation in SHP(-/-) mice primary osteoblasts was significantly repressed, and the mice showed decreased bone mass resulting from decreased numbers of osteoblasts. Finally, SHP physically interacts and forms a complex with runt-related transcription factor 2 (Runx2) on the osteocalcin gene promoter, and overexpression of SHP increased Runx2 transactivity via competition with histone deacetylase 4 (HDAC4), an enzyme that inhibits DNA binding of Runx2 to its target genes. Taken together, these results indicate that SHP acts as a novel positive regulator of bone formation by augmenting osteoblast differentiation through regulation of the transcriptional activity of Runx2.

  4. Effects of Lanthanum on Formation and Bone-Resorbing Activity of Osteoclast-Like Cells

    Institute of Scientific and Technical Information of China (English)

    张金超; 张天蓝; 许善锦; 王夔; 于世凤; 杨梦苏

    2004-01-01

    The effect of La3+ on formation of osteoclast-like cells in rabbit bone marrow cells induced by 1,25-dihydroxyvitamin D3 and their bone-resorbing activity was evaluated by counting the number of tartrate resistant-acid phosphatase-positive [TRAP(+)] multi-nucleated cells and measuring the number and surface area of bone resorption pits with photomicrography and image analysis. The formation and morphological characteristics of osteoclast-like cells and bone resorption pits were observed under a phase contrast inverted microscope. La3+ promotes the formation of osteoclast-like cells at the concentration of 1.00×10-8mol·L-1 compared with the control group(P0.05). La3+ at the concentration of 1.00×10-8mol·L-1 also increases the number and surface area of the resorption pits(P<0.01), but inhibits the bone-resorbing activity dose-dependently(P<0.01)at higher concentrations(1.00×10-5, 1.00×10-6 and 1.00×10-7 mol·L-1). These findings suggest that La3+ may promote or inhibit the formation and bone-resorbing activity of osteoclast-like cells depending on its concentration.

  5. Roles of the kidney in the formation, remodeling and repair of bone.

    Science.gov (United States)

    Wei, Kai; Yin, Zhiwei; Xie, Yuansheng

    2016-06-01

    The relationship between the kidney and bone is highly complex, and the kidney plays an important role in the regulation of bone development and metabolism. The kidney is the major organ involved in the regulation of calcium and phosphate homeostasis, which is essential for bone mineralization and development. Many substances synthesized by the kidney, such as 1,25(OH)2D3, Klotho, bone morphogenetic protein-7, and erythropoietin, are involved in different stages of bone formation, remodeling and repair. In addition, some cytokines which can be affected by the kidney, such as osteoprotegerin, sclerostin, fibroblast growth factor -23 and parathyroid hormone, also play important roles in bone metabolism. In this paper, we summarize the possible effects of these kidney-related cytokines on bone and their possible mechanisms. Most of these cytokines can interact with one another, constituting an intricate network between the kidney and bone. Therefore, kidney diseases should be considered among patients presenting with osteodystrophy and disturbances in bone and mineral metabolism, and treatment for renal dysfunction may accelerate their recovery.

  6. Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    April S Chan

    Full Text Available BACKGROUND: The bone-bone marrow interface is an area of the bone marrow microenvironment in which both bone remodeling cells, osteoblasts and osteoclasts, and hematopoietic cells are anatomically juxtaposed. The close proximity of these cells naturally suggests that they interact with one another, but these interactions are just beginning to be characterized. METHODOLOGY/PRINCIPAL FINDINGS: An Id1(-/- mouse model was used to assess the role of Id1 in the bone marrow microenvironment. Micro-computed tomography and fracture tests showed that Id1(-/- mice have reduced bone mass and increased bone fragility, consistent with an osteoporotic phenotype. Osteoclastogenesis and pit formation assays revealed that loss of Id1 increased osteoclast differentiation and resorption activity, both in vivo and in vitro, suggesting a cell autonomous role for Id1 as a negative regulator of osteoclast differentiation. Examination by flow cytometry of the hematopoietic compartment of Id1(-/- mice showed an increase in myeloid differentiation. Additionally, we found increased expression of osteoclast genes, TRAP, Oscar, and CTSK in the Id1(-/- bone marrow microenvironment. Lastly, transplantation of wild-type bone marrow into Id1(-/- mice repressed TRAP, Oscar, and CTSK expression and activity and rescued the hematopoietic and bone phenotype in these mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we demonstrate an osteoporotic phenotype in Id1(-/- mice and a mechanism for Id1 transcriptional control of osteoclast-associated genes. Our results identify Id1 as a principal player responsible for the dynamic cross-talk between bone and bone marrow hematopoietic cells.

  7. Bone Niches, Hematopoietic Stem Cells, and Vessel Formation

    Directory of Open Access Journals (Sweden)

    Roberto Tamma

    2017-01-01

    Full Text Available Bone marrow (BM is a source of hematopoietic stem cells (HSCs. HSCs are localized in both the endosteum, in the so-called endosteal niche, and close to thin-walled and fenestrated sinusoidal vessel in the center of BM, in the so-called vascular niche. HSCs give rise to all types of mature blood cells through a process finely controlled by numerous signals emerging from the bone marrow niches where HSCs reside. This review will focus on the description of the role of BM niches in the control of the fate of HSCs and will also highlight the role of the BM niches in the regulation of vasculogenesis and angiogenesis. Moreover, alterations of the signals in niche microenvironment are involved in many aspects of tumor progression and vascularization and further knowledge could provide the basis for the development of new therapeutic strategies.

  8. Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis

    OpenAIRE

    2009-01-01

    Targeted therapies that neutralize tumour necrosis factor are often able to control the signs and symptoms of spondyloarthritis. However, recent animal model data and clinical observations indicate that control of inflammation may not be sufficient to impede disease progression toward ankylosis in these patients. Bone morphogenetic proteins and WNTs (wingless-type like) are likely to play an important role in ankylosis and could be therapeutic targets. The relationship between inflammation an...

  9. Effect of Combined Calcium Hydroxide and Accelerated Portland Cement on Bone Formation and Soft Tissue Healing in Dog Bone Lesions

    Directory of Open Access Journals (Sweden)

    Khorshidi H

    2015-09-01

    Full Text Available Statement of Problem: Recent literatures show that accelerated Portland cement (APC and calcium hydroxide Ca (OH2 may have the potential to promote the bone regeneration. However, certain clinical studies reveal consistency of Ca (OH2, as one of the practical drawbacks of the material when used alone. To overcome such inconvenience, the combination of the Ca (OH2 with a bone replacement material could offer a convenient solution. Objectives: To evaluate the soft tissue healing and bone regeneration in the periodontal intrabony osseous defects using accelerated Portland cement (APC in combination with calcium hydroxide Ca (OH2, as a filling material. Materials and Methods: Five healthy adult mongrel dogs aged 2-3 years old (approximately 20 kg in weight with intact dentition and healthy periodontium were selected for this study. Two one-wall defects in both mesial and distal aspects of the 3rd premolars of both sides of the mandible were created. Therefore, four defects were prepared in each dog. Three defects in each dog were randomly filled with one of the following materials: APC alone, APC mixed with Ca (OH2, and Ca (OH2 alone. The fourth defect was left empty (control. Upon clinical examination of the sutured sites, the amount of dehiscence from the adjacent tooth was measured after two and eight weeks, using a periodontal probe mesiodistally. For histometric analysis, the degree of new bone formation was estimated at the end of the eighth postoperative week, by a differential point-counting method. The percentage of the defect volume occupied by new osteoid or trabecular bone was recorded. Results: Measurement of wound dehiscence during the second week revealed that all five APCs had an exposure of 1-2 mm and at the end of the study all samples showed 3-4 mm exposure across the surface of the graft material, whereas the Ca (OH2, control, and APC + Ca (OH2 groups did not show any exposure at the end of the eighth week of the study. The most

  10. Geochemical and mineralogical studies of dinosaur bone from the Morrison Formation at Dinosaur Ridge

    Science.gov (United States)

    Modreski, P.J.

    2001-01-01

    The dinosaur bones first discovered in 1877 in the Upper Jurassic Morrison Formation at Morrison, Colorado were the first major find of dinosaur skeletons in the western U.S. and led to the recognition of four new dinosaur genera (Apatosaurus, Allosaurus, Diplodocus, and Stegosaurus). Eight articles dealing with these bones which appeared as research reports in the annual reports of the Friends of Dinosaur Ridge from 1990-1999 are condensed and summarized with some additional comments. Two of the articles are about the mineralogy and preservation of the bones; two are about the physical description of the bone occurrence; two are about the history of the site, and two are about use of novel instrumental methods (ground-penetrating radar and a directional scintillometer) to search for new bones.

  11. A correlative imaging based methodology for accurate quantitative assessment of bone formation in additive manufactured implants.

    Science.gov (United States)

    Geng, Hua; Todd, Naomi M; Devlin-Mullin, Aine; Poologasundarampillai, Gowsihan; Kim, Taek Bo; Madi, Kamel; Cartmell, Sarah; Mitchell, Christopher A; Jones, Julian R; Lee, Peter D

    2016-06-01

    A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets. Once registered, histomorphometric qualitative and quantitative bone descriptors were directly correlated to 3D quantitative bone descriptors, such as bone ingrowth and bone contact. The correlative imaging allowed the significant volumetric shrinkage of histology sections to be quantified for the first time (~15 %). This technique demonstrated the importance of location of the histological section, demonstrating that up to a 30 % offset can be introduced. The results were used to quantitatively demonstrate the effectiveness of 3D printed titanium lattice implants.

  12. Dystrophic Cutaneous Calcification and Metaplastic Bone Formation due to Long Term Bisphosphonate Use in Breast Cancer

    Science.gov (United States)

    Tatlı, Ali Murat; Göksu, Sema Sezgin; Arslan, Deniz; Başsorgun, Cumhur İbrahim; Coşkun, Hasan Şenol

    2013-01-01

    Bisphosphonates are widely used in the treatment of breast cancer with bone metastases. We report a case of a female with breast cancer presented with a rash around a previous mastectomy site and a discharge lesion on her right chest wall in August 2010. Biopsy of the lesion showed dystrophic calcification and metaplastic bone formation. The patient's history revealed a long term use of zoledronic acid for the treatment of breast cancer with bone metastasis. We stopped the treatment since we believed that the cutaneous dystrophic calcification could be associated with her long term bisphosphonate therapy. Adverse cutaneous events with bisphosphonates are very rare, and dystrophic calcification has not been reported previously. The dystrophic calcification and metaplastic bone formation in this patient are thought to be due to long term bisphosphonate usage. PMID:23956898

  13. Dystrophic Cutaneous Calcification and Metaplastic Bone Formation due to Long Term Bisphosphonate Use in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ali Murat Tatlı

    2013-01-01

    Full Text Available Bisphosphonates are widely used in the treatment of breast cancer with bone metastases. We report a case of a female with breast cancer presented with a rash around a previous mastectomy site and a discharge lesion on her right chest wall in August 2010. Biopsy of the lesion showed dystrophic calcification and metaplastic bone formation. The patient’s history revealed a long term use of zoledronic acid for the treatment of breast cancer with bone metastasis. We stopped the treatment since we believed that the cutaneous dystrophic calcification could be associated with her long term bisphosphonate therapy. Adverse cutaneous events with bisphosphonates are very rare, and dystrophic calcification has not been reported previously. The dystrophic calcification and metaplastic bone formation in this patient are thought to be due to long term bisphosphonate usage.

  14. Impact of Maximum Allowable Cost on CO2 Storage Capacity in Saline Formations.

    Science.gov (United States)

    Mathias, Simon A; Gluyas, Jon G; Goldthorpe, Ward H; Mackay, Eric J

    2015-11-17

    Injecting CO2 into deep saline formations represents an important component of many greenhouse-gas-reduction strategies for the future. A number of authors have posed concern over the thousands of injection wells likely to be needed. However, a more important criterion than the number of wells is whether the total cost of storing the CO2 is market-bearable. Previous studies have sought to determine the number of injection wells required to achieve a specified storage target. Here an alternative methodology is presented whereby we specify a maximum allowable cost (MAC) per ton of CO2 stored, a priori, and determine the corresponding potential operational storage capacity. The methodology takes advantage of an analytical solution for pressure build-up during CO2 injection into a cylindrical saline formation, accounting for two-phase flow, brine evaporation, and salt precipitation around the injection well. The methodology is applied to 375 saline formations from the U.K. Continental Shelf. Parameter uncertainty is propagated using Monte Carlo simulation with 10 000 realizations for each formation. The results show that MAC affects both the magnitude and spatial distribution of potential operational storage capacity on a national scale. Different storage prospects can appear more or less attractive depending on the MAC scenario considered. It is also shown that, under high well-injection rate scenarios with relatively low cost, there is adequate operational storage capacity for the equivalent of 40 years of U.K. CO2 emissions.

  15. Erythropoietin Promotes Bone Formation through EphrinB2/EphB4 Signaling

    OpenAIRE

    Li, C; Shi, C.; Kim, J; Chen, Y.; Ni, S.; Jiang, L.; Zheng, C.; Li, D; J. Hou; Taichman, R. S.; Sun, H

    2015-01-01

    Recent studies have demonstrated that erythropoietin (EPO) has extensive nonhematopoietic biological functions. However, little is known about how EPO regulates bone formation, although several studies suggested that EPO can affect bone homeostasis. In this study, we investigated the effects of EPO on the communication between osteoclasts and osteoblasts through the ephrinB2/EphB4 signaling pathway. We found that EPO slightly promotes osteoblastic differentiation with the increased expression...

  16. The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review.

    Science.gov (United States)

    Rathe, Florian; Junker, Rüdiger; Chesnutt, Betsy M; Jansen, John A

    2009-09-01

    This systematic review focused on the question, if and to what extent enamel matrix derivative (Emdogain) [EMD]) promotes the regeneration of bone. The influence of combinations with other biomaterials was additionally evaluated. Twenty histomorphometric studies were included in this systematic review. Main results of the reviewed articles were (i) guide tissue regeneration (GTR) of infrabony defects seems to result in a higher degree of bone regeneration compared to treatment with EMD; (ii) combined therapy (GTR + EMD) of infrabony defects might not lead to better results than GTR therapy alone; (iii) there seems to be no additional benefit of combined therapy (GTR + EMD) in furcation defects over GTR therapy alone; (iv) EMD seems to lead to more bone regeneration of infrabony defects compared to open flap debridement; (v) however, EMD application might result in more bone formation when applied in supporting defects compared to nonsupporting defects; and (vi) EMD does not seem to promote external jaw/parietal bone formation in the titanium capsule model. The results of one study that suggest that EMD increases the initial growth of trabecular bone around endosseous implants by new bone induction need to be confirmed by additional research.

  17. The influence of surface mineral and osteopontin on the formation and function of murine bone marrow-derived osteoclasts.

    Science.gov (United States)

    Rajachar, Rupak M; Truong, Anh Q; Giachelli, Cecilia M

    2008-10-01

    The phosphorylated glycoprotein osteopontin (OPN) is involved in the regulation of biomineralization under normal and pathological conditions. Its actions include inhibiting apatite crystal growth and promoting the formation and function of mineral resorbing cells, including osteoclasts (OCL). The purpose of this study was to develop stable apatitic mineral surfaces and determine their influence on OCL formation and mineral resorption from bone marrow macrophages derived from OPN wild-type (OPN+/+) and OPN deficient (OPN-/-) mice. We demonstrated that these mineral coatings were stable and supported bone marrow-derived macrophage differentiation to OCL under our culture conditions. Macrophages harvested from OPN-/- mice had a greater capacity to form OCL than macrophages from OPN+/+ mice when allowed to differentiate on tissue culture plastic. In contrast, when allowed to differentiate on a mineral surface, no difference in OCL formation was observed. Interestingly, OPN+/+ OCL were more efficient at mineral dissolution than OPN-/- OCL, and this difference was observed regardless of differentiating surface. Our results suggest that mineralized substrates as well as ability to synthesize OPN both control OCL function in our model system. The exact nature of these effects may be dependent on variables related to mineral substrate presentation.

  18. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin;

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used in ...

  19. PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption

    Directory of Open Access Journals (Sweden)

    L.A. Stechschulte

    2016-08-01

    Full Text Available The peroxisome proliferator-activated receptor gamma (PPARγ regulates osteoblast and osteoclast differentiation, and is the molecular target of thiazolidinediones (TZDs, insulin sensitizers that enhance glucose utilization and adipocyte differentiation. However, clinical use of TZDs has been limited by side effects including a higher risk of fractures and bone loss. Here we demonstrate that the same post-translational modifications at S112 and S273, which influence PPARγ pro-adipocytic and insulin sensitizing activities, also determine PPARγ osteoblastic (pS112 and osteoclastic (pS273 activities. Treatment of either hyperglycemic or normoglycemic animals with SR10171, an inverse agonist that blocks pS273 but not pS112, increased trabecular and cortical bone while normalizing metabolic parameters. Additionally, SR10171 treatment modulated osteocyte, osteoblast, and osteoclast activities, and decreased marrow adiposity. These data demonstrate that regulation of bone mass and energy metabolism shares similar mechanisms suggesting that one pharmacologic agent could be developed to treat both diabetes and metabolic bone disease.

  20. Transient precursor strategy in mineral formation of bone.

    Science.gov (United States)

    Weiner, Steve

    2006-09-01

    The strategy in biomineralization of initially depositing a less ordered mineral and then transforming it into a more crystalline mature phase is probably widespread among invertebrates. The report in this issue by N.J. Crane, V. Popescu, M.D. Morris, P. Steenhuis, M.A. Ignelzi, Raman spectroscopic evidence for octacalcium phosphate and other mineral species deposited during intramembraneous mineralization. Bone (In press), using micro-Raman spectroscopy to study early mineral deposits in mice calvaria, provides strong evidence that the transient precursor strategy also occurs in vertebrates.

  1. Is Lipid Profile Associated with Bone Mineral Density and Bone Formation in Subjects with Spinal Cord Injury?

    Directory of Open Access Journals (Sweden)

    Hadis Sabour

    2014-01-01

    Full Text Available Purpose. The association between serum lipids and bone mineral density (BMD has been investigated previously but, up to now, these relationships have not yet been described in spinal cord injury (SCI. We tried to assess the correlation between serum triglyceride (TG, total cholesterol (TC, high-density lipoprotein (HDL, and low-density lipoprotein (LDL and BMD in male subjects with SCI. Methods. Dual-energy X-ray absorptiometry (DXA was used to assess BMD in femoral neck, trochanter, intertrochanteric zone, and lumbar vertebras. Blood samples were taken to measure serums lipids and bone biomarkers including osteocalcin, cross-linked type I collagen (CTX, and bone alkaline phosphatase (BALP. Partial correlation analysis was used to evaluate the relationships between mentioned measurements after adjustment for weight and age. Results. We found a positive correlation between HDL and femoral neck BMD (P: 0.004, r=0.33. HDL was negatively correlated with osteocalcin (P: 0.017, r=-0.31 which was not in consistency with its relationship with BMD. TC and LDL were not related to CTX, BALP and BMD. Conclusion. This study does not support a strong association between serum lipids and BMD in subjects with SCI. Moreover it seems that positive association between HDL and BMD is not mediated through increased bone formation.

  2. Nanosized Hydroxyapatite Coating on PEEK Implants Enhances Early Bone Formation: A Histological and Three-Dimensional Investigation in Rabbit Bone

    Directory of Open Access Journals (Sweden)

    Pär Johansson

    2015-06-01

    Full Text Available Polyether ether ketone (PEEK has been frequently used in spinal surgery with good clinical results. The material has a low elastic modulus and is radiolucent. However, in oral implantology PEEK has displayed inferior ability to osseointegrate compared to titanium materials. One idea to reinforce PEEK would be to coat it with hydroxyapatite (HA, a ceramic material of good biocompatibility. In the present study we analyzed HA-coated PEEK tibial implants via histology and radiography when following up at 3 and 12 weeks. Of the 48 implants, 24 were HA-coated PEEK screws (test and another 24 implants served as uncoated PEEK controls. HA-coated PEEK implants were always osseointegrated. The total bone area (BA was higher for test compared to control implants at 3 (p < 0.05 and 12 weeks (p < 0.05. Mean bone implant contact (BIC percentage was significantly higher (p = 0.024 for the test compared to control implants at 3 weeks and higher without statistical significance at 12 weeks. The effect of HA-coating was concluded to be significant with respect to early bone formation, and HA-coated PEEK implants may represent a good material to serve as bone anchored clinical devices.

  3. [Biofilm formation capacity of Listeria monocytogens strains isolated from soft cheese from Costa Rica].

    Science.gov (United States)

    Carrillo Zeledón, Gabriela; Redondo Solano, Mauricio; Arias Echandi, María Laura

    2010-06-01

    Listeria monocytogenes is a bacteria associated with the production of severe infectious disease in human being, but also with the formation of biofilms in different surfaces related to the food production environment. Biofilm represents a serious problem in food industry, since it is a constant and important contamination source and also, bacteria present in it have an increased resistance towards physical and chemical agents of common use. The capacity of biofilm formation of L. monocytogenes strains previously isolated from soft cheese samples from Costa Rica was studied under different temperature and culture conditions. The microplate technique was performed using different culture media (BHIB, TSB 1:20 and cheese serum) and at different incubation temperatures (refrigeration, environmental and 35 degrees C). Biofilm formation capacity was classified according to the optical density obtained at 620 nm. None of the strains evaluated was classified as strong biofilm former under any of the variables studied, nevertheless, weak and moderate formers were detected. The results obtained show the influence of the nutrient content of the culture media used over biofilm formation; BHIB was the only culture media that allowed the expression of moderate biofilm forms, contrary to cheese serum that did not promote biofilm production. Biofilm formation is a multifactorial process, where adsorption level depends on several variables and its study must be promoted in order to develop methodologies that allow its reduction or elimination, so food industries may offer safe food products to consumers.

  4. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    OpenAIRE

    Mohammad Kargar; Rouhi Afkari; Sadegh Ghorbani-Dalini

    2013-01-01

    Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a tota...

  5. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis

    Science.gov (United States)

    Marriott, Ian

    2013-01-01

    The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells. PMID:24392356

  6. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    Science.gov (United States)

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  7. Formation and Characterization of Bone-like Nanoscale Hydroxyapatite in Glass Bone Cement

    Institute of Scientific and Technical Information of China (English)

    Qiang FU; Nai ZHOU; Wenhai HUANG; Deping WANG; Liying ZHANG

    2004-01-01

    Glass based bone cement (GBC) was synthesized by mixing CaO-SiO2-P2O5 based glass powder with ammonium phosphate liquid medium. Bone-like hydroxyapatite (HAP, Ca10(PO4)6(OH)2) was found to form after GBC was immersed in simulated body fluid (SBF). HAP crystal grew with an increasing time along c axle and reached about 200 nm in length after 30 days, however, the end plane granularity remained 30~50 nm. The chemical composition, crystal structure and morphology of HAP formed from GBC were proved to have great resemblance with living HAP.It is believed that GBC was a desirable biomedical material with high bioactivity. Furthermore, the high compressive strength guaranteed the possibility of GBC in clinical application.

  8. Migration Capacity and Viability of Human Primary Osteoblasts in Synthetic Three-dimensional Bone Scaffolds Made of Tricalciumphosphate

    Directory of Open Access Journals (Sweden)

    Hermann Seitz

    2011-07-01

    Full Text Available In current therapeutic strategies, bone defects are filled up by bone auto- or allografts. Since they are limited by insufficient availability and donor site morbidity, it is necessary to find an appropriate alternative of synthetic porous bone materials. Because of their osteoconductive characteristics, ceramic materials like tricalciumphosphate (TCP are suitable to fill up bone defects. Another advantage of TCP implants is the ability of patient-specific engineering. Objective of the present in-vitro study was to analyze the migration capacity and viability of human primary osteoblasts in porous three-dimensional TCP scaffolds in a static cell culture. To obtain data of the cellular supply with nutrients and oxygen, we determined the oxygen concentration and the pH value within the 3D scaffold compared to the surrounding medium using microsensors. After eight days of cultivation we found cells on all four planes. During incubation, the oxygen concentration within the scaffold decreased by approximately 8%. Furthermore, we could not demonstrate an increasing acidification in the core of the TCP scaffold. Our results suggest that osteoblasts could migrate and survive within the macroporous TCP scaffolds. The selected size of the macropores prevents overgrowth of cells, whereby the oxygen and nutrients supply is sufficiently guaranteed.

  9. Improving Bone Formation in a Rat Femur Segmental Defect by Controlling Bone Morphogenetic Protein-2 Release

    Science.gov (United States)

    2011-04-01

    delivered on a collagen sponge (INFUSE Bone Graft; Medtronic) has been approved by FDA for posterior-lateral spine fusions, tibial fractures, and sinus...area was defined by drawing a quadrilateral area using the periosteal corners of the four host cortices as points of reference. The relative areas of...section of an FR +BMP scaffold in Figure 8 (the ap- proximate boundary of the implant is denoted by the box) shows a mature and fully bridged periosteal

  10. Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Tegan L Cheng

    2015-10-01

    Full Text Available Sucrose acetate isobutyrate (SAIB is a sugar-based carrier. We have previously applied SAIB as a minimally invasive system for the co-delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2 and found synergy when co-delivering zoledronic acid (ZA and hydroxyapatite (HA nanoparticles. Alternative bioceramics were investigated in a murine SAIB/rhBMP-2 injection model. Neither beta-tricalcium phosphate (TCP nor Bioglass (BG 45S5 had a significant effect on bone volume (BV alone or in combination with the ZA. 14C-labelled ZA binding assays showed particle size and ceramic composition affected binding with nano-HA > micro-HA > TCP > BG. Micro-HA and nano-HA increased BV in a rat model of rhBMP-2/SAIB injection (+278% and +337%, and BV was further increased with ZA–adsorbed micro-HA and nano-HA (+530% and +889%. These data support the use of ZA–adsorbed nanoparticle-sized HA as an optimal additive for the SAIB/rhBMP-2 injectable system for bone tissue engineering.

  11. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo

    NARCIS (Netherlands)

    Siddappa, Ramakrishnaiah; Martens, Anton; Doorn, Joyce; Leusink, Anouk; Olivo, Cristina; Licht, Ruud; van Rijn, Linda; Gaspar, Claudia; Fodde, Riccardo; Janssen, Frank; van Blitterswijk, Clemens; de Boer, Jan

    2008-01-01

    Tissue engineering of large bone defects is approached through implantation of autologous osteogenic cells, generally referred to as multipotent stromal cells or mesenchymal stem cells (MSCs). Animal-derived MSCs successfully bridge large bone defects, but models for ectopic bone formation as well a

  12. Orthotopic bone formation in titanium fiber mesh loaded with platelet-rich plasma and placed in segmental defects.

    NARCIS (Netherlands)

    Kroese-Deutman, H.C.; Vehof, J.W.M.; Spauwen, P.H.M.; Stoelinga, P.J.W.; Jansen, Jarno

    2008-01-01

    The effect of platelet-rich plasma (PRP) on bone formation was investigated in a rabbit segmental radial defect model. The purpose of the study was to evaluate the bone inductive properties of PRP with titanium fiber mesh and autologous bone chips in a 15-mm rabbit radial defect model. Eighteen New

  13. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling.

    Science.gov (United States)

    Li, C; Shi, C; Kim, J; Chen, Y; Ni, S; Jiang, L; Zheng, C; Li, D; Hou, J; Taichman, R S; Sun, H

    2015-03-01

    Recent studies have demonstrated that erythropoietin (EPO) has extensive nonhematopoietic biological functions. However, little is known about how EPO regulates bone formation, although several studies suggested that EPO can affect bone homeostasis. In this study, we investigated the effects of EPO on the communication between osteoclasts and osteoblasts through the ephrinB2/EphB4 signaling pathway. We found that EPO slightly promotes osteoblastic differentiation with the increased expression of EphB4 in ST2 cells. However, EPO increased the expression of Nfatc1 and ephrinB2 but decreased the expression of Mmp9 in RAW264.7 cells, resulting in an increase of ephrinB2-expressing osteoclasts and a decrease in resorption activity. The stimulation of ephrinB2/EphB4 signaling via ephrinB2-Fc significantly promoted EPO-mediated osteoblastic differentiation in ST2 cells. EphB4 knockdown through EphB4 shRNA inhibited EPO-mediated osteoblastic phenotypes. Furthermore, in vivo assays clearly demonstrated that EPO efficiently induces new bone formation in the alveolar bone regeneration model. Taken together, these results suggest that ephrinB2/EphB4 signaling may play an important role in EPO-mediated bone formation.

  14. Aging Leads to a Dysregulation in Mechanically Driven Bone Formation and Resorption.

    Science.gov (United States)

    Razi, Hajar; Birkhold, Annette I; Weinkamer, Richard; Duda, Georg N; Willie, Bettina M; Checa, Sara

    2015-10-01

    Physical activity is essential to maintain skeletal mass and structure, but its effect seems to diminish with age. To test the hypothesis that bone becomes less sensitive to mechanical strain with age, we used a combined in vivo/in silico approach. We investigated how maturation and aging influence the mechanical regulation of bone formation and resorption to 2 weeks of noninvasive in vivo controlled loading in mice. Using 3D in vivo morphometrical assessment of longitudinal microcomputed tomography images, we quantified sites in the mouse tibia where bone was deposited or resorbed in response to controlled in vivo loading. We compared the (re)modeling events (formation/resorption/quiescent) to the mechanical strains induced at these sites (predicted using finite element analysis). Mice of all age groups (young, adult, and elderly) responded to loading with increased formation and decreased resorption, preferentially at high strains. Low strains were associated with no anabolic response in adult and elderly mice, whereas young animals showed a strong response. Adult animals showed a clear separation between strain ranges where formation and resorption occurred but without an intermediate quiescent "lazy zone". This strain threshold disappeared in elderly mice, as mechanically induced (re)modeling became dysregulated, apparent in an inability to inhibit resorption or initiate formation. Contrary to what is generally believed until now, aging does not shift the mechanical threshold required to initiate formation or resorption, but rather blurs its specificity. These data suggest that pharmaceutical strategies augmenting physical exercise should consider this dysfunction in the mechanical regulation of bone (re)modeling to more effectively combat age-related bone loss.

  15. Differential mechanisms of de-regulated bone formation in rheumatoid arthritis and spondyloarthritis.

    Science.gov (United States)

    Goldring, Steven R

    2016-12-01

    The inflammatory arthropathies share in common their tendency to produce marked alterations in skeletal remodelling and architecture. This review will focus on RA and the seronegative spondyloarthopathies (SpA), which share common features with respect to their tendency to produce localized bone destruction at sites of articular and peri-articular inflammation. However, there are significant differences in the skeletal pathology in these conditions, which include the unique involvement of the axial skeleton and the presence of inflammation in the extra-articular entheses in SpA. There also are differences in the pattern of bone formation and repair associated with the articular and peri-articular inflammation. This review will highlight the molecular and cellular processes that are involved in the pathogenesis of the skeletal pathology in these two forms of inflammatory arthritis with specific focus on the pathogenic mechanisms underlying the differential patterns of bone formation and repair.

  16. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis

    Directory of Open Access Journals (Sweden)

    Mittlmeier T

    2012-06-01

    Full Text Available Christoph Harms,1 Kai Helms,1 Tibor Taschner,1 Ioannis Stratos,1 Anita Ignatius,5 Thomas Gerber,2 Solvig Lenz,3 Stefan Rammelt,6 Brigitte Vollmar,4 Thomas Mittlmeier11Department of Trauma and Reconstructive Surgery, 2Department for Materials Research and Nanostructures, Institute for Physics, 3Department of Oral and Maxillofacial Plastic Surgery, 4Institute for Experimental Surgery, University of Rostock, Rostock, 5Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, 6Clinic of Trauma and Reconstructive Surgery, University Hospital "Carl Gustav Carus", Dresden, GermanyAbstract: The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in

  17. Calcium citrate: a new biomaterial that can enhance bone formation in situ

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ming; WANG Wei; LI Xiu-cui; PENG Lei; LIN Zhong-qin; X(ü) Hua-zi

    2012-01-01

    Objective: To investigate the effect of a new biomaterial combining calcium citrate and recombinant human bone morphogenetic protein-2 (rhBMP-2) on bone regeneration in a bone defect rabbit model.Methods: Totally 30 male New Zealand white rabbits were randomly and equally divided into calcium citraterhBMP-2 (CC-rhBMP-2) group and rhBMP-2 only group.Two 10 mm-long and 5 mm-deep bone defects were respectively created in the left and right femoral condyles of the rabbits.Subsequently 5 pellets of calcium citrate (10 mg)combined with rhBMP-2 (2 mg) or rhBMP-2 alone were implanted into the bone defects and compressed with cotton swab.Bone granules were obtained at 2,4 and 6 weeks after procedure and received histological analysis.LSD t-test and a subsequent t-test were adopted for statistical analysis.Results: Histomorphometric analysis revealed newly formed bones,and calcium citrate has been absorbed in the treatment group.The percent of newly formed bone area in femoral condyle in control group and CC-rhBMP-2 group was respectively 31.73%±1.26% vs 48.21%±2.37% at 2 weeks; 43.40%±1.65% vs 57.32%±1.47% at 4 weeks,and 51.32%±7.80% vs 66.74%±4.05% at 6 weeks (P<0.05 for all).At 2 weeks,mature cancellous bone was observed to be already formed in the treatment group.Conclusion: From this study,it can be concluded that calcium citrate combined with rhBMP-2 signifcantly enhances bone regeneration in bone defects.This synthetic gelatin matrix stimulates formation of new bone and bone marrow in the defect areas by releasing calcium ions.

  18. Combination of bone morphogenetic protein-2 plasmid DNA with chemokine CXCL12 creates an additive effect on bone formation onset and volume

    NARCIS (Netherlands)

    Wegman, F.; Poldervaart, M. T.; van der Helm, Y. J.; Oner, F. C.; Dhert, W. J.; Alblas, J.

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where

  19. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells

    NARCIS (Netherlands)

    Doorn, J.; Siddappa, R.; Blitterswijk, van C.A.; Boer, de J.

    2012-01-01

    Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effe

  20. cAMP/PKA Signaling Inhibits Osteogenic Differentiation and Bone Formation in Rodent Models

    NARCIS (Netherlands)

    Siddappa, Ramakrishnaiah; Mulder, Winfried; Steeghs, Ilse; Klundert, van de Christine; Fernandes, Hugo; Liu, Jun; Arends, Roel; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    We previously demonstrated that cAMP-mediated protein kinase A (PKA) activation induces in vitro osteogenesis and in vivo bone formation by human mesenchymal stem cells (hMSCs). To analyze the species-specific response of this phenomenon and to translate our findings into a clinical trial, suitable

  1. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats

    DEFF Research Database (Denmark)

    Grubbe, M.-C.; Thomsen, J. S.; Nyengaard, J. R.;

    2014-01-01

    limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pmineral density (a...

  2. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs

    NARCIS (Netherlands)

    Wang, Liao; Zhang, B.; Bao, C.; Habibovic, P.; Hu, J.; Zhang, Xingdong

    2014-01-01

    Calcium phosphate ceramics with specific physicochemical properties have been shown to induce de novo bone formation upon ectopic implantation in a number of animal models. In this study we explored the influence of physicochemical properties as well as the animal species on material-induced ectopic

  3. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2001-01-01

    In this in vitro study, the formation of a Staphylococcus aureus biofilm on six gentamicin-loaded bone cements (CMW1, CMW3, CMW Endurance, CMW2000, Palacos. and Palamed) was determined in a modified Robbins device over a 3 days time span and related with previously (Van de Belt et al., Biomaterials

  4. Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice.

    Science.gov (United States)

    Duque, Gustavo; Huang, Dao Chao; Dion, Natalie; Macoritto, Michael; Rivas, Daniel; Li, Wei; Yang, Xian Fang; Li, Jiarong; Lian, Jing; Marino, Faleh Tamim; Barralet, Jake; Lascau, Viorica; Deschênes, Claire; Ste-Marie, Louis-Georges; Kremer, Richard

    2011-07-01

    Interferon γ (IFN-γ) is a cytokine produced locally in the bone microenvironment by cells of immune origin as well as mesenchymal stem cells. However, its role in normal bone remodeling is still poorly understood. In this study we first examined the consequences of IFN-γ ablation in vivo in C57BL/6 mice expressing the IFN-γ receptor knockout phenotype (IFNγR1(-/-)). Compared with their wild-type littermates (IFNγR1(+/+)), IFNγR1(-/-) mice exhibit a reduction in bone volume associated with significant changes in cortical and trabecular structural parameters characteristic of an osteoporotic phenotype. Bone histomorphometry of IFNγR1(-/-) mice showed a low-bone-turnover pattern with a decrease in bone formation, a significant reduction in osteoblast and osteoclast numbers, and a reduction in circulating levels of bone-formation and bone-resorption markers. Furthermore, administration of IFN-γ (2000 and 10,000 units) to wild-type C57BL/6 sham-operated (SHAM) and ovariectomized (OVX) female mice significantly improved bone mass and microarchitecture, mechanical properties of bone, and the ratio between bone formation and bone resorption in SHAM mice and rescued osteoporosis in OVX mice. These data therefore support an important physiologic role for IFN-γ signaling as a potential new anabolic therapeutic target for osteoporosis.

  5. Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Chunlei Miao

    2017-01-01

    Full Text Available Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious.

  6. Osteogenic Differentiation Capacity of In Vitro Cultured Human Skeletal Muscle for Expedited Bone Tissue Engineering

    Science.gov (United States)

    Miao, Chunlei; Zhou, Lulu; Tian, Lufeng; Zhang, Yingjie; Zhang, Wei; Yang, Fanghong; Liu, Tianyi

    2017-01-01

    Expedited bone tissue engineering employs the biological stimuli to harness the intrinsic regenerative potential of skeletal muscle to trigger the reparative process in situ to improve or replace biological functions. When genetically modified with adenovirus mediated BMP2 gene transfer, muscle biopsies from animals have demonstrated success in regenerating bone within rat bony defects. However, it is uncertain whether the human adult skeletal muscle displays an osteogenic potential in vitro when a suitable biological trigger is applied. In present study, human skeletal muscle cultured in a standard osteogenic medium supplemented with dexamethasone demonstrated significant increase in alkaline phosphatase activity approximately 24-fold over control at 2-week time point. More interestingly, measurement of mRNA levels revealed the dramatic results for osteoblast transcripts of alkaline phosphatase, bone sialoproteins, transcription factor CBFA1, collagen type I, and osteocalcin. Calcified mineral deposits were demonstrated on superficial layers of muscle discs after an extended 8-week osteogenic induction. Taken together, these are the first data supporting human skeletal muscle tissue as a promising potential target for expedited bone regeneration, which of the technologies is a valuable method for tissue repair, being not only effective but also inexpensive and clinically expeditious. PMID:28210626

  7. The Effect of an Enamel Matrix Derivative (Emdogain Combined with Bone Ceramic on Bone Formation in Mandibular Defects: A Histomorphometric and Immunohistochemical Study in the Canine

    Directory of Open Access Journals (Sweden)

    Reza Birang

    2012-01-01

    Full Text Available Background. The purpose of this study was to evaluate the combination of an enamel matrix derivative (EMD and an osteoconductive bone ceramic (BC in improving bone regeneration. Materials and Methods. Four cylindrical cavities (6×6mm were prepared bilaterally in the mandible in three dogs. The defects were randomly assigned to four different treatments—filled with EMD/BC and covered with a nonresorbable membrane, filled with EMD/BC without membrane, membrane coverage only, or control (left untreated—and healed for 2, 4, or 6 weeks. Harvested specimens were prepared for histologic, histomorphometric, and immunohistochemical analyses. Results. Sites treated with EMD/BC with or without membrane showed more total bone formation and lamellar bone formation than membrane-only and control defects. There were no statistically significant differences in total bone formation between EMD/BC with or without membrane. Conclusion. EMD with BC might improve bone formation in osseous defects more than membrane coverage alone; the use of a membrane had no significant additive effect on total bone formation.

  8. Formation of methane hazard in longwall coal mines with increasingly higher production capacity

    Institute of Scientific and Technical Information of China (English)

    Krause Eugeniusz; Skiba Jacek

    2014-01-01

    Increasingly higher hard coal production capacity in Upper Silesian Coal Basin (Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas. An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreas-ing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors, which have critical influence on the formation of methane hazard in longwall areas with high production capacity.

  9. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction

    CERN Document Server

    Pinson, Matthew B

    2012-01-01

    Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade occurs over thousands of cycles, limited by slow electrochemical processes, such as the formation of a solid-electrolyte interphase (SEI) in the negative electrode, which compete with reversible lithium intercalation. Focusing on SEI growth as the canonical degradation mechanism, we show that a simple single-particle model can accurately explain experimentally observed capacity fade in commercial cells with graphite anodes, and predict future fade based on limited accelerated aging data for short times and elevated temperatures. The theory is extended to porous electrodes, predicting that SEI growth is essentially homogeneous throughout the electrode, even at high rates. The lifetime distribution for a sample of batteries is found to be consistent with Gaussian statistics, as predicted by th...

  10. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture

    Directory of Open Access Journals (Sweden)

    Kazancioglu HO

    2015-12-01

    Full Text Available Hakki Oguz Kazancioglu,1 Sertac Aksakalli,2 Seref Ezirganli,1 Muhammet Birlik,2 Mukaddes Esrefoglu,3 Ahmet Hüseyin Acar1 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, Faculty of Dentistry, 3Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey Background: Narrow maxilla is a common problem in orthodontics and dentofacial orthopedics. To solve this problem, a procedure called rapid maxillary expansion (RME has been used. However, relapse tendency is a major problem of RME. Although relapse tendency is not clearly understood, various treatment procedures and new application has been investigated. The present study aimed to investigate the possible effectiveness of caffeic acid phenethyl ester (CAPE on new bone formation in rat midpalatal suture after RME.Materials and methods: Twenty male Sprague Dawley rats were used in this study. The animals were randomly divided into two groups as control and CAPE group. In CAPE group, CAPE was administered systemically via intraperitoneal injection. RME procedure was performed on all animals. For this purpose, the springs were placed on the maxillary incisors of rats and activated for 5 days. After then, the springs were removed and replaced with short lengths of rectangular retaining wire for consolidation period of 15 days. At the end of the study, histomorphometric analysis was carried out to assess of new bone formation.Results: New bone formation was significantly greater in CAPE group than the control group (P<0.05. CAPE enhances new bone formation in midpalatal suture after RME.Conclusion: These results show that CAPE may decrease the time needed for retention. Keywords: rapid maxillary expansion, bone formation, caffeic acid phenethyl ester, midpalatal suture, histopathology

  11. Comparison of ectopic bone formation of embryonic stem cells and cord blood stem cells in vivo.

    Science.gov (United States)

    Handschel, Jörg; Naujoks, Christian; Langenbach, Fabian; Berr, Karin; Depprich, Rita A; Ommerborn, Michelle A; Kübler, Norbert R; Brinkmann, Matthias; Kögler, Gesine; Meyer, Ulrich

    2010-08-01

    Cell-based reconstruction therapies promise new therapeutic opportunities for bone regeneration. Unrestricted somatic stem cells (USSC) from cord blood and embryonic stem cells (ESCs) can be differentiated into osteogenic cells. The purpose of this in vivo study was to compare their ability to induce ectopic bone formation in vivo. Human USSCs and murine ESCs were cultured as both monolayer cultures and micromasses and seeded on insoluble collagenous bone matrix (ICBM). One week and 1, 2, and 3 months after implanting the constructs in immune-deficient rats, computed tomography scans were performed to detect any calcification. Subsequently, the implanted constructs were examined histologically. The radiological examination showed a steep increase in the mineralized bone-like tissue in the USSC groups. This increase can be considered as statistically significant compared to the basic value. Moreover, the volume and the calcium portion measured by computed tomography scans were about 10 times higher than in the ESC group. The volume of mineralization in the ESC group increased to a much smaller extent over the course of time, and the control group (ICBM without cells) showed almost no alterations during the study. The histological examinations parallel the radiological findings. Cord blood stem cells in combination with ICBM-induced ectopic bone formation in vivo are stronger than ESCs.

  12. The effect of heparan sulfate application on bone formation during distraction osteogenesis.

    Directory of Open Access Journals (Sweden)

    Marie Gdalevitch

    Full Text Available Bone morphogenetic proteins (BMPs are recognized for their ability to induce bone formation in vivo and in vitro. Their osteogenic and osteoinductive properties are tightly regulated by the secretion of specific BMP antagonists, which have been shown to physically bind and sometimes be blocked by the extracellular proteoglycan heparan sulphate side chains (from hereon referred to as HS. The purpose of this study was to investigate if local application of 5 µg of HS proteoglycan to a bone regenerate site in a mouse model of distraction osteogenesis (DO can accelerate bone healing and affect the expression of key members of the BMP signaling pathway. DO was performed on the right tibia of 115 adult male wild-type mice. At mid-distraction (day 11, half the group was injected locally with 5 µg of HS, while the other half was injected with saline. The mice were sacrificed at 2 time-points: mid-consolidation (34 days and full consolidation (51 days. The distracted tibial zone was then collected for analysis by μCT, radiology, biomechanical testing, immunohistochemistry, and histology. While μCT data showed no statistically significant difference in bone formation, the results of biomechanical testing in stiffness and ultimate force were significantly lower in the HS-injected bones at 51 days, compared to controls. Immunohistochemistry results also suggested a decrease in expression of several key members of the BMP signaling pathway at 34 days. Furthermore, wound dehiscence and infection rates were significantly elevated in the HS group compared to the controls, which resulted in a higher rate of euthanasia in the treatment group. Our findings demonstrate that exogenous application of 5 µg of HS in the distracted gap of a murine model had a negative impact on bone and wound healing.

  13. Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrin with and without beta tri calcium phosphate bone graft material

    Directory of Open Access Journals (Sweden)

    Walid Ahmed Abdullah

    2016-07-01

    Conclusion: The addition of β-TCP to PRF significantly improved bone regeneration in the first 2 weeks after surgery. Although the differences between results with and without the addition of β-TCP to PRF were statistically insignificant from weeks 3 to 6, it was nevertheless apparent that the group receiving the combination showed better results. We suggest a synergistic mechanism for this effect.

  14. Low-tmperature Heat Capacities and Standard Molar Enthalpy of Formation of 4-Nitrobenzyl Alcohol

    Institute of Scientific and Technical Information of China (English)

    MENG, Qingfen; TAN, Zhicheng; WANG, Xiaohuan; DONG, Yaping; LI, Wu; SHI, Quan

    2009-01-01

    Low-temperature heat capacities of 4-nitrobenzyl alcohol (4-NBA) have been measured by a high precision automated adiabatic calorimeter over the temperature range from 78 to 396 K. The melting temperature, the molar calculated in the range from 80 to 400 K at the interval of 5 K. The constant-volume energy and standard molar en- at T=298.15 K. The standard molar enthalpy of formation has been derived, ΔfHom(C7H7NO3, s)=-(206.49± namic quantities through a Hess thermochemical cycle.

  15. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation.

    Science.gov (United States)

    Cheng, Ying-Hua; Hooker, R Adam; Nguyen, Khanh; Gerard-O'Riley, Rita; Waning, David L; Chitteti, Brahmananda R; Meijome, Tomas E; Chua, Hui Lin; Plett, Artur P; Orschell, Christie M; Srour, Edward F; Mayo, Lindsey D; Pavalko, Fredrick M; Bruzzaniti, Angela; Kacena, Melissa A

    2013-06-01

    Preclinical and clinical evidence from megakaryocyte (MK)-related diseases suggests that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We, therefore, examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 levels in OBs were significantly enhanced primarily because of increased Pyk2 gene transcription. Additionally, p53 and Mdm2 were both decreased in OBs upon MK stimulation, which would be permissive of cell cycle entry. We then demonstrated that OB number was markedly reduced when Pyk2-/- OBs, as opposed to wild-type (WT) OBs, were co-cultured with MKs. We also determined that MKs inhibit OB differentiation in the presence and absence of Pyk2 expression. Finally, given that MK-replete spleen cells from GATA-1-deficient mice can robustly stimulate OB proliferation and bone formation in WT mice, we adoptively transferred spleen cells from these mice into Pyk2-/- recipient mice. Importantly, GATA-1-deficient spleen cells failed to stimulate an increase in bone formation in Pyk2-/- mice, suggesting in vivo the important role of Pyk2 in the MK-induced increase in bone volume. Further understanding of the signaling pathways involved in the MK-mediated enhancement of OB number and bone formation will facilitate the development of novel anabolic therapies to treat bone loss diseases.

  16. BMP-2 gene-fibronectin-apatite composite layer enhances bone formation

    Directory of Open Access Journals (Sweden)

    Sogo Yu

    2011-08-01

    Full Text Available Abstract Background Safe and efficient gene transfer systems are needed for tissue engineering. We have developed an apatite composite layer including the bone morphogenetic protein-2 (BMP-2 gene and fibronectin (FB, and we evaluated its ability to induce bone formation. Methods An apatite composite layer was evaluated to determine the efficiency of gene transfer to cells cultured on it. Cells were cultured on a composite layer including the BMP-2 gene and FB, and BMP-2 gene expression, BMP-2 protein concentrations, alkaline phosphatase (ALP activity, and osteocalcin (OC concentrations were measured. A bone defect on the cranium of rats was treated with hydroxyapatite (HAP-coated ceramic buttons with the apatite composite layer including the BMP-2 gene and FB (HAP-BMP-FB. The tissue concentration of BMP-2, bone formation, and the expression levels of the BMP-2, ALP, and OC genes were all quantified. Results The apatite composite layer provided more efficient gene transfer for the cultured cells than an apatite composite layer without FB. The BMP-2 concentration was approximately 100~600 pg/mL in the cell-culture medium. Culturing the cells on the apatite composite layer for 27 days increased ALP activity and OC concentrations. In animal experiments, the tissue concentrations of BMP-2 were over 100 pg/mg in the HAP-BMP-FB group and approximately 50 pg/mg in the control groups. Eight weeks later, bone formation was more enhanced in the HAP-BMP-FB group than in the control groups. In the tissues surrounding the HAP button, the gene expression levels of ALP and OC increased. Conclusion The BMP-2 gene-FB-apatite composite layer might be useful for bone engineering.

  17. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  18. Effects of epidermal growth factor on bone formation and resorption in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Marie, P.J.; Hott, M.; Perheentupa, J. (Institut National de la Sante et de la Recherche Medicale, Paris (France))

    1990-02-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double (3H)proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in the periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse.

  19. Spinal cord injury: effect of thyrocalcitonin on periarticular bone formation in three subjects

    Energy Technology Data Exchange (ETDEWEB)

    Naftchi, N.E.; Viau, A.T.; Sell, G.H.; Lowman, E.W.

    1979-06-01

    Sodium fluoride 18F scintimetry was performed before and after 1 month of salmon thyrocalcitonin treatment of 3 spinal cord injured patients with periarticular ossification of the hips and knees. Thyrocalcitonin therapy caused a marked diminution of 18F uptake in 1 patient with long-standing periarticular bone of both hips. Clinically, the range of motion in this subject increased by 25 degrees and there was a marked decrease in pain locally. The results were, however, not duplicated in the 2 patients with periarticular bone formation of short duration.

  20. Correlation between absence of bone remodeling compartment canopies, reversal phase arrest, and deficient bone formation in post-menopausal osteoporosis

    DEFF Research Database (Denmark)

    Levin Andersen, Thomas; Hauge, Ellen M; Rolighed, Lars;

    2014-01-01

    Bone remodeling compartments (BRCs) were recently recognized to be present in patients with primary hyperparathyroidism and critical for bone reconstruction in multiple myeloma and endogenous Cushing's syndrome. The BRCs are outlined by a cellular canopy separating the bone remodeling events...

  1. Low dose pioglitazone does not affect bone formation and resorption markers or bone mineral density in streptozocin-induced diabetic rats.

    Science.gov (United States)

    Tsirella, E; Mavrakanas, T; Rager, O; Tsartsalis, S; Kallaras, K; Kokkas, B; Mironidou-Tzouveleki, M

    2012-04-01

    Our study aims to investigate the effect of a low-dose pioglitazone regimen on bone mineral density and bone formation-resorption markers in control and diabetic rats. Wistar rats were divided into 4 groups: non-diabetic controls, control rats receiving pioglitazone (3 mg/kg), streptozocin-treated diabetic rats (50 mg/kg), diabetic rats treated with pioglitazone (3 mg/kg). The duration of the experiment was 8 weeks. Diabetes in our rats was associated with weight loss, increased urinary calcium excretion and reduced plasma osteocalcin levels. Diabetes mellitus did not affect bone mineral density. Pioglitazone administration had no impact on bone formation and resorption markers levels and did not modify bone mineral density in the four studied groups. Pioglitazone at the 3 mg/kg dose was not associated with significant skeletal complications in our experimental model.

  2. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.

    Science.gov (United States)

    Lambers, Floor M; Schulte, Friederike A; Kuhn, Gisela; Webster, Duncan J; Müller, Ralph

    2011-12-01

    It is known that mechanical loading leads to an increase in bone mass through a positive shift in the balance between bone formation and bone resorption. How the remodeling sites change over time as an effect of loading remains, however, to be clarified. The purpose of this paper was to investigate how bone formation and resorption sites are modulated by mechanical loading over time by using a new imaging technique that extracts three dimensional formation and resorption parameters from time-lapsed in vivo micro-computed tomography images. To induce load adaptation, the sixth caudal vertebra of C57BL/6 mice was cyclically loaded through pins in the adjacent vertebrae at either 8 N or 0 N (control) three times a week for 5 min (3000 cycles) over a total of 4 weeks. The results showed that mechanical loading significantly increased trabecular bone volume fraction by 20% (pbone formation rate was on average 23% greater (pbone resorption rate was on average 25% smaller (pbone formation rate for the 8 N group was mostly an effect of a significantly increased surface of bone formation sites (on average 16%, pbone formation packages was less affected (on average 5% greater, pbone resorption sites was significantly reduced (on average 15%, pbone increased significantly by 24% (pbone decreased significantly by 24% (ptail vertebrae adapt to mechanical loading by increasing the surface of formation sites and decreasing the surface of resorption sites, leading to an overall increase in bone strength. This new imaging technique will provide opportunities to investigate in vivo bone remodeling in the context of disease and treatment options, with the added value that both bone formation and bone resorption parameters can be nondestructively calculated over time.

  3. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2013-10-01

    Full Text Available Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a total of 200 subjects divided in two equal groups. They were selected from the patients with urinary tract stones, visiting urologist, and also normal people. The level of calcium, oxalate, and citrate in the urinary samples, parathyroid and calcium in the serum samples, and degrading activity of fecal lactobacillus strains of all the subjects were evaluated. Then, data analysis was carried out using SPSS-11.5, χ2 test, Fisher’s exact test, and analysis of variance. Results: The results revealed that the patients had higher urinary level of oxalate and calcium, as well as higher serum level of parathyroid hormone than normal people. In contrast, urinary level of citrate was higher in normal people. In addition, there was a significant difference between the oxalate-degrading capacities of lactobacillus isolated from the patients and their normal peers.Conclusion: Reduction of digestive lactobacillus-related oxalate-degrading capacity and increased serum level of parathyroid hormone can cause elevated urinary level of oxalate and calcium in people with kidney stone.

  4. Small intestine submucosa sponge for in vivo support of tissue-engineered bone formation in the presence of rat bone marrow stem cells.

    Science.gov (United States)

    Kim, Kyung Sook; Lee, Ju Young; Kang, Yun Mi; Kim, E Sle; Kim, Gyeong Hae; Rhee, Sang Dal; Cheon, Hyae Gyeong; Kim, Jae Ho; Min, Byoung-Hyun; Lee, Hai Bang; Kim, Moon Suk

    2010-02-01

    The aim of the current study was to visualize new bone formed in vivo on a small intestine submucosa (SIS) sponge used as a tissue-engineered scaffold for the repair of damaged bone. The SIS sponge provided a three-dimensional pore structure, and supported good attachment and viability of rat bone marrow stem cells (rBMSCs). To examine bone regeneration, we prepared full-thickness bilateral bone defects in the rat crania, and then treated the defects with an implanted SIS sponge or PGA mesh without or with rBMSCs, or left the defects untreated. Bone defects were evaluated by micro-CT and histologically after 2 and 4 weeks. Micro-CT demonstrated a trend toward a decrease in bone void in both the SIS sponge and SIS sponge/rBMSCs groups compared to the control and PGA mesh groups. At 4 weeks, bone formation in defects containing SIS sponge/rBMSCs was significantly greater than in all other groups. A histological analysis after 2 and 4 weeks of implantation showed localized collagen and osteocalcin deposition on SIS sponges and SIS sponges with rBMSCs. These in vivo results indicate that the SIS sponge, implanted at bone-removal defects, facilitated bone regeneration.

  5. Flat bones and sutures formation in the human cranial vault during prenatal development and infancy: A computational model.

    Science.gov (United States)

    Burgos-Flórez, F J; Gavilán-Alfonso, M E; Garzón-Alvarado, D A

    2016-03-21

    The processes of flat bones growth, sutures formation and interdigitation in the human calvaria are controlled by a complex interaction between genetic, biochemical and environmental factors that regulate bone formation and resorption during prenatal development and infancy. Despite previous experimental evidence accounting for the role of the main biochemical factors acting on these processes, the underlying mechanisms controlling them are still unknown. Therefore, we propose a mathematical model of the processes of flat bone and suture formation, taking into account several biological events. First, we model the growth of the flat bones and the formation of sutures and fontanels as a reaction diffusion system between two proteins: TGF-β2 and TGF-β3. The former is expressed by osteoblasts and allows adjacent mesenchymal cells differentiation on the bone fronts of each flat bone. The latter is expressed by mesenchymal cells at the sutures and inhibits their differentiation into osteoblasts at the bone fronts. Suture interdigitation is modelled using a system of reaction diffusion equations that develops spatio-temporal patterns of bone formation and resorption by means of two molecules (Wnt and Sclerostin) which control mesenchymal cells differentiation into osteoblasts at these sites. The results of the computer simulations predict flat bone growth from ossification centers, sutures and fontanels formation as well as bone formation and resorption events along the sutures, giving rise to interdigitated patterns. These stages were modelled and solved by the finite elements method. The simulation results agree with the morphological characteristics of calvarial bones and sutures throughout human prenatal development and infancy.

  6. Effects of soccer vs swim training on bone formation in sedentary middle-aged women

    DEFF Research Database (Denmark)

    Mohr, Magni; Helge, Eva Wulff; Petersen, Liljan F

    2015-01-01

    PURPOSE: The present study examined the effects of 15 weeks of soccer training and two different swimming training protocols on bone turnover in sedentary middle-aged women. METHODS: Eighty-three premenopausal mildly hypertensive women [age: 45 ± 6 (±SD) years, height: 165 ± 6 cm, weight: 80.0 ± 14.......1 kg, body fat: 42.6 ± 5.7 %, systolic blood pressure/diastolic blood pressure: 138 ± 6/85 ± 3 mmHg] were randomized into soccer training (SOC, n = 21), high-intensity intermittent swimming (HS, n = 21), moderate-intensity swimming (MS, n = 21) intervention groups, and a control group (C, n = 20...... turnover markers, with concomitant increases in leg bone mass. No changes in bone formation and resorption markers were seen after prolonged submaximal or high-intensity intermittent swimming training. Thus, soccer training appears to provide a powerful osteogenic stimulus in middle-aged women....

  7. Building Innovation Capacity: The Role of Human Capital Formation in Enterprises--A Review of the Literature. Occasional Paper

    Science.gov (United States)

    Smith, Andrew; Courvisanos, Jerry; Tuck, Jacqueline; McEachern, Steven

    2011-01-01

    This literature review examines the role of human capital formation in building innovative capacity in firms. The aim of the review is to develop a model of human capital development factors to be used as a basis for a larger research project where the factors that develop innovation capacity in enterprises will be investigated. The review finds…

  8. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  9. Cherubism Gene Sh3bp2 is Important for Optimal Bone Formation, Osteoblast Differentiation and Function

    Science.gov (United States)

    Mukherjee, Padma M.; Wang, Chiachien J.; Chen, I-Ping; Jafarov, Toghrul; Olsen, Bjorn R.; Ueki, Yasuyoshi; Reichenberger, Ernst J.

    2012-01-01

    Introduction Cherubism is a human genetic disorder that causes bilateral symmetrical enlargement of the maxilla and mandible in children. It is caused by mutations in SH3BP2. The exact pathogenesis of the disorder is an area of active research. Sh3bp2 knock-in mice were developed by introducing a Pro416Arg mutation (Pro418Arg in humans) in the mouse genome. The osteoclast phenotype of this mouse model was recently described. Methods We examined the bone phenotype of the cherubism mouse model, the role of Sh3bp2 during bone formation, osteoblast differentiation and osteoblast function. Results We observed delays in early postnatal development of homozygous Sh3bp2KI/KI mice. Sh3bp2KI/KI mice exhibit increased growth plate thickness and significantly decreased trabecular bone thickness and reduced bone mineral density. Histomorphometric and μ-CT analyses reveal bone loss in cranial and appendicular skeleton. Sh3bp2KI/KI mice also exhibit a significant decrease in osteoid formation that indicates a defect in osteoblast function. Calvarial osteoblast cell cultures exhibit a decrease in alkaline phosphatase expression and mineralization suggesting reduced differentiation potential. Gene expression of osteoblast differentiation markers like collagen type-I, alkaline phosphatase and osteocalcin are decreased in osteoblast cultures from Sh3bp2KI/KI mice. Conclusions These data suggest that Sh3bp2 function regulates bone homeostasis not only through osteoclast-specific effects but also through effects on osteoblast differentiation and function. PMID:20691350

  10. HISTOLOGICAL ASPECTS OF THE MEDULLARY BONE CORRELATED TO DIFFERENT STAGES OF THE EGG FORMATION IN HENS

    Directory of Open Access Journals (Sweden)

    ALINA GHISE

    2013-12-01

    Full Text Available The experiment was carried out on a batch formed by 10 laying hens, ISA Brown hybrid, at the first laying cycles, 50 weeks old, hold single in cages and fed with granulated forage. The hens were watched for 3 weeks in order to establish the moment of the oviposition and depending on that their slaughtering was set out so that the different stages of the egg formation could be observed. The hens were divided into 4 groups – I, II, III, IV- depending on the time elapsed from the last oviposition. Femur fragments have been drawn from the central zone of the diaphises and transformed in hematoxiline-eozine and alcian-blue stained preparations, the trichromic Mallory method and the Dorfmann-Epstein method for the emphasising of the alkaline phosphatasis. At the hens of the first group the presence of the medullary bone is shown and is characterised by an intense ossification process with compact bone structure, with well formed osseus trabeculae that occupy the medullar cavity. There is also present a rich content of acid mucopolyssacharide. The hens from the second group (II have a well formed medullary bone, with visible osseus trabeculae. From the histological point of view, the medullary bone of the hens from the third group (III is rarefied with large areolae, with collagen fibres that lack osein, having thus a characteristic aspect of massive decalcification. At the hens from the fourth group (IV the medullary bone shows synthesis processes and bone matrix forming, positive, intensive FAL activity, that proves the presence of active osteoblasts, i.e. bone remodelling processes.

  11. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment.

    Science.gov (United States)

    Hägi, Tobias T; Wu, Gang; Liu, Yuelian; Hunziker, Ernst B

    2010-05-01

    The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding material's lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.

  12. TGF-b/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation

    Institute of Scientific and Technical Information of China (English)

    Md Shaifur Rahman; Naznin Akhtar; Hossen Mohammad Jamil; Rajat Suvra Banik; Sikder M Asaduzzaman

    2015-01-01

    Transforming growth factor-beta (TGF-b)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-b/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-b (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-b/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-b/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and b-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-b/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.

  13. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    Science.gov (United States)

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (pBone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (pbone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  14. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Science.gov (United States)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  15. Modulation of Isoflavones on Bone-nodule Formation in Rat Calvaria Osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To observe the effects of two main isoflavones, daidzein and genistein on the bone-nodule formation in rat calvaria osteoblasts in vitro. Methods Osteoblasts obtained from newborn Sprague-dawley rat calvarias were cultured for several generations. The second generation cells were cultured in Minimum Essential Medium supplemented with ascorbic acid and Na-beta-glycerophosphate for several days, in the presence of daidzein and genistein, with or without the estrogen receptor antagonist ICI 182780. Number of nodules was counted at the end of the incubation period (day 20) by staining with Alizarin Red S calcium stain. The release of osteocalcin, as a marker of osteoblast activity, was also determined on day 7 and day 12 during the incubation period. Results Compared with the control, the numbers of nodules were both increased by incubation with daidzein and genistein. 17a-estradiol was used as a positive control and proved to be a more effective inducer of the increase in bone-nodules formation than daidzein and genistein. The release of osteocalcin into culture media was also increased in the presence of daidzein and genistein, as well as 17a-estradiol on day 7 and day 12 (day 12 were higher). The estrogen receptor antagonist ICI 182780 completely blocked the genistein- and 17a-estradiol-induced increase of nodule numbers and osteocalcin release in osteoblasts. However, the effects induced by daidzein could not be inhibited by ICI 182780. Conclusion These findings suggest that geinistein can stimulate bone-nodule formation and increase the release of osteocalcin in rat osteoblasts. The effects, like those induced by 17a-estradiol, are mediated by the estrogen receptor dependent pathway. Daidzein also can stimulate bone-nodule formation and increase the release of osteocalcin in rat osteoblasts, but it is not, at least not merely, mediated by the estrogen receptor dependent pathway.

  16. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  17. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Science.gov (United States)

    Li, Zhensheng; Yang, Xiaozhan; Guo, Hongfeng; Yang, Xiaochao; Sun, Lili; Dong, Shiwu

    2012-09-01

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO2 porous ceramics were also prepared as a control. After sintered at 1,000 °C with a pressureless sintering method, the particle size of the pure TiO2 and TiO2/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 μm. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO2/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO2 ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO2/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO2 ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  18. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects.

    Science.gov (United States)

    Hwang, Hee-Don; Lee, Jung-Tae; Koh, Jeong-Tae; Jung, Hong-Moon; Lee, Heon-Jin; Kwon, Tae-Geon

    2015-07-01

    Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways

  19. Plasma rich in growth factors and bone formation: a radiological and histomorphometric study in New Zealand rabbits

    Directory of Open Access Journals (Sweden)

    Francisco Molina-Miñano

    2009-09-01

    Full Text Available A radiographic and histomorphometric study was conducted on the influence of autologous plasma rich in growth factors (PRGF upon bone healing in surgically created defects in rabbits. Radiographically, bone regeneration was significantly greater with the use of PRGF after one month (p = 0.005, though no differences were recorded after the second month. In the histomorphometric analysis one month after surgery, the defects filled with autologous bone plus PRGF showed a greater percentage of neoformed bone (35.01 ± 5.31 than the control defects (22.90 ± 12.23, though the differences were not significant. Two months after surgery, the defects filled with autologous bone showed greater regeneration (46.04 ± 10.36% than the control defects (30.59 ± 5.69%, though the differences were not significant. The application of PRGF in the bone defects produced in New Zealand rabbits exerted a limited effect on local bone formation.

  20. Plasma rich in growth factors and bone formation: a radiological and histomorphometric study in New Zealand rabbits.

    Science.gov (United States)

    Molina-Miñano, Francisco; López-Jornet, Pía; Camacho-Alonso, Fabio; Vicente-Ortega, Vicente

    2009-01-01

    A radiographic and histomorphometric study was conducted on the influence of autologous plasma rich in growth factors (PRGF) upon bone healing in surgically created defects in rabbits. Radiographically, bone regeneration was significantly greater with the use of PRGF after one month (p = 0.005), though no differences were recorded after the second month. In the histomorphometric analysis one month after surgery, the defects filled with autologous bone plus PRGF showed a greater percentage of neoformed bone (35.01 +/- 5.31) than the control defects (22.90 +/- 12.23), though the differences were not significant. Two months after surgery, the defects filled with autologous bone showed greater regeneration (46.04 +/- 10.36%) than the control defects (30.59 +/- 5.69%), though the differences were not significant. The application of PRGF in the bone defects produced in New Zealand rabbits exerted a limited effect on local bone formation.

  1. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.

    Science.gov (United States)

    Yan, Haoran; Liu, Xia; Zhu, Minghua; Luo, Guilin; Sun, Tao; Peng, Qiang; Zeng, Yi; Chen, Taijun; Wang, Yingying; Liu, Keliang; Feng, Bo; Weng, Jie; Wang, Jianxin

    2016-01-01

    In this study, a multilayer coating technology would be adopted to prepare a porous composite scaffold and the growth factor release and ultrasound techniques were introduced into bone tissue engineering to finally solve the problems of vascularization and bone formation in the scaffold whilst the designed multilayer composite with gradient degradation characteristics in the space was used to match the new bone growth process better. The results of animal experiments showed that the use of low intensity pulsed ultrasound (LIPUS) combined with growth factors demonstrated excellent capabilities and advantages in both vascularization and new bone formation in bone tissue engineering. The degradation of the used scaffold materials could match new bone formation very well. The results also showed that only RGD-promoted cell adhesion was insufficient to satisfy the needs of new bone formation while growth factors and LIPUS stimulation were the key factors in new bone formation.

  2. Glycation of human cortical and cancellous bone captures differences in the formation of Maillard reaction products between glucose and ribose.

    Science.gov (United States)

    Sroga, Grażyna E; Siddula, Alankrita; Vashishth, Deepak

    2015-01-01

    To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancellous than cortical bone dissected from all tested donors (young, middle-age and elderly men and women). More efficient glycation of bone matrix proteins in cancellous bone most likely depended on the higher porosity of this tissue, which facilitated better accessibility of the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of older cortical bone could result from aging-related increase in porosity caused by the loss of mineral content. In addition, more pronounced glycation in vivo would be driven by elevated oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly between glucosylation and ribosylation. Ribosylation generated very high levels of PEN (approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro glycation of bone using glucose leads to the formation of lower levels of AGEs including PEN, whereas ribosylation appears to support a pathway toward PEN formation. Our studies may help to understand differences in the progression of bone pathologies related to protein glycation by different sugars, and raise awareness for excessive sugar supplementation in food and

  3. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats.

    Science.gov (United States)

    Li, Borui; Feng, Zhenhua; Tang, Ming; Xu, Zhilin; Fu, Songnian; Wu, Qiong; Deng, Lei; Tong, Weijun; Liu, Shuang; Shum, Perry Ping

    2015-05-01

    Towards the next generation optical access network supporting large capacity data transmission to enormous number of users covering a wider area, we proposed a hybrid wavelength-space division multiplexing (WSDM) optical access network architecture utilizing multicore fibers with advanced modulation formats. As a proof of concept, we experimentally demonstrated a WSDM optical access network with duplex transmission using our developed and fabricated multicore (7-core) fibers with 58.7km distance. As a cost-effective modulation scheme for access network, the optical OFDM-QPSK signal has been intensity modulated on the downstream transmission in the optical line terminal (OLT) and it was directly detected in the optical network unit (ONU) after MCF transmission. 10 wavelengths with 25GHz channel spacing from an optical comb generator are employed and each wavelength is loaded with 5Gb/s OFDM-QPSK signal. After amplification, power splitting, and fan-in multiplexer, 10-wavelength downstream signal was injected into six outer layer cores simultaneously and the aggregation downstream capacity reaches 300 Gb/s. -16 dBm sensitivity has been achieved for 3.8 × 10-3 bit error ratio (BER) with 7% Forward Error Correction (FEC) limit for all wavelengths in every core. Upstream signal from ONU side has also been generated and the bidirectional transmission in the same core causes negligible performance degradation to the downstream signal. As a universal platform for wired/wireless data access, our proposed architecture provides additional dimension for high speed mobile signal transmission and we hence demonstrated an upstream delivery of 20Gb/s per wavelength with QPSK modulation formats using the inner core of MCF emulating a mobile backhaul service. The IQ modulated data was coherently detected in the OLT side. -19 dBm sensitivity has been achieved under the FEC limit and more than 18 dB power budget is guaranteed.

  4. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Lin Wan

    Full Text Available Erythropoietin (EPO/erythropoietin receptor (EPOR signaling is involved in the development and regeneration of several non-hematopoietic tissues including the skeleton. EPO is identified as a downstream target of the hypoxia inducible factor-α (HIF-α pathway. It is shown that EPO exerts a positive role in bone repair, however, the underlying cellular and molecular mechanisms remain unclear. In the present study we show that EPO and EPOR are expressed in the proliferating, pre-hypertrophic and hypertrophic zone of the developing mouse growth plates as well as in the cartilaginous callus of the healing bone. The proliferation rate of chondrocytes is increased under EPO treatment, while this effect is decreased following siRNA mediated knockdown of EPOR in chondrocytes. EPO treatment increases biosynthesis of proteoglycan, accompanied by up-regulation of chondrogenic marker genes including SOX9, SOX5, SOX6, collagen type 2, and aggrecan. The effects are inhibited by knockdown of EPOR. Blockage of the endogenous EPO in chondrocytes also impaired the chondrogenic differentiation. In addition, EPO promotes metatarsal endothelial sprouting in vitro. This coincides with the in vivo data that local delivery of EPO increases vascularity at the mid-stage of bone healing (day 14. In a mouse femoral fracture model, EPO promotes cartilaginous callus formation at days 7 and 14, and enhances bone healing at day 28 indexed by improved X-ray score and micro-CT analysis of microstructure of new bone regenerates, which results in improved biomechanical properties. Our results indicate that EPO enhances chondrogenic and angiogenic responses during bone repair. EPO's function on chondrocyte proliferation and differentiation is at least partially mediated by its receptor EPOR. EPO may serve as a therapeutic agent to facilitate skeletal regeneration.

  5. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis.

    Science.gov (United States)

    Wan, Lin; Zhang, Fengjie; He, Qiling; Tsang, Wing Pui; Lu, Li; Li, Qingnan; Wu, Zhihong; Qiu, Guixing; Zhou, Guangqian; Wan, Chao

    2014-01-01

    Erythropoietin (EPO)/erythropoietin receptor (EPOR) signaling is involved in the development and regeneration of several non-hematopoietic tissues including the skeleton. EPO is identified as a downstream target of the hypoxia inducible factor-α (HIF-α) pathway. It is shown that EPO exerts a positive role in bone repair, however, the underlying cellular and molecular mechanisms remain unclear. In the present study we show that EPO and EPOR are expressed in the proliferating, pre-hypertrophic and hypertrophic zone of the developing mouse growth plates as well as in the cartilaginous callus of the healing bone. The proliferation rate of chondrocytes is increased under EPO treatment, while this effect is decreased following siRNA mediated knockdown of EPOR in chondrocytes. EPO treatment increases biosynthesis of proteoglycan, accompanied by up-regulation of chondrogenic marker genes including SOX9, SOX5, SOX6, collagen type 2, and aggrecan. The effects are inhibited by knockdown of EPOR. Blockage of the endogenous EPO in chondrocytes also impaired the chondrogenic differentiation. In addition, EPO promotes metatarsal endothelial sprouting in vitro. This coincides with the in vivo data that local delivery of EPO increases vascularity at the mid-stage of bone healing (day 14). In a mouse femoral fracture model, EPO promotes cartilaginous callus formation at days 7 and 14, and enhances bone healing at day 28 indexed by improved X-ray score and micro-CT analysis of microstructure of new bone regenerates, which results in improved biomechanical properties. Our results indicate that EPO enhances chondrogenic and angiogenic responses during bone repair. EPO's function on chondrocyte proliferation and differentiation is at least partially mediated by its receptor EPOR. EPO may serve as a therapeutic agent to facilitate skeletal regeneration.

  6. A novel mouse model for the study of the inhibitory effects of chronic ethanol exposure on direct bone formation

    Science.gov (United States)

    Excessive alcohol consumption has been reported to interfere with human bone homeostasis and repair in multiple ways. Previous studies have demonstrated that chronic ethanol exposure in the rat via an intragastric dietary delivery system inhibits direct bone formation during distraction osteogenesis...

  7. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

    Institute of Scientific and Technical Information of China (English)

    Audrey Rakian; Wu-Chen Yang; Jelica Gluhak-Heinrich; Yong Cui; Marie A Harris; Demitri Villarreal; Jerry Q Feng; Mary MacDougall; Stephen E Harris

    2013-01-01

    Formation of the periodontium begins following onset of tooth-root formation in a coordinated manner after birth. Dental follicle progenitor cells are thought to form the cementum, alveolar bone and Sharpey’s fibers of the periodontal ligament (PDL). However, little is known about the regulatory morphogens that control differentiation and function of these progenitor cells, as well as the progenitor cells involved in crown and root formation. We investigated the role of bone morphogenetic protein-2 (Bmp2) in these processes by the conditional removal of the Bmp2 gene using the Sp7-Cre-EGFP mouse model. Sp7-Cre-EGFP first becomes active at E18 in the first molar, with robust Cre activity at postnatal day 0 (P0), followed by Cre activity in the second molar, which occurs after P0. There is robust Cre activity in the periodontium and third molars by 2 weeks of age. When the Bmp2 gene is removed from Sp71 (Osterix1) cells, major defects are noted in root, cellular cementum and periodontium formation. First, there are major cell autonomous defects in root-odontoblast terminal differentiation. Second, there are major alterations in formation of the PDLs and cellular cementum, correlated with decreased nuclear factor IC (Nfic), periostin and a-SMA1 cells. Third, there is a failure to produce vascular endothelial growth factor A (VEGF-A) in the periodontium and the pulp leading to decreased formation of the microvascular and associated candidate stem cells in the Bmp2-cKOSp7-Cre-EGFP. Fourth, ameloblast function and enamel formation are indirectly altered in the Bmp2-cKOSp7-Cre-EGFP. These data demonstrate that the Bmp2 gene has complex roles in postnatal tooth development and periodontium formation.

  8. Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal.

    Science.gov (United States)

    Wergedal, Jon E; Veskovic, Katarina; Hellan, Minea; Nyght, Christine; Balemans, Wendy; Libanati, Cesar; Vanhoenacker, Filip M; Tan, Johan; Baylink, David J; Van Hul, Wim

    2003-12-01

    Van Buchem disease is an autosomal recessive disease characterized by overgrowth of the skeleton. In a group of Dutch patients the disease is thought to be due to a 52-kb deletion that results in decreased expression of the SOST gene. To further characterize the disease, the morphology of the metacarpals of six adult subjects and two juveniles with Van Buchem disease were measured on hand x-rays along with nine normal adults and nine adult carriers of the disease. Serum bone formation markers, alkaline phosphatase, type I procollagen peptide, and osteocalcin, and the urinary bone resorption marker, cross-linked N-telopeptide, were determined. Van Buchem patients had increased metacarpal outer diameter, inner diameter, cortical thickness, and bone mineral density. Calculated bone volume and derived polar moment of inertia were markedly elevated (elevations of 158 +/- 33% and 497 +/- 95%, respectively) consistent with increased bone strength. Serum procollagen peptide and osteocalcin were significantly higher in Van Buchem patients. Urinary cross-linked N-telopeptide was significantly elevated in Van Buchem patients. None of these changes was found in Van Buchem carriers. These observations indicate that decreased expression of the SOST gene can lead to increased bone formation and to stronger bones.

  9. Kartogenin induces cartilage-like tissue formation in tendon-bone junction

    Institute of Scientific and Technical Information of China (English)

    Jianying Zhang; James H-C Wang

    2014-01-01

    Tendon-bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs.

  10. Enhanced Bone Morphogenetic Protein-2-Induced Ectopic and Orthotopic Bone Formation by Intermittent Parathyroid Hormone (1-34) Administration

    NARCIS (Netherlands)

    Kempen, Diederik H. R.; Lu, Lichun; Hefferan, Theresa E.; Creemers, Laura B.; Heijink, Andras; Maran, Avudaiappan; Dhert, Wouter J. A.; Yaszemski, Michael J.

    2010-01-01

    Bone morphogenetic proteins (BMPs) play a central role in local bone regeneration strategies, whereas the anabolic features of parathyroid hormone (PTH) are particularly appealing for the systemic treatment of generalized bone loss. The aim of the current study was to investigate whether local BMP-2

  11. THE RAILROAD CAPACITY CRISIS: After Cutting to the Bone and More, Trains Are Back

    Directory of Open Access Journals (Sweden)

    Richard D. Stone

    2008-01-01

    Full Text Available During the Era of Railroad building (primarily the last half of the 19th century, it was far more profitable to lay track than to operate railroads due to the subsidiesfrom various levels ofgovernment and the competition between cities to be located on as many lines as possible, and the overcharging of the railroads by the construction companies. Railroads compensated for this glut by cross-subsidizing the unprofitable branch lines with revenues from the main lines. But as competition from other modes took hold, this was increasingly difficult to do. Therefore, by the early 20th century, railroads began to slowly shed some of the lightly trafficked lines. Regulatory changes in the 1980s made abandonment easier, and wholesale discarding of lines, including former mainlines, became common. But by the turn of the century,foreign imports put a greater demand on rail transportation, and lack of capacity caused many of the remaining lines to become very congested, in turn, causing extensive delays.

  12. Statistical characterisation and stochastic parameterisation of sedimentary geological formations on their reaction capacity for sustainable groundwater quality management

    OpenAIRE

    Griffioen, J.; Vermooten, S.; Keijzer, T.; Bakr, M; Valstar, J.

    2012-01-01

    The fate of contaminants in groundwater aquifers is determined by the buffering capacity of those aquifers together with the composition of inflowing groundwater. A nationwide characterisation of the environmental geochemistry of the shallow subsurface (down to 30 m below surface) has been started in the Netherlands. This covers: 1. the reaction capacity of sediments as buffer for contamination, and 2. typical elemental composition of geological formations and the association between trace el...

  13. 23(S),25(R)-1,25-dihydroxyvitamin D3-26,23-lactone stimulates murine bone formation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shima, M.; Tanaka, H.; Norman, A.W.; Yamaoka, K.; Yoshikawa, H.; Takaoka, K.; Ishizuka, S.; Seino, Y. (Osaka Univ. School of Medicine (Japan))

    1990-02-01

    23(S),25(R)-1,25-Dihydroxyvitamin D3-26,23-lactone (1,25-lactone) has been shown to have unique actions different from those of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). In contrast to 1,25-(OH)2D3, 1,25-lactone causes a significant reduction in the serum Ca2+ level, stimulates collagen production in an osteoblastic cell line, and inhibits bone resorption induced by 1,25-(OH)2D3. A possible effect of 1,25-lactone on bone formation was examined in experiments on ectopic bone formation using a bone-inducing factor derived from Dunn osteosarcomas. 1,25-Lactone, a metabolite of 1,25-(OH)2D3, increased (3H)proline uptake at the stage of chondrogenesis and {sup 85}Sr uptake during bone formation. Significantly enlarged bone was also induced by this compound 3 weeks after implantation. These results suggest that the 1,25-lactone may be able to stimulate bone formation under in vivo conditions.

  14. Early Effects of Single and Low-Frequency Repeated Administration of Teriparatide, hPTH(1-34), on Bone Formation and Resorption in Ovariectomized Rats.

    Science.gov (United States)

    Isogai, Yukihiro; Takao-Kawabata, Ryoko; Takakura, Aya; Sugimoto, Emika; Nakazono, Osamu; Ikegaki, Ichiro; Kuriyama, Hiroshi; Ishizuya, Toshinori

    2015-10-01

    Intermittent repeated administration of teriparatide (TPTD) has potent anabolic effects on bones in vivo. However, TPTD has both anabolic and catabolic effects on osteoblasts in vitro, and the mechanisms underlying its promotion of bone formation are unclear. This study aimed to elucidate the time-dependent changes in bone formation and resorption by examining changes in bone turnover markers and bone tissue over time after TPTD administration with low frequency in ovariectomized rats. The amount of serum osteocalcin, a bone formation marker, was transiently reduced after single TPTD administration, but increased thereafter, remaining increased for several days. In contrast, the amount of excreted urinary C-telopeptide, a bone resorption marker, increased transiently after single TPTD administration, and subsequently returned to control levels on the day after administration. Tissue histomorphometric analyses conducted 8 h after administration showed no changes in bone formation or bone resorption parameters. However, at 48 h, the bone formation parameters OS/BS and Ob.S/BS were increased, while the bone resorption parameter ES/BS was decreased. After repeated TPTD administration for 4 weeks, OS/BS, Ob.S/BS, and MS/BS increased, while Oc.S/BS decreased. Serum osteocalcin at 4 weeks after repeated administration was significantly correlated with OS/BS and Ob.S/BS. These present findings indicate that TPTD has dual, time-dependent effects on bone resorption and bone formation. Immediately after single administration, there was transient promotion of bone resorption and suppression of bone formation. However, sustained stimulation of bone formation occurred thereafter. Furthermore, these data suggest that this sustained bone formation led to anabolic effects with repeated TPTD administration.

  15. Exploring pre-service science teachers' pedagogical capacity for formative assessment through analyses of student answers

    Science.gov (United States)

    Aydeniz, Mehmet; Dogan, Alev

    2016-05-01

    Background: There has been an increasing emphasis on empowering pre-service and in-service science teachers to attend student reasoning and use formative assessments to guide student learning in recent years. Purpose: The purpose of this study was to explore pre-service science teachers' pedagogical capacity for formative assessment. Sample: This study took place in Turkey. The participants include 53 pre-service science teachers in their final year of schooling. All but two of the participants are female. Design and methods: We used a mixed-methods methodology in pursing this inquiry. Participants analyzed 28 responses to seven two-tiered questions given by four students of different ability levels. We explored their ability to identify the strengths and weaknesses in students' answers. We paid particular attention to the things that the pre-service science teachers noticed in students' explanations, the types of inferences they made about students' conceptual understanding, and the affordances of pedagogical decisions they made. Results: The results show that the majority of participants made an evaluative judgment (i.e. the answer is correct or incorrect) in their analyses of students' answers. Similarly, the majority of the participants recognized the type of mistake that the students made. However, they failed to successfully elaborate on fallacies, limitations, or strengths in student reasoning. We also asked the participants to make pedagogical decisions related to what needs to be done next in order to help the students to achieve academic objectives. Results show that 8% of the recommended instructional strategies were of no affordance, 64% of low-affordance, and 28% were of high affordance in terms of helping students achieve the academic objectives. Conclusion: If our goal is to improve pre-service science teachers' noticing skills, and the affordance of feedback that they provide, engaging them in activities that asks them to attend to students' ideas

  16. A novel therapeutic approach with Caviunin-based isoflavonoid that en routes bone marrow cells to bone formation via BMP2/Wnt-β-catenin signaling.

    Science.gov (United States)

    Kushwaha, P; Khedgikar, V; Gautam, J; Dixit, P; Chillara, R; Verma, A; Thakur, R; Mishra, D P; Singh, D; Maurya, R; Chattopadhyay, N; Mishra, P R; Trivedi, R

    2014-09-18

    Recently, we reported that extract of Dalbergia sissoo made from leaves and pods have antiresorptive and bone-forming effects. The positive skeletal effect attributed because of active molecules present in the extract of Dalbergia sissoo. Caviunin 7-O-[β-D-apiofuranosyl-(1-6)-β-D-glucopyranoside] (CAFG), a novel isoflavonoid show higher percentage present in the extract. Here, we show the osteogenic potential of CAFG as an alternative for anabolic therapy for the treatment of osteoporosis by stimulating bone morphogenetic protein 2 (BMP2) and Wnt/β-catenin mechanism. CAFG supplementation improved trabecular micro-architecture of the long bones, increased biomechanical strength parameters of the vertebra and femur and decreased bone turnover markers better than genistein. Oral administration of CAFG to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased the expression of osteogenic genes in femur and show new bone formation without uterine hyperplasia. CAFG increased mRNA expression of osteoprotegerin in bone and inhibited osteoclast activation by inhibiting the expression of skeletal osteoclastogenic genes. CAFG is also an effective accelerant for chondrogenesis and has stimulatory effect on the repair of cortical bone after drill-hole injury at the tissue, cell and gene level in mouse femur. At cellular levels, CAFG stimulated osteoblast proliferation, survival and differentiation. Signal transduction inhibitors in osteoblast demonstrated involvement of p-38 mitogen-activated protein kinase pathway stimulated by BMP2 to initiate Wnt/β-catenin signaling to reduce phosphorylation of GSK3-β and subsequent nuclear accumulation of β-catenin. Osteogenic effects were abrogated by Dkk1, Wnt-receptor blocker and FH535, inhibitor of TCF-complex by reduction in β-catenin levels. CAFG modulated MSC responsiveness to BMP2, which promoted osteoblast differentiation via Wnt/β-catenin mechanism. CAFG at 1 mg/kg(/)day dose in

  17. Redundancy and molecular evolution: the rapid Induction of bone formation by the mammalian transforming growth factor-β3 isoform

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2016-09-01

    Full Text Available The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin, a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins’ genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in Papio ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of Bone

  18. Antioxidant capacity index based on gold nanoparticles formation. Application to extra virgin olive oil samples.

    Science.gov (United States)

    Della Pelle, Flavio; Vilela, Diana; González, María Cristina; Lo Sterzo, Claudio; Compagnone, Darío; Del Carlo, Michele; Escarpa, Alberto

    2015-07-01

    A simple gold nanoparticles (AuNPs) based colorimetric assay for the antioxidant activity determination has been developed. The AuNP formation is mediated by extra virgin olive oil (EVOO's) endogenous polyphenols; the reaction is described by a sigmoidal curve. The ratio KAuNPs/Xc(50) (slope of the linear part of the sigmoid/concentration at half value of the absorbance) was found to be the optimal parameter to report the antioxidant capacity with respect to the single KAuNPs or Xc(50) values. The obtained data demonstrated that the compounds with ortho-diphenols functionality are most active in reducing gold (III) to gold (0). Thus, intermediate activity was found for gallic acid, while tyrosol (mono-phenols) had a significant lower activity than the others antioxidant compounds (at least one order of magnitude). In the analysis of olive oil samples, a significant correlation among classical methods used to determine antioxidant activity and the proposed parameter was found with R values in the 0.96-0.97 range.

  19. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  20. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Science.gov (United States)

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies. PMID:27579159

  1. Biocompatibility and Bone Formation of Flexible, Cotton Wool-like PLGA/Calcium Phosphate Nanocomposites in Sheep

    Science.gov (United States)

    Schneider, Oliver D; Mohn, Dirk; Fuhrer, Roland; Klein, Karina; Kämpf, Käthi; Nuss, Katja M.R; Sidler, Michèle; Zlinszky, Katalin; von Rechenberg, Brigitte; Stark, Wendelin J

    2011-01-01

    Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects. PMID:21566736

  2. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation.

    Science.gov (United States)

    An, Jing; Yang, Hao; Zhang, Qian; Liu, Cuicui; Zhao, Jingjing; Zhang, Lingling; Chen, Bo

    2016-02-15

    Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis.

  3. Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available Bone morphogenetic protein-2 (BMP-2 is considered a promising adjuvant for the treatment of skeletal non-union and spinal fusion. However, BMP-2 delivery in a conventional collagen scaffold necessitates a high dose to achieve an efficacious outcome. To lower its effective dose, we precomplexed BMP-2 with the glycosaminoglycans (GAGs dermatan sulfate (DS or heparin (HP, prior to loading it into a hyaluronic acid (HA hydrogel. In vitro release studies showed that BMP-2 precomplexed with DS or HP had a prolonged delivery compared to without GAG. BMP-2-DS complexes achieved a slightly faster release in the first 24 h than HP; however, both delivered BMP-2 for an equal duration. Analysis of the kinetic interaction between BMP-2 and DS or HP showed that HP had approximately 10 times higher affinity for BMP-2 than DS, yet it equally stabilized the protein, as determined by alkaline phosphatase activity. Ectopic bone formation assays at subcutaneous sites in rats demonstrated that HA hydrogel-delivered BMP-2 precomplexed with GAG induced twice the volume of bone compared with BMP-2 delivered uncomplexed to GAG.

  4. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo.

    Science.gov (United States)

    Eick, J David; Barragan-Adjemian, Cielo; Rosser, Jennifer; Melander, Jennifer R; Dusevich, Vladimir; Weiler, Rachel A; Miller, Bradley D; Kilway, Kathleen V; Dallas, Mark R; Bi, Lianxing; Nalvarte, Elisabet L; Bonewald, Lynda F

    2012-04-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.8-2.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer.

  5. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo

    Science.gov (United States)

    Eick, J. David; Barragan-Adjemian, Cielo; Rosser, Jennifer; Melander, Jennifer R.; Dusevich, Vladimir; Weiler, Rachel A.; Miller, Bradley D.; Kilway, Kathleen V.; Dallas, Mark R.; Bi, Lianxing; Nalvarte, Elisabet L.; Bonewald, Lynda F.

    2015-01-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMix) resin (and a standard polymerized bisGMA/TEGDMA methacrylate (BT) resin and compared to culture wells without resins as control. A significant cytotoxic effect was observed with the BT resin resulting in no cell growth, whereas in contrast, SilMix resin had no toxic effects on MLO-A5 cell proliferation, differentiation, nor mineralization. The cells cultured with SilMix produced increasing amounts of alkaline phosphatase (1.8-fold) compared to control cultures. Compared to control cultures, an actual enhancement of mineralization was observed in the silorane resin-containing cultures at days 10 and 11 as determined by von Kossa (1.8–2.0 fold increase) and Alizarin red staining (1.8-fold increase). A normal bone calcium/phosphate atomic ratio was observed by elemental analysis along with normal collagen formation. When used in vivo to stabilize osteotomies, no inflammatory response was observed, and the bone continued to heal. In conclusion, the silorane resin, SilMix, was shown to not only be non cytototoxic, but actually supported bone cell function. Therefore, this resin has significant potential for the development of a nontoxic bone cement or bone stabilizer. PMID:22278990

  6. Ethanolic extract of Actaea racemosa (black cohosh) potentiates bone nodule formation in MC3T3-E1 preosteoblast cells.

    Science.gov (United States)

    Chan, B Y; Lau, K S; Jiang, B; Kennelly, E J; Kronenberg, F; Kung, A W C

    2008-09-01

    Aceaea racemosa (formerly Cimicifuga racemosa, black cohosh, AR) extracts have been widely used as an alternative to hormonal replacement therapy for menopausal symptoms. Recent evidences suggest AR extracts are also effective in protecting against postmenopausal bone loss. To determine whether AR has any direct anabolic effect on osteoblasts, we investigated the ethanolic extract of AR on bone nodule formation in mouse MC3T3-E1 preosteoblast cells. AR did not stimulate osteoblast proliferation. Rather, at high doses of 1000 ng/mL for 48 h, AR suppressed (7.2+/-0.9% vs. control) osteoblast proliferation. At 500 ng/mL, a significant increase in bone nodule formation was seen with Von Kossa staining. Using quantitative PCR analysis, AR was shown to enhance the gene expression of runx2 and osteocalcin. Co-treatment with ICI 182,780, the selective estrogen receptor antagonist, abolished the stimulatory effect of AR on runx2 and osteocalcin gene induction, as well as on bone nodule formation in MC3T3-E1 cells. This is a first report of the direct effect of AR on enhancement of bone nodule formation in osteoblasts, and this action was mediated via an estrogen receptor-dependent mechanism. The results provide a scientific rationale at the molecular level for the claim that AR can offer effective prevention of postmenopausal bone loss.

  7. The effect of bone injury on extracellular matrix vesicle proliferation and mineral formation.

    Science.gov (United States)

    Sela, J; Schwartz, Z; Amir, D; Swain, L D; Boyan, B D

    1992-05-01

    Removal of tibial bone marrow in rats is followed by primary bone formation, resorption and marrow restitution. The first week of healing is characterized by partially calcified trabeculae. After 2 weeks, a higher degree of calcification and partial resorption are observed. The third week is characterized by massive resorption of the trabeculae, which are replaced in the fourth week by new bone marrow tissue. This model was used to study primary calcification. Transmission electron micrographs of the young bone revealed osteoblasts, matrix vesicles and calcified fronts. The different vesicular types were defined as 'empty', 'amorphous', 'crystal', and 'rupture'. The vesicles were studied on days 3, 6, 8, 12, 14, 18, 21, 23 and 28 after injury. The mean diameters of most vesicles ranged between 100.3 and 121.9 nm, and their mean distance from the calcified front was less than 976.6 nm. Vesicular density, calculated as number per 10 m2, increased on the eighth day and decreased from the fourteenth day onwards. Highest diameter values were recorded on the sixth day, and decreased onward. Vesicular distance from the calcified front decreased continuously. Distribution of vesicle number, diameter, and distance in each class showed that numbers of empty and amorphous vesicles decreased and of crystal and rupture increased throughout the experiment. Distances from the calcified front and vesicular diameters varied as follows: 'rupture', 'crystal', amorphous', and 'empty', the 'rupture' type being the closest to the front and of the largest diameter. The results confirm the hypothesis that the cell is responsible for the secretion of electron lucent vesicles that accumulate Ca and Pi to form amorphous calcium phosphate complexes that convert to hydroxyapatite. Crystal growth is followed by membrane rupture.

  8. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Science.gov (United States)

    Sirivisoot, Sirinrath; Webster, Thomas J.

    2008-07-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  9. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Webster, Thomas J [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: Thomas_Webster@Brown.edu

    2008-07-23

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  10. Ethane 1-hydroxy-1, 1-diphosphonate (EHDP) counteracts the inhibitory effect of uranyl nitrate on bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Ubios, A.M.; Guglielmotti, M.B. (Univ. of Buenos Aires (Argentina)); Cabrini, R.L. (Univ. of Buenos Aires (Argentina) National Atomic Energy Commission, Buenos Aires (Argentina))

    The beneficial effect of ethane 1-hydroxy-1, 1-diphosphonate (EHDP) in restoring the inhibition of bone formation in cases of acute uranium intoxication is presented. Bone formation was studied histomorphometrically in a model of alveolar bone healing. After tooth extraction, 40 rats were divided into 4 groups that received (1) no further treatment, (2) 10 daily intraperitoneal injections of 7.5 mg/kg of body weight of EHDP, (3) an intraperitoneal injection of 2.0 mg/kg of body weight of uranyl nitrate, and (4) the same treatment as was provided rats in groups 2 and 3. The results showed that the healing of bone did not occur in exposed animals, whereas healing in EHDP-treated exposed animals did not differ from that of nonexposed controls. This effect might result from a blocking and/or competitive action of EHDP and/or the stimulation that EHDP elicits at the doses and in the administration period studied.

  11. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne K.; Apeldoorn, van Aart A.; Jukes, Jojanneke M.; Englund, Mikael C.O.; Hyllner, Johan; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  12. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep.

    Science.gov (United States)

    Ding, Ming; Andreasen, Christina M; Dencker, Mads L; Jensen, Anders E; Theilgaard, Naseem; Overgaard, Søren

    2015-04-01

    Cylindrical critical size defects were created at the distal femoral condyles bilaterally of eight female adult sheep. Titanium implants with 2-mm concentric gaps were inserted and the gaps were filled with one of the four materials: allograft; a synthetic 15-amino acid cell-binding peptide coated hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could be observed in all four groups. Interestingly, the microarchitecture of the ABM/P-15 group was significantly different from the control group. Tissue volume fraction and thickness were significantly greater in the ABM/P-15 group than in the allograft group. Bone formation and bone ingrowth to porous titanium implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone formation in concentric gap, and its enhancements on bone formation and implant fixation were at least as good as allograft. It is suggested that ABM/P-15 might be a good alternative biomaterial for bone implant fixation in this well-validated critical-size defect gap model in sheep. Nevertheless, future clinical researches should focus on prospective, randomized, controlled trials in order to fully elucidate whether ABM/P-15 could be a feasible candidate for bone substitute material in orthopedic practices.

  13. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization.

    Science.gov (United States)

    Witten, P E; Owen, M A G; Fontanillas, R; Soenens, M; McGurk, C; Obach, A

    2016-02-01

    To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post-smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro-anatomical level. Animals that received the P-deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X-ray-based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency-related malformations in farmed S. salar.

  14. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.;

    2015-01-01

    hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...... implant were not significantly different among the four groups. The ABM/P-15 group had similar shear mechanical properties on implant fixation as the allograft group. Adding HA/βTCP-PDLLA to ABM/P-15 did not significantly change these parameters. This study revealed that ABM/P-15 had significantly bone...

  15. The carboxy-terminal propeptide of type I procollagen in serum as a marker of bone formation

    DEFF Research Database (Denmark)

    Hassager, C; Jensen, L T; Johansen, J S;

    1991-01-01

    injection every 3 weeks for 1 year; and (2) 40 women received either 2 mg 17 beta-estradiol plus 1 mg norethisterone acetate or placebo tablets daily for 1 year. Sixty-seven (85%) completed the 1 year of treatment. Serum concentration of type I procollagen carboxy-terminal propeptide (PICP) was measured...... before and at 3, 6, 9, and 12 months of therapy. In addition, 32 of the women had an iliac bone biopsy taken after double tetracycline labeling. Initial serum PICP correlated significantly with histomorphometrically measured rate of bone formation (r = .4; P less than .05) and plasma bone Gla protein (r...

  16. Synergistic effects of high dietary calcium and exogenous parathyroid hormone in promoting osteoblastic bone formation in mice

    OpenAIRE

    Feng, Yuxu; Zhou, Min; Zhang, Qunhu; Liu, Huan; Xu, Yong; Shu, Lei; Zhang, Jue; Miao, Dengshun; Ren, Yongxin

    2015-01-01

    In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1–34 fragments (PTH 1–34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1–34 (80 μg/kg per d) for 4 weeks. Bone mineral density, trabecular bone volume, osteoblast number, alkaline phosphatase (ALP)- and type I colla...

  17. Statistical characterisation and stochastic parameterisation of sedimentary geological formations on their reaction capacity for sustainable groundwater quality management

    Science.gov (United States)

    Griffioen, J.; Vermooten, S.; Keijzer, T.; Bakr, M.; Valstar, J.

    2012-04-01

    The fate of contaminants in groundwater aquifers is determined by the buffering capacity of those aquifers together with the composition of inflowing groundwater. A nationwide characterisation of the environmental geochemistry of the shallow subsurface (down to 30 m below surface) has been started in the Netherlands. This covers: 1. the reaction capacity of sediments as buffer for contamination, and 2. typical elemental composition of geological formations and the association between trace elements and major minerals. For this purpose, the Netherlands is subdivided into 27 so-called geotop regions each having a unique geological build-up of the shallow subsurface. Here, four types are recognised based on vertical hydrogeological build-up. The regions are statistically characterised on their geochemical composition using combinations of lithological class and geological formation as strata. The statistical data are subsequently coupled with a geological voxel model of the subsurface to stochastically parameterise the geological units on reaction capacity. This combined approach will be illustrated for the Dutch province Zeeland. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. A statistical investigation of several hunderds of sediment analyses is performed that provides the geochemical properties of the sediments. Here, classification based on sedimentary facies

  18. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women

    DEFF Research Database (Denmark)

    Iepsen, Eva Pers Winning; Lundgren, Julie Rehné; Hartmann, Bolette

    2015-01-01

    bone mass reductions. DESIGN: Randomized control study. SETTING: Out-patient research hospital clinic. PARTICIPANTS: Thirty-seven healthy obese women. BMI 34±0.5 kg/m(2), age 46±2 years. INTERVENTION: After a low-calorie diet-induced 12% weight loss, participants were randomized to treatment...... with or without administration of the GLP-1 RA liraglutide (1.2mg/day) for 52 weeks. In case of weight gain, up to two meals per day could be substituted with a low-calorie diet product in order to maintain the weight loss. MAIN OUTCOME MEASURES: Total, pelvic and arm-leg bone mineral content (BMC) and bone......% and prevented bone loss after weight loss obtained through a low calorie-diet, supporting its role as a safe weight-lowering agent....

  19. Effect of Cytokines on Osteoclast Formation and Bone Resorption during Mechanical Force Loading of the Periodontal Membrane

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2014-01-01

    Full Text Available Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.

  20. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation

    Directory of Open Access Journals (Sweden)

    Ciancaglini P.

    2006-01-01

    Full Text Available Endochondral calcification involves the participation of matrix vesicles (MVs, but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP during mineralization involves hydrolysis of inorganic pyrophosphate (PPi, it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP, ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.

  1. Extracorporeal shock waves alone or combined with raloxifene promote bone formation and suppress resorption in ovariectomized rats

    Science.gov (United States)

    Corrado, Bruno; Pirozzi, Claudio; Paciello, Orlando; Pagano, Teresa Bruna; Russo, Sergio; Calignano, Antonio; Mattace Raso, Giuseppina; Meli, Rosaria

    2017-01-01

    Osteoporosis is a metabolic skeletal disease characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. We examined the beneficial effect of shock waves (SW) alone or in combination with raloxifene (RAL) on bone loss in ovariectomized rats (OVX). Sixteen weeks after surgery, OVX were treated for five weeks with SW at the antero-lateral side of the right hind leg, one session weekly, at 3 Hz (EFD of 0.33 mJ/mm2), or with RAL (5 mg/kg/die, per os) or with SW+RAL. Sera, femurs, tibiae and vertebrae were sampled for following biochemical and histological analysis. SW, alone or combined with RAL, prevented femur weight reduction and the deterioration of trabecular microarchitecture both in femur and vertebrae. All treatments increased Speed of Sound (SoS) values, improving bone mineral density, altered by OVX. Serum parameters involved in bone remodeling (alkaline phosphatase, receptor activator of nuclear factor kappa-B ligand, osteoprotegerin) and osteoblast proliferation (PTH), altered by ovariectomy, were restored by SW and RAL alone or in combination. In tibiae, SW+RAL significantly reduced cathepsin k and TNF-α levels, indicating the inhibition of osteoclast activity, while all treatments significantly increased runt-related transcription factor 2 and bone morphogenetic-2 expression, suggesting an increase in osteoblastogenic activity. Finally, in bone marrow from tibiae, SW or RAL reduced PPARγ and adiponectin transcription, indicating a shift of mesenchymal cells toward osteoblastogenesis, without showing a synergistic effect. Our data indicate SW therapy, alone and in combination with raloxifene, as an innovative strategy to limit the hypoestrogenic bone loss, restoring the balance between bone formation and resorption. PMID:28158228

  2. A supra-cellular model for coupling of bone resorption to formation during remodeling

    DEFF Research Database (Denmark)

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L

    2014-01-01

    by the osteoclasts. However, the osteoclasts are separated from the mature bone forming osteoblasts in time and space. Therefore the target cell of these osteoclastic factors has remained unknown. Recent explorations of the physical microenvironment of osteoclasts revealed a cell layer lining the bone marrow......The bone matrix is maintained functional through the combined action of bone resorbing osteoclasts and bone forming osteoblasts, in so-called bone remodeling units. The coupling of these two activities is critical for securing bone replenishment and involves osteogenic factors released...

  3. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2 Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    Directory of Open Access Journals (Sweden)

    Salih Gulsen

    2014-06-01

    Full Text Available Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2 could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and uncoated screws in different groups. And 15 skeletally mature white New Zealand female rabbits were assigned into three different groups: Group 1(N = 5: No osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 1; group 2 (N = 5: Osteoporosis induction and insertion of uncoated Titanium screw into right sacrum of each rabbit in group 2; group 3 (N = 5 rhBMP-2 coated Titanium screw inserted into right sacrum of each rabbit in group 3. In summary, using of these coated screws provides new bone formation, but causes less fibrosis and less inflammation than uncoated screws at the interface between the coated screw and bone. Then the plasma polymerization technique provides controlled releasing of rhBMP-2 from the screw to the bone tissue in osteoporotic rabbits.

  4. Formation of granulocytes and macrophages in mouse bone marrow cultures exposed to various anaesthetics.

    Science.gov (United States)

    Benestad, H B; Bjertnaes, L J; Hersleth, I B

    1982-08-01

    The effects of anaesthetics on mouse bone marrow colony growth in vitro were examined. The culture dishes were kept in boxes of stainless steel, so that the composition of the gas phase could easily be controlled. After 1 week of culturing, cell colonies were counted. The cells (macrophages and in one type of culture also granulocytes) were then washed out of the dishes and counted. Enflurane, as well as halothane, present in the gas phase at concentrations used clinically, decreased the number of colonies and cells in a dose-dependent fashion. However, intravenously administered drugs such as diazepam, fentanyl, alfentanyl, sufentanyl, thiopental and pentobarbital were not inhibitory at concentrations used in anaesthetic practice, but at least some of them depressed cell formation when high concentrations were used.

  5. Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis.

    Science.gov (United States)

    Furustrand Tafin, Ulrika; Betrisey, Bertrand; Bohner, Marc; Ilchmann, Thomas; Trampuz, Andrej; Clauss, Martin

    2015-03-01

    Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts.

  6. The effects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys

    DEFF Research Database (Denmark)

    Damsgaard, C. T.; Mølgaard, C.; Gyldenløve, S. N.

    2012-01-01

    with docosahexaenoic acid (DHA) status and (ii) affected by fish oil supplementation, in adolescent boys. METHODS: Seventy-eight healthy, slightly overweight 13- to 15-y-old boys were randomly assigned to breads with DHA-rich fish oil (1.1 g/d n-3 LCPUFA) or control for 16 wk. Whole-body bone mineral content (BMC......), bone area (BA), bone mineral density (BMD), plasma osteocalcin, and growth factors were measured at wk 0 and wk 16, as well as diet, physical activity, and n-3 LCPUFA status in erythrocytes. RESULTS: Fish oil strongly increased DHA status (P = 0.0001). No associations were found between DHA status...... and BMC, BA, BMD, or the markers of bone formation and growth at baseline. Furthermore, the fish oil intervention did not affect any of the outcomes as compared with control. However, dose-response analyses revealed a positive association between changes in DHA status and plasma insulin-like growth factor...

  7. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid

    Institute of Scientific and Technical Information of China (English)

    FAN Xin; CHEN Jian; ZOU Jian-peng; WAN Qian; ZHOU Zhong-cheng; RUAN Jian-ming

    2009-01-01

    HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter, plasma emission spectrometer, scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time, Ca and P ion concentrations increase gradually, and then approach equilibrium. The bone-like apatite layer forms on the composites surface, which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration, and can provide firm fixation between HA60/316L SS composite implants and human body bone.

  8. Long-Term Symptoms Onset and Heterotopic Bone Formation around a Total Temporomandibular Joint Prosthesis: a Case Report

    Directory of Open Access Journals (Sweden)

    Luca Guarda-Nardini

    2014-04-01

    Full Text Available Background: The literature on total alloplastic temporomandibular joint (TMJ reconstructions is encouraging, and studies on total alloplastic TMJ replacements outcomes showed acceptable improvements in terms of both pain levels and jaw function. Nevertheless, some adverse events, such as heterotopic bone formation around the implanted prosthesis, may occur. In consideration of that, the present manuscript describes a case of heterotopic bone formation around a total temporomandibular joint prosthesis, which occurred several years after the implant. Methods: The present manuscript describes a case of heterotopic bone formation around a total TMJ prosthesis, which occurred several years after the implant in patients, who previously underwent multiple failed TMJ surgeries. Results: Ten years after the surgical TMJ replacement to solve an ankylotic bone block, the patient came to our attention again referring a progressive limitation in mouth opening. A computerized tomography showed evidence of marked heterotopic bone formation in the medial aspects of the joint, where a new-born ankylotic block occupied most part of the gap created by resecting the coronoid process at the time of the TMJ prosthesis insertion. Conclusions: Despite this adverse event has been sometimes described in the literature, this is the first case in which its occurrence happened several years after the temporomandibular joint replacement. It can be suggested that an accurate assessment of pre-operative risk factors for re-ankylosis (e.g., patients with multiple failed temporomandibular joint surgeries and within-intervention prevention (e.g., strategies to keep the bone interfaces around the implant separated should be better standardized and define in future studies.

  9. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Holmstrøm, Kim; Qiu, Weimin

    2014-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRNA......-34a (miR-34a) and its target protein networks as modulator of osteoblastic (OB) differentiation of hMSC. miRNA array profiling and further validation by quantitative RT-PCR revealed that miR-34a was upregulated during OB differentiation of hMSC, and in situ hybridization confirmed its OB expression...... A were among miR-34a targets. Furthermore, in a preclinical model of in vivo bone formation, overexpression of miR-34a in hMSC reduced heterotopic bone formation by 60%, and conversely, in vivo bone formation was increased by 200% in miR-34a-deficient hMSC. miRNA-34a exhibited unique dual regulatory...

  10. Ectopic bone formation cannot occur by hydroxyapatite/{beta}-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lijia [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Duan Xin [Department of Orthopaedics, Chengdu Second People' s Hospital, Chengdu (China); Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Xiang Zhou [Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu (China); Shi Yujun; Lu Xiaofeng; Ye Feng [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Bu Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Firstly, chimeric mouse model could be established successfully by bone marrow transplantation after irradiation. Black-Right-Pointing-Pointer Secondly, bone induction can occur in wild-type mice 90 days after implantation, but not occur in chimeric mice. Black-Right-Pointing-Pointer Thirdly, destruction of immune function will block osteoinduction by calcium phosphate ceramics. - Abstract: Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/{beta}-tricalcium phosphate (HA/{beta}-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/{beta}-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede

  11. Collagen immobilization of multi-layered BCP-ZrO{sub 2} bone substitutes to enhance bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Linh, Nguyen Thuy Ba [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Jang, Dong-Woo [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Lee, Byong-Taek, E-mail: lbt@sch.ac.kr [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of)

    2015-08-01

    Graphical abstract: - Highlights: • Col-BCP-ZrO. • Collagen fibers were formed and attached firmly on the surface of BCP-ZrO. • Highly interconnected but uniform porosity were obtained. • High biocompatible, strength scaffolds and new bone were evident in Col-BCP-ZrO{sub 2}. - Abstract: A porous microstructure of multi-layered BCP-ZrO{sub 2} bone substitutes was fabricated using the sponge replica method in which the highly interconnected structure was immobilized with collagen via ethyl(dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide crosslinking. Their struts are combined with a three-layered BCP/BCP-ZrO{sub 2}/ZrO{sub 2} microstructure. Collagen fibers were firmly attached to the strut surface of the BCP-ZrO{sub 2} scaffolds. With control of the three-layered microstructure and collagen immobilization, the compressive strength of the scaffolds increased significantly to 6.8 MPa compared to that of the monolithic BCP scaffolds (1.3 MPa). An in vitro study using MTT, confocal observation, and real-time polymer chain reaction analysis demonstrated that the proliferation and differentiation of the pre-osteoblast-like MC3T3-E1 cells was improved due to the collagen incorporation. Remarkable enhancement of bone regeneration was observed without any immunological reaction in the femurs of rabbits during 1 and 5 months of implantation. Furthermore, the interfaces between new bone and the scaffold struts bonded directly without any gaps.

  12. Use of postoperative irradiation for the prevention of heterotopic bone formation after total hip replacement

    Energy Technology Data Exchange (ETDEWEB)

    Sylvester, J.E.; Greenberg, P.; Selch, M.T.; Thomas, B.J.; Amstutz, H.

    1988-03-01

    Formation of heterotopic bone (HTB) following total hip replacement may partially or completely ankylose the joint space, causing pain and/or limiting the range of motion. Patients at high risk for formation of HTB postoperatively include those with previous HTB formation, heterotopic osteoarthritis, and active rheumatoid spondylitis. Patients in these high risk groups have a 63-69% incidence of post-operative HTB formation, usually seen radiographically by 2 months post-operation. From 1980-1986 twenty-nine hips in 28 consecutively treated patients were irradiated post-operatively at the UCLA Center for the Health Sciences. The indication for irradiation was documented HTB formation previously in 26 of the 27 hips presented below. From 1980-1982 patients received 20 Gray (Gy) in 2 Gy fractions; from 1982-1986 the dose was reduced to 10 Gy in 2 Gy fractions. Twenty-seven hips in 26 patients completed therapy and were available for evaluation, with a minimum of 2 month follow-up, and a median follow-up of 12 months. Three of 27 hips developed significant HTB (Brooker grade III or IV) post-operatively, whereas 5 of 27 hips developed minor, nonsymptomatic HTB (Brooker grade I). When irradiation was begun by postoperative day 4, 0 of 17 hips formed significant HTB. If irradiation began after post-operative day 4, 3 of 10 hips formed significant HTB (Brooker grade III or IV). These 3 hips received doses of 10 Gy in one hip and 20 Gy in the other 2 hips. There were no differences in the incidence or severity of side effects in the 10 Gy vs. the 20 Gy treatment groups. Eighteen hips received 10 Gy, 8 hips 20 Gy and, 1 hip 12 Gy. In conclusion, 10 Gy in 5 fractions appears as effective as 20 Gy in 10 fractions at preventing post-operative formation of HTB. For optimal results, treatment should begin as early as possible prior to post-operative day 4.

  13. Anti-RANKL treatment inhibits erosive joint destruction and lowers inflammation but has no effect on bone formation in the delayed-type hypersensitivity arthritis (DTHA) model

    DEFF Research Database (Denmark)

    Atkinson, Sara Marie; Bleil, Janine; Maier, Rene;

    2016-01-01

    . Periarticular bone formation was observed from day 10. Induction of new bone formation indicated by enhanced Runx2, collagen X, osteocalcin, MMP2, MMP9, and MMP13 mRNA expression was observed only between days 8 and 11. Anti-RANKL treatment resulted in a modest reduction in paw and ankle swelling...

  14. Professional Knowledge Formation and Organisational Capacity-Building in ACE: Lessons from the Victorian Research Circles

    Science.gov (United States)

    McIntyre, John

    2008-01-01

    The national reform agenda of the Council of Australian Governments challenges community education agencies to contribute to its goals and raises questions about their capacity to do so. It is crucial to define the conditions that are necessary to develop the capability of adult and community education (ACE) organisations to play a broader social…

  15. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    Science.gov (United States)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  16. Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps.

    Science.gov (United States)

    Patel, Janki Jayesh; Modes, Jane E; Flanagan, Colleen L; Krebsbach, Paul H; Edwards, Sean P; Hollister, Scott J

    2015-09-01

    Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.

  17. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.

    Science.gov (United States)

    Amirian, Jhaleh; Linh, Nguyen Thuy Ba; Min, Young Ki; Lee, Byong-Taek

    2015-05-01

    A composite scaffold of gelatin (Gel)-pectin (Pec)-biphasic calcium phosphate (BCP) was fabricated for the successful delivery of growth factors. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were coated on the Gel-Pec-BCP surface to investigate of effect of them on bone healing. Surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive X-ray spectroscopy. The results obtained from Fourier transform infrared spectroscopy showed that BMP-2 and VEGF were successfully coated on Gel-Pec-BCP hydrogel scaffolds. MC3T3-E1 preosteoblasts were cultivated on the scaffolds to investigate the effect of BMP-2 and VEGF on cell viability and proliferation. VEGF and BMP-2 loaded on Gel-Pec-BCP scaffold facilitated increased cell spreading and proliferation compared to Gel-Pec-BCP scaffolds. In vivo, bone formation was examined using rat models. Bone formation was observed in Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds within 4 weeks, and was greatest with Gel-Pec-BCP/BMP-2 scaffolds. In vitro and in vivo results suggest that Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds could enhance bone regeneration.

  18. Muramyl Dipeptide Enhances Lipopolysaccharide-Induced Osteoclast Formation and Bone Resorption through Increased RANKL Expression in Stromal Cells

    Directory of Open Access Journals (Sweden)

    Masahiko Ishida

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is bacterial cell wall component capable of inducing osteoclast formation and pathological bone resorption. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is ubiquitously expressed by bacterium. In this study, we investigated the effect of MDP in LPS-induced osteoclast formation and bone resorption. LPS was administered with or without MDP into the supracalvariae of mice. The number of osteoclasts, the level of mRNA for cathepsin K and tartrate-resistant acid phosphatase (TRAP, the ratio of the bone destruction area, the level of tartrate-resistant acid phosphatase form 5b (TRACP 5b, and C-terminal telopeptides fragments of type I collagen as a marker of bone resorption in mice administrated both LPS and MDP were higher than those in mice administrated LPS or MDP alone. On the other hand, MDP had no effect on osteoclastogenesis in parathyroid hormone administrated mice. MDP enhanced LPS-induced receptor activator of NF-κB ligand (RANKL expression and Toll-like receptor 4 (TLR4 expression in vivo and in stromal cells in vitro. MDP also enhanced LPS-induced mitogen-activated protein kinase (MAPK signaling, including ERK, p38, and JNK, in stromal cells. These results suggest that MDP might play an important role in pathological bone resorption in bacterial infection diseases.

  19. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats.

    Science.gov (United States)

    Alt, Volker; Cheung, Wing Hoi; Chow, Simon K H; Thormann, Ulrich; Cheung, Edmond N M; Lips, Katrin S; Schnettler, Reinhard; Leung, Kwok-Sui

    2016-06-01

    The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no

  20. The approximal bone height and intrabony defects in young adults, related to the salivary buffering capacity and counts of Streptococcus mutans and Lactobacilli.

    Science.gov (United States)

    Wikner, S; Söder, P O; Frithiof, L; Wouters, F

    1990-01-01

    Using a computerized technique the bone height and prevalence of approximal periodontal intrabony defects were assessed on posterior bite-wing radiographs from 151 young adults. The results were related to the buffering capacity and counts of Streptococcus mutans and lactobacilli in whole stimulated saliva. The mean distance from the cement-enamel junction to the alveolar bone crest was greater in the high buffering group than in the low buffering group (p less than 0.05), and particularly in non-smokers (p less than 0.01). Intrabony defects were more common in the low buffering group (p less than 0.05) and in women (p less than 0.001).

  1. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Snoek Henriksen, Susan; Martinetti, Roberta

    2017-01-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a constr......, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016....

  2. EFFECTS OF INTERLEUKIN-4 ON GRANULOCYTE-MACROPHAGE-COLONY FORMATION FROM MURINE BONE MARROW CELLS AND HEMATOPOIETIC RECONSTITUTION FOLLOWING MURINE ALLOGENEIC BONE MARROW TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    朱康儿; KerryAtkinson

    1994-01-01

    We investigated the effects of mouse recombinant IL-4 on hematopoiesis in vitro and in vivo.IL-4 alone was found to be incapable of stimulating colony formation,but it inhibited both IL-3-and GM-CSF-induced colony for-mation by murine hematopoietic progenitor cells.In contrast,colony formation induced by G-CSF was enhanced in the presence of IL-4.We also studied the influence of IL-4 on hematopoietie reconstiution after allogeneic bone marrow transplantation in a murine model,and found that IL-4 and G-CSF was significantly suppressed by IL-4.The combination of IL-4 and GM-CSF caused a significant decrease in the absolute mumber of meutrophils.

  3. Stimulatory effect of puerarin on bone formation through co-activation of nitric oxide and bone morphogenetic protein-2/mitogen-activated protein kinases pathways in mice

    Institute of Scientific and Technical Information of China (English)

    SHEU Shiow-yunn; TSAI Chia-chung; SUN Jui-sheng; CHEN Ming-hong; LIU Man-hai; SUN Man-ger

    2012-01-01

    Background Estrogen deficiency results in loss of bone mass.Phytoestrogens are plant-derived non-steroidal compounds with estrogen-like activity that bind to estrogen receptors.The main aim of this study was to investigate the effect of the phytoestrogen puerarin on adult mouse osteoblasts.Methods Osteoblast cells were harvested from 8-month old female imprinting control region (ICR) mice.The effects of puerarin stimulation on the proliferation,differentiation and maturation of osteoblasts were examined.The production of nitric oxide (NO) and the expression of bone morphogenetic protein-2 (BMP-2),SMAD4,mitogen-activated protein kinases (MAPK),core binding factor α1/runt-related transcription factor 2 (Cbfa1/Runx2),osteoprotegerin (OPG),and receptor activator of NF-kB ligand (RANKL) genes were analyzed.The activation of signal pathways was further confirmed by specific pathway inhibitors.Results The osteoblast viability reached its maximum at 10-8 mol/L puerarin.At this concentration,puerarin increases the proliferation and matrix mineralization of osteoblasts and promotes NO synthesis.With 10-8 mol/L puerarin treatment,BMP-2,SMAD4,Cbfa1/Runx2,and OPG gene expression were up-regulated,while the RANKL gene expression is down-regulated.Concurrent treatment involving the (bone morphogenetic protein) BMP antagonist Noggin or the NOS inhibitor L-NAME diminishes puerarin induced cell proliferation,Alkaline phosphatase (ALP) activity,NO production,as well as the BMP-2,SMAD4,Cbfa1/Runx2,OPG,and RANKL gene expression.Conclusions In this in vitro study,we demonstrate that puerarin is a bone anabolic agent that exerts its osteogenic effects through the induction of BMP-2 and NO synthesis,subsequently regulating Cbfa1/Runx2,OPG,and RANKL gene expression.This effect may contribute to its induction of osteoblast proliferation and differentiation,resulting in bone formation.

  4. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats.

    Science.gov (United States)

    Thormann, Ulrich; Ray, Seemun; Sommer, Ursula; Elkhassawna, Thaqif; Rehling, Tanja; Hundgeburth, Marvin; Henß, Anja; Rohnke, Marcus; Janek, Jürgen; Lips, Katrin S; Heiss, Christian; Schlewitz, Gudrun; Szalay, Gabor; Schumacher, Matthias; Gelinsky, Michael; Schnettler, Reinhard; Alt, Volker

    2013-11-01

    The first objective was to investigate new bone formation in a critical-size metaphyseal defect in the femur of ovariectomized rats filled with a strontium modified calcium phosphate cement (SrCPC) compared to calcium phosphate cement (CPC) and empty defects. Second, detection of strontium release from the materials as well as calcium and collagen mass distribution in the fracture defect should be targeted by time of flight secondary ion mass spectrometry (TOF-SIMS). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) SrCPC (n = 15), (2) CPC (n = 15), and (3) empty defect (n = 15). Bilateral ovariectomy was performed and three months after multi-deficient diet, the left femur of all animals underwent a 4 mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with SrCPC or CPC or was left empty. After 6 weeks, histomorphometric analysis showed a statistically significant increase in bone formation of SrCPC compared to CPC (p = 0.005) and the empty defect (p = 0.002) in the former fracture defect zone. Furthermore, there was a statistically significant higher bone formation at the tissue-implant interface in the SrCPC group compared to the CPC group (p < 0.0001). These data were confirmed by immunohistochemistry revealing an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin expression and a statistically significant higher gene expression of alkaline phosphatase, collagen10a1 and osteocalcin in the SrCPC group compared to CPC. TOF-SIMS analysis showed a high release of Sr from the SrCPC into the interface region in this area compared to CPC suggesting that improved bone formation is attributable to the released Sr from the SrCPC.

  5. A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-02-10

    Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

  6. Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation

    Directory of Open Access Journals (Sweden)

    Owen G Davies

    2015-06-01

    Full Text Available Mesenchymal stem cells isolated from rats are frequently used for tissue engineering research. However, considerable differences have been identified between rat mesenchymal stem cells and those derived from humans, and no defined panel of markers currently exists for the isolation of these cells. The aim of this study was to examine the effects of cell sorting for CD29+/CD90+ cells from rat adipose and bone marrow tissues on their differentiation and expression of stem cell–associated genes. Flow cytometry showed 66% and 78% CD29+/CD90+ positivity within passage 1 of adipose and bone marrow cultures, respectively. CD29+/CD90+ cells showed a reduction in both osteogenic and adipogenic differentiation when compared with unsorted cells, as determined by alizarin red and Oil Red-O staining, respectively. These findings could not entirely be explained by fluorescence-activated cell sorting–induced cell injury as sort recovery was only modestly affected in adipose-derived cells. Maintaining cells in fluorescence-activated cell sorting buffer did not affect adipose-derived cell viability, but a significant (p < 0.05 reduction was found in bone marrow–derived cell viability. Additionally, CD29+/CD90+ selection was associated with a significant decrease in the expression of Lin28, Sox2, Nanog and CD73 in adipose-derived cell cultures, whereas differences in stem cell–associated gene expression were not observed in sorted bone marrow–derived cell cultures. In summary, this study demonstrated that fluorescence-activated cell sorting had differential effects on adipose-derived cells and bone marrow–derived cells, and both CD29+/CD90+ cells displayed a significantly reduced capacity for osteogenic/adipogenic differentiation. In conclusion, we identify that maintaining heterogeneity within the mesenchymal stem cell population may be important for optimal differentiation.

  7. Targeting osteoblastic casein kinase-2 interacting protein-1 to enhance Smad-dependent BMP signaling and reverse bone formation reduction in glucocorticoid-induced osteoporosis

    Science.gov (United States)

    Liu, Jin; Lu, Changwei; Wu, Xiaohao; Zhang, Zongkang; Li, Jie; Guo, Baosheng; Li, Defang; Liang, Chao; Dang, Lei; Pan, Xiaohua; Peng, Songlin; Lu, Aiping; Zhang, Baoting; Zhang, Ge

    2017-01-01

    The underlying mechanism of the reduced bone formation during the development of glucocorticoid-induced osteoporosis (GIO) remains unclear. Here, we found that the highly expressed CKIP-1 together with lowly expressed total and phosphorylated Smad1/5 in bone samples was accompanied by either the reduced serum bone formation markers in GIO patients or the decreased bone formation in GIO mice. In vitro studies showed that the highly expressed CKIP-1 could promote Smad1 ubiquitination to suppress the Smad-dependent BMP signaling and inhibit osteogenic differentiation and mineral deposition in MC3T3-E1 cells during glucocorticoid treatment. Further, the reduced bone formation in GIO mice could not only be prevented by osteoblasts-specific Ckip-1 ablation, but also be attenuated after osteoblasts-specific Smad1 overexpression. Moreover, osteoblasts-targeting CKIP-1 siRNA treatment also attenuated the bone formation reduction in GIO mice. These study suggest that the highly expressed CKIP-1 in osteoblasts could suppress the Smad-dependent BMP signaling and contribute to the bone formation reduction in GIO. Targeting osteoblastic CKIP-1 would be a novel bone anabolic strategy for GIO patients. PMID:28128304

  8. Dietary phosphorus intake is negatively associated with bone formation among women and positively associated with some bone traits among men-a cross-sectional study in middle-aged Caucasians.

    Science.gov (United States)

    Itkonen, Suvi T; Rita, Hannu J; Saarnio, Elisa M; Kemi, Virpi E; Karp, Heini J; Kärkkäinen, Merja U M; Pekkinen, Minna H; Laitinen, E Kalevi; Risteli, Juha; Koivula, Marja-Kaisa; Sievänen, Harri; Lamberg-Allardt, Christel J E

    2017-01-01

    High dietary phosphorus (P) intake has acute negative effects on calcium (Ca) and bone metabolism, but long-term clinical data are contradictory. We hypothesized that high P intake is associated with impaired bone health as suggested by earlier short-term studies on bone metabolism. In this cross-sectional study, we investigated associations between dietary P intake, bone traits in the radius and tibia, and bone turnover in a population-based sample of 37- to 47-year-old Caucasian premenopausal women (n=333) and men (n=179) living in Southern Finland (60°N). We used various regression models in an "elaboration approach" to elucidate the role of P intake in bone traits and turnover. The addition of relevant covariates to the models mainly removed the significance of P intake as a determinant of bone traits. In the final regression model (P intake, weight, height, age, Ca intake, serum 25-hydroxyvitamin D, physical activity, smoking, contraceptive use in women), P intake was slightly positively associated only with bone mineral content and cross-sectional cortical bone area in the tibia of men. Among women, inclusion of Ca removed all existing significance in the crude models for any bone trait. In women P intake was negatively associated with the bone formation marker serum intact pro-collagen type I amino-terminal propeptide, whereas no association was present between P intake and bone turnover in men. In conclusion, these findings disagree with the hypothesis; P intake was not deleteriously associated with bone traits; however, P intake may negatively contribute to bone formation among women.

  9. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by targeting a NaCl cotransporter in bone

    Science.gov (United States)

    Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela

    2008-01-01

    Thiazide diuretics are used, worldwide, as the first-choice drug for patients with uncomplicated hypertension. In addition to their anti-hypertensive actions, they increase bone mineral density and reduce the prevalence of fractures, indicating that thiazides may have a role in the management of postmenopausal osteoporosis. Traditionally, the bone-protective effects of thiazides have been attributed to an increase in renal calcium reabsorption, secondary to the inhibition of the sodium chloride cotransporter, NCC, expressed in the kidney distal tubule. Whether thiazides exert a direct osteoanabolic effect independently of their renal action is controversial. Here we demonstrate that freshly frozen sections of human and rat bone express NCC, principally in bone-forming cells, the osteoblasts. In primary and established culture models of osteoblasts, fetal rat calvarial (FRC) and human MG63 cells, NCC protein is virtually absent in proliferating cells while its expression is dramatically increased during differentiation. Thiazides directly stimulate the production of osteoblast markers, runt-related transcription factor 2 (runx2) and osteopontin, in the absence of a proliferative effect. Using overexpression/knockdown studies in FRC cells, we show that thiazides, but not loop diuretics, increase mineralized nodule formation acting on NCC. Overall, our study demonstrates that thiazides stimulate osteoblast differentiation and bone mineral formation independently of their renal actions. In addition to their use as part of a therapeutic treatment plan for elderly, hypertensive individuals, our discovery opens up the possibility that bone-specific drug targeting by thiazides may be developed for the prevention and treatment of osteoporosis in the patient population as a whole. PMID:17656470

  10. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    Science.gov (United States)

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss.

  11. Influence of interferon preparations on the proliferative capacity of human and mouse bone marrow cells in vitro

    NARCIS (Netherlands)

    E. van 't Hull (Eveline); B. Löwenberg (Bob); M. de Vries (Marco); H. Schellekens (Huub)

    1978-01-01

    textabstractThe toxicity of interferon to bone marrow was studied by the use of in vitro colony forming assays for hemopoietic cells. In the same study the relative inhibitory effects of two clinically common interferon preparations, leukocyte and fibroblast interferons, were compared with regard to

  12. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine

    2006-01-01

    Bone marrow stromal cells (BMSCs) and other cell populations derived from mesenchymal precursors are developed for cell-based therapeutic strategies and undergo cellular stress during ex vivo procedures. Reactive oxygen species (ROS) of cellular and environmental origin are involved in redox sign...

  13. Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity.

    Science.gov (United States)

    Małgorzata, Wronkowska; Konrad, Piskuła Mariusz; Zieliński, Henryk

    2016-04-01

    Changes in the formation of Maillard reaction products and antioxidant capacity of buckwheat, induced by roasting at 160 °C for 30, 40 and 50 min, were evaluated in the study. Furozine, was detected after roasting, in all buckwheat samples. Increase of FIC, the presence of significant amounts of CML and enhanced browning were observed, along with increasing times of roasting. The formation of acrylamide in the obtained buckwheat products was also significantly connected with the time of roasting. A significant degradation was observed in natural antioxidants, as affected by heat treatment time. The colour parameter changed significantly with the increasing of roasting time. Overall, 30min of roasting was beneficial from a nutritional point of view for the obtained buckwheat product.

  14. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model.

    Science.gov (United States)

    Boonyagul, Sani; Banlunara, Wijit; Sangvanich, Polkit; Thunyakitpisal, Pasutha

    2014-07-01

    Aloe vera is a traditional wound healing medicine. We hypothesized acemannan, a polysaccharide extracted from Aloe vera gel, could affect bone formation. Primary rat bone marrow stromal cells (BMSCs) were treated with various concentrations of acemannan. New DNA synthesis, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein, osteopontin expression, and mineralization were determined by [(3)H] thymidine incorporation assay, ELISA, biochemical assay, western blotting, and Alizarin Red staining, respectively. In an animal study, mandibular right incisors of male Sprague-Dawley rats were extracted and an acemannan treated sponge was placed in the socket. After 1, 2, and 4 weeks, the mandibles were dissected. Bone formation was evaluated by dual-energy X-ray absorptiometry and histopathological examination. The in vitro results revealed acemannan significantly increased BMSC proliferation, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein and osteopontin expression, and mineralization. In-vivo results showed acemannan-treated groups had higher bone mineral density and faster bone healing compared with untreated controls. A substantial ingrowth of bone trabeculae was observed in acemannan-treated groups. These data suggest acemannan could function as a bioactive molecule inducing bone formation by stimulating BMSCs proliferation, differentiation into osteoblasts, and extracellular matrix synthesis. Acemannan could be a candidate natural biomaterial for bone regeneration.

  15. Ectopic bone formation cannot occur by hydroxyapatite/β-tricalcium phosphate bioceramics in green fluorescent protein chimeric mice

    Science.gov (United States)

    Cheng, Lijia; Duan, Xin; Xiang, Zhou; Shi, Yujun; Lu, Xiaofeng; Ye, Feng; Bu, Hong

    2012-12-01

    Many studies have shown that calcium phosphate ceramics (CP) have osteoconductive and osteoinductive properties; however, the exact mechanism of bone induction has not yet been reported. This study was performed to investigate if destroying immunological function will influence osteogenesis, to explain the mechanism which is unclear. In this study, twenty C57BL/6 mice were divided into two groups (n = 10), in group 1, a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramic was implanted into both the left and right leg muscles of each mouse; in group 2, ten mice experienced lethal irradiation, then were injected bone marrow (BM) cells from green fluorescent protein (GFP) transgenic mice by tail veil, after bone marrow transplantation (BMT), heart, liver, spleen, lung, kidney, and muscle were harvested for biological analysis, after the GFP chimera model was established successfully, the same HA/β-TCP ceramic was implanted into both leg muscles of each mouse immediately after irradiation. 45 and 90 days after implantation, the ceramics of the two groups were harvested to perform with hematoxylin and eosin (HE) and immunohistochemistry (IHC) staining; the results showed that there was no bone formation in group 2, while new bone tissues were detected in group 1. Our findings suggest that the BM cell from GFP transgenic mice is a good biomarker and it could set a good platform for chimera model; it also shows that BM cell is one of cell resources of bone induction, and destruction of immune function will impede osteoinduction by CP. Overall, our results may shed light on clear mechanism study of bone induction in the future.

  16. A Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Ko-Ning Ho

    2016-03-01

    Full Text Available Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry resembles human bone. The aim of this study was to compare the performance of a novel bioresorbable purified fibrillar collagen and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP ceramic composite versus collagen alone and a bovine xenograft-collagen composite in beagles. Collagen plugs, bovine graft-collagen composite and HA/β-TCP-collagen composite were implanted into the left and right first, second and third mandibular premolars, and the fourth molar was left empty for natural healing. In total, 20 male beagle dogs were used, and quantitative and histological analyses of the extraction ridge was done. The smallest width reduction was 19.09% ± 8.81% with the HA/β-TCP-collagen composite at Week 8, accompanied by new bone formation at Weeks 4 and 8. The HA/β-TCP-collagen composite performed well, as a new osteoconductive and biomimetic composite biomaterial, for socket bone preservation after tooth extraction.

  17. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain

    Directory of Open Access Journals (Sweden)

    Bloom Aaron P

    2010-12-01

    Full Text Available Abstract Pain often accompanies cancer and most current therapies for treating cancer pain have significant unwanted side effects. Targeting nerve growth factor (NGF or its cognate receptor tropomyosin receptor kinase A (TrkA has become an attractive target for attenuating chronic pain. In the present report, we use a mouse model of bone cancer pain and examine whether oral administration of a selective small molecule Trk inhibitor (ARRY-470, which blocks TrkA, TrkB and TrkC kinase activity at low nm concentrations has a significant effect on cancer-induced pain behaviors, tumor-induced remodeling of sensory nerve fibers, tumor growth and tumor-induced bone remodeling. Early/sustained (initiated day 6 post cancer cell injection, but not late/acute (initiated day 18 post cancer cell injection administration of ARRY-470 markedly attenuated bone cancer pain and significantly blocked the ectopic sprouting of sensory nerve fibers and the formation of neuroma-like structures in the tumor bearing bone, but did not have a significant effect on tumor growth or bone remodeling. These data suggest that, like therapies that target the cancer itself, the earlier that the blockade of TrkA occurs, the more effective the control of cancer pain and the tumor-induced remodeling of sensory nerve fibers. Developing targeted therapies that relieve cancer pain without the side effects of current analgesics has the potential to significantly improve the quality of life and functional status of cancer patients.

  18. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model.

    Science.gov (United States)

    Sun, Wei; Zhang, Guangdao; Tan, Lili; Yang, Ke; Ai, Hongjun

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2.

  19. Using poly(lactic-co-glycolic acid microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Qiao C

    2013-08-01

    Full Text Available Chunyan Qiao,1,* Kai Zhang,2,* Han Jin,1 Leiying Miao,3 Ce Shi,1 Xia Liu,1 Anliang Yuan,1 Jinzhong Liu,1 Daowei Li,1 Changyu Zheng,4 Guirong Zhang,5 Xiangwei Li,1 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 3Institute and Hospital of Stomatology, Nanjing University Medical School, Nanjing, People's Republic of China; 4Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 5Department of Biochemistry, School of Basic Medicine, Jilin University, Changchun, People's Republic of China*These authors contributed equally to this workAbstract: Repair of large bone defects is a major challenge, requiring sustained stimulation to continually promote bone formation locally. Bone morphogenetic protein 2 (BMP-2 plays an important role in bone development. In an attempt to overcome this difficulty of bone repair, we created a delivery system to slowly release human BMP-2 cDNA plasmid locally, efficiently transfecting local target cells and secreting functional human BMP-2 protein. For transfection, we used polyethylenimine (PEI to create pBMP-2/PEI nanoparticles, and to ensure slow release we used poly(lactic-co-glycolic acid (PLGA to create microsphere encapsulated pBMP-2/PEI nanoparticles, PLGA@pBMP-2/PEI. We demonstrated that pBMP-2/PEI nanoparticles could slowly release from the PLGA@pBMP-2/PEI microspheres for a long period of time. The 3–15 µm diameter of the PLGA@pBMP-2/PEI further supported this slow release ability of the PLGA@pBMP-2/PEI. In vitro transfection assays demonstrated that pBMP-2/PEI released from PLGA@pBMP-2/PEI could efficiently transfect MC3T3-E1 cells, causing MC3T3-E1 cells to secrete human BMP-2 protein, increase calcium deposition and gene expressions of alkaline

  20. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    Science.gov (United States)

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  1. Strontium-Containing Apatite/Poly Lactide Composites Favoring Osteogenic Differentiation and in Vivo Bone Formation

    NARCIS (Netherlands)

    Luo, Xiaoman; Barbieri, D.; Zhang, Yunfei; Yan, Yonggang; Bruijn, de Joost D.; Yuan, Huipin

    2015-01-01

    Strontium was shown to enhance bone growth; however, its oral administration may lead to severe side effects. The application of strontium in orthopedic biomaterials may therefore be an alternative to achieve targeted and sustained strontium treatment to the surgery site in aid of bone growth locall

  2. A New Piezoelectric Actuator Induces Bone Formation In Vivo: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Joana Reis

    2012-01-01

    Full Text Available This in vivo study presents the preliminary results of the use of a novel piezoelectric actuator for orthopedic application. The innovative use of the converse piezoelectric effect to mechanically stimulate bone was achieved with polyvinylidene fluoride actuators implanted in osteotomy cuts in sheep femur and tibia. The biological response around the osteotomies was assessed through histology and histomorphometry in nondecalcified sections and histochemistry and immunohistochemistry in decalcified sections, namely, through Masson's trichrome, and labeling of osteopontin, proliferating cell nuclear antigen, and tartrate-resistant acid phosphatase. After one-month implantation, total bone area and new bone area were significantly higher around actuators when compared to static controls. Bone deposition rate was also significantly higher in the mechanically stimulated areas. In these areas, osteopontin increased expression was observed. The present in vivo study suggests that piezoelectric materials and the converse piezoelectric effect may be used to effectively stimulate bone growth.

  3. Induced hemocompatibility and bone formation as biological scaffold for cell therapy implant

    Directory of Open Access Journals (Sweden)

    Keng-Liang Ou

    2016-06-01

    Full Text Available Although stem cells can become almost any type of specialized cell in the human body and may have the potential to generate replacement cells for tissues and organs, the transplantation of these cells are hindered by immune rejection and teratoma formation. However, scientists have found a promising solution for these problems-they have discovered the ability to isolate stem cells from a patient’s umbilical cord blood or bone marrow. Even more recently, small stem cells, such as spore-like stem cells, Blastomere-Like Stem Cells (BLSCs, and Very-Small Embryonic-Like stem cells (VSELs isolated directly from the peripheral blood have beeninvestigated as a novel approach to stem cell therapy as they can be isolated directly from the peripheral blood. A newly-discovered population of multipotent stem cells in this class has been dubbed StemBios (SB cells. The potential therapeutic uses of such stem cells have been explored in many ways, one of which includes dental remodeling and construction. Using adult stem cells, scientists have engineered and cultivated teeth in mice that may one day be used for human implantation.It follows that such regeneration may be possible, to a certain degree, in human patients as well. This idea leads to the present study on the effect of SB cell therapy on early osseointegrationof dental implants. Titanium (Ti dental implants have been proven to be a reliable and predictable treatment for restoration of edentulous regions. The osseointegration process can be described in two stages: primary stability (mechanical stability and secondary stability (biological stability. The mechanical stabilization of the implant reflects the interaction between the bone density and the features of the implant designs and can be determined after implant insertion. Alternatively,the biological stabilization of the implant is a physiologic healing process. It is couple to the biological interaction between the external surface of the

  4. Vitamin D deficiency and reduced bone mineral density in multiple sclerosis: effect of ambulatory status and functional capacity.

    Science.gov (United States)

    Ozgocmen, Salih; Bulut, Serpil; Ilhan, Nevin; Gulkesen, Arif; Ardicoglu, Ozge; Ozkan, Yusuf

    2005-01-01

    Multiple sclerosis (MS) is a chronic disease and a major cause of disability in young adults. The aims of this study were to assess bone mass in patients with MS in comparison to healthy age- and sex-matched controls, and to evaluate factors influencing bone mineral density (BMD), and the relationship of the pain threshold at peripheral and axial sites with BMD in MS. Thirty-one patients with MS and 30 matched healthy controls participated in the study. The Kurtzke expanded disability status scale (EDSS) and the functional independence measure (FIM) were used to scale disability, mobility, and functional status. Serum 25(OH) vitamin D levels were measured. BMD was measured using dual X-ray absorptiometry (DXA). MS patients had significantly lower BMD at the lumbar spine (L2-L4) and femur trochanter compared to the matched controls. BMD of the lumbar spine was nearly 1 SD lower in MS patients compared with the healthy reference population (Z scores). MS patients had significantly lower vitamin D levels (17.3 ng/ml vs 43.1 ng/ml; P sunlight exposure and to increase their mobility. Specific strengthening exercises for hip and back muscles in MS patients would have a substantial impact on bone density, osteoporosis, fracture risk, and mobility.

  5. A histomorphometric study of the effect of doxycycline and erythromycin on bone formation in dental alveolar socket of rat

    Directory of Open Access Journals (Sweden)

    Mohammad Shahabooei

    2015-01-01

    Full Text Available Background: The aim of the present study was to evaluate whether subantimicrobial doses of doxycycline (DOX and erythromycin (EM used for the treatment of peri-implant osteolysis due to their anti-osteoclastogenesis can interfere with the osseous wound healing process in rat alveolar socket. Materials and Methods: Forty-five male Wistar rats had their first maxillary right molar extracted and were divided into three groups. DOX and EM at the doses of 5 mg/kg/day orally (p.o. and 2 mg/kg/day intraperitoneally (i.p. were administered respectively to two separate groups for 7 days after operation. In the control group the animals received normal saline (5 ml/kg. Five rats were sacrificed at 7, 14 and 21 days post-extraction in each study group. A histomorphometric analysis was used to evaluate new bone formation inside the alveolar socket. Significant level was set at 0.05. Results: The findings showed that the percentage of new bone formation (NBF enhanced significantly on days 7 and 14. There was no significant difference in the NBF between DOX and EM groups. Conclusion: Short-term treatment with both DOX and EM enhanced new bone formation without any advances in favor of each drug.

  6. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice.

    Science.gov (United States)

    McBride-Gagyi, Sarah Howe; McKenzie, Jennifer A; Buettmann, Evan G; Gardner, Michael J; Silva, Matthew J

    2015-12-01

    Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10-24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2.

  7. Solcoseryl, a tissue respiration stimulating agent, significantly enhances the effect of capacitively coupled electric field on the promotion of bone formation around dental implants.

    Science.gov (United States)

    Ochi, Morio; Wang, Pao-Li; Ohura, Kiyoshi; Takashima, Shigenori; Kagami, Hiroyuki; Hirose, Yukito; Kaku, Tohru; Sakaguchi, Kunihiko

    2003-06-01

    In the present study we examined the combined effect of application of a capacitively coupled electric field (CCEF) and the tissue respiration stimulating agent, Solcoseryl, on the promotion of bone formation around dental implants histologically and mechanically. After a dental implant was inserted into each femur of Japanese white rabbits, Solcoseryl (2 ml/kg) was administered intravenously in the ear vein and a CCEF was applied for 4 h per day for 14 days. The degree of bone formation on microscopic observation, bone contact ratio, bone surface area ratio, and the level of removal torque of the implant in the Solcoseryl- and CCEF-treated group were significantly higher than the respective value in the control group, which had not been treated with Solcoseryl nor CCEF. Thus, the combination of CCEF stimulation and Solcoseryl effectively promoted the formation of new bone. It is suggested that the clinical use of a combination of CCEF stimulation and Solcoseryl for dental implants promotes osseointegration.

  8. The comparative effectiveness of demineralized bone matrix, beta-tricalcium phosphate, and bovine-derived anorganic bone matrix on inflammation and bone formation using a paired calvarial defect model in rats

    Directory of Open Access Journals (Sweden)

    Khoshzaban A

    2011-09-01

    Full Text Available Ahad Khoshzaban1,2,3, Shahram Mehrzad1, Vida Tavakoli2, Saeed Heidari Keshel2, Gholam Reza Behrouzi2, Maryam Bashtar2 1Iranian Tissue Bank Research and Preparation Center, Imam Khomeini Hospital Complex, 2Stem Cells Preparation Unit, Eye Research Center, Farabi Hospital, Tehran University of Medical Science, 3Dental Bio Material Department, Tehran University of Medical Science, Faculty of Dentistry, Tehran, Iran Background: In this study, the effectiveness of Iranian Tissue Bank–produced demineralized bone matrix (ITB-DBM, beta-tricalcium phosphate (ßTCP, and Bio-Oss® (Geistlich Pharma AG, Wolhusen, Switzerland were evaluated and compared with double controls. The main goal was to measure the amount of new bone formation in the center of defects created in rat calvaria. Another goal was to compare the controls and evaluate the effects of each treatment material on their adjacent untreated (control defects. Methods: In this study, 40 male Wistar rats were selected and divided into four groups, In each group, there were ten rats with two defects in their calvarias; one of them is considered as control and the other one was treated with ITB-DBM (group 1, BIO-OSS (group2, and ßTCP (group 3, respectively. But in group 4, both defects were considered as control. The amount of inflammation and new bone formation were evaluated at 4 and 10 weeks. In the first group, one defect was filled with ITB-DBM; in the second group, one defect was filled with Bio-Oss; in the third group, one defect was filled with ßTCP; and in the fourth group, both defects were left unfilled. Zeiss microscope (Carl Zeiss AG, Oberkochen, Germany and Image Tool® (version 3.0; University of Texas Health Science Center at San Antonio, San Antonio, TX software were used for evaluation. SPSS Statistics (IBM Corp, Somers, NY was used for statistical analysis. Results: Maximum bone formation at 4 and 10 weeks were observed in the ITB-DBM group (46.960% ± 4.366%, 94.970% ± 0

  9. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery

    Science.gov (United States)

    Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Porous biodegradable poly(DL-lactic-co-glycolic acid) foams were seeded with rat marrow stromal cells and implanted into the rat mesentery to investigate in vivo bone formation at an ectopic site. Cells were seeded at a density of 6.83 x 10(5) cells/cm2 onto polymer foams having pore sizes ranging from either 150 to 300 to 710 microns and cultured for 7 days in vitro prior to implantation. The polymer/cell constructs were harvested after 1, 7, 28, or 49 days in vivo and processed for histology and gel permeation chromatography. Visual observation of hematoxylin and eosin-stained sections and von Kossa-stained sections revealed the formation of mineralized bonelike tissue in the constructs within 7 days postimplantation. Ingrowth of vascular tissue was also found adjacent to the islands of bone, supplying the necessary metabolic requirements to the newly formed tissue. Mineralization and bone tissue formation were investigated by histomorphometry. The average penetration depth of mineralized tissue in the construct ranged from 190 +/- 50 microns for foams with 500-710-microns pores to 370 +/- 160 microns for foams with 150-300-microns pores after 49 days in vivo. The mineralized bone volume per surface area and total bone volume per surface area had maximal values of 0.28 +/- 0.21 mm (500-710-microns pore size, day 28) and 0.038 +/- 0.024 mm (150-300-microns, day 28), respectively. As much as 11% of the foam volume penetrated by bone tissue was filled with mineralized tissue. No significant trends over time were observed for any of the measured values (penetration depth, bone volume/surface area, or percent mineralized bone volume). These results suggest the feasibility of bone formation by osteoblast transplantation in an orthotopic site where not only bone formation from transplanted cells but also ingrowth from adjacent bone may occur.

  10. Group additive values for the gas-phase standard enthalpy of formation, entropy and heat capacity of oxygenates.

    Science.gov (United States)

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B

    2013-11-25

    A complete and consistent set of 60 Benson group additive values (GAVs) for oxygenate molecules and 97 GAVs for oxygenate radicals is provided, which allow to describe their standard enthalpies of formation, entropies and heat capacities. Approximately half of the GAVs for oxygenate molecules and the majority of the GAVs for oxygenate radicals have not been reported before. The values are derived from an extensive and accurate database of thermochemical data obtained by ab initio calculations at the CBS-QB3 level of theory for 202 molecules and 248 radicals. These compounds include saturated and unsaturated, α- and β-branched, mono- and bifunctional oxygenates. Internal rotations were accounted for by using one-dimensional hindered rotor corrections. The accuracy of the database was further improved by adding bond additive corrections to the CBS-QB3 standard enthalpies of formation. Furthermore, 14 corrections for non-nearest-neighbor interactions (NNI) were introduced for molecules and 12 for radicals. The validity of the constructed group additive model was established by comparing the predicted values with both ab initio calculated values and experimental data for oxygenates and oxygenate radicals. The group additive method predicts standard enthalpies of formation, entropies, and heat capacities with chemical accuracy, respectively, within 4 kJ mol(-1) and 4 J mol(-1) K(-1) for both ab initio calculated and experimental values. As an alternative, the hydrogen bond increment (HBI) method developed by Lay et al. (T. H. Lay, J. W. Bozzelli, A. M. Dean, E. R. Ritter, J. Phys. Chem.- 1995, 99, 14514) was used to introduce 77 new HBI structures and to calculate their thermodynamic parameters (Δ(f)H°, S°, C(p)°). The GAVs reported in this work can be reliably used for the prediction of thermochemical data for large oxygenate compounds, combining rapid prediction with wide-ranging application.

  11. Evidence of the Role of R-Spondin 1 and Its Receptor Lgr4 in the Transmission of Mechanical Stimuli to Biological Signals for Bone Formation

    Science.gov (United States)

    Shi, Gui-Xun; Zheng, Xin-Feng; Zhu, Chao; Li, Bo; Wang, Yu-Ren; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2017-01-01

    The bone can adjust its mass and architecture to mechanical stimuli via a series of molecular cascades, which have been not yet fully elucidated. Emerging evidence indicated that R-spondins (Rspos), a family of secreted agonists of the Wnt/β-catenin signaling pathway, had important roles in osteoblastic differentiation and bone formation. However, the role of Rspo proteins in mechanical loading-influenced bone metabolism has never been investigated. In this study, we found that Rspo1 was a mechanosensitive protein for bone formation. Continuous cyclic mechanical stretch (CMS) upregulated the expression of Rspo1 in mouse bone marrow mesenchymal stem cells (BMSCs), while the expression of Rspo1 in BMSCs in vivo was downregulated in the bones of a mechanical unloading mouse model (tail suspension (TS)). On the other hand, Rspo1 could promote osteogenesis of BMSCs under CMS through activating the Wnt/β-catenin signaling pathway and could rescue the bone loss induced by mechanical unloading in the TS mice. Specifically, our results suggested that Rspo1 and its receptor of leucine-rich repeat containing G-protein-coupled receptor 4 (Lgr4) should be a novel molecular signal in the transmission of mechanical stimuli to biological signal in the bone, and this signal should be in the upstream of Wnt/β-catenin signaling for bone formation. Rspo1/Lgr4 could be a new potential target for the prevention and treatment of disuse osteoporosis in the future. PMID:28272338

  12. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Science.gov (United States)

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    Science.gov (United States)

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A.; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17β-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca2+ receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  14. CRMP4 Inhibits Bone Formation by Negatively Regulating BMP and RhoA Signaling

    DEFF Research Database (Denmark)

    Abdallah, Basem M.; Figeac, Florence; Larsen, Kenneth H.

    2017-01-01

    We identified the neuroprotein collapsing response mediator protein-4 (CRMP4) as a noncanonical osteogenic factor that regulates the differentiation of mouse bone marrow skeletal stem cells (bone marrow stromal stem cells [mBMSCs]) into osteoblastic cells. CRMP4 is the only member of the CRMP1-CRMP......5 family to be expressed by mBMSCs and in osteoprogenitors of both adult mouse and human bones. In vitro gain-of-function and loss-of-function of CRMP4 in murine stromal cells revealed its inhibitory effect on osteoblast differentiation. In addition, Crmp4-deficient mice (Crmp4(-/-) ) displayed a 40...

  15. Local delivery of siRNA using a biodegradable polymer application to enhance BMP-induced bone formation.

    Science.gov (United States)

    Manaka, Tomoya; Suzuki, Akinobu; Takayama, Kazushi; Imai, Yuuki; Nakamura, Hiroaki; Takaoka, Kunio

    2011-12-01

    Small interfering RNA (siRNA) is useful tool for specific and efficient knockdown of disease-related genes. However, in vivo applications of siRNA are limited due to difficulty in its efficient delivery to target cells. In this study, we investigated the efficacy of a biodegradable hydrogel, poly-d,l-lactic acid-p-dioxanone-polyethylene glycol block co-polymer (PLA-DX-PEG), as a siRNA carrier. PLA-DX-PEG pellets with or without fluorescein-labeled dsRNA were implanted into mouse dosal muscle pouches. The cellular uptake of dsRNA surround the polymer was confirmed by fluorescent microscopy. The fluorescence intensity was dose-dependent of the dsRNA, and exhibited a time-dependent decrease. To investigate its biological efficiency, noggin (antagonoist to BMPs) gene-silencing with siRNA (siRNA/Noggin) was examined by the amount of suppression of BMP-2-induced noggin expression and the level of performance of BMP, indicated by ectopic bone formation. Noggin gene expression induced by BMP-2 was suppressed by addition of siRNA/Noggin to the implant, and the ectopic bone formation induced by implants with both BMP-2 and siRNA/Noggin was significantly greater than those induced by implants with BMP-2 alone. These results indicate the efficacy of local delivery of siRNAs by PLA-DX-PEG polymer, which intensified bone-inducing effects of BMP and promoted new bone formation by suppressing gene expression of Noggin.

  16. Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury.

    Science.gov (United States)

    Ravi, S; Selvaraj, M

    2014-04-14

    A novel incessant formation of chain like mesoporous silica (ICMS) has been easily materialized using a mixed surfactant (Pluronic P123 and FC-4) as a structuring reagent in conjunction with a thiol precursor (3-MPS) through a one-pot synthetic method. A particular thiol concentration facilitated the interaction of the micelle head groups to form long-chain micelles, where FC-4 enhanced further growth. The rapid interactions of the micelles and the condensation of silicic acid and its oligomeric derivatives by coordinating 3-MPS through hydrogen bonding interactions leads to form ICMS. The characterization results for the ICMS illustrated that it has an ordered hexagonal pore geometry. The capability of the ICMS for Hg(2+) adsorption was extensively studied under different optimal parameters and the adsorption isothermal values clearly fit with the Langmuir and Freundlich isothermal plots. This novel material exhibited an unprecedentedly high binding affinity toward even microgram levels of mercury ions in wastewater, compared to other thiol-based mesoporous silica.

  17. An intramembranous ossification model for the in silico analysis of bone tissue formation in tooth extraction sites.

    Science.gov (United States)

    Corredor-Gómez, Jennifer Paola; Rueda-Ramírez, Andrés Mauricio; Gamboa-Márquez, Miguel Alejandro; Torres-Rodríguez, Carolina; Cortés-Rodríguez, Carlos Julio

    2016-07-21

    The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites. The model consists in a mathematical description of the mechanisms in which different types of cells interact, synthesize and degrade extracellular matrices under the influence of biochemical factors. Special attention is given to angiogenesis, oxygen-dependent effects and growth factor-induced apoptosis of fibroblasts. Furthermore, considering the depth-dependent vascularization of mandibular bone and its influence on bone healing, a functional description of the cell distribution on the severed periodontal ligament (PDL) is proposed. The developed model was implemented using the finite element method (FEM) and successfully validated by simulating an animal in vivo experiment on dogs reported in the literature. A good fit between model outcome and experimental data was obtained with a mean absolute error of 3.04%. The mathematical framework presented here may represent an important tool for the design of future in vitro and in vivo tests, as well as a precedent for future in silico studies on osseointegration and mechanobiology.

  18. Ectopic bone formation by 3D porous calcium phosphate-Ti6Al4V hybrids produced by perfusion electrodeposition.

    Science.gov (United States)

    Chai, Yoke Chin; Kerckhofs, Greet; Roberts, Scott J; Van Bael, Simon; Schepers, Evert; Vleugels, Jozef; Luyten, Frank P; Schrooten, Jan

    2012-06-01

    Successful clinical repair of non-healing skeletal defects requires the use of bone substitutes with robust bone inductivity and excellent biomechanical stability. Thus, three-dimensionally functionalised porous calcium phosphate-Ti6Al4V (CaP-Ti) hybrids were produced by perfusion electrodeposition, and the in vitro and in vivo biological performances were evaluated using human periosteum derived cells (hPDCs). By applying various current densities at the optimised deposition conditions, CaP coatings with sub-micrometer to nano-scale porous crystalline structures and different ion dissolution kinetics were deposited on the porous Ti6Al4V scaffolds. These distinctive physicochemical properties caused a significant impact on in vitro proliferation, osteogenic differentiation, and matrix mineralisation of hPDCs. This includes a potential role of hPDCs in mediating osteoclastogenesis for the resorption of CaP coatings, as indicated by a significant down-regulation of osteoprotegerin (OPG) gene expression and by the histological observation of abundant multi-nucleated giant cells near to the coatings. By subcutaneous implantation, the produced hybrids induced ectopic bone formation, which was highly dependent on the physicochemical properties of the CaP coating (including the Ca(2+) dissolution kinetics and coating surface topography), in a cell density-dependent manner. This study provided further insight on stem cell-CaP biomaterial interactions, and the feasibility to produced bone reparative units that are predictively osteoinductive in vivo by perfusion electrodeposition technology.

  19. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  20. Isobaric Heat Capacities of Micelle Formation by 1-Methyl-4-n-dodecylpyridinium Iodide in Aqueous Solution; Effects of Added Urea

    NARCIS (Netherlands)

    Posthumus, Willem; Engberts, Jan B.F.N.; Bijma, Koos; Blandamer, Michael J.

    1997-01-01

    Over the temperature range from 303 to 333 K, the enthalpy of micelle formation by 1-methyl-4-n-dodecylpyridinium iodide in aqueous solution is exothermic, characterised by an isobaric heat capacity of micelle formation equal to -439 ± 10 J K-1 mol-1. At 303 K, the critical micellar concentration (2

  1. Influence of Particle Size of Deproteinized Bovine Bone Mineral on New Bone Formation and Implant Stability after Simultaneous Sinus Floor Elevation

    DEFF Research Database (Denmark)

    Jensen, Simon S; Aaboe, Merete; Janner, Simone F M;

    2013-01-01

    Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE).......Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE)....

  2. Commercial Honeybush (Cyclopia spp.) Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages-An in vitro Study.

    Science.gov (United States)

    Visagie, Amcois; Kasonga, Abe; Deepak, Vishwa; Moosa, Shaakirah; Marais, Sumari; Kruger, Marlena C; Coetzee, Magdalena

    2015-10-28

    Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL), produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9), tartrate resistant acid phosphatase (TRAP) and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone.

  3. Commercial Honeybush (Cyclopia spp. Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages—An in vitro Study

    Directory of Open Access Journals (Sweden)

    Amcois Visagie

    2015-10-01

    Full Text Available Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL, produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9, tartrate resistant acid phosphatase (TRAP and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone.

  4. The role of estrogen in bone growth and formation: changes at puberty

    Directory of Open Access Journals (Sweden)

    Divya Singh

    2010-12-01

    Full Text Available Divya Singh1, Sabyasachi Sanyal2, Naibedya Chattopadhyay11Division of Endocrinology, 2Division of Drug Target Discovery and Development, Central Drug Research Institute (Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh, IndiaAbstract: A high peak bone mass (PBM at skeletal maturity is a good predictor for lower rate of fracture risks in later life. Growth during puberty contributes significantly to PBM achievement in women and men. The growth hormone (GH/insulin-like growth factor 1 (IGF-1 axis has a critical role in pubertal bone growth. There is an increase in GH and IGF-1 levels during puberty; thus, it is assumed that sex steroids contribute to higher GH/IGF-1 action during growth. Recent studies indicate that estrogen increases GH secretion in boys and girls, and the major effect of testosterone on GH secretion is via aromatization to estrogen. Estrogen is pivotal for epiphyseal fusion in young men and women. From studies of individuals with a mutated aromatase gene and a case study of male patient with defective estrogen receptor-alpha (ER-α, it is clear that estrogen is indispensable for normal pubertal growth and growth plate fusion. ER-α and estrogen receptor-beta (ER-β have been localized in growth plate and bone. ER knockout studies have shown that ER-α-/- female mice have reduced linear appendicular growth, while ER-β-/- mice have increased appendicular growth. No such effect is seen in ER-β-/- males; however, repressed growth is seen in ER-α-/- males, resulting in shorter long bones. Thus, ER-β represses longitudinal bone growth in female mice, while it has no function in the regulation of longitudinal bone growth in male mice. These findings indicate that estrogen plays a critical role in skeletal physiology of males as well as females.Keywords: peak bone mass, puberty, estrogen, growth plate

  5. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system

    Science.gov (United States)

    Arnaud, Sara B.; Whalen, Robert T.; Fung, Paul; Sherrard, Donald J.; Maloney, Norma

    1992-01-01

    The -6-deg head-down tilt (HDT) is employed in the study of 8 subjects to determine early responses in human bone and calcium endocrines during spaceflight. The average rates of bone formation in the iliac crest are determined by means of a single-dose labeling schedule and are found to decrease in 6 of the subjects. The decrease varies directly with walking miles, and increased excretion of urinary Ca and Na are observed preceding increased levels of ionized serum calcium on a bed-rest day late in the week. Reduced phosphorous excretions are also followed by increased serum phosphorous on day six, and reductions are noted in parathyroid hormone and vitamin D by the end of the experiment. The data demonstrate the responsiveness of the skeletal system to biomechanical stimuli such as the HDT.

  6. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2013-01-01

    Full Text Available We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105 cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.

  7. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Zhang, Guangdao [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Tan, Lili; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ai, Hongjun, E-mail: aihongjuna@sina.com [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China)

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2. - Highlights: • Fluoride coating inhibited the degradation of the alloy in the early implantation. • Fluorine coating could slow down the rate of Mg corrosion and Mg ion release. • Fluorine coating could promote the deposition of Ca and P in vivo. • Fluorine coated Mg alloy had well osteogenic activity and biocompatibility. • Fluorine coating up-regulated the expression of BMP-2 and collagen type I protein.

  8. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications.

    Science.gov (United States)

    Chalidis, B; Sachinis, N; Assiotis, A; Maccauro, G

    2011-01-01

    Pulsed electromagnetic fields (PEMF) have been used for several years to supplement bone healing. However, the mode of action of this non-invasive method is still debated and quantification of its effect on fracture healing is widely varied. At cellular and molecular level, PEMF has been advocated to promote the synthesis of extracellular matrix proteins and exert a direct effect on the production of proteins that regulate gene transcription. Electromagnetic fields may also affect several membrane receptors and stimulate osteoblasts to secrete several growth factors such as bone morphogenic proteins 2 and 4 and TGF-beta. They could also accelerate intramedullary angiogenesis and improve the load to failure and stiffness of the bone. Although healing rates have been reported in up to 87 % of delayed unions and non-unions, the efficacy of the method is significantly varied while patient or fracture related variables could not be clearly associated with a successful outcome.

  9. Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation

    Science.gov (United States)

    Xu, Guoshuang; Liu, Kai; Anderson, Judy; Patrene, Kenneth; Lentzsch, Suzanne; Roodman, G. David

    2012-01-01

    BM stromal cells (BMSCs) are key players in the microenvironmental support of multiple myeloma (MM) cell growth and bone destruction. A spliced form of the X-box–binding protein-1 (XBP1s), a major proximal effector of unfolded protein response signaling, is highly expressed in MM cells and plays an indispensable role in MM pathogenesis. In the present study, we found that XBP1s is induced in the BMSCs of the MM microenvironment. XBP1s overexpression in healthy human BMSCs enhanced gene and/or protein expression of VCAM-1, IL-6, and receptor activator of NF-κB ligand (RANKL), enhancing BMSC support of MM cell growth and osteoclast formation in vitro and in vivo. Conversely, deficiency of XBP1 in healthy donor BMSCs displayed a range of effects on BMSCs that were opposite to those cells with overexpression of XBP1s. Knock-down of XBP1 in MM patient BMSCs greatly compromised their increased VCAM-1 protein expression and IL-6 and RANKL secretion in response to TNFα and reversed their enhanced support of MM-cell growth and osteoclast formation. Our results demonstrate that XBP1s is a pathogenic factor underlying BMSC support of MM cell growth and osteoclast formation and therefore represents a therapeutic target for MM bone disease. PMID:22427205

  10. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  11. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...

  12. Effect of gentamicin loaded PMMA bone cement on Staphylococcus aureus biofilm formation

    NARCIS (Netherlands)

    Poelstra, KA; Busscher, HJ; Schenk, W; van Horn, [No Value; van der Mei, HC

    1999-01-01

    PMMA (poly-methyl-methacrylate) bone cement is widely used in prosthetic implant surgery and is currently prepared with vacuum-mixing for improved mechanical properties. Revision of implants due to infection occurs in about 1% of cases, mostly involving staphylococcal strains. Antibiotic loaded ceme

  13. Identification and analysis of genes involved in bone formation - a genetic approach in zebrafish -

    NARCIS (Netherlands)

    Spoorendonk, K.M.

    2009-01-01

    For many years bone research has been mainly performed in mice, chicken, cell culture systems, or human material from the clinic. In this thesis, we make use of the zebrafish (Danio rerio), a relatively new model system in this field. This small teleost offers possibilities which makes it a great co

  14. Identification and analysis of genes involved in bone formation – a genetic approach in zebrafish –

    NARCIS (Netherlands)

    Spoorendonk, K.M.

    2009-01-01

    For many years bone research has been mainly performed in mice, chicken, cell culture systems, or human material from the clinic. In this thesis, we make use of the zebrafish (Danio rerio), a relatively new model system in this field. This small teleost offers possibilities which makes it a great co

  15. The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review.

    NARCIS (Netherlands)

    Rathe, F.; Junker, R.; Chesnutt, B.C.; Jansen, J.A.

    2009-01-01

    This systematic review focused on the question, if and to what extent enamel matrix derivative (Emdogain) [EMD]) promotes the regeneration of bone. The influence of combinations with other biomaterials was additionally evaluated. Twenty histomorphometric studies were included in this systematic revi

  16. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation.

    Science.gov (United States)

    Jensen, Thomas; Jakobsen, Thomas; Baas, Jørgen; Nygaard, Jens V; Dolatshahi-Pirouz, Alireza; Hovgaard, Mads B; Foss, Morten; Bünger, Cody; Besenbacher, Flemming; Søballe, Kjeld

    2010-12-01

    It is well established in the field of biomaterials that hydroxyapatite (HA) may provide interesting osteoconductive properties. In this study, we investigated the osseointegrational effect of a 50/50 vol % composite of HA nanoparticles and poly-D,L-lactic acid (PDLLA) coated on model titanium bone implants in an in vivo animal model. The aim is to evaluate how the addition of HA to PDLLA may improve the bone formation and initial fixation of the implant. Two titanium implants coated with the PDLLA/HA composite and pure PDLLA, respectively, were implanted bilaterally in proximal part of humeri with a 2-mm peri-implant gap in 10 sheep. After 12 weeks, the remains of the coatings were present on 20.3 and 19.8% of PDLLA/HA composite- and PDLLA-coated implants, respectively. It was observed that newly formed bone (39.3%) and fibrous tissue (58.3%) had replaced the PDLLA/HA composite, whereas pure PDLLA was replaced almost completely by fibrous tissue (96.2%). Consequently, the PDLLA/HA composite-coated implants were better fixated as confirmed by push-out tests. Using quantification of peri-implant tissue and implant fixation as parameters, the present findings, therefore, clearly reveal that the addition of nanoparticulate HA to a PDLLA coating on titanium implants increases osseointegration.

  17. IGF-I Signaling in Osterix-Expressing Cells Regulates Secondary Ossification Center Formation, Growth Plate Maturation, and Metaphyseal Formation During Postnatal Bone Development.

    Science.gov (United States)

    Wang, Yongmei; Menendez, Alicia; Fong, Chak; ElAlieh, Hashem Z; Kubota, Takuo; Long, Roger; Bikle, Daniel D

    2015-12-01

    To investigate the role of IGF-I signaling in osterix (OSX)-expressing cells in the skeleton, we generated IGF-I receptor (IGF-IR) knockout mice ((OSX)IGF-IRKO) (floxed-IGF-IR mice × OSX promoter-driven GFP-labeled cre-recombinase [(OSX)GFPcre]), and monitored postnatal bone development. At day 2 after birth (P2), (OSX)GFP-cre was highly expressed in the osteoblasts in the bone surface of the metaphysis and in the prehypertrophic chondrocytes (PHCs) and inner layer of perichondral cells (IPCs). From P7, (OSX)GFP-cre was highly expressed in PHCs, IPCs, cartilage canals (CCs), and osteoblasts (OBs) in the epiphyseal secondary ossification center (SOC), but was only slightly expressed in the OBs in the metaphysis. Compared with the control mice, the IPC proliferation was decreased in the (OSX)IGF-IRKOs. In these mice, fewer IPCs invaded into the cartilage, resulting in delayed formation of the CC and SOC. Immunohistochemistry indicated a reduction of vessel number and lower expression of VEGF and ephrin B2 in the IPCs and SOC of (OSX)IGF-IRKOs. Quantitative real-time PCR revealed that the mRNA levels of the matrix degradation markers, MMP-9, 13 and 14, were decreased in the (OSX)IGF-IRKOs compared with the controls. The (OSX)IGF-IRKO also showed irregular morphology of the growth plate and less trabecular bone in the tibia and femur from P7 to 7 weeks, accompanied by decreased chondrocyte proliferation, altered chondrocyte differentiation, and decreased osteoblast differentiation. Our data indicate that during postnatal bone development, IGF-I signaling in OSX-expressing IPCs promotes IPC proliferation and cartilage matrix degradation and increases ephrin B2 production to stimulate vascular endothelial growth factor (VEGF) expression and vascularization. These processes are required for normal CC formation in the establishment of the SOC. Moreover, IGF-I signaling in the OSX-expressing PHC is required for growth plate maturation and osteoblast differentiation in

  18. Enhancement of Osteoclastic Bone Resorption and Suppression of Osteoblastic Bone Formation in Response to Reduced Mechanical Stress Do Not Occur in the Absence of Osteopontin

    OpenAIRE

    Ishijima, Muneaki; Rittling, Susan R.; Yamashita, Teruhito; Tsuji, Kunikazu; Kurosawa, Hisashi; Nifuji, Akira; Denhardt, David T.; Noda, Masaki

    2001-01-01

    Reduced mechanical stress to bone in bedridden patients and astronauts leads to bone loss and increase in fracture risk which is one of the major medical and health issues in modern aging society and space medicine. However, no molecule involved in the mechanisms underlying this phenomenon has been identified to date. Osteopontin (OPN) is one of the major noncollagenous proteins in bone matrix, but its function in mediating physical-force effects on bone in vivo has not been known. To investi...

  19. Glucosamine and chondroitin sulfate association increases tibial epiphyseal growth plate proliferation and bone formation in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Roberta Bastos Wolff

    2014-01-01

    Full Text Available OBJECTIVE: The growth plate consists of organized hyaline cartilage and serves as a scaffold for endochondral ossification, a process that mediates longitudinal bone growth. Based on evidence showing that the oral administration of glucosamine sulfate (GS and/or chondroitin sulfate (CS is clinically valuable for the treatment of compromised articular cartilage, the current study evaluated the effects of these molecules on the tibial epiphyseal growth plate in female rats. METHOD: The animals were divided into two control groups, including vehicle treatment for 45 days (GC45 and 60 days (GC60 and six ovariectomized (OVX groups, including vehicle treatment for 45 days (GV45, GS for 45 days (GE45GS, GS+CS for 45 days (GE45GS+CS, vehicle for 60 days (GV60, GS for 60 days (GE60GS and GS+CS for 60 days (GE60GS+CS. At the end of treatment, the tibias were dissected, decalcified and processed for paraffin embedding. Morphological and morphometric methods were employed for analyzing the distal tibial growth plates using picrosirius red staining and the samples were processed for histochemical hyaluronan detection. Morphometric analyses were performed using the 6.0ProPlus¯ Image system. RESULTS: Notably, after 60 days of treatment, the number of proliferative chondrocytes increased two-fold, the percentage of remaining cartilage increased four-fold and the percentage of trabecular bone increased three-fold in comparison to the control animals. CONCLUSION: GS and CS treatment drugs led to marked cellular proliferation of the growth plate and bone formation, showing that drug targeting of the tibial epiphyseal growth plate promoted longitudinal bone growth.

  20. Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and Lead to Significant Bone Tissue Formation

    Science.gov (United States)

    Cusella-De Angelis, Maria Gabriella; Laino, Gregorio; Piattelli, Adriano; Pacifici, Maurizio; De Rosa, Alfredo; Papaccio, Gianpaolo

    2007-01-01

    Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and

  1. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis

    Science.gov (United States)

    Wang, Shun-Feng; Wang, Xiao-Hong; Gan, Lu; Wiens, Matthias; Schröder, Heinz C.; Müller, Werner E. G.

    2011-09-01

    In the last 15 years biomineralization, in particular biosilicification (i.e., the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches, following "Nature as model". Among the silica forming organisms there are the sponges that have the unique property to catalyze their silica skeletons by a specific enzyme termed silicatein. In the present review we summarize the present state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in biomedicine. Recent advancements in the production of bone replacement material and in the potential use as a component in the treatment of osteoporosis are highlighted.

  2. Influence of Interleukin-1 Beta on Platelet-Poor Plasma Clot Formation: A Potential Impact on Early Bone Healing.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Hematoma quality (especially the fibrin matrix plays an important role in the bone healing process. Here, we investigated the effect of interleukin-1 beta (IL-1β on fibrin clot formation from platelet-poor plasma (PPP.Five-milliliter of rat whole-blood samples were collected from the hepatic portal vein. All blood samples were firstly standardized via a thrombelastograph (TEG, blood cell count, and the measurement of fibrinogen concentration. PPP was prepared by collecting the top two-fifths of the plasma after centrifugation under 400 × g for 10 min at 20°C. The effects of IL-1β cytokines on artificial fibrin clot formation from PPP solutions were determined by scanning electronic microscopy (SEM, confocal microscopy (CM, turbidity, and clot lysis assays.The lag time for protofibril formation was markedly shortened in the IL-1β treatment groups (243.8 ± 76.85 in the 50 pg/mL of IL-1β and 97.5 ± 19.36 in the 500 pg/mL of IL-1β compared to the control group without IL-1β (543.8 ± 205.8. Maximal turbidity was observed in the control group. IL-1β (500 pg/mL treatment significantly decreased fiber diameters resulting in smaller pore sizes and increased density of the fibrin clot structure formed from PPP (P < 0.05. The clot lysis assay revealed that 500 pg/mL IL-1β induced a lower susceptibility to dissolution due to the formation of thinner and denser fibers.IL-1β can significantly influence PPP fibrin clot structure, which may affect the early bone healing process.

  3. A systematic review and meta-analysis on the influence of biological implant surface coatings on periimplant bone formation.

    Science.gov (United States)

    Jenny, Gregor; Jauernik, Johanna; Bierbaum, Susanne; Bigler, Martin; Grätz, Klaus W; Rücker, Martin; Stadlinger, Bernd

    2016-11-01

    This systematic review and meta-analysis evaluated the influence of biological implant surface coatings on periimplant bone formation in comparison to an uncoated titanium reference surface in experimental large animal models. The analysis was structured according to the PRISMA criteriae. Of the1077 studies, 30 studies met the inclusion criteriae. Nineteen studies examined the bone implant contact (BIC) and were included in the meta-analysis. Overall, the mean increase in BIC for the test surfaces compared to the reference surfaces was 3.7 percentage points (pp) (95% CI -3.9-11.2, p = 0.339). Analyzing the increase in BIC for specific coated surfaces in comparison to uncoated reference surfaces, inorganic surface coatings showed a significant mean increase in BIC of 14.7 pp (95% CI 10.6-18.9, p < 0.01), extracellular matrix (ECM) surface coatings showed an increase of 10.0 pp (95% CI 4.4-15.6, p < 0.001), and peptide coatings showed a statistical trend with 7.1 pp BIC increase (95% CI -0.8-15.0, p = 0.08). In this review, no statistically significant difference could be found for growth factor surface coatings (observed difference -3.3 pp, 95% CI -16.5-9.9, p = 0.6). All analyses are exploratory in nature. The results show a statistically significant effect of inorganic and ECM coatings on periimplant bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2898-2910, 2016.

  4. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation.

    Science.gov (United States)

    Guo, Jun; Liu, Minlin; Yang, Dehong; Bouxsein, Mary L; Saito, Hiroaki; Galvin, R J Sells; Kuhstoss, Stuart A; Thomas, Clare C; Schipani, Ernestina; Baron, Roland; Bringhurst, F Richard; Kronenberg, Henry M

    2010-02-03

    Parathyroid hormone (PTH) suppresses Dickkopf 1 (Dkk1) expression in osteoblasts. To determine whether this suppression is essential for PTH-mediated Wnt signaling and bone formation, we examined mice that overexpress Dkk1 in osteoblasts (Dkk1 mice). Dkk1 mice were osteopenic due to abnormal osteoblast and osteoclast activity. When fed a low-calcium diet, and in two other models of hyperparathyroidism, these mice failed to develop the peritrabecular stromal cell response ("osteitis fibrosis") and new bone formation seen in wild-type mice. Despite these effects of Dkk1 overexpression, PTH still activated Wnt signaling in Dkk1 mice and in osteoblastic cells cultured from these mice. In cultured MC3T3E1 preosteoblastic cells, PTH dramatically suppressed Dkk1 expression, induced PKA-mediated phosphorylation of beta-catenin, and significantly enhanced Lef1 expression. Our findings indicate that the full actions of PTH require intact Wnt signaling but that PTH can activate the Wnt pathway despite overexpression of Dkk1.

  5. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  6. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  7. Effect of bone marrow stromal cell sheet on the formation of tissue-engineered bone in dogs%犬骨髓基质细胞片层在构建组织工程骨中的作用

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 李宁毅; 樊功为; 卜令学; 杨学财; 高振华

    2011-01-01

    目的:探讨犬骨髓基质细胞(bone marrow stromal cells,BMSCs)细胞片层在构建组织工程骨中的价值.方法:制备犬同种异体脱钙骨基质(dermineralized bone matrix,DBM).将人重组骨形态发生蛋白-2(rhBMP-2)复合到DBM上.抽取犬髂骨骨髓,采用密度梯度离心法分离犬骨髓基质细胞(BMSCs).将经成骨诱导的第3代细胞接种于温度反应性培养皿中,制备BMSCs细胞片层.用得到的BMSCs细胞片层包裹DBM/rhBMP-2/BMSCs复合体,植入犬背阔肌血运丰富的肌筋膜下为实验侧,以无BMSCs细胞片层包裹的DBM/rhBMP-加MSCs复合体为对照侧.术后4、8、12周取材,行组织学观察,评价体内异位成骨的情况.采用SPSS13.0软件,对数据进行两样本均数差别的t检验.结果:实验侧成骨面积大于对照侧,2组差异有显著性(P<0.05).术后12周,实验侧生成大量板层骨,有哈弗系统形成,骨髓腔内有红骨髓.对照侧有板层骨形成,无哈弗系统形成,骨髓腔内无红骨髓.结论:BMSCs细胞片层可促进具有致密板层骨和哈弗系统的组织工程骨的形成.%PURPOSE: To investigate the effect of bone marrow stromal cell sheet on the formation of tissue-engineered bone in dogs. METHODS: Demineralized bone matrix (DBM) were prepared from homologous bone. DBM was constituted with recombination human bone morphogenetic protein-2(rhBMP-2). And bone marrow stromal cells(BMSCs) were isolated from iliac bone of dogs with the method of density gradient centrifugation in vitro. BMSCs induced by osteogenic DMEM at passage 3 were incubated in the temperature-responsive culture dish to form BMSCs cell sheet. BMSCs cell sheet combined with DBM/rhBMP-2/BMSCs was implanted around the vessels of latissimus dorsi muscle in the experimental side,and DBM/rhBMP-2/BMSCs without BMSCs cell sheet was implanted around the vessels of latissimus dorsi muscle in the control side. 4,8,12 weeks after operation, the ectopic bone formation was investigated by

  8. Pharmacological Inhibition of Protein Kinase G1 Enhances Bone Formation by Human Skeletal Stem Cells Through Activation of RhoA-Akt Signaling

    DEFF Research Database (Denmark)

    Jafari, Abbas; Siersbæk, Majken; Chen, Li;

    2015-01-01

    for several malignant and nonmalignant conditions. We screened a library of kinase inhibitors to identify small molecules that enhance bone formation by human skeletal (stromal or mesenchymal) stem cells (hMSC). We identified H-8 (known to inhibit protein kinases A, C, and G) as a potent enhancer of ex vivo......Development of novel approaches to enhance bone regeneration is needed for efficient treatment of bone defects. Protein kinases play a key role in regulation of intracellular signal transduction pathways, and pharmacological targeting of protein kinases has led to development of novel treatments...

  9. Bordetella pertussis isolates from Argentinean whooping cough patients display enhanced biofilm formation capacity compared to Tohama I reference strain

    Directory of Open Access Journals (Sweden)

    Laura eArnal

    2015-12-01

    Full Text Available Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines since the 1950´s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE coupled with mass spectrometry (MS, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host.

  10. Bordetella pertussis Isolates from Argentinean Whooping Cough Patients Display Enhanced Biofilm Formation Capacity Compared to Tohama I Reference Strain.

    Science.gov (United States)

    Arnal, Laura; Grunert, Tom; Cattelan, Natalia; de Gouw, Daan; Villalba, María I; Serra, Diego O; Mooi, Frits R; Ehling-Schulz, Monika; Yantorno, Osvaldo M

    2015-01-01

    Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development. For gaining insights into the role of B. pertussis biofilm development for host colonization and persistence within the host, we examined the biofilm forming capacity of eight argentinean clinical isolates recovered from 2001 to 2007. All clinical isolates showed an enhanced potential for biofilm formation compared to the reference strain Tohama I. We further selected the clinical isolate B. pertussis 2723, exhibiting the highest biofilm biomass production, for quantitative proteomic profiling by means of two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry, which was accompanied by targeted transcriptional analysis. Results revealed an elevated expression of several virulence factors, including adhesins involved in biofilm development. In addition, we observed a higher expression of energy metabolism enzymes in the clinical isolate compared to the Tohama I strain. Furthermore, all clinical isolates carried a polymorphism in the bvgS gene. This mutation was associated to an increased sensitivity to modulation and a faster rate of adhesion to abiotic surfaces. Thus, the phenotypic biofilm characteristics shown by the clinical isolates might represent an important, hitherto underestimated, adaptive strategy for host colonization and long time persistence within the host.

  11. Heat evolution of micelle formation, dependence of enthalpy, and heat capacity on the surfactant chain length and head group.

    Science.gov (United States)

    Opatowski, Ella; Kozlov, Michael M; Pinchuk, Ilya; Lichtenberg, Dov

    2002-02-15

    Micelle formation by many surfactants is endothermic at low temperatures but exothermic at high temperatures. In this respect, dissociation of micelles (demicellization) is similar to dissolving hydrocarbons in water. However, a remarkable difference between the two processes is that dissolving hydrocarbons is isocaloric at about 25 degrees C, almost independently of the hydrocarbon chain length, whereas the temperature (T*) at which demicellization of different surfactants is athermal varies over a relatively large range. We have investigated the temperature dependence of the heat of demicellization of three alkylglucosides with hydrocarbon chains of 7, 8, and 9 carbon atoms. At about 25 degrees C, the heat of demicellization of the three studied alkylglucosides varied within a relatively small range (DeltaH=-7.8+/-0.4 kJ/mol). The temperature dependence of DeltaH(demic) indicates that within the studied temperature range the heat capacity of demicellization (DeltaC(P,demic)) is about constant. The value of DeltaC(P,demic) exhibited an apparently linear dependence on the surfactant's chain length (DeltaC(P,demic)/n(CH(2))=47+/-7 kJ/mol K). Our interpretation of these results is that (i) the transfer of the head groups from micelles to water is exothermic and (ii) the temperature dependence of the heat associated with water-hydrocarbon interactions is only slightly affected by the head group. This implies that the deviation of the value of T* from 25 degrees C results from the contribution of the polar head to the overall heat of demicellization. Calorimetric studies of other series of amphiphiles will have to be conducted to test whether the latter conclusion is general.

  12. Antiangiogenic treatment delays chondrocyte maturation and bone formation during limb skeletogenesis.

    Science.gov (United States)

    Yin, Melinda; Gentili, Chiara; Koyama, Eiki; Zasloff, Michael; Pacifici, Maurizio

    2002-01-01

    Hypertrophic chondrocytes have important roles in promoting invasion of cartilage by blood vessels and its replacement with bone. However, it is unclear whether blood vessels exert reciprocal positive influences on chondrocyte maturation and function. Therefore, we implanted beads containing the antiangiogenic molecule squalamine around humeral anlagen in chick embryo wing buds and monitored the effects over time. Fluorescence microscopy showed that the drug diffused from the beads and accumulated in humeral perichondrial tissues, indicating that these tissues were the predominant targets of drug action. Diaphyseal chondrocyte maturation was indeed delayed in squalamine-treated humeri, as indicated by reduced cell hypertrophy and expression of type X collagen, transferrin, and Indian hedgehog (Ihh). Although reduced in amount, Ihh maintained a striking distribution in treated and control humeri, being associated with diaphyseal chondrocytes as well as inner perichondrial layer. These decreases were accompanied by lack of cartilage invasion and tartrate-resistant acid phosphatase-positive (TRAP+) cells and a significant longitudinal growth retardation. Recovery occurred at later developmental times, when in fact expression in treated humeri of markers such as matrix metalloproteinase 9 (MMP-9) and connective tissue growth factor (CTGF) appeared to exceed that in controls. Treating primary cultures of hypertrophic chondrocytes and osteoblasts with squalamine revealed no obvious changes in cell phenotype. These data provide evidence that perichondrial tissues and blood vessels in particular influence chondrocyte maturation in a positive manner and may cooperate with hypertrophic chondrocytes in dictating the normal pace and location of the transition from cartilage to bone.

  13. New miniplate for osteosynthesis of mandibular angle fractures designed to improve formation of new bone.

    Science.gov (United States)

    Pituru, Teodora Silagieva; Bucur, Alexandru; Gudas, Claudiu; Pituru, Silviu-Mirel; Marius Dinca, Octavian

    2016-04-01

    The purpose of this article is to present the study of a new miniplate designed to keep the maximum strains developed in the cortical bone near the fracture line during accidental biting to values below the threshold causing bone resorption. Designed to offer maximum fracture stability with minimal implanted volume and patient intrusion, the design uses a novel approach to account for the effects of the distance from the fracture line to the nearest screws. Its geometry minimizes the peak forces that can develop during most cases of mandible biomechanical loadings. A three-dimensional (3D) osteosynthesis finite element model for a human mandible confirmed the operational effectiveness of the miniplate. It also provided numerical estimates for the strains and screw forces in the cortical surface during incisor bites with clinically relevant forces of 200 N. Two prototypes, 0.6 mm and 0.8 mm in thickness, were repeatedly tested on fractured sheep mandibles, fixed in a purpose-built jig, to loads up to 150% of the maximum forces developed by human patients. The tests indicated good fracture stability, and the proof tests carried for each of the two prototypes terminated at more than 350 N due to failure of the loading cable and respectively, secondary mandible fractures occurring away from the miniplate.

  14. Runx2-I isoform contributes to fetal bone formation even in the absence of specific N-terminal amino acids.

    Directory of Open Access Journals (Sweden)

    Hideaki Okura

    Full Text Available The Runt-related transcription factor 2 (Runx2 gene encodes the transcription factor Runx2, which is the master regulator of osteoblast development; insufficiency of this protein causes disorders of bone development such as cleidocranial dysplasia. Runx2 has two isoforms, Runx2-II and Runx2-I, and production of each isoform is controlled by a unique promoter: a distal promoter (P1 and a proximal promoter (P2, respectively. Although several studies have focused on differences and similarities between the two Runx2 isoforms, their individual roles in bone formation have not yet been determined conclusively, partly because a Runx2-I-targeted mouse model is not available. In this study, we established a novel Runx2-manipulated mouse model in which the first ATG of Runx2-I was replaced with TGA (a stop codon, and a neomycin-resistant gene (neo cassette was inserted at the first intron of Runx2-I. Homozygous Runx2-Ineo/neo mice showed severely reduced expression of Runx2-I, whereas Runx2-II expression was largely retained. Runx2-Ineo/neo mice showed neonatal lethality, and in these mice, intramembranous ossification was more severely defective than endochondral ossification, presumably because of the greater involvement of Runx2-I, compared with that of Runx2-II in intramembranous ossification. Interestingly, the depletion of neo rescued the above-described phenotypes, indicating that the isoform-specific N-terminal region of Runx2-I is not functionally essential for bone development. Taken together, our results provide a novel clue leading to a better understanding of the roles of Runx2 isoforms in osteoblast development.

  15. Silorane resin supports proliferation, differentiation, and mineralization of MLO-A5 bone cells in vitro and bone formation in vivo

    OpenAIRE

    Eick, J. David; Barragan-Adjemian, Cielo; Rosser, Jennifer; Melander, Jennifer R.; Dusevich, Vladimir; Weiler, Rachel A.; Miller, Bradley D.; Kilway, Kathleen V.; Dallas, Mark R.; Bi, Lianxing; Nalvarte, Elisabet L.; Bonewald, Lynda F.

    2012-01-01

    Methyl methacrylate used in bone cements has drawbacks of toxicity, high exotherm, and considerable shrinkage. A new resin, based on silorane/oxirane chemistry, has been shown to have little toxicity, low exotherm, and low shrinkage. We hypothesized that silorane-based resins may also be useful as components of bone cements as well as other bone applications and began testing on bone cell function in vitro and in vivo. MLO-A5, late osteoblast cells, were exposed to polymerized silorane (SilMi...

  16. The multiple myeloma bone eco-system and its relation to oncogenesis.

    Science.gov (United States)

    Bataille, R

    2015-06-01

    Pure lytic bone lesions are the hallmark of myeloma (MM). MM is the only hematological malignancy associated with lytic bone lesions and the mechanisms of bone destruction are well documented both at the cellular and molecular levels. An uncoupling bone process characterizes MM, with stimulation of bone resorption and inhibition of bone formation. The capacity of MM cells to directly or indirectly inhibit bone formation is specific of MM, although many carcinomas have the capacity to stimulate bone resorption, directly or indirectly in a similar way to MM. Few MM do not develop bone lesions, while true sclerotic MM remain exceptional. Inhibition of bone formation is the major event explaining the transition from MGUS to overt MM. It is now well documented that bone cells regulate MM cell growth, osteoclast stimulating MM cell growth and osteoblasts inhibiting it. Progression of MM from MGUS is characterized by the selection of MM clones able to inhibit osteoblasts, favoring tumor growth. These data underline the interest of new treatments able to regenerate bone.

  17. High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats

    Institute of Scientific and Technical Information of China (English)

    Li YOU; Zheng-yan SHENG; Chuan-ling TANG; Lin CHEN; Ling PAN; Jin-yu CHEN

    2011-01-01

    To investigate the effects of high cholesterol diet on the development of osteoporosis and the underlying mechanisms in rats.Methods:Female Sprague-Dawley rats were randomly separated into 3 groups:(1) the high cholesterol fed rats were fed a high cholesterol diet containing 77% normal diet food,3% cholesterol and 20% lard for 3 months; (2) ovariectomised (OVX) rats were bilaterally ovariectomised and fed a standard diet; and (3) the control rats were fed the standard diet.Bone mineral density (BMD) of the rats was measured using dual-energy X-ray absorptiometry.Serum levels of oestradiol (E2),osteocalcin (BGP) and carboxy-terminal collagen crosslinks (CTX) were measured using ELISA.Gene expression profile was determined with microarray.Mouse osteoblast cells (MC3T3-E1) were used for in vitro study.Proliferation,differentiation and oxidative stress of the osteoblasts were investigated using MTT,qRT-PCR and biochemical methods.Results:In high cholesterol fed rats,the femur BMD and serum BGP level were significantly reduced,while the CTX level was significantly increased.DNA microarray analysis showed that 2290 genes were down-regulated and 992 genes were up-regulated in this group of rats.Of these genes,1626 were also down-regulated and 1466 were up-regulated in OVX rats.In total,370 genes were up-regulated in both groups,and 976 genes were down-regulated.Some of the down-regulated genes were found to code for proteins involved in the transforming growth factor beta (TGF-β)/bone morphogenic protein (BMP) and Wnt signaling pathways.The up-regulated genes were found to code for IL-6 and Ager with bone-resorption functions.Treatment of MC3T3-E1 cells with cholesterol (12.5-50μg/mL) inhibited the cell proliferation and differentiation in vitro in a concentration-dependent manner.The treatment also concentration-dependently reduced the expression of BMP2 and Cbfa1,and increased the oxidative injury in MC3T3-E1 cells.Conclusion:The results suggest a close

  18. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke.

    Science.gov (United States)

    Shin, Jin A; Kang, Jihee Lee; Lee, Kyung-Eun; Park, Eun-Mi

    2012-05-01

    Bone morphogenetic proteins (BMPs) and their antagonists have roles in scar formation and regeneration after central nervous system injuries. However, temporal changes in their expression during astroglial scar formation in the ischemic brain are unknown. Here, we examined protein levels of BMP2, BMP7, and their antagonist noggin in the ischemic brain up to 4 weeks after experimental stroke in mice. BMP2 and BMP7 levels were increased from 1 to 4 weeks in the ischemic brain, and their expression was associated with astrogliosis. BMP7 expression was more intense and co-localized in reactive astrocytes in the ischemic subcortex at 1 week. Noggin expression began to increase after 2 weeks and was further increased at 4 weeks only in the ischemic subcortex, but the intensity was weak compared to the intensity of BMPs. Noggin was co-localized mainly in activated microglia. These findings show that expression of BMPs and noggin differed over time, in intensity and in types of cell, and suggest that BMPs and noggin have different roles in the processes of glial scar formation and neurorestoration in the ischemic brain.

  19. BONE IN OSTEOPETROSIS

    Directory of Open Access Journals (Sweden)

    Ramkumar

    2014-04-01

    Full Text Available Osteopetrosis, a generalized developmental bone disease due to genetic disturbances, characterized by failure of bone re sorption and continuous bone formation making the bone hard, dense and brittle. Bones of intramembranous ossification and enchondrial ossification are affected genetically and symmetrically. During the process of disease the excess bone formation obliterates the cranial foramina and presses the optic, auditory and facial nerves resulting in defective vision, impaired hearing and facial paralysis. The bone formation in osteopetrosis affects bone marrow function leading to severe anemia and deficient of blood cells. The bone devoid of blood supply due to compression of blood vessels by excess formation of bone are prone to osteomyelitic changes with suppuration and pathological fracture if exposed to infection. Though the condition is chronic progressive, it produces changes leading to fatal condition, it should be studied thoroughly by everyone and hence this article presents a classical case of osteopetrosis with detailed description and discussion for the benefit of readers

  20. Supplementation with green tea polyphenols improves bone microstructure and quality in aged, orchidectomized rats.

    Science.gov (United States)

    Shen, Chwan-Li; Cao, Jay J; Dagda, Raul Y; Tenner, Thomas E; Chyu, Ming-Chien; Yeh, James K

    2011-06-01

    Recent studies show that green tea polyphenols (GTPs) attenuate bone loss and microstructure deterioration in ovariectomized aged female rats, a model of postmenopausal osteoporosis. This study evaluated the efficacy of GTPs at mitigating bone loss and microstructure deterioration along with related mechanisms in androgen-deficient aged rats, a model of male osteoporosis. A 2 (sham vs. orchidectomy) × 2 (no GTP and 0.5% GTP in drinking water) factorial design was studied for 16 weeks using 40 aged male rats. An additional 10 rats (baseline group) were killed at the beginning of study to provide baseline parameters. There was no difference in femoral mineral density between baseline and the sham only group. Orchidectomy suppressed serum testosterone and tartrate-resistant acid phosphatase concentrations, liver glutathione peroxidase activity, bone mineral density, and bone strength. Orchidectomy also decreased trabecular bone volume, number, and thickness in the distal femur and proximal tibia and bone-formation rate in trabecular bone of proximal tibia but increased serum osteocalcin concentrations and bone-formation rates in the endocortical tibial shaft. GTP supplementation resulted in increased serum osteocalcin concentrations, bone mineral density, and trabecular volume, number, and strength of femur; increased trabecular volume and thickness and bone formation in both the proximal tibia and periosteal tibial shaft; decreased eroded surface in the proximal tibia and endocortical tibial shaft; and increased liver glutathione peroxidase activity. We conclude that GTP supplementation attenuates trabecular and cortical bone loss through increasing bone formation while suppressing bone resorption due to its antioxidant capacity.

  1. Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Lin LIN; Xin FU; Xin ZHANG; Lian-xu CHEN; Ji-ying ZHANG; Chang-long YU; Kang-tao MA; Chun-yan ZHOU

    2006-01-01

    Aim: Bone morphogenetic protein 4 (BMP4) is one of the main local contributing factors in callus formation in the early phase of fracture healing. Adipose-derived stromal cells (ADSC) are multipotent cells. The present study was conducted to investigate the osteogenic potential of ADSC when exposed to adenovirus containing BMP4 cDNA (Ad-BMP4). Methods: ADSC were harvested from Sprague-Dawley rats. After exposure to Ad-BMP4, ADSC were assessed by alkaline phos-phatase activity (ALP) assay, RT-PCR and von Kossa staining. BMP4 expression was assessed by RT-PCR, immunofluorescence and Western blot analysis. ADSC transduced with Ad-BMP4 were directly injected into the hind limb muscles of athymic mice. ADSC Ad-EGFP(enhanced green fluorescence protein) served as controls. All animals were examined by X-ray film and histological analysis. Results: The expression of BMP4 was confirmed at both mRNA and protein levels. The expression of the osteoblastic gene, ALP activity and von Kossa staining confirmed that ADSC transduced with Ad-BMP4 underwent rapid and marked osteoblast differentiation, whereas ADSC transduced with Ad-EGFP and cells left alone displayed no osteogenic differentiation. X-ray and histological examination confirmed new bone formation in athymic mice transplanted with ADSC transduced with Ad-BMP4. Conclusion: Our data demonstrated successful osteogenic differentiation of ADSC transduced with Ad-BMP4 in vitro and in vivo. ADSC may be an ideal source of mesenchyme lineage stem cells for gene therapy and tissue engineering.

  2. JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats.

    Science.gov (United States)

    Kimura, Shuichi; Nakagawa, Takashi; Matsuo, Yushi; Ishida, Yuji; Okamoto, Yoshihisa; Hayashi, Mikio

    2011-10-01

    Intermittent administration of parathyroid hormone (PTH) has a potent anabolic effect on bone in humans and animals. Calcium-sensing receptor (CaSR) antagonists stimulate endogenous PTH secretion through CaSR on the surface of parathyroid cells and thereby may be anabolic agents for osteoporosis. JTT-305 is a potent oral short-acting CaSR antagonist and transiently stimulates endogenous PTH secretion. The objective of the present study was to investigate the effects of JTT-305 on PTH secretion and bone in ovariectomized rats. Female rats, immediately after ovariectomy (OVX), were orally administered vehicle or JTT-305 (0.3, 1, or 3 mg/kg) for 12 weeks. The serum PTH concentrations were transiently elevated with increasing doses of JTT-305. In the proximal tibia, JTT-305 prevented OVX-induced decreases in both the cancellous and total bone mineral density (BMD) except for the 0.3mg/kg dose. At the 3mg/kg dose, JTT-305 increased the mineralizing surface and bone formation rate in histomorphometry. The efficacy of JTT-305 at the 3mg/kg dose on the BMD corresponded to that of exogenous rat PTH1-84 injection at doses between 3 and 10 μg/kg. In conclusion, JTT-305 stimulated endogenous transient PTH secretion and bone formation, and consequently prevented bone loss in OVX rats. These results suggest that JTT-305 is orally active and has the potential to be an anabolic agent for the treatment of osteoporosis.

  3. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement.

    Science.gov (United States)

    Nourmohammadi, Jhamak; Sadrnezhaad, S K; Ghader, A Behnam

    2008-12-01

    In this study, the apatite-forming ability of the new resin-modified glass-ionomer cement was evaluated by soaking the cement in the simulated body fluid. The Fourier Transform Infrared (FTIR) spectrometer and X-Ray Diffraction (XRD) patterns of the soaked cement pointed to the creation of poorly crystalline carbonated apatite. It was found that the releasing of calcium ions from the soaked cement will dominate the undesirable effect of polyacrylic acid on apatite formation. Consequently, the ionic activity products (IAPs) of the apatite in the surrounding medium increased which accelerated apatite nucleation induced by the presence of the Si-OH and COOH groups. Accordingly, the apatite nuclei started to form via primary heterogeneous nucleation and continued by secondary nucleation. Therefore, nucleation and growth occurs as in the layer-by-layer mode so that finite numbers of monolayers are produced. Subsequent formation of film occurs by formation of discrete nuclei (layer-plus-island or SK growth).

  4. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients

    DEFF Research Database (Denmark)

    Lee, Bao le ri; Schjerling, Charlotte K.; Kirkby, Nikolai;

    2011-01-01

    Danish CF patients were investigated. The in vitro biofilm formation capacity was studied under static and flow through conditions and the global gene expression profiles were investigated by Affymetrix GeneChip. Regulatory genes of alginate production and quorum sensing (QS) system were sequenced...... and measurements of the alginate production and the detection of the QS signal molecules were performed. Comparisons of mucoid and non-mucoid isolates from early and late stages of the infection showed that the mucoid phenotype maintained over a decade the capacity to form in vitro biofilm and showed an unaltered...

  5. Bone Formation with Deproteinized Bovine Bone Mineral or Biphasic Calcium Phosphate in the Presence of Autologous Platelet Lysate: Comparative Investigation in Rabbit

    Directory of Open Access Journals (Sweden)

    Carole Chakar

    2014-01-01

    Full Text Available Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL and particles of either deproteinized bovine bone mineral (DBBM or biphasic calcium phosphate (BCP, two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P<0.001 while the residual material area was lower (60%; P<0.001 than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.

  6. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    2017-02-01

    Full Text Available Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs and tendon cells (TCs. Methods: The effect of continuous passive motion (CPM therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.

  7. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2⁺ bone marrow cells.

    Science.gov (United States)

    Zhang, Hua; Faber, James E

    2015-10-01

    Wide variation exists in the extent (number and diameter) of native pre-existing collaterals in tissues of different strains of mice, with supportive indirect evidence recently appearing for humans. This variation is a major determinant of the wide variation in severity of tissue injury in occlusive vascular disease. Whether such genetic-dependent variation also exists in the heart is unknown because no model exists for study of mouse coronary collaterals. Also owing to methodological limitations, it is not known if ischemia can induce new coronary collaterals to form ("neo-collaterals") versus remodeling of pre-existing ones. The present study sought to develop a model to study coronary collaterals in mice, determine whether neo-collateral formation occurs, and investigate the responsible mechanisms. Four strains with known rank-ordered differences in collateral extent in brain and skeletal muscle were studied: C57BLKS>C57BL/6>A/J>BALB/c. Unexpectedly, these and 5 additional strains lacked native coronary collaterals. However after ligation, neo-collaterals formed rapidly within 1-to-2 days, reaching their maximum extent in ≤7 days. Rank-order for neo-collateral formation differed from the above: C57BL/6>BALB/c>C57BLKS>A/J. Collateral network conductance, infarct volume(-1), and contractile function followed this same rank-order. Neo-collateral formation and collateral conductance were reduced and infarct volume increased in MCP1(-/-) and CCR2(-/-) mice. Bone-marrow transplant rescued collateral formation in CCR2(-/-) mice. Involvement of fractalkine➔CX3CR1 signaling and endothelial cell proliferation were also identified. This study introduces a model for investigating the coronary collateral circulation in mice, demonstrates that neo-collaterals form rapidly after coronary occlusion, and finds that MCP➔CCR2-mediated recruitment of myeloid cells is required for this process.

  8. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice.

    Science.gov (United States)

    Bartell, Shoshana M; Rayalam, Srujana; Ambati, Suresh; Gaddam, Dhanunjaya R; Hartzell, Diane L; Hamrick, Mark; She, Jin-Xiong; Della-Fera, Mary Anne; Baile, Clifton A

    2011-08-01

    Both central and peripheral leptin administrations reduce body weight, food intake, and adiposity in ob/ob mice. In this study we compared effects of intracerebroventricular (ICV) and subcutaneous (SC) administration of leptin on bone metabolism in the appendicular and axial skeleton and adipose tissue gene expression and determined the effects of ICV leptin on bone marrow gene expression in ob/ob mice. In experiment 1, leptin (1.5 or 0.38 µg/d) or control was continuously injected ICV for 12 days. Gene expression analysis of femoral bone marrow stromal cells showed that expression of genes associated with osteogenesis was increased after ICV injection, whereas those associated with osteoclastogenesis, adipogenesis, and adipocyte lipid storage were decreased. In experiment 2, leptin was injected continuously ICV (0.0 or 1.5 µg/d) or SC (0.0 or 10 µg/d) for 12 days. In both experiments, regardless of mode of administration, leptin decreased body weight, food intake, and body fat and increased muscle mass, bone mineral density, bone mineral content, bone area, marrow adipocyte number, and mineral apposition rate. Serum insulin was decreased, whereas serum osteocalcin, insulin-like growth factor 1, osteoprotegerin, pyridinoline, and receptor activator of nuclear factor κB ligand concentrations were increased. In experiment 2, expression of genes in adipose tissue associated with apoptosis, lipid mobilization, insulin sensitivity, and thermogenesis was increased, whereas expression of genes associated with cell differentiation and maturation was decreased regardless of mode of administration. Thus ICV injection of leptin promotes expression of pro-osteogenic factors in bone marrow, leading to enhanced bone formation in ob/ob mice.

  9. Effect of Extracellular Matrix Membrane on Bone Formation in a Rabbit Tibial Defect Model

    Directory of Open Access Journals (Sweden)

    Jin Wook Hwang

    2016-01-01

    Full Text Available Absorbable extracellular matrix (ECM membrane has recently been used as a barrier membrane (BM in guided tissue regeneration (GTR and guided bone regeneration (GBR. Absorbable BMs are mostly based on collagen, which is more biocompatible than synthetic materials. However, implanted absorbable BMs can be rapidly degraded by enzymes in vivo. In a previous study, to delay degradation time, collagen fibers were treated with cross-linking agents. These compounds prevented the enzymatic degradation of BMs. However, cross-linked BMs can exhibit delayed tissue integration. In addition, the remaining cross-linker could induce inflammation. Here, we attempted to overcome these problems using a natural ECM membrane. The membrane consisted of freshly harvested porcine pericardium that was stripped from cells and immunoreagents by a cleaning process. Acellular porcine pericardium (APP showed a bilayer structure with a smooth upper surface and a significantly coarser bottom layer. APP is an ECM with a thin layer (0.18–0.35 mm but with excellent mechanical properties. Tensile strength of APP was 14.15±2.24 MPa. In in vivo experiments, APP was transplanted into rabbit tibia. The biocompatible material was retained for up to 3 months without the need for cross-linking. Therefore, we conclude that APP could support osteogenesis as a BM for up to 3 months.

  10. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  11. Low-temperature heat capacities and standard molar enthalpy of formation of 4-(2-aminoethyl)-phenol(C8H11NO)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Kong Yu-Xia; Yang Wei-Wei; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol(C8H11NO)are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K.A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method.Based on the fitted polynomial,the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at the interval of 5 K.The energy equivalent,gcalor,of the oxygen-bomb The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion and other thermodynamic principles.Finally,the standard molar enthalpy of formation of the compound

  12. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation : An in vitro and in vivo characterization

    NARCIS (Netherlands)

    Yeo, A.; Wong, W. J.; Khoo, H. H.; Teoh, S. H.

    2010-01-01

    Pretreatment of polycaprolactone-20% tricalcium phosphate (PCL-TCP) scaffolds under alkaline conditions can be utilized to alter surface characteristics for enhanced early bone formation. PCL-TCP scaffolds were treated with sodium hydroxide (NaOH) at various time intervals (group A: untreated, group

  13. Ultrasound to stimulate early bone formation in a distraction gap : a double blind randomised clinical pilot trial in the edentulous mandible

    NARCIS (Netherlands)

    Schortinghuis, J; Bronckers, ALLJ; Stegenga, B; Raghoebar, GM; de Bont, LGM

    2005-01-01

    Objective: In a double blind randomised clinical pilot trial, it was investigated whether tow intensity pulsed ultrasound therapy stimulates early bone formation in a distraction gap created in a severely resorbed mandible. Design: Eight patients underwent a mandibular vertical distraction over an a

  14. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo

    NARCIS (Netherlands)

    Hedberg, E.L.; Kroese-Deutman, H.C.; Shih, C.K.; Crowther, R.S.; Carney, D.H.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    This study was designed to assess the influence of varied release kinetics of the osteogenic thrombin peptide TP508 from osteoconductive poly(propylene fumarate)-based (PPF) composite scaffolds on bone formation in vivo. Four classes of scaffolds were constructed with different TP508 dosages (200, 1

  15. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development.

    Science.gov (United States)

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S

    2007-12-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication-competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 h after infection (approximately HH22) and observed that Shh expression was reduced or absent. In the mesenchyme, we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 h after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin-infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway.

  16. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome.

    Science.gov (United States)

    Yousfi, M; Lasmoles, F; Lomri, A; Delannoy, P; Marie, P J

    2001-05-01

    The Saethre-Chotzen syndrome is characterized by premature fusion of cranial sutures resulting from mutations in Twist, a basic helix-loop-helix (bHLH) transcription factor. We have identified Twist target genes using human mutant calvaria osteoblastic cells from a child with Saethre-Chotzen syndrome with a Twist mutation that introduces a stop codon upstream of the bHLH domain. We observed that Twist mRNA and protein levels were reduced in mutant cells and that the Twist mutation increased cell growth in mutant osteoblasts compared with control cells. The mutation also caused increased alkaline phosphatase and type I collagen expression independently of cell growth. During in vitro osteogenesis, Twist mutant cells showed increased ability to form alkaline phosphatase-positive bone-like nodular structures associated with increased type I collagen expression. Mutant cells also showed increased collagen synthesis and matrix production when cultured in aggregates, as well as an increased capacity to form a collagenous matrix in vivo when transplanted into nude mice. In contrast, Twist mutant osteoblasts displayed a cell-autonomous reduction of osteocalcin mRNA expression in basal conditions and during osteogenesis. The data show that genetic deletion of Twist causing reduced Twist dosage increases cell growth, collagen expression, and osteogenic capability, but inhibits osteocalcin gene expression. This provides one mechanism that may contribute to the premature cranial ossification induced by deletion of the bHLH Twist domain in Saethre-Chotzen syndrome.

  17. Optimum potassium chloride concentration to reduce hydration capacity of clay formations; Concentracao otima de cloreto de potassio para reduzir a capacidade de hidratacao das formacoes argilosas

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Jose Carlos Vieira [PETROBRAS, Salvador, BA (Brazil). Centro de Recursos Humanos Norte-Nordeste. Setor de Programas de Perfuracao; Oliveira, Manoel Martins de [PETROBRAS, BA (Brazil). Distrito de Perfuracao. Div. de Tecnicas de Perfuracao

    1988-12-31

    An experimental method for ascertaining the optimal concentration of potassium chloride for reducing the hydration and dispersion capacity of clayey formations sensitive to water-based fluids is described. Under this method, filtering time for disperse systems prepared from clayey formation samples is measured. A discussion is offered on theoretical aspects of hydration, expansion, and dispersion of clayey rocks in response to the variations in stress equilibrium states produced by these phenomena when a hole (well) is opened in the rock. The state of the art of this technological branch is also described. (author) 10 refs., 5 figs., 4 tabs.

  18. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding.

    Science.gov (United States)

    Qi, Yue; Fu, Melissa; Herzog, Herbert

    2016-02-01

    Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation.

  19. Low-temperature heat capacities and standard molar enthalpy of formation of N-methylnorephedrine C211H17NO(s)

    Institute of Scientific and Technical Information of China (English)

    Di You-Ying; Wang Da-Qi; Shi Quan; Tan Zhi-Cheng

    2008-01-01

    This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been mea- sured by a precision automated adiabatic calorimeter over the temperature range from T=78 K to T=400 K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342- 364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol preci- sion oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.

  20. Orchestration of bone remodeling

    NARCIS (Netherlands)

    Moester, Martiene Johanna Catharina

    2014-01-01

    In healthy individuals, a balance exists between bone formation and resorption. Disruption of this balance can lead to higher or lower bone mass, and disease such as osteoporosis. Treatment for osteoporosis generally inhibits bone resorption, but does not rebuild bone to a healthy strength. More kno

  1. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.

  2. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone.

    Science.gov (United States)

    Dvorak, Melita M; De Joussineau, Cyrille; Carter, D Howard; Pisitkun, Trairak; Knepper, Mark A; Gamba, Gerardo; Kemp, Paul J; Riccardi, Daniela

    2007-09-01

    Thiazide diuretics are used worldwide as a first-choice drug for patients with uncomplicated hypertension. In addition to their antihypertensive effect, thiazides increase bone mineral density and reduce the prevalence of fractures. Traditionally, these effects have been attributed to increased renal calcium reabsorption that occurs secondary to the inhibition of the thiazide-sensitive sodium chloride cotransporter (NCC) in the distal tubule. The aim of the current study was to determine whether thiazides exert a direct bone-forming effect independent of their renal action. We found that the osteoblasts of human and rat bone also express NCC, suggesting that these bone-forming cells may be an additional target for thiazides. In vitro, NCC protein was virtually absent in proliferating human and fetal rat osteoblasts, whereas its expression dramatically increased during differentiation. Thiazides did not affect osteoblast proliferation, but directly stimulated the production of the osteoblast differentiation markers runt-related transcription factor 2 (runx2) and osteopontin. Using overexpression/knockdown studies in fetal rat calvarial cells, we show that thiazides increase the formation of mineralized nodules, but loop diuretics do not. Overall, our study demonstrates that thiazides directly stimulate osteoblast differentiation and bone mineral formation independent of their effects in the kidney. Therefore, in addition to their use as antihypertensive drugs, our results suggest that thiazides may find a role in the prevention and treatment of osteoporosis.

  3. Death Receptor 3 (TNFRSF25 Increases Mineral Apposition by Osteoblasts and Region Specific New Bone Formation in the Axial Skeleton of Male DBA/1 Mice

    Directory of Open Access Journals (Sweden)

    Fraser L. Collins

    2015-01-01

    Full Text Available Objectives. Genome wide association studies identified TNFSF member TNF-like protein 1A (TL1A, TNFSF15 as a potential modulator of ankylosing spondylitis (AS. TL1A is the only confirmed TNFSF ligand of death receptor 3 (DR3, TNFRSF25; however, its role in disease pathology is not characterised. We evaluated DR3’s role in controlling osteoblast- (OB- dependent bone formation in vitro and in vivo. Methods. Osteoprogenitor cells and OB were cultured from male DR3-deficient (DR3ko and wild-type (DR3wt DBA/1 mice. DR3 and RANKL expression were tested by flow cytometry. Alkaline phosphatase and mineralization were quantified. Osteopontin, osteoprotegerin, and pro MMP-9 were measured by ELISA. A fluorescent probe (BoneTag was used to measure in vivo mineralization in 10-month-old mice. Results. DR3 was expressed on osteoprogenitors and OB from DR3wt mice. Alkaline phosphatase, osteopontin, and mineral apposition were significantly elevated in DR3wt cultures. Levels of RANKL were comparable whilst osteoprotegerin was significantly increased in DR3wt cultures. In vivo incorporation of BoneTag was significantly lower in the thoracic vertebrae of 10-month-old DR3ko mice. Conclusions. These data identify new roles for DR3 in regulating OB-dependent bone mineral apposition. They potentially begin to explain the atypical pattern of new bone formation observed in the axial skeleton of grouped, aging DBA/1 mice.

  4. A three-dimensional cell-loading system using autologous plasma loaded into a porous {beta}-tricalcium-phosphate block promotes bone formation at extraskeletal sites in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Nobutaka [Oral and Maxillofacial Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Sotome, Shinichi [Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Marukawa, Eriko [Oral and Maxillofacial Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Omura, Ken [Oral and Maxillofacial Surgery, Graduate school, Tokyo Medical and Dental University (Japan); Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University (Japan); Shinomiya, Kenichi [Orthopaedic and Spinal Surgery, Graduate school, Tokyo Medical and Dental University (Japan) and Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University (Japan) and Advanced Bone and Joint Science (Japan)]. E-mail: shinomiya.orth@tmd.ac.jp

    2007-05-16

    The effects of platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on bone marrow stromal cells (MSCs) with respect to proliferation, osteogenic differentiation, and bone formation capability were investigated. MSCs derived from rats were cultured in medium containing mixtures of PRP and PPP. Fibrinogen was eliminated prior to the experiment. The DNA content and alkaline phosphatase (ALP) activity were measured. PRP stimulated cell proliferation and inhibited osteoblastic differentiation. To examine the effects of fibrin in plasma, MSCs were cultured in PRP or PPP fibrin gels formed both on a cell culture insert installed in a culture well and on the bottom surface of the same culture well. The ALP activities of the MSCs in both of the gels were higher than those on the surface of the culture wells. The MSCs cultured on the PPP gel showed the highest ALP activity. The effects of PRP and PPP used as scaffolds for bone formation were also investigated. MSCs were suspended in PRP or PPP, introduced into porous {beta}-tricalcium phosphate blocks, and then implanted into subcutaneous sites. Subsequently, bone formation was quantified. Further in vivo studies found that implants prepared using PPP had a greater osteoinductive capability than implants prepared with PRP.

  5. Statistical characterisation and stochastic parameterisation of sedimentary geological formations on their reaction capacity for sustainable groundwater quality management

    NARCIS (Netherlands)

    Griffioen, J.; Vermooten, S.; Keijzer, T.; Bakr, M.; Valstar, J.

    2012-01-01

    The fate of contaminants in groundwater aquifers is determined by the buffering capacity of those aquifers together with the composition of inflowing groundwater. A nationwide characterisation of the environmental geochemistry of the shallow subsurface (down to 30 m below surface) has been started i

  6. Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability.

    Science.gov (United States)

    Quintero-Hernández, Veronica; Del Pozo-Yauner, Luis; Pedraza-Escalona, Martha; Juárez-González, Victor R; Alcántara-Recillas, Israel; Possani, Lourival D; Becerril, Baltazar

    2012-04-30

    The single-chain antibody fragment (scFv) 6009F, obtained by directed evolution, neutralizes the effects of the Cn2 toxin, which is the major toxic component of Centruroides noxius scorpion venom. In this work we compared the neutralization capacity and the thermodynamic stability of scFv 6009F with those of two other derived formats: Fab 6009F and diabody 6009F. Additionally, the affinity constants to Cn2 toxin of the three recombinant antibody fragments were determined by means of BIAcore. We found a correlation between the thermodynamic stability of these antibody fragments with their neutralization capacity. The order of thermodynamic stability determined was Fab≫scFv>diabody. The Fab and scFv were capable of neutralizing the toxic effects of Cn2 and whole venom but the diabody was unable to fully neutralize intoxication. In silico analysis of the diabody format indicates that the reduction of stability and neutralization capacity could be explained by a less cooperative interface between the heavy and the light variable domains.

  7. Radiotherapy of heterotopic bone formation in patients with paraplegia. Preliminary results; Strahlentherapie heterotoper Ossifikationen bei Querschnittsgelaehmten. Praeliminaere Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Sautter-Bihl, M.L. [Klinik fuer Strahlentherapie, Staedtisches Klinikum Karlsruhe (Germany); Liebermeister, E. [Klinik fuer Strahlentherapie, Staedtisches Klinikum Karlsruhe (Germany); Heinze, H.G. [Klinik fuer Strahlentherapie, Staedtisches Klinikum Karlsruhe (Germany); Nanassy, A. [Klinik fuer Orthopaedie, Rehabilitationskrankenhaus Langensteinbach (Germany); Stoltze, D. [Klinik fuer Orthopaedie, Rehabilitationskrankenhaus Langensteinbach (Germany)

    1995-08-01

    In 20 patients with paralysis, 25 regions were irradiated with (mostly) 10 Gy in single fractions of 2 to 2.5 Gy using 8 MW photons. In 15 patients radiotherapy was performed as a primary treatment in the status of myositis; 7 patients were treated after (subtotal) resection of already manifest ossifications (2 patients were treated twice, primarily and postoperatively). In a minimum follow-up 12 weeks, none of the 20 irradiated patients showed any progression of the developing or already manifest ossification; thus mobilisation and rehabilitation could be carried out as desired. No side effects occurred. The preliminary results of the present study suggest that radiotherapy is an effective local treatment with minimal side effects for the prevention of heterotopic bone formation in patients with paraplegia. (orig.) [Deutsch] Bei 20 Patienten (18 Maenner, zwei Frauen, Alter 19 bis 62 Jahre) mit Querschnittssyndrom wurden 25 Regionen mit ueberwiegend 10 Gy a 2 bis 2,5 Gy Einzeldosis mit 8-MW-Photonen bestrahlt. Die Radiatio erfolgte bei 15 Patienten als Primaerprophylaxe im entzuendlichen Stadium, bei sieben Patienten sekundaer nach (subtotaler) Resektion von Ossifikationen (zwei Patienten wurden sowohl primaer als auch sekundaer bestrahlt). Bei einer Mindestnachbeobachtungszeit von zwoelf Wochen trat in keinem Fall eine Progression der sich entwickelnden bzw. bereits bestehenden heterotopen Ossifikationen auf: saemtliche Patienten konnten wunschgemaess mobilisiert und im Rahmen ihrer neurologischen Ausfaelle rehabilitiert werden. Nebenwirkungen traten nicht auf. Die vorliegende praeliminaeren Ergebnisse deuten hin, dass die Strahlentherapie eine effektive und nebenwirkungsarme lokale Therapie zur Verhinderung heterotoper Ossifikationen beim Querschnittssyndrom darstellt. (orig.)

  8. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  9. INCREASING OF EFFICIENCY OF NATURAL GAS COMBUSTION IN STEAM BOILERS OF SMALL AND MEDIUM CAPACITY DUE TO IMPROVED MIXTURE FORMATION

    Directory of Open Access Journals (Sweden)

    Gaponenko A. M.

    2014-12-01

    Full Text Available The article presents methods of industrial tests of the of technical device utility model designed for boilers E-1,0-0,9G-3 QL-500, D-721 of small and medium capacity. The research is aimed at improving the efficiency of fuel combustion in the boiler furnaces due to uniform distribution of airflow when supplying it to the boiler burner

  10. Magnesium substitution in brushite cements for enhanced bone tissue regeneration.

    Science.gov (United States)

    Cabrejos-Azama, Jatsue; Alkhraisat, Mohammad Hamdan; Rueda, Carmen; Torres, Jesús; Blanco, Luis; López-Cabarcos, Enrique

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p<0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations.

  11. Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Chang

    2012-12-01

    Full Text Available Background: Tendon-bone tunnel healing is crucial for long term success in anterior cruciate liga­ment (ACL reconstruction. The periosteum contains osteochondral progenitor cells that can differenti­ate into osteoblasts and chondroblasts during tendon-bone healing. We developed a scaf­fold-free method using polymerized fibrin-coated dishes to make functional periosteal progenitor cell (PPC sheets. Bioengineered PPC sheets for enhancing tendon-bone healing were evaluated in an extra-articular bone tunnel model in rabbit. Methods: PPC derived from rabbit tibia periosteum, cultivated on polymerized fi­brin-coated dishes and harvested as PPC sheet. A confocal microscopy assay was used to evaluate the morphology of PPC sheets. PPC sheets as a periosteum to wrap around hamstring tendon grafts were pulled into a 3-mm diameter bone tunnel of tibia, and compared with a tendon graft without PPC sheets treatment. Rabbits were sacrificed at 4 and 8 weeks postoperatively for biochemical as­say and histological assay to demonstrate the enhancement of PPC sheets in tendon-bone healing. Results: PPC spread deposit on fibrin on the dish surface with continuous monolayer PPC was ob­served. Histological staining revealed that PPC sheets enhance collagen and glycosaminoglycans deposi­tion with fibrocartilage formation in the tendon-bone junction at 4 weeks. Collagen fiber with fibrocartilage formation at tendon-bone junction was also found at 8 weeks. Matured fibrocartilage and dense collagen fiber were formed at the tendon-bone interface at 8 weeks by Masson trichrome and Safranin-O staining Conclusions: Periosteal progenitor cell monolayer maintains the differentiated capacity and osteochon­dral potential in order to promote fibrocartilage formation in tendon-bone junction. Bioengi­neered PPC sheets can offer a new feasible therapeutic strategy of a novel approach to en­hance tendon-bone junction healing.

  12. Usefulness of postoperative hip irradiation in the prevention of heterotopic bone formation in a high risk group of patients

    Energy Technology Data Exchange (ETDEWEB)

    MacLennan, I.; Keys, H.M.; Evarts, C.M.; Rubin, P.

    1984-01-01

    Heterotopic ossification is a complication of total hip arthroplasty in 14 to 30% of patients. Significant functional impairment will occur in up to 28% of patients with ectopic bone. The high risk group includes those with preexisting heterotopic bone in either hip, those suffering from hypertrophic osteoarthritis or ankylosing spondylitis and patients who have had multiple procedures on the hip. Fifty-eight patients (67 hips) were irradiated after surgical removal of ectopic bone (53 hips) or received radiation prophylaxis of heterotopic ossification (14 hips). Ninety-five percent of patients had either no bone visible or insignificant amounts of ectopic bone visible on postoperative hip X-rays. Only 5% of patients showed significant persistence of ectopic bone. Postoperative hip function was dramatically improved compared to preoperative function in all patients treated. The importance of early commencement of irradiation is emphasized.

  13. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo

    Institute of Scientific and Technical Information of China (English)

    Song XU; Kim DE VEIRMAN; Holly EVANS; Gaia Cecilia SANTINI; Isabelle VANDE BROEK; Xavier LELEU; Ann DE BECKER

    2013-01-01

    Vorinostat,a histone deacetylase (HDAC) inhibitor currently in a clinical phase III trial for multiple myeloma (MM) patients,has been reported to cause bone loss.The purpose of this study was to test whether,and to what extent,vorinostat influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and bone formation in vivo.Methods:Bone marrow-derived MSCs were prepared from both normal donors and MM patients.The MSCs were cultured in an osteogenic differentiation induction medium to induce osteogenic differentiation,which was evaluated by alkaline phosphatase (ALP) staining,Alizarin Red S staining and the mRNA expression of osteogenic markers.Naive mice were administered vorinostat (100 mg/kg,ip) every other day for 3 weeks.After the mice were sacrificed,bone formation was assessed based on serum osteocalcin level and histomorphometric analysis.Results:Vorinostat inhibited the viability of hMSCs in a concentration-dependent manner (the IC50 value was 15.57 μmol/L).The low concentration of vorinostat (1 μmol/L) did not significantly increase apoptosis in hMSCs,whereas pronounced apoptosis was observed following exposure to higher concentrations of vorinostat (10 and 50 μmol/L).In bone marrow-derived hMSCs from both normal donors and MM patients,vorinostat (1 μmol/L) significantly increased ALP activity,mRNA expression of osteogenic markers,and matrix mineralization.These effects were associated with upregulation of the bone-specifying transcription factor Runx2 and with the epigenetic alterations during normal hMSCs osteogenic differentiation.Importantly,the mice treated with vorinostat did not show any bone loss in response to the optimized treatment regimen.Conclusion:Vorinostat,known as a potent anti-myeloma drug,stimulates MSC osteogenesis in vitro.With the optimized treatment regimen,any decrease in bone formation was not observed in vivo.

  14. Estimation of Geologic Storage Capacity of Carbon Dioxide in the Bukpyeong Basin, Korea Using Integrated Three-Dimensional Geologic Formation Modeling and Thermo-Hydrological Numerical Modeling

    Science.gov (United States)

    Kim, J.; Kihm, J.; Park, S.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A conventional method, which was suggested by NETL (2007), has been widely used for estimating the geologic storage capacity of carbon dioxide in sedimentary basins. Because of its simple procedure, it has been straightforwardly applied to even spatially very complicate sedimentary basins. Thus, the results from the conventional method are often not accurate and reliable because it can not consider spatial distributions of fluid conditions and carbon dioxide properties, which are not uniform but variable within sedimentary basins. To overcome this limit of the conventional method, a new method, which can consider such spatially variable distributions of fluid conditions and carbon dioxide properties within sedimentary basins, is suggested and applied in this study. In this new method, a three-dimensional geologic formation model of a target sedimentary basin is first established and discretized into volume elements. The fluid conditions (i.e., pressure, temperature, and salt concentration) within each element are then obtained by performing thermo-hydrological numerical modeling. The carbon dioxide properties (i.e., phase, density, dynamic viscosity, and solubility to groundwater) within each element are then calculated from thermodynamic database under corresponding fluid conditions. Finally, the geologic storage capacity of carbon dioxide with in each element is estimated using the corresponding carbon dioxide properties as well as porosity and element volume, and that within the whole sedimentary basin is determined by summation over all elements. This new method is applied to the Bukpyeong Basin, which is one of the prospective offshore sedimentary basins for geologic storage of carbon dioxide in Korea. A three-dimensional geologic formation model of the Bukpyeong Basin is first established considering the elevation data of the boundaries between the geologic formations obtained from seismic survey and geologic maps at the sea floor surface. This geologic

  15. A Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs

    OpenAIRE

    Ko-Ning Ho; Eisner Salamanca; Kuo-Chi Chang; Tsai-Chin Shih; Yu-Chi Chang; Haw-Ming Huang; Nai-Chia Teng; Che-Tong Lin; Sheng-Wei Feng; Wei-Jen Chang

    2016-01-01

    Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry resembles human bone. The aim of this study was to compare the performance of a novel bioresorbable pur...

  16. Guided bone regeneration using a flexible hydroxyapatite patch.

    Science.gov (United States)

    Sun, Fangfang; Kang, Hyun Gu; Ryu, Su-Chak; Kim, Ji Eun; Park, Enoch Y; Hwang, Dae Youn; Lee, Jaebeom

    2013-11-01

    Guided bone regeneration (GBR) is a new method of promoting new bone formation by blocking the proliferation of regenerated connective tissue or providing additional interventions such as direct drug delivery and mechanical support. This in vivo study of bone regeneration in radius compound fractures in rabbits was conducted using a highly flexible scaffold of nanoscale hydroxyapatite (nHAp)/chitosan, termed a "bone patch". A solidification-assisted compression (SAC) method was utilized to fabricate the bone patch, and its in vivo cytotoxicity, bio-absorption, and bone regeneration capacity were evaluated. Four weeks after implantation, new bone formation with abundant active osteoblasts and incompleted degradation of chitosan in the patch were observed without any regeneration of connective tissue, compared with the corresponding implant without a patch. X-ray images showed that the radius with the bone patch had higher opacity than that of the control, which was consistent with the results obtained via histological analysis. Evidently, the nHAp-embedded bone-patch scaffold has considerable potential for application in the field of orthopedics of bone regeneration.

  17. Comparison of Biofilm Formation Capacities of Two Clinical Isolates of Staphylococcus Epidermidis with and without icaA and icaD Genes on Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Sertaç Argun Kıvanç

    2017-03-01

    Full Text Available Objectives: To compare biofilm formations of two Staphylococcus epidermidis (S. epidermidis isolates with known biofilm formation capacities on four different intraocular lenses (IOL that have not been studied before. Materials and Methods: Two isolates obtained from ocular surfaces and identified in previous studies and stored at -86 °C in 15% glycerol in the microbiology laboratory of the Anadolu University Department of Biology were purified and used in the study. The isolates were S. epidermidis KA 15.8 (ICA+, a known biofilm producer isolate positive for icaA, icaD and bap genes, and S. epidermidis KA 14.5 (ICA-, known as a non-biofilm producer isolate negative for icaA, icaD and bap genes. The biofilm formation capacities of the 2 isolates on 4 different IOLs were compared. Two of the IOLs were acrylic (UD613 [IOL A], Turkey; SA60AT [IOL B], USA, and the other two were polymethyl methacrylate (PMMA (B60130C [IOL C], India; B55125C [IOL D], India. Bacterial enumeration and optical density measurements were done from biofilms that formed on the IOLs. Biofilms were imaged using scanning electron microscopy. Results: Mean bacterial counts on the IOLs were 7.1±0.4 log10 CFU/mL with the ICA+ isolate, and 6.7±0.8 log10 CFU/mL with the ICA- isolate; there were no statistically significant differences. Biofilm formation was lower with acrylic lenses than PMMA lenses with both isolates (p=0.009 and p=0.013. The highest biofilm production was obtained on IOL C (PMMA (p<0.001 and the lowest was obtained on IOL A (hydrophilic acrylic (p<0.001. Conclusion: Bacterial counts after biofilm formation were lower on acrylic lenses, especially hydrophilic acrylic with hydrophobic properties. Further animal and in vivo studies are required to support the findings of this study.

  18. Maximizing bone formation in posterior spine fusion using rhBMP-2 and zoledronic acid in wild type and NF1 deficient mice.

    Science.gov (United States)

    Bobyn, Justin; Rasch, Anton; Kathy, Mikulec; Little, David G; Schindeler, Aaron

    2014-08-01

    Spinal pseudarthrosis is a well described complication of spine fusion surgery in NF1 patients. Reduced bone formation and excessive resorption have been described in NF1 and anti-resorptive agents may be advantageous in these individuals. In this study, 16 wild type and 16 Nf1(+/-) mice were subjected to posterolateral fusion using collagen sponges containing 5 µg rhBMP-2 introduced bilaterally. Mice were dosed twice weekly with 0.02 mg/kg zoledronic acid (ZA) or sterile saline. The fusion mass was assessed for bone volume (BV) and bone mineral density (BMD) by microCT. Co-treatment using rhBMP-2 and ZA produced a significant increase (p Nf1(+/-) mice (+174%). Co-treatment also produced a significantly higher total BMD of the fusion mass compared to rhBMP-2 alone in both groups (p Nf1(+/-) deficient mice still generated less bone than wild type controls. TRAP staining on histological sections indicated an increased osteoclast surface/bone surface (Oc.S/BS) in Nf1(+/-) mice relative to wild type mice, and this was reduced with ZA treatment.

  19. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)–tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); He, Jianxin, E-mail: hejianxin771117@163.com [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000 (China); Wang, Qian [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Chen, Li [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong [Key Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); Ding, Bin [Henan Provincial Key Laboratory of Functional Textile Materials, Zhongyuan University of Technology, Zhengzhou 450007 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600 (China)

    2016-05-01

    To engineer bone tissue, it is necessary to provide a biocompatible, mechanically robust scaffold. In this study, we fabricated an ultrafine nanofiber scaffold by electrospinning a blend of poly(L-lactic-co-glycolic acid), tussah silk fibroin, and graphene oxide (GO) and characterized its morphology, biocompatibility, mechanical properties, and biological activity. The data indicate that incorporation of 10 wt.% tussah silk and 1 wt.% graphene oxide into poly(L-lactic-co-glycolic acid) nanofibers significantly decreased the fiber diameter from 280 to 130 nm. Furthermore, tussah silk and graphene oxide boosted the Young's modulus and tensile strength by nearly 4-fold and 3-fold, respectively, and significantly enhanced adhesion, proliferation in mouse mesenchymal stem cells and functionally promoted biomineralization-relevant alkaline phosphatase (ALP) and mineral deposition. The results indicate that composite nanofibers could be excellent and versatile scaffolds for bone tissue engineering. - Highlights: • GO-doped PLGA–tussah silk fibroin ultrafine nanofibers with diameter of about 130 nm were fabricated by electrospinning. • Incorporation of 10 wt.% tussah silk to the PLGA nanofibers accelerates osteoblast differentiation and formation of new bone. • Mechanical properties of composite nanofiber mats had been significantly improved after embedding with GO nanosheets. • Nanostructured composite scaffolds effectively accelerate mesenchymal stem cells differentiation and formation of new bone.

  20. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2016-01-01

    Full Text Available Pulsed electromagnetic field (PEMF has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP, but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.

  1. Performance evaluation of multilevel modulation formats using partial response for capacity upgrade in access network with limited electronic bandwidth

    Science.gov (United States)

    Madsen, Peter; Frejstrup Suhr, Lau; Sebastian Rodriguez, Juan; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-09-01

    We present a successful experimental evaluation of 4 level Pulse Amplitude Modulation (4-PAM) and Duobinary modulation. An experimental performance evaluation is presented for Duobinary 4 PAM and other modulation formats. All modulation formants used, may be considered to be implemented in future Passive Optical Network (PON) class access networks with limited electrical bandwidth. We compared NRZ, Duobinary, 4-PAM and Duobinary 4-PAM operating at 9 Gbaud over 20 km single mode fiber. The results provides an insight and guidelines on the utilization of these advanced modulation formats.

  2. Bone Formation by Sheep Stem Cells in an Ectopic Mouse Model: Comparison of Adipose and Bone Marrow Derived Cells and Identification of Donor-Derived Bone by Antibody Staining

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Dreyer, Chris Halling; Ditzel, Nicholas;

    2016-01-01

    Background. Scaffolds for bone tissue engineering (BTE) can be loaded with stem and progenitor cells (SPC) from different sources to improve osteogenesis. SPC can be found in bone marrow, adipose tissue, and other tissues. Little is known about osteogenic potential of adipose-derived culture...

  3. Changes in antioxidant capacity and colour associated with the formation of β-carotene epoxides and oxidative cleavage derivatives.

    Science.gov (United States)

    Gurak, Poliana D; Mercadante, Adriana Z; González-Miret, M L; Heredia, Francisco J; Meléndez-Martínez, Antonio J

    2014-03-15

    In this study HPLC-DAD-MS/MS was applied for the identification of compounds derived from (all-E)-β-carotene following epoxidation and oxidative cleavage. The consequences on the CIELAB colour parameters and antioxidant capacity (AC) were also evaluated. Five apocarotenoids, three secocarotenoids, seven Z isomers and two epoxides were detected as a result of the oxidative cleavage. Four epoxides and three Z isomers were detected as a consequence of the epoxidation reaction. Some compounds were detected for the first time as a result of oxidation reactions. Both treatments led to a marked decrease in b(∗) and Cab(∗) values, indicating that these colour parameters can be used for the rapid assessment of β-carotene oxidation. The oxidative cleavage of β-carotene resulted in increased capacity to both scavenge ABTS(+) and quench singlet oxygen. These results suggest that the study of the AC of these oxidative derivatives and their possible usefulness as food ingredients deserves further attention.

  4. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    Institute of Scientific and Technical Information of China (English)

    Issam Alshami; Ahmed E Alharbi

    2014-01-01

    Objective: To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract.Methods:In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results: Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions: The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  5. Effect of platelet-derived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Vikjaer, D; Blom, S; Hjørting-Hansen, E;

    1997-01-01

    The effect of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) on bone healing was examined in calvarial defects in rabbits. Bicortical circular (critical size) defects were prepared in the calvarial bone of 16 rabbits. The defects were closed on the dural side and covered externally...

  6. Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma.

    Directory of Open Access Journals (Sweden)

    Yaling Liu

    Full Text Available We have carried out fate mapping studies using Osterix-EGFPCre and Osterix-CreERt animal models and found Cre reporter expression in many different cell types that make up the bone marrow stroma. Constitutive fate mapping resulted in the labeling of different cellular components located throughout the bone marrow, whereas temporal fate mapping at E14.5 resulted in the labeling of cells within a region of the bone marrow. The identity of cell types marked by constitutive and temporal fate mapping included osteoblasts, adipocytes, vascular smooth muscle, perineural, and stromal cells. Prolonged tracing of embryonic precursors labeled at E14.5dpc revealed the continued existence of their progeny up to 10 months of age, suggesting that fate mapped, labeled embryonic precursors gave rise to long lived bone marrow progenitor cells. To provide further evidence for the marking of bone marrow progenitors, bone marrow cultures derived from Osterix-EGFPCre/Ai9 mice showed that stromal cells retained Cre reporter expression and yielded a FACS sorted population that was able to differentiate into osteoblasts, adipocytes, and chondrocytes in vitro and into osteoblasts, adipocytes, and perivascular stromal cells after transplantation. Collectively, our studies reveal the developmental process by which Osterix-Cre labeled embryonic progenitors give rise to adult bone marrow progenitors which establish and maintain the bone marrow stroma.

  7. Osterix-Cre Labeled Progenitor Cells Contribute to the Formation and Maintenance of the Bone Marrow Stroma

    Science.gov (United States)

    Liu, Yaling; Strecker, Sara; Wang, Liping; Kronenberg, Mark S.; Wang, Wen; Rowe, David W.; Maye, Peter

    2013-01-01

    We have carried out fate mapping studies using Osterix-EGFPCre and Osterix-CreERt animal models and found Cre reporter expression in many different cell types that make up the bone marrow stroma. Constitutive fate mapping resulted in the labeling of different cellular components located throughout the bone marrow, whereas temporal fate mapping at E14.5 resulted in the labeling of cells within a region of the bone marrow. The identity of cell types marked by constitutive and temporal fate mapping included osteoblasts, adipocytes, vascular smooth muscle, perineural, and stromal cells. Prolonged tracing of embryonic precursors labeled at E14.5dpc revealed the continued existence of their progeny up to 10 months of age, suggesting that fate mapped, labeled embryonic precursors gave rise to long lived bone marrow progenitor cells. To provide further evidence for the marking of bone marrow progenitors, bone marrow cultures derived from Osterix-EGFPCre/Ai9 mice showed that stromal cells retained Cre reporter expression and yielded a FACS sorted population that was able to differentiate into osteoblasts, adipocytes, and chondrocytes in vitro and into osteoblasts, adipocytes, and perivascular stromal cells after transplantation. Collectively, our studies reveal the developmental process by which Osterix-Cre labeled embryonic progenitors give rise to adult bone marrow progenitors which establish and maintain the bone marrow stroma. PMID:23951132

  8. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial

    DEFF Research Database (Denmark)

    Raina, D B; Gupta, A; Petersen, M M;

    2016-01-01

    OBJECTIVES: We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth...... factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. MATERIALS AND METHODS: We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra...... microscopy. RESULTS: C2C12 cells differentiated into osteoblast-like cells expressing prominent bone markers after seeding on the biomaterial. The conditioned media of the ROS 17/2.8 contained bone morphogenetic protein-2 (BMP-2 8.4 ng/mg, standard deviation (sd) 0.8) and BMP-7 (50.6 ng/mg, sd 2.2). In vitro...

  9. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.

  10. Effects of altered crystalline structure and increased initial compressive strength of calcium sulfate bone graft substitute pellets on new bone formation.

    Science.gov (United States)

    Urban, Robert M; Turner, Thomas M; Hall, Deborah J; Infanger, Susan I; Cheema, Naveed; Lim, Tae-Hong; Moseley, Jon; Carroll, Michael; Roark, Michael

    2004-01-01

    A new, modified calcium sulfate has been developed with a different crystalline structure and a compressive strength similar to many calcium phosphate materials, but with a resorption profile only slightly slower than conventional surgical-grade calcium sulfate. A canine bilateral defect model was used to compare restoration of defects treated with the modified calcium sulfate compared to treatment using conventional calcium sulfate pellets after 6, 13, and 26 weeks. The modified calcium sulfate pellets were as effective as conventional calcium sulfate pellets with regard to the area fraction and compressive strength of newly formed bone in the treated bone defects. Mechanical testing demonstrated that the initial compressive strength of the modified material was increased nearly three-fold compared to that of conventional surgical-grade calcium sulfate. This increase potentially allows for its use in a broader range of clinical applications, such as vertebral and subchondral defects.

  11. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  12. 模拟失重对大鼠承重骨骨髓基质细胞数量及体外成骨能力的影响%Effects of simulated weightlessness on bone marrow stromal cell count and osteogentic capacity of weight bearing bone in rats

    Institute of Scientific and Technical Information of China (English)

    付崇建; 郁冰冰; 杨连甲; 曹新生; 张立藩

    2007-01-01

    背景:骨组织在特殊物理环境如失重环境下,代谢活动会发生显著的变化,而成骨细胞是骨代谢和骨形成的核心部分,其对重力环境的变化敏感.目的:观察模拟失重条件对大鼠股骨骨髓基质细胞数量体外成骨能力的影响,揭示骨丢失的机制.设计:随机配对,对照实验.单位:解放军第四军医大学航空航天医学系和口腔医学院病理科.材料:选用20只成年健康雄性SD大鼠.实验开始当日按体质量随机分为对照组和悬吊组,每组10只.碱性磷酸酶试剂盒由北京中生生物工程高技术公司生产.方法:实验于1999-11/2000-07在解放军第四军医大学口腔医学院病理科完成.将SD大鼠随机配对分为鼠尾悬吊组和对照组,每组10只.悬吊组大鼠做尾部悬吊28 d,大鼠始终保持30°头低位及后肢自由悬垂不负重状态.对照组正常饲养.实验期满,取股骨,将股骨骨髓基质细胞进行原代和传代细胞培养.主要观察指标:采用细胞计数法和噻唑蓝法绘制原代和传代培养细胞的生长曲线,进行碱性磷酸酶活性及体外矿化小结形成量的检测.结果:①碱性磷酸酶活性:原代和传代培养悬吊组低于对照组,差异有显著性意义(P<0.05).②钙化小结形成数:悬吊组少于对照组,差异有显著性意义(P<0.05).③细胞生长:原代和传代股骨间充质细胞的生长曲线呈"S"形,悬吊组和对照组细胞倍增时间相近.④股骨骨髓基质细胞数:原代细胞培养系中,悬吊组比对照组约少50%(P<0.05).结论:模拟失重条件下,大鼠骨髓基质细胞数明显减少,后肢承重骨成骨细胞数减少,体外成骨能力降低.%BACKGROUND: Under specially physical environment, for example weightlessness, metabolism of bone tissue may have remarkable changes; however, osteoblast is a core of bone metabolism and bone formation, so it is very sensitive to changes of gravity environment.OBJECTIVE: To observe the effects

  13. Effect of mangosteen peel extract combined with demineralized freezed-dried bovine bone xenograft on osteoblast and osteoclast formation in post tooth extraction socket

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2016-12-01

    Full Text Available Background: Tooth extraction, a common procedure in dentistry, can cause bone resorption during socket healing. Therefore, it is important to perform socket preservation procedure to maintain alveolar bone. Providing a combination of mangosteen peel extract with demineralized freezed-dried bovine bone xenograft (DFDBBX in tooth extraction socket was expected to accelerate alveol bone formation. Purpose: This study aims to determine the effect of mangosteen peel extract combined with DFDBBX introduced into the socket of post tooth extraction on the formation of osteoblasts and osteoclasts. Method: Twenty-eight (28 Cavia cobayas were divided into four groups. Extraction to the lower left incisor of Cavia cobaya was performed. The extraction socket was filled with 25 gram of PEG (group I as a control, active materials consisted of mangosteen peel extract and DFDBBX 0.5% (group II, active materials consisted of mangosteen peel extract and DFDBBX 1% (group III, and active materials consisted of mangosteen peel extract and DFDBBX 2% (group IV. After thirty days, those Cavia cobayas were sacrificed. By using HE on Histopatological examination, the number of osteoblasts and osteoclasts were measured by light microscope with 400 times of magnification. The statistical analysis was then performed using oneway Anova & TukeyHSD test. Result: The component active materials consisted of mangosteen peel extract and DFDBBX 2% had the most significant results related to the formation of osteoblasts and osteoclasts. Conclusion: Mangosteen peel extract combined with DFDBBX can increase osteoblasts and decrease osteoclasts in the socket of tooth extraction in Cavia cobaya. The combination of mangosteen peel extract and DFDBBX 2% is the most effective material in increasing osteoblast and decreasing osteoclast.

  14. [CFU-HPP colony formation of bone marrow hematopoietic proginitor cells in psoriatic patients and methylation of p16 gene promotor in CFU-HPP colony cells].

    Science.gov (United States)

    Zhang, Rui-Li; Niu, Xu-Ping; Li, Xin-Hua; Zhang, Kai-Ming; Yin, Guo-Hua

    2007-08-01

    This study was purposed to investigate the colony formation of high-proliferative potential colony-forming units (CFU-HPP) from bone marrow-derived hematopoietic cells of psoriatic patients and p16 gene promotor methylation in CFU-HPP cells, and to explore the relationship between the colony formation and the methylation status of p16 gene promoter. Bone marrow-derived mononuclear cells from psoriatic patients and normal controls were separated by density gradient centrifugation, and were cultured in methycellulose semi-solid culture medium with SCF, GM-CSF, IL-3 and IL-6 for 14 days to measure the colonies of CFU-HPP. The CFU-HPP colony cells were collected and methylation status of p16 gene promoter of CFU-HPP cell DNA modified with sodium bisulfite was detected by the methylation-specific polymerase chain reaction (MSP). The results showed that in methycellulose semi-solid culture system, the number and the size of CFU-HPP colonies of bone marrow of psoriatic patients were all significantly less than that of normal controls, the positive frequency of p16 gene promoter methylation in CFU-HPP cells was lower than that in CFU-HPP colony cells of normal controls. It is concluded that the colony formation capability of CFU-HPP from bone marrow hematopoietic progenitor cells in psoriatic patients is lower than that in normal controls, and the lower positive frequency of P16 gene promoter methylation in CFU-HPP cells perhaps closely correlated with lower CFU-HPP colony-forming capability.

  15. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive G{sub s}–G protein signaling in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)

    2015-05-01

    G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in

  16. Effect of osteogenic periosteal distraction by a modified Hyrax device with and without platelet-rich fibrin on bone formation in a rabbit model: a pilot study.

    Science.gov (United States)

    Pripatnanont, P; Balabid, F; Pongpanich, S; Vongvatcharanon, S

    2015-05-01

    This study evaluated the effect of a modified Hyrax device and platelet-rich fibrin (PRF) on osteogenic periosteal distraction (OPD). Twelve adult male New Zealand white rabbits were separated into two main groups (six in each) according to the duration of the consolidation period (4 or 8 weeks). In each main group, the animals underwent OPD of the left and right sides of the mandible and were divided into four subgroups (three animals per group): device vs. device+PRF, and PRF vs. sham. Radiographic, histological, histomorphometric, and micro-computed tomography (micro-CT) analyses were performed. New bone formation was observed on the lateral and vertical sides of the mandible of all groups. Micro-CT and histomorphometry showed that the device+PRF group presented the highest percentages of bone volume and bone area at 4 weeks (56.67 ± 12.67%, 41.37 ± 7.57%) and at 8 weeks (49.67 ± 8.33%, 55.46 ± 10.67%; significantly higher than the other groups, P<0.001), followed by the device group at 4 weeks (33.00 ± 1.73%, 33.21 ± 11.00%) and at 8 weeks (30.00 ± 3.00%, 23.25 ± 5.46%). In conclusion, the modified Hyrax device was used successfully for OPD in a rabbit model to gain vertical ridge augmentation, and greater bone maturation was achieved with the addition of PRF.

  17. Effect of prostaglandins E1, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures

    Energy Technology Data Exchange (ETDEWEB)

    Collins, D.A.; Chambers, T.J. (St. George' s Hospital Medical School, London (United Kingdom))

    1991-02-01

    Prostaglandins (PG) act as direct inhibitors of mature osteoclasts, but although resorption-inhibition is also observed initially PG increase bone resorption in organ culture. This suggests that PG influence bone resorption in organ culture through actions on cell types other than mature osteoclasts. We have therefore tested the effects of PG E1, E2, and F2 alpha on the differentiation of osteoclastic phenotype in mouse bone marrow cultures using bone resorption and calcitonin receptors (CTR) as markers of osteoclastic differentiation. We found that PGE2 (10{sup {minus} 6}-10{sup {minus} 9} M) and PGE1 (10{sup {minus} 6} - 10{sup {minus} 7} M) induced a significant increase in CTR-positive cell numbers, to levels five to eight times those seen in controls and similar to the number induced by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Bone resorption was increased (10{sup {minus} 7} M PGE2 and 10{sup {minus} 6} M PGE1) in association with the increased CTR-positive cell numbers, suggesting that the PG also induced resorptive function. 1,25-(OH)2D3 increased both the number of CTR-positive cells and the extent of resorption per cell; the additional presence of PG did not affect the number of CTR-positive cells but did reduce bone resorption compared with 1,25-(OH)2D3 alone. PGF2 alpha had no significant effect on CTR-positive cell induction or bone resorption. The results suggest that PGE1 and E2 induce osteoclastic differentiation in mouse bone marrow cultures and inhibit the function of the osteoclasts thus formed.

  18. Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    LI Cai-juan; GUO Su-fen; SHI Tie-mei

    2012-01-01

    Background Parthenolide has been tested for anti-tumor activities,such as anti-proliferation and pro-apoptosis in recent studies.However,little is known about its role in the process of tumor angiogenesis.This study aims to investigate the effects and potential mechanisms of parthenolide on the proliferation,migration and lumen formation capacity of human umbilical vein endothelial cells.Methods Different concentrations of parthenolide were applied to the human breast cancer cell line MDA-MB-231 cells.After 24-hour incubation,the culture supematants were harvested and used to treat human umbilical vein endothelial cells for 24 hours.Then an inverted fluorescence phase contrast microscope was used to evaluate the human umbilical vein endothelial cells.The secretion of vascular endothelial growth factor (VEGF),interleukin (IL)-8 and matrix metalloproteinases (MMP)-9 in the culture supernatant of the MDA-MB-231 cells was then measured with enzyme-linked immunosorbent assay (ELISA) assays.Results Suppression of proliferation,migration,and the lumen formation capacity of human umbilical vein endothelial cells was observed in the presence of the culture supernatants from the breast cancer cell line treated with different concentrations of parthenolide.Parthenolide decreased the levels of the angiogenic factors MMP-9,VEGF,and IL-8secreted by the MDA-MB-231 cells.Conclusions Parthenolide may suppress angiogenesis through decreasing angiogenic factors secreted by breast cancer cells to interfere with the proliferation,migration and lumen-like structure formation of endothelial cells,thereby inhibiting tumor growth.It is a promising potential anti-angiogenic drug.

  19. Experimental study on the effects of artificial bone composite materials on bone formation%复合人工骨材料对骨形成影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    李练兵; 马明福; 张其清; 侯志伟; 朱一剑; 张丹妍; 吕静; 赵乐天; 杨智曦; 朱明华

    2014-01-01

    探讨胶原/羟基磷灰石(hydroxyapatile-collagen,CHA )-骨形态发生蛋白(bone morphogenetic protein,BMP)复合材料的体外成骨效应,以及体内修复兔桡骨缺损的效果。方法采用体外细胞培养技术,将人胚成骨细胞分别与纯羟基磷灰石(hydroxyapatile,HA)、CHA、HA-BMP 和 CHA-BMP材料于体外联合培养,观察细胞的生长情况。测定细胞冻融中的细胞增殖率,及碱性磷酸酶(alkline phosphatase,ALP)、骨钙素(osteocalcin,OC)的分泌水平。小鼠股部肌袋内植入,评价其异位骨诱导能力。然后在兔桡骨缺损部位植入,术后2周、4周、8周、16周、24周观察新骨形成规律。结果胶原/羟基磷灰石-骨形态发生蛋白复合材料的细胞增殖率、ALP、OC 水平明显高于相应单一材料,异位诱导可见软骨及骨组织,ALP呈阳性。桡骨植入8周、16周时 X射线显示骨断端形成紧密的纤维连接,有少量骨痂形成,镜下可见大量成熟板层骨及骨髓组织填充,免疫组织化学(BMP、I 型胶原、骨胶原)均呈阳性反应,非 BMP复合材料未见骨或软骨形成。结论 CHA-BMP 复合材料有利于成骨细胞早期黏附、生长,小鼠异位骨诱导,加速兔缺损桡骨的新骨形成,从而促进骨愈合,是一种较理想的骨修复材料。%Objective To explore the osteogenic effect of collagen/hydroxyapatite(CHA)composite of bone morphogenetic protein (BMP)material in vitro and in repairing rabbit radius defect effect.Methods With the technique of cell culture in vitro,the human embryo osteoblast was cultured in vitro with HA,CHA,HA-BMP and CHA-BMP materials respectively and was observed the cell growth in the materials.The cell proliferation rate and secretion of ALP and OC were detected in cell frozen solution.The ability to induce ectopic bone was evaluated in the implant of mouse femoral muscle pouches.The laws of new bone formation were

  20. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes.

    Science.gov (United States)

    Watkins, John D; Bocarsly, Andrew B

    2014-01-01

    As an approach to combat the increasing emissions of carbon dioxide in the last 50 years, the sequestration of carbon dioxide gas in ionic liquids has become an attractive research area. Ionic liquids can be made that possess incredibly high molar absorption and specificity characteristics for carbon dioxide. Their high carbon dioxide solubility and specificity combined with their high inherent electrical conductivity also creates an ideal medium for the electrochemical reduction of carbon dioxide. Herein, a lesser studied ionic liquid, 1-ethyl-3-methylimidazolium trifluoroacetate, was used as both an effective carbon dioxide capture material and subsequently as an electrochemical matrix with water for the direct reduction of carbon dioxide into formate at indium, tin, and lead electrodes in good yield (ca. 3 mg h(-1) cm(-2)).

  1. Androgens and bone.

    Science.gov (United States)

    Vanderschueren, Dirk; Vandenput, Liesbeth; Boonen, Steven; Lindberg, Marie K; Bouillon, Roger; Ohlsson, Claes

    2004-06-01

    Loss of estrogens or androgens increases the rate of bone remodeling by removing restraining effects on osteoblastogenesis and osteoclastogenesis, and also causes a focal imbalance between resorption and formation by prolonging the lifespan of osteoclasts and shortening the lifespan of osteoblasts. Conversely, androgens, as well as estrogens, maintain cancellous bone mass and integrity, regardless of age or sex. Although androgens, via the androgen receptor (AR), and estrogens, via the estrogen receptors (ERs), can exert these effects, their relative contribution remains uncertain. Recent studies suggest that androgen action on cancellous bone depends on (local) aromatization of androgens into estrogens. However, at least in rodents, androgen action on cancellous bone can be directly mediated via AR activation, even in the absence of ERs. Androgens also increase cortical bone size via stimulation of both longitudinal and radial growth. First, androgens, like estrogens, have a biphasic effect on endochondral bone formation: at the start of puberty, sex steroids stimulate endochondral bone formation, whereas they induce epiphyseal closure at the end of puberty. Androgen action on the growth plate is, however, clearly mediated via aromatization in estrogens and interaction with ERalpha. Androgens increase radial growth, whereas estrogens decrease periosteal bone formation. This effect of androgens may be important because bone strength in males seems to be determined by relatively higher periosteal bone formation and, therefore, greater bone dimensions, relative to muscle mass at older age. Experiments in mice again suggest that both the AR and ERalpha pathways are involved in androgen action on radial bone growth. ERbeta may mediate growth-limiting effects of estrogens in the female but does not seem to be involved in the regulation of bone size in males. In conclusion, androgens may protect men against osteoporosis via maintenance of cancellous bone mass and

  2. A Member of the Nuclear Receptor Superfamily, Designated as NR2F2, Supports the Self-Renewal Capacity and Pluripotency of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ni Zhu

    2016-01-01

    Full Text Available Mesenchymal stem cells are characterized with self-renewal capacity and pluripotency. NR2F2 is a nuclear receptor that has been detected in the mesenchymal compartment of developing organs. However, whether NR2F2 plays a role in the stemness maintenance of mesenchymal stem cells has not been explored yet. In this study, we investigated the function of NR2F2 in bone marrow-derived mesenchymal stem cells via shRNA-mediated knock-down of NR2F2. The suppression of NR2F2 impaired the colony-forming efficacy of mesenchymal stem cells. The inhibition of colony-forming capacity may be attributed to the acceleration of senescence through upregulation of P21 and P16. The downregulation of NR2F2 also suppressed both osteogenic and adipogenic differentiation processes. In conclusion, NR2F2 plays an important role in the stemness maintenance of bone marrow-derived mesenchymal stem cells.

  3. Influence of physico-chemical material characteristics on staphylococcal biofilm formation – A qualitative and quantitative in vitro analysis of five different calcium phosphate bone grafts

    Directory of Open Access Journals (Sweden)

    M Clauss

    2014-07-01

    Full Text Available Various compositions of synthetic calcium phosphates (CaP have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate, dicalcium phosphate (DCP, calcium-deficient hydroxyapatite (CDHA and α-TCP. Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB and human serum (SE using Staphylococcus aureus (ATCC 29213 and S. epidermidis RP62A (ATCC 35984. The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.

  4. Influence of physico-chemical material characteristics on staphylococcal biofilm formation--a qualitative and quantitative in vitro analysis of five different calcium phosphate bone grafts.

    Science.gov (United States)

    Clauss, M; Furustrand Tafin, U; Betrisey, B; van Garderen, N; Trampuz, A; Ilchmann, T; Bohner, M

    2014-07-18

    Various compositions of synthetic calcium phosphates (CaP) have been proposed and their use has considerably increased over the past decades. Besides differences in physico-chemical properties, resorption and osseointegration, artificial CaP bone graft might differ in their resistance against biofilm formation. We investigated standardised cylinders of 5 different CaP bone grafts (cyclOS, chronOS (both β-TCP (tricalcium phosphate)), dicalcium phosphate (DCP), calcium-deficient hydroxyapatite (CDHA) and α-TCP). Various physico-chemical characterisations e.g., geometrical density, porosity, and specific surface area were investigated. Biofilm formation was carried out in tryptic soy broth (TSB) and human serum (SE) using Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984). The amount of biofilm was analysed by an established protocol using sonication and microcalorimetry. Physico-chemical characterisation showed marked differences concerning macro- and micropore size, specific surface area and porosity accessible to bacteria between the 5 scaffolds. Biofilm formation was found on all scaffolds and was comparable for α-TCP, chronOS, CDHA and DCP at corresponding time points when the scaffolds were incubated with the same germ and/or growth media, but much lower for cyclOS. This is peculiar because cyclOS had an intermediate porosity, mean pore size, specific surface area, and porosity accessible to bacteria. Our results suggest that biofilm formation is not influenced by a single physico-chemical parameter alone but is a multi-step process influenced by several factors in parallel. Transfer from in vitro data to clinical situations is difficult; thus, advocating the use of cyclOS scaffolds over the four other CaP bone grafts in clinical situations with a high risk of infection cannot be clearly supported based on our data.

  5. Natural Polymer-Cell Bioconstructs for Bone Tissue Engineering.

    Science.gov (United States)

    Titorencu, Irina; Albu, Madalina Georgiana; Nemecz, Miruna; Jinga, Victor V

    2017-01-01

    The major goal of bone tissue engineering is to develop bioconstructs which substitute the functionality of damaged natural bone structures as much as possible if critical-sized defects occur. Scaffolds that mimic the structure and composition of bone tissue and cells play a pivotal role in bone tissue engineering applications. First, composition, properties and in vivo synthesis of bone tissue are presented for the understanding of bone formation. Second, potential sources of osteoprogenitor cells have been investigated for their capacity to induce bone repair and regeneration. Third, taking into account that the main property to qualify one scaffold as a future bioconstruct for bone tissue engineering is the biocompatibility, the assessments which prove it are reviewed in this paper. Forth, various types of natural polymer- based scaffolds consisting in proteins, polysaccharides, minerals, growth factors etc, are discussed, and interaction between scaffolds and cells which proved bone tissue engineering concept are highlighted. Finally, the future perspectives of natural polymer-based scaffolds for bone tissue engineering are considered.

  6. Determination of the biofilm formation capacity of bacterial pathogens associated with otorhinolaryngologic diseases in the Malaysian population.

    Science.gov (United States)

    Khosravi, Yalda; Ling, Lina Chooi; Loke, Mun Fai; Shailendra, Sivalingam; Prepageran, Narayanan; Vadivelu, Jamuna

    2014-05-01

    This study aims to assess the association between microbial composition, biofilm formation and chronic otorhinolaryngologic disorders in Malaysia. A total of 45 patients with chronic rhinosinusitis, chronic tonsillitis and chronic suppurative otitis media and 15 asymptomatic control patients were studied. Swab samples were obtained from these subjects. Samples were studied by conventional microbiological culturing, PCR-based microbial detection and Confocal Laser Scanning Microscopy (CLSM). Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, coagulase-negative staphylococci (CoNS) and other Streptococcus species were detected in subjects of both patient and control groups. Biofilm was observed in approximately half of the smear prepared from swab samples obtained from subjects of the patient group. Most of these were polymicrobial biofilms. S. aureus biofilm was most prevalent among nasal samples while H. influenzae biofilm was more common among ear and throat samples. Results from this study supported the hypothesis that chronic otorhinolaryngologic diseases may be biofilm related. Due to the presence of unculturable bacteria in biofilms present in specimens from ear, nose and throat, the use of molecular methods in combination with conventional microbiological culturing has demonstrated an improvement in the detection of bacteria from such specimens in this study.

  7. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    Science.gov (United States)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.

  8. Bone engineering by phosphorylated-pullulan and β-TCP composite.

    Science.gov (United States)

    Takahata, Tomohiro; Okihara, Takumi; Yoshida, Yasuhiro; Yoshihara, Kumiko; Shiozaki, Yasuyuki; Yoshida, Aki; Yamane, Kentaro; Watanabe, Noriyuki; Yoshimura, Masahide; Nakamura, Mariko; Irie, Masao; Van Meerbeek, Bart; Tanaka, Masato; Ozaki, Toshifumi; Matsukawa, Akihiro

    2015-11-20

    A multifunctional biomaterial with the capacity bond to hard tissues, such as bones and teeth, is a real need for medical and dental applications in tissue engineering and regenerative medicine. Recently, we created phosphorylated-pullulan (PPL), capable of binding to hydroxyapatite in bones and teeth. In the present study, we employed PPL as a novel biocompatible material for bone engineering. First, an in vitro evaluation of the mechanical properties of PPL demonstrated both PPL and PPL/β-TCP composites have higher shear bond strength than materials in current clinical use, including polymethylmethacrylate (PMMA) cement and α-tricalcium phosphate (TCP) cement, Biopex-R. Further, the compressive strength of PPL/β-TCP composite was significantly higher than Biopex-R. Next, in vivo osteoconductivity of PPL/β-TCP composite was investigated in a murine intramedular injection model. Bone formation was observed 5 weeks after injection of PPL/β-TCP composite, which was even more evident at 8 weeks; whereas, no bone formation was detected after injection of PPL alone. We then applied PPL/β-TCP composite to a rabbit ulnar bone defect model and observed bone formation comparable to that induced by Biopex-R. Implantation of PPL/β-TCP composite induced new bone formation at 4 weeks, which was remarkably evident at 8 weeks. In contrast, Biopex-R remained isolated from the surrounding bone at 8 weeks. In a pig vertebral bone defect model, defects treated with PPL/β-TCP composite were almost completely replaced by new bone; whereas, PPL alone failed to induce bone formation. Collectively, our results suggest PPL/β-TCP composite may be useful for bone engineering.

  9. Fish bone as a nidus for stone formation in the common bile duct: report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hwan; Lee, Sang Kwon; Kwon, Jung Hyeok; Woo, Seong Ku [Dongsan Medical Center, Keimyung University College of Medicine, Daegu (Korea, Republic of); Kim, Yong Joo [Andong General Hospital, Andong (Korea, Republic of); Park, Won Kyu [Youngnam University Hospital, Daegu (Korea, Republic of)

    2004-09-15

    We report two cases of common bile duct stone formed around a fish bone which migrated from the intestinal tract, along with their characteristic imaging findings. Two patients who had no history of previous operation were admitted because of cholangitis. Percutaneous transhepatic biliary drainage (PTBD) was performed and the cholangiogram showed filling defects with an unusually elongated shape in the common bile duct. After improvement of the cholangitic symptoms, the stones were removed through the PTBD tract under fluoroscopic guidance. A nidus consisting of a 1.5 cm sized fish bone was found in each stone removed.

  10. Effect of enamel matrix derivative and parathyroid hormone on bone formation in standardized osseous defects: an experimental study in minipigs

    DEFF Research Database (Denmark)

    Jensen, Simon S; Chen, B; Bornstein, Michael M;

    2011-01-01

    or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major...... challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed....

  11. Regulation of Bone Metabolism.

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-04-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).

  12. Regulation of Bone Metabolism

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-01-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX). PMID:28367467

  13. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Mina W. Morcos

    2015-01-01

    Full Text Available Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed.

  14. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  15. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].

    Science.gov (United States)

    Ji, Jingou; Ran, Junguo; Gou, Li; Wang, Fangfu; Sun, Luwei

    2004-08-01

    The formation of bone-like apatite on porous HA/beta-TCP bioceramics in dynamic simulated body fluid (SBF) undergoing a simulated inflammation procedure (pH = 6.5) was investigated in order to study the mechanism of osteoinduction and build a new method to choose biomaterials with better bioactivity. The results showed that the surface of porous HA/beta-TCP bioceramics which underwent a simulated inflammation procedure in dynamic SBF was more smooth. The light acidity in the simulated inflammation procedure would dissolve the fine grains and the parts possessing smaller curvature radius on the surface of porous HA/beta-TCP bioceramics, which would reduce the bioceramics solubility. Followed in normal SBF (pH = 7.4), the amount of bone-like apatite formed on the porous HA/beta-TCP bioceramics was less than that of porous HA/beta-TCP bioceramics incubation in normal SBF all along. The results also showed that the amount of bone-like apatite formed on the porous HA/beta-TCP bioceramics sintered by a microwave plasma was more than that of porous HA/beta-TCP bioceramics sintered by a conventional furnace.

  16. In vitro expanded bone marrow-derived murine (C57Bl/KaLwRij) mesenchymal stem cells can acquire CD34 expression and induce sarcoma formation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Song [Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin (China); Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium); De Becker, Ann [Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); De Raeve, Hendrik [Department of Anatomopathology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Van Camp, Ben; Vanderkerken, Karin [Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium); Van Riet, Ivan, E-mail: ivan.vanriet@uzbrussel.be [Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Murine MSCs can undergo spontaneously malignant transformation and form sarcoma. Black-Right-Pointing-Pointer Acquisition of CD34 is a transformation type for MSCs into sarcoma. Black-Right-Pointing-Pointer Notch/Hh/Wnt pathways are related to the malignant phenotype of transformed MSCs. -- Abstract: Mesenchymal stem cells (MSCs) have currently generated numerous interests in pre-clinical and clinical applications due to their multiple lineages differentiation potential and immunomodulary effects. However, accumulating evidence indicates that MSCs, especially murine MSCs (mMSCs), can undergo spontaneous transformation after long-term in vitro culturing, which might reduce the therapeutic application possibilities of these stem cells. In the present study, we observed that in vitro expanded bone marrow (BM) derived mMSCs from the C57Bl/KaLwRij mouse strain can lose their specific stem cells markers (CD90 and CD105) and acquire CD34 expression, accompanied with an altered morphology and an impaired tri-lineages differentiation capacity. Compared to normal mMSCs, these transformed mMSCs exhibited an increased proliferation rate, an enhanced colony formation and migration ability as well as a higher sensitivity to anti-tumor drugs. Transformed mMSCs were highly tumorigenic in vivo, resulting in aggressive sarcoma formation when transplanted in non-immunocompromised mice. Furthermore, we found that Notch signaling downstream genes (hey1, hey2 and heyL) were significantly upregulated in transformed mMSCs, while Hedgehog signaling downstream genes Gli1 and Ptch1 and the Wnt signaling downstream gene beta-catenin were all decreased. Taken together, we observed that murine in vitro expanded BM-MSCs can transform into CD34 expressing cells that induce sarcoma formation in vivo. We assume that dysregulation of the Notch(+)/Hh(-)/Wnt(-) signaling pathway is associated with the malignant phenotype of the transformed mMSCs.

  17. Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation

    Science.gov (United States)

    Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu

    2016-09-01

    We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1-10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633-0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926-0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation.

  18. Guided bone regeneration : the influence of barrier membranes on bone grafts and bone defects

    NARCIS (Netherlands)

    Gielkens, Pepijn Frans Marie

    2008-01-01

    Guided bone regeneration (GBR) can be described as the use of a barrier membrane to provide a space available for new bone formation in a bony defect. The barrier membrane protects the defect from in-growth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot tha

  19. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  20. Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model

    Directory of Open Access Journals (Sweden)

    Barrientos-Durán A

    2014-09-01

    combination of demineralized bone matrix or cartilage particles with SWCNTs were implanted into nude rats, and ectopic bone formation was analyzed. Histological analysis of both types of implants showed high permeability and pore connectivity of the carbon nanotube-soaked implants. Numerous vascularization channels appeared in the formed tissue, additional progenitor cells were recruited, and areas of de novo ossification were found 4 weeks post-implantation. Induction of the expression of bone-related genes and the presence of secreted osteopontin protein were also confirmed by quantitative polymerase chain reaction analysis and immunofluorescence, respectively. In summary, these results are in line with prior contributions that highlight the suitability of SWCNTs as scaffolds with high bone-inducing capabilities both in vitro and in vivo, confirming them as alternatives to current bone-repair therapies. Keywords: human allografts, demineralized bone matrix, cartilage particles, bone regeneration

  1. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Lee, Chang Hoon; Yoon, Kwon-Ha; Lee, Myeung Su

    2017-01-01

    In the field of bone research, various natural derivatives have emerged as candidates for osteoporosis treatment by targeting abnormally elevated osteoclastic activity. Methyl gallate, a plant-derived phenolic compound, is known to have numerous pharmacological effects against inflammation, oxidation, and cancer. Our purpose was to explore the relation between methyl gallate and bone metabolism. Herein, we performed screening using methyl gallate by tartrate resistant acid phosphatase (TRAP) staining and revealed intracellular mechanisms responsible for methyl gallate-mediated regulation of osteoclastogenesis by Western blotting and quantitative reverse transcription polymerase chain reaction (RT-PCR). Furthermore, we assessed the effects of methyl gallate on the characteristics of mature osteoclasts. We found that methyl gallate significantly suppressed osteoclast formation through Akt and Btk-PLCγ2-Ca2+ signaling. The blockade of these pathways was confirmed through transduction of cells with a CA-Akt retrovirus and evaluation of Ca2+ influx intensity (staining with Fluo-3/AM). Indeed, methyl gallate downregulated the formation of actin ring-positive osteoclasts and resorption pit areas. In agreement with in vitro results, we found that administration of methyl gallate restored osteoporotic phenotype stimulated by acute systemic injection of lipopolysaccharide in vivo according to micro-computed tomography and histological analysis. Our data strongly indicate that methyl gallate may be useful for the development of a plant-based antiosteoporotic agent. PMID:28272351

  2. Bone regeneration during distraction osteogenesis

    NARCIS (Netherlands)

    Amir, L.R.; Everts, V.; Bronckers, A.L.J.J.

    2009-01-01

    Bone has the capacity to regenerate in response to injury. During distraction osteogenesis, the renewal of bone is enhanced by gradual stretching of the soft connec- tive tissues in the gap area between two separated bone segments. This procedure has received much clinical atten- tion as a way to co

  3. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  4. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

    Science.gov (United States)

    Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-09-01

    Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation.

  5. Cytological analysis of bone formation in the bone interface of isolated teeth%离体牙骨组织界面骨形成过程的细胞学分析

    Institute of Scientific and Technical Information of China (English)

    郑汉峰

    2016-01-01

    目的:探讨离体牙乳头体外培养下的成牙本质细胞分化及牙骨组织界面的骨形成过程。方法:无菌采集同窝6只出生5d内的小白鼠牙乳头,分为A, B两组。 A组剪碎,使用1%胰酶消化,培养于细胞培养皿中,37℃,5%CO2培养箱中培养,常规换液培养8d,用于成牙本质细胞分化成骨细胞,制作细胞爬片进行细胞免疫组化分析OPN蛋白表达; B组直接采用1%胰酶消化,培养于专用不锈钢金属滤网上,培养8天进行4%多聚甲醛固定,石蜡包埋切片, HE染色进行免疫组化特定蛋白分析,通过培养初期及培养第8天细胞学和蛋白学对比分析离体牙乳头骨形成过程。结果:A和B组两组小鼠经细胞分离培养、定向诱导成骨分化及仔鼠乳牙消化培养后免疫组化鉴定,细胞OPN蛋白均为阳性表达,且乳牙牙髓干细胞可以体外分离诱导分化,且可传代至20代生长良好。结论:离体牙骨组织体外培养过程中在诱导培养基培养条件下可以发生成骨分化,且乳牙骨组织消化培养后可生长传代经,经体外诱导分化为成骨细胞,因此离体牙骨组织界面骨形成过程为牙骨髓本质干细胞分化导致。%Objective: To investigate the differentiation from bone and teeth bone interface odontoblasts-dental papilla in vitro under formation. Methods: Collecting sterile dental papilla littermate mice born 5d within 6, divided into A, B groups. A group cut into pieces, using a 1% trypsin digestion, cells cul-tured in petri dishes, 37℃, 5% CO2 incubator, conventional culture medium was changed 8d, for odon-toblast differentiation into bone cells, making the cells crawl sheet for cell immunohistochemistry OPN protein expression; group B directly using a 1% trypsin digestion, cultured on special stainless steel metal mesh, cultured for 8 days 4% paraformaldehyde-fixed, paraffin-embedded sections, HE staining immunohistochemistry

  6. Postoperative radiation therapy after hip replacement in high-risk patients for development of heterotopic bone formation; Role de la radiotherapie dans la prevention de l'ossification heterotopique

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, R.; Rene, N.; Souhami, L. [Department of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Tanzer, M. [Department of Orthopaedic Surgery, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Evans, M. [Department of Medical Physics, Montreal General Hospital, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada)

    2011-07-15

    Purpose. - To report the results of postoperative radiation therapy in preventing the development of heterotopic bone formation after hip replacement surgery in high-risk patients. Patients and methods. - Between 1991 and 2007, 44 patients were preventively treated with postoperative RT after total hip replacement. In total, 47 hips were treated. All patients were considered at high risk for developing heterotopic bone formation. Most patients (63.5%) were treated because of a history of severe osteoarthritis or ankylosing spondylitis. All patients were treated with shaped parallel-opposed fields with a single fraction of 7 Gy using 6 or 18 MV photons. Most patients (94%) received radiation therapy within 72 hours postoperative and in only three patients radiation therapy was delivered after 72 hours post-surgery (5-8 days). Results. - Minimum follow-up was 1 year. There were 18 females and 26 males. Median age was 63 years (range: 18-80). Treatments were well tolerated and no acute toxicity was seen post-radiation therapy. Only one of the 47 hips (2%) developed heterotopic bone formation. This patient received postoperative radiation therapy to both hips but only developed heterotopic bone formation in one of them. None of the three patients treated beyond 72 hours failed. To date no late toxicity has been observed. Conclusion. - The use of postoperative radiation therapy was an effective and safe treatment in the prevention of heterotopic bone formation in a high-risk group of patients undergoing total hip replacement. (authors)

  7. Bone Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging ... the limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided ...

  8. Measurements of Enthalpy Change of Reaction of Formation, Molar Heat Capacity and Constant-Volume Combustion Energy of Solid Complex Yb(Et2dtc)3(phen)

    Institute of Scientific and Technical Information of China (English)

    Song Weiming; Hu Qilin; Chang Xuan; Chen Sanping; Xie Gang; Gao Shengli

    2006-01-01

    A ternary solid complex Yb(Et2dtc)3(phen) was obtained from the reaction of hydrous ytterbium chloride with sodium diethyldithiocarbamate (NaEt2dtc), and 1, 10-phenanthroline (o-phen·H2O) in absolute ethanol.The bonding characteristics of the complex were characterized by IR.The result shows Yb3+ bands with two sulfur atoms in the Na(Et2dtc)3 and two nitrogen atoms in the o-phen.The enthalpy change of liquid-phase reaction of formation of the complex ΔrHθm (l), was determined as being (-24.838±0.114) kJ·mol-1 at 298.15 K, by an RD-496 Ⅲ type heat conduction microcalormeter.The enthalpy change of the solid-phase reaction of formation of the complex ΔrHθm (s), was calculated as being (108.015±0.479) kJ·mol-1 on the basis of an appropriate thermochemistry cycle.The thermodynamics of liquid-phase reaction of formation of the complex was investigated by changing the temperature during the liquid-phase reaction.Fundamental parameters, the activation enthalpy, ΔHθ≠, the activation entropy, ΔSθ≠, the activation free energy, ΔGθ≠, the apparent reaction rate constant k, the apparent activation energy E, the pre-exponential constant A, and the reaction order n, were obtained by a combination of the reaction thermodynamic and kinetic equations with the data from the thermokinetic experiments.At the same time, the molar heat capacity of the complex cm, p, was determined to be (86.34±1.74) J·mol-1·K-1 by the same microcalormeter.The constant-volume combustion energy of the complex, ΔcU, was determined to be (-17954.08±8.11) kJ·mol-1 by an RBC-Ⅱ type rotating-bomb calorimeter at 298.15 K.Its standard enthalpy of combustion, ΔcHθm, and standard enthalpy of formation, ΔfHθm, were calculated to be (-17973.29±8.11) kJ·mol-1 and (-770.36±9.02) kJ·mol-1, respectively.

  9. Oxytocin and bone

    Science.gov (United States)

    Sun, Li; Zaidi, Mone; Zallone, Alberta

    2014-01-01

    One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411

  10. Skeletal growth after oral administration of demineralized bone matrix.

    Science.gov (United States)

    Martínez, J A; Elorriaga, M; Marquínez, M; Larralde, J

    1993-03-01

    Oral administration of bone extracts obtained from bovine demineralized bone matrix to rats has a direct effect on bone metabolism, affecting bone proportions and some markers of bone formation such as bone malate dehydrogenase, serum alkaline phosphatase and serum osteocalcin. Furthermore collagen deposition, bone protein synthesis and nucleic acids content were significantly increased by the treatment.

  11. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells.

    Science.gov (United States)

    Wu, Chengtie; Han, Pingping; Liu, Xiaoguo; Xu, Mengchi; Tian, Tian; Chang, Jiang; Xiao, Yin

    2014-01-01

    The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel's adhesive versatility, which is thought to be due to the plaque-substrate interface being rich in 3,4-dihydroxy-l-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of β-tricalcium phosphate (β-TCP) bioceramics by soaking β-TCP bioceramics in Tris-dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris-HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of β-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the β-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of β-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by

  12. 骨形态发生蛋白-2与碱性成纤维细胞生长因子在异位和原位成骨中的作用%Response of bone morphogenetic protein-2 and basic fibroblast growth factor in bone marrow stromal cells in ectopic and in situ bone formation

    Institute of Scientific and Technical Information of China (English)

    王磊; 章燕; 游素兰; 谭鸾君; 黄远亮

    2012-01-01

    Objective We ascertained the effect of bone morphogenetic protein-2 (BMP-2) and basic fibroblast growth factor (bFGF) by a series of experiments: Proliferation and differentiation of bone marrow stromal cells (BMSCs) in vitro, ectopic and in situ bone formation and loaded porous calcium phosphate cement (CPC) on the repair of bone defects around dental implants. Methods BMSCs from Beagle dogs were cultured in vitro with basic culture medium containing BMP-2, bFGF, and BMP-2+bFGF. Proliferation and differentiation of BMSCs were quantified using methyl thiazolyl tetrazolium (MTT) and alkaline phosphatase GVLP) test. The CPC seeded with BMSCs and BMP-2, bFGF, com-bined BMP-2 with bFGF were implanted subcutaneously into nude rats in ectopic bone formation, and were implanted into critical-sized bone defects of Beagle dogs in the in situ bone formation. The hone formation was detected by his-tology examination and quantified using an image analysis system. Polychrome sequential fluorescent labels and fluores-cence histological examinations of undecalcified sections were performed post-operatively. Results It was determined that BMP-2+bFGF promoted BMSCs statistically significant proliferation and differentiation compared to either BMP-2 or bFGF in vitro. The CPC with BMP-2+bFGF group yielded more bone than those with either BMP-2 or bFGF in ectopic bone formation test. The percentages of newly ectopic formed bone were higher in the BMP-2+bFGF group(48/79%±1131%) than those in other groups (BMP-2 group, 30.71%±10.85%; bFGF group, 27.33%±9.67%; and the control group, 10.65%±6.05%). Undecalcified sections showed that new bone was actively formed in the BMP-2+bFGF group after 12 weeks in the in situ bone formation test. The bone mineralization apposition ate (MAR) was better in the BMP-2+bFGF group than in other groups (P<0.01). Conclusion BMP-2 combined with bFGF are more effective than one alone in promoting the formation of new bone.%目的 通过骨髓基质细

  13. Regulation of bone mass and osteoclast function depend on the F-actin modulator SWAP-70.

    Science.gov (United States)

    Garbe, Annette I; Roscher, Anne; Schüler, Christiane; Lutter, Anne-Helen; Glösmann, Martin; Bernhardt, Ricardo; Chopin, Michael; Hempel, Ute; Hofbauer, Lorenz C; Rammelt, Stefan; Egerbacher, Monika; Erben, Reinhold G; Jessberger, Rolf

    2012-10-01

    Bone remodeling involves tightly regulated bone-resorbing osteoclasts and bone-forming osteoblasts. Determining osteoclast function is central to understanding bone diseases such as osteoporosis and osteopetrosis. Here, we report a novel function of the F-actin binding and regulatory protein SWAP-70 in osteoclast biology. F-actin ring formation, cell morphology, and bone resorption are impaired in Swap-70(-/-) osteoclasts, whereas the expression of osteoclast differentiation markers induced in vitro by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) remains unaffected. Swap-70(-/-) mice develop osteopetrosis with increased bone mass, abnormally dense bone, and impaired osteoclast function. Ectopic expression of SWAP-70 in Swap-70(-/-) osteoclasts in vitro rescues their deficiencies in bone resorption and F-actin ring formation. Rescue requires a functional pleckstrin homology (PH) domain, known to support membrane localization of SWAP-70, and the F-actin binding domain. Transplantation of SWAP-70-proficient bone marrow into Swap-70(-/-) mice restores osteoclast resorption capacity in vivo. The identification of the role of SWAP-70 in promoting osteoclast function through modulating membrane-proximal F-actin rearrangements reveals a new pathway to control osteoclasts and bone homeostasis.

  14. Bone Densitometry (Bone Density Scan)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...

  15. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    Science.gov (United States)

    2006-04-01

    control mice and subcongenic lines are indicated by *Pɘ.05. Trab. Vol., represents trabecular volume. Trab. Cnt , represents trabecular content. Tot...4-8), the type I collagen α1 gene (9,10), the type I collagen α2 gene (11), the estrogen receptor (4,9,11-13), insulin-like growth factor-I (14,15...receptor alpha and collagen IA1 genes on bone mineral density in Caucasian women. Calcif Tissue Int 72:643-50. 10. Mezquita-Raya P, Munoz-Torres M

  16. Combination of UV absorbance and electron donating capacity to assess degradation of micropollutants and formation of bromate during ozonation of wastewater effluents.

    Science.gov (United States)

    Chon, Kangmin; Salhi, Elisabeth; von Gunten, Urs

    2015-09-15

    In this study, the changes in UV absorbance at 254 nm (UVA254) and electron donating capacity (EDC) were investigated as surrogate indicators for assessing removal of micropollutants and bromate formation during ozonation of wastewater effluents. To measure the EDC, a novel method based on size exclusion chromatography followed by a post-column reaction was developed and calibrated against an existing electrochemical method. Low specific ozone doses led to a more efficient abatement of EDC than of UVA254. This was attributed to the abatement of phenolic moieties in the dissolved organic matter (DOM), which lose their EDC upon oxidation, but are partially transformed into quinones, which still absorb in the measured UV range. For higher specific ozone doses, the relative EDC abatement was lower than the relative UVA abatement, which can be explained by the oxidation of UV absorbing moieties (e.g. non-activated aromatic compounds), which contribute less to EDC. The abatement of the selected micropollutants (i.e., 17α-ethinylestradiol (EE2), carbamazepine (CBZ), atenolol (ATE), bezafibrate (BZF), ibuprofen (IBU), and p-chlorobenzoic acid (pCBA)) varied significantly depending on their reactivity with ozone in the examined specific ozone dose range of 0-1.45 mgO3/mgDOC. The decrease of EE2 and CBZ with high ozone reactivity was linearly proportional to the reduction of the relative residuals of UVA254 and EDC. The abatement of ATE, BZF, IBU, and pCBA with intermediate to low ozone reactivities was not significant in a first phase (UVA254/UVA254,0 = 1.00-0.70; EDC/EDC0 = 1.00-0.56) while their abatement was more efficient than the degradation of the relative residual UVA254 and much more noticeable than the degradation of the relative residual EDC in a second phase (UVA254/UVA254,0 = 0.70-0.25; EDC/EDC0 = 0.56-0.25) because the partially destroyed UV absorbing and electron donating DOM moieties become recalcitrant to ozone attack. Bromate formation was

  17. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation.

    Science.gov (United States)

    Vitale-Brovarone, C; Verné, E; Robiglio, L; Appendino, P; Bassi, F; Martinasso, G; Muzio, G; Canuto, R

    2007-03-01

    Glass-ceramic macroporous scaffolds for tissue engineering have been developed using a polyurethane sponge template and bioactive glass powders. The starting glass (CEL2) belongs to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O and has been synthesised by a conventional melting-quenching route. A slurry of CEL2 powder, polyvinyl alcohol and water has been prepared in order to coat, by impregnation, the polymeric template. An optimised thermal treatment was then use to remove the sponge and to sinter the glass powders, leading to a glass-ceramic replica of the template. Morphological observations, image analyses, mechanical tests and in vitro tests showed that the obtained devices are good candidates as scaffolds for bone-tissue engineering, in terms of pore-size distribution, pore interconnection, surface roughness, and both bioactivity and biocompatibility. In particular, a human osteoblast cell line (MG-63) seeded onto the scaffold after a standardised preconditioning route in simulated body fluid showed a high degree of cell proliferation and a good ability to produce calcium nodules. The obtained results were enhanced by the addition of bone morphogenetic proteins after cell seeding.

  18. In vitro bone formation by human marrow cell culture on the surface of zinc-releasing calcium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ikeuchi, M.; Noshi, T.; Horiuchi, K.; Yamamoto, K.; Sugimura, M. [Nara Medical Univ., Kashihara (Japan). Dept. of Oral and Maxillofacial Surgery; Dohi, Y. [Nara Medical Univ., Kashihara (Japan). Dept. of Public Health; Ohgushi, H. [Nara Medical Univ., Kashihara (Japan). Dept. of Orthopedics; Ito, A. [National Inst. for Advanced Interdisciplinary Research, MITI, Ibaraki (Japan)

    2001-07-01

    We examined the effect of zinc on the osteogenic differentiation of cultured human marrow cells on the surface of zinc-releasing TCP/HAP (Zn-TCP/HAP) ceramics in the shape of a disk. Three ml of human bone marrow harvested from the ilium was cultured in a medium containing 15% fetal bovine serum to reach confluent. After trypsinization, the cells were seeded at 20 x 10{sup 3} cells/16 mm {phi} on Falcon tissue wells with the ceramic disks (TCP/HAP containing 0, 0.32, 0.42, 0.63, 0.88 and 1.26 wt% Zn). After 2 weeks of subculture in the presence of {beta}-glycerophosphate, vitamin C phosphate, and dexamethasone (Dex), the cells were stained for alkaline phosphatase (ALP). The ALP stain was strengthened as zinc content of the disk increased. The data demonstrated that Zn-TCP/HAP influenced cell differentiation in human marrow cell culture and resulted in high osteoblastic activity. Furthermore, ALP activities of the cell layer significantly increased depending on zinc content of the disk in the presence of Dex. These results indicate that the surface of Zn-TCP/HAP stimulates osteogenic differentiation in human cultured marrow cells as well as in rat ones. Thus, Zn-TCP/HAP ceramics are expected to be useful materials for bone reconstructive surgery. (orig.)

  19. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  20. Early Bone Formation around Immediately Loaded Transitional Implants Inserted in the Human Posterior Maxilla: The Effects of Fixture Design and Surface

    Science.gov (United States)

    Pires, Jefferson Trabach; Luongo, Giuseppe; Piattelli, Adriano

    2017-01-01

    Aim. To evaluate the effects of fixture design and surface on the early bone formation around immediately loaded implants inserted in the human posterior maxilla. Materials and Methods. Ten totally edentulous subjects received two transitional implants: one tapered implant with knife-edge threads/nanostructured calcium-incorporated surface (test: Anyridge®, Megagen, Gyeongbuk, South Korea) and one cylindrical implant with self-tapping threads/sandblasted surface (control: EZPlus®, Megagen). The implants were placed according to a split-mouth design and immediately loaded to support an interim complete denture; after 8 weeks, they were removed for histologic/histomorphometric analysis. The bone-to-implant contact (BIC%) and the bone density (BD%) were calculated. The Wilcoxon test was used to evaluate the differences. Results. With test implants, a mean BIC% and BD% of 35.9 (±9.1) and 31.8 (±7.5) were found. With control implants, a mean BIC% and BD% of 29.9 (±7.6) and 32.5 (±3.9) were found. The mean BIC% was higher with test implants, but this difference was not significant (p = 0.16). Similar BD% were found in the two groups (p = 0.9). Conclusions. In the posterior maxilla, under immediate loading conditions, implants with a knife-edge thread design/nanostructured calcium-incorporated surface seem to increase the peri-implant endosseous healing properties, when compared to implants with self-tapping thread design/sandblasted surface.

  1. Delta-toxin production deficiency in Staphylococcus aureus: a diagnostic marker of bone and joint infection chronicity linked with osteoblast invasion and biofilm formation.

    Science.gov (United States)

    Valour, F; Rasigade, J-P; Trouillet-Assant, S; Gagnaire, J; Bouaziz, A; Karsenty, J; Lacour, C; Bes, M; Lustig, S; Bénet, T; Chidiac, C; Etienne, J; Vandenesch, F; Ferry, T; Laurent, F

    2015-06-01

    Biofilm formation, intra-osteoblastic persistence, small-colony variants (SCVs) and the dysregulation of agr, the major virulence regulon, are possibly involved in staphylococcal bone and joint infection (BJI) pathogenesis. We aimed to investigate the contributions of these mechanisms among a collection of 95 Staphylococcus aureus clinical isolates from 64 acute (67.4%) and 31 chronic (32.6%) first episodes of BJI. The included isolates were compared for internalization rate, cell damage and SCV intracellular emergence using an ex vivo model of human osteoblast infection. Biofilm formation was assessed in a microbead immobilization assay (BioFilm Ring test). Virulence gene profiles were assessed by DNA microarray. Seventeen different clonal complexes were identified among the screened collection. The staphylococcal internalization rate in osteoblasts was significantly higher for chronic than acute BJI isolates, regardless of the genetic background. Conversely, no differences regarding cytotoxicity, SCV emergence, biofilm formation and virulence gene distribution were observed. Additionally, agr dysfunction, detected by the lack of delta-toxin production using whole-cell matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis (n = 15; 15.8%), was significantly associated with BJI chronicity, osteoblast invasion and biofilm formation. These findings provide new insights into MSSA BJI pathogenesis, suggesting the correlation between chronicity and staphylococcal osteoblast invasion. This adaptive mechanism, along with biofilm formation, is associated with agr dysfunction, which can be routinely assessed by delta-toxin detection using MALDI-TOF spectrum analysis, possibly providing clinicians with a diagnostic marker of BJI chronicity at the time of diagnosis.

  2. Skeletal Site-specific Effects of Zoledronate on in vivo Bone Remodeling and in vitro BMSCs Osteogenic Activity

    Science.gov (United States)

    Gong, Xue; Yu, Wanlu; Zhao, Hang; Su, Jiansheng; Sheng, Qing

    2017-01-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) has been associated with long-term oral or intravenous administration of nitrogen-containing bisphosphonates (BPs). However, the pathogenesis of BRONJ remains unknown, and definitively effective treatment has not yet been established. Bisphosphonate-related osteonecrosis (BRON) tends to occur in maxillofacial bones. Why this occurs is still unclear. Here we show that zoledronate (Zol) treatment suppresses alveolar bone remodeling after tooth typical clinical and radiographic hallmarks of the human BRONJ, whereas enhances peripheral bone quantity in bone remodeling following injury in the same individuals, shown as increased cortical bone thickness, increased trabecular bone formation and accelerated bone defect repair. We find that the RANKL/OPG ratio and Wnt-3a expression are suppressed at the extracted alveolar sites in Zol-treated rats compared with those at the injured sites of peripheral bones. We also show that Zol-treated bone marrow stromal cell (BMSCs) derived from jaw and peripheral bones exhibit differences in cell proliferation, alkaline phosphatase (ALP) activity, expression of osteogenic and chondrogenic related marker genes, and in vivo bone formation capacity. Hopefully, this study will help us better understand the pathogenesis of BRONJ, and deepen the theoretical research. PMID:28139685

  3. Bone building with bortezomib

    Science.gov (United States)

    Roodman, G. David

    2008-01-01

    In this issue of the JCI, Mukherjee et al. report that bortezomib, a clinically available proteasome inhibitor active against myeloma, induces the differentiation of mesenchymal stem/progenitor cells (MSCs) — rather than mature osteoprogenitor cells — into osteoblasts, resulting in new bone formation (see the related article beginning on page 491). These results were observed when MSCs were implanted subcutaneously in mice or were used to treat a mouse model of postmenopausal bone loss. Others have reported that immunomodulatory drugs (e.g., thalidomide and lenalidomide), which are active against myeloma, also block the activity of bone-resorbing osteoclasts. These results reflect the utility of targeting endogenous MSCs for the purpose of tissue repair and suggest that combining different classes of agents that are antineoplastic and also inhibit bone destruction and increase bone formation should be very beneficial for myeloma patients suffering from severe bone disease. PMID:18219395

  4. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae.

    Science.gov (United States)

    Kim, Hong-Kyun; Woo, Kyung Mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2015-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique against those made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implants were evaluated. Sixteen rabbits received 2 types of external hex implants with similar geometry, either machined zirconia implants or PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of the PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (pmold etching technique, can produce substantially rougher surfaces on zirconia implants.

  5. Effect of nitrogen monoxide mediated with estrogen on bone formation%一氧化氮介导雌激素的骨形成增加作用

    Institute of Scientific and Technical Information of China (English)

    涂意辉; 杨安礼; 杜靖远

    2004-01-01

    素诱导骨形成增加的介导剂.%BACKGROUND: Protective mechanism of estrogen on bone formation is not clear. Nitrogen monoxide(NO) induced by estrogen may have a certain effect on bone formation.OBJECTIVE: To investigate the effects of estrogenic treatment on levels of plasma nitrate/nitrite in ovariectomied rats.DESIGN: Randomized controlled trial.SETTING: The department of Orthopaedics of Central Hospital, Yangpu District, Shanghai.PARTICIPANTS: This experiment was performed in the Animal Experimental Center of Tongji Medical University. A total of 36 healthy clean female Sprague-Dawley(SD) rats, aged 3 months old, weighing 220 - 245 g,were provided by the Animal Experimental Center of Tongji Medical University.INTERVENTIONS: Twelve SD rats were given bilateral ovariectomy completely, as ovariotomy group; Twelve SD rats were treated with their bilateral ovary exposed but not resected, as control group, another 12 SD were carried ovocylin every two weeks, as estrogen treated group.-MAIN OUTCOME MEASURES: Expression of NO synthetic enzyme in bone tissue was measured with the method of immunohistochemistry staining;The bone mineral density(BMD) was measured with dual energy X-ray; Bone morphological and metrological measurement was made with image analysis system; The levels of plasma nitrate/nitrite were detected with optical density method.RESULTS: Ovariectomy induced significantly the levels of plasma nitrate/nitrite, BMD, the yolume of trabecular bone as well as other bone morphological and metrological parametes. Six weeks after operation, the mean levels of plasma nitrate/nitrite in the control and ovariectomy groups were (22.4 ± 1.7 ) μmol / L and ( 16.2 ± 3.7 ) μmol / L, respectively; the value of BMD were(0. 245 ± 0. 030) g/cm2 and(0. 189 ± 0. 030) g/cm2, respectively, volume of trabecular bone were (31.97±3.50)% and(17.14± 4.20) %, respectively. The differences between the two groups was significant( P < 0. 01) . Estrogen inhibited these changes induced by ovariectomy

  6. Tissue-engineered triphasic ceramic coated hydroxyapatite induced bone formation and vascularization at an extraskeletal site in a rat model

    Indian Academy of Sciences (India)

    Manitha B Nair; H K Varma; P V Mohanan; Annie John

    2011-12-01

    Tissue-engineered bone regeneration has attracted much attention because of its high clinical demand for restoration of injured tissues. In the present study, we have evaluated the capability of bare (without cells) and tissue-engineered (with osteogenic-induced rat Mesenchymal Stem Cells (MSCs)) bioactive ceramics such as hydroxyapatite (HA) and triphasic ceramic-coated hydroxyapatite (HASi) to mediate vascularisation and osteoinduction at an extraskeletal site of rat model. The viability, proliferation and osteogenic differentiation of MSCs on the scaffolds were assessed in vitro and thereby established the capability of HASi in providing a better structural habitat than HA. The vascular invasion was relatively low in bare and tissueengineered HA at 2 and 4 weeks. Interestingly, the implantation site was well vascularised with profuse ingrowth of blood capillaries in HASi groups, with preference for tissue-engineered HASi groups. Similarly, neo-osteogenesis studies were shown only by tissue-engineered HASi groups. The ingrowth of numerous osteoblast-like cells was seen around and within the pores of the material in bare HASi and tissue-engineered HASi groups (very low cellular infiltration in bare HA groups), but there was no osteoid deposition. The positive impact in forming bone in tissue-engineered HASi groups is attributable to the scaffold and to the cells, with the first choice for scaffold because both HA and HASi were engineered simultaneously with the cells from same source and same passage. Thus, highly porous interconnected porous structure and appropriate chemistry provided by HASi in combination with osteogenic-induced MSCs facilitated better vascularisation that lead to neo-osteogenesis.

  7. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore......, this paper presents methods to analyze station capacity. Four methods to analyze station capacity are developed. The first method is an adapted UIC 406 capacity method that can be used to analyze switch zones and platform tracks at stations that are not too complex. The second method examines the need...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  8. Bone regeneration with cultured human bone grafts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Nakajima, H. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology; Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Ohgushi, H.; Ueda, Y.; Takakura, Y. [Nara Medical Univ., Kashihara City (Japan). Dept. of Orthopedic Surgery; Uemura, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research (NAIR), Ibaraki (Japan). Tsukuba Research Center; Enomoto, Y.; Ichijima, K. [Nara Medical Univ., Kashihara City (Japan). Dept. of Pathology

    2001-07-01

    From 73 year old female patient, 3 ml of bone marrow was collected from the ilium. The marrow was cultured to concentrate and expand the marrow mesenchymal cells on a culture dish. The cultured cells were then subculturedeither on another culture dish or in porous areas of hydroxyapatite ceramics in the presence of dexamethasone and beta-glycerophosphate (osteo genic medium). The subculturedtissues on the dishes were analyzed by scanning electron microscopy (SEM), and subculturedtissues in the ceramics were implanted intraperitoneally into athymic nude mice. Vigorous growth of spindle-shaped cells and a marked formation of bone matrix beneath the cell layers was observed on the subculture dishes by SEM. The intraperitoneally implanted ceramics with cultured tissues revealed thick layer of lamellar bone together with active osteoblasts lining in many pore areas of the ceramics after 8 weeks. The in vitro bone formations on the culture dishes and in vivo bone formation in porous ceramics were detected. These results indicate that we can assemble an in vitro bone/ceramic construct, and due to the porous framework of the ceramic, the construct has osteogenic potential similar to that of autologous cancellous bone. A significant benefit of this method is that the construct can be made with only a small amount of aspirated marrow cells from aged patients with little host morbidity. (orig.)

  9. JAW CYSTS AND GUIDED BONE REGENERATION (a late complication after enucleation

    Directory of Open Access Journals (Sweden)

    Hristina Lalabonova

    2013-10-01

    Full Text Available Maxillary jaw bone possesses a high regenerative capacity. Yet sometimes the defects enucleation of jaw cysts leaves may regenerate only partially or not at all. For this reason some researchers advise treatment of the residual cavities after cystectomy using bone regeneration stimulation methods. We report a case of an atypical complication after enucleation of a maxillary cyst manifesting itself eight years after the initial treatment. The symptoms the patient reported were at first periodic sweating on the left sides of face and head. This was followed by a piercing pain in the left palpebral fissure radiating to the middle of the palate and felt in the left cheekbone, left eye and left supraorbital ridge. The patient has a history of maxillary cysts recurring three times and of three operations she had 20, 12 and 8 years previously. The multiple recurrences of the cysts after their enucleation indicates poor regenerative capacity of the body which resulted in the formation of cicatricial tissue. It is most probably this tissue that was responsible for the disruption of the nerve conduction capacity which can account for the reported symptoms. We filled the cavity with bone graft material which boosted the bone structure regeneration. Although maxillary jaws possess high regenerative capacity we advise the use of guided bone regeneration in cases of large bone defects that usually occur after enucleation of jaw cysts.

  10. Bone within a bone

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.J.; Davies, A.M. E-mail: wendy.turner@roh.nhs.uk; Chapman, S

    2004-02-01

    The 'bone within a bone' appearance is a well-recognized radiological term with a variety of causes. It is important to recognize this appearance and also to be aware of the differential diagnosis. A number of common conditions infrequently cause this appearance. Other causes are rare and some remain primarily of historical interest, as they are no longer encountered in clinical practice. In this review we illustrate some of the conditions that can give the bone within a bone appearance and discuss the physiological and pathological aetiology of each where known.

  11. Growth hormone stimulates bone healing in a critical-sized bone defect model

    NARCIS (Netherlands)

    Theyse, L. F. H.; Oosterlaken-Dijksterhuis, M. A.; van Doorn, J.; Dhert, W. J. A.; Hazewinkel, H. A. W.

    2006-01-01

    Growth hormone plays an important role in bone metabolism. Treating bone deficits is a major topic in orthopaedic surgery. Our hypothesis was that local continuous growth hormone administration stimulates bone healing in a canine critical-sized bone defect model. Bone formation in the defects was qu

  12. Biochemical parameters of bone metabolism in bone metastases of solid tumors (Review)

    NARCIS (Netherlands)

    Meijer, Wilhelmus; van der Veer, E; Willemse, P H

    1998-01-01

    The role of biochemical markers of bone metabolism in the diagnosis and monitoring of bone metastases in solid tumors is reviewed. Emphasis is on the recently developed markers, which may provide a more accurate quantitation of bone metabolism. In metastatic bone disease, bone formation and resorpti

  13. Taphonomy of the vertebrate bone beds from the Klūnas fossil site, Upper Devonian Tērvete Formation of Latvia

    Directory of Open Access Journals (Sweden)

    Jeļena Vasiļkova

    2012-05-01

    Full Text Available Combined sedimentological and taphonomical study of the siliciclastic sequence of the Tērvete Formation in the stratotypical area was aimed at revealing the formation of the three oryctocoenoses discovered and related structural and textural features of the deposits, as well as at detailed observation of the taphonomical peculiarities of the obtained palaeontological material. The fossil vertebrate assemblage is represented by 14 taxa comprising placoderms, acanthodians, sarcopterygians and actinopterygians. The three oryctocoenoses, first recognized in 2010, differ in the proportions of repeatedly buried material, in the number and degree of preservation of small and fragile skeletal elements, as well as in the evaluated current velocity and the transportation distance. Sedimentary concentrations of marine vertebrate remains, dominated by the antiarchs Bothriolepis ornata and B. jani, have been formed under the influence of fluvial and tidal processes in the shallow-water environment, deltaic or estuarine settings. Elongated placoderm and sarcopterygian bones are probably better indicators of the palaeoflow direction than acanthodian spines or sarcopterygian teeth.

  14. Playing with bone and fat

    DEFF Research Database (Denmark)

    Gimble, Jeffrey M.; Zvonic, Sanjin; Floyd, Z. Elisabeth

    2006-01-01

    The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells...

  15. Development of electrospun bone-mimetic matrices for bone regenerative applications

    Science.gov (United States)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  16. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation.

    Science.gov (United States)

    Selvakumar, M; Srivastava, Priyanka; Pawar, Harpreet Singh; Francis, Nimmy K; Das, Bodhisatwa; Sathishkumar, G; Subramanian, Bhuvaneshwaran; Jaganathan, Saravana Kumar; George, Gibin; Anandhan, S; Dhara, Santanu; Nando, Golok B; Chattopadhyay, Santanu

    2016-02-17

    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxic