WorldWideScience

Sample records for bone diseases metabolic

  1. Chronic kidney disease and bone metabolism.

    Science.gov (United States)

    Kazama, Junichiro James; Matsuo, Koji; Iwasaki, Yoshiko; Fukagawa, Masafumi

    2015-05-01

    Chronic kidney disease-related mineral and bone disease (CKD-MBD) is a syndrome defined as a systemic mineral metabolic disorder associated with CKD, and the term renal osteodystrophy indicates a pathomorphological concept of bone lesions associated with CKD-MBD. Cortical bone thinning, abnormalities in bone turnover and primary/secondary mineralization, elevated levels of circulating sclerostin, increased apoptosis in osteoblasts and osteocytes, disturbance of the coupling phenomenon, iatrogenic factors, accumulated micro-crackles, crystal/collagen disorientation, and chemical modification of collagen crosslinks are all possible candidates found in CKD that could promote osteopenia and/or bone fragility. Some of above factors are the consequences of abnormal systemic mineral metabolism but for others it seem unlikely. We have used the term uremic osteoporosis to describe the uremia-induced bone fragility which is not derived from abnormal systemic mineral metabolism. Interestingly, the disease aspect of uremic osteoporosis appears to be similar to that of senile osteoporosis.

  2. Diabetes mellitus related bone metabolism and periodontal disease

    Institute of Scientific and Technical Information of China (English)

    Ying-Ying Wu; E Xiao; Dana T Graves

    2015-01-01

    Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts.

  3. Celiac disease: A missed cause of metabolic bone disease

    Directory of Open Access Journals (Sweden)

    Ashu Rastogi

    2012-01-01

    Full Text Available Introduction: Celiac disease (CD is a highly prevalent autoimmune disease. The symptoms of CD are varied and atypical, with many patients having no gastrointestinal symptoms. Metabolic bone disease (MBD is a less recognized manifestation of CD associated with spectrum of musculoskeletal signs and symptoms, viz. bone pains, proximal muscle weakness, osteopenia, osteoporosis, and fracture. We here report five patients who presented with severe MBD as the only manifestation of CD. Materials and Methods: Records of 825 patients of CD diagnosed during 2002-2010 were retrospectively analyzed for clinical features, risk factors, signs, biochemical, and radiological parameters. Results: We were able to identify five patients (0.6% of CD who had monosymptomatic presentation with musculoskeletal symptoms and signs in the form of bone pains, proximal myopathy, and fragility fractures without any gastrointestinal manifestation. All the five patients had severe MBD in the form of osteopenia, osteoporosis, and fragility fractures. Four of the five patients had additional risk factors such as antiepileptic drugs, chronic alcohol consumption, malnutrition, and associated vitamin D deficiency which might have contributed to the severity of MBD. Conclusion: Severe metabolic disease as the only presentation of CD is rare. Patients show significant improvement in clinical, biochemical, and radiological parameters with gluten-free diet, calcium, and vitamin D supplementation. CD should be looked for routinely in patients presenting with unexplained MBD.

  4. Histologic diagnosis of metabolic bone diseases: bone histomorphometry

    Directory of Open Access Journals (Sweden)

    L. Dalle Carbonare

    2011-09-01

    Full Text Available Histomorphometry or quantitative histology is the analysis on histologic sections of bone resorption parameters, formation and structure. It is the only technique that allows a dynamic evaluation of the activity of bone modelling after labelling with tetracycline. Moreover, the new measurement procedures through the use of the computer allow an assessment of bone microarchitecture too. Histomorphometric bone biopsy is a reliable and well-tolerated procedure. Complications are reported only in 1% of the subjects (hematoma, pain, transient neuralgia. Histomorphometry is used to exclude or confirm the diagnosis of osteomalacia. It is employed in the evaluation of bone damage associated with particular treatments (for example, anticonvulsants or in case of rare bone diseases (osteogenesis imperfecta, systemic mastocytosis. It is also an essential approach when clinical, biochemical and other diagnostic data are not consistent. Finally, it is a useful method to understand the pathophysiologic mechanisms of drugs. The bone sample is taken at the level of iliac crest under local anesthesia. It is then put into methyl-metacrilate resin where the sections are prepared for the microscopic analysis of the various histomorphometric parameters.

  5. Metabolic Bone Disease in the Bariatric Surgery Patient

    Directory of Open Access Journals (Sweden)

    Susan E. Williams

    2011-01-01

    Full Text Available Bariatric surgery has proven to be a life-saving measure for some, but for others it has precipitated a plethora of metabolic complications ranging from mild to life-threatening, sometimes to the point of requiring surgical revision. Obesity was previously thought to be bone protective, but this is indeed not the case. Morbidly obese individuals are at risk for metabolic bone disease (MBD due to chronic vitamin D deficiency, inadequate calcium intake, sedentary lifestyle, chronic dieting, underlying chronic diseases, and the use of certain medications used to treat those diseases. After bariatric surgery, the risk for bone-related problems is even greater, owing to severely restricted intake, malabsorption, poor compliance with prescribed supplements, and dramatic weight loss. Patients presenting for bariatric surgery should be evaluated for MBD and receive appropriate presurgical interventions. Furthermore, every patient who has undergone bariatric surgery should receive meticulous lifetime monitoring, as the risk for developing MBD remains ever present.

  6. [Metabolic bone disease in premature infants and genetic polymorphisms

    NARCIS (Netherlands)

    Funke, S.; Morava, E.; Czako, M.; Vida, G.; Ertl, T.; Kosztolanyi, G.Y.

    2007-01-01

    Metabolic bone disease is an important complication among infants very-low-birth-weight (< 1500 g). In adults, osteoporosis has been shown to be associated with polymorphisms of vitamin D receptor, estrogen receptor, and collagen Ialpha1 receptor genes. AIM: The primary goal of the study was to i

  7. Founders lecture 2007. Metabolic bone disease: what has changed in 30 years?

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, Murali [Cleveland Clinic, Diagnostic Radiology, MSK, Cleveland, OH (United States)

    2009-09-15

    To provide an update on imaging of metabolic bone disease based on new developments, findings, and changing practices over the past 30 years. Literature review of osteoporosis, osteomalacia, renal osteodystrophy, Paget's disease, bisphosphonates, with an emphasis on imaging. Cited references and pertinent findings. Significant developments have occurred in the imaging of metabolic bone disease over the past 30 years. (orig.)

  8. DIAGNOSTICS OF BONE METABOLISM DISORDERS IN ONCOLOGICAL DISEASES

    Directory of Open Access Journals (Sweden)

    O. I. Apolikhin

    2015-01-01

    Full Text Available Osteoporosis is one of the most significant bone complications of cancer. About 1.5 million cancer patients worldwide have bone metastases. Patients with myeloma, breast cancer, prostate, thyroid, bladder and lung have very high risk of development of bone lesions and related complications. Currently, osteodensitometry is the gold standard for the diagnosis of osteoporosis. In recent years we frequently use the innovative imaging techniques for bone metastases, such as CT, MRI, PET/CT. Unfortunately, the diagnostic value of these methods is that it is not always possible to identify abnormalities of bone metabolism in cancer, especially in the early stages. This review shows the world experience of usage of biochemical markers of bone resorption (calcium, hydroxyproline, NTX, CTX, PYD, DPD, TRAP-5b, bone sialoprotein - BSP and markers of bone synthesis (osteocalcin, CSF, ACF, Karlovy vary IFF, their advantages and disadvantages. The level of these markers is increased in most patients with osteoporosis and bone metastases, it is suggesting a potential role in early diagnosis of bone metastases.

  9. Proceedings of the 2015 Santa Fe Bone Symposium: Clinical Applications of Scientific Advances in Osteoporosis and Metabolic Bone Disease.

    Science.gov (United States)

    Lewiecki, E Michael; Baron, Roland; Bilezikian, John P; Gagel, Robert E; Leonard, Mary B; Leslie, William D; McClung, Michael R; Miller, Paul D

    2016-01-01

    The 2015 Santa Fe Bone Symposium was a venue for healthcare professionals and clinical researchers to present and discuss the clinical relevance of recent advances in the science of skeletal disorders, with a focus on osteoporosis and metabolic bone disease. Symposium topics included new developments in the translation of basic bone science to improved patient care, osteoporosis treatment duration, pediatric bone disease, update of fracture risk assessment, cancer treatment-related bone loss, fracture liaison services, a review of the most significant studies of the past year, and the use of telementoring with Bone Health Extension for Community Healthcare Outcomes, a force multiplier to improve the care of osteoporosis in underserved communities.

  10. Questions from the clinician to the radiologist regarding the diagnosis of metabolic bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.; Schmidt, M.

    1986-12-01

    Macromorphological X-ray findings in metabolic bone diseases can be established only in advanced stages. Micromorphological X-ray diagnostic procedures will support the diagnosis even in early stages. Mineralometric examinations are adjuvant methods for early diagnosis and survey of therapy in metabolic bone diseases. The synopsis of parameters of calcium phosphate metabolism, bone histology (histomorphometry) and radiological morphology enables the type and stage of osteopathy to be diagnosed. The supplementary diagnostic methods are helpful in distinguishing bone diseases with increased turnover, inpaired bone modelling and absorption, disturbed mineralization and ectopic calcification. Within the metabolic osteopathies, osteoporosis is gaining more and more importance as a socioeconomic problem; therefore, early diagnosis and treatment are of significant relevance. Hyper-, hypoparathyroidism and osteoidosis are diseases at can be cured if diagnosed early.

  11. Calcium Regulation and Bone Mineral Metabolism in Elderly Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Vickram Tejwani

    2013-05-01

    Full Text Available The elderly chronic kidney disease (CKD population is growing. Both aging and CKD can disrupt calcium (Ca2+ homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD. CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD.

  12. [Bone and Calcium Metabolisms Associated with Dental and Oral-Maxillofacial Diseases. Bone remodeling and alveolar bone homeostasis].

    Science.gov (United States)

    Nakashima, Tomoki

    2015-08-01

    Bone, which support motile organ and periodontal tissue, is renewing throughout our life. This restructuring process is called "bone remodeling" , and osteoclasts and osteoblasts play a crucial role in this process. Bone remodeling is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. Alveolar bone remodeling is directly influenced by occlusal force from the teeth. Thus, the elucidation of the regulatory mechanisms involved in alveolar bone remodeling is critical for a deeper understanding of the maintenance of healthy tooth and dental disease.

  13. [Disorders of carbohydrate metabolism, dyslipidemia, and bone metabolic disease after hematopoietic stem cell transplantation].

    Science.gov (United States)

    Wędrychowicz, Anna; Starzykk, Jerzy

    2013-01-01

    Among long-term survivors after hematopoietic stem cell transplantation (HSCT) late endocrine complications are observed in 20-50%. Very often these complications influence significantly the patient´s life and have to be treated till the end of life. Their proper prevention and monitoring are extremely important in patients who underwent HSCT during childhood. Since the 90s of the last millennium/century, thyroid dysfunction, disorders of somatic and sexual development, and disturbances of fertility have been presented in several publications. In the paper, less known endocrine complications after HSCT published in the last years are discussed. Disorders of carbohydrate metabolism, post-transplant diabetes and insulin resistance are presented. Moreover, dyslipidemia, hypertension, and post-transplant bone metabolic disease are demonstrated/shown. The paper describes the etiopathogenesis, methods of prevention as well as treatment and the results of the treatment of these endocrine complications after HSCT. Moreover, actual recommendations for screening and prevention of endocrine complications in long-term HCT survivors are presented.

  14. Bone and mineral metabolism in adult celiac disease

    Energy Technology Data Exchange (ETDEWEB)

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.

  15. Proceedings of the 2016 Santa Fe Bone Symposium: New Concepts in the Management of Osteoporosis and Metabolic Bone Diseases.

    Science.gov (United States)

    Lewiecki, E Michael; Bilezikian, John P; Bukata, Susan V; Camacho, Pauline; Clarke, Bart L; McClung, Michael R; Miller, Paul D; Shepherd, John

    2017-02-06

    The Santa Fe Bone Symposium is an annual meeting of healthcare professionals and clinical researchers that details the clinical relevance of advances in knowledge of skeletal diseases. The 17th Santa Fe Bone Symposium was held in Santa Fe, New Mexico, USA, on August 5-6, 2016. The program included plenary lectures, oral presentations by endocrinology fellows, meet-the-professor sessions, and panel discussions, all aimed to provide ample opportunity for interactive discussions among all participants. Symposium topics included recent developments in the translation of basic bone science to patient care, new clinical practice guidelines for postmenopausal osteoporosis, management of patients with disorders of phosphate metabolism, new and emerging treatments for rare bone diseases, strategies to enhance fracture healing, and an update on Bone Health Extension for Community Healthcare Outcomes, using a teleconferencing platform to elevate the level of knowledge of healthcare professionals in underserved communities to deliver best practice care for skeletal diseases. The highlights and important clinical messages of the 2016 Santa Fe Bone Symposium are provided herein by each of the faculty presenters.

  16. Postnatal Changes in Humerus Cortical Bone Thickness Reflect the Development of Metabolic Bone Disease in Preterm Infants

    Directory of Open Access Journals (Sweden)

    Shuko Tokuriki

    2016-01-01

    Full Text Available Objective. To use cortical bone thickness (CBT of the humerus to identify risk factors for the development of metabolic bone disease in preterm infants. Methods. Twenty-seven infants born at <32 weeks of gestational age, with a birth weight of <1,500 g, were enrolled. Humeral CBT was measured from chest radiographs at birth and at 27-28, 31-32, and 36–44 weeks of postmenstrual age (PMA. The risk factors for the development of osteomalacia were statistically analyzed. Results. The humeral CBT at 36–44 weeks of PMA was positively correlated with gestational age and birth weight and negatively correlated with the duration of mechanical ventilation. CBT increased with PMA, except in six very early preterm infants in whom it decreased. Based on logistic regression analysis, gestational age and duration of mechanical ventilation were identified as risk factors for cortical bone thinning. Conclusions. Humeral CBT may serve as a radiologic marker of metabolic bone disease at 36–44 weeks of PMA in preterm infants. Cortical bones of extremely preterm infants are fragile, even when age is corrected for term, and require extreme care to lower the risk of fractures.

  17. Bone scintigraphy and metabolic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mari' , C.; Catafau, A.; Carrio' , I. [Hospital de Sant Pau, Barcelone (Spain). Serv. of Nuclear Medicine

    1999-09-01

    The paper discusses the main clinical value of bone scan in metabolic bone disease: its detection of focal conditions or focal complications of such generalized disease, its most common use of being the detection of fractures in osteoporosis, pseudo fractures in osteomalacia and the evaluation of Paget's disease.

  18. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease

    DEFF Research Database (Denmark)

    Doyon, Anke; Fischer, Dagmar Christiane; Bayazit, Aysun Karabay;

    2015-01-01

    Objectives: The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chro...

  19. Turner′s syndrome presenting as metabolic bone disease

    Directory of Open Access Journals (Sweden)

    Sadishkumar Kamalanathan

    2012-01-01

    Full Text Available Turner′s syndrome is a genetic disorder with a complete or partial absence of one X chromosome with characteristic phenotypic features. The prevalence of renal anomalies in turner syndrome is 30-40%. However, the renal function is usually normal. We report a case of Turner′s syndrome presenting with chronic kidney disease and renal osteodystrophy.

  20. Leptin in chronic kidney disease: a link between hematopoiesis, bone metabolism, and nutrition.

    Science.gov (United States)

    Zhang, Jingjing; Wang, Ningning

    2014-06-01

    Anemia, dyslipidemia, malnutrition, together with mineral and bone disorders are common complications in patients with chronic kidney disease (CKD). All are associated with increased risk of mortality. Leptin is a small peptide hormone that is mainly but not exclusively produced in adipose tissue. It is also secreted by normal human osteoblasts, subchondral osteoblasts, placental syncytiotrophoblasts, and the gastric epithelium. Leptin binds to its receptors in the hypothalamus to regulate bone metabolism and food intake. Leptin also has several other important metabolic effects on peripheral tissues, including the liver, skeletal muscle, and bone marrow. Leptin is cleared principally by the kidney. Not surprisingly, serum leptin appears to increase concurrently with declines in the glomerular filtration rate in patients with CKD. A growing body of evidence suggests that leptin might be closely related to hematopoiesis, nutrition, and bone metabolism in CKD patients. Results are conflicting regarding leptin in patients with CKD, in whom both beneficial and detrimental effects on uremia outcome are found. This review elucidates the discovery of leptin and its receptors, changes in serum or plasma leptin levels, the functions of leptin, relationships between leptin and the complications mentioned above, and pharmaceutical interventions in serum leptin levels in patients with CKD.

  1. Bone metabolism in advanced cholestatic liver disease : Analysis by bone histomorphometry

    NARCIS (Netherlands)

    Guichelaar, MMJ; Malinchoc, M; Sibonga, J; Clarke, BL; Hay, JE

    2002-01-01

    Despite the clinical importance of cholestatic osteopenia, little is known about its pathophysiologic mechanism. By tetracycline-labeled histomorphometric analysis of bone biopsies taken at the time of liver transplantation, we prospectively evaluated bone resorption and formation in 50 consecutive

  2. Bone mineral density and disorders of mineral metabolism in chronic liver disease

    Institute of Scientific and Technical Information of China (English)

    Joe George; Hosahithlu K Ganesh; Shrikrishna Acharya; Tushar R Bandgar; Vyankatesh Shivane; Anjana Karvat; Shobna J Bhatia; Samir Shah; Padmavathy S Menon; Nalini Shah

    2009-01-01

    AIM: To estimate the prevalence and identify the risk factors for metabolic bone disease in patients with cirrhosis. METHODS: The study was performed on 72 Indian patients with cirrhosis (63 male, 9 female; aged < 50 years). Etiology of cirrhosis was alcoholism ( n = 37), hepatitis B ( n = 25) and hepatitis C ( n = 10). Twenty-three patients belonged to Child class A, while 39 were in class B and 10 in class C. Secondary causes for metabolic bone disease and osteoporosis were ruled out. Sunlight exposure, physical activity and dietary constituents were calculated. Complete metabolic profiles were derived, and bone mineral density (BMD) was measured using dual energy X ray absorptiometry. Low BMD was defined as a Z score below -2. RESULTS: Low BMD was found in 68% of patients. Lumbar spine was the most frequently and severely affected site. Risk factors for low BMD included low physical activity, decreased sunlight exposure, and low lean body mass. Calcium intake was adequate, with unfavorable calcium: protein ratio and calcium: phosphorus ratio. Vitamin D deficiency was highly prevalent (92%). There was a high incidence of hypogonadism (41%). Serum estradiol level was elevated significantly in patients with normal BMD. Insulin-like growth factor (IGF) 1 and IGF binding protein 3 levels were below the age-related normal range in both groups. IGF-1 was significantly lower in patients with low BMD. Serum osteocalcin level was low (68%) and urinary deoxypyridinoline to creatinine ratio was high (79%), which demonstrated low bone formation with high resorption. CONCLUSION: Patients with cirrhosis have low BMD. Contributory factors are reduced physical activity, low lean body mass, vitamin D deficiency and hypogonadism and low IGF-1 level.

  3. Bone metabolism in patients with systemic lupus erythematosus. Effect of disease activity and glucocorticoid treatment

    DEFF Research Database (Denmark)

    Hansen, M; Halberg, P; Kollerup, G

    1998-01-01

    The bone metabolism in patients with systemic lupus erythematosus (SLE) has previously been examined, but the results are conflicting. In the present study the bone mineral density (BMD) of the axial and the appendicular skeleton was examined by means of dual energy x-ray absorptiometry. The bone...

  4. A pilot study on the impact of body composition on bone and mineral metabolism in Parkinson's disease.

    Science.gov (United States)

    Fernández, María C; Parisi, Muriel S; Díaz, Sergio P; Mastaglia, Silvina R; Deferrari, Juan M; Seijo, Mariana; Bagur, Alicia; Micheli, Federico; Oliveri, Beatriz

    2007-08-01

    The impact of body composition on bone and mineral metabolism in Parkinson's disease (PD) was evaluated. Body fat mass, lean mass, bone mineral content, and bone mineral density (BMD) were measured by DXA in 22 PD patients and 104 controls. Female patients exhibited reduced body mass index, fat mass, and BMD compared to controls (p<0.05). Significant positive correlation was found between 25 OHD levels and BMC. Diminished bone mass in women with PD was found to be associated with alterations in body composition and low 25 OHD levels.

  5. Thyroid disorders and bone mineral metabolism

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar Dhanwal

    2011-01-01

    Full Text Available Thyroid diseases have widespread systemic manifestations including their effect on bone metabolism. On one hand, the effects of thyrotoxicosis including subclinical disease have received wide attention from researchers over the last century as it an important cause of secondary osteoporosis. On the other hand, hypothyroidism has received lesser attention as its effect on bone mineral metabolism is minimal. Therefore, this review will primarily focus on thyrotoxicosis and its impact on bone mineral metabolism.

  6. Interleukin-1 gene polymorphism disease activity and bone mineral metabolism in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To determine whether interleukin-1α and 1β gene polymorphism is associated with rheumatoid arthritis disease activity and bone mineral metabolism, and whether there is any relationship between IL-1β and rheumatoid arthritis (RA) motif gene. Methods IL-1 gene polymorphisms were analyzed in 65 RA patients who met American College of Radiology (ACR) criteria and 60 controls. From genomic DNA, 2 polymorphisms in each gene for IL1α-889 and IL-1β+3953 were typed by PCR-RFLP and HLA-DRB1 allele typing was also undertaken by PCR-SSOP. Some clinical and laboratory parameters were collected. The allelic frequencies and carriage rates were compared between RA patients and controls and between patients with active and quiescent disease. Comparison was also made between IL-1 polymorphism and parameters of bone mineral metabolism and between patients with the HLA-DRB1 RA motif plus IL-1β2 and patients without the two alleles. Fisher test and the analysis of variance was used to analyze the data.Results There was no significant difference in the frequency and carriage rate of IL-1α polymorphisms between RA patients and the controls. The β2/2 genotype of IL-1β was more common in female RA patients compared with controls (P=0.001). A lower carriage rate of IL-1β2 occurred in male RA patients (P=0.001). A higher carriage rate of IL-1α2 is associated with a higher ESR (P=0.008), HAQ score (P=0.03), and vit-D3 (P<0.001), but conversely a lower SJC (p=0.002), a lower RF (P=0.002) and a lower BMD at the lumbar spine (P=0.001). A higher frequency of IL-1α1 is associated with a lower CRP value (P=0.009). An increased IL-1β2 carriage is associated with active rheumatoid disease as indicated by a higher CRP (P<0.001), ESR (P<0.001) and pain score (P=0.001) and a higher BMD at the lumbar spine (P=0.007), lower vit-D3 and. Udpd/Crea level The presence of the HLA DRB1 RA motif and IL-1β allele 2 at same time did not contribute to disease activity

  7. THE DIFFERENCES OF BONE METABOLISM IN MALES WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE AND POSTMENOPAUSAL FEMALES

    Directory of Open Access Journals (Sweden)

    O. A. Mardanova

    2014-07-01

    Full Text Available Aim — to compare bone metabolism activity in males with chronic obstructive pulmonary disease (COPD and postmenopausal females.Materials and methods. The prospective cohort study was conducted. 33 male patients with COPD over 55 years old and 33 female patients without respiratory diseases over 55 were included. General examination, clinical and biochemical blood analyses, densitometry of lumbar spine and proximal part of left femoral bone, respiratory function, osteocalcin and C-telopeptids blood levels have been performed to the patients.Results. Male patients with COPD had lower T-score for the femoral neck than postmenopausal female patients without pulmonary disorders,(–1.05 ± 0.85 SD and –0.36 ± 1.24 SD respectively, р < 0.05. Osteocalcin level in males with COPD was significantly higher and C‑telopeptids level was significantly lower than in postmenopausal females (р < 0.05.Conclusion. Male patients with COPD have lower T‑score for the femoral neck than postmenopausal females without pulmonary disorders of the same age. Furthermore osteoclasts in COPD patients seem to be more activated than in postmenopausal females, on the contrary osteoblasts activity is significantly depressed. Therefore it is necessary to use another approach of prevention and treatment of osteoporosis in patients with COPD.

  8. Clinical relevance of changes in bone metabolism in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Pal; Miheller; Katalin; Lrinczy; Peter; Laszlo; Lakatos

    2010-01-01

    Low bone mineral density is an established, frequent, but often neglected complication in patients with inflammatory bowel disease (IBD). Data regarding the diagnosis, therapy and follow-up of low bone mass in IBD has been partially extrapolated from postmenopausal osteoporosis; however, the pathophysiology of bone loss is altered in young patients with IBD. Fracture, a disabling complication, is the most important clinical outcome of low bone mass. Estimation of fracture risk in IBD is difficult. Numerous ...

  9. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  10. Bone metabolism and RANKL/RANK/OPG trail in periodontal disease

    Directory of Open Access Journals (Sweden)

    Czupkallo Lukasz

    2016-12-01

    Full Text Available Periodontal disease is an inflammatory disease of multifactorial etiology. In order for it to appear there must come to an imbalance between the effects of pathogens and host defense mechanisms. As a result of its course the destruction of structures supporting the teeth appears (periodontium, cement, bone, and consequently leads to teeth loosening and loss. In recent years, the participation of RANKL/RANK/OPG in bone remodeling process was highligted.

  11. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  12. Hypercalciuric Bone Disease

    Science.gov (United States)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  13. Nutritional and metabolic correlates of cardiovascular and bone disease in HIV-infected patients.

    Science.gov (United States)

    Fitch, Kathleen; Grinspoon, Steven

    2011-12-01

    The treatment of HIV infection has dramatically reduced the incidence of AIDS-related illnesses. At the same time, non-AIDS-related illnesses such as cardiovascular and bone disease are becoming more prevalent in this population. The mechanisms of these illnesses are complex and are related in part to the HIV virus, antiretroviral medications prescribed for HIV infection, traditional risk factors exacerbated by HIV, and lifestyle and nutritional factors. Further prospective research is needed to clarify the mechanisms by which HIV, antiretroviral medications, and nutritional abnormalities contribute to bone and cardiovascular disease in the HIV population. Increasingly, it is being recognized that optimizing the treatment of HIV infection to improve immune function and reduce viral load may also benefit the development of non-AIDS-related illnesses such as cardiovascular and bone disease.

  14. Biochemical parameters of bone metabolism in bone metastases of solid tumors (Review)

    NARCIS (Netherlands)

    Meijer, Wilhelmus; van der Veer, E; Willemse, P H

    1998-01-01

    The role of biochemical markers of bone metabolism in the diagnosis and monitoring of bone metastases in solid tumors is reviewed. Emphasis is on the recently developed markers, which may provide a more accurate quantitation of bone metabolism. In metastatic bone disease, bone formation and resorpti

  15. From "Kidneys Govern Bones" to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science.

    Science.gov (United States)

    Wang, Xiao-Qin; Zou, Xin-Rong; Zhang, Yuan Clare

    2016-01-01

    Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of "Kidneys Govern Bones." Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.

  16. Gaucher disease and bone manifestations.

    Science.gov (United States)

    Marcucci, Gemma; Zimran, Ari; Bembi, Bruno; Kanis, John; Reginster, Jean-Yves; Rizzoli, Renè; Cooper, Cyrus; Brandi, Maria Luisa

    2014-12-01

    Gaucher disease is a relatively rare metabolic disease caused by the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Gaucher disease affects multiple organs, among which is the skeleton. Bone involvement occurs frequently in Gaucher disease, and is one of its most debilitating features, reducing the quality of life of patients. Bone status is an important consideration for treatment to ameliorate symptoms and reduce the risk of irreversible complications. We have conducted a systematic review of all the various aspects of Gaucher disease, focusing on different skeletal manifestations, pathophysiology of bone alterations, clinical symptoms, and current diagnostic and therapeutic approaches.

  17. Cardiovascular diseases in older patients with osteoporotic hip fracture: prevalence, disturbances in mineral and bone metabolism, and bidirectional links

    Directory of Open Access Journals (Sweden)

    Fisher A

    2013-02-01

    Full Text Available A Fisher,1,3 W Srikusalanukul,1 M Davis,1,3 P Smith2,31Departments of Geriatric Medicine, 2Orthopaedic Surgery, The Canberra Hospital, 3Australian National University Medical School, Canberra, ACT, AustraliaBackground: Considerable controversy exists regarding the contribution of mineral/bone metabolism abnormalities to the association between cardiovascular diseases (CVDs and osteoporotic fractures.Aims and methods: To determine the relationships between mineral/bone metabolism biomarkers and CVD in 746 older patients with hip fracture, clinical data were recorded and serum concentrations of parathyroid hormone (PTH, 25-hydroxyvitamin D, calcium, phosphate, magnesium, troponin I, parameters of bone turnover, and renal, liver, and thyroid functions were measured.Results: CVDs were diagnosed in 472 (63.3% patients. Vitamin D deficiency was similarly prevalent in patients with (78.0% and without (82.1% CVD. The CVD group had significantly higher mean PTH concentrations (7.6 vs 6.0 pmol/L, P < 0.001, a higher prevalence of secondary hyperparathyroidism (SPTH (PTH > 6.8 pmol/L, 43.0% vs 23.3%, P < 0.001, and excess bone resorption (urinary deoxypyridinoline corrected by creatinine [DPD/Cr] > 7.5 nmol/µmol, 87.9% vs 74.8%, P < 0.001. In multivariate regression analysis, SHPT (odds ratio [OR] 2.6, P = 0.007 and high DPD/Cr (OR 2.8, P = 0.016 were independent indictors of CVD. Compared to those with both PTH and DPD/Cr in the normal range, multivariate-adjusted ORs for the presence of CVD were 17.3 (P = 0.004 in subjects with SHPT and 9.7 (P < 0.001 in patients with high DPD/Cr. CVD was an independent predicator of SHPT (OR 2.8, P = 0.007 and excess DPD/Cr (OR 2.5, P = 0.031. CVD was predictive of postoperative myocardial injury, while SHPT was also an independent predictor of prolonged hospital stay and in-hospital death.Conclusion: SHPT and excess bone resorption are independent pathophysiological mediators underlying the bidirectional associations

  18. Relationship of Dickkopf1 (DKK1 with cardiovascular disease and bone metabolism in Caucasian type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Antonia Garcia-Martín

    Full Text Available OBJECTIVES: Dickkopf-1 (DKK1 is a potent inhibitor of Wnt signalling, which exerts anabolic effects on bone and also takes part in the regulation of vascular cells. Our aims were to evaluate serum DKK1 in type 2 diabetes (T2DM patients and to analyze its relationships with cardiovascular disease (CVD. We also evaluated the relationship between DKK1 and bone metabolism. DESIGN: We conducted a cross-sectional study in which we measured serum DKK1 (ELISA, Biomedica in 126 subjects: 72 patients with T2DM and 54 non-diabetic subjects. We analysed its relationship with clinical CVD, preclinical CVD expressed as carotid intima media thickness (IMT, and bone metabolism. RESULTS: T2DM patients with CVD (P = 0,026 and abnormal carotid IMT (P = 0,038 had higher DKK1 concentrations. DKK1 was related to the presence of CVD in T2DM, independently of the presence of risk factors for atherosclerosis. Therefore, for each increase of 28 pg/ml of serum DKK1 there was a 6,2% increase in the risk of CVD in T2DM patients. The ROC curve analysis to evaluate the usefulness of DKK1 as a marker for high risk of CVD showed an area under the curve of 0,667 (95% CI: 0,538-0,795; P = 0,016. In addition, there was a positive correlation between serum DKK1 and spine bone mineral density in the total sample (r =  0,183; P = 0,048. CONCLUSION: In summary, circulating DKK1 levels are higher in T2DM with CVD and are associated with an abnormal carotid IMT in this cross-sectional study. DKK1 may be involved in vascular disease of T2DM patients.

  19. Regulation of Bone Metabolism.

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-04-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).

  20. Regulation of Bone Metabolism

    Science.gov (United States)

    Shahi, Maryam; Peymani, Amir; Sahmani, Mehdi

    2017-01-01

    Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX). PMID:28367467

  1. Bone Marrow Diseases

    Science.gov (United States)

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains stem cells. The stem cells can ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem ...

  2. Metabolic bone disease in lion cubs at the London Zoo in 1889: the original animal model of rickets.

    Science.gov (United States)

    Chesney, Russell W; Hedberg, Gail

    2010-08-24

    In 1889 Dr. John Bland-Sutton, a prominent London surgeon, was consulted about fatal rickets in over 20 successive litters of lion cubs born at the London Zoo. He evaluated the diet and found the cause of rickets to be nutritional in origin. He recommended that goat meat with crushed bones and cod-liver oil be added to the lean horsemeat diet of the cubs and their mothers. Rickets were reversed, the cubs survived, and subsequent litters thrived. Thirty years later, in classic controlled studies conducted in puppies and young rats, the definitive role of calcium, phosphate and vitamin D in prevention and therapy of rickets was elucidated. Further studies led to identifying the structural features of vitamin D.Although the Bland-Sutton diet provided calcium and phosphate from bones and vitamins A and D from cod-liver oil, some other benefits of this diet were not recognized. Taurine-conjugated bile salts, necessary for intestinal absorption of fat-soluble vitamins, were provided in the oil cold-pressed from cod liver. Unlike canine and rodent species, felines are unable to synthesize taurine, yet conjugate bile acids exclusively with taurine; hence, it must be provided in the diet. The now famous Bland-Sutton "experiment of nature," fatal rickets in lion cubs, was cured by addition of minerals and vitamin D. Taurine-conjugated bile salts undoubtedly permitted absorption of vitamins A and D, thus preventing the occurrence of metabolic bone disease and rickets.

  3. [Bone and calcium update; diagnosis and therapy of metabolic bone disease update. Advances in clinical trials for osteoporosis in Japan].

    Science.gov (United States)

    Nakamura, Toshitaka

    2011-12-01

    Microdensitometry of the metacarpal bone on radiograph was first set up as the endpoint of the treatment in clinical trials in Japan in 1980s. Then, radial bone mineral content obtained by single photon absorptiometry was used. In 1990s, lumbar spine BMD measured by DXA became the major endpoint of the study which was designed as prospective, randomized, double-blind, controlled trial. In 2000s, assessments on the incidences of the vertebral fractures have become mandatory as the primary endpoint of the placebo-controlled trial. The numbers of the subjects required in the study are getting larger and the subtleties in the study including adverse events more important along the progress of evidence-based medicine.

  4. Bone Density Is Directly Associated With Glomerular Filtration and Metabolic Acidosis but Do Not Predict Fragility Fractures in Men With Moderate Chronic Kidney Disease.

    Science.gov (United States)

    Lima, Guilherme Alcantara Cunha; de Paula Paranhos-Neto, Francisco; Silva, Luciana Colonese; de Mendonça, Laura Maria Carvalho; Delgado, Alvimar Gonçalves; Leite, Maurilo; Gomes, Carlos Perez; Farias, Maria Lucia Fleiuss

    2016-01-01

    Hyperparathyroidism, vitamin D deficiency, increased fibroblast growth factor-23 (FGF-23), and metabolic acidosis promote bone fragility in chronic kidney disease (CKD). Although useful in predicting fracture risk in the general population, the role of dual-energy X-ray absorptiometry (DXA) in CKD remains uncertain. This cross-sectional study included 51 men aged 50-75 yr with moderate CKD. The stage 4 CKD patients had higher levels of parathyroid hormone (pmetabolic acidosis for bone impairment and to the inadequacy of DXA to evaluate bone fragility in CKD patients.

  5. Effects of obesity on bone metabolism

    Directory of Open Access Journals (Sweden)

    Cao Jay J

    2011-06-01

    affects health 1. The rates of obesity rates have doubled since 1980 2 and as of 2007, 33% of men and 35% of women in the US are obese 3. Obesity is positively associated to many chronic disorders such as hypertension, dyslipidemia, type 2 diabetes mellitus, coronary heart disease, and certain cancers 456. It is estimated that the direct medical cost associated with obesity in the United States is ~$100 billion per year 7. Bone mass and strength decrease during adulthood, especially in women after menopause 8. These changes can culminate in osteoporosis, a disease characterized by low bone mass and microarchitectural deterioration resulting in increased bone fracture risk. It is estimated that there are about 10 million Americans over the age of 50 who have osteoporosis while another 34 million people are at risk of developing the disease 9. In 2001, osteoporosis alone accounted for some $17 billion in direct annual healthcare expenditure. Several lines of evidence suggest that obesity and bone metabolism are interrelated. First, both osteoblasts (bone forming cells and adipocytes (energy storing cells are derived from a common mesenchymal stem cell 10 and agents inhibiting adipogenesis stimulated osteoblast differentiation 111213 and vice versa, those inhibiting osteoblastogenesis increased adipogenesis 14. Second, decreased bone marrow osteoblastogenesis with aging is usually accompanied with increased marrow adipogenesis 1516. Third, chronic use of steroid hormone, such as glucocorticoid, results in obesity accompanied by rapid bone loss 1718. Fourth, both obesity and osteoporosis are associated with elevated oxidative stress and increased production of proinflammatory cytokines 1920. At present, the mechanisms for the effects of obesity on bone metabolism are not well defined and will be the focus of this review.

  6. Novel Adipokines and Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-01-01

    Full Text Available Osteoporosis is a serious social issue nowadays. Both the high morbidity and its common complication osteoporotic fracture load a heavy burden on the whole society. The adipose tissue is the biggest endocrinology organ that has a different function on the bone. The adipocytes are differentiated from the same cell lineage with osteoblast, and they can secrete multiple adipokines with various functions on bone remolding. Recently, several novel adipokines have been identified and investigated thoroughly. In this paper, we would like to highlight the complicated relation between the bone metabolism and the novel adipokines, and it may provide us with a new target for prediction and treatment of osteoporosis.

  7. Serum levels of parathyroid hormone and markers of bone metabolism in patients with rheumatoid arthritis. Relationship to disease activity and glucocorticoid treatment

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran; Hansen, M; Madsen, J C;

    2001-01-01

    OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before...... and after treatment with GC. METHODS: A range of biochemical markers of bone metabolism and calcium homeostasis were measured in 95 patients with definite RA stratified into groups according to disease activity and GC treatment. In a subgroup of 12 patients with active disease, initiating slow...... groups. The levels of urine pyridinoline (Pyr) and s-albumin-corrected calcium (s-AlbCorrCa2+) were elevated in patients with active disease and patients treated with GC. S-PTH and s-phosphate were within normal ranges. S-TAP, s-ICTP, Pyr and s-AlbCorrCa2+ correlated positively with indices of disease...

  8. Gonadal dysgenesis and bone metabolism.

    Science.gov (United States)

    Breuil, V; Euller-Ziegler, L

    2001-02-01

    Gonadal dysgenesis is defined as congenital hypogonadism related to abnormalities of the sex chromosomes. Because sex steroids play a central role in the acquisition and maintenance of bone mass, studies have been done to investigate bone status in patients with gonadal dysgenesis, particularly Turner's syndrome and Klinefelter's syndrome, which are the two most common types. The severe estrogen deficiency characteristic of Turner's syndrome (44, X0) is associated with a significant bone mass decrease ascribable to increased bone turnover, as shown by histological studies and assays of bone turnover markers. Estrogen therapy is followed by a significant bone mass gain and a return to normal of bone turnover markers, suggesting that it is the estrogen deficiency rather than the chromosomal abnormality that causes the bone mass deficiency, although abnormalities in the renal metabolism of vitamin D have been reported. Combined therapy with estrogens and growth hormone seems beneficial during the prepubertal period. In Klinefelter's syndrome (47XXY), serum testosterone levels are at the lower end of the normal range and dihydrotestosterone levels are low. Histological studies show depressed osteoblast function and a decrease in 5-alpha-reductase activity responsible for partial tissue resistance to androgens. Assays of bone turnover markers show evidence of increased bone turnover. The bone deficiency is most marked at the femoral neck and seems correlated with serum testosterone and estradiol levels. Androgen therapy has favorable effects on the bone only if it is started before puberty. Recent data suggest that estrogens may contribute to the development of demineralization in KS and that bisphosphonate therapy may be beneficial.

  9. The Multiple Roles of Microrna-223 in Regulating Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2015-10-01

    Full Text Available Bone metabolism is a lifelong process for maintaining skeletal system homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts. Aberrant differentiation of osteoclasts and osteoblasts leads to imbalanced bone metabolism, resulting in ossification and osteolysis diseases. MicroRNAs (miRNAs are pivotal factors in regulating bone metabolism via post-transcriptional inhibition of target genes. Recent studies have revealed that miR-223 exerts multiple effects on bone metabolism, especially in the processes of osteoclast and osteoblasts differentiation. In this review, we highlight the roles of miR-223 during the processes of osteoclast and osteoblast differentiation, as well as the potential clinical applications of miR-223 in bone metabolism disorders.

  10. Features of the physical development, calcium-phosphorus metabolism and mineral density of the bones in children with chronic lung diseases

    Directory of Open Access Journals (Sweden)

    Olya Sharipova

    2011-03-01

    Full Text Available We have studied features of physical development, calcium-phosphorus metabolism and mineral density of the bones in children with chronic lung diseases. Comparison of received results with the standards of physical development in children and adolescents has shown the most significant differences in ages of 10, 11 and 15 years old who had the stature level lower than average. The data obtained suggest that children with this pathology undergoes substantial adverse changes in the main somatomertric indicators and bone mineral density, the degree of which depends on the nature of the primary lesion in the bronchopulmonary system, and duration and severity of disease.

  11. Antiepileptic drugs and bone metabolism.

    Science.gov (United States)

    Valsamis, Helen A; Arora, Surender K; Labban, Barbara; McFarlane, Samy I

    2006-09-06

    Anti-epileptic medications encompass a wide range of drugs including anticonvulsants, benzodiazepines, enzyme inducers or inhibitors, with a variety effects, including induction of cytochrome P450 and other enzyme, which may lead to catabolism of vitamin D and hypocalcemia and other effects that may significantly effect the risk for low bone mass and fractures. With the current estimates of 50 million people worldwide with epilepsy together with the rapid increase in utilization of these medications for other indications, bone disease associated with the use of anti-epileptic medications is emerging as a serious health threat for millions of people. Nevertheless, it usually goes unrecognized and untreated. In this review we discuss the pathophysiologic mechanisms of bone disease associated with anti-epileptic use, including effect of anti-epileptic agents on bone turnover and fracture risk, highlighting various strategies for prevention of bone loss and associated fractures a rapidly increasing vulnerable population.

  12. Metabolic bone disease in the preterm infant: Current state and future directions

    Science.gov (United States)

    Rehman, Moghis Ur; Narchi, Hassib

    2015-01-01

    Neonatal osteopenia is an important area of interest for neonatologists due to continuing increased survival of preterm infants. It can occur in high-risk infants such as preterm infants, infants on long-term diuretics or corticosteroids, and those with neuromuscular disorders. Complications such as rickets, pathological fractures, impaired respiratory function and poor growth in childhood can develop and may be the first clinical evidence of the condition. It is important for neonatologists managing such high-risk patients to regularly monitor biochemical markers for evidence of abnormal bone turnover and inadequate mineral intake in order to detect the early phases of impaired bone mineralization. Dual-energy X-ray absorptiometry has become an increasingly used research tool for assessing bone mineral density in children and neonates, but more studies are still needed before it can be used as a useful clinical tool. Prevention and early detection of osteopenia are key to the successful management of this condition and oral phosphate supplements should be started as soon as is feasible. PMID:26413483

  13. [Bone disease in Gaucher's disease].

    Science.gov (United States)

    Roca Espiau, Mercedes

    2011-09-01

    The exposition aims, is to review the pathophysiological mechanisms of bone marrow involvement and the patterns of marrow infiltration by Gaucher cells. We have reviewed the different methods of assessment of bone marrow infiltration and its temporal development. Qualitative methods include simple radiography, magnetic resonance imaging (MRI), computed tomography (CT) and radioisotope. The simple radiography is the basic element, but its sensitivity is limited and only allows for assessing changes and trabecular bone remodeling MRI allows us to appreciate the bone marrow infiltration, detection of complications and response to therapy. Radioisotopes can contribute to the differential diagnosis of osteomyelitis and bone crises. Among the quantitative methods are the QCSI (quantitative chemical shift imaging) and the dual-energy X-ray absorptiometry (DEXA), as well as new quantitative techniques of CT, MRI and ultrasound densitometry. The QCSI performed an assessment of fat content of bone marrow in the spine. DEXA quantifies bone density by measuring the attenuation coefficient. The semiquantitative methods have various "scores" to establish criteria for generalized bone disease endpoints of disease progression and response to therapy.

  14. Osteopetrosis (marble bone disease

    Directory of Open Access Journals (Sweden)

    Alexey Nikolayevich Kalyagin

    2014-01-01

    Full Text Available We report the data of the history of describing osteopetrosis (marble bone disease, its clinical features, diagnosis, and possible therapy approaches. Our own clinical case is presented.

  15. Metastatic Bone Disease

    Science.gov (United States)

    ... begin in bone are much less common in adults older than 45 years. Other diseases, such as Paget’s sarcoma, post-radiation sarcoma, hyperparathyroidism, and fractures due to osteoporosis, are also possibilities. Additional tests will likely be ...

  16. 早产儿代谢性骨病防治进展%Metabolic bone disease in the preterm newborn:an update on prevention and treatment

    Institute of Scientific and Technical Information of China (English)

    王丹虹(综述); 陈平洋(审校)

    2014-01-01

    Metabolic bone disease is one of the common complications in preterm neonates,which has important influence on the quality of life,even increases the risk of adulthood osteoporosis. Early diagnosis and therapy are important for the improvement of outcome of preterm neonates. This article reviews the progress of prevention and treatment of metabolic bone disease in preterm neonates.%早产儿代谢性骨病是早产儿常见的并发症,对其生存质量会造成重要影响,甚至增加成年期骨质疏松的风险。早期干预能有效地减少代谢性骨病的发生,改善早产儿预后。该文对早产儿代谢性骨病的防治进展作一综述。

  17. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease

    DEFF Research Database (Denmark)

    Doyon, Anke; Fischer, Dagmar Christiane; Bayazit, Aysun Karabay

    2015-01-01

    chronic kidney disease cohort. Methods: Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6-18 years with an estimated glomerular filtration rate (eGFR) of 10-60 ml...

  18. Exploring the role of FDG-PET in the assessment of bone marrow involvement in lymphoma patients as interpreted by qualitative and semiquantitative disease metabolic activity parameter

    Directory of Open Access Journals (Sweden)

    P G Kand

    2010-01-01

    Full Text Available Bone marrow biopsy (BMB is currently the standard method to evaluate marrow involvement in malignant lymphomas. However, there exist a number of pitfalls in this technique that can have important implications for initial staging, prognostification, and treatment of the disease. The present study was undertaken to investigate the utility of FDG-PET imaging in the detection of bone marrow involvement in untreated lymphoma patients. Forty untreated patients (36 males and 12 females with either Hodgkin′s disease (HD (n = 17 or non-Hodgkin′s lymphoma (NHL (n = 31 underwent whole body FDG-PET study for disease evaluation. Bone marrow uptake of FDG was graded as absence or presence of disease activity at marrow sites by qualitative assessment. Semiquantitative analysis involved deriving disease metabolic index (DMI using the following formula: DMI = SUV max of suitable circular ROI over PSIS or trochanteric region/ SUVmax of similar ROI over adjoining background. Findings of BMB and FDG-PET were compared for final analysis. Eleven out of 17 HD patients (12 males and 5 females demonstrated concordance between FDG PET findings and BMB reports. Remaining 6 cases showed discordance of FDG-PET demonstrating presence of marrow involvement at marrow sites and uninvolved marrow on BMB. Twenty six of the 31 NHL cases (24 males and 7 females demonstrated concordance between FDG PET findings and BMB reports. Remaining 5 cases showed discordance of FDG-PET demonstrating presence of marrow involvement at marrow sites and uninvolved marrow on BMB. All the BMB positive patients (2 of HD and 5 of NHL demonstrated disease activity in bone marrow on FDG-PET study. All patients with absence of disease activity at marrow sites on FDG-PET scan (9 of HD and 21 of NHL had histology proven uninvolved marrow. The quantitative assessment by DMI showed a mean of >2.5 in HD and NHL patients at the PSIS region and the trochanteric region bilaterally in cases of bone marrow

  19. Metabolic bone disease and central retinal degeneration in a kitten due to nutritional inadequacy of an all-meat raw diet

    Directory of Open Access Journals (Sweden)

    Catherine Lenox

    2015-05-01

    Full Text Available A 5-month-old castrated male Sphynx kitten presented with left hindlimb lameness shortly after adoption. Prior to adoption, the breeder had fed the kitten an exclusively raw chicken diet. Radiographs revealed generalized osteopenia and a left tibia–fibula fracture. Ophthalmic examination revealed corneal vascularization and opacity in the right eye, and lesions suggestive of feline central retinal degeneration in the left eye. The patient’s diagnoses included metabolic bone disease and feline central retinal degeneration, which can result from taurine deficiency. The kitten’s nutritional diseases were managed with a complete and balanced canned diet designed for kitten growth and with taurine supplementation.

  20. Bone- and bone marrow scintigraphy in Gaucher disease type 1

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Zitter, F. [Dept. of Internal Medicine II, State Hospital Klagenfurt (Austria); Gallowitsch, H.J.; Lind, P. [Dept. of Nuclear Medicine and Endocrinology, State Hospital Klagenfurt (Austria); Wuertz, F. [Dept. of Pathology, State Hospital Klagenfurt (Austria); Mehta, A.B.; Hughes, D.A. [Lysosomal Storage Disorder Unit, Dept. of Academic Haematology, Royal Free and Univ. Coll. Medical School, London (United Kingdom)

    2008-07-01

    Scintigraphy is a method for imaging metabolism and should be viewed as complimentary to morphological imaging. Bone and bone marrow scintigraphy can particularly contribute to the detection of focal disease in Gaucher disease. In bone crises it can discriminate within three days after pain onset between local infection and aseptic necrosis. A further advantage of bone- and bone marrow scintigraphy is the visualization of the whole skeleton within one setting. Whole body imaging for focal lesions might thus be an objective in GD, in particular in patients complaining of several painful sites. Direct imaging of bone marrow deposits in GD by MIBI scintigraphy might be of special interest in children in whom bone marrow undergoes a developmental conversion from red to yellow marrow in the ap-pendicular skeleton. MRI interpretation in young GD patients is thus difficult in order to estimate the exact amount and extent of bone marrow infiltration by Gaucher cells. 99mTc-MIBI scintigraphy with its direct visualization of lipid storage could thus add interesting additional information not shown with other methods including MRI. Although MRI is the most accepted imaging modality in assessing the skeletal status in GD, a selective use of scintigraphy for imaging bone and bone marrow may add information in the evaluation of patients with Gaucher disease.

  1. From “Kidneys Govern Bones” to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science

    Directory of Open Access Journals (Sweden)

    Xiao-Qin Wang

    2016-01-01

    Full Text Available Although traditional Chinese medicine (TCM and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of “Kidneys Govern Bones.” Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.

  2. Diagnostic Workup for Disorders of Bone and Mineral Metabolism in Patients with Chronic Kidney Disease in the Era of KDIGO Guidelines

    Directory of Open Access Journals (Sweden)

    Luigi Francesco Morrone

    2011-01-01

    Full Text Available KDIGO (Kidney Disease: Improving Global Outcomes is an international nonprofit organization devoted to “improve the care and outcomes of kidney disease patients worldwide through promoting coordination, collaboration, and integration of initiatives to develop and implement clinical practice guidelines.” The mineral and bone disorder (MBD in patients with chronic kidney disease (CKD has been the first area of interest of KDIGO international initiative. KDIGO guidelines on CKD-MBD were published in 2009 with the intent to modify the previous KDOQI guidelines that had failed to consistently change the global outcome of CKD patients. After the publication of KDOQI guidelines for bone metabolism and disease in 2003, a large number of observational data emerged in literature linking disordered mineral metabolism with adverse clinical outcomes. Notwithstanding this large body of observational data, a paucity of evidence from high-quality clinical trials was available for the development of KDIGO guidelines. Herein, a summary will be provided of the most important findings of KDIGO guidelines regarding the diagnostic workup and clinical monitoring of CKD-MBD patients.

  3. Lower fibroblast growth factor 23 levels in young adults with Crohn disease as a possible secondary compensatory effect on the disturbance of bone and mineral metabolism.

    Science.gov (United States)

    Oikonomou, Konstantinos A; Orfanidou, Timoklia I; Vlychou, Marianna K; Kapsoritakis, Andreas N; Tsezou, Aspasia; Malizos, Konstantinos N; Potamianos, Spyros P

    2014-01-01

    Fibroblast growth factor 23 (FGF-23) is a bone-derived circulating phosphaturic factor that decreases serum concentration of phosphate and vitamin D, suggested to actively participate in a complex renal-gastrointestinal-skeletal axis. Serum FGF-23 concentrations, as well as various other laboratory parameters involved in bone homeostasis, were measured and analyzed with regard to various diseases and patients' characteristics in 44 patients with Crohn disease (CD) and 20 healthy controls (HCs) included in this cross-sectional study. Serum FGF-23 levels were significantly lower in patients with CD (900.42 ± 815.85pg/mL) compared with HC (1410.94 ± 1000.53pg/mL), p = 0.037. Further analyses suggested FGF-23 as a factor independent from various parameters including age (r = -0.218), body mass index (r = -0.115), 25-hydroxy vitamin D (r = 0.126), parathyroid hormone (r = 0.084), and bone mineral density (BMD) of hip and lumbar (r = 0.205 and r = 0.149, respectively). This observation remained even after multivariate analyses, exhibiting that BMD was not affected by FGF-23, although parameters such as age (p = 0.026), cumulative prednisolone dose (p vitamin D levels, showing no impact on BMD determination of young adults with CD. The downregulation of serum FGF-23 levels in CD appears as a secondary compensatory effect on the bone and mineral metabolism induced by chronic intestinal inflammation.

  4. Metabolic bone disease as a presenting manifestation of primary Sjögren′s syndrome: Three cases and review of literature

    Directory of Open Access Journals (Sweden)

    Deepak Khandelwal

    2011-01-01

    Full Text Available Primary Sjögren′s syndrome (pSS is a chronic autoimmune disease characterized by a progressive lymphocytic infiltration of the exocrine glands with varying degrees of systemic involvement. Chronic inflammation compromises the glands′ function that leads to dry symptoms in the mouth/eyes. Renal involvement is a well recognized extraglandular manifestation of pSS. Metabolic bone disease (MBD, however, rarely occurs as the primary manifestation of a renal tubule disorder due to pSS. To the best of our knowledge there are only 6 reported cases of metabolic bone disease as the primary manifestation of pSS to date. Four of these had distal renal tubular acidosis (RTA, and 2 had a combined picture of distal and proximal tubular dysfunction. We herein present our experience of 3 cases who presented to us with a clinical picture suggestive of MBD. While investigating these patients, we found evidence of RTA, which was found to be secondary to pSS.

  5. Oral Health and Bone Disease

    Science.gov (United States)

    ... low bone mass. Research suggests a link between osteoporosis and bone loss in the jaw. The bone in the jaw supports and anchors the teeth. When the jawbone becomes less dense, tooth loss can occur, a common occurrence in older adults. Skeletal Bone Density and Dental Concerns Periodontal Disease ...

  6. Connective tissue metabolism in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity, bone mineral density, and radiographic outcome

    DEFF Research Database (Denmark)

    Jensen, Trine; Klarlund, Mette; Hansen, Michael;

    2004-01-01

    tissue metabolism were measured in 72 patients with symmetrically swollen and tender second and third metacarpophalangeal or proximal interphalangeal joints for at least 4 weeks and less than 2 years. At 2 years, 51 patients fulfilled the American College Rheumatology criteria for rheumatoid arthritis...... (RA) and 21 patients had unclassified polyarthritis. Patients with RA were divided into groups according to the mean disease activity and to magnetic resonance imaging and radiographically detected bone erosions in the hands. RESULTS: Patients with RA had significantly higher serum concentrations...... of matrix metalloproteinase-3 (MMP-3) at baseline and higher mean concentrations of serum MMP-3 and pyridinoline (Pyd) during the first 6 and 12 months than patients with unclassified polyarthritis. RA patients with persistent disease activity and erosive disease had significantly higher concentrations...

  7. Pathophysiology of chronic kidney disease-mineral and bone disorder.

    Science.gov (United States)

    Mac Way, Fabrice; Lessard, Myriam; Lafage-Proust, Marie-Hélène

    2012-12-01

    Chronic kidney disease (CKD) alters the metabolism of several minerals, thereby inducing bone lesions and vessel-wall calcifications that can cause functional impairments and excess mortality. The histological bone abnormalities seen in CKD, known as renal osteodystrophy, consist of alterations in the bone turnover rate, which may be increased (osteitis fibrosa [OF]) or severely decreased (adynamic bone disease [AD]); abnormal mineralization (osteomalacia [OM]), and bone loss. Secondary hyperparathyroidism is related to early phosphate accumulation (responsible for FGF23 overproduction by bone tissue), decreased calcitriol production by the kidneys, and hypocalcemia. Secondary hyperparathyroidism is associated with OF. Other factors that affect bone include acidosis, chronic inflammation, nutritional deficiencies, and iatrogenic complications.

  8. Bone Metabolism on ISS Missions

    Science.gov (United States)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  9. Management of adynamic bone disease in chronic kidney disease: A brief review

    Directory of Open Access Journals (Sweden)

    Swathi K. Sista

    2016-09-01

    Full Text Available The Kidney Disease: Improving Global Outcomes (KDIGO work group released recommendations in 2006 to define the bone-related pathology associated with chronic kidney disease as renal osteodystrophy. In 2009, KDIGO released revised clinical practice guidelines which redefined systemic disorders of bone and mineral metabolism due to chronic kidney disease as chronic kidney disease-mineral and bone disorders. Conditions under this overarching term include osteitis fibrosa cystica, osteomalacia, and adynamic bone disease. We aim to provide a brief review of the histopathology, pathophysiology, epidemiology, and diagnostic features of adynamic bone disease, focusing on current trends in the management of this complex bone disorder.

  10. Bone histology in chronic kidney disease-related mineral and bone disorder.

    Science.gov (United States)

    Kazama, Junichiro James

    2011-06-01

    A quantitative histological analysis of biopsied bone samples is currently regarded as the gold standard for a diagnosing procedure for bone diseases associated with chronic kidney disease-related mineral and bone disorder. Conventionally, "bone cell activities" and "bone mineralization" are applied as two independent assessment axes, and the histology results are classified into five categories according to these axes. Recently, a new bone histology classification system called the Turnover-Mineralization-Volume system, which applied "cancellous bone volume" as another major assessing axis, was advocated; however, both classification systems have many unsolved problems. Clinicians must realize the limitations in evaluating bone metabolism by bone histology. We will need to establish a new classification method for renal bone diseases independent of histological findings.

  11. Green Tea and Bone Metabolism

    Science.gov (United States)

    Osteoporosis is a major health problem in elderly men and women. Epidemiological evidence has shown association between tea consumption and age-related bone loss in elderly men and women. The aim of this review is to provide a systemic review of green tea and bone health to cover the following topi...

  12. Parathyroid hormone in the treatment of metabolic bone diseases%甲状旁腺激素制剂治疗代谢性骨病

    Institute of Scientific and Technical Information of China (English)

    吕芳; 李梅

    2014-01-01

    甲状旁腺激素(PTH)是调节钙平衡及骨转换的重要内分泌激素.目前已有PTH氨基端1-34片段和PTH 1-84全段两种重组甲状旁腺激素,用于治疗严重原发性及糖皮质激素诱发性骨质疏松.最近研究发现,PTH制剂对甲状旁腺功能减退症、成骨不全症、低磷酸酶症等代谢性骨病也有良好疗效.%Parathyroid hormone (PTH) is an important hormone in maintaining calcium balance and modulating bone remodeling.Now there are two forms of recombinant PTH (PTH 1-34 and PTH 1-84) in the treatment of severe primary osteoporosis and glucocorticoid induced osteoporosis.Recently,PTH has been found to be effective in other metabolic bone diseases,such as hypoparathyroidism,osteogenesis imperfecta and hypophosphatasia.

  13. Green tea and bone metabolism.

    Science.gov (United States)

    Shen, Chwan-Li; Yeh, James K; Cao, Jay J; Wang, Jia-Sheng

    2009-07-01

    Osteoporosis is a major health problem in both elderly women and men. Epidemiological evidence has shown an association between tea consumption and the prevention of age-related bone loss in elderly women and men. Ingestion of green tea and green tea bioactive compounds may be beneficial in mitigating bone loss of this population and decreasing their risk of osteoporotic fractures. This review describes the effect of green tea or its bioactive components on bone health, with an emphasis on (i) the prevalence and etiology of osteoporosis; (ii) the role of oxidative stress and antioxidants in osteoporosis; (iii) green tea composition and bioavailability; (iv) the effects of green tea and its active components on osteogenesis, osteoblastogenesis, and osteoclastogenesis from human epidemiological, animal, as well as cell culture studies; (v) possible mechanisms explaining the osteoprotective effects of green tea bioactive compounds; (vi) other bioactive components in tea that benefit bone health; and (vii) a summary and future direction of green tea and bone health research and the translational aspects. In general, tea and its bioactive components might decrease the risk of fracture by improving bone mineral density and supporting osteoblastic activities while suppressing osteoclastic activities.

  14. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    Science.gov (United States)

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  15. Bone disease in primary hypercalciuria

    OpenAIRE

    Sella, Stefania; Cattelan, Catia; Realdi, Giuseppe; Giannini, Sandro

    2008-01-01

    Primary Hypercalciuria (PH) is very often accompanied with some degrees of bone demineralization. The most frequent clinical condition in which this association has been observed is calcium nephrolithiasis. In patients affected by this disorder bone density is very frequently low and increased susceptibility to fragility fractures is reported. The very poor definition of this bone disease from a histomorphometric point of view is a crucial aspect. At present, the most common finding seems to ...

  16. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  17. [Unawareness of the K/DOQI guidelines for bone and mineral metabolism in predialysis chronic kidney disease: results of the OSERCE Spanish multicenter-study survey].

    Science.gov (United States)

    Bover, J; Górriz, J L; Martín de Francisco, A L; Caravaca, F; Barril, G; Molinero, L M

    2008-01-01

    Since its publication in 2003, the K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease (CKD) have become a worldwide reference. The aim of this study was to analyze the observance to these guidelines in patients with a glomerular filtration rate < 60 ml/min/1,73m2 not yet included in dialysis in a Spanish multicenter cohort. A questionnaire by investigator/centre was completed by 32 different nephrologists participating in the OSERCE study and representing the overall Spanish public health net. We observed that biochemical parameters were measured less frequently than recommended, except in CKD stage 3. The therapeutic goals for intact PTH were not properly reported by 59 % of the consulted nephrologists for stages 3 and 4, whereas only 22% did not report them properly for stage 5. The goals for phosphorus were not adequately reported in 50 % of cases (stages 3 y 4) and 60 % (stage 5). For calcium, these values were 70 %, 73.3 % and 65.5 % for stages 3, 4 and 5, respectively. A corrected plasma calcium between 9.5 and 10.2 mg/dl is still considered adequate for 31%. As much as 87% nephrologists stated that they did not sistematically measure calcidiol plasma levels. In general, these results demonstrate that there is a great degree of unawareness of K/DOQITM predialysis guidelines. Thus, their poor implementation is probably not only due to the lower availability of approved therapeutic agents, the difficult achievement of goals or the disbelief on current recommendations. It would be desirable that forthcoming guidelines such as the KDIGO could also consider the need of educational efforts for CKD-Mineral and Bone Disorder.

  18. Retrospective review of bone mineral metabolism management in end-stage renal disease patients wait-listed for renal transplant

    Directory of Open Access Journals (Sweden)

    Chavlovski A

    2012-09-01

    Full Text Available Anna Chavlovski,1 Greg A Knoll,1–3 Timothy Ramsay,4 Swapnil Hiremath,1–3 Deborah L Zimmerman1–31University of Ottawa, 2Ottawa Hospital, 3Kidney Research Centre, Ottawa Hospital Research Institute, 4Ottawa Methods Centre, Ottawa, ON, CanadaBackground: In patients with end-stage renal disease, use of vitamin D and calcium-based phosphate binders have been associated with progression of vascular calcification that might have an impact on renal transplant candidacy. Our objective was to examine management of mineral metabolism in patients wait-listed for renal transplant and to determine the impact on cardiac perfusion imaging.Methods: Data was collected retrospectively on patients wait-listed for a renal transplant (n = 105, being either active (n = 73 and on hold (n = 32. Demographic data, medications, serum concentrations of calcium, phosphate, parathyroid hormone, and cardiac perfusion imaging studies were collected from the electronic health record. Chi-square and Student’s t-tests were used to compare active and on-hold patients as appropriate. Logistic regression was used to examine variables associated with worsening cardiac imaging studies.Results: The wait-listed patients were of mean age 56 ± 14 years and had been on dialysis for 1329 ± 867 days. On-hold patients had received a significantly greater total dose of calcium (2.35 ± .94 kg versus 1.49 ± 1.52 kg; P = 0.02 and were more likely to have developed worsening cardiovascular imaging studies (P = 0.03. Total doses of calcium and calcitriol were associated with worsening cardiovascular imaging studies (P = 0.05.Conclusion: Patients on hold on the renal transplant waiting list received higher total doses of calcium. A higher total dose of calcium and calcitriol was also associated with worsening cardiovascular imaging. Time on dialysis before transplant has been associated with worse post-transplant outcomes, and it is possible that the total calcium and calcitriol dose

  19. Bone disease and HIV infection.

    Science.gov (United States)

    Amorosa, Valerianna; Tebas, Pablo

    2006-01-01

    The high prevalence of bone demineralization among human immunodeficiency virus (HIV)-infected patients in the current therapeutic era has been described in multiple studies, sounding the alarm that we may expect an epidemic of fragility fractures in the future. However, despite noting high overall prevalences of osteopenia and osteoporosis, recent longitudinal studies that we review here have generally not observed accelerated bone loss during antiretroviral therapy beyond the initial period after treatment initiation. We discuss the continued progress toward understanding the mechanisms of HIV-associated bone loss, particularly the effects of HIV infection, antiretroviral therapy, and host immune factors on bone turnover. We summarize results of clinical trials published in the past year that studied the safety and efficacy of treatment of bone loss in HIV-infected patients and provide provisional opinions about who should be considered for bone disease screening and treatment.

  20. Combined scintigraphic and radiographic diagnosis of bone and joint diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee (Catholic Medical Coll., Seoul (Korea, Republic of). Dept. of Radiology and Nuclear Medicine)

    1994-01-01

    This book is intended to emphasize the tremendous value of pinhole scintigraphy in diagnosing nearly the whole spectrum of bone and joint diseases. Pinhole scintigraphy discloses anatomic and pathologic as well as chemical alterations in greater detail, permitting analytical interpretation and raising the sensitivity as well. Infections, nonspecific bone inflammation, rheumatic disorders, metabolic and endocrine bone diseases, trauma, and both primary tumors and metastasis can be effectively and specifically examined. By improving sensitivity, many false negative readings can be avoided in early bone metastasis, synovitis, enthesopathies, bone contusion, etc. (orig.)

  1. Anemia and bone disease of chronic kidney disease: pathogenesis, diagnosis, and management.

    Science.gov (United States)

    Shemin, Douglas

    2014-12-02

    Anemia and metabolic bone disease accompany chronic kidney disease (CKD), and worsen as CKD progresses. It is likely that both processes contribute to the increased morbidity and mortality seen in CKD. This paper briefly reviews the pathogenesis and diagnosis of anemia and bone disease in CKD, and summarizes recent consensus guidelines for treatment.

  2. 树鼩模型在骨代谢疾病中的应用研究进展%The progress in the application research using tree shrew model of bone metabolic diseases

    Institute of Scientific and Technical Information of China (English)

    韩雨杉; 伍雪; 赵宏斌; 钱传云

    2014-01-01

    Metabolic diseases such as hyperlipoidemia, atherosclerosis, and osteoporosis have seriously threatened human health. The shape, physiological function and biochemical metabolism of the tree shrew are extremely similar to those of mankind.The distinctive property of the tree shrew in the lipid metabolism is likely to have obvious advantage in the research of metabolic diseases.This paper reviews the progresses the use of the tree shrew in metabolic diseases in recent years, aiming at demonstrating various types of metabolic diseases in tree shrew models, and further providing a reference for later research of bone metabolic diseases.%高脂血症、动脉粥样硬化及骨质疏松症等代谢性疾病严重威胁人类健康。树鼩的形态、生理机能及生化代谢与人类极为相似,树鼩在脂代谢方面的独特之处可能成为其在研究代谢性疾病的明显优势。本文就近年来树鼩在代谢性疾病中应用的进展作一综述,旨在阐述各种代谢性疾病的树鼩模型,为骨代谢疾病的研究提供借鉴。

  3. METABOLIC CHANGES OF CONNECTIVE TISSUE IN CHILDREN WITH BONE CYST

    Directory of Open Access Journals (Sweden)

    O. M. Magomedov

    2013-10-01

    Full Text Available The results of the study of diagnostically important metabolism parameters in patients with bone cysts in different stages of the disease are presented. It is shown that an increase activity of protein banding collagenase, alkaline phosphatase and also of hydroxyproline, glycosaminoglycans contents due to lower levels of calcium and inorganic phosphate levels increase in blood serum are expressed in a stage osteolysis than the step of separating. Decreasing the amount of glycosaminoglycans and collagen in bone indicates an intensification of catabolic processes in the connective tissue matrix. Diagnostically important indicators of the degree of disturbance of bone metabolism are the level of collagen, proteoglycans and activity of marker enzymes — collagenase and alkaline phosphatase. Based on the evaluation of sensitivity, specificity and diagnostic efficiency of the obtained results, we can recommend the threshold values of the investigated parameters of basic organic components and mineral metabolism of bone for the differential diagnosis of stages of bone cysts in children, which will serve as a basis for the development of appropriate diagnostic tests.

  4. Study of vitamin D status of rheumatoid arthritis patients Rationale and design of a cross-sectional study by the osteoporosis and metabolic bone diseases study group of the Italian Society of Rheumatology (SIR

    Directory of Open Access Journals (Sweden)

    M. Antonelli

    2011-09-01

    Full Text Available The fundamental role of Vitamin D has been long known in regulating calcium homeostasis and bone metabolism. An increased contribution of Vitamin D was recently described in association with a lower incidence of Rheumatoid Arthritis (RA. This must not be surprising, as the immunomodulating effects of Vitamin D are clear, which have been attributed protective effects in autoimmune disorders such as some chronic inflammatory bowel diseases, multiple sclerosis and type I diabetes. An interaction was suggested between Vitamin D metabolism and inflammation indexes through mediation of TNF-a which is also especially involved in osteoclastic resorption and therefore in bone loss processes. Some preliminary data would indicate an association between seasonal changes of Vitamin D serum levels, latitude and disease activity (DAS28 in RA patients. Consequently, the Osteoporosis and Metabolic Bone Diseases Study Group of SIR believes that there are grounded reasons for assessing the Vitamin D status of RA patients in order to investigate whether this is to be related to physiopathological and clinical aspects of disease other than those of bone involvement. Primary end point of the study will be to assess the levels of 25 OH Vitamin D in RA patients. Secondary endpoints will include correlation with disease activity, densitometry values and bone turnover. The cross-sectional study will enrol patients of both sex genders, age ranging between 30 and 75 years according to the 1988 ACR criteria, onset of symptoms at least 2 years prior to study enrollment. Patients will be excluded suffering from osteometabolic diseases, liver and kidney insufficiency and those administered Vitamin D boli in the previous 12 months. Disease activity will be evaluated with the HAQ. Haematochemical tests and femoral and lumbar bone densitometry will be performed, unless recently undergone by patients. Blood levels of 25 OH C Vitamin D and PHT and of the two bone remodeling markers

  5. Investigations of Diabetic Bone Disease

    DEFF Research Database (Denmark)

    Linde, Jakob Starup

    Diabetes mellitus is associated with an increased risk of fracture with and current fracture predictors underestimate fracture risk in both type 1 and type 2 diabetes. Thus, further understanding of the underlying causes of diabetic bone disease may lead to better fracture predictors and preventive...... measures in patients with diabetes. This PhD thesis reports the results of two systematic reviews and a meta-analysis, a state-of-the-art intervention study, a clinical cross-sectional study and a registry-based study all examining the relationship between diabetes, glucose, and bone. Patients with type 2...... diabetes had lower bone turnover markers compared to patients with type 1 diabetes and bone mineral density and tissue stiffness were increased in patients with type 2 diabetes. The bone turnover markers were inversely associated with blood glucose in patients with diabetes and both an oral glucose...

  6. Controlled release pharmaceutical composition useful for the treatment of diseases and conditions affecting metabolism and/or structural integrity of cartilage and/or bone in male comprises strontium salt

    DEFF Research Database (Denmark)

    2004-01-01

    NOVELTY - A controlled release pharmaceutical composition comprises a strontium salt in an amount for once daily oral administration. USE - For the treatment and/or prophylaxis of a cartilage and/or bone disease and/or conditions resulting in a dysregulation of cartilage and/or bone metabolism......, not more than 70 and at least70 in the first 30 minutes, first 4 hours and first 14 hours, respectively. DETAILED DESCRIPTION - An INDEPENDENT CLAIM is included for a pharmaceutical composition containing the strontium salt, a drug substance that induces osteoporosis and a carrier....

  7. Vitamin D and Bone Disease

    Directory of Open Access Journals (Sweden)

    S. Christodoulou

    2013-01-01

    Full Text Available Vitamin D is important for normal development and maintenance of the skeleton. Hypovitaminosis D adversely affects calcium metabolism, osteoblastic activity, matrix ossification, bone remodeling and bone density. It is well known that Vit. D deficiency in the developing skeleton is related to rickets, while in adults is related to osteomalacia. The causes of rickets include conditions that lead to hypocalcemia and/or hypophosphatemia, either isolated or secondary to vitamin D deficiency. In osteomalacia, Vit. D deficiency leads to impairment of the mineralisation phase of bone remodeling and thus an increasing amount of the skeleton being replaced by unmineralized osteoid. The relationship between Vit. D and bone mineral density and osteoporosis are still controversial while new evidence suggests that Vit. D may play a role in other bone conditions such as osteoarthritis and stress fractures. In order to maintain a “good bone health” guidelines concerning the recommended dietary intakes should be followed and screening for Vit. D deficiency in individuals at risk for deficiency is required, followed by the appropriate action.

  8. Bone marrow transplantation in mice as a tool for studying the role of hematopoietic cells in metabolic and cardiovascular diseases

    NARCIS (Netherlands)

    Aparicio-Vergara, Marcela; Shiri-Sverdlov, Ronit; de Haan, Gerald; Hofker, Marten H.

    2010-01-01

    Hematopoietic cells have been established as major players in cardiovascular disease, with an important role in the etiology of atherosclerotic plaque. In addition, hematopoietic cells, and in particular the cells of monocyte and macrophage lineages, have recently been unmasked as one of the main ca

  9. Early stage transplantation of bone marrow cells markedly ameliorates copper metabolism and restores liver function in a mouse model of Wilson disease

    Directory of Open Access Journals (Sweden)

    Wang Chuhuai

    2011-06-01

    Full Text Available Abstract Background Recent studies have demonstrated that normal bone marrow (BM cells transplantation can correct liver injury in a mouse model of Wilson disease (WD. However, it still remains unknown when BM cells transplantation should be administered. The aim of this study was to investigate the potential impact of normal BM cells transplantation at different stages of WD to correct liver injury in toxic milk (tx mice. Methods Recipient tx mice were sublethally irradiated (5 Gy prior to transplantation. The congenic wild-type (DL BM cells labeled with CM-DiI were transplanted via caudal vein injection into tx mice at the early (2 months of age or late stage (5 months of age of WD. The same volume of saline or tx BM cells were injected as controls. The DL donor cell population, copper concentration, serum ceruloplasmin oxidase activity and aspartate aminotransferase (AST levels in the various groups were evaluated at 1, 4, 8 and 12 weeks post-transplant, respectively. Results The DL BM cells population was observed from 1 to 12 weeks and peaked by the 4th week in the recipient liver after transplantation. DL BM cells transplantation during the early stage significantly corrected copper accumulation, AST across the observed time points and serum ceruloplasmin oxidase activity through 8 to 12 weeks in tx mice compared with those treated with saline or tx BM cells (all P P P > 0.05. Conclusions Early stage transplantation of normal BM cells is better than late stage transplantation in correcting liver function and copper metabolism in a mouse model of WD.

  10. What Is Paget's Disease of Bone?

    Science.gov (United States)

    ... Size | S S M M L L Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics News Glossary ... focus(); */ } //--> Print-Friendly Page Home Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics About Us ...

  11. How Is Paget's Disease of Bone Diagnosed?

    Science.gov (United States)

    ... Size | S S M M L L Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics News Glossary ... focus(); */ } //--> Print-Friendly Page Home Bone Basics Osteoporosis Osteogenesis Imperfecta Paget’s Disease of Bone Related Topics About Us ...

  12. Fisioterapia motora no tratamento do prematuro com doença metabólica óssea Motor physiotherapy in the treatment of preterm infants with metabolic bone disease

    Directory of Open Access Journals (Sweden)

    Juliana Moreno

    2011-03-01

    Full Text Available OBJETIVO: Revisar o papel da fisioterapia motora no prematuro com risco de desenvolver doença metabólica óssea. FONTES DE DADOS: Trata-se de uma revisão de literatura publicada entre 1986 e 2009, utilizando as seguintes palavras-chave: prematuro, calcificação fisiológica, modalidades de fisioterapia, doenças ósseas metabólicas e os respectivos descritores no idioma inglês. Foram selecionados 29 artigos científicos, via PubMed e ISI Web, além de um capítulo de livro nacional. SÍNTESE DOS DADOS: As doenças ósseas metabólicas compreendem um conjunto de condições relacionadas a alterações no processo de calcificação fisiológica, levando desde à fragilidade estrutural até ao desenvolvimento de fraturas. A aplicação rotineira de exercícios de mobilização passiva articular, massagem e posicionamento está relacionada ao ganho ponderal, ao aumento na densidade e no conteúdo mineral ósseo. CONCLUSÕES: A implementação de exercícios de fisioterapia motora parece proporcionar estabilidade ou estímulo para a formação óssea, podendo, consequentemente, prevenir e/ou minimizar as complicações decorrentes da doença metabólica óssea.OBJECTIVE: To review the role of motor physiotherapy in the treatment of preterm infants at risk of developing metabolic bone disease. DATA SOURCES: This is a review of articles published between 1986 and 2009, using the following key-words: premature infant physiologic calcification, physiotherapy techniques, metabolic bone diseases and the respective Portuguese-language descriptors. Twenty nine scientific articles were selected in the PubMed and ISI Web databases, along with one chapter of a Brazilian book. DATA SYNTHESIS: Metabolic bone diseases are a set of conditions related to abnormalities in the physiologic calcification process. They lead to problems going from structural frailness to fracture development. Routine application of passive joint mobilization exercises, massage and

  13. Bone mass and bone metabolic indices in male master rowers.

    Science.gov (United States)

    Śliwicka, Ewa; Nowak, Alicja; Zep, Wojciech; Leszczyński, Piotr; Pilaczyńska-Szcześniak, Łucja

    2015-09-01

    The purpose of this study was to assess bone mass and bone metabolic indices in master athletes who regularly perform rowing exercises. The study was performed in 29 men: 14 master rowers and 15 non-athletic, body mass index-matched controls. Dual-energy X-ray absorptiometry measurements of the areal bone mineral density (aBMD) were performed for the total body, regional areas (arms, total forearms, trunk, thoracic spine, pelvis, and legs), lumbar spine (L1-L4), left hip (total hip and femoral neck), and forearm (33 % radius of the dominant and nondominant forearm). Serum concentrations of osteocalcin, collagen type I cross-linked C-telopeptide, visfatin, resistin, insulin, and glucose were determined. Comparative analyses showed significantly lower levels of body fat and higher lean body mass values in the rowers compared to the control group. The rowers also had significantly higher values of total and regional (left arm, trunk, thoracic spine, pelvis, and leg) BMD, as well as higher BMD values for the lumbar spine and the left hip. There were significant differences between the groups with respect to insulin, glucose, and the index of homeostasis model assessment insulin resistance. In conclusion, the systematic training of master rowers has beneficial effects on total and regional BMD and may be recommended for preventing osteoporosis.

  14. The effect of aromatase inhibitors on bone metabolism

    DEFF Research Database (Denmark)

    Folkestad, Lars; Bjarnason, Nina H; Bjerregaard, Jon Kroll;

    2009-01-01

    Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present ...... in comparison with tamoxifen. We conclude that treatment with aromatase inhibitors leads to an increased bone loss and thus an increase in the risk of fractures in women with breast cancer.......Aromatase inhibitors increase the disease-free survival in patients with receptor-positive breast cancer. Aromatase is a cytochrome P450 enzyme complex catalysing the conversion of androgens to oestrogens. These properties cause a significant increase in bone loss. In this MiniReview, we present...... data from the aromatase inhibitor studies and the studies designed to investigate aromatase inhibitor effect on bone metabolism. At the cellular level, oestrogen has profound effects on both osteoblasts and osteoclasts. Oestrogen decreases the osteoblastic production of resorptive cytokines...

  15. Bone Mineralization in Celiac Disease

    Directory of Open Access Journals (Sweden)

    Tiziana Larussa

    2012-01-01

    Full Text Available Evidence indicates a well-established relationship between low bone mineral density (BMD and celiac disease (CD, but data on the pathogenesis of bone derangement in this setting are still inconclusive. In patients with symptomatic CD, low BMD appears to be directly related to the intestinal malabsorption. Adherence to a strict gluten-free diet (GFD will reverse the histological changes in the intestine and also the biochemical evidence of calcium malabsorption, resulting in rapid increase of BMD. Nevertheless, GFD improves BMD but does not normalize it in all patients, even after the recovery of intestinal mucosa. Other mechanisms of bone injury than calcium and vitamin D malabsorption are thought to be involved, such as proinflammatory cytokines, parathyroid function abnormalities, and misbalanced bone remodeling factors, most of all represented by the receptor activator of nuclear factor B/receptor activator of nuclear factor B-ligand/osteoprotegerin system. By means of dual-energy X-ray absorptiometry (DXA, it is now rapid and easy to obtain semiquantitative values of BMD. However, the question is still open about who and when submit to DXA evaluation in CD, in order to estimate risk of fractures. Furthermore, additional information on the role of nutritional supplements and alternative therapies is needed.

  16. Metabolic syndrome and eye diseases.

    Science.gov (United States)

    Poh, Stanley; Mohamed Abdul, Riswana Banu Binte; Lamoureux, Ecosse L; Wong, Tien Y; Sabanayagam, Charumathi

    2016-03-01

    Metabolic syndrome is becoming a worldwide medical and public health challenge as it has been seen increasing in prevalence over the years. Age-related eye diseases, the leading cause of blindness globally and visual impairment in developed countries, are also on the rise due to aging of the population. Many of the individual components of the metabolic syndrome have been shown to be associated with these eye diseases. However, the association of metabolic syndrome with eye diseases is not clear. In this review, we reviewed the evidence for associations between metabolic syndrome and certain ocular diseases in populations. We also reviewed the association of individual metabolic syndrome components with ocular diseases due to a paucity of research in this area. Besides, we also summarised the current understanding of etiological mechanisms of how metabolic syndrome or the individual components lead to these ocular diseases. With increasing evidence of such associations, it may be important to identify patients who are at risk of developing metabolic syndrome as prompt treatment and intervention may potentially decrease the risk of developing certain ocular diseases.

  17. Bone disease in haemoglobin disorders

    Directory of Open Access Journals (Sweden)

    Ersi Voskaridou

    2013-03-01

    Full Text Available Bone disease represents a prominent cause of morbidity in patients with thalassaemia and other haemoglobin disorders. The delay in sexual maturation, the presence of diabetes and hypothyroidism, the parathyroid gland dysfunction, the haemolytic anaemia, the progressive marrow expansion, the iron toxicity on osteoblasts, the iron chelators, and the deficiency of growth hormone or insulin growth factors have been identified as major causes of osteoporosis in thalassaemia. Adequate hormonal replacement, effective iron chelation, improvement of hemoglobin levels, calcium and vitamin D administration, physical activity, and smoking cessation are the main to-date measures for the management of the disease. During the last decade, novel pathogenetic data suggest that the reduced osteoblastic activity, which is believed to be the basic mechanism of bone loss in thalassemia, is accompanied by a comparable or even greater increase in bone resorption. Therefore, potent inhibitors of osteoclast activation, such as the aminobisphosphonates, arise as key drugs for the management of osteoporosis in thalassaemia patients and other haemoglobin disorders.

  18. Photodynamic therapy of diseased bone

    Science.gov (United States)

    Bisland, Stuart K.; Yee, Albert; Siewerdsen, Jeffery; Wilson, Brian C.; Burch, Shane

    2005-08-01

    Objective: Photodynamic therapy (PDT) defines the oxygen-dependent reaction that occurs upon light-mediated activation of a photosensitizing compound, culminating in the generation of cytotoxic, reactive oxygen species, predominantly, singlet oxygen. We are investigating PDT treatment of diseased bone. Methods: Using a rat model of human breast cancer (MT-1)-derived bone metastasis we confirmed the efficacy of benzoporphyrin-derivative monoacid (BPD-MA)-PDT for treating metastatic lesions within vertebrae or long bones. Results: Light administration (150 J) 15 mins after BPDMA (2.5 mg/Kg, i.v.) into the lumbar (L3) vertebra of rats resulted in complete ablation of the tumour and surrounding bone marrow 48 hrs post-PDT without paralysis. Porcine vertebrae provided a model comparable to that of human for light propagation (at 150 J/cm) and PDT response (BPD-MA; 6 mg/m2, i.v.) in non-tumour vertebrae. Precise fibre placement was afforded by 3-D cone beam computed tomography. Average penetration depth of light was 0.16 +/- 0.04 cm, however, the necrotic/non-necrotic interface extended 0.6 cm out from the treatment fiber with an average incident fluence rate of 4.3 mW/cm2. Non-necrotic tissue damage was evident 2 cm out from the treatment fiber. Current studies involving BPD-MA-PDT treatment of primary osteosarcomas in the forelimbs of dogs are very promising. Magnetic resonance imaging 24 hr post treatment reveal well circumscribed margins of treatment that encompass the entire 3-4 cm lesion. Finally, we are also interested in using 5-aminolevulinic acid (ALA) mediated PDT to treat osteomyelitis. Response to therapy was monitored as changes in bioluminescence signal of staphylococcus aureus (SA)-derived biofilms grown onto 0.5 cm lengths of wire and subjected to ALA-PDT either in vitro or in vivo upon implant into the intramedullary space of rat tibia. Transcutaneous delivery of PDT (75 J/cm2) effectively eradicated SAbiofilms within bone. Conclusions: Results support

  19. Martial Arts and Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Hidetaka Hamasaki

    2016-05-01

    Full Text Available Different forms of martial arts are practiced worldwide, each with various intensities of physical activity. These disciplines are potentially an effective exercise therapy for metabolic diseases. Tai chi is the most well-studied style of martial arts and has shown evidence of its effect on metabolic diseases; however, little evidence is available regarding the association between other styles of martial arts and metabolic health. To summarize and evaluate the effects of martial arts on metabolic diseases, eligible articles were searched by using Pubmed. To date, systematic reviews provide no definite conclusion on the effectiveness of tai chi for treating metabolic diseases because of a small numbers of subjects, short durations of clinical trials, and some biases involved in testing. However, there are several clinical studies on subjects with metabolic diseases, which show that tai chi improves obesity, glycemic control, blood pressure control, and lipid profiles. Currently, some limited evidence suggests that other martial arts, such as kung fu and karate, may be beneficial for body composition, glycemic control, and arterial stiffness. To clarify the effectiveness of martial arts for treating metabolic diseases, well-designed prospective studies, preferably with a larger number of subjects and of longer duration, are warranted.

  20. Infrared laser and bone metabolism; A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Gordjestani, M.; Dermaut, L. (Department of Orthodontics, University of Ghent (Belgium)); Thierens, H. (Institute of Medical Physics, University of Ghent (Belgium))

    1994-01-01

    A circular defect in each parietal bone of six Wislander rats was created. The animals were divided into two three-unit subgroups. The experimental group received infrared laser radiation on the left defect. The control group was sham irradiated. After 28 days, the bone metabolism was evaluated by technetium-99m methylene diphosphonate scintigraphy. The obtained results revealed no differences in bone metabolic activity between the laser-treated and the control defects. (au) (18 refs.).

  1. Lysophosphatidylinositol Signalling and Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Syamsul A. Arifin

    2016-01-01

    Full Text Available Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI and its receptor G-protein coupled receptor 55 (GPR55 in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.

  2. [Metabolic status and bone mineral density in patients with pseudarthrosis of long bones in hyperhomocysteinemia].

    Science.gov (United States)

    Bezsmertnyĭ, Iu O

    2013-06-01

    In article described research of the metabolic status and bone mineral density in 153 patients with with pseudarthrosis of long bones, in individuals with consolidated fractures and healthy people. The violations of reparative osteogenesis at hyperhomocysteinemia are accompanied by disturbances of the functional state of bone tissue, inhibition of biosynthetic and increased destruction processes, reduced bone mineral density in the formation of osteopenia and osteoporosis. The degree and direction of change of bone depends on the type of violation of reparative osteogenesis.

  3. Reduced Bone Mineral Density and Bone Metabolism in Aquaporin-1 Knockout Mice

    Institute of Scientific and Technical Information of China (English)

    WU Qing-tian; MA Qing-jie; HE Cheng-yan; WANG Cai-xia; GAO Shi; HOU Xia; MA Tong-hui

    2007-01-01

    An overt phenotype of aquaporin-1 knockout(AQP1 ko) mice is growth retardation, suggesting possible defects in bone development and metabolism. In the present study, we analyzed the bone mineral density(BMD), bone calcium and phosphorus contents, and bone metabolism in an AQP1 ko mouse model. The BMD of femurs in AQP1 ko mice was significantly lower than that of litter-matched wildtype mice as measured by dual energy X-ray absorptiometry. Consistently, the contents of bone total calcium and phosphorus were also significantly lower in AQP1 ko mice. The reduced BMD caused by AQP1 deficiency mainly affect male mice. Bone metabolic activity, as indicated by 99mTc-MDP absorption measurements, was remarkably reduced in AQP1 ko mice. These results provide the first evidence that AQP1 play an important role in bone structure and metabolism.

  4. BONE METABOLISM AND ITS REGULATION IN PATIENTS WITH ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    O. V. Bugrova

    2016-01-01

    Full Text Available Osteoporosis in ankylosing spondylitis (AS may exacerbate pain and functional disorders and increases the risk of fractures. The mechanisms  of its development in AS have not been adequately studied.Objective: to study bone mineral density (BMD  and its regulation in patients with AS.Subjects and methods. 70 patients (mean age, 43.2±9.2 years with a documented diagnosis of AS (mean disease duration, 17.1±7.8 years and a control group of 30 healthy individuals were examined. All the patients underwent estimation of BMD and the serum concentrations of osteocalcin,  CrossLaps, and key regulators of osteoclastogenesis, such as osteoprotegerin (OPG  and a receptor activator of nuclear factor kappa-B ligand (RANKL by an enzyme immunoassay. Results and discussion. In patients with AS, bone metabolism was characterized  by a decrease in bone formation and by some increase in bone tissue degradation especially in high AS activity. These patients showed the elevated levels of the major blocker of osteoclastogenesis OPG and the OPG/RANKL ratio, which can cause the process of ossification characteristic  of AS.

  5. Biomarkers of bone and mineral metabolism following bone marrow transplantation.

    Science.gov (United States)

    Baek, Ki Hyun; Kang, Moo Il

    2009-01-01

    The loss of bone mass often occurs after patients undergo bone marrow transplantation (BMT). The rapid impairment of bone formation and the increase in bone resorption, as mirrored by the biochemical markers of bone turnover, might play a role in this bone loss, and especially during the immediate post-BMT period. The possible direct causes for this paradoxical uncoupling are exposure to immunosuppressants, hypogonadism, the changes of cytokines, the changes of the bone growth factors, and the damage to the osteoprogenitor cells because of myeloablative therapy. In this chapter, we discuss the general aspects of post-BMT bone loss with a peculiar focus on the remodeling imbalance of bone and its relation to the use of immunosuppressants and the changes of sex hormones, growth factors, and cytokines.

  6. Imaging Paget's disease of bone--from head to toe.

    Science.gov (United States)

    Cortis, K; Micallef, K; Mizzi, A

    2011-07-01

    Paget's disease of the bone is a common, non-inflammatory, metabolic, skeletal disorder of unknown aetiology characterized by an increase in osteoclast-mediated bone resorption and compensatory excessive osteoblast activation. Prevalence increases with age, and a pronounced geographical variation is well documented. The disease is often an incidental finding on a radiological examination requested for an unrelated indication. The osteolytic, mixed osteolytic/osteoblastic, and osteosclerotic phases may occur in the same patient and same bone in a synchronous or metachronous fashion. Radiological features in each phase mirror the histopathological appearances, and are distinctive enough to establish a diagnosis with confidence. Using multi-technique imaging, this review illustrates the most common and the not so common radiological patterns of involvement in Paget's disease of bone observed at our centre during the past 20 years.

  7. Bone disease of primary hyperoxaluria in infancy

    Energy Technology Data Exchange (ETDEWEB)

    Ring, E.; Wendler, H.; Zobel, G. (Graz Univ. (Austria). Abt. fuer Kinderheilkunde); Ratschek, M. (Graz Univ. (Austria). Abt. fuer Pathologie)

    1989-11-01

    A patient with primary hyperoxaluria type I in infancy is reported. He had renal insufficiency, but urolithiasis was absent. Demonstration of diffuse nephrocalcinosis by renal ultrasound contributed to early diagnosis. Prolonged survival leads to extensive extrarenal oxalate deposition. Repeated skeletal surveys showed the development and the progression of severe hyperoxaluria-related bone disease. Translucent metaphyseal bands with sclerotic margins, wide areas of rarefaction at the ends of the long bones, and translucent rims around the epiphyses and the tarsal bones were signs of disordered bone growth. Bone density generally increased with time indicating progressive sclerosis due to oxalate deposition in the previously normal bone structure. (orig.).

  8. Rheumatological presentation of developmental bone diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kalifa, Gabriel; Cohen, Pierre alain; Hamidou, Amine

    2000-02-01

    Developmental bone disease may be present, with rheumatological disorders as the major symptoms, even in children. The major lesions encountered are early osteo arthritis, osteo chondromatosis and vertebral involvement with two leading types, pseudo Scheuermann's disease or pseudo ankylosing spondylitis. This paper presents the different features and lists the rheumatological problems in bone dysplasia.

  9. Mechanisms of multiple myeloma bone disease

    Science.gov (United States)

    Galson, Deborah L; Silbermann, Rebecca; Roodman, G David

    2012-01-01

    Multiple myeloma is the second most common hematological malignancy and the most frequent cancer to involve the skeleton. Multiple myeloma bone disease (MMBD) is characterized by abnormal bone remodeling with dysfunction of both bone resorption and bone formation, and thus can be used as a paradigm for other inflammatory bone diseases, and the regulation of osteoclasts and osteoblasts in malignancy. Studies of MMBD have identified novel regulators that increase osteoclastogenesis and osteoclast function, repress osteoblast differentiation, increase angiogenesis, or permanently alter stromal cells. This review will discuss the current understanding of mechanisms of osteoclast and osteoblast regulation in MMBD, and therapeutic approaches currently in use and under development that target mediators of bone destruction and blockade of bone formation for myeloma patients, including new anabolic therapies. PMID:23951515

  10. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications.

    Science.gov (United States)

    Salanova Villanueva, Laura; Sánchez González, Carmen; Sánchez Tomero, José Antonio; Aguilera, Abelardo; Ortega Junco, Esther

    2016-01-01

    Cardiovascular factors are one of the main causes of morbidity and mortality in patients with chronic kidney disease. Bone mineral metabolism disorders and inflammation are pathological conditions that involve increased cardiovascular risk in chronic kidney disease. The cardiovascular risk involvement of bone mineral metabolism classical biochemical parameters such as phosphorus, calcium, vitamin D and PTH is well known. The newest markers, FGF23 and klotho, could also be implicated in cardiovascular disease.

  11. Bone Markers Status in Graves’ disease before and after Treatment

    Directory of Open Access Journals (Sweden)

    P Tofighi

    2008-11-01

    Full Text Available "nBackground:  Bone turnover is reported to increase in favor of resorption in overt hyperthyroidism and the rate of resorp­tion is associated with the levels of thyroid hormones. As persistent increase in bone turn over is responsible for accelerated bone loss, patients with Graves' disease may have increased risk for osteoporosis. The aim of this study was to determine relationship between Graves' disease and bone markers."nMethods: The subjects of our study were 31 consecutive untreated GD patients and 37 normal volunteers who were matched on sex proportion and age ranging was diagnosed by suppressed levels of TSH and elevated level of free T3 and free T4 and positive thyroid receptor antibody. Through a clinical trial study executed in endocrinology and metabolism research center, we investigated the relationship between serum osteocalcin & cross-laps with Graves' disease and then kinds of treatment with PTU and methimazole after 8 weeks follow up."nResults: No significant differences in age and sex between patients and controls were found. Significant differences in se­rum bone markers and thyroid hormones were detected between patients and controls before therapy (p< 0.001. After treatment we found a significant improvement and returning to normal range in all serum lab tests. There were not any dif­ferences in the effect of treatment on thyroid hormones and bone markers between two groups."nConclusion: We found close relationship between Graves' disease and bone markers. So that treatment of Graves' disease can improve bone turn over. These findings indicated that early diagnosis and management of Graves' disease can be effec­tive for osteoporosis prevention in these patients.

  12. 不同程度慢性肾病患者骨密度及骨代谢相关指标的临床研究%The Clinical Study of Bone Mineral Density and Bone Metabolism in Patients with Chronic Renal Disease

    Institute of Scientific and Technical Information of China (English)

    韩江琴; 章斌; 邓胜明; 吴翼伟

    2014-01-01

    目的:探讨不同程度慢性肾病患者骨密度(BMD)及骨代谢相关指标的差异及相关关系。方法选取31例慢性肾病患者,应用双能X线(DEXA)骨密度仪测定L1~4腰椎BMD,并测定血肌酐(Scr)及骨代谢相关指标。结果Scr升高组骨代谢水平高于Scr正常组,Scr水平与降钙素(CT)、骨钙素(BGP)、甲状旁腺素(PTH)、碱性磷酸酶(ALP)呈正相关(r=0.67、0.81、0.85、0.45,P<0.05),与BMD T值呈负相关(r=-0.60,P<0.01);BMD T值与PTH及BGP呈负相关(r=-0.55、-0.65,P<0.05)。结论随着慢性肾病的病情加重,肾性骨病呈现进展,BMD及骨代谢指标动态监测在肾性骨病的诊断及病情评估中有重要价值。%Objective To explore the differences and relationships between bone mineral density (BMD) and bone metabolic markers in patients with chronic renal disease of different stages. Methods BMDs of the lumbar spines were measured using dual energy X-ray absorptiometry in 31 patients with chronic renal disease. Serum creatinine (Scr)and bone metabolic were examined. Results Bone metabolic markers of group with elevated Scr were significantly higher than those of group with normal Scr. The level of Scr was positively correlated with CT, BGP, PTH, and ALP (r=0.67, 0.81, 0.85, and 0.45, P<0.05), and it was negatively correlated with the level of BMD (r=-0.60, P<0.01). The value of BMD was positively correlated with PTH and BGP (r=-0.55 and-0.65, P<0.05). Conclusion Incidence rates of renal osteopathy were closely related to the severity of chronic renal disease. Dynamic monitoring information of BMD and bone metabolic markers is important to the diagnosis and severity evaluation of renal osteopathy.

  13. [The Idiopathic Parkinson's disease: A metabolic disease?].

    Science.gov (United States)

    Rieu, I; Boirie, Y; Morio, B; Derost, P; Ulla, M; Marques, A; Debilly, B; Bannier, S; Durif, F

    2010-10-01

    Parkinson's disease is a neurodegenerative disorder clinically characterized by motor impairments (tremor, bradykinesia, rigidity and postural instability) associated or not with non-motor complications (cognitive disorders, dysautonomia). Most of patients loose weight during evolution of their disease. Dysregulations of hypothalamus, which is considered as the regulatory center of satiety and energy metabolism, could play a major role in this phenomenon. Deep brain stimulation of the subthalamic nucleus (NST) is an effective method to treat patients with advanced Parkinson's disease providing marked improvement of motor impairments. This chirurgical procedure also induces a rapid and strong body weight gain and sometimes obesity. This post-operative weight gain, which exceeds largely weight lost recorded in non-operated patient, could be responsible of metabolic disorders (such as diabetes) and cardiovascular diseases. This review describes body weight variations generated by Parkinson' disease and deep brain stimulation of the NST, and focuses on metabolic disorders capable to explain them. Finally, this review emphasizes on the importance of an adequate nutritional follow up care for parkinsonian patient.

  14. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone.

    Science.gov (United States)

    Krieger, Nancy S; Culbertson, Christopher D; Kyker-Snowman, Kelly; Bushinsky, David A

    2012-08-01

    Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality.

  15. Relationships among maxillofacial morphologies, bone properties, and bone metabolic markers in patients with jaw deformities.

    Science.gov (United States)

    Saito, D; Mikami, T; Oda, Y; Hasebe, D; Nishiyama, H; Saito, I; Kobayashi, T

    2016-08-01

    The aim of this study was to determine the relationships among bone properties, bone metabolic markers, and types of jaw deformity. The subjects were 55 female patients with jaw deformities. Skeletal morphology was examined using lateral cephalograms, and the patients were divided into three groups according to the type of anteroposterior skeletal pattern. Serum osteocalcin, bone alkaline phosphatase, and tartrate-resistant acid phosphatase isoform 5b, as well as deoxypyridinoline in urine, were measured as bone metabolic markers. Quantitative ultrasound (QUS) measurements were used to assess bone properties at the calcaneal bone. The bone volume and bone density of the condylar process were measured in 43 patients by computed tomography. There were no significant differences in bone metabolic markers and QUS parameters between the groups, although bone formation and resorption markers tended to be higher in patients with a protrusive mandible. On the other hand, patients with mandibular retrusion had a higher tendency to have small and dense condylar processes. In conclusion, the results suggest that growth depression or a degenerative change in the mandibular condyle is involved in the pathogenesis of mandibular retrusion, although risk factors for progressive condylar resorption were not determined.

  16. Macrophage Polarization in Metabolism and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-08-01

    Full Text Available BACKGROUND: Obesity is now recognized as the main cause of the worldwide epidemic of type 2 diabetes. Obesity-associated chronic inflammation is a contributing key factor for type 2 diabetes and cardiovascular disease. Numbers of studies have clearly demonstrated that the immune system and metabolism are highly integrated. CONTENT: Macrophages are an essential component of innate immunity and play a central role in inflammation and host defense. Moreover, these cells have homeostatic functions beyond defense, including tissue remodeling in ontogenesis and orchestration of metabolic functions. Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to interferons (IFNs, toll-like receptor (TLR, or interleukin (IL-4/IL-13 signals, macrophages undergo M1 (classical or M2 (alternative activation. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1, M2 or M2-like polarized activation. SUMMARY: In response to various signals, macrophages may undergo classical M1 activation (stimulated by TLR ligands and IFN-γ or alternative M2 activation (stimulated by IL-4/IL-13; these states mirror the T helper (Th1–Th2 polarization of T cells. Pathology is frequently associated with dynamic changes in macrophage activation, with classically activated M1 cells implicate in initiating and sustaining inflammation, meanwhile M2 or M2-like activated cells associated with resolution or smoldering chronic inflammation. Identification of the mechanisms and molecules that are associated with macrophage plasticity and polarized activation provides a basis for macrophage centered diagnostic and therapeutic strategies. KEYWORDS: obesity, adipose tissue, inflammation, macrophage polarization.

  17. Melatonin: Bone Metabolism in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Fanny López-Martínez

    2012-01-01

    Full Text Available Throughout life, bone tissue undergoes a continuous process of resorption and formation. Melatonin, with its antioxidant properties and its ability to detoxify free radicals, as suggested by Conconi et al. (2000 may interfere in the osteoclast function and thereby inhibit bone resorption, as suggested by Schroeder et al. (1981. Inhibition of bone resorption may be enhanced by a reaction of indoleamine in osteoclastogenesis. That it has been observed melatonin, at pharmacological doses, decrease bone mass resorption by suppressing through down regulation of the RANK-L, as suggested by Penarrocha Diago et al. (2005 and Steflik et al. (1994. These data point an osteogenic effect towards that may be of melatonin of clinical importance, as it could be used as a therapeutic agent in situations in which would be advantageous bone formation, such as in the treatment of fractures or osteoporosis or their use as, a bioactive surface on implant as suggested by Lissoni et al. (1991.

  18. Effect of chronic metabolic acidosis on bone density and bone architecture in vivo in rats.

    Science.gov (United States)

    Gasser, Jürg A; Hulter, Henry N; Imboden, Peter; Krapf, Reto

    2014-03-01

    Chronic metabolic acidosis (CMA) might result in a decrease in vivo in bone mass based on its reported in vitro inhibition of bone mineralization, bone formation, or stimulation of bone resorption, but such data, in the absence of other disorders, have not been reported. CMA also results in negative nitrogen balance, which might decrease skeletal muscle mass. This study analyzed the net in vivo effects of CMA's cellular and physicochemical processes on bone turnover, trabecular and cortical bone density, and bone microarchitecture using both peripheral quantitative computed tomography and μCT. CMA induced by NH4Cl administration (15 mEq/kg body wt/day) in intact and ovariectomized (OVX) rats resulted in stable CMA (mean Δ[HCO3(-)]p = 10 mmol/l). CMA decreased plasma osteocalcin and increased TRAP5b in intact and OVX animals. CMA decreased total volumetric bone mineral density (vBMD) after 6 and 10 wk (week 10: intact normal +2.1 ± 0.9% vs. intact acidosis -3.6 ± 1.2%, P metabolic acidosis induces a large decrease in cortical bone mass (a prime determinant of bone fragility) in intact and OVX rats and impairs bone microarchitecture characterized by a decrease in trabecular number.

  19. Bone Metastases in carcinoid tumors : Clinical features, imaging characteristics, and markers of bone metabolism

    NARCIS (Netherlands)

    Meijer, WG; van der Veer, E; Jager, PL; van der Jagt, EJ; Piers, BA; Kema, IP; de Vries, EGE; Willemse, PHB

    2003-01-01

    The purpose of this study was to describe the clinical presentation of bone metastases in patients with carcinoid tumors and to determine the diagnostic value of imaging techniques and markers of bone metabolism. Methods: This retrospective study was performed on the entire group of patients with ca

  20. Myeloma bone disease: Pathophysiology and management

    Science.gov (United States)

    Silbermann, Rebecca; Roodman, G. David

    2013-01-01

    Multiple myeloma bone disease is marked by severe dysfunction of both bone formation and resorption and serves as a model for understanding the regulation of osteoblasts (OBL) and osteoclasts (OCL) in cancer. Myeloma bone lesions are purely osteolytic and are associated with severe and debilitating bone pain, pathologic fractures, hypercalcemia, and spinal cord compression, as well as increased mortality. Interactions within the bone marrow microenvironment in myeloma are responsible for the abnormal bone remodeling in myeloma bone disease. Myeloma cells drive bone destruction that increases tumor growth, directly stimulates the OCL formation, and induces cells in the marrow microenvironment to produce factors that drive OCL formation and suppress OBL formation. Factors produced by marrow stromal cells and OCL promote tumor growth through direct action on myeloma cells and by increasing angiogenesis. Current therapies targeting MMBD focus on preventing osteoclastic bone destruction; however regulators of OBL inhibition in MMBD have also been identified, and targeted agents with a potential anabolic effect in MMBD are under investigation. This review will discuss the mechanisms responsible for MMBD and therapeutic approaches currently in use and in development for the management of MMBD. PMID:26909272

  1. Cholesterol metabolism in Huntington disease.

    Science.gov (United States)

    Karasinska, Joanna M; Hayden, Michael R

    2011-09-06

    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  2. Association of Bone Mineral Density with the Metabolic Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeong Han [Dept. of Diagnostic Radiology, Daegu Catholic University Hospital, Daegu (Korea, Republic of); Kam, Shin [Dept. of Preventtive MedicinE, College of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2008-09-15

    The purpose of this study was to examine the relationship between bone mineral density (BMD) and the metabolic syndrome. We conducted a cross-sectional study of 1204 adults(males: 364 females: 840) in a general hospital health promotion center. They were grouped into the normal and lower BMD group according to bone loss(osteopenia, osteoporosis), as determined by duel energy X-ray absorptiometery (DEXA). We analyzed the association between BMD and metabolic syndrome by multiple logistic regression analysis. After adjustment for age, weight, alcohol intake, smoking, regular exercise, regular intake of meals, and menopausal status, odds ratios for the prevalence of the metabolic syndrome by gender were calculated for lower BMD. After adjustment for the effect of potential covariates, the prevalence of metabolic syndrome was associated with bone loss in men (p<0.001). If the odds ratio of normal group is 1.00, then that of the lower BMD group is 3.07 (95% CI=1.83-5.16). The prevalence of metabolic alterations fitting the criteria of metabolic syndrome was significantly decreased in High BMI, Low HDL in men and in High BMI in women (p<0.05). This study shows that BMD was associated with metabolic syndrome. Further studies needed to obtain evidence concerning the association between BMD and metabolic syndrome.

  3. Bone changes in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Alcoholism has been associated with growth impairment,osteomalacia, delayed fracture healing, and asepticnecrosis (primarily necrosis of the femoral head), butthe main alterations observed in the bones of alcoholicpatients are osteoporosis and an increased risk offractures. Decreased bone mass is a hallmark of osteoporosis,and it may be due either to decreased bone synthesis and/or to increased bone breakdown. Ethanolmay affect both mechanisms. It is generally acceptedthat ethanol decreases bone synthesis, and most authorshave reported decreased osteocalcin levels (a "marker" ofbone synthesis), but some controversy exists regardingthe effect of alcohol on bone breakdown, and, indeed,disparate results have been reported for telopeptideand other biochemical markers of bone resorption.In addition to the direct effect of ethanol, systemicalterations such as malnutrition, malabsorption, liverdisease, increased levels of proinflammatory cytokines,alcoholic myopathy and neuropathy, low testosteronelevels, and an increased risk of trauma, play contributoryroles. The treatment of alcoholic bone disease should beaimed towards increasing bone formation and decreasingbone degradation. In this sense, vitamin D and calciumsupplementation, together with biphosphonates areessential, but alcohol abstinence and nutritional improvementare equally important. In this review we study thepathogenesis of bone changes in alcoholic liver diseaseand discuss potential therapies.

  4. Intestinal Microbiota and Metabolic Diseases: Pharmacological Implications.

    Science.gov (United States)

    Shen, Liang; Ji, Hong-Fang

    2016-03-01

    An increasing number of studies show that alterations in intestinal microbiota are linked with metabolic diseases. Here, we propose that intestinal microbiota regulation by polyphenols may be an important mechanism underlying their therapeutic benefits for metabolic diseases. This helps elucidate the intriguing pharmacology of polyphenols and optimize the treatment of metabolic diseases.

  5. Role of bone scan in rheumatic disease

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Young [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2003-06-01

    Rheumatic diseases can be categorized by pathology into several specific types of musculoskeletal problems, including synovitis (e.g. rheumatoid arthritis), enthesopathy (e.g. ankylosing spondylitis) and cartilage degeneration (e.g. osteoarthritis). Skeletal radiographs have contributed to the diagnosis of these articular diseases, and some disease entities need typical radiographic changes as a factor of the diagnostic criteria. However, they sometimes show normal radiographic findings in the early stage of disease, when there is demineralization of less than 30-50%. Bone scans have also been used in arthritis, but not widely because the findings are nonspecific and it is thought that bone scans do not add significant information to routine radiography. Bone scans do however play a different role than simple radiography, and it is a complementary imaging method in the course of management of arthritis. The image quality of bone scans can be improved by obtaining regional views and images under al pin-hole collimator, and through a variety of scintigraphic techniques including the three phase bone scan and bone SPECT. Therefore, bone scans could improve the diagnostic value, and answer multiple clinical questions, based on the pathophysiology of various forms of arthritis.

  6. Action of Calciotropic Hormones on Bone Metabolism-Role of Vitamin D3 in Bone Remodeling Events

    Directory of Open Access Journals (Sweden)

    Catharine Andresen

    2006-01-01

    Full Text Available Vitamin D3 is known to have immunosuppressive effects that can be beneficial for treatment of immune disorders and transplant rejection, however therapeutic application is limited due to hypercalcemia and hypercalcuria. The goal of our studies was to explore both the acute and steady state effects of vitamin D3 on bone remodeling as potential limiting factors to broader use of vitamin D3 in the clinic. Vitamin D3 was evaluated for its skeletal effects in both thyroparathyroidectomized (TPTx and intact rat models. In TPTx rats, deprivation of thyroid and parathyroid hormones and calcitonin creates a low state of bone modeling and remodeling ideal for evaluation of changes imposed by drug intervention. The use of both models allowed for discrimination of individual (TPTx versus combined (intact effects of calciotropic hormones on bone and calcium metabolism. Our studies have confirmed the limitations of using vitamin D3 for treatment/co- treatment of immune disease in humans due to the intrinsic hypercalcemic properties of the hormone, and also highlighted the potential of vitamin D3 to negatively impact skeletal integrity due to excessive bone remodeling driven by bone resorption. Taken together our data emphasize the importance of including biomarkers of bone remodeling as an integral part of clinical and preclinical studies using vitamin D3 to treat immune disorders and suggest the need for co-treatment with an antiresorptive agent to counteract hypercalcemia and deterioration of bone.

  7. RELATIONS BETWEEN OBESITY AND RENAL OSTEODYSTROPHY: REGULATION OF BONE METABOLISM BY LEPTIN.

    Directory of Open Access Journals (Sweden)

    Janaina S. Martins

    2012-06-01

    Full Text Available Recently, the bone tissue is now recognized as the protagonist in the complex control mechanism energy because their hormone interactions with the adipose tissue. Leptin is an adipokine and its production is proportional to the amount of adipose tissue. Although leptin is associated with obesity, and this is recognized as the protector of bone tissue, little can be said about the inter-relationship in chronic kidney disease. In cross-sectional study, 32 hemodialysis patients at Botucatu Medical School - State University of Sao Paulo - Brazil, were evaluated anthropometrically regarding the diagnosis of metabolic syndrome (based on the harmonization of criteria IDF, AHA/NHLBI, ATP III, biochemically and bone biopsy. Due to variability of serum leptin was applied also values of the natural logarithm (Ln of leptin corrected by BMI. In comparisons was used Kruskal-Wallis, Pearson correlations were performed using regression analysis and considered the Ln leptin / BMI as the dependent variable was considered significant with p value less than 5%. Positive correlations of leptin have been shown in females (p=0.006, body fat percentage (p<0.001, serum albumin (p=0.035, and markers of metabolic syndrome, such as total cholesterol (p=0.01 , triglycerides (p=0.02 basal insulin (p=0.05 and BMI (p<0.001. About renal osteodystrophy, the sample has higher prevalence (69% of high turnover diseases - osteitis fibrosa cystica and mixed bone disease. BMI, percent body fat, leptin and Ln leptin/BMI showed no influence on the bone turnover and osteoporosis. In regression analysis Ln leptin/BMI was independently associated with age (p=0.006 and individuals diagnosed with metabolic syndrome (p=0.002, histological classifications of bone tissue showed no associations. In conclusion, this was a preliminary result which reinforced the strong and independent relationship between leptin and metabolic syndrome in chronic renal failure, however, has not found evidence of

  8. Effect of swimming on bone metabolism in adolescents.

    Science.gov (United States)

    Derman, Orhan; Cinemre, Alphan; Kanbur, Nuray; Doğan, Muhsin; Kiliç, Mustafa; Karaduman, Erdem

    2008-01-01

    Physical activity has been shown to have a positive effect on bone metabolism among adolescents. The objective of this study was to determine the effect of swimming on bone metabolism during adolescence. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. We studied whether swimming is associated with a higher peak bone mass. Forty swimmers (males aged 10-17 years and females aged 9-16 years) were studied. The control group consisted of the same number of adolescents aged between 10-16 years who did not swim; distribution of male and female gender was similar in the non-swimming control group compared to the swimming group. Adolescents were matched for age, gender and pubertal stages based on Tanner staging. All subjects underwent combined measurement of bone mineral metabolism by dual-energy X-ray absorptiometry of total body calcium content, and specific biochemical markers of turnover including osteocalcin, calcium, phosphorus and alkaline phosphatase. Bone age (determined by Greulich and Pyle's Radiographic Atlas of Skeletal Development of the Hand and Wrist), weight, height, ideal body weight, ideal body weight ratio, body mass index, Tanner classification (rated by examiner), diet, history of tobacco and alcohol exposure, exercise, socioeconomic status and history of chronic illness and medications were recorded to evaluate potential mediators that would affect bone metabolism. Tanner staging was used to assess puberty, and diet was evaluated based on reported consumption of milk, yogurt and cheese and cola/caffeine beverage consumption daily. There was significant difference in bone mineral content between adolescent male swimmers and the control group males. Consumption of cola beverages were significantly higher among the control group compared with the swimmer group. Ideal body weight ratio was significantly high among the female control group compared with female swimmers. Milk consumption was

  9. Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells.

    Science.gov (United States)

    Chang, Chawnshang; Yeh, Shuyuan; Lee, Soo Ok; Chang, Ta-Min

    2013-01-01

    The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases.

  10. Progress in diagnosis and treatment of chronic kidney disease-mineral and bone metabolism abnormalities%慢性肾脏病-矿物质和骨代谢异常的诊断及治疗进展

    Institute of Scientific and Technical Information of China (English)

    夏正坤; 杨晓

    2015-01-01

    慢性肾脏病-矿物质和骨代谢异常(CKD-MBD)是指慢性肾脏病(CKD)患者出现的与CKD相关的矿物质和钙磷代谢紊乱所致的一系列临床症状和知生化及影像学指标异常.自2006年CKD-MBD的概念首次被提出至今,其越来越引起临床医师的重视.现介绍CKD-MBD的流行病学特点、临床表现、检查方法、诊断标准、治疗及预防的研究进展.%Chronic kidney disease-mineral and bone disorder (CKD-MBD) refers to a series of clinical symptoms and biochemical and imaging abnormalities caused by minerals and calcium phosphorus metabolic disorder,which is associated with chronic kidney disease (CKD).Since 2006 ,the concept of CKD-MBD was put forward for the first time,doctors are increasingly paying more attention to it.This review introduces the epidemiological characteristics, clinical manifestation, examination methods, diagnostic criteria and the research progress of treatment and prevention of CKD-MBD.

  11. Effect of the types of dietary fats and non-dietary oils on bone metabolism.

    Science.gov (United States)

    El-Sayed, Eman; Ibrahim, Khadiga

    2017-03-04

    Nutrients beyond calcium and vitamin D have a role on bone health, and in treatment and prevention of osteoporosis. Quality and quantity of dietary fat may have consequences on skeletal health. Diets with highly saturated fat content produce deleterious effects on bone mineralization in growing animals. Conversely, dietary n-3-long chain polyunsaturated fatty acids play an important role in bone metabolism and may help in prevention and treatment of bone disease. Some reports suggest a correlation between the dietary ratio of n-6 and n-3 polyunsaturated fatty acids and bone formation. Specific dietary fatty acids were found to modulate prostanoid synthesis in bone tissue and improve bone formation in both animal and clinical trials. The skeletal benefits of dietary isoprenoids are extremely documented. Higher isoprenoids intake may relate to higher bone mineral density. Dietary supplements containing fish oil, individual polyunsaturated fatty acids, and isoprenoids could be used as adjuvant with bone medications in osteoportic conditions but their doses must be considered to avoid detrimental effect of over dosages.

  12. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte;

    1998-01-01

    )] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low...

  13. Serum markers of bone metabolism show bone loss in hibernating bears

    Science.gov (United States)

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  14. Osteoporotic fractures: a brain or bone disease?

    Science.gov (United States)

    Birge, Stanley J

    2008-06-01

    Osteoporosis is a skeletal disorder that predisposes individuals to increased risk of fracture. However, most osteoporotic fractures occur in women who do not meet criteria for osteoporosis. Hence, bone density, by itself, is a relatively poor predictor of fracture. Age and age-related factors are now recognized as increasingly important in determining fracture risk. Osteoporotic fractures are associated with increased disability and mortality, suggesting that osteoporosis may be a clinical manifestation of an underlying disease process affecting multiple systems. The systems affected, the musculo-skeletal system and the central nervous system, are shared in many respects with the frailty syndrome. Vitamin D deficiency is a major contributor to the frailty syndrome, osteoporosis, and osteoporotic fractures. Its effects are mediated by the development of cerebrovascular disease, postural instability, muscle weakness, and bone fragility. Thus, osteoporotic fractures result from both a bone and brain disease.

  15. Metabolic syndrome and gallstone disease

    Institute of Scientific and Technical Information of China (English)

    Li-Ying Chen; Qiao-Hua Qiao; Shan-Chun Zhang; Yu-Hao Chen; Guan-Qun Chao; Li-Zheng Fang

    2012-01-01

    AIM:To investigate the association between metabolic syndrome (MetS) and the development of gallstone disease (GSD).METHODS:A cross-sectional study was conducted in 7570 subjects (4978 men aged 45.0 ± 8.8 years,and 2592 women aged 45.3 ± 9.5 years) enrolled from the physical check-up center of the hospital.The subjects included 918 patients with gallstones (653 men and 265 women) and 6652 healthy controls (4325 men and 2327 women) without gallstones.Body mass index (BMI),waist circumference,blood pressure,fasting plasma glucose (FPG) and serum lipids and lipoproteins levels were measured.Colorimetric method was used to measure cholesterol,high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C).Dextrose oxidizing enzyme method was used to measure FPG.Subjects were asked to complete a questionnaire that enquired about the information on demographic data,age,gender,histories of diabetes mellitus,hypertension,and chronic liver disease and so on.Metabolic syndrome was diagnosed according to the Adult Treatment Panel Ⅲ (ATP Ⅲ) criteria.Gallstones were defined by the presence of strong intraluminal echoes that were gravity-dependent or attenuated ultrasound transmission.RESULTS:Among the 7570 subjects,the prevalence of the gallstone disease was 12.1% (13.1% in men and 10.2% in women).BMI,waist circumference,systolic blood pressure,diastolic blood pressure,fasting blood glucose and serum triglyceride (TG) in cases group were higher than in controls,while serum high-density lipid was lower than in controls.There were significant differences in the waist circumference,blood pressure,FPG and TG between cases and controls.In an ageadjusted logistic regression model,metabolic syndrome was associated with gallstone disease.The age-adjusted odds ratio of MetS for GSD in men was 1.29 [95%confidence interval (CI),1.09-1.52; P =0.0030],and 1.68 (95% CI,1.26-2.25; P =0.0004) in women; the overall age-adjusted odds ratio of MetS for

  16. Connective tissue metabolism in patients with unclassified polyarthritis and early rheumatoid arthritis. Relationship to disease activity, bone mineral density, and radiographic outcome

    DEFF Research Database (Denmark)

    Jensen, Trine; Klarlund, Mette; Hansen, Michael

    2004-01-01

    tissue metabolism were measured in 72 patients with symmetrically swollen and tender second and third metacarpophalangeal or proximal interphalangeal joints for at least 4 weeks and less than 2 years. At 2 years, 51 patients fulfilled the American College Rheumatology criteria for rheumatoid arthritis...

  17. Changes of thyroid function, autoantibodies, bone mineral density and bone metabolism indexes in patients with hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Hua-Ling Ruan; Yi Lia Min Zhang; Chang-Jun Zhao

    2016-01-01

    Objective:To investigate the changes of thyroid function, autoantibodies, bone mineral density and bone metabolism in patients with hyperthyroidism.Methods:A total of 216 cases of hyperthyroidism in our hospital from December 2015 to January 2015 were selected as the case group, 216 cases of healthy people selected the same period in our hospital physical examination center as the control group, detected thyroid function, autoantibodies, bone mineral density and bone metabolism indexes of all the studied subjects and compared with each other.Results:In this study, it was found that diastolic blood pressure, BMI, triglyceride, total cholesterol, HDL-C, VLDL-C, TSH were all significantly lower than the control group (P<0.05), systolic blood pressure, LDL-C, GLU, T3, T4, FT3, FT4, HTG, TG-Ab, TPO-Ab in case group were significantly higher than the control group (P<0.05). Right calcaneal speed of sound (SOS) in case group was significantly lower than the control group (P<0.05), BGP, PTH in case group were significantly higher than the control group (P<0.05).Conclusions:Hyperthyroidism can cause thyroid hormone levels abnormal, abnormal increase autoantibodies, decrease bone density, bone metabolism actively, easy to form osteoporosis, clinical treatment of hyperthyroidism in the same time, should actively prevent the occurrence of osteoporosis.

  18. Role of TAF12 in the Increased VDR Activity in Paget’s Disease of Bone

    Science.gov (United States)

    2013-10-01

    on the metabolic bone diseases and disorders of mineral metabolism . 2003; Chapter 82: 495-506. 4. Roodman GD, Kurihara N, Ohsaki Y et al. Interleukin... thyroid hormone receptors. J Biol Chem. 2000;275:10064–71. 6. Hoffmann A, Roeder RG. Cloning and characterization of human TAF20/15. Multiple interactions...of manuscript. 18 Reference 1. Hosking DJ. Paget’s disease of bone. Br Med J (Clin Res Ed). 1981; 283:686-8. 2. Kanis JA and Simon LS. Metabolic

  19. Paget's disease of bone (osteitis deformans).

    Science.gov (United States)

    Ankrom, M A; Shapiro, J R

    1998-08-01

    Paget's disease of bone is important in geriatric populations because it is the second most common bone disorder after osteoporosis. In older people, it may be responsible for chronic back pain and joint pain, skeletal deformities, hearing loss, and cranial nerve compression. Paget's disease can reduce both function and mobility in the older people. In addition to newer tests for assessing the activity of Paget's disease, effective therapy is available in the form of salmon calcitonin for nasal administration and new third generation bisphosphonates. Frequently, treatment can reverse the course of the disease. For these reasons, it is feasible for the physician to adopt an aggressive approach to diagnosis and treatment. The objective should be to relieve pain, improve mobility, and forestall debilitating complications. This review will focus on the manifestations and clinical management of Paget's disease. Two cases are presented that illustrate common management problems in older patients.

  20. Altered Bone Metabolism and Bone Density in Patients with Chronic Pancreatitis and Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Stephan Haas

    2015-01-01

    Full Text Available Context Due to maldigestion, pancreatic exocrine insufficiency (PEI in chronic pancreatitis may lead to deficiencies in fat-soluble vitamins, including vitamin D. This may, in turn, can cause disturbances in bone metabolism and reduce bone mineral density. Objective To conduct a prospective study of maldigestion, bone metabolism, and bone mineral density in a group of patients with chronic pancreatitis. Methods A total of 50 male patients with proven chronic pancreatitis (36/50 alcohol; 42/50 smokers were studied. Pancreatic exocrine function was assessed using the fecal elastase-1 test. Blood and urine samples were analyzed for parameters related to pancreatitis, nutrition, endocrine status, and bone metabolism. Bone mineral density was measured with dual-energy X-ray absorption (DXA and conventional vertebral X-rays. A standardized questionnaire for osteoporosis was given. Results Twenty-eight of the patients had PEI (fecal elastase-1 200 µg/g, 25 had bone pain, and 21 had a history of bne fractures. Serum 25-OH-cholecalciferol and urine calcium were decreased and deoxypyridinoline concentrations were increased in urine. Serum calcium, bone-specific alkaline phosphatase, and parathyroid hormone were within normal limits. There was no statistical correlation between three classes of fecal elastase-1 (200 µg/g and calcium, 25-OH-cholecalciferol, or deoxypyridinoline. Of the 15 patients who underwent DXA, 5 had normal bone mineral density (T score >-1, 9 had osteopenia (T score from -1 to -2.5, and 1 had osteoporosis (T score -2.5. There was a trend toward a correlation between low fecal elastase-1 and low T scores (P=0.065. Low fecal elastase-1 correlated with low bone mineral density in conventional X-rays (p<0.05. Patients receiving pancreatic enzyme replacement therapy (PERT had significantly higher DXA values (p<0.05. Conclusions Patients with chronic pancreatitis have osteoporosis, along with abnormal bone metabolism and reduced bone

  1. Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model.

    Science.gov (United States)

    Rendina, Elizabeth; Hembree, Kelsey D; Davis, McKale R; Marlow, Denver; Clarke, Stephen L; Halloran, Bernard P; Lucas, Edralin A; Smith, Brenda J

    2013-01-01

    Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.

  2. Effects of HMG-CoA Reductase Inhibitors (Statins On Bone Mineral Density and Metabolism

    Directory of Open Access Journals (Sweden)

    Nehir Samancı

    2004-06-01

    Full Text Available Hydroxy methylglutaryl coenzyme A reductase inhibitors (statins have been shown to have effects on bone metabolism in laboratory studies. While early clinic studies have showed lower risk for osteoporotic fractures among statin users than nonusers, subsequent studies have found mixed results. The purpose of this study was to investigate the effects of statins on bone mineral density (BMD and bone metabolism. Thirty-five consecutive postmenopausal hypercholesterolemic women who were treated for at least last 6 months with statins were included in the study. Seventy-five normocholesterolemic age-matched postmenopausal women were in the control group. Subjects with a history of any diseases and used drugs that may affect calcium or bone metabolism were excluded from the study. Age, associated illness, years since menopause, and body mass index (BMI were obtained from all the patients including the control group. Besides, serum calcium, phosphate, alkaline phosphates, parathyroid hormone, 25 hydroxy D3, osteocalcin, and urinary calcium excretion were measured. BMD was measured by using dual-energy x-ray absorptiometry (DEXA at femoral neck and 3rd lomber spine. Mean duration of statin use was 28.17±21.17 months. BMI was found to be statistically higher in statin users than nonusers (27.47±3.67kg/m2 and 25.46±3.91 kg/m2, respectively. The markers of bone metabolism used in the study were found to be similar between the groups. BMD was not different in statin users and nonusers at femoral neck and lomber spine. As conclusion, statin use did not affect BMD and bone metabolism in this study. In our opinion large randomised, controlled, prospective clinical trials are needed to accurately determine the role of statins in the treatment of osteoporosis.

  3. BIOCHEMICAL MARKERS OF BONE RESORPTION AND HORMONAL REGULATION OF BONE METABOLISM FOLLOWING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2013-01-01

    Full Text Available Aim. Comparative evaluation of two biochemical markers of bone resorption and hormonal regulation of bone metabolism in liver recipients. Methods and results. Bоne densitometry of L2–L4 and neck of femur, serum level of some hormones (PTH, vitamin D3, estradiol, testosterone regulating osteoclastogenesis as well as com- parative analyses of two bone resorption markers β-crosslaps and tartrate-resistant acid phosphatase type 5b (TRAP-5b were fulfilled in patients after orthotopic liver transplantation (OLT. In 1 month after OLT bone density reduction of L2–L4 and neck of femur; decrease of vitamin D3, estradiol in women, testosterone in men and increase levels of bone resorption markers were observed. In 1 and 2 years after OLT the rise of bone density, increased levels of PTH, estradiol, testosterone and decreased β-crosslaps levels were revealed, while vitamin D3 and TRAP-5b levels remained stable. Conclusion. TRAP-5b was found to be a more speciffic marker of bone resorption, independent from collagen metabolism in liver. Osteoporosis defined in long-term period after OLT was associated with higher TRAP-5b and revialed in women with low estradiol level. 

  4. Chronic kidney disease-mineral and bone disorder and energy metabolism%慢性肾脏病-矿物质和骨代谢异常与能量代谢

    Institute of Scientific and Technical Information of China (English)

    薛澄; 戴兵; 梅长林

    2013-01-01

    慢性肾脏病-矿物质和骨代谢异常(CKD-MBD)的危害近年来日益受到重视,除传统致病因素外,能量代谢因子瘦素、胰岛素、脂联素等也参与了CKD-MBD的发生与发展.高瘦素血症可以通过直接和间接途径影响骨重塑;CKD患者伴有糖尿病会损伤成骨细胞功能,易发生低甲状旁腺素(PTH)动力不良性骨病;CKD患者脂联素水平升高的意义也与生理状态不同,可作为骨病严重程度的标记物.CKD-MBD与能量代谢的相互影响仍需要更多的基础和临床研究阐明,针对其分子机制的干预可能会给CKD-MBD带来新的治疗手段.本文将就CKD-MBD与能量代谢的相互影响作一综述.%The damage of chronic kidney disease-mineral and bone disorder (CKD-MBD) has drawn increasing attention in recent years.In addition to traditional pathogenic factors,energy regulatory factors such as leptin,insulin,and adiponectin also participate in the development and progression of CKD-MBD.Hyperleptinaemia can directly or indirectly affect bone formation.CKD patients with diabetes have injured osteoblast function and are liable to have low dynamic osteopathy with low parathyroid hormone (PTH).Adiponectin is increased in CKD patients,which can be used as a marker for severity of osteopathy.More basic and clinical researches are needed to elucidate the mutual influence between CKD-MBD and energy metabolism.The interventions targeting molecular mechanisms may bring new treatments to CKD-MBD.This paper reviewed the mutual influence of CKD-MBD and energy metabolism.

  5. Current options for the treatment of Paget’s disease of the bone

    Directory of Open Access Journals (Sweden)

    Daniela Merlotti

    2009-07-01

    Full Text Available Daniela Merlotti, Luigi Gennari, Giuseppe Martini, Ranuccio NutiDepartment of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Siena, ItalyAbstract: Paget’s disease of bone (PDB is a chronic bone remodeling disorder characterized by increased osteoclast-mediated bone resorption, with subsequent compensatory increases in new bone formation, resulting in a disorganized mosaic of woven and lamellar bone at affected skeletal sites. This disease is most often asymptomatic but can be associated with bone pain or deformity, fractures, secondary arthritis, neurological complications, deafness, contributing to substantial morbidity and reduced quality of life. Neoplastic degeneration of pagetic bone is a relatively rare event, occurring with an incidence of less than 1%, but has a grave prognosis. Specific therapy for PDB is aimed at decreasing the abnormal bone turnover and bisphosphonates are currently considered the treatment of choice. These treatments are associated with a reduction in plasma alkaline phosphatase (ALP activity and an improvement in radiological and scintigraphic appearance and with a reduction in bone pain and bone deformity, Recently, the availability of newer, more potent nitrogen-containing bisphosphonates has improved treatment outcomes, allowing a more effective and convenient management of this debilitating disorder.Keywords: Paget’s disease of bone, bisphosphonates, aminobisphosphonates, bone remodeling

  6. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    Science.gov (United States)

    Grace-Farfaglia, Patricia

    2015-05-07

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied.

  7. [End stage of chronic kidney disease and metabolic acidosis].

    Science.gov (United States)

    Klaboch, J; Opatrná, S; Matoušovic, K; Schück, O

    2012-01-01

    Renal function disorder is inevitably associated with metabolic acidosis. An adult produces approximately 1 mmol of acids/kg of body weight every day (3 mmol/kg in children), derived from metabolization of proteins from food. Development of metabolic acidosis in patients with kidney disease is based on accumulation of acids and insufficient production of bicarbonates; alkaline loss represents a marginal issue here limited to patients with type II renal tubular acidosis only. The prevalence of this disorder increases with declining glomerular filtration (GFR) from 2% in patients with GFR 1.0-1.5 ml/s/1.73 m2 to 39% in patients with GFR inflammation, to progression of tubular interstitial fibrosis that subsequently leads to further GFR reduction. Metabolic acidosis has a number of severe adverse effects on the organism, e.g. deterioration of kidney bone disease through stimulation of bone resorption and inhibition of bone formation, inhibition of vitamin D formation, increased muscle catabolism, reduced albumin production, glucose metabolism disorder, increased insulin resistance, reduced production of thyroid hormones, increased accumulation of β2-microglobulin etc. Non-interventional studies suggest that alkali supplementation may slow down progression of chronic nephropathies. However, this approach, safe and inexpensive, has not been widely implemented in clinical practice yet. With respect to dialyzed patients, abnormal levels of bicarbonates are associated with increased mortality. Both metabolic acidosis and alkalosis, rather regularly seen in a considerable number of patients, have a negative effect on patient survival. Alkali substitution from a dialysis solution is the main pillar of metabolic acidosis management in patients on hemo- as well as peritoneal dialysis. Available technologies allow individualization of the treatment and this should be observed.

  8. Role of TAF12 in the Increased VDR Activity in Paget’s Disease of Bone

    Science.gov (United States)

    2014-10-01

    November 25, 2013. Accepted manuscript online December 11, 2013. Address correspondence to: G David Roodman , MD, PhD, Department of Medicine, Hematology...Yukiko Kitagawa,1 Deborah L Galson,4 David W Dempster,2 Jolene J Windle,3 Noriyoshi Kurihara,1 and G David Roodman1,5 1Department of Medicine, Hematology...turnover in Paget’s disease of bone. Clin Orthop. 1987;217:26–36. 3. Siris ES, Roodman GD. Paget’s Disease of Bone, Primer on the Metabolic Bone Diseases

  9. Metabolic disease network and its implication for disease comorbidity

    Science.gov (United States)

    Lee, Deok-Sun; Oltvai, Zoltan; Christakis, Nicholas; Barabasi, Albert-Laszlo

    2008-03-01

    Given that most diseases are the result of the breakdown of some cellular processes, a key aim of modern medicine is to establish the relationship between disease phenotypes and the various disruptions in the underlying cellular networks. Here we show that our current understanding of the structure of the human metabolic network can provide insight into potential relationships among often distinct disease phenotypes. Using the known enzyme-disease associations, we construct a human metabolic disease network in which nodes are diseases and two diseases are linked if the enzymes associated with them catalyze adjacent metabolic reactions. We find that the more connected a disease is, the higher is its prevalence and the chance that it is associated with a high mortality. The results indicate that the cellular network-level relationships between metabolic pathways and the associated disease provide insights into disease comorbidity, with potential important consequences on disease diagnosis and prevention.

  10. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model.

    Science.gov (United States)

    Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R

    2013-07-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.

  11. EVALUATION OF RADIONUCLIDE BONE IMAGING FOR SKELETAL DISEASE

    Institute of Scientific and Technical Information of China (English)

    林奋; 袁济民

    1993-01-01

    Whole body bone scan imaging of 99mTc-MDP was performed in 80 casesfrom Sept 1991 to Feb 1992. Among them 20 patients showed negtive bone imaging and56 patients showed positive bone imaging. There were false-positive bone imaging in 4 pa-tients. Bone scan imaging has been regarded as a useful method in the early diagnosis ofshelatal disease, especially in old patients with bone metastasis. But the final confirmationof malignancy should be still cautious.

  12. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.

    Directory of Open Access Journals (Sweden)

    Andrew N Luu

    Full Text Available BACKGROUND: High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods. METHODS: Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose ((18FDG and sodium fluoride (Na(18F PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing. RESULTS: Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant increase in (18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone, yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone; yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups. CONCLUSION: PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone

  13. Hormonal regulation of medullary bone metabolism in the laying hen

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.R.

    1987-01-01

    A new organ culture system for the study of bone formation has been developed using medullary bone, a non-structural, metabolically active form of bone which is found in the marrow cavities of egg-laying birds. In the presence of fetal calf serum, bone explants were viable in culture by morphological criteria, and retained large numbers of osteoblasts and osteoclasts. Incorporation of /sup 3/H-proline into collagenase-digestible protein (CDP) and non-collagen protein (NCP) was determined using purified bacterial collagenase. Collagen accounted for over 10% of the total protein labeled. The calcium-regulating hormones, parathyroid hormone and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), caused a dose-dependent inhibition of /sup 3/H-proline incorporation into CDP. The effective dose range of 1,25(OH)2D3 was 0.1 nM to 100 nM, while that of PTH was 1.0 nM to 100 nM. The effect of both hormones was specific for collagen, since /sup 3/H-proline incorporation into NCP was unaffected. Hydroxyproline analysis of bone explants and culture medium revealed that both hormones decreased the total hydroxyroline content of the cultures, suggesting that the inhibition of /sup 3/H-proline incorporation into DCP is due to inhibition of collagen synthesis.

  14. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders.

    Science.gov (United States)

    Vervloet, Marc G; Massy, Ziad A; Brandenburg, Vincent M; Mazzaferro, Sandro; Cozzolino, Mario; Ureña-Torres, Pablo; Bover, Jordi; Goldsmith, David

    2014-05-01

    Recent reports of several bone-derived substances, some of which have hormonal properties, have shed new light on the bone-cardiovascular axis. Deranged concentrations of humoral factors are not only epidemiologically connected to cardiovascular morbidity and mortality, but can also be causally implicated, especially in chronic kidney disease. FGF23 rises exponentially with advancing chronic kidney disease, seems to reach maladaptive concentrations, and then induces left ventricular hypertrophy, and is possibly implicated in the process of vessel calcification. Sclerostin and DKK1, both secreted mainly by osteocytes, are important Wnt inhibitors and as such can interfere with systems for biological signalling that operate in the vessel wall. Osteocalcin, produced by osteoblasts or released from mineralised bone, interferes with insulin concentrations and sensitivity, and its metabolism is disturbed in kidney disease. These bone-derived humoral factors might place the bone at the centre of cardiovascular disease associated with chronic kidney disease. Most importantly, factors that dictate the regulation of these substances in bone and subsequent secretion into the circulation have not been researched, and could provide entirely new avenues for therapeutic intervention.

  15. The association between metabolic syndrome, bone mineral density, hip bone geometry and fracture risk: The Rotterdam study

    NARCIS (Netherlands)

    T. Muka (Taulant); K. Trajanoska (Katerina); J.C. Kiefte-de Jong (Jessica); L. Oei (Ling); A.G. Uitterlinden (André); A. Hofman (Albert); A. Dehghan (Abbas); M.C. Zillikens (Carola); O.H. Franco (Oscar); F. Rivadeneira Ramirez (Fernando)

    2015-01-01

    textabstractThe association between metabolic syndrome (MS) and bone health remains unclear. We aimed to study the association between MS and hip bone geometry (HBG), femoral neck bone mineral density (FN-BMD), and the risk of osteoporosis and incident fractures. Data of 2040 women and 1510 men part

  16. Fracture, aging and disease in bone

    Energy Technology Data Exchange (ETDEWEB)

    Ager, J.W.; Balooch, G.; Ritchie, R.O.

    2006-02-01

    fracture resistance, whereas regulating the level of the cytokine TGF-beta can offer significant improvements in the stiffness, strength and toughness of bone, and as such may be considered as a therapeutic target to treat increased bone fragility induced by aging, drugs, and disease.

  17. The influence of dietary calcium and phosphorus on bone metabolism

    NARCIS (Netherlands)

    Schaafsma, G.

    1981-01-01

    By means of this study it was attempted to obtain a better insight into the possible influence of the diet on the development of human osteoporosis. This disease, which is a consequence of decalcification of the bones, occurs frequently in elderly people, particularly in postmenopausal women.On the

  18. Measuring Bone Metabolism with Fluoride PET: Methodological Considerations.

    Science.gov (United States)

    Apostolova, Ivayla; Brenner, Winfried

    2010-07-01

    In recent years the more widespread availability of PET systems and the development of hybrid PET/computed tomography (CT) imaging, allowing improved morphologic characterization of sites with increased tracer uptake, have improved the accuracy of diagnosis and strengthened the role of 18F-fluoride PET for quantitative assessment of bone pathology. This article reviews the role of 18F-fluoride PET in the skeleton, with a focus on (1) the underlying physiologic and pathophysiological processes of different conditions of bone metabolism and (2) methodological aspects of quantitative measurement of 18F-fluoride kinetics. Recent comparative studies have demonstrated that 18F-fluoride PET and, to an even greater extent, PET/CT are more accurate than 99mTc-bisphosphonate single-photon emission CT for the identification of malignant and benign lesions of the skeleton. Quantitative 18F-flouride PET has been shown valuable for direct non-invasive assessment of bone metabolism and monitoring response to therapy.

  19. Bone turnover markers in patients with type 1 Gaucher disease

    Directory of Open Access Journals (Sweden)

    Gaetano Giuffrida

    2012-11-01

    Full Text Available Bone complications occur frequently in Gaucher disease (GD and reduce the quality of life of these patients. Skeletal involvement is an important indication for treatment to ameliorate symptoms and reduce the risk of irreversible and debilitating disease. Bone biomarkers have been used to assess disease status and the response to therapy in a number of bone disorders. Here, we examine the literature for evidence of abnormalities in bone turnover markers in patients with type 1 GD to assess whether they might be useful for the assessment of bone involvement in GD. We have found that bone biomarkers in GD show highly variable results which do not currently support their routine use for clinical assessment of bone status, as an indication for therapy initiation, or for monitoring the response to therapy. A greater understanding of bone markers and their relation to the bone manifestations of GD is required.

  20. Birth weight and adult bone metabolism are unrelated

    DEFF Research Database (Denmark)

    Frost, Morten; Petersen, Inge Lund; Andersen, Thomas Levin;

    2013-01-01

    INTRODUCTION: Low birth weight (BW) has been associated with poor bone health in adulthood. The aim of this study was to investigate the association between BW and bone mass and metabolism in adult BW discordant monozygotic twins (MZ). METHODS: 153 BW extremely discordant MZ twin-pairs were...... individuals using regression analyses with or without adjustment for height, weight, age, sex, and intra-pair correlation. Within-pair differences were assessed using Student's T-test and fixed-regression models. RESULTS: BW was not associated with BTMs, LS-, TH-, FN- or WB-BMD, but BW was associated with WB......-BMC, and -WB-Area after adjustments. Compared to the co-twin, twins with the highest BW were heavier and taller in adulthood (Mean differences (SD): 3.0 (10.5) kg; 1.6 (2.6) cm, both p ...

  1. Correlation of different bone markers with bone density in patients with rheumatic diseases on glucocorticoid therapy.

    Science.gov (United States)

    Loddenkemper, Konstanze; Bohl, Nicole; Perka, Carsten; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2006-02-01

    Osteoporosis is a common concomitant disease in patients with rheumatic diseases on glucocorticoid (GC) therapy. Bone status is usually evaluated by determination of bone density in combination with clinical examinations and laboratory tests. However, the strength of individual biochemical bone makers in GC-induced osteoporosis has yet to be fully clarified. For this reason, different bone markers were investigated in correlation with bone density in patients with rheumatic diseases. Approximately 238 patients (212 women, 26 men) with a rheumatic disease and under GC therapy were examined consecutively for the first time with regard to bone density (BMD) and bone markers [osteocalcin, bone-specific alkaline phosphatase (precipitation method/tandem-MP ostase), crosslinks [pyridinoline (PYD), deoxypyridinoline (DPX), N-terminal telopeptide (NTX)

  2. Clinical studies of bone metabolism using a simple model of calcium tracer kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Roncari, G.

    1981-08-01

    Bone metabolism studies were performed in 44 subjects with and without bone disease using a calcium tracer kinetics model, the central feature of which is an expanding exchangeable calcium pool. In normal subjects the accretion rate and the exchangeable calcium pool ranged from 1.49 to 8.45 (mean 3.9 +- 2.05) mg.d/sup -1/kg/sup -1/ and from 60 to 131 (mean 81.25 +- 18.11) mg.kg/sup -1/, respectively. The patients with osteogenesis imperfecta, Pierre Marie's disease and one out of two cases of hypoparathyroidism had values which fell within the normal range. Both the accretion rate and the exchangeable calcium pool were significantly elevated in patients with Paget's disease and with hyperparathyroidism. Uremic patients with generalizated bone lesions had accretion rates or both parameters elevated. As far as patients with successful renal transplant are concerned, the results suggest that this method is a very poor means for detecting bone disorders with only focal lesions. In contrast, the method can be very useful when persistent renal osteodystrophy or secondary hyperparathyroidism are suspected.

  3. The role of bone in CKD-mediated mineral and vascular disease.

    Science.gov (United States)

    Khouzam, Nadine M; Wesseling-Perry, Katherine; Salusky, Isidro B

    2015-09-01

    Cardiovascular disease is the leading cause of death in pediatric patients with chronic kidney disease (CKD), and vascular calcifications start early in the course of CKD. Based on the growing body of evidence that alterations of bone and mineral metabolism and the therapies designed to treat the skeletal consequences of CKD are linked to cardiovascular calcifications, the Kidney Disease, Improving Global Outcomes (KDIGO) working group redefined renal osteodystrophy as a systemic disorder of mineral and bone metabolism due to CKD, and this newly defined disorder is now known as "chronic kidney disease-mineral bone disorder (CKD-MBD)". Elevated fibroblast growth factor 23 (FGF23), a bone-derived protein, is the first biochemical abnormality to be associated with CKD-MBD, and high FGF23 levels correlate with increased cardiovascular morbidity and mortality, suggesting that bone is central to both initiating and perpetuating the abnormal mineral metabolism and vascular disease in CKD. The current standard therapies for CKD-MBD affect FGF23 levels differently; non-calcium-based binders with or without concurrent use of dietary phosphate restriction reduce FGF23 levels, while calcium-based binders seem to either increase or have no effect on FGF23 levels. Active vitamin D sterols increase FGF23 levels, whereas therapy with calcimimetics decreases FGF23 levels. Thus, the appropriate therapy that will minimize the rise in FGF23 and prevent cardiovascular morbidity remains to be defined.

  4. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview.

    Science.gov (United States)

    Litten-Brown, J C; Corson, A M; Clarke, L

    2010-06-01

    The aim of this review article is to provide an overview of the role of pigs as a biomedical model for humans. The usefulness and limitations of porcine models have been discussed in terms of metabolic, cardiovascular, digestive and bone diseases in humans. Domestic pigs and minipigs are the main categories of pigs used as biomedical models. One drawback of minipigs is that they are in short supply and expensive compared with domestic pigs, which in contrast cost more to house, feed and medicate. Different porcine breeds show different responses to the induction of specific diseases. For example, ossabaw minipigs provide a better model than Yucatan for the metabolic syndrome as they exhibit obesity, insulin resistance and hypertension, all of which are absent in the Yucatan. Similar metabolic/physiological differences exist between domestic breeds (e.g. Meishan v. Pietrain). The modern commercial (e.g. Large White) domestic pig has been the preferred model for developmental programming due to the 2- to 3-fold variation in body weight among littermates providing a natural form of foetal growth retardation not observed in ancient (e.g. Meishan) domestic breeds. Pigs have been increasingly used to study chronic ischaemia, therapeutic angiogenesis, hypertrophic cardiomyopathy and abdominal aortic aneurysm as their coronary anatomy and physiology are similar to humans. Type 1 and II diabetes can be induced in swine using dietary regimes and/or administration of streptozotocin. Pigs are a good and extensively used model for specific nutritional studies as their protein and lipid metabolism is comparable with humans, although pigs are not as sensitive to protein restriction as rodents. Neonatal and weanling pigs have been used to examine the pathophysiology and prevention/treatment of microbial-associated diseases and immune system disorders. A porcine model mimicking various degrees of prematurity in infants receiving total parenteral nutrition has been established to

  5. Bone Disease in Myeloma: The Claws of CRAB.

    Science.gov (United States)

    Fonseca, Rafael; Jain, Tania

    2016-03-15

    A dynamic approach to use bisphosphonates according to biomarkers of bone metabolism is presented in the Z-MARK study by Raje and colleagues. This is a major step forward toward a rational approach to bisphosphonate usage.

  6. Emerging strategies and therapies for treatment of Paget’s disease of bone

    Directory of Open Access Journals (Sweden)

    Brown JP

    2011-04-01

    Full Text Available Laëtitia Michou, Jacques P BrownLaval University, Department of Medicine, CHUQ (CHUL Research Centre and Division of Rheumatology, Quebec City, QC, CanadaAbstract: Paget’s disease of bone (PDB is a progressive monostotic or polyostotic metabolic bone disease characterized by focal abnormal bone remodeling, with increased bone resorption and excessive, disorganized, new bone formation. PDB rarely occurs before middle age, and it is the second most frequent metabolic bone disorder after osteoporosis, affecting up to 3% of adults over 55 years of age. One of the most striking and intriguing clinical features is the focal nature of the disorder, in that once the disease is established within a bone, there is only local spread within that bone and no systemic dissemination. Despite many years of intense research, the etiology of PDB has still to be conclusively determined. Based on a detailed review of genetic and viral factors incriminated in PDB, we propose a unifying hypothesis from which we can suggest emerging strategies and therapies. PDB results in weakened bone strength and abnormal bone architecture, leading to pain, deformity or, depending on the bone involved, fracture in the affected bone. The diagnostic assessment includes serum total alkaline phosphatase, total body bone scintigraphy, skull and enlarged view pelvis x-rays, and if needed, additional x-rays. The ideal therapeutic option would eliminate bone pain, normalize serum total alkaline phosphatase with prolonged remission, heal radiographic osteolytic lesions, restore normal lamellar bone, and prevent recurrence and complications. With the development of increasingly potent bisphosphonates, culminating in the introduction of a single intravenous infusion of zoledronic acid 5 mg, these goals of treatment are close to being achieved, together with long-term remission in almost all patients. Based on the recent pathophysiological findings, emerging strategies and therapies are

  7. Imaging Paget's disease of bone-from head to toe

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, K.; Micallef, K. [Medical Imaging Department, Mater Dei Hospital, Msida (Malta); Mizzi, A., E-mail: adrian.mizzi@gov.mt [Medical Imaging Department, Mater Dei Hospital, Msida (Malta)

    2011-07-15

    Paget's disease of the bone is a common, non-inflammatory, metabolic, skeletal disorder of unknown aetiology characterized by an increase in osteoclast-mediated bone resorption and compensatory excessive osteoblast activation. Prevalence increases with age, and a pronounced geographical variation is well documented. The disease is often an incidental finding on a radiological examination requested for an unrelated indication. The osteolytic, mixed osteolytic/osteoblastic, and osteosclerotic phases may occur in the same patient and same bone in a synchronous or metachronous fashion. Radiological features in each phase mirror the histopathological appearances, and are distinctive enough to establish a diagnosis with confidence. Using multi-technique imaging, this review illustrates the most common and the not so common radiological patterns of involvement in Paget's disease of bone observed at our centre during the past 20 years.

  8. Pathogenesis of Bone Alterations in Gaucher Disease: The Role of Immune System

    Directory of Open Access Journals (Sweden)

    Juan Marcos Mucci

    2015-01-01

    Full Text Available Gaucher, the most prevalent lysosomal disorder, is an autosomal recessive inherited disorder due to a deficiency of glucocerebrosidase. Glucocerebrosidase deficiency leads to the accumulation of glucosylceramide primarily in cells of mononuclear-macrophage lineage. Clinical alterations are visceral, hematological, and skeletal. Bone disorder in Gaucher disease produces defects on bone metabolism and structure and patients suffer from bone pain and crisis. Skeletal problems include osteopenia, osteoporosis, osteolytic lesions, and osteonecrosis. On the other hand a chronic stimulation of the immune system is a well-accepted hallmark in this disease. In this review we summarize the latest findings in the mechanisms leading to the bone pathology in Gaucher disease in relationship with the proinflammatory state.

  9. Effect of Qianggu Capsule combined with salmon calcitonin injection treatment on bone mineral density and bone metabolism in patients with senile osteoporotic compression fractures

    Institute of Scientific and Technical Information of China (English)

    Li Li; Yu Si

    2016-01-01

    Objective:To analyze the effect of Qianggu Capsule combined with salmon calcitonin injection treatment on bone mineral density and bone metabolism in patients with senile osteoporotic compression fractures.Methods: A total of 92 cases of patients with senile osteoporotic compression fractures were divided into observation group and control group (n=46) according to random number table, control group received Qianggu Capsule treatment alone, observation group received Qianggu Capsule combined with salmon calcitonin injection treatment, and the differences in bone mineral density, bone metabolism indexes and CT-related parameters were compared between two groups.Results: BMD values of observation group after 3 courses and 6 courses of treatment were higher than those of control group; serum BGP and PTH values of observation group after treatment were higher than those of control group, CICP and CTX-Ⅰ values were lower than those of control group, and urine D-Pyr value was lower than that of control group; CV and CV/MV values of observation group after treatment were higher than those of control group, and MV value was lower than that of control group.Conclusion: Qianggu Capsule combined with salmon calcitonin injection can inhibit the disease progression in patients with senile osteoporotic compression fractures, optimize bone metabolism and promote osteogenesis, and it has positive clinical significance.

  10. Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency

    DEFF Research Database (Denmark)

    Haaber, Anne Birgitte; Rosenfalck, A M; Hansen, B

    2000-01-01

    Calcium and vitamin D homeostasis seem to be abnormal in patients with exocrine pancreatic dysfunction resulting from cystic fibrosis. Only a few studies have evaluated and described bone mineral metabolism in patients with chronic pancreatitis and pancreatic insufficiency.......Calcium and vitamin D homeostasis seem to be abnormal in patients with exocrine pancreatic dysfunction resulting from cystic fibrosis. Only a few studies have evaluated and described bone mineral metabolism in patients with chronic pancreatitis and pancreatic insufficiency....

  11. Re-evaluation of bone pain in patients with type 1 Gaucher disease suggests that bone crises occur in small bones as well as long bones.

    Science.gov (United States)

    Baris, Hagit N; Weisz Hubshman, Monika; Bar-Sever, Zvi; Kornreich, Liora; Shkalim Zemer, Vered; Cohen, Ian J

    2016-09-01

    Bone crises in type 1 Gaucher disease are reported in long bones and occasionally in weight bearing bones and other bones, but rarely in small bones of the hands and feet. We retrospectively examined the incidence of bone pain in patients followed at the Rabin Medical Center, Israel, before and following the initiation of enzyme replacement therapy (ERT) and evaluated them for bone crises. Of 100 type I Gaucher disease patients, 30 (30%) experienced one or more bone crises. Small bone crises represented 31.5% of all bone crises and were always preceded by crises in other bones. While the incidence of long bone crises reduced after the initiation of ERT, small bone crises increased. Almost 60% of patients with bone crises were of the N370S/84GG genotype suggesting a greater susceptibility of N370S/84GG patients to severe bone complications. These patients also underwent the greatest number of splenectomies (70.6% of splenectomised patients). Splenectomised patients showed a trend towards increased long and small bone crises after surgery. Active investigation of acute pain in the hands and feet in patients in our cohort has revealed a high incidence of small bone crises. Physicians should consider imaging studies to investigate unexplained pain in these areas.

  12. Correlation of serum parathyroid hormone with mineral bone disease in chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Rajeshwari S Vhora

    2015-01-01

    Full Text Available Background: Mineral bone disease (MBD is a systemic disorder of mineral and bone metabolism due to chronic kidney disease (CKD. Bone disease in CKD is due to secondary hyperparathyroidism. Serum intact parathyroid hormone (iPTH level estimation is a potential noninvasive method for the diagnosis of MBD at early stage. Aim: Treating renal bone disease should be one of the primary aims of therapy for CKD. Evaluation of the biochemical parameters of CKD-MBD (primarily phosphorus, calcium, parathyroid hormone, and Vitamin D levels as early as CKD stage 3, and an assessment of bone status (by the best means available, should be used to guide treatment decisions. The adverse effects of high phosphorus intake relative to renal clearance (including stimulation of hyperparathyroidism precede hyperphosphatemia, which presents late in CKD. Early reduction of phosphorus load may ameliorate these adverse effects. Evidence that calcium load may influence progression of vascular calcification with effects on mortality, should also be considered when choosing the type and dose of phosphate binder to be used. MBD in CKD has high morbidity and mortality and hence it is important to detect it at an early stage. iPTH levels can be highly sensitive and it is one of the useful noninvasive biochemical parameters to detect MBD in CKD. Materials and Methods: This was an observational study carried out in a tertiary care teaching hospital. The study involved 60 patients of CKD. Detailed history, physical examination, and biochemical parameters were assessed in all of them. Results: There was a significant association between hypertension, diabetes with nephropathy, and highly significant association between serum iPTH and raised blood urea levels in MBD group, however there was no significant association between duration of CKD, hemoglobin, creatinine, uric acid, phosphorous, calcium, and alkaline phosphatase with MBD. Conclusions: MBD in CKD can be detected at early

  13. Orthopantomographic study of the alveolar bone level on periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sik; You, Dong Soo [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  14. Nutrient sensing and inflammation in metabolic diseases.

    Science.gov (United States)

    Hotamisligil, Gökhan S; Erbay, Ebru

    2008-12-01

    The proper functioning of the pathways that are involved in the sensing and management of nutrients is central to metabolic homeostasis and is therefore among the most fundamental requirements for survival. Metabolic systems are integrated with pathogen-sensing and immune responses, and these pathways are evolutionarily conserved. This close functional and molecular integration of the immune and metabolic systems is emerging as a crucial homeostatic mechanism, the dysfunction of which underlies many chronic metabolic diseases, including type 2 diabetes and atherosclerosis. In this Review we provide an overview of several important networks that sense and manage nutrients and discuss how they integrate with immune and inflammatory pathways to influence the physiological and pathological metabolic states in the body.

  15. Bone mineral density, quantitative ultrasound parameters and bone metabolism in postmenopausal women with depression.

    Science.gov (United States)

    Atteritano, Marco; Lasco, Antonino; Mazzaferro, Susanna; Macrì, Ida; Catalano, Antonino; Santangelo, Antonino; Bagnato, Gianluca; Bagnato, Gianfilippo; Frisina, Nicola

    2013-09-01

    Low bone mineral density, which increases the risk of stress fragility fractures, is a frequent, often persistent finding in patients with major depressive disorder (MDD). The clinical association between major depressive disorder and osteopenia is still unclear, although several factors are associated with a loss of bone mass. The aim of our study, therefore, was to evaluate bone mineral density and bone metabolism in patients with MDD. Bone mineral density was evaluated in fifty postmenopausal women with MDD, and in 50 matched postmenopausal control women by dual-energy X-ray absorptiometry of the lumbar spine and femur, and by ultrasonography of the calcaneus and phalanges. Serum levels of 25-hydroxivitamin D, parathyroid hormone, Osteoprotegerin/Receptor Activator for Nuclear Factor κB Ligand ratio, bone turnover markers, serum and urinary cortisol were examined. Bone mineral density of the lumbar spine (BMD: 0.72 ± 0.06 vs. 0.82 ± 0.09 g/cm(2), p < 0.001), femoral neck (BMD: 0.58 ± 0.04 vs. 0.71 ± 0.07 g/cm(2), p < 0.001) and total femur (BMD 0.66 ± 0.09 vs. 0.54 ± 0.06 g/cm(2), p < 0.001); and ultrasound parameters at calcaneus (SI: 81.30 ± 6.10 vs. 93.80 ± 7.10, p < 0.001) and phalanges (AD-SOS: 1915.00 ± 37.70 vs. 2020.88 ± 39.46, p < 0.001; BTT : 1.30 ± 0.8 vs. 1.45 ± 0.9, p < 0.001) are significantly lower in patients with MDD compared with controls. Moreover bone turnover markers, parathyroid hormone levels and Receptor Activator for Nuclear Factor κB Ligand are significantly higher in MDD patients compared with controls, while serum levels of 25-hydroxivitamin D and osteoprotegerin are significantly lower. There are no differences in urinary excretion and serum cortisol between groups. Postmenopausal women with depressive disorder have an elevated risk for osteoporosis. Our data suggest that a high level of parathyroid hormone may play a role in the pathogenetic process underlying osteopenia in these patients.

  16. Metabolic Syndrome and Periodontal Disease Progression in Men.

    Science.gov (United States)

    Kaye, E K; Chen, N; Cabral, H J; Vokonas, P; Garcia, R I

    2016-07-01

    Metabolic syndrome, a cluster of 3 or more risk factors for cardiovascular disease, is associated with periodontal disease, but few studies have been prospective in design. This study's aim was to determine whether metabolic syndrome predicts tooth loss and worsening of periodontal disease in a cohort of 760 men in the Department of Veterans Affairs Dental Longitudinal Study and Normative Aging Study who were followed up to 33 y from 1981 to 2013. Systolic and diastolic blood pressures were measured with a standard mercury sphygmomanometer. Waist circumference was measured in units of 0.1 cm following a normal expiration. Fasting blood samples were measured in duplicate for glucose, triglyceride, and high-density lipoprotein. Calibrated periodontists served as dental examiners. Periodontal outcome events on each tooth were defined as progression to predefined threshold levels of probing pocket depth (≥5 mm), clinical attachment loss (≥5 mm), mobility (≥0.5 mm), and alveolar bone loss (≥40% of the distance from the cementoenamel junction to the root apex, on radiographs). Hazards ratios (95% confidence intervals) of tooth loss or a periodontitis event were estimated from tooth-level extended Cox proportional hazards regression models that accounted for clustering of teeth within individuals and used time-dependent status of metabolic syndrome. Covariates included age, education, smoking status, plaque level, and initial level of the appropriate periodontal disease measure. Metabolic syndrome as defined by the International Diabetes Federation increased the hazards of tooth loss (1.39; 1.08 to 1.79), pocket depth ≥5 mm (1.37; 1.14 to 1.65), clinical attachment loss ≥5 mm (1.19; 1.00 to 1.41), alveolar bone loss ≥40% (1.25; 1.00 to 1.56), and tooth mobility ≥0.5 mm (1.43; 1.07 to 1.89). The number of positive metabolic syndrome conditions was also associated with each of these outcomes. These findings suggest that the metabolic disturbances that

  17. Imbalanced cholesterol metabolism in Alzheimer's disease.

    Science.gov (United States)

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu

    2016-05-01

    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  18. Cardiovascular risk and mineral bone disorder in patients with chronic kidney disease.

    Science.gov (United States)

    Staude, Hagen; Jeske, Susann; Schmitz, Karin; Warncke, Gert; Fischer, Dagmar-Christiane

    2013-01-01

    The term chronic kidney disease-mineral bone disorder has been coined recently to highlight that the disturbed mineral and bone metabolism is a major contributor to vascular calcification and finally cardiovascular disease. This syndrome is characterized by clinical, biochemical and/or histological findings, i.e. i) biochemical alterations in the homeostasis of calcium, phosphate and their key player parathyroid hormone (PTH), Fibroblast growth factor-23 (FGF-23), klotho and vitamin-D, ii) the occurrence of vascular and/or soft tissue calcification, and iii) an abnormal bone structure and/or turnover. Apart from the combined and synergistic action of "traditional" and uremia-related risk factors, promoters and inhibitors of calcification have to be considered as well. This review will focus on the disturbed mineral metabolism as the triggering force behind distortion of vascular integrity and cardiovascular malfunction in CKD patients.

  19. Cardiovascular Risk and Mineral Bone Disorder in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Hagen Staude

    2013-03-01

    Full Text Available The term chronic kidney disease-mineral bone disorder has been coined recently to highlight that the disturbed mineral and bone metabolism is a major contributor to vascular calcification and finally cardiovascular disease. This syndrome is characterized by clinical, biochemical and/or histological findings, i.e. i biochemical alterations in the homeostasis of calcium, phosphate and their key player parathyroid hormone (PTH, Fibroblast growth factor-23 (FGF-23, klotho and vitamin-D, ii the occurrence of vascular and/or soft tissue calcification, and iii an abnormal bone structure and/or turnover. Apart from the combined and synergistic action of "traditional" and uremia-related risk factors, promoters and inhibitors of calcification have to be considered as well. This review will focus on the disturbed mineral metabolism as the triggering force behind distortion of vascular integrity and cardiovascular malfunction in CKD patients.

  20. Effect of copper on liver and bone metabolism in malnutrition.

    Science.gov (United States)

    Güler, A H; Sapan, N; Ediz, B; Genç, Z; Ozkan, K

    1994-01-01

    This study was planned to investigate the effects of copper (Cu) deficiency on liver and bone metabolism in malnourished children. Serum total calcium (Ca), inorganic phosphorus (P), Ca/P, Cu/Ca, Cu/P ratios and alkaline phosphatase (ALP) activity values were analyzed. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransferase (GGT) enzyme activities and the ALT/AST (De Ritis) ratio as well as their correlations with Cu were tested to determine liver function. The results of the study showed that Cu deficiency directly affects the organic matrix formation, and by the suppression of ALP activity, indirectly causes decalcification. In the liver, however, no direct effect of Cu deficiency was seen. Deterioration in liver function and Cu deficiency increased parallel with the severity of malnutrition. Thus we concluded that a correlation exists between Cu and the parameters that indicate liver function.

  1. Lessons from rare diseases of cartilage and bone.

    Science.gov (United States)

    Gallagher, James A; Ranganath, Lakshminarayan R; Boyde, Alan

    2015-06-01

    Studying severe phenotypes of rare syndromes can elucidate disease mechanisms of more common disorders and identify potential therapeutic targets. Lessons from rare bone diseases contributed to the development of the most successful class of bone active agents, the bisphosphonates. More recent research on rare bone diseases has helped elucidate key pathways and identify new targets in bone resorption and bone formation including cathepsin K and sclerostin, for which drugs are now in clinical trials. By contrast, there has been much less focus on rare cartilage diseases and osteoarthritis (OA) remains a common disease with no effective therapy. Investigation of rare cartilage syndromes is identifying new potential targets in OA including GDF5 and lubricin. Research on the arthropathy of the ultra-rare disease alkaptonuria has identified several new features of the OA phenotype, including high density mineralized protrusions (HDMPs) which constitute a newly identified mechanism of joint destruction.

  2. Magnetic resonance in hematological diseases. Imaging of bone marrow

    DEFF Research Database (Denmark)

    Jensen, K.E.

    1995-01-01

    Magnetic resonance imaging (MRI) is a highly sensitive alternative to plain radiography, CT, and radionuclide studies for the imaging of normal and abnormal bone marrow. The cellularity and the corresponding fat/water ratio within the bone marrow show clear changes in haematological diseases....... This enables MRI to detect differences between fatty, fibrotic, aplastic and hypercellular marrow in patients with haematological disease. MRI can evaluate the distribution of bone marrow disease because it has the potential for visualization of almost the entire bone marrow compartment. However, MRI is unable...... to establish the primary diagnosis in haematological bone marrow disease with diffuse hypercellular marrow. In case of insufficient biopsy, MRI can provide important differential diagnostic information as well as guidance for further biopsy attempts. MRI is a useful complement to morphological bone marrow...

  3. Gender and metabolic differences of gallstone diseases

    Institute of Scientific and Technical Information of China (English)

    Hui Sun; Hong Tang; Shan Jiang; Li Zeng; En-Qiang Chen; Tao-You Zhou; You-Juan Wang

    2009-01-01

    AIM: To investigate the risk factors for gallstone disease in the general population of Chengdu, China. METHODS: This study was conducted at the West China Hospital. Subjects who received a physical examination at this hospital between January and December 2007 were included. Body mass index, blood pressure, fasting plasma glucose, serum lipid and lipoproteins concentrations were analyzed. Gallstone disease was diagnosed by ultrasound or on the basis of a history of cholecystectomy because of gallstone disease. Unconditional logistic regression analysis was used to investigate the risk factors for gallstone disease, and the Chi-square test was used to analyze differences in the incidence of metabolic disorders between subjects with and without gallstone disease. RESULTS: A total of 3573 people were included, 10.7% (384/3573) of whom had gallstone diseases. Multiple logistic regression analysis indicated that the incidence of gallstone disease in subjects aged 40-64 or ≥ 65 years was significantly different from that in those aged 18-39 years ( P < 0.05); the incidence was higher in women than in men ( P < 0.05). In men, in women than in men ( P < 0.05). In men, a high level of fasting plasma glucose was obvious in gallstone disease ( P < 0.05), and in women, hypertriglyceridemia or obesity were significant in gallstone disease ( P < 0.05). CONCLUSION: We assume that age and sex are profoundly associated with the incidence of gallstone disease; the metabolic risk factors for gallstone disease were different between men and women.

  4. 多发性骨髓瘤骨病临床特点及监测骨代谢标志物的临床意义%Clinical characteristics of bone disease in multiple myeloma and clinical significance of monitoring bone metabolic markers

    Institute of Scientific and Technical Information of China (English)

    褚彬; 陆敏秋; 吴梦青; 石磊; 付丽娜; 高珊; 房立娟; 项秋晴; 鲍立

    2016-01-01

    Objective To observe the clinical characteristics of bone disease in patients with multiple myeloma (MM) and the clinical significance of monitoring bone metabolic markers.Methods The data of 178 MM cases newly diagnosed in Beijing Ji Shui Tan Hospital from January 2009 to June 2014 were reviewed to analysis the types and classification of bone disease and to observe the clinical characteristics of patients with different grades of bone disease.The levels of bone metabolic markers total procollagen type Ⅰ N-terminal peptide (tPINP) and β C-terminal telopeptide of type Ⅰ collagen (β-CTX) were monitored regularly in the two years following treatment in 66 cases.Results (1) Among the 178 newly diagnosed MM cases,167 cases complained of pain in bones on first visit,35 cases combined with hypercalcemia,83 cases combined with osteoporosis,154 cases combined with osteolytic bone destruction,and 73 cases combined with pathologic fracture.The most common osteolytic location was the spine.The most common fracture sites was the spine.(2) According to bone disease grading,the 178 cases were divided into group A (bone grade0-2,n=51) and group B(bone grade 3-4,n=127).There were no significant differences between group A and group B in gender,median age,therapeutic effect/ineffec,median overall survival,median progress-free survival,mean serum lactic dehydrogenase,mean albumin,urine light chains and serum creatinine (all P > 0.05).Compared with group A,group B had lower hemoglobin level [(99.78 ± 29.93) vs (108.84 ± 29.30) g/L],and higher blood calcium level [(2.47 ± 0.40) vs (2.30 ± 0.29) mmol/L],serum β2-microglobuin level[(6.04 ±4.84)vs (4.12 ±3.97)mg/L],and bone marrow plasma cells percentage(33.30% ± 24.87% vs 23.51% ± 22.67%) (all P < 0.05).(3) Before treatment,the levels of β-CTX and tPINP in patients of group B (n =47) were higher than those in group A (n =19) (median 0.78 vs 0.42 μg/L,60.95 vs 43.47 μg/L,both P <0.05).The ratio of

  5. [Metabolic acidosis in patients with chronic kidney diseases: why and when to treat it?].

    Science.gov (United States)

    Sofia, A; Cappelli, V; Valli, A; Garibotto, G

    2005-01-01

    Metabolic acidosis is a common complication in patients with advanced chronic renal diseases and dialytic treatments are unable to correct it completely. In hemodialysis (HD) patients, severe metabolic acidosis is associated with an increased risk of death. Evidence from several experimental studies suggests that even mild metabolic acidosis is associated with systemic effects. Acidosis is implicated in endocrine changes and has negative repercussions on bone and protein metabolism. In addition, recent observations suggest that acidosis triggers inflammation and accelerates the progression of chronic kidney diseases. As a contradictory finding, acidosis can reduce circulating leptin. Clinical studies on the nutritional effects of metabolic acidosis correction have shown mildly favorable effects. Taking into account the systemic effects of metabolic acidosis it is suggested that even mild metabolic acidosis is corrected. However, the new findings concerning the systemic effects of acidosis must be evaluated in controlled trials.

  6. Clinical Analysis of Relative Parameters of Bone Mineral Density and Bone Metabolism in Elderly Male Patients with Chronic Obstructive Pulmonary Disease%老年男性慢性阻塞性肺疾病患者骨密度及骨代谢相关指标的临床研究

    Institute of Scientific and Technical Information of China (English)

    闫芳; 孜那; 郗慧

    2011-01-01

    Objective By measuring the bone mineral density ( BMD ) and bone metabolic markers in elderly male patients with chronic obstructive pulmonary disease ( COPD ), to explore the relationship between COPD and osteoporosis.Methods Totally 203 COPD male patients and 40 healthy controls of the same sex were recruited as the research objects.The bone mineral density ( by Dual - energy X - ray bone mineral density detection instrument ), serum calcium, phosphorus, magnesium, alkaline phosphatase ( T- ALP ), parathyroid stimulated ( PTH ), fasting urinary calcium and creatinine ratio ( Ca/Cr ), tartrate - resistant acid phosphatase ( TRAP ), osteocalcin ( GBP ) and other bone metabolic markers were measured and analyzed.Results ( 1 ) BMD at L1, L3 and L4 , as well as the Neck, GT, and InterTro of the hip of patients with COPD were significantly lower than those in controls ( P < 0.05 ).The BMD values of COPD patients who Inhaled corticosteroids were significantly lower than those of COPD patients who did not inhale corticosteroids only at the L2 and the Neck of the hip ( P < 0.05 ).( 2 ) Serum calcium, phosphorus, and T 鈥?ALP activity levels were not significantly different ( P > 0.05 ), while the serum magnesium, PTH, TRAP, and Ca/Cr ratio were significantly different ( P <0.05 ) in COPD patients and controls.Compared with COPD patients who did not inhale corticosteroids, the patients who inhaled corticosteroids had decreased levels of magnesium and BGP, and increased values of TRAP and Ca/Cr ( P <0.05 ).( 3 ) The value of BMD at L3 and L4 , as well the Neck and GT of the hip of COPD patients was negatively correlated with duration of corticosteroid therapy ( r = - 0.69, - 0.38, - 0.46, -0.54, respectively, and P<0.05).Conclusion The level of BMD in Elderly male patients with COPD patients is lower than that in healthy people with the same age.And the BMD change shows no significant difference between COPD patients who inhale corticosteroids and those who do

  7. MPS I: Early diagnosis, and treatment of bone disease

    NARCIS (Netherlands)

    Kingma, S.D.K.

    2015-01-01

    Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease (LSD) characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Patients present with a spectrum of symptoms, including progressive mental retardation and bone disease. To optimize outcome, ear

  8. Paget's Disease of Bone and Osteoarthritis: Different Yet Related

    Science.gov (United States)

    ... and Other Conditions Paget’s Disease of Bone and Osteoarthritis: Different Yet Related Publication available in: PDF (59 ... for sure what causes Paget’s disease. What Is Osteoarthritis? Osteoarthritis is a condition that causes changes in ...

  9. Vaccines for metabolic diseases: current perspectives

    Directory of Open Access Journals (Sweden)

    Morais T

    2014-09-01

    Full Text Available Tiago Morais, Sara Andrade, Sofia S Pereira, Mariana P MonteiroDepartment of Anatomy, Unit for Multidisciplinary Biomedical Research, Institute for Biomedical Sciences Abel Salazar, University of Porto, Porto, PortugalAbstract: Several metabolic disorders, such as diabetes, hypertension, dyslipidemia, and obesity, represent significant risk factors for cardiovascular disease, which is the leading cause of morbidity and mortality among adult populations in western societies. Understandably, these chronic disorders have now replaced infectious diseases as the most important public health problem and economic burden to society in most countries. Treatment of metabolic risk factors in order to prevent cardiovascular disease requires an enduring approach with multiple drugs, which can be associated with considerable costs, side effects, and a low rate of therapeutic compliance due to lack of symptoms until later stages of the disease. Since vaccines have proven to be a powerful and effective approach to preventing infectious diseases, attempts to expand the therapeutic use of vaccines into the context of highly prevalent diseases has been attracting increased research interest. Vaccination strategies for chronic diseases in particular are an exciting area of research, with new treatment targets and strategies on the horizon. This review discusses the development of innovative therapeutic agents, focusing on the use of molecular vaccines for the treatment of common and highly prevalent chronic metabolic disorders, ie, diabetes, hypertension, dyslipidemia, and obesity.Keywords: vaccines, diabetes, hypertension, dyslipidemia, obesity

  10. Impact of lanthanum carbonate on cortical bone in dialysis patients with adynamic bone disease.

    Science.gov (United States)

    Yajima, Aiji; Inaba, Masaaki; Tominaga, Yoshihiro; Tanaka, Motoko; Otsubo, Shigeru; Nitta, Kosaku; Ito, Akemi; Satoh, Shigeru

    2013-04-01

    Among the most serious problems in patients with chronic kidney disease (CKD) is fragility of cortical bone caused by cortical thinning and increased cortical porosity; the cortical fragility is sometimes irreversible, with fractures generally initiating from cortical bone. Therefore, development of treatments for problems of cortical bone is urgently desired. Cortical bone has the three surfaces, including the periosteal surface, intracortical spaces and endocortical surface. Bone turnover at the endocortical surface and intracortical resorption spaces are increased as compared with that at cancellous surface. Bone growth sometimes depends on apposition at the periosteal surface. We treated hyperphosphatemia in two hemodialysis patients with adynamic bone disease with 750-1500 mg/day of lanthanum carbonate, which is a non-calcium containing phosphate binder; the treatment resulted in a decrease of the serum phosphorus levels (P levels), without significant change of the serum intact parathyroid hormone levels. We now report that treatment of these patients with lanthanum carbonate increased mineralization of the periosteal surface, increased bone mass within the intracortical resorption spaces and increased mineralization of the minimodeling surface at the endocortical surface. In addition, woven bone volume in cortical bone was decreased and mineralization of bone units, namely, osteons, was increased. Although these findings were not observed across all surfaces of the cortical bone in the patients, it is expected that lanthanum carbonate would increase the cortical stability in CKD patients, with consequent reduction in the fracture rate in these patients.

  11. Imaging of inflammatory and infectious diseases in the temporal bone.

    NARCIS (Netherlands)

    Lemmerling, M.M.; Foer, B. De; Verbist, B.M.; Vyver, V. van de

    2009-01-01

    Inflammatory and infectious diseases of the temporal bone are a major indication to perform high-resolution CT and MR imaging studies. Such studies allow one to evaluate the extent of the disease in the soft tissues and in the bony structures of the temporal bone. On these same imaging studies the p

  12. Neurodegenerative disorders and metabolic disease.

    Science.gov (United States)

    Pierre, Germaine

    2013-08-01

    Most genetic causes of neurodegenerative disorders in childhood are due to neurometabolic disease. There are over 200 disorders, including aminoacidopathies, creatine disorders, mitochondrial cytopathies, peroxisomal disorders and lysosomal storage disorders. However, diagnosis can pose a challenge to the clinician when patients present with non-specific problems like epilepsy, developmental delay, autism, dystonia and ataxia. The variety of specialist tests involved can also be daunting. This review aims to give a practical approach to the investigation and diagnosis of neurometabolic disease from the neonatal period to late childhood while prioritising disorders where there are therapeutic options. In particular, patients who have a complex clinical picture of several neurological and non-neurological features should be investigated.

  13. Asymptomatic Paget's disease of bone presenting with complete atrioventricular block

    Institute of Scientific and Technical Information of China (English)

    A.Rauoof Malik; Nazir A.Lone; Hilal A.Rather; Vicar M Jan; Javid A.Malik; Khursheed A.Khan; S.Jalal

    2008-01-01

    @@ Paget's disease of bone is a deforming bone disease (osteitis deformans) characterized by increased bone remodeling,bone hypertrophy,and abnormal bone structure,leading to bone expansion,deformities,easy fractures,and occasionally,neoplastic transformation.It is the second most common bone disorder after osteoporosis.1 The disease is relatively rare in Asia but is common in Europe and North America,affecting approximately 2% of the population over 50 years,although lately,a decline in the prevalence has been reported.2 Paget's disease commonly affects people in or past their middle age and is slightly more common in men than in women.1 The exact cause of Paget's disease is not known.Environmental agents,particularly paramyxoviral infections (measles and canine distemper viruses) have been postulated as potential etiological factors.3 Recently,a strong genetic component has been described,with candidate loci suggested at 18q,5q35-QTER,and particularly,the squestosome 1/p62.2,3 The pathological process in Paget's disease consists of one or more areas of aggressive and relentless osteoclastic activity,coupled with deposition of structurally abnormal excessive bone and matrix tissues.1,4 Most of the cases involve only one (monostotic) or few bones,particularly skull,vertebrae,pelvis,femur,and tibia.

  14. Lipid metabolism in Drosophila: development and disease

    Institute of Scientific and Technical Information of China (English)

    Zhonghua Liu; Xun Huang

    2013-01-01

    Proteins,nucleic acids,and lipids are three major components of the cell.Despite a few basic metabolic pathways,we know very little about lipids,compared with the explosion of knowledge about proteins and nucleic acids.How many different forms of lipids are there? What are the in vivo functions of individual lipid? How does lipid metabolism contribute to normal development and human health? Many of these questions remain unanswered.For over a century,the fruit fly Drosophila melanogaster has been used as a model organism to study basic biological questions.In recent years,increasing evidences proved that Drosophila models are highly valuable for lipid metabolism and energy homeostasis researches.Some recent progresses of lipid metabolic regulation during Drosophila development and in Drosophila models of human diseases will be discussed in this review.

  15. A Metabolic Study of Huntington's Disease.

    Directory of Open Access Journals (Sweden)

    Rajasree Nambron

    Full Text Available Huntington's disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington's disease gene carriers (premanifest and moderate stage II/III and controls.Control (n = 15, premanifest (n = 14 and stage II/III (n = 13 participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a, fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test.We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington's disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine there is a suggestion (p values between 0.02 and 0.05 that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious.Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington's disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington's disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that

  16. Adipokines, Metabolic Syndrome and Rheumatic Diseases

    OpenAIRE

    Vanessa Abella; Morena Scotece; Javier Conde; Verónica López; Verónica Lazzaro; Jesús Pino; Gómez-Reino, Juan J; Oreste Gualillo

    2014-01-01

    The metabolic syndrome (MetS) is a cluster of cardiometabolic disorders that result from the increasing prevalence of obesity. The major components of MetS include insulin resistance, central obesity, dyslipidemia, and hypertension. MetS identifies the central obesity with increased risk for cardiovascular diseases (CVDs) and type-2 diabetes mellitus (T2DM). Patients with rheumatic diseases, such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis...

  17. Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency

    NARCIS (Netherlands)

    A.M. Boot (Annemieke); M.A. Engels (Melanie); G.J.M. Boerma (Geert); E.P. Krenning (Eric); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    1997-01-01

    textabstractAdults with childhood onset GH deficiency (GHD) have reduced bone mass, increased fat mass, and disorders of lipid metabolism. The aim of the present study was to evaluate bone mineral density (BMD), bone metabolism, body composition, and lipid metabolism in

  18. Editorial; Lipids in Metabolic Health and Disease

    NARCIS (Netherlands)

    Glatz, Jan; De Groot, Renate; Hesselink, Matthijs; Schrauwen, Patrick

    2012-01-01

    Glatz, J. F. C., De Groot, R. H. M., Hesselink, K. C., & Schrauwen, P. (2011). Editorial; Lipids in Metabolic Health and Disease. Prostaglandines, Leukotrienes and Essential fatty Acids, 85, 195. DOI: 10.1016/j.plefa.2011.04.006

  19. The metabolic syndrome: a brain disease?

    NARCIS (Netherlands)

    Buijs, R.M.; Kreier, F.

    2006-01-01

    The incidence of obesity with, as consequence, a rise in associated diseases such as diabetes, hypertension and dyslipidemia--the metabolic syndrome--is reaching epidemic proportions in industrialized countries. Here, we provide a hypothesis that the biological clock which normally prepares us each

  20. Migraine, cerebrovascular disease and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alexandra J Sinclair

    2012-01-01

    Full Text Available Evidence is emerging that migraine is not solely a headache disorder. Observations that ischemic stroke could occur in the setting of a migraine attack, and that migraine headaches could be precipitated by cerebral ischemia, initially highlighted a possibly association between migraine and cerebrovascular disease. More recently, large population-based studies that have demonstrated that migraineurs are at increased risk of stroke outside the setting of a migraine attack have prompted the concept that migraine and cerebrovascular disease are comorbid conditions. Explanations for this association are numerous and widely debated, particularly as the comorbid association does not appear to be confined to the cerebral circulation as cardiovascular and peripheral vascular disease also appear to be comorbid with migraine. A growing body of evidence has also suggested that migraineurs are more likely to be obese, hypertensive, hyperlipidemic and have impaired insulin sensitivity, all features of the metabolic syndrome. The comorbid association between migraine and cerebrovascular disease may consequently be explained by migraineurs having the metabolic syndrome and consequently being at increased risk of cerebrovascular disease. This review will summarise the salient evidence suggesting a comorbid association between migraine, cerebrovascular disease and the metabolic syndrome.

  1. The influence of genetic variability and proinflammatory status on the development of bone disease in patients with Gaucher disease.

    Science.gov (United States)

    Gervas-Arruga, Javier; Cebolla, Jorge Javier; de Blas, Ignacio; Roca, Mercedes; Pocovi, Miguel; Giraldo, Pilar

    2015-01-01

    Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1). Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD), bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI) score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT); between non-/splenectomized patients (between untreated and ERT-treated patients) and among those with differing GBA genotypes. The

  2. The influence of genetic variability and proinflammatory status on the development of bone disease in patients with Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Javier Gervas-Arruga

    Full Text Available Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1. Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD, bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT; between non-/splenectomized patients (between untreated and ERT-treated patients and among those with differing GBA

  3. 高盐摄入与骨代谢%High salt intake and bone metabolism

    Institute of Scientific and Technical Information of China (English)

    朱晓峰; 张荣华

    2016-01-01

    Osteoporosis has become a global public health problem, and dietary interventions may potentially be helpful in preventing this disorder.Salt ( sodium chloride) is one of the most important dietary nutrients.High sodium chloride intake may play an important role in bone metabolism.In this paper, we reviewed the effects of high sodium chlo-ride intake on bone mineral density, bone mineral content and bone biochemical markers, and analyzed the possible causes through currently available literature.Although there are a few inconsistencies results, we conclude a long-term high salt intake can reduce bone density or bone mineral content, change many biochemical markers of bone resorption, which may be caused mainly by increasing urinary calcium excretion and a low-grade metabolic acidosis.However, there are still many unclear aspects need further exploration.

  4. Studies of Bone Metabolism with the Aid of Radioactive Strontium

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.C.; Copp, D.H., M.D.

    1948-04-01

    The kinetics of skeletal uptake and urinary excretion of radiostrontium were studied during the critieal first hour following intraperitoneal injection of a carrier-free dose. These experiments not only provided valuable data con.cerning the metabolism and fixation of this important fission product, but, because of the close similarity of strontium and calcium, also gave basic information on the process of calcification. Three groups of rats were compared: normal mature adults, young growing normal animals, and young rachitic rats. In all groups, the blood radioactive strontium rose to a maximum in 10-15 minutes, and then declined as the strontium continued to deposit in the skeleton or to be excreted in the urine. Muscle and skin strontium curves followed those of blood quite closely, suggesting a rapid equilibrium between their extracellular fluid and blood plasma. In all groups there was a continous uptake of strontium by the skeleton. In the adults, this was almost constant, suggesting uptek e by absorption and exchange with the calcium of the bone mineral. In the young rats, both normal and rachitic, the very rapid initial rate of uptake of radio-strontium tapered off sharply with time, indicating that some of this radio-element was coming back from the bone into the blood stream. This suggested a rapid labile combination of strontiunl in these animals, which, since it also occured in the rachitic group in which normal calcification is inhibited, probably associated with the protein osteoid matrix present in both. A hypothetical calcification mechanism was suggested by these findings. Urinary excretion and renal clearance of strontium was constant in all three groups, but the clearance was almost ten times as great in the rachitic as in the normal young and adult rats. This would seem to indicate a direct effect of rickets on the renal mechanism of radiostrontium (and calcium) excretion.

  5. Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease.

    Science.gov (United States)

    Panwar, Bhupesh; Gutiérrez, Orlando M

    2016-07-01

    Dysregulated iron homeostasis plays a central role in the development of anemia of chronic kidney disease (CKD) and is a major contributor toward resistance to treatment with erythropoiesis-stimulating agents. Understanding the underlying pathophysiology requires an in-depth understanding of normal iron physiology and regulation. Recent discoveries in the field of iron biology have greatly improved our understanding of the hormonal regulation of iron trafficking in human beings and how its alterations lead to the development of anemia of CKD. In addition, emerging evidence has suggested that iron homeostasis interacts with bone and mineral metabolism on multiple levels, opening up new avenues of investigation into the genesis of disordered iron metabolism in CKD. Building on recent advances in our understanding of normal iron physiology and abnormalities in iron homeostasis in CKD, this review characterizes how anemia related to disordered iron metabolism develops in the setting of CKD. In addition, this review explores our emerging recognition of the connections between iron homeostasis and mineral metabolism and their implications for the management of altered iron status and anemia of CKD.

  6. Bone marrow invasion in multiple myeloma and metastatic disease.

    Science.gov (United States)

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases.

  7. Bone metabolism and renal stone risk during International Space Station missions.

    Science.gov (United States)

    Smith, Scott M; Heer, Martina; Shackelford, Linda C; Sibonga, Jean D; Spatz, Jordan; Pietrzyk, Robert A; Hudson, Edgar K; Zwart, Sara R

    2015-12-01

    Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone

  8. Role of osteocytes in multiple myeloma bone disease

    Science.gov (United States)

    Delgado-Calle, Jesus; Bellido, Teresita; Roodman, G. David

    2014-01-01

    Purpose of review Despite the increased knowledge of osteocyte biology, the contribution of this most abundant bone cell to the development and progression of multiple myeloma in bone is practically unexplored. Recent findings Multiple myeloma bone disease is characterized by exacerbated bone resorption and the presence of osteolytic lesions that do not heal because of a concomitant reduction in bone formation. Osteocytes produce molecules that regulate both bone formation and resorption. Recent findings suggest that the life span of osteocytes is compromised in multiple myeloma patients with bone lesions. In addition, multiple myeloma cells affect the transcriptional profile of osteocytes by upregulating the production of pro-osteoclastogenic cytokines, stimulating osteoclast formation and activity. Further, patients with active multiple myeloma have elevated circulating levels of sclerostin, a potent inhibitor of bone formation which is specifically expressed by osteocytes in bone. Summary Understanding the contribution of osteocytes to the mechanisms underlying the skeletal consequences of multiple myeloma bone disease has the potential to provide important new therapeutic strategies that specifically target multiple myeloma–osteocyte interactions. PMID:25289928

  9. Bone Allografts: What Is the Risk of Disease Transmission with Bone Allografts?

    Science.gov (United States)

    ... HIV antibody by ELISA. Autopsy of donor reveals occult disease. Donor bone tests positive for bacterial contamination. Donor and bone test positive for hepatitis B surface antigen (HbsAG) or hepatitis C virus (HCV). Donor tests positive for syphilis. Using ...

  10. 慢性阻塞性肺疾病患者骨代谢研究进展%The research progress of bone metabolism in chronic obstructive pulmonary disease

    Institute of Scientific and Technical Information of China (English)

    朱晓梅; 聂秀红

    2016-01-01

    COPD是一种以气流持续受限为特征的慢性呼吸系统疾病,其患病率、致残率、病死率高.骨质疏松是以骨量减少、骨结构退化和骨折风险增加的骨代谢性疾病,是COPD的重要合并症之一,但在临床中常被忽视.当COPD合并骨折时,可引起患者肺功能下降、急性加重频率及病死率增加,因此及早诊治COPD合并的骨质疏松能有效预防骨折的发生,改善患者预后.因此,早期发现、早期诊治骨质疏松,预防骨质疏松相关的骨折对于COPD患者具有重要意义.%Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease characterized by persistent airflow limitation.It has a high prevalence and mortality.Besides pulmonary component,significant extra-pulmonary effects are to be considered,including osteoporosis (OP).OP is characterized by a decreased bone mineral density and/or changes of the micro-architectural,resulting in an increased fragility of bones with an increased fracture risk as consequence.When COPD complicate with fracture,the patients' lung function tend to be decline while acute exacerbation frequency and mortality can be increase.Therefore,it is significant for prevent OP in COPD patients.

  11. Chronic use of the calcium channel blocker nifedipine effected on bone metabolism in elder with coronary heart disease%老年冠心病患者长期应用硝苯地平对骨代谢及功能的影响

    Institute of Scientific and Technical Information of China (English)

    陈斌

    2013-01-01

    目的:硝苯地平(NIF)临床广泛用于调节心率,本文主要研究年冠心病患者长期应用NIF对骨代谢及功能的影响。探讨NIF应用1年后对碱性磷酸酶(ALP)活性、骨钙蛋白(OCN)和钙离子水平的影响,为治疗骨代谢性疾病提供理论性的依据。方法:本研究筛选160名老年冠心病患者,均参加NIF治疗临床跟踪随访1年,观测并评价NIF的疗效及对骨代谢及功能。结果:本研究所有病例用药前与用药后,男性和女性体内的钙离子水平均显著升高(P0.05)。结论:对于长期使用NIF的老年患者,应当及时监测骨骼代谢水平以及骨骼发育状况评价指标,提前预防骨质疏松。%Calcium channel blockers have been reported to have such diverse effects as reduction in protein synthesis, diminished incorporation of proline into new col agen, and decreased hormone release in vitro. The study screened 160 elderly patients with coronary heart disease, are members of nifedipine treatment of clinical fol ow-up 1 year, observation and evaluation of nifedipine and its effect on bone metabolism and function. Results: In this study, al cases before treatment and after treatment, the average male and female body calcium ion water was significantly higher (P 0.05). Conclusion: In patients with long-term use of nifedipine should be timely monitoring of bone metabolism and bone development status evaluation, prevention of osteoporosis in advance. In summary, chronic nifedipine use in males is associated with adverse effect on bone metabolism in elder with coronary heart disease.

  12. Endocrine manifestations related to inherited metabolic diseases in adults

    Directory of Open Access Journals (Sweden)

    Vantyghem Marie-Christine

    2012-01-01

    Full Text Available Abstract Most inborn errors of metabolism (IEM are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.. IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects, and metal (hemochromatosis and storage disorders (cystinosis. Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes, whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure, congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last. This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses.

  13. The Intestinal Microbiota in Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anni Woting

    2016-04-01

    Full Text Available Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions.

  14. Elevated carboxy terminal cross linked telopeptide of type I collagen in alcoholic cirrhosis: relation to liver and kidney function and bone metabolism

    DEFF Research Database (Denmark)

    Møller, S; Hansen, M; Hillingso, J

    1999-01-01

    BACKGROUND: The carboxy terminal cross linked telopeptide of type I collagen (ICTP) has been put forward as a marker of bone resorption. Patients with alcoholic liver disease may have osteodystrophy. AIMS: To assess circulating and regional concentrations of ICTP in relation to liver dysfunction......, bone metabolism, and fibrosis. METHODS: In 15 patients with alcoholic cirrhosis and 20 controls, hepatic venous, renal venous, and femoral arterial concentrations of ICTP, and bone mass and metabolism were measured. RESULTS: Circulating ICTP was higher in patients with cirrhosis than in controls...... is highly elevated in patients with cirrhosis, with no detectable hepatic net production or disposal. No relation between ICTP and markers of bone metabolism was identified, but there was a relation to indicators of liver dysfunction and fibrosis. As the cirrhotic patients conceivably only had mild...

  15. Does dermatitis herpetiformis result in bone loss as coeliac disease does?: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Katalin Lorinczy

    Full Text Available Introduction and objectives: coeliac disease (CD and its cutaneous manifestation, dermatitis herpetiformis are both (DH gluten-sensitive diseases. Metabolic bone disease is common among patients with CD, even in asymptomatic forms. Data are scarce about bone density in patients with dermatitis herpetiformis. The aim of our study was to compare bone mineral density (BMD of celiac and dermatitis herpetiformis patients. Methods: 34 coeliac patients, 53 with dermatitis herpetiformis and 42 healthy controls were studied. The mean age was 38.0 ± 12.1, 32.18 ± 14.95, 35.33 ± 10.41 years in CD, dermatitis herpetiformis, and healthy controls, respectively. Bone mineral density of the lumbar spine, the left femoral neck and radius were measured by dual-energy X-ray absorptiometry. Low bone density, osteopenia and osteoporosis were defined as a body mass density (BMD T-score between 0 and -1, between -1 and -2.5, and under -2.5, respectively. Results: at lumbar region, consisting of dominantly trabecular compartment, a decreased BMD was detected in 49 % (n = 26 patients with dermatitis herpetiformis, 62 % (n = 21 of CD patients, and 29 % (n = 12 of healthy controls, respectively. Lower BMD were measured at the lumbar region in dermatitis herpetiformis and CD compared to healthy subjects (0.993 ± 0.136 g/cm² and 0.880 ± 0.155 g/cm² vs. 1.056 ± 0.126 g/cm²; p < 0.01. Density of bones consisting of dominantly cortical compartment (femoral neck did not differ in dermatitis herpetiformis and healthy subjects. Conclusions: our results show that a low bone mass is also frequent among patients with dermatitis herpetiformis. Bone mineral content in these patients is significantly lower in those parts of the skeleton which contain more trabecular than cortical bone.

  16. Exploring metabolic dysfunction in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Slee Adrian D

    2012-04-01

    Full Text Available Abstract Impaired kidney function and chronic kidney disease (CKD leading to kidney failure and end-stage renal disease (ESRD is a serious medical condition associated with increased morbidity, mortality, and in particular cardiovascular disease (CVD risk. CKD is associated with multiple physiological and metabolic disturbances, including hypertension, dyslipidemia and the anorexia-cachexia syndrome which are linked to poor outcomes. Specific hormonal, inflammatory, and nutritional-metabolic factors may play key roles in CKD development and pathogenesis. These include raised proinflammatory cytokines, such as interleukin-1 and −6, tumor necrosis factor, altered hepatic acute phase proteins, including reduced albumin, increased C-reactive protein, and perturbations in normal anabolic hormone responses with reduced growth hormone-insulin-like growth factor-1 axis activity. Others include hyperactivation of the renin-angiotensin aldosterone system (RAAS, with angiotensin II and aldosterone implicated in hypertension and the promotion of insulin resistance, and subsequent pharmacological blockade shown to improve blood pressure, metabolic control and offer reno-protective effects. Abnormal adipocytokine levels including leptin and adiponectin may further promote the insulin resistant, and proinflammatory state in CKD. Ghrelin may be also implicated and controversial studies suggest activities may be reduced in human CKD, and may provide a rationale for administration of acyl-ghrelin. Poor vitamin D status has also been associated with patient outcome and CVD risk and may indicate a role for supplementation. Glucocorticoid activities traditionally known for their involvement in the pathogenesis of a number of disease states are increased and may be implicated in CKD-associated hypertension, insulin resistance, diabetes risk and cachexia, both directly and indirectly through effects on other systems including activation of the mineralcorticoid

  17. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    Science.gov (United States)

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-12-22

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.

  18. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  19. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  20. Combined intervention of dietary soybean proteins and swim training: effects on bone metabolism in ovariectomized rats.

    Science.gov (United States)

    Figard, Hélène; Mougin, Fabienne; Gaume, Vincent; Berthelot, Alain

    2006-01-01

    Soybean proteins, a rich source of isoflavones, taken immediately after an ovariectomy prevent bone loss in rats. Exercise-induced stimuli are essential for bone growth. Few studies exist about the combined effects of swim training and soybean protein supplementation on bone metabolism. So, the purpose of this study was to investigate, in 48 female Sprague-Dawley rats (12 weeks old) the effects of an 8-week swim-training regimen (1 h/day, 5 days/week) and dietary soybean proteins (200 g/kg diet) on bone metabolism. Rats were randomly assigned to four groups: (1) ovariectomized fed with a semisynthetic control diet; (2) ovariectomized fed with a soybean protein-enriched semisynthetic diet; (3) ovariectomized trained to exercise and fed with control diet; (4) ovariectomized trained to exercise and fed with a soybean protein diet. Following the treatment period, body weight gain was identical in the four groups. Soybean protein supplementation increased bone calcium content, and reduced plasma osteocalcin values, without significant modification of calcium balance and net calcium absorption. Swim training enhanced plasma and bone calcium content and calcium balance and net calcium absorption. It did not modify either plasma osteocalcin values or urinary deoxypyridinoline excretion. Both exercise and soybean protein intake increased plasma on bone calcium without modifying net calcium absorption or bone markers. In conclusion, we demonstrated, in ovariectomized rats, that swimming exercise and dietary supplementation with soy proteins do not have synergistic effects on calcium metabolism and bone markers.

  1. A probable new type of osteopenic bone disease

    Energy Technology Data Exchange (ETDEWEB)

    Widhe, Torulf L. [Department of Orthopaedics, Huddinge University Hospital (Sweden)

    2002-06-01

    A probable new type of osteopenic bone disease in two sisters and one female cousin is described. In infancy, the radiological findings were osteopenia, coxa vara, periosteal cloaking, bowing of the long bones, and flaring of the metaphyses. During growth, spinal pathology developed with compression of the vertebral bodies and scoliosis in one girl and kyphosis in another. All three children had genu valgum and two developed severe S-shaped bowing of the tibiae. Growth was stunted. Inheritance of this disorder is probably recessive. Type I and III collagen biosynthesis was normal. This condition is probably a hitherto undescribed form of osteogenesis imperfecta type III or a new bone disease. (orig.)

  2. Zoledronic acid in the management of metastatic bone disease.

    Science.gov (United States)

    Santini, Daniele; Fratto, Maria Elisabetta; Vincenzi, Bruno; Galluzzo, Sara; Tonini, Giuseppe

    2006-12-01

    Bisphosphonate therapy has become a standard of therapy for patients with malignant bone disease. Moreover, in vivo preclinical and preliminary clinical data suggest that bisphosphonates may prevent cancer treatment-induced bone loss and the onset of malignant bone disease in patients with early-stage cancer. This comprehensive review critically reports the several preclinical evidences of action of bisphosphonates on osteoclasts, lymphocytes and tumour cells. In addition, all the clinical trials evaluating the effects of principal bisphosphonates on skeletal disease progression in patients with breast cancer, prostate cancer, non-small cell lung cancer and other cancers have been reported. Of the available bisphosphonates, intravenous zoledronic acid has demonstrated the broadest clinical activity and is actually approved for the treatment of bone metastases from any solid tumour in many countries. Renal safety is an important consideration for oncologists who are treating patients with bisphosphonates. This issue and the other topics relating to the safety of bisphosphonates are discussed in this review.

  3. Abnormal bone and mineral metabolism in kidney transplant patients--a review

    DEFF Research Database (Denmark)

    Sprague, S.M.; Belozeroff, V.; Danese, M.D.

    2008-01-01

    for English language articles published between January 1990 and October 2006 that contained Medical Subject Headings and key words related to secondary or persistent hyperparathyroidism and kidney transplant. RESULTS: Parathyroid hormone levels decreased significantly during the first 3 months after......BACKGROUND/AIMS: Abnormal bone and mineral metabolism is common in patients with kidney failure and often persists after successful kidney transplant. METHODS: To better understand the natural history of this disease in transplant patients, we reviewed the literature by searching MEDLINE...... transplant but typically stabilized at elevated values after 1 year. Calcium tended to increase after transplant and then stabilize at the higher end of the normal range within 2 months. Phosphorus decreased rapidly to within or below normal levels after surgery and hypophosphatemia, if present, resolved...

  4. Giant cell tumor complicating Paget disease of long bone

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Benjamin [Mount Sinai Medical Center, Department of Pathology, New York, NY (United States); Hermann, George [Mount Sinai Medical Center, Department of Radiology, New York, NY (United States); Klein, Michael J. [University of Alabama School of Medicine, Department of Pathology, Birmingham, AL (United States); Abdelwahab, Ibrahim F. [Coney Island Hospital affiliated with CUNY Downstate School of Medicine, Department of Radiology, New York, NY (United States); Springfield, Dempsey [Massachusetts General Hospital, Department of Orthopaedic Surgery, Boston, MA (United States)

    2007-10-15

    Giant cell tumor (GCT) is a rare complication of Paget disease of bone. It usually occurs in the skull or pelvic bones of patients with long-standing polyostotic disease. This report describes a 62-year-old patient who presented with monostotic Paget disease of the distal femur complicated by GCT. He had a 2-year history of discomfort and pain in his left knee. Conventional plain films and MRI demonstrated the characteristic bone changes of Paget disease and an associated lytic lesion involving the epiphyseal and metaphyseal regions of the distal femur. A diagnostic curettage showed the characteristic histopathologic features of Paget disease and GCT. There was no evidence of malignancy. The clinicopathologic features of this rare lesion are described and correlated with a review of the literature. (orig.)

  5. Heterogeneous pattern of bone disease in adult type 1 Gaucher disease: clinical and pathological correlates.

    Science.gov (United States)

    van Dussen, L; Lips, P; van Essen, H W; Hollak, C E M; Bravenboer, N

    2014-09-01

    Gaucher disease (GD) is a lysosomal storage disorder characterized by accumulation of glucosylceramide in macrophages, so-called Gaucher cells, as a result of a deficiency of the lysosomal enzyme glucocerebrosidase. Bone complications are an important cause of morbidity of GD and are thought to result from imbalance in bone remodeling. Bone manifestations among GD patients demonstrate a large variation including increased osteoclastic bone resorption, low bone formation and osteonecrosis. The purpose of the current case series is to describe the histological features observed in undecalcified bone samples, obtained from three GD patients, and evaluate the relationship with clinical features in these patients. Bone fragments were obtained from three adult type 1 GD patients with variable degrees of bone disease during orthopedic surgery. Specimens were embedded without prior decalcification in methylmethacrylate and prepared for histology according to standardized laboratory procedures. Histology revealed a heterogeneous pattern of bone involvement. High cellularity of bone marrow, abundant presence of Gaucher cells (GCs) and high turnover were observed in a patient with a history of multiple bone complications, while minimal bone turnover and few GCs were detected in the mildest affected patient in this series. An intermediate picture with relatively low bone turnover and a substantial amount of Gaucher cells was demonstrated in the third, moderately affected patient. No gross abnormalities in three biochemical markers of bone turnover (osteocalcin, N-terminal propeptide of type 1 procollagen and type 1 collagen C-terminal telopeptide) were noted. Plastic embedding and subsequent Goldner and TRAP staining offered a unique possibility to study bone histological findings in GD. Our data show that bone manifestations in GD may vary both clinically as well as histologically and bone disease in GD will likely require a personalized approach.

  6. The metabolic syndrome: a brain disease?

    Science.gov (United States)

    Buijs, Ruud M; Kreier, Felix

    2006-09-01

    The incidence of obesity with, as consequence, a rise in associated diseases such as diabetes, hypertension and dyslipidemia--the metabolic syndrome--is reaching epidemic proportions in industrialized countries. Here, we provide a hypothesis that the biological clock which normally prepares us each morning for the coming activity period is altered due to a modern life style of low activity during the day and late-night food intake. Furthermore, we review the anatomical evidence supporting the proposal that an unbalanced autonomic nervous system output may lead to the simultaneous occurrence of diabetes type 2, dyslipidemia, hypertension and visceral obesity.

  7. Lumbar spine degenerative disease : effect on bone mineral density measurements in the lumbar spine and femoral neck

    Energy Technology Data Exchange (ETDEWEB)

    Juhng, Seon Kwan [Wonkwang Univ. School of Medicine, Iksan (Korea, Republic of); Koplyay, Peter; Jeffrey Carr, J.; Lenchik, Leon [Wake Forest Univ. School of Medicine, Winston-salem (United States)

    2001-04-01

    To determine the effect of degenerative disease of the lumbar spine on bone mineral density in the lumbar spine and femoral neck. We reviewed radiographs and dual energy x-ray absorptiometry scans of the lumbar spine and hip in 305 Caucasian women with suspected osteoporosis. One hundred and eight-six patient remained after excluding women less than 40 years of age (n=18) and those with hip osteoarthritis, scoliosis, lumbar spine fractures, lumbar spinal instrumentation, hip arthroplasty, metabolic bone disease other than osteoporosis, or medications known to influence bone metabolism (n=101). On the basis of lumbar spine radiographs, those with absent/mild degenerative disease were assigned to the control group and those with moderate/severe degenerative disease to the degenerative group. Spine radiographs were evaluated for degenerative disease by two radiologists working independently; discrepant evaluations were resolved by consensus. Lumbar spine and femoral neck bone mineral density was compared between the two groups. Forty-five (24%) of 186 women were assigned to the degenerative group and 141 (76%) to the control group. IN the degenerative group, mean bone mineral density measured 1.075g/cm? in the spine and 0.788g/cm{sup 2} in the femoral neck, while for controls the corresponding figures were 0.989g/cm{sup 2} and 0.765g/cm{sup 2}. Adjusted for age, weight and height by means of analysis of variance, degenerative disease of the lumbar spine was a significant predictor of increased bone mineral density in the spine (p=0.0001) and femoral neck (p=0.0287). Our results indicate a positive relationship between degenerative disease of the lumbar spine and bone mineral density in the lumbar spine and femoral neck, and suggest that degenerative disease in that region, which leads to an intrinsic increase in bone mineral density in the femoral neck, may be a good negative predictor of osteoporotic hip fractures.

  8. High serum YKL-40 concentration is associated with severe bone disease in newly diagnosed multiple myeloma patients

    DEFF Research Database (Denmark)

    Mylin, Anne Kærsgaard; Abildgaard, N.; Johansen, J.S.

    2008-01-01

    Objectives: In multiple myeloma (MM) YKL-40 is present in the bone marrow microenvironment and is suggested to play a role in remodelling of the extracellular matrix. Here, the association between serum YKL-40 and severity of bone disease in MM is investigated. Methods: Serum YKL-40 was measured...... in 34 MM patients at diagnosis. Bone disease was assessed by radiography and biochemical markers of bone metabolism. Patients were treated with conventional chemotherapy and followed for up to 30 months. Results: Patients with a serum YKL-40 elevated above the age specific reference range (56%) had...... a higher total X-ray score (P = 0.003) and higher levels of the markers of bone resorption serum C-terminal telopeptide of collagen type I (P = 0.003), urine pyridinoline (P = 0.04) and urine deoxypyridinoline (P = 0.002), while the levels of urine N-terminal telopeptide of collagen type I (NTX-1...

  9. Gender- and region-specific alterations in bone metabolism in Scarb1-null female mice.

    Science.gov (United States)

    Martineau, Corine; Martin-Falstrault, Louise; Brissette, Louise; Moreau, Robert

    2014-08-01

    A positive correlation between plasma levels of HDL and bone mass has been reported by epidemiological studies. As scavenger receptor class B, type I (SR-BI), the gene product of Scarb1, is known to regulate HDL metabolism, we recently characterized bone metabolism in Scarb1-null mice. These mice display high femoral bone mass associated with enhanced bone formation. As gender differences have been reported in HDL metabolism and SR-BI function, we investigated gender-specific bone alterations in Scarb1-null mice by microtomography and histology. We found 16% greater relative bone volume and 39% higher bone formation rate in the vertebrae from 2-month-old Scarb1-null females. No such alteration was seen in males, indicating gender- and region-specific differences in skeletal phenotype. Total and HDL-associated cholesterol levels, as well as ACTH plasma levels, were increased in both Scarb1-null genders, the latter being concurrent to impaired corticosterone response to fasting. Plasma levels of estradiol did not differ between null and WT females, suggesting that the estrogen metabolism alteration is not relevant to the higher vertebral bone mass in female Scarb1-null mice. Constitutively, high plasma levels of leptin along with 2.5-fold increase in its expression in white adipose tissue were measured in female Scarb1-null mice only. In vitro exposure of bone marrow stromal cells to ACTH and leptin promoted osteoblast differentiation as evidenced by increased gene expression of osterix and collagen type I alpha. Our results suggest that hyperleptinemia may account for the gender-specific high bone mass seen in the vertebrae of female Scarb1-null mice.

  10. Paget disease of bone: A classic case report

    Directory of Open Access Journals (Sweden)

    Y Uday Shankar

    2013-01-01

    Full Text Available Paget disease of bone (PDB is a chronic progressive disease of the bone of uncertain etiology, characterized initially by an increase in bone resorption, followed by a disorganized and excessive formation of bone, leading to pain, fractures, and deformities. It can manifest as a monostotic or polyostotic disease. The prevalence of PDB is common in the Anglo-Saxon population, but relatively rare in India. The disease is often asymptomatic and commonly seen in an aging population. The diagnosis of the disease is mostly based on radiological examination and on biochemical markers of bone turnover. Markedly elevated serum alkaline phosphatase (SAP is a constant feature while calcium and phosphate levels are typically within normal limits. It is being successfully treated by biphosphonates, a group of anti-resorptive drugs, thereby decreasing the morbidity and mortality associated with the disease. We report a classic case of PDB with craniofacial involvement resulting in Leontiasis Ossea (lion like face, cotton wool appearance of the skull and elevated SAP.

  11. [Nutritional and metabolic aspects of neurological diseases].

    Science.gov (United States)

    Planas Vilà, Mercè

    2014-01-01

    The central nervous system regulates food intake, homoeostasis of glucose and electrolytes, and starts the sensations of hunger and satiety. Different nutritional factors are involved in the pathogenesis of several neurological diseases. Patients with acute neurological diseases (traumatic brain injury, cerebral vascular accident hemorrhagic or ischemic, spinal cord injuries, and cancer) and chronic neurological diseases (Alzheimer's Disease and other dementias, amyotrophic lateral sclerosis, Parkinson's Disease) increase the risk of malnutrition by multiple factors related to nutrient ingestion, abnormalities in the energy expenditure, changes in eating behavior, gastrointestinal changes, and by side effects of drugs administered. Patients with acute neurological diseases have in common the presence of hyper metabolism and hyper catabolism both associated to a period of prolonged fasting mainly for the frequent gastrointestinal complications, many times as a side effect of drugs administered. During the acute phase, spinal cord injuries presented a reduction in the energy expenditure but an increase in the nitrogen elimination. In order to correct the negative nitrogen balance increase intakes is performed with the result of a hyper alimentation that should be avoided due to the complications resulting. In patients with chronic neurological diseases and in the acute phase of cerebrovascular accident, dysphagia could be present which also affects intakes. Several chronic neurological diseases have also dementia, which lead to alterations in the eating behavior. The presence of malnutrition complicates the clinical evolution, increases muscular atrophy with higher incidence of respiratory failure and less capacity to disphagia recuperation, alters the immune response with higher rate of infections, increases the likelihood of fractures and of pressure ulcers, increases the incapacity degree and is an independent factor to increase mortality. The periodic nutritional

  12. Lactate metabolism in chronic liver disease

    DEFF Research Database (Denmark)

    Jeppesen, Johanne B; Mortensen, Christian; Bendtsen, Flemming;

    2013-01-01

    Background. In the healthy liver there is a splanchnic net-uptake of lactate caused by gluconeogenesis. It has previously been shown that patients with acute liver failure in contrast have a splanchnic release of lactate caused by a combination of accelerated glycolysis in the splanchnic region...... and a reduction in hepatic gluconeogenesis. Aims. The aims of the present study were to investigate lactate metabolism and kinetics in patients with chronic liver disease compared with a control group with normal liver function. Methods. A total of 142 patients with chronic liver disease and 14 healthy controls...... underwent a liver vein catheterization. Blood samples from the femoral artery and the hepatic and renal veins were simultaneously collected before and after stimulation with galactose. Results. The fasting lactate levels, both in the hepatic vein and in the femoral artery, were higher in the patients than...

  13. Chronic Kidney Disease Impairs Bone Defect Healing in Rats.

    Science.gov (United States)

    Liu, Weiqing; Kang, Ning; Seriwatanachai, Dutmanee; Dong, Yuliang; Zhou, Liyan; Lin, Yunfeng; Ye, Ling; Liang, Xing; Yuan, Quan

    2016-03-09

    Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson's Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects.

  14. Adipokines, metabolic syndrome and rheumatic diseases.

    Science.gov (United States)

    Abella, Vanessa; Scotece, Morena; Conde, Javier; López, Verónica; Lazzaro, Verónica; Pino, Jesús; Gómez-Reino, Juan J; Gualillo, Oreste

    2014-01-01

    The metabolic syndrome (MetS) is a cluster of cardiometabolic disorders that result from the increasing prevalence of obesity. The major components of MetS include insulin resistance, central obesity, dyslipidemia, and hypertension. MetS identifies the central obesity with increased risk for cardiovascular diseases (CVDs) and type-2 diabetes mellitus (T2DM). Patients with rheumatic diseases, such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis, have increased prevalence of CVDs. Moreover, CVD risk is increased when obesity is present in these patients. However, traditional cardiovascular risk factors do not completely explain the enhanced cardiovascular risk in this population. Thus, MetS and the altered secretion patterns of proinflammatory adipokines present in obesity could be the link between CVDs and rheumatic diseases. Furthermore, adipokines have been linked to the pathogenesis of MetS and its comorbidities through their effects on vascular function and inflammation. In the present paper, we review recent evidence of the role played by adipokines in the modulation of MetS in the general population, and in patients with rheumatic diseases.

  15. Adipokines, Metabolic Syndrome and Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    Vanessa Abella

    2014-01-01

    Full Text Available The metabolic syndrome (MetS is a cluster of cardiometabolic disorders that result from the increasing prevalence of obesity. The major components of MetS include insulin resistance, central obesity, dyslipidemia, and hypertension. MetS identifies the central obesity with increased risk for cardiovascular diseases (CVDs and type-2 diabetes mellitus (T2DM. Patients with rheumatic diseases, such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis, have increased prevalence of CVDs. Moreover, CVD risk is increased when obesity is present in these patients. However, traditional cardiovascular risk factors do not completely explain the enhanced cardiovascular risk in this population. Thus, MetS and the altered secretion patterns of proinflammatory adipokines present in obesity could be the link between CVDs and rheumatic diseases. Furthermore, adipokines have been linked to the pathogenesis of MetS and its comorbidities through their effects on vascular function and inflammation. In the present paper, we review recent evidence of the role played by adipokines in the modulation of MetS in the general population, and in patients with rheumatic diseases.

  16. Nutrigenomic programming of cardiovascular and metabolic diseases.

    Science.gov (United States)

    Ozanne, Susan

    2014-10-01

    Over twenty five years ago epidemiological studies revealed that there was a relationship between patterns of early growth and subsequent risk of diseases such as type 2 diabetes, cardiovascular disease and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, discordant siblings and animal models have provided strong evidence that the early environment plays an important role in mediating these relationships. Early nutrition is one such important environmental factor. The concept of early life programming is therefore widely accepted and the underlying mechanisms starting to emerge. These include: (1) Permanent structural changes in an organ due to exposure to suboptimal levels of essential hormones or nutrients during a critical period of development leading to permanent changes in tissue function (2) Persistent epigenetic changes such as DNA methylation and histone modifications and miRNAs leading to changes in gene expression. (3) Permanent effects on regulation of cellular ageing through increases in oxidative stress and mitochondrial dysfunction leading to DNA damage and telomere shortening. Further understanding of these processes will enable the development of preventative and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease.

  17. Noninvasive markers of bone metabolism in the rhesus monkey: normal effects of age and gender

    Science.gov (United States)

    Cahoon, S.; Boden, S. D.; Gould, K. G.; Vailas, A. C.

    1996-01-01

    Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and > 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non

  18. Research progress of bone metabolism in rheumatoid arthritis%类风湿关节炎骨代谢研究进展

    Institute of Scientific and Technical Information of China (English)

    吕伟; 厉小梅

    2012-01-01

    类风湿关节炎(Rheumatoid Arthritis,RA)是一种可导致骨和关节破坏的慢性疾病.在RA发生发展过程中,骨代谢异常可导致不同程度的骨量丢失和骨破坏.骨代谢的相关指标可以间接反映骨量丢失的严重程度.本文将对RA患者骨代谢的基本特点及骨量丢失相关因素的最新进展作一综述.%Rheumatoid arthritis ( RA) is a chronic disease which can lead to bone and joint destruction. During the pathogenesis of RA, abnormal bone metabolism may result in different degrees of bone loss and destruction. Relevant indicators of bone metabolism can reflect the severity of bone loss indirectly. This review focuses on the latest development of basic characteristics of bone metabolism and the factors of bone loss with RA.

  19. Relationships between serum osteoprotegerin, matrix metalloproteinase-2 levels and bone metabolism in postmenopausal women

    Institute of Scientific and Technical Information of China (English)

    DAI Yi; SHEN Lin

    2007-01-01

    Background Serum osteoprotegerin (OPG) and matrix metalloproteinase-2 (MMP-2) have been shown to play a role in bone metabolism by degrading the bone matrix. The present study was undertaken to compare OPG and MMP-2 with bone mineral density and three markers (alkaline phosphatase (AKP), calcium and phosphorus) in postmenopausal women in Wuhan.Methods Serum OPG, MMP-2, and AKP of 78 Chinese postmenopausal women aged 48 to 65 were measured using enzyme-linked immunosorbent assay (ELISA). Bone mineral density was measured with dual energy X-ray absorptiometry (DEXA), and serum calcium and phosphorus were measured by auto biochemical analysis.Results Serum OPG and MMP-2 concentrations were significantly higher in postmenopausal women with osteoporosis ((127.6±6.3) ng/L; (1388±121) μg/L)) than those in age-matched normal controls ((72.3±2.4) ng/L; (1126±141) μg/L,P<0.01). Negative relationships were found between serum OPG, MMP-2 levels and bone mineral density in osteoporotic women. Adjusted by age and body mass index (BMI), the correlation of MMP-2 with bone mineral density of the neck of the femur disappeared. In osteoporotic women, negative correlations between OPG, MMP-2 levels and serum calcium were found (r=-0.216; r=-0.269, P<0.05), but positive correlations between OPG and serum AKP, serum phosphorus (r=0.235; r=0.124, P<0.05).Conclusions Significant correlations exist between serum OPG, MMP-2 levels and bone metabolism in high bone turnover of postmenopausal osteoporotic women. The concentrations of serum OPG and MMP-2 increase possibly as a concomitant event in the high bone turnover state, such as postmenopausal osteoporosis. Therefore serum OPG and MMP-2 could be used as indicators for the bone metabolism in postmenopausal osteoporotic women.

  20. Targeting Bone Metabolism in Patients with Advanced Prostate Cancer: Current Options and Controversies

    Directory of Open Access Journals (Sweden)

    Tilman Todenhöfer

    2015-01-01

    Full Text Available Maintaining bone health remains a clinical challenge in patients with prostate cancer (PC who are at risk of developing metastatic bone disease and increased bone loss due to hormone ablation therapy. In patients with cancer-treatment induced bone loss (CTIBL, antiresorptive agents have been shown to improve bone mineral density (BMD and to reduce the risk of fractures. For patients with bone metastases, both zoledronic acid and denosumab delay skeletal related events (SREs in the castration resistant stage of disease. Novel agents targeting the Wnt inhibitors dickkopf-1 and sclerostin are currently under investigation for the treatment of osteoporosis and malignant bone disease. New antineoplastic drugs such as abiraterone, enzalutamide, and Radium-223 are capable of further delaying SREs in patients with advanced PC. The benefit of antiresorptive treatment for patients with castration sensitive PC appears to be limited. Recent trials on the use of zoledronic acid for the prevention of bone metastases failed to be successful, whereas denosumab delayed the occurrence of bone metastases by a median of 4.1 months. Currently, the use of antiresorptive drugs to prevent bone metastases still remains a field of controversies and further trials are needed to identify patient subgroups that may profit from early therapy.

  1. Current perspectives on bisphosphonate treatment in Paget’s disease of bone

    Directory of Open Access Journals (Sweden)

    Wat WZM

    2014-11-01

    Full Text Available Winnie Zee Man Wat Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong Abstract: Paget’s disease of bone is a chronic metabolic bone disease with focal increase in bone turnover. The exact etiology of the disease is uncertain, although genetic and environmental factors are believed to be important. Bisphosphonate is the main class of medication being used to control disease activity via its antiresorptive effect. This review discusses the controversies concerning the use of bisphosphonates in the treatment of Paget’s disease of bone, the efficacy of different bisphosphonates in controlling disease activity, and the possible rare side effects of bisphosphonates. Symptoms are the main indication for treatment in Paget’s disease of bone. As treatment benefits in asymptomatic individuals remain controversial and nonevidence based, the decision to treat these patients should be individualized to their risk and benefit profiles. There are several trials conducted to evaluate and compare the efficacy of different regimes of bisphosphonates for treating Paget’s disease of bone. Most trials used biochemical markers rather than clinical symptoms or outcomes as parameters for comparison. Zoledronate is an attractive option as it can achieve high rates of biochemical remission and sustain long duration of suppression by a single dose. Atypical femoral fracture and osteonecrosis of the jaw are two rare and severe side effects reported, possibly related to the use of bisphosphonates in patients with osteoporosis and malignancy-induced hypercalcemia. As the regimes of bisphosphonates used for treating Paget’s disease of bone are different from those two diseases, the risks of developing these two possible side effects are expected to be very low, although this remains unknown. Vitamin D and calcium supplement should be given to patients at risk of vitamin D insufficiency when given zoledronate, as symptomatic

  2. Long-Term Cinacalcet HCl Treatment Improved Bone Metabolism in Japanese Hemodialysis Patients with Secondary Hyperparathyroidism

    Science.gov (United States)

    Shigematsu, Takashi; Akizawa, Tadao; Uchida, Eiji; Tsukamoto, Yusuke; Iwasaki, Manabu; Koshikawa, Shouzo

    2009-01-01

    Background/Aims Few clinical trials conducted with cinacalcet have thoroughly addressed its effects of on bone metabolism. We assessed the effects of cinacalcet on bone markers in Japanese hemodialysis (HD) patients with secondary hyperparathyroidism (SHPT). Methods 200 Japanese HD patients with intact PTH (iPTH) levels ≥300 pg/ml were enrolled. The dose of cinacalcet was titrated from 25 up to 100 mg/day to achieve iPTH levels ≤250 pg/ml for 52 weeks. Results At the end of the study visit, 57.8% of patients (115/199) had achieved iPTH levels ≤250 pg/ml. Serum Ca, phosphorus (P) and Ca × P levels decreased rapidly and were maintained throughout the study. At week 52, all bone metabolic markers levels had decreased significantly from baseline. Although bone resorption markers gradually decreased throughout the study period, bone alkaline phosphatase significantly increased during the first 4 weeks and then gradually decreased. Conclusions The time courses of changes in bone markers after cinacalcet treatment resembled those observed after surgical parathyroidectomy (PTx), sometimes described as the hungry bone syndrome, indicating that cinacalcet treatment induces a rapid recovery in bone response to calcium. In addition, long-term efficacy and safety of cinacalcet were also observed in Japanese patients undertaking long-term hemodialysis (167.0 ± 81.4 months). PMID:18797166

  3. Effects of whole body exposure to electromagnetic field on normal and osteoporotic bone metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, S.; Iida, H. [National Inst. of Radiological Sciences, Chiba (Japan)

    2000-05-01

    The biological effects of the exposure to the electromagnetic field particularly on bone metabolism in growing rats that were ovariectomized (OVX) and fed different calcium diets were determined. Female Wistar rats, 8 weeks old, were divided into four groups; OVX fed standardized (1.2%) calcium diet (StCa), OVX fed low (0.02%) Ca diet (LCa), no-OVX+StCa and no-OVX+LCa groups. Half of rats in each group were exposed to electromagnetic field (100 mG, 50 Hz). Rats (n=5) in each group were sacrificed 1, 2, and 3 month after the exposure. Analyses of bone and serum were performed. Compared to the corresponding control groups, the body weights in the exposure groups, decreased at each measured point. The bone mineral density in the total and trabecular bone in the tibia and femur decreased 2 month after the exposure. In the histomorphometric measurement using the tibial proximal metaphysis at 3 months later, the decreases in bone volume, bone formation rate, eroded surface and depth, and the increases in trabecular separation were observed in the exposure groups. The bone fragility (femur) also was observed. Simultaneously the decreases in the weights of adrenal gland and skeletal muscles, and value in serum rat-PTH and BGP were observed. The results indicate that the bone growth and metabolism in the growth process are inhibited and enlarged with low Ca intakes by the long-term exposure in an electromagnetic field in rats. (author)

  4. The Effects of Liver Transplantation on the Bone Metabolism and Gonadal Functions

    Directory of Open Access Journals (Sweden)

    Funda Atamaz

    2005-06-01

    Full Text Available The present study was designed to evaluate the effects of liver transplantation (LT on the bone mineral density (BMD, characteristics of bone turnover, mineral metabolism and sex hormons. Fifty one patients (34 men, 11 women aged 43.5 ± 12.1, who underwent LT were studied, assessing the following parameters: lumbar spine and proximal femur BMD, osteocalcin, deoxypyridinoline (DPD, parathyroid hormone (PTH, free testesterone (FT, gonadotropins (FSH, LH, tyroid hormones, growth hormone (GH and blood/ 24-hours urine Ca and P. All the measures were obtained at baseline and at 3rd month after LT. At baseline, 12 patients (%23.5 had osteoporosis, 22 patients (%43.1 had osteopenia and the mean BMD was 0.892 ± 0.1 for lumbar spine. Whereas, osteoporosis was seen less at femoral neck and total femur: 5 (%9.8 and 4 (%7.8, respectively. Three months after LT, 3.9% drop for lumbar spine, 5.3% drop for femur neck, 6.3% drop for total femur were observed, in BMD these decreases were statistically significant for all sites (p<0.05. The thyroid hormones, GH, PTH, blood Ca, P and osteocalcin levels and urinary DPD excretion were within normal range, while the levels of FSH and LH in women and level of FT in men were lower than normal range. After LT, statistically significant increases were observed in the PTH, osteocalcin, DPD, FSH, LH and FT levels (p<0.05. There was a highly significant negative correlation between duration of liver disease and all the BMD measures (p<0.01. Consequently, the increased osteoporosis ratio which was characterized by high bone turnover was found in patients who underwent LT in this study. The normalization of liver functions following LT was characterized by an early rise in sex hormones.

  5. Metabolic diseases and pro- and prebiotics: Mechanistic insights

    OpenAIRE

    Nakamura Yukiko K; Omaye Stanley T

    2012-01-01

    Abstract Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual’s behavior and motiva...

  6. Prevalence of Vitamin D Deficiency and Its Association With Metabolic Disease in Korean Orthopedic Patients.

    Science.gov (United States)

    Kim, Ki-Tack; Kang, Kyung-Chung; Shin, Dong-Eun; Lee, Sang-Hoon; Lee, Jung-Hee; Kwon, Tae-Yoon

    2015-10-01

    Vitamin D is considered essential for bone and muscle health, and some studies have demonstrated the positive effects of vitamin D on metabolic diseases and cancer. Nevertheless, a high prevalence of vitamin D deficiency has been reported in various populations, regardless of country or race. However, no studies regarding the prevalence of vitamin D deficiency in Korean orthopedic patients currently exist. This cross-sectional study included 272 male and 937 female patients aged 50 years and older who were consecutively admitted to the authors' orthopedic department. Vitamin D (25-hydroxy vitamin D), bone turnover markers (osteocalcin, c-telopeptide), and bone mineral density were measured. The prevalence of vitamin D deficiency and its association with other factors were evaluated. Mean patient age was 67.2 ± 8.9 years, and mean level of vitamin D was 16.1 ± 9.1 ng/mL. Overall, 91.2% of patients had deficient (orthopedic patients of this region was extremely low, regardless of sex and age. Although vitamin D was not directly associated with bone mineral density, there were significant associations between vitamin D and other factors related to bone health and metabolic diseases.

  7. Effect of regular anti-osteoporosis treatment on bone mineral density and bone metabolism in patients with primary osteoporosis and its relationship with bone fractures

    Institute of Scientific and Technical Information of China (English)

    Xue-Feng Qian; Ping Cao; Shuan Liu; Hong-Ping Yang; Ming-Yong Zhang

    2016-01-01

    Objective:To analyze the effect of regular anti-osteoporosis treatment on bone mineral density and bone metabolism in patients with primary osteoporosis and its relationship with bone fractures.Methods:A total of 120 patients with primary osteoporosis were included in this study and randomly divided into observation group and control group (n=60). Control group received consistent treatment, observation group received individualized regular anti-osteoporosis treatment, and then the differences in bone mineral density, bone metabolism, trace elements, oxidative stress, fracture incidence, and so on were compared between two groups of patients 1 year after treatment.Results:Absolute BMD value of observation group after treatment was higher than that of control group; serum bone formation indexes ALP, BGP, PⅠNP and PⅠCP content were higher than those of control group; serum bone resorption indexesβ-CTX, sRANKL, TRACP, BAP and DPD content were lower than those of control group; serum trace elements iron and zinc content were higher than those of control group while calcium content was lower than that of control group; serum AOPP and MAOA content of observation group were significantly lower than those of control group while SOD and T-AOC content were significantly higher than those of control group;fracture incidence was significantly lower than that of control group during treatment.Conclusions:The regular anti-osteoporosis treatment can increase bone mineral density, optimize the overall condition and reduce the incidence of long-term fracture in patients with primary osteoporosis.

  8. Three-phase bone scintigraphy in Pellegrini-Stieda disease.

    Science.gov (United States)

    Liu, R S; Chou, C S; Yeh, S H

    1987-01-01

    In a patient with Pellegrini-Stieda disease, radiographs of the knees were unremarkable at the time the three-phase bone scintigraphy was abnormal. The results of follow-up radiographs three months later remained normal in the left knee, where local steroid injection was given, but revealed typical positive results in the right knee with no treatment. The three-phase bone scintigraphic pattern is rather typical and antedates the radiographic changes. Thus, the radionuclide technique would provide a useful procedure for the early diagnosis and treatment of Pellegrini-Stieda disease.

  9. Effect of vibration on osteoblastic and osteoclastic activities: Analysis of bone metabolism using goldfish scale as a model for bone

    Science.gov (United States)

    Suzuki, N.; Kitamura, K.; Nemoto, T.; Shimizu, N.; Wada, S.; Kondo, T.; Tabata, M. J.; Sodeyama, F.; Ijiri, K.; Hattori, A.

    In osteoclastic activity during space flight as well as hind limb unloading by tail suspension, inconsistent results have been reported in an in vivo study. The bone matrix plays an important role in the response to physical stress. However, there is no suitable in vitro co-culture system of osteoblasts and osteoclasts including bone matrix. On the other hand, fish scale is a calcified tissue that contains osteoblasts, osteoclasts, and bone matrix, all of which are similar to those found in human bones. Recently, we developed a new in vitro model system using goldfish scale. This system can detect the activities of osteoclasts and osteoblasts with tartrate-resistant acid phosphatase and alkaline phosphatase as the respective markers and precisely analyze the co-relationship between osteoblasts and osteoclasts. Using this system, we analyzed the bone metabolism under various degrees of acceleration (0.5-, 1-, 2-, 4-, and 6-G) by vibration with a G-load apparatus. After loading for 5 and 10 min, the scales were incubated for 6 and 24 h. The osteoblastic and osteoclastic activities were then measured. The osteoblastic activities gradually increased corresponding to 1-G to 6-G acceleration. In addition, ER mRNA expression was the highest under 6-G acceleration. On the other hand, the osteoclastic activity decreased at 24 h of incubation under low acceleration (0.5- and 1-G). This change coincided with TRAP mRNA expression. Under 2-G acceleration, the strength of suppression in osteoclastic activity was the highest. The strength of the inhibitory action under 4- and 6-G acceleration was lower than that under 2-G acceleration. In our co-culture system, osteoblasts and osteoclasts in the scale sensitively responded to several degrees of acceleration. Therefore, we strongly believe that our in vitro co-culture system is useful for the analysis of bone metabolism under loading or unloading.

  10. Gaucher disease

    OpenAIRE

    POSPÍŠILOVÁ, Iva

    2012-01-01

    This thesis is about the disease called Gaucher disease, or Morbus Gaucher. There is described the history of the disease, various forms of disease, effect of bones, visceral organs, hematological changes, changes in metabolism etc.; differential diagnosis, diagnosis and therapy.

  11. The implications of relationships between human diseases and metabolic subpathways.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the "k-clique" subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN. Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play

  12. Low Bone Mineral Density in Chinese Adults with Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Ran Cui

    2013-01-01

    Full Text Available Aim. To investigate bone metabolic characteristics in Chinese adults with nonalcoholic fatty liver disease (NAFLD. Methods. A total of 224 patients (99 males and 125 postmenopausal females were recruited and divided into 4 groups: males without NAFLD, males with NAFLD, females without NAFLD, and females with NAFLD. Bone mineral density (BMD was evaluated according to body mass index (BMI, waist circumference (WC, and serum biomarkers. β cell function was evaluated by HOMA2%B, HOMA2%S, and HOMA2IR. Results. Males in the NAFLD group had lower BMD of the right hip and the femoral neck (0.852±0.117 versus 0.930±0.123, P=0.002; 0.736±0.119 versus 0.812±0.132, P=0.004, and females had lower BMD of the right hip (0.725±0.141 versus 0.805±0.145, P=0.002 even after adjusted for weight, BMI, waist, HDL, and ALT. There was no significant difference in bone metabolic markers between patients with and without NAFLD. NAFLD was an important factor that affected the bone; moreover, the effect attenuated when HOMA2IR entered into the model (R2=0.160, β=−0.172, and P=0.008. Conclusions. NAFLD exerts a detrimental effect on BMD in both males and females. Insulin resistance may play an important role in this pathophysiological process.

  13. Alcoholic liver disease and changes in bone mineral density

    Directory of Open Access Journals (Sweden)

    Germán López-Larramona

    2013-12-01

    Full Text Available Osteoporosis and osteopenia are alterations in bone mineral density (BMD that frequently occur in the context of chronic liver disease (CLD. These alterations have been studied predominantly in chronic cholestatic disease and cirrhosis of the liver. Alcohol consumption is an independent risk factor for the onset of osteoporosis, whose estimated prevalence in patients with alcoholic liver disease (ALD ranges between 5 % and 40 %. The loss of BMD in ALD is the result of an imbalance between bone formation and resorption. Its pathogenesis is multifactorial and includes the toxic effects of alcohol on bone and endocrine and nutritional disorders secondary to alcoholism and a deficiency of osteocalcin, vitamin D and insulin growth factor-1. The diagnosis of BMD alterations in ALD is based on its measurement using bone densitometry. Treatment includes smoking and alcohol cessation and general measures such as changes in nutrition and exercise. Calcium and vitamin D supplements are recommended in all patients with ALD and osteoporosis. Bisphosphonates are the most commonly prescribed drugs for the specific treatment of this condition. Alternatives include raloxifene, hormone replacement therapy and calcitonin. This review will address the most important aspects involved in the clinical management of abnormal BMD in the context of ALD, including its prevalence, pathogenesis and diagnosis. We will also review the treatment of osteoporosis in CLD in general, focusing on specific aspects related to bone loss in ALD.

  14. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism

    Science.gov (United States)

    Fan, Hueng-Chuen; Lee, Herng-Shen; Chang, Kai-Ping; Lee, Yi-Yen; Lai, Hsin-Chuan; Hung, Pi-Lien; Lee, Hsiu-Fen; Chi, Ching-Shiang

    2016-01-01

    Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities. PMID:27490534

  15. Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma

    DEFF Research Database (Denmark)

    Abildgaard, N; Glerup, H; Rungby, Jørgen;

    2000-01-01

    In order to evaluate the use of recently developed assays of bone metabolism in multiple myeloma we performed a histomorphometric study of bone biopsies in 16 myeloma patients. Furthermore, we measured the levels of interleukin-6 (IL-6), soluble IL-6 receptor (IL-6sR), IL-1beta, tumour necrosis...... factor (TNF) alpha, TNFbeta, and transforming growth factor (TGF) beta in marrow plasma aspirated from the biopsy area. MARKERS OF BONE RESORPTION: The N-terminal telopeptide of collagen I (Ntx) in urine showed a strong positive correlation with the dynamic histomorphometric indices of bone resorption (r......=0.68-0.72). Slightly weaker correlations were observed between the dynamic indices of bone resorption and the C-terminal telopeptide of collagen I (ICTP) in serum (r= 0.57-0.62) and deoxypyridinoline (Dpyr) in urine (r= 0.54), whereas urinary pyridinoline (Pyr) did not correlate...

  16. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism.

    Science.gov (United States)

    Fan, Hueng-Chuen; Lee, Herng-Shen; Chang, Kai-Ping; Lee, Yi-Yen; Lai, Hsin-Chuan; Hung, Pi-Lien; Lee, Hsiu-Fen; Chi, Ching-Shiang

    2016-08-01

    Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities.

  17. Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs.

    Science.gov (United States)

    Rubinacci, A; Covini, M; Bisogni, C; Villa, I; Galli, M; Palumbo, C; Ferretti, M; Muglia, M A; Marotti, G

    2002-04-01

    To detect whether the mutual interaction occurring between the osteocytes-bone lining cells system (OBLCS) and the bone extracellular fluid (BECF) is affected by load through a modification of the BECF-extracellular fluid (ECF; systemic extracellular fluid) gradient, mice metatarsal bones immersed in ECF were subjected ex vivo to a 2-min cyclic axial load of different amplitudes and frequencies. The electric (ionic) currents at the bone surface were measured by a vibrating probe after having exposed BECF to ECF through a transcortical hole. The application of different loads and different frequencies increased the ionic current in a dose-dependent manner. The postload current density subsequently decayed following an exponential pattern. Postload increment's amplitude and decay were dependent on bone viability. Dummy and static loads did not induce current density modifications. Because BECF is perturbed by loading, it is conceivable that OBLCS tends to restore BECF preload conditions by controlling ion fluxes at the bone-plasma interface to fulfill metabolic needs. Because the electric current reflects the integrated activity of OBLCS, its evaluation in transgenic mice engineered to possess genetic lesions in channels or matrix constituents could be helpful in the characterization of the mechanical and metabolic functions of bone.

  18. Effect of Zinc on Bone Metabolism in Fetal Mouse Limb Culture

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To determine the effects of zinc-deficiency and zinc-excess on bone metabolism. Methods We developed the culture model of fetal mouse limbs (16th day) cultivated in self-made rotator with continuing flow of mixed gas for six days in vitro. The cultured limbs were examined by the techniques of 45Ca tracer and X-roentgenography. Results The right limbs cultivated had longer bone length, higher bone density than the left limbs uncultivated from the same embryo; and histologically, the right limbs had active bone cell differentiation, proliferation, increased bone trabecula, clearly calcified cartilage matrix, and osteogenic tissue. Compared with the control group,the zinc-deficient group and zinc-excess (Zn2+120 μmol/L) group contained less osteocalcin (BGP) and 45Ca content, and lower AKP activity; whereas zinc-normal (Zn2+45 μmol/L and Zn2+70 μmol/L)groups contained more BGP and 45Ca contents, and higher AKP (alkaline phosphatase) activity.Conclusion Both zinc-deficiency and zinc-excess can alter bone growth and normal metabolism.The results indicate that the culture model of fetal mouse limbs (16th day) in vitro can be used as a research model of bone growth and development.

  19. [Bone and Nutrition. The relationship between iron and phosphate metabolism].

    Science.gov (United States)

    Takashi, Yuichi; Fukumoto, Seiji

    2015-07-01

    Fibroblast growth factor 23 (FGF23) is an essential hormone for phosphate metabolism. It has been shown that intravenous administration of some iron formulations including saccharated ferric oxide induces hypophosphatemic osteomalacia with high FGF23 levels. On the other hand, iron deficiency promotes FGF23 and induces hypophosphatemia in patients with autosomal dominant hypophosphatemic rickets (ADHR). While iron and phosphate metabolism is connected, the detailed mechanism of this connection remains to be clarified.

  20. UCB Transplant of Inherited Metabolic Diseases With Administration of Intrathecal UCB Derived Oligodendrocyte-Like Cells

    Science.gov (United States)

    2016-12-21

    Adrenoleukodystrophy; Batten Disease; Mucopolysaccharidosis II; Leukodystrophy, Globoid Cell; Leukodystrophy, Metachromatic; Neimann Pick Disease; Pelizaeus-Merzbacher Disease; Sandhoff Disease; Tay-Sachs Disease; Brain Diseases, Metabolic, Inborn

  1. Bone scintigraphy in Erdheim-chester disease: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, V.L.; Soares, L.M.M.; Ribeiro, V.P.B.; Coura Filho, G.B.; Sapienza, M.T.; Ono, C.R.; Watanabe, T.; Costa, P.L.A.; Hironaka, F.; Buchpiguel, C.A. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Fac. de Medicina. Hospital das Clinicas

    2008-07-01

    Full text: Introduction: Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis, of unknown etiology, characterized by infiltration of foamy histiocytes. Clinically, patients usually present with bone pain, and various extraskeletal manifestations. ECD differs from Langerhans cell histiocytosis (LCH) by radiologic and immunohistochemistry features. Case report: A 57-year-old woman presented with a history of intense pain on her left hand, besides eyelid xanthelasmas and xanthoms on frontal area ten years ago. Four years late she presented with pain on hips, legs and feet. Xanthoms spread to perioral area, mento and neck. Radiographs of the hands showed osteolysis of carpal bones bilaterally, osteolysis of fifth left metacarpal bone, osteosclerosis of all metacarpal bones bilaterally, except the fifth, and osteosclerosis of the second and third proximal falanges bilaterally. The legs showed bilateral diaphyseal and metaphyseal osteosclerosis. Bone scintigraphy demonstrated increased uptake on face bone (maxilla), and symmetric intense uptake on elbows, distal radii and ulnae, hands, distal area of femurs, tibias particularly on proximal and distal area, and feet. A tibia biopsy and a biopsy of neck lesion were made. The analysis of histology and immunohistochemistry were consistent with ECD. She has been treated with a-interferon for 1,5 year, and she reports delay in xanthoms progression and bone pain remission. Discussion: ECD is an adult multisystemic xanthogranulomatous infiltrative disease of unknown etiology. It may be confused with LCH, however ECD have distinctive immunohistochemistry and radiologic findings. LCH shows typically lytic bone lesions on axial skeleton, whereas symmetrical long-bone osteosclerosis is the radiologic sign for ECD. LCH stain positive for CD1a and S-100 protein, and the electron microscopy of cytoplasm discloses Biberck granules. ECD stain positive for CD68, negative for CD1a and S-100 protein, shows absent of

  2. Assessment of the Effects of Zoledronic Acid Therapy on Bone Metabolic Indicators in Hormone-Resistant Prostate Cancer Patients with Bone Metastatasis

    Science.gov (United States)

    Demirtas, Abdullah; Sahin, Nurettin; Caniklioglu, Mehmet; Kula, Mustafa; Ekmekcioglu, Oguz; Tatlisen, Atila

    2011-01-01

    Purpose. Assessment of effects of zoledronic acid therapy on bone metabolic indicators in hormone-resistant prostate cancer patients with bone metastasis. Material and Methods. Hormone-resistant prostate cancer patients who were identified to have metastases in their bone scintigraphy were taken to trial group. Before administration of zoledronic acid, routine tests for serum calcium, total alkalen phosphates were studied. Sample sera for bone metabolic indicators BALP, PINP, and ICTP were collected. Bone pain was assessed via visual analogue scale and performance via Karnofsky performance scale. Four mg zoledronic acid was administered intravenously once a month. Results. When serum levels of bone forming indicators PINP; BALP were compared before and after therapy, there were insignificant decreases (P = .33, P = .21, resp.). Serum levels of bone destruction indicator ICTP was compared, and there was a significant decrease after zoledronic acid therapy (P = .04). When performances of the patients were compared during therapy period, performances decreased significantly due to progress of illness (P = .01). All patients had ostalgia caused by bone metastases at various degrees. Significant decrease in pain scores was observed (P < .01). Conclusion. Zoledronic acid therapy decreased bone destruction and was effective in palliation of pain in patient with bone metastasis. Using bone metabolic indicators during followup of zoledronic acid therapy might be useful. PMID:22084798

  3. [Bone and joint diseases in children. Rickets].

    Science.gov (United States)

    Tanaka, Hiroyuki

    2010-06-01

    Rickets is a disorder of growth plate chondrocytes. Its basic pathophysiology has been revealed as a defect in apoptosis of hypertrophic chondrocytes induced by low phosphate concentration in the body fluid. This review summarized recent topics in two major forms of rickets, vitamin D deficient rickets and hereditary hypophosphatemic rickets. Vitamin D deficient rickets reappeared all over the world due to environmental change. The knowledge in basic pathophysiology of the hereditary hypophosphatemic rickets is increasing rapidly after the discovery of fibroblast growth factor 23 and the responsible genes have been revealed. The finding may support to uncover the whole truth of phosphate metabolism.

  4. Visfatin, glucose metabolism and vascular disease: a review of evidence

    Directory of Open Access Journals (Sweden)

    Saddi-Rosa Pedro

    2010-03-01

    Full Text Available Abstract The adipose tissue is an endocrine organ producing substances called adipocytokines that have different effects on lipid metabolism, metabolic syndrome, and cardiovascular risk. Visfatin was recently described as an adipocytokine with potentially important effects on glucose metabolism and atherosclerosis. Visfatin has been linked to several inflammatory conditions, beta cell function, and cardiovascular disease. The growing number of publications on the subject shall bring further evidence about this adipocytokine. Its findings may contribute in the identification of higher risk individuals for diabetes and cardiovascular disease with a better comprehension about the complex intercorrelation between adiposity, glucose metabolism and vascular disease.

  5. Influence of genetic polymorphisms on bone disease of preterm infants.

    NARCIS (Netherlands)

    Funke, S.; Morava, E.; Czako, M.; Vida, G.; Ertl, T.; Kosztolanyi, G.Y.

    2006-01-01

    Bone disease is an important complication among very low birth weight (VLBW, <1500 g) infants. In adults, osteoporosis is associated with polymorphisms of vitamin D receptor (VDR), estrogen receptor (ER), and collagen Ialpha1 (COLIA1) genes. However, limited information is available regarding the

  6. Periodontal disease: the influence of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Marchetti Enrico

    2012-09-01

    Full Text Available Abstract Metabolic syndrome (MetS is a cluster of cardiovascular risk factors that include obesity, impaired glucose tolerance or diabetes, hyperinsulinemia, hypertension, and dyslipidemia. Recently, more attention has been reserved to the correlation between periodontitis and systemic health. MetS is characterized by oxidative stress, a condition in which the equilibrium between the production and the inactivation of reactive oxygen species (ROS becomes disrupted. ROS have an essential role in a variety of physiological systems, but under a condition of oxidative stress, they contribute to cellular dysfunction and damage. Oxidative stress may act as a common link to explain the relationship between each component of MetS and periodontitis. All those conditions show increased serum levels of products derived from oxidative damage, promoting a proinflammatory state. Moreover, adipocytokines, produced by the fat cells of fat tissue, might modulate the balance between oxidant and antioxidant activities. An increased caloric intake involves a higher metabolic activity, which results in an increased production of ROS, inducing insulin resistance. At the same time, obese patients require more insulin to maintain blood glucose homeostasis – a state known as hyperinsulinemia, a condition that can evolve into type 2 diabetes. Oxidation products can increase neutrophil adhesion and chemotaxis, thus favoring oxidative damage. Hyperglycemia and an oxidizing state promote the genesis of advanced glycation end-products, which could also be implicated in the degeneration and damage of periodontal tissue. Thus, MetS, the whole of interconnected factors, presents systemic and local manifestations, such as cardiovascular disease and periodontitis, related by a common factor known as oxidative stress.

  7. NLRP3 inflammasomes link inflammation and metabolic disease

    OpenAIRE

    De Nardo, Dominic; Latz, Eicke

    2011-01-01

    A strong link between inflammation and metabolism is becoming increasingly evident. A number of recent landmark studies have implicated the activation of the NLRP3 inflammasome, an interleukin-1β family cytokine-activating protein complex, in a variety of metabolic diseases including obesity, atherosclerosis and type 2 diabetes. Here we review these new developments and discuss their implications for better understanding inflammation in metabolic disease and the prospects of targeting the NLR...

  8. NLRP3 inflammasomes link inflammation and metabolic disease.

    Science.gov (United States)

    De Nardo, Dominic; Latz, Eicke

    2011-08-01

    A strong link between inflammation and metabolism is becoming increasingly evident. A number of recent landmark studies have implicated the activation of the NLRP3 inflammasome, an interleukin-1β family cytokine-activating protein complex, in a variety of metabolic diseases including obesity, atherosclerosis and type 2 diabetes. Here, we review these new developments and discuss their implications for a better understanding of inflammation in metabolic disease, and the prospects of targeting the NLRP3 inflammasome for therapeutic intervention.

  9. In vivo bone aluminum measurements in patients with renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Contamination of the dialysis solution with trace amounts of aluminum and long-term use of aluminum-based phosphate binders have led to increased body burden of aluminum in patients with end-stage renal disease. A significant clinical problem associated with aluminum-overload is the early diagnosis of aluminum-induced dialysis dementia and osteomalacic osteodystrophy. There are few, if any, blood or urine indices that provide an early monitor of this bone disease, especially in the asymptomatic patient. Although a bone biopsy is usually the basis for the final clinical diagnosis, this procedure is not recommended for routine monitoring of patients. The present technique demonstrates the direct in vivo measurement of bone aluminum levels in patients with renal failure. The interference normally present from activation of bone phosphorus is eliminated by using a thermal/epithermal neutron beam. For the clinical management of the patients, the Al/Ca ratio for the hand may be more useful than an absolute measurement of the total body or skeletal aluminum burden. The relationship between the increased serum Al levels following disferrioxamine infusion and the direct in vivo measurement of bone aluminum using the Al/Ca ratio are currently under investigation. The neutron activation procedure presented in this pilot study is a promising new technique with an immediate clinical application. 5 refs., 3 figs., 1 tab.

  10. Effects of adrenal steroids on the bone metabolism of children with congenital adrenal hyperplasia.

    Science.gov (United States)

    Lin-Su, Karen; New, Maria I

    2007-11-01

    The primary treatment for patients with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is glucocorticoid replacement therapy, which at supraphysiologic levels can result in diminished bone accrual and lead to osteopenia and osteoporosis. Unlike other diseases treated with chronic glucocorticoid therapy, previous studies of patients with 21OHD have not demonstrated a detrimental effect of glucocorticoid treatment on bone mineral density (BMD). It has been postulated that the elevated androgens typically found in these patients have a protective effect on bone integrity, but the precise mechanism remains unknown. We propose that the inhibitory effect of corticosteroid therapy on bone formation is counteracted by estrogen's effect on bone resorption through the RANK-L/osteoprotegerin (OPG) system. A better understanding of the mechanism by which patients with 21OHD are protected against bone loss may lead to novel therapeutic measures to prevent or treat osteopenia and osteoporosis in other conditions, including postmenopausal women.

  11. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs.

    Science.gov (United States)

    Seymour, Roger S; Smith, Sarah L; White, Craig R; Henderson, Donald M; Schwarz-Wings, Daniela

    2012-02-07

    The cross-sectional area of a nutrient foramen of a long bone is related to blood flow requirements of the internal bone cells that are essential for dynamic bone remodelling. Foramen area increases with body size in parallel among living mammals and non-varanid reptiles, but is significantly larger in mammals. An index of blood flow rate through the foramina is about 10 times higher in mammals than in reptiles, and even higher if differences in blood pressure are considered. The scaling of foramen size correlates well with maximum whole-body metabolic rate during exercise in mammals and reptiles, but less well with resting metabolic rate. This relates to the role of blood flow associated with bone remodelling during and following activity. Mammals and varanid lizards have much higher aerobic metabolic rates and exercise-induced bone remodelling than non-varanid reptiles. Foramen areas of 10 species of dinosaur from five taxonomic groups are generally larger than from mammals, indicating a routinely highly active and aerobic lifestyle. The simple measurement holds possibilities offers the possibility of assessing other groups of extinct and living vertebrates in relation to body size, behaviour and habitat.

  12. Founder Effect in Different European Countries for the Recurrent P392L SQSTM1 Mutation in Paget’s Disease of Bone

    NARCIS (Netherlands)

    Chung, P.Y.J.; Beyens, G.; Guanabens, N.; Boonen, S.; Papapoulos, S.; Karperien, H.B.J.; Eekhoff, M.; Wesenbeek, van L.; [et al.],

    2008-01-01

    Paget’s Disease of Bone (PDB) is one of the most frequent metabolic bone diseases, affecting 1–5% of Western populations older than 55 years. Mutations in the sequestosome1 (SQSTM1) gene cause PDB in about one-third of familial PDB cases and in 2.4–9.3% of nonfamilial PDB cases, with the 1215C→T (P3

  13. Acute effects of nasal salmon calcitonin on calcium and bone metabolism

    DEFF Research Database (Denmark)

    Thamsborg, G; Skousgaard, S G; Daugaard, H;

    1993-01-01

    Effects of a single dose of 200 IU of nasal salmon calcitonin (SCT) on calcium metabolism and biochemical markers of bone turnover were investigated in 12 healthy male volunteers in a randomized, placebo-controlled, cross-over design. The nasal spray was given in the morning, and subsequently blood...

  14. TRPV4 deficiency causes sexual dimorphism in bone metabolism and osteoporotic fracture risk.

    NARCIS (Netherlands)

    Eerden, B.C. van der; Oei, L.; Roschger, P.; Fratzl-Zelman, N.; Hoenderop, J.G.J.; Schoor, N.M. van; Pettersson-Kymmer, U.; Schreuders-Koedam, M.; Uitterlinden, A.G.; Hofman, A.; Suzuki, M.; Klaushofer, K.; Ohlsson, C.; Lips, P.J.; Rivadeneira, F.; Bindels, R.J.M.; Leeuwen, J.P. van

    2013-01-01

    We explored the role of transient receptor potential vanilloid 4 (TRPV4) in murine bone metabolism and association of TRPV4 gene variants with fractures in humans. Urinary and histomorphometrical analyses demonstrated reduced osteoclast activity and numbers in male Trpv4(-/-) mice, which was confirm

  15. TRPV4 deficiency causes sexual dimorphism in bone metabolism and osteoporotic fracture risk

    NARCIS (Netherlands)

    B.C.J. van der Eerden (Bram); L. Oei (Ling); P. Roschger (Paul); N. Fratzl-Zelman (Nadja); J.G. Hoenderop (Joost); N.M. van Schoor (Natasja); U. Pettersson-Kymmer (Ulrika); M. Schreuders-Koedam (M.); A.G. Uitterlinden (André); A. Hofman (Albert); M. Suzuki (Masachika); K. Klaushofer (Klaus); C. Ohlsson (Claes); P.J.A. Lips (P. J A); F. Rivadeneira Ramirez (Fernando); R.J.M. Bindels (René); J.P.T.M. van Leeuwen (Hans)

    2013-01-01

    textabstractWe explored the role of transient receptor potential vanilloid 4 (TRPV4) in murine bone metabolism and association of TRPV4 gene variants with fractures in humans. Urinary and histomorphometrical analyses demonstrated reduced osteoclast activity and numbers in male Trpv4-/- mice, which w

  16. Effect of simulated weightlessness and chronic 1,25-dihydroxyvitamin D administration on bone metabolism

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.

    1985-01-01

    Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.

  17. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  18. [Metabolic syndrome in inflammatory rheumatic diseases].

    Science.gov (United States)

    Malesci, D; Valentini, G; La Montagna, G

    2006-01-01

    Toward the end of the last century a better knowledge of cardiovascular (CV) risk factors and their associations led investigators to propose the existence of a unique pathophysiological condition called "metabolic" or "insulin resistance syndrome". Among all, insulin-resistance and compensatory hyperinsulinemia are considered its most important treatment targets. Different definitions have been provided by World Health Organization (WHO) and by The Third Report of The National Cholesterol Education Program's Adult Treatment Panel (NCEP-ATP III). In particular, abdominal obesity, hypertension, low HDL cholesterol and hyperglicemia are the most common items used for its definition. The presence of MetS is effective in predicting the future risk of diabetes and coronaropathies. The evidence of a higher CV risk rate among different rheumatic inflammatory diseases has recently been associated with high prevalence of MetS in some cases. Rheumatoid or psoriatic arthritis have the large series among arthritis, whereas systemic lupus erythematosus among connective tissue disorders. This review analyses all most important studies about the evidence of MetS in rheumatic patients and the main clinical and prognostic significance of this relation.

  19. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease.

    Science.gov (United States)

    Silva, Viviam de Oliveira; Lobato, Raquel Vieira; Andrade, Eric Francelino; de Macedo, Cristina Gomes; Napimoga, Juliana Trindade Clemente; Napimoga, Marcelo Henrique; Messora, Michel Reis; Murata, Ramiro Mendonça; Pereira, Luciano José

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p periodontal disease (p periodontal disease (p periodontal effects in diabetic rats with periodontal disease.

  20. TRPV4 deficiency causes sexual dimorphism in bone metabolism and osteoporotic fracture risk.

    Science.gov (United States)

    van der Eerden, B C J; Oei, L; Roschger, P; Fratzl-Zelman, N; Hoenderop, J G J; van Schoor, N M; Pettersson-Kymmer, U; Schreuders-Koedam, M; Uitterlinden, A G; Hofman, A; Suzuki, M; Klaushofer, K; Ohlsson, C; Lips, P J A; Rivadeneira, F; Bindels, R J M; van Leeuwen, J P T M

    2013-12-01

    We explored the role of transient receptor potential vanilloid 4 (TRPV4) in murine bone metabolism and association of TRPV4 gene variants with fractures in humans. Urinary and histomorphometrical analyses demonstrated reduced osteoclast activity and numbers in male Trpv4(-/-) mice, which was confirmed in bone marrow-derived osteoclast cultures. Osteoblasts and bone formation as shown by serum procollagen type 1 amino-terminal propeptide and histomorphometry, including osteoid surface, osteoblast and osteocyte numbers were not affected in vivo. Nevertheless, osteoblast differentiation was enhanced in Trpv4(-/-) bone marrow cultures. Cortical and trabecular bone mass was 20% increased in male Trpv4(-/-) mice, compared to sex-matched wild type (Trpv4(+/+)) mice. However, at the same time intracortical porosity was increased and bone matrix mineralization was reduced. Together, these lead to a maximum load, stiffness and work to failure of the femoral bone, which were not different compared to Trpv4(+/+) mice, while the bone material was less resistant to stress and less elastic. The differential impacts on these determinants of bone strength were likely responsible for the lack of any changes in whole bone strength in the Trpv4(-/-) mice. None of these skeletal parameters were affected in female Trpv4(-/-) mice. The T-allele of rs1861809 SNP in the TRPV4 locus was associated with a 30% increased risk (95% CI: 1.1-1.6; p=0.013) for non-vertebral fracture risk in men, but not in women, in the Rotterdam Study. Meta-analyses with the population-based LASA study confirmed the association with non-vertebral fractures in men. This was lost when the non-population-based studies Mr. OS and UFO were included. In conclusion, TRPV4 is a male-specific regulator of bone metabolism, a determinant of bone strength, and a potential risk predictor for fractures through regulation of bone matrix mineralization and intra-cortical porosity. This identifies TRPV4 as a unique sexually

  1. Role of Bone Biopsy in Stages 3 to 4 Chronic Kidney Disease

    Science.gov (United States)

    Gal-Moscovici, Anca; Sprague, Stuart M.

    2008-01-01

    Secondary hyperparathyroidism develops relatively early in chronic kidney disease as a consequence of impaired phosphate, calcium, and vitamin D homeostasis. The disease state in chronic kidney disease, which includes the histologic features of bone disease, defined as renal osteodystrophy, and the hormonal and biochemical disturbances, have recently been redefined as a disease syndrome and is referred to as “chronic kidney disease–mineral and bone disorder.” As chronic kidney disease progresses, specific histologic disturbances in the bone develop, which may or may not be predictable from the biochemical and hormonal changes that are associated with chronic kidney disease. In addition, patients may have had underlying bone disease before developing kidney failure or may have been treated with agents that will alter the classical pathologic findings of the bones in chronic kidney disease and their relation to parathyroid hormone. Thus, in stage 5 chronic kidney disease, bone biopsy with quantitative histomorphometric analysis is considered the gold standard in the diagnosis of renal osteodystrophy. In contrast to stage 5 chronic kidney disease, there are very few data on the histologic changes in bone in earlier stages of chronic kidney disease. There also is no adequate information on the etiopathogenesis of bone disease in stages 3 and 4 chronic kidney disease. Thus, because biochemical data cannot predict bone pathology in stages 3 and 4 chronic kidney disease, bone biopsy should be used to define these bone changes and to allow appropriate therapeutic approaches. PMID:18988703

  2. Dual-energy X-ray absorptiometry assessment of postmenopausal women with vertebral fragility fracture and its relationship with serum bone turnover and bone metabolism indexes

    Institute of Scientific and Technical Information of China (English)

    Wei Li

    2016-01-01

    Objective:To study the relationship between dual-energy X-ray bone mass density measurement results of postmenopausal women with vertebral fragility fracture and the serum bone turnover as well as bone metabolism indexes.Methods:A total of 158 postmenopausal women who received DXA tests in our hospital between April 2012 and December 2015 were selected, were divided into osteoporosis group, osteopenia group and normal bone mass group according to the bone mineral density measurement results, and were divided into no vertebral fracture group, thoracic vertebral fracture group, lumbar vertebral fracture group and thoracolumbar vertebral fracture group according to the thoracolumbar vertebral anterioposterior and lateral film results, and serum was collected to determine bone turnover and bone metabolism indexes.Results: Femoral neck, hip and lumbar vertebra L1-4 bone mineral density of subjects with thoracic vertebral fracture and thoracolumbar vertebral fracture were significantly lower than those of the subjects without vertebral fracture, and femoral neck, hip and lumbar vertebra L1-4 bone mineral density of subjects with lumbar vertebral fracture were not significantly different from those of the subjects without vertebral fracture; serum PINP, ICTP, CTX, TRACP-5b, MMP13, OPG and OPN content of osteoporosis group and osteopenia group were significantly higher than those of normal bone mass group while 25(OH)D, BGP and ON content were significantly lower than those of normal bone mass group; serum PINP, ICTP, CTX, TRACP-5b, MMP13, OPG and OPN content of osteoporosis group were significantly higher than those of osteopenia group while 25(OH)D, BGP and ON content were significantly lower than those of osteopenia group.Conclusions: Dual-energy X-ray bone densitometry has clear prediction value for postmenopausal women with thoracic vertebral fragility fracture and thoracolumbar vertebral fragility fracture, and is closely related to the changes of bone turnover and

  3. Bone disease in multiple myeloma: pathophysiology and management.

    Science.gov (United States)

    Hameed, Abdul; Brady, Jennifer J; Dowling, Paul; Clynes, Martin; O'Gorman, Peter

    2014-01-01

    Myeloma bone disease (MBD) is a devastating complication of multiple myeloma (MM). More than 80% of MM patients suffer from destructive bony lesions, leading to pain, fractures, mobility issues, and neurological deficits. MBD is not only a main cause of disability and morbidity in MM patients but also increases the cost of management. Bone destruction and lack of bone formation are main factors in the development of MBD. Some novel factors are found to be involved in the pathogenesis of MBD, eg, receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) system (RANKL/OPG), Wingless (Wnt), dickkopf-1 (Wnt/DKK1) pathway. The addition of novel agents in the treatment of MM, use of bisphosphonates and other supportive modalities such as radiotherapy, vertebroplasty/kyphoplasty, and surgical interventions, all have significant roles in the treatment of MBD. This review provides an overview on the pathophysiology and management of MBD.

  4. Assessment of bone mineral density and bone metabolism in young male adults recently diagnosed with systemic lupus erythematosus in China.

    Science.gov (United States)

    Guo, Qinyue; Fan, Ping; Luo, Jing; Wu, Shufang; Sun, Hongzhi; He, Lan; Zhou, Bo

    2017-03-01

    Objective Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease. However, the exact mechanism underlying SLE-related osteopenia and osteoporosis in patients newly diagnosed with SLE remains unknown. Methods 60 male subjects with SLE aged 20-30 years were enrolled. Serum osteocalcin was examined as a marker of bone formation and type I collagen degradation products (β-crosslaps) as markers of bone resorption. Lumbar spine (L1-L4) and total hip bone mineral density (BMD) were determined by dual energy X-ray absorption (DXA). Results Among the 60 subjects with SLE at the time of diagnosis, the cohort showed a significant reduction of osteocalcin (12.62 ± 2.16 ng/mL), and serum β-crosslaps level (992.6 ± 162.6 pg/mL) was markedly elevated. Univariate correlation analyses revealed negative correlations between osteocalcin and SLEDAI, dsDNA antibody and β-crosslaps. A positive correlation was also observed between osteocalcin and C3, C4, 25-OH vitamin D, BMD L1-L4 and BMD total hip (see Table 3). Osteocalcin and β-crosslaps were strongly associated with SLE disease activity by multiple stepwise logistic regression analysis. Conclusion Osteocalcin was negatively associated with SLE disease activity, and β-crosslaps was positively associated with SLE disease activity, suggesting SLE disease activity itself directly contributed to the development of SLE-associated osteopenia and osteoporosis.

  5. Metabolic syndrome in rheumatic diseases: epidemiology, pathophysiology, and clinical implications.

    Science.gov (United States)

    Sidiropoulos, Prodromos I; Karvounaris, Stylianos A; Boumpas, Dimitrios T

    2008-01-01

    Subjects with metabolic syndrome--a constellation of cardiovascular risk factors of which central obesity and insulin resistance are the most characteristic--are at increased risk for developing diabetes mellitus and cardiovascular disease. In these subjects, abdominal adipose tissue is a source of inflammatory cytokines such as tumor necrosis factor-alpha, known to promote insulin resistance. The presence of inflammatory cytokines together with the well-documented increased risk for cardiovascular diseases in patients with inflammatory arthritides and systemic lupus erythematosus has prompted studies to examine the prevalence of the metabolic syndrome in an effort to identify subjects at risk in addition to that conferred by traditional cardiovascular risk factors. These studies have documented a high prevalence of metabolic syndrome which correlates with disease activity and markers of atherosclerosis. The correlation of inflammatory disease activity with metabolic syndrome provides additional evidence for a link between inflammation and metabolic disturbances/vascular morbidity.

  6. Germinated Pigmented Rice (Oryza Sativa L. cv. Superhongmi Improves Glucose and Bone Metabolisms in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Soo Im Chung

    2016-10-01

    Full Text Available The effect of germinated Superhongmi, a reddish brown pigmented rice cultivar, on the glucose profile and bone turnover in the postmenopausal-like model of ovariectomized rats was determined. The ovariectomized Sprague-Dawley rats were randomly divided into three dietary groups (n = 10: normal control diet (NC and normal diet supplemented with non-germinated Superhongmi (SH or germinated Superhongmi (GSH rice powder. After eight weeks, the SH and GSH groups showed significantly lower body weight, glucose and insulin concentrations, levels of bone resorption markers and higher glycogen and 17-β-estradiol contents than the NC group. The glucose metabolism improved through modulation of adipokine production and glucose-regulating enzyme activities. The GSH rats exhibited a greater hypoglycemic effect and lower bone resorption than SH rats. These results demonstrate that germinated Superhongmi rice may potentially be useful in the prevention and management of postmenopausal hyperglycemia and bone turnover imbalance.

  7. Gut microbiota and immune crosstalk in metabolic disease

    OpenAIRE

    2016-01-01

    Background: Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes, and hepatic steatosis, the mechanisms causal to the disease could be related to the translocation of microbiota from the gut to the tissues, inducing inflammation. The mechanisms regulating such a p...

  8. Bone mineral density in adult coeliac disease: An updated review

    Directory of Open Access Journals (Sweden)

    Alfredo J. Lucendo

    2013-03-01

    Full Text Available Introduction and objectives: coeliac disease (CD affects around 1-2 % of the world population. Most patients are now diagnosed when adults, suffering the consequences of an impaired bone mineralization. This review aims to provide an updated discussion on the relationship between low bone mineral density (BMD, osteopenia and osteoporosis, and CD. Methods: a PubMed search restricted to the last 15 years was conducted. Sources cited in the results were also reviewed to identify potential sources of information. Results: low BMD affects up to 75 % of celiac patients, and can be found at any age, independently of positive serological markers and presence of digestive symptoms. The prevalence of CD among osteoporotic patients is also significantly increased. Two theories try to explain this origin of low BMD: Micronutrients malabsorption (including calcium and vitamin D determined by villous atrophy has been related to secondary hyperparathyroidism and incapacity to achieve the potential bone mass peak; chronic inflammation was also related with RANKL secretion, osteoclasts activation and increased bone resorption. As a consequence, celiac patients have a risk for bone fractures that exceed 40 % that of matched non-affected population. Treatment of low BMD in CD comprises gluten-free diet, calcium and vitamin D supplementation, and biphosphonates, although its effects on CD have not been specifically assessed. Conclusions: up to 75 % of celiac patients and 40 % of that diagnosed in adulthood present a low BMD and a variable increase in the risk of bone fractures. Epidemiological changes in CD make bone density scans more relevant for adult coeliacs.

  9. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    Science.gov (United States)

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed.

  10. Allogeneic Bone Marrow Transplant for Inherited Metabolic Disorders

    Science.gov (United States)

    2016-01-21

    Mucopolysaccharidosis; Hurler Syndrome; Hunter Syndrome; Maroteaux-Lamy Syndrome; Sly Syndrome; Alpha Mannosidosis; Fucosidosis; Aspartylglucosaminuria; Adrenoleukodystrophy (ALD); Krabbe Disease; Metachromatic Leukodystrophy (MLD); Sphingolipidoses; Peroxisomal Disorders

  11. Effect of chronic hepatitis C virus infection on bone disease in postmenopausal women.

    LENUS (Irish Health Repository)

    Nanda, Kavinderjit S

    2012-02-01

    BACKGROUND & AIMS: Limited data are available on the contribution of chronic HCV infection to the development of bone disease in postmenopausal women. We studied whether women who acquired HCV infection through administration of HCV genotype 1b-contaminated anti-D immunoglobulin from a single source had decreased bone mineral density (BMD) or altered levels of bone turnover markers (BTMs), compared with women who spontaneously resolved infection or age-matched healthy controls. METHODS: From a cohort of postmenopausal Irish women, we compared BMD, determined by dual-energy x-ray absorptiometry, and a panel of BTMs in 20 women chronically infected with HCV (PCR(+)), 21 women who had spontaneously resolved infection (PCR(-)), and 23 age-matched healthy controls. RESULTS: Levels of BTMs and BMD were similar in PCR(+) and PCR(-) women and healthy age-matched controls. However, there was an increased frequency of fractures in PCR(+) (n = 6) compared with PCR(-) women (n = 0, P = .007). PCR(+) women with fractures were postmenopausal for a longer time (median, 15.5, range, 5-20 years vs 4.5, range, 1-20 years in PCR(+) women without fractures; P = .033), had lower BMD at the hip (0.79, range, 0.77-0.9 g\\/cm(2) vs 0.96, range, 0.81-1.10 g\\/cm(2); P = .007), and had a lower body mass index (23.7, range 21.2-28.5 kg\\/m(2) vs 25.6, range 22.1-36.6 kg\\/m(2); P = .035). There was no difference in liver disease severity or BTMs in PCR(+) women with or without fractures. CONCLUSIONS: Chronic HCV infection did not lead to discernable metabolic bone disease in postmenopausal women, but it might be a risk factor for bone fractures, so preventive measures should be introduced. To view this article\\'s video abstract, go to the AGA\\'s YouTube Channel.

  12. RNA metabolism in the pathogenesis of Parkinson׳s disease.

    Science.gov (United States)

    Lu, Bingwei; Gehrke, Stephan; Wu, Zhihao

    2014-10-10

    Neurodegenerative diseases such as Parkinson׳s disease are progressive disorders of the nervous system that affect the function and maintenance of specific neuronal populations. While most disease cases are sporadic with no known cause, a small percentage of disease cases are caused by inherited genetic mutations. The identification of genes associated with the familial forms of the diseases and subsequent studies of proteins encoded by the disease genes in cellular or animal models have offered much-needed insights into the molecular and cellular mechanisms underlying disease pathogenesis. Recent studies of the familial Parkinson׳s disease genes have emphasized the importance of RNA metabolism, particularly mRNA translation, in the disease process. It is anticipated that continued studies on the role of RNA metabolism in Parkinson׳s disease will offer unifying mechanisms for understanding the cause of neuronal dysfunction and degeneration and facilitate the development of novel and rational strategies for treating this debilitating disease.

  13. Metabolic diseases and pro- and prebiotics: Mechanistic insights.

    Science.gov (United States)

    Nakamura, Yukiko K; Omaye, Stanley T

    2012-06-19

    Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual's behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases.

  14. Metabolic diseases and pro- and prebiotics: Mechanistic insights

    Directory of Open Access Journals (Sweden)

    Nakamura Yukiko K

    2012-06-01

    Full Text Available Abstract Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual’s behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4. Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes, chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases.

  15. Effect of salmon calcitonin on osteoporosis and level of bone metabolism markers

    Institute of Scientific and Technical Information of China (English)

    Xian-Feng Fan; Xing-Hua Huang; Yun-Yong Huang; Ming-Jian Hu

    2015-01-01

    Objective:To study the effect of osteoporosis calcitonin salmon on the level of bone metabolism markers in patients with osteoporosis.Methods: A total of 140 cases with osteoporosis were randomly divided into control group and observation group, with 70 cases in each. Patients in control group were treated with calcitriol soft capsules and chewable calcium vitamin D. Patients in observation group were treated with salmon calcitonin.Results:The total efficiency of the observation group patients was 85.71%, significantly higher than 70.00% that of control group (P<0.05). After treatment, BMD of Torch, Neck, L1-L4 and Ward's area in observation group patients were significantly higher than that of control group (P<0.01). After treatment, bone metabolism related indicatorsβ-CTX, N-MID, ALP level in observation group patients were significantly lower than that of control group, and hCT level in observation group patients was significantly higher than that of control group (P<0.01). Conclusions:Salmon calcitonin is effective in treatment of osteoporosis. It can effectively relieve the symptoms, increase bone density and improve bone metabolism.

  16. Dolomite supplementation improves bone metabolism through modulation of calcium-regulating hormone secretion in ovariectomized rats.

    Science.gov (United States)

    Mizoguchi, Toshihide; Nagasawa, Sakae; Takahashi, Naoyuki; Yagasaki, Hiroshi; Ito, Michio

    2005-01-01

    Dolomite, a mineral composed of calcium magnesium carbonate (CaMg (CO3)2), is used as a food supplement that supplies calcium and magnesium. However, the effect of magnesium supplementation on bone metabolism in patients with osteoporosis is a matter of controversy. We examined the effects of daily supplementation with dolomite on calcium metabolism in ovariectomized (OVX) rats. Dolomite was administered daily to OVX rats for 9 weeks. The same amount of magnesium chloride as that supplied by the dolomite was given to OVX rats as a positive control. Histological examination revealed that ovariectomy decreased trabecular bone and increased adipose tissues in the femoral metaphysis. Dolomite or magnesium supplementation failed to improve these bone histological features. Calcium content in the femora was decreased in OVX rats. Neither calcium nor magnesium content in the femora in OVX rats was significantly increased by dolomite or magnesium administration. Urinary deoxypyridinoline excretion was significantly increased in OVX rats, and was not affected by the magnesium supplementation. Serum concentrations of magnesium were increased, and those of calcium were decreased, in OVX rats supplemented with dolomite or magnesium. However, there was a tendency toward decreased parathyroid hormone secretion and increased calcitonin secretion in OVX rats supplemented with dolomite or magnesium. Serum 1,25-dihydroxyvitamin D(3) and osteocalcin levels were significantly increased in the supplemented OVX rats. These results suggest that increased magnesium intake improves calcium metabolism in favor of increasing bone formation, through the modulation of calcium-regulating hormone secretion.

  17. RECENT ADVANCES IN PATHO-BIOLOGY OF MYELOMA BONE DISEASE: CLINICOPATHOLOGY AND LITERATURE OF REVIEW

    Directory of Open Access Journals (Sweden)

    Lohit Kumar

    2016-03-01

    Full Text Available Bone disease is a hallmark of multiple myeloma, presenting as lytic lesions associated with bone pain, pathological fractures requiring surgery and/or radiation to bone, spinal cord compression and hypercalcaemia. Increased osteoclastic activity unaccompanied by a compensatory increase in osteoblast function, leading to enhanced bone resorption results in bone disease. The interaction of plasma cells with the bone marrow microenvironment has been shown to play a vital role. Also, interactions of myeloma cells with osteoclasts enhance myeloma growth and survival, and thereby create a vicious cycle leading to extensive bone destruction and myeloma cell expansion.

  18. Radiographic evaluation of the effect of obesity on alveolar bone in rats with ligature-induced periodontal disease.

    Science.gov (United States)

    do Nascimento, Cassiane Merigo; Cassol, Tiago; da Silva, Fernanda Soares; Bonfleur, Maria Lucia; Nassar, Carlos Augusto; Nassar, Patricia Oehlmeyer

    2013-01-01

    There is evidence that the lack of metabolic control of obese patients may accelerate periodontitis. The aim of this study was to evaluate radiographically the effect of cafeteria-diet-induced obesity on alveolar bone loss in rats subjected to periodontal disease. Twenty male Wistar rats were randomly divided into four groups: 1) control group, 2) control and ligature group; 3) cafeteria group; and 4) cafeteria and ligature group. The animals were evaluated for obesity and euthanized, and the mandible of each rat was removed to perform a radiographic evaluation of alveolar bone loss and its effect on diet-induced obesity. The results showed greater alveolar bone loss in the mice in Group 4 (P<0.01). Thus, we concluded that obese mice, on average, showed greater radiographic evidence of alveolar bone loss than mice undergoing induction of obesity.

  19. SERUM YKL-40 IS ASSOCIATED WITH BONE DISEASE IN MULTIPLE MYELOMA

    DEFF Research Database (Denmark)

    Mylin, Anne Kjærsgaard; Abildgaard, Niels; Johansen, Julia S.

    2007-01-01

    , in angiogenesis, and in cancer cell survival and invasion. The aim of this study was to investigate the association between serum YKL-40 (S-YKL-40) and the degree of bone disease in MM. Materials and Methods. S-YKL-40 was measured using an ELISA in 54 MM patients at diagnosis. Bone morbidity was assessed...... to progression of myeloma-related bone disease. A potential role for YKL-40 in the bone disease of MM must be considered....

  20. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    Science.gov (United States)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  1. Validation of Parkinsonian Disease-Related Metabolic Brain Patterns

    NARCIS (Netherlands)

    Teune, Laura K.; Renken, Remco J.; Mudali, Deborah; De Jong, Bauke M.; Dierckx, Rudi A.; Roerdink, Jos B.T.M.; Leenders, Klaus L.

    2013-01-01

    Background: The objective of this study was to validate disease-related metabolic brain patterns for Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Methods: The study included 20 patients with Parkinson’s disease, 21 with multiple system atrophy, and 17 with progre

  2. Aerobic plus resistance training improves bone metabolism and inflammation in adolescents who are obese.

    Science.gov (United States)

    Campos, Raquel M S; de Mello, Marco T; Tock, Lian; Silva, Patrícia L; Masquio, Deborah C L; de Piano, Aline; Sanches, Priscila L; Carnier, June; Corgosinho, Flávia C; Foschini, Denis; Tufik, Sergio; Dâmaso, Ana R

    2014-03-01

    Obesity is a worldwide epidemic with a high prevalence of comorbidities, including alterations in bone mineral metabolism. The purpose of this yearlong study was to evaluate the role of 2 types of exercise training (aerobic and aerobic plus resistance exercise) on adipokines parameters and bone metabolism in adolescents who are obese. This was a clinical trial study with interdisciplinary weight loss therapy. Forty-two postpubertal adolescents who are obese were subjected to interdisciplinary weight loss therapy with physical exercise, medical monitoring, nutritional intervention, and psychological intervention. Data were collected from serum analyses of leptin, ghrelin, adiponectin, glucose, and insulin. Anthropometric measurements of body composition, bone mineral density, visceral, and subcutaneous fat were also performed. Statistical tests were applied using repeated-measures analysis of variance. Correlations were established using the Pearson test, and dependencies of variables were established using simple linear regression test. Both training types promoted reductions in body mass index, total central, visceral and subcutaneous fat, insulin concentration, and homeostasis model assessment insulin resistance (HOMA-IR) index, but only aerobic plus resistance training showed statistical improvements in the bone mineral content, adiponectin concentration, and lean tissue. Effective reduction in the visceral/subcutaneous ratio, central/peripheral ratio, and leptin concentration was observed. Insulin and the HOMA-IR index were negative predictors of bone mineral content in the combined training group. Moreover, fat distribution was a negative predictor for bone mineral density in both groups. Aerobic plus resistance training promotes a protective role in bone mineral content associated with an improvement in adiponectin and leptin concentrations, favoring the control of the inflammatory state related to obesity in adolescents. Aerobic plus resistance training

  3. Calcium and vitamin D nutrition and bone disease of the elderly.

    Science.gov (United States)

    Gennari, C

    2001-04-01

    Osteoporosis, a systemic skeletal disease characterized by a low bone mass, is a major public health problem in EC member states because of the high incidence of fragility fractures, especially hip and vertebral fracture. In EC member states the high incidence of osteoporotic fractures leads to considerable mortality, morbidity, reduced mobility and decreased quality of life. In 1995 the number of hip fractures in 15 countries of EC has been 382,000 and the estimated total care cost of about 9 billion of ECUs. Given the magnitude of the problem public health measures are important for preventive intervention. Skeletal bone mass is determined by a combination of endogenous (genetic, hormonal) and exogenous (nutritional, physical activity) factors. Nutrition plays an important role in bone health. The two nutrients essential for bone health are calcium and vitamin D. Reduced supplies of calcium are associated with a reduced bone mass and osteoporosis, whereas a chronic and severe vitamin D deficiency leads to osteomalacia, a metabolic bone disease characterized by a decreased mineralization of bone. Vitamin D insufficiency, the preclinical phase of vitamin D deficiency, is most commonly found in the elderly. The major causes of vitamin D deficiency and insufficiency are decreased renal hydroxylation of vitamin D, poor nutrition, scarce exposition to sunlight and a decline in the synthesis of vitamin D in the skin. The daily average calcium intake in Europe has been evaluated in the SENECA study concerning the diet of elderly people from 19 towns of 10 European countries. In about one third of subjects the dietary calcium intake results were very low, between 300 and 600 mg/day in women, and 350 and 700 mg/day in men. Calcium supplements reduce the rate of bone loss in osteoporotic patients. Some recent studies have reported a significant positive effect of calcium treatment not only on bone mass but also on fracture incidence. The SENECA study, has also shown that

  4. Bone metabolism biomarkers, body weight, and bone age in healthy Brazilian male adolescents.

    Science.gov (United States)

    da Silva, Carla Cristiane; Kurokawa, Cilmery Suemi; Nga, Hong Si; Moretto, Maria Regina; Dalmas, José Carlos; Goldberg, Tamara Beres Lederer

    2012-01-01

    Eighty-seven male volunteers were grouped according to bone age (BA): 10-12 years (n=25), 13-15 years (n=36), and 16-18 years (n=26), and the following were recorded for each: weight (kg), height (m), BMI (kg/m(2)), calcium intake from three 24-h food recalls (mg/day), puberty evaluation by Tanner stages, bone biomarker (BB) evaluation, serum osteocalcin (OC), bone alkaline phosphatase (BAP), carboxyterminal telopeptide (S-CTx), and bone mineral density (BMD) evaluations by dual-energy X-ray absorptiometry (g x cm(2)) in the lumbar spine, proximal femur, and the whole body. BBs showed similar behaviors, and very high median values were observed for individuals aged 13-15 years (BAP = 155.50 IU/L, OC = 41.63 ng/mL, S-CT x =2.09 ng/mL). Lower median BB values were observed with advancing BA between 16 and 18 years (BA P =79.80 IU/L, O C =27.80 ng/mL, S-CT x =1.65 ng/mL). Stepwise multiple regression analysis showed body weight associated with BA as independent variables with greater determination power for S-CTx (r(2) = 0.40) and OC (r(2)=0.21). For BAP, stepwise analysis showed body weight and whole-body BMD (r(2) = 0.34). All predictive models showed significance ( p Weight and BA were significant in determining predictive equations of OC and of S-CTx, whereas for BAP, weight and BMD of full body were selected.

  5. Assessment of bone density in children with Scheuermann's disease.

    Science.gov (United States)

    Popko, J; Konstantynowicz, J; Kossakowski, D; Kaczmarski, M; Piotrowska-Jastrzebska, J

    1997-01-01

    Twenty four children with Scheuermann's disease (11 girls and 13 boys) aged 9-18 years measured for bone mineral density. The total skeleton (TB BMD) and lumbar spine (L2-L4 BMD) mineral density were investigated by dual energy X-ray absorptiometry (DEXA). In nine patients with Scheuermann's disease and backache we found lower levels of TB BMD and L2-L4 BMD in comparison with reference population of Lunar database. Osteopenia in these children may be caused by decreased physical activity due to vertebral pain.

  6. Glucose metabolism in small subcortical structures in Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Hansen, Søren B; Eggers, Carsten;

    2012-01-01

    Evidence from experimental animal models of Parkinson's disease (PD) suggests a characteristic pattern of metabolic perturbation in discrete, very small basal ganglia structures. These structures are generally too small to allow valid investigation by conventional positron emission tomography (PET...

  7. Denosumab: the era of targeted therapies in bone metastatic diseases.

    Science.gov (United States)

    Santini, D; Fratto, M E; Vincenzi, B; Napoli, N; Galluzzo, S; Tantardini, M; Abbruzzese, A; Caraglia, M; Tonini, G

    2009-11-01

    This system constituted of the Receptor Activator of nuclear Factor-kB Ligand (RANKL), the Receptor Activator of Nuclear Factor-kB (RANK) and by the decoy Receptor Osteoprotegerin (OPG) plays a central role in bone resorption. Denosumab (AMG 162) is an investigational fully human monoclonal antibody with a high affinity and specificity for RANKL.This review will critically describe and discuss the recent results of clinical trial investigating denosumab in different settings of medical oncology. In particular, we will report the recently published data of clinical trials investigating denosumab in prevention of cancer treatment induced bone loss (CTIBL), in prevention of skeletal related events (SREs) in bone metastatic patients and the ongoing studies in prevention of disease recurrence in the adjuvant setting of solid tumours. The clinical data that will be reported in this review represent the first step in a path that will conduct us to explore new horizons in the field of bone health care in cancer patients.

  8. Nutritional supplementation of hop rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produces a favorable bone biomarker profile supporting healthy bone metabolism in postmenopausal women with metabolic syndrome.

    Science.gov (United States)

    Lamb, Joseph J; Holick, Michael F; Lerman, Robert H; Konda, Veera R; Minich, Deanna M; Desai, Anuradha; Chen, Tai C; Austin, Melissa; Kornberg, Jacob; Chang, Jyh-Lurn; Hsi, Alex; Bland, Jeffrey S; Tripp, Matthew L

    2011-05-01

    Metabolic syndrome poses additional risk for postmenopausal women who are already at risk for osteoporosis. We hypothesized that a nutritional supplement containing anti-inflammatory phytochemicals and essential bone nutrients would produce a favorable bone biomarker profile in postmenopausal women with metabolic syndrome. In this 14-week, randomized trial, 51 women were instructed to consume a modified Mediterranean-style, low-glycemic-load diet and to engage in aerobic exercise. Those in the intervention arm (n = 25) additionally received 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D₃, and 500 μg vitamin K₁ twice daily. Forty-five women completed the study. Baseline nutrient intake did not differ between arms. Compared with baseline, the intervention arm exhibited an approximate 25% mean decrease (P vitamin D₃, and vitamin K₁ produced a more favorable bone biomarker profile indicative of healthy bone metabolism in postmenopausal women with metabolic syndrome.

  9. The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder.

    Science.gov (United States)

    Seifert, Michael E; Hruska, Keith A

    2016-03-01

    The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.

  10. Can bone loss be reversed by antithyroid drug therapy in premenopausal women with Graves' disease?

    Directory of Open Access Journals (Sweden)

    Belsing Tina Z

    2010-09-01

    Full Text Available Abstract Context Hyperthyroidism can lead to reduced bone mineral density (BMD and increased fracture risk particularly in postmenopausal women, but the mechanism behind is still unclear. Objective Prospective examination of the influence of thyroid hormones and/or thyroid autoantibodies on BMD in premenopause. Design We have examined 32 premenopausal women with untreated active Graves' disease from time of diagnosis, during 18 months of antithyroid drug therapy (ATD and additionally 18 months after discontinuing ATD. Variables of thyroid metabolism, calcium homeostasis and body composition were measured every 3 months. BMD of lumbar spine and femoral neck were measured at baseline, 18 ± 3 and 36 ± 3 months. Data were compared to base line, a sex- and age matched control group and a group of patients with Hashimoto's thyroiditis treated with non-suppressive doses of levothyroxine. Results The study showed significantly (p Conclusion The results indicated a clinically relevant impact of thyroid function on bone modulation also in premenopausal women with Graves' disease, and further indicated the possibility for a direct action of TRAb on bones.

  11. Metabolic resting-state brain networks in health and disease.

    Science.gov (United States)

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  12. Effects of low doses of hydrochloride tetracycline on bone metabolism and uterus in ovariectomized rats

    Institute of Scientific and Technical Information of China (English)

    LIQing-Nan; HUBin; HUANGLian-Fang; CHENYan; WENGLin-Ling; ZhengHu; CHENHuai-Qing

    2003-01-01

    AIM:To study the effects of low doses of hydrochloride tetracycline (Tc) on bone metabolism and uterus in the ovariectomized (Ova) rats. METHODS:Forty 3-month-old rats were randomly divided into 5 groups: sham group, Ova group, Tc1 group (1.2mg·kg-1·d-1), Tc2 group (4.8mg·kg-1·d-1), and estrone group (1.48 mg·kg-1·d-1),oral fed for 3 months. The proximal tibia metaphyses were processed undecalcified for quantitative bone histomorphometry and the soft tissues were processed in paraffin for pathological observation. RESULTS: Placebo-treated (lactose) Ova rats were characterized by trabecular area (TA) decreasing and their architecture worsening compared with sham controls, and bone resorption was over formation with high bone turnover. The uteri were atrophy. (2)In estrone-treated group, TA and trabecular numbers were significantly increased and the trabecular separation decreased vs Ova group. Estrone slowed down Ova-inducing bone high turnover. But the size, weight, and the endometrium of the uteri in this group were increased vs Ova group. (3) TA was increased in both Tc1 and Tc2 groups compared with Ova rats. Tc maintained bone formation indices almost at Ova level, and only decreased mineral apposition rate (MAR) in Tc1 group, and declined bone resorption perimeter. The uteri and the cell of liver and kidney almost maintained at Ova level; Tc2 decreased labeling perimeter and increased MAR in comparison with Tc1 group. The uteri were atrophy, whose size maintained at Ova level; yellow labeling was not found in bone with these doses of Tc, while yellow labeling could be seen with the doses of 30mg·kg-1·d-1 of Tc for bone marker. CONCLUSION:The two doses of Tc have similar effects on preventing bone loss in Ova rats while the bone formation and uterus are not affected. However, Tc2 does not have more effects on increasing bone mass, Tc2 causes less mild damages to the liver and kidneys.

  13. Expression of Factors in the Hepatocyte Growth Factor (HGF) Pathway in Whole Bone Marrow Biopsies in Association to the Osteolytic Bone Disease of Multiple Myeloma

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Christensen, Jacob Haaber; Lyng, Maria Bibi;

    Expression of Factors in the Hepatocyte Growth Factor (HGF) Pathway in Whole Bone Marrow Biopsies in Association to the Osteolytic Bone Disease of Multiple Myeloma......Expression of Factors in the Hepatocyte Growth Factor (HGF) Pathway in Whole Bone Marrow Biopsies in Association to the Osteolytic Bone Disease of Multiple Myeloma...

  14. Expression of Wnt-Inhibitors and SDF-1 in Whole Bone Marrow Biopsies in Association to the Osteolytic Bone Disease of Multiple Myeloma

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Christensen, Jacob Haaber; Lyng, Maria Bibi

    Expression of Wnt-Inhibitors and SDF-1 in Whole Bone Marrow Biopsies in Association to the Osteolytic Bone Disease of Multiple Myeloma......Expression of Wnt-Inhibitors and SDF-1 in Whole Bone Marrow Biopsies in Association to the Osteolytic Bone Disease of Multiple Myeloma...

  15. Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo.

    Science.gov (United States)

    Zhang, Xianrong; Tamasi, Joseph; Lu, Xin; Zhu, Ji; Chen, Haiyan; Tian, Xiaoyan; Lee, Tang-Cheng; Threadgill, David W; Kream, Barbara E; Kang, Yibin; Partridge, Nicola C; Qin, Ling

    2011-05-01

    While the epidermal growth factor receptor (EGFR)-mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro-computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col-Cre Egfr(f/f)), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant-negative allele, Wa5, and generated Col-Cre Egfr(Wa5/f) mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony-forming unit-fibroblast (CFU-F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild-type mice caused a significant reduction in trabecular bone volume. In contrast, Egfr(Dsk5/+) mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism.

  16. SHORT-TERM JUMP ACTIVITY ON BONE METABOLISM IN FEMALE COLLEGE-AGED NON-ATHLETES

    Directory of Open Access Journals (Sweden)

    Kohei Kishimoto

    2012-03-01

    Full Text Available There have been few studies examining the short-term effect of high-impact activities on bone metabolism measured by bone serum marker concentrations. The purpose of this study was to examine the effect of short-term high-impact jump activity on bone turnover in female college-aged non-athletes. Twenty six healthy females were randomly assigned to a control or jump group. The subjects jumped 5 days per week for 2 weeks. The participants completed 10 jumps per session. A general health questionnaire and a bone-specific physical activity assessment instrument (BPAQ were completed. BPAQ scores were calculated based on the past history of exercise. Blood draws were taken in both groups before and after the two-week experimental period. The vertical ground reaction force (VGRF of all jumps and jump height were measured for each subject daily and the osteogenic index (OI was measured. Concentrations of serum osteocalcin (OC, Bone Specific Alkaline Phosphatase (BAP, C-Terminal Telopeptides of Type I Collagen (CTX and plasma Tartrate-Resistant Acid Phosphatase (TRAP5b were assessed pre and post jump protocol to measure bone formation and resoprtion respectively. A significant interaction (time x group was found in TRAP5b, and BAP values (p < 0.05. There was a significant decrease in CTX and BAP values in the jump group (p < 0.05 after the two week jump protocol. No significant interactions or changes were observed in OC values for either the jump or the control group. Two weeks of jump activity consisting of 10 jumps/day for 5 days/week with a weekly osteogenic index of 52.6 significantly decreased markers of bone resorption (TRAP5b and CTX and bone formation (BAP in young female non- athletes.

  17. The unsolved case of “bone-impairing analgesics”: the endocrine effects of opioids on bone metabolism

    Directory of Open Access Journals (Sweden)

    Coluzzi F

    2015-03-01

    Full Text Available Flaminia Coluzzi,1,2 Joseph Pergolizzi,3,4 Robert B Raffa,5 Consalvo Mattia1,2 1Department of Medical and Surgical Sciences and Biotechnologies, Unit of Anesthesiology, Intensive Care Medicine and Pain Therapy, Faculty of Pharmacy and Medicine – Polo Pontino, Sapienza University of Rome, Latina, Italy; 2SIAARTI Study Group on Acute and Chronic Pain, Rome, Italy; 3Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 4Naples Anesthesia and Pain Associates, Naples, FL, 5Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA Abstract: The current literature describes the possible risks for bone fracture in chronic analgesics users. There are three main hypotheses that could explain the increased risk of fracture associated with central analgesics, such as opioids: 1 the increased risk of falls caused by central nervous system effects, including sedation and dizziness; 2 reduced bone mass density caused by the direct opioid effect on osteoblasts; and 3 chronic opioid-induced hypogonadism. The impact of opioids varies by sex and among the type of opioid used (less, for example, for tapentadol and buprenorphine. Opioid-associated androgen deficiency is correlated with an increased risk of osteoporosis; thus, despite that standards have not been established for monitoring and treating opioid-induced hypogonadism or hypoadrenalism, all patients chronically taking opioids (particularly at doses ≥100 mg morphine daily should be monitored for the early detection of hormonal impairment and low bone mass density. Keywords: opioids side effects, bone metabolism, fractures, OPIAD, endocrine system, chronic pain

  18. Results of low-KV-immersion radiographs of the hand in hormonal and metabolic bone osteopathy

    Energy Technology Data Exchange (ETDEWEB)

    Heuck, F.; Schilling, M.

    1985-12-01

    The early detection of changes in the bones of the hand in hormonal and metabolic osteopathies is possible with the aid of soft tissue immersion radiographic technique combined with ''micro-radioscopy''. The informational value of this special method of investigation will be demonstrated by several examples from the 286 examinations of accentuated osteoporotic and osteomalacic and hyperparathyroidism changes of the skeleton. Structural changes in the normally mineralized and poorly mineralized bone as well as the neighbouring soft tissue (joint capsule, tendons, subdermal fatty tissue) and the skin layer itself can be demonstrated. Examinations following therapy in the hospital or in private practice using this painless special method can demonstrate changes of the macrostructure and during the process of healing within the bone. (orig.).

  19. Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Andersen, T; McNair, P;

    1993-01-01

    A non-invasive evaluation of bone metabolism was performed in 44 morbidly obese patients before and after a mean weight loss of 22.4 kg (range 7.9-43.4 kg) after 2 months and a further weight loss of 7.3 kg after 8 months (0.8-20.0 kg). This weight reduction was obtained by a nutritionally adequa...

  20. Deoxypyridinoline level in gingival crevicular fluid as alveolar bone loss biomarker in periodontal disease

    Directory of Open Access Journals (Sweden)

    Agustin Wulan Suci Dharmayanti

    2012-06-01

    Full Text Available Background: Periodontal diseases have high prevalence in Indonesia. They are caused by bacteria plaque that induced host response to release pro inflammatory mediator. Pro inflammatory mediators and bacteria product cause degradation of collagen fibers in periodontal tissue. Deoxypyridinoline is one of pyridinoline cross-link of collagen type I that can be used as biomarker in bone metabolic diseases, however, their contribution to detect alveolar bone loss in periodontal diseases remains unclear. Purpose: This study was to evaluate deoxypyridinoline level in gingival crevicular fluid as alveolar bone loss biomarker on periodontal disease. Methods: This study used 24 subjects with periodontal diseases and 6 healthy subjects. Dividing of periodontal disease was based on index periodontal. Gingival crevicular fluid was taken at mesial site of maxillary posterior tooth by paper point and deoxypyridinoline be measured by ELISA technique. Results: We found increasing of deoxypyridinoline level following of the severity of periodontal diseases. There was also significant difference between healthy subjects and periodontal diseases subjects (p<0.05. Conclusion: Deoxypyridinoline level in gingiva crevicular fluid can be used as alveolar bone loss biomarker in periodontal disease subjects.Latar belakang: Prevalensi penyakit periodontal di Indonesia cukup tinggi. Ini disebabkan oleh bakteri plak yang merangsang respon tubuh untuk mengeluarkan mediator keradangan. Mediator keradangan dan produk bakteri menyebabkan degradasi serat kolagen jaringan periodontal. Deoksipiridinolin merupakan salah satu ikatan piridinium dari kolagen tipe I yang dapat digunakan sebagai biomarker penyakit metabolisme tubuh. Akan tetapi, penggunaan deoksipiridinolin untuk mendeteksi kehilangan tulang alveolar pada penyakit periodontal masih belum jelas. Tujuan: Tujuan penelitian ini untuk mengetahui bahwa kadar deoksipiridinolin pada cairan krevikular gingival dapat digunakan

  1. The emerging role of the intestine in metabolic diseases.

    Science.gov (United States)

    Bradley, William D; Zwingelstein, Catherine; Rondinone, Cristina M

    2011-07-01

    The intestine is an important metabolic organ that has gained attention in recent years for the newly identified role that it plays in the pathophysiology of various metabolic diseases including obesity, insulin resistance and diabetes. Recent insights regarding the role of enteroendocrine hormones, such as GIP, GLP-1, and PYY in metabolic diseases, as well as the emerging role of the gut microbial community and gastric bypass bariatric surgeries in modulating metabolic function and dysfunction have sparked a wave of interest in understanding the mechanisms involved, in an effort to identify new therapeutics and novel regulators of metabolism. This review summarizes the current evidence that the gastrointestinal tract has a key role in the development of obesity, inflammation, insulin resistance and diabetes and discusses the possible players that can be targeted for therapeutic intervention.

  2. Bile acid signaling in metabolic disease and drug therapy.

    Science.gov (United States)

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  3. The metabolic syndrome and vascular disease

    NARCIS (Netherlands)

    Olijhoek, Jobien Karen

    2006-01-01

    In the Western population cardiovascular diseases are the most common cause of mortality and morbidity. There are several important risk factors for cardiovascular diseases, among them hypertension, hypercholesterolemia, diabetes and obesity. The clustering of cardiovascular risk factors associated

  4. Differential diagnosis of metastatic bone disease and benign bone disease on spine SPECT in patients with low back pain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hun; Choi, Yun Young; Cho, Suk Shin [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2001-12-01

    One or more abnormal vertebrae detected on bone scintigraphy is a common finding in clinical practice, and it could pose a diagnostic dilemma especially in cancer patients, as either metastasis or benign disease may cause scintigraphic abnormality. The purpose of this study was to determine whether additional spine SPECT has a role in differentiating malignant from benign lesions in patients with back pain. We reviewed spine SPECT studies obtained over a three-year period in 108 patients. Among them, forty-five patients with abnormal SPECT and clinically followed records were evaluated (20 cancer patients were included). Uptake patterns were classified as follows: 1. Body: diffusely increased uptake, linear increased uptake of end plate, segmental increased uptake, and cold defect, 2 Posterior element; posterior to body (pedicle), posterior to intervertebral disc space (facet joint), and spinous process. Lesions were correlated with radiological findings and with final diagnosis. Sixty-nine bone lesions were detected on SPECT images, including 18 metastases, 28 degenerative diseases and 21 compression fractures. Cold defect (6) and segmental increased uptake (5) were dominant findings in metastasis: linear increased uptake (12), and facet joint uptake (15) were in degenerative change; and diffuse increased uptake (9), and linear increased uptake (9) were in compression fracture. Cold defect and segmental increased uptake of body were characteristic findings of metastasis, but care should be taken because compression fracture also shows segmental increased uptake in some cases. Degenerative disease was easily diagnosed because of the typical finding of linear increased uptake of end plate and facet joint. Therefore, additional bone SPECT after planar bone scan would be helpful for differentiating metastasis from benign condition in cancer patients.

  5. Cardiac rehabilitation programs improve metabolic parameters in patients with the metabolic syndrome and coronary heart disease.

    Science.gov (United States)

    Pérez, Ignacio P; Zapata, Maria A; Cervantes, Carlos E; Jarabo, Rosario M; Grande, Cristina; Plaza, Rose; Garcia, Sara; Rodriguez, Miriam L; Crespo, Silvia; Perea, Jesús

    2010-05-01

    This study was performed to determine the effectiveness of a cardiac rehabilitation and exercise training program on metabolic parameters and coronary risk factors in patients with the metabolic syndrome and coronary heart disease. The study involved 642 patients with coronary heart disease. Of them, 171 (26.7%) fulfilled criteria for the metabolic syndrome. Clinical data, laboratory tests, and exercise testing were performed before and after the program, which lasted 2 to 3 months. Except for waist circumference, there were no significant differences between groups; blood pressure, high-density lipoprotein cholesterol, triglycerides, and fasting glucose improvements during the follow-up were higher in patients with the metabolic syndrome (all Pmetabolic syndrome, functional capacity increased by 26.45% ( Pmetabolic equivalents, with a slight increase of 1.25% ( P=not significant) in the double product. Patients with the metabolic syndrome who took part in this secondary prevention program reported improvements in cardiovascular risk profile and functional capacity.

  6. Detection of metabolic syndrome features among childhood cancer survivors: A target to prevent disease

    Directory of Open Access Journals (Sweden)

    Adriana Aparecida Siviero-Miachon

    2008-08-01

    Full Text Available Adriana Aparecida Siviero-Miachon1, Angela Maria Spinola-Castro1, Gil Guerra-Junior21Division of Pediatric Endocrinology, Department of Pediatrics, Federal University of Sao Paulo – UNIFESP/EPM, Brazil; 2Division of Pediatric Endocrinology, Department of Pediatrics, State University of Campinas – FCM/UNICAMP, BrazilAbstract: Along with the growing epidemic of obesity, the risk of atherosclerosis, cardiovascular disease morbidity, and mortality are increasing markedly. Several risk factors for cardiovascular disease, such as visceral obesity, glucose intolerance, arterial hypertension, and dyslipidemia commonly cluster together as a condition currently known as metabolic syndrome. Thus far, insulin resistance, and endothelial dysfunction are the primary events of the metabolic syndrome. Several groups have recommended clinical criteria for the diagnosis of metabolic syndrome in adults. Nonetheless, in what concerns children and adolescents, there are no unified definitions, and modified adult criteria have been suggested by many authors, despite major problems. Some pediatric disease states are at risk for premature cardiovascular disease, with clinical coronary events occurring very early in adult life. Survivors of specific pediatric cancer groups, particularly acute lymphocytic leukemia, central nervous system tumors, sarcomas, lymphomas, testicular cancer, and following bone marrow transplantation, may develop metabolic syndrome traits due to: hormonal deficiencies (growth hormone deficiency, thyroid dysfunction, and gonadal failure, drug or radiotherapy damage, endothelial impairment, physical inactivity, adipose tissue dysfunction, and/or drug-induced magnesium deficiency. In conclusion, some primary and secondary prevention remarks are proposed in order to reduce premature cardiovascular disease risk in this particular group of patients.Keywords: metabolic syndrome X, cardiovascular diseases, insulin resistance, obesity, growth hormone

  7. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders.

    Science.gov (United States)

    Cai, Huan; Cong, Wei-na; Ji, Sunggoan; Rothman, Sarah; Maudsley, Stuart; Martin, Bronwen

    2012-01-01

    Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.

  8. Typical Cerebral Metabolic Patterns in Neurodegenerative Brain Diseases

    NARCIS (Netherlands)

    Teune, Laura K.; Bartels, Anna L.; de Jong, Bauke M.; Willemsen, Antoon T. M.; Eshuis, Silvia A.; de Vries, Jeroen J.; van Oostrom, Joost C. H.; Leenders, Klaus L.

    2010-01-01

    The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [F-18]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting t

  9. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Rignell-Hydbom, A., E-mail: anna.rignell-hydbom@med.lu.se [Department of Occupational and Environmental Medicine, Lund University (Sweden); Skerfving, S.; Lundh, T.; Lindh, C.H. [Department of Occupational and Environmental Medicine, Lund University (Sweden); Elmstahl, S. [Division of Geriatric Medicine, Department of Health Sciences, Lund University, Malmue University Hospital (Sweden); Bjellerup, P. [Center for Clinical Research, Uppsala University, Department of Clinical Chemistry, Vaesteras (Sweden); Juensson, B.A.G.; Struemberg, U. [Department of Occupational and Environmental Medicine, Lund University (Sweden); Akesson, A. [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2009-11-15

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed in serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.

  10. Allogenic bone narrow transplantation in sickle-cell diseases.

    Directory of Open Access Journals (Sweden)

    Belinda Pinto Simões

    Full Text Available SUMMARY Sickle-cell diseases are the most common inherited hemoglobinopathies worldwide. Improvement in survival has been seen in the last decades with the introduction of careful screening and prevention of complications and the introduction of hydroxyurea. Stem-cell transplantation is currently the only curative option for these patients and has been indicated for patients with neurological events, repeated vaso-occlusive crisis, any organ damage or presence of red blood cell antibodies. Related bone-marrow or cord-blood transplant has shown an overall survival of more than 90% with a disease-free survival of 90% in 1,000 patients transplanted in the last decades. The use of unrelated donors unfortunately has not shown the same good results, but better typing methods and improved support may improve the outcome with this source of stem cells in the future. In Brazil, only recently stem cell transplant from related donors has been included in the procedures performed in the public health system. The use of related bone marrow or cord blood and a myeloablative conditioning regimen are considered standard of care for patients with sickle-cell diseases. Transplants with non-myeloablative regimens, unrelated donors or haploidentical donors should be performed only in controlled clinical trials.

  11. GPR120 agonism as a countermeasure against metabolic diseases.

    Science.gov (United States)

    Cornall, Lauren M; Mathai, Michael L; Hryciw, Deanne H; McAinch, Andrew J

    2014-05-01

    Obesity, type 2 diabetes mellitus and cardiovascular disease are at epidemic proportions in developed nations globally, representing major causes of ill-health and premature death. The search for drug targets to counter the growing prevalence of metabolic diseases has uncovered G-protein-coupled receptor 120 (GPR120). GPR120 agonism has been shown to improve inflammation and metabolic health on a systemic level via regulation of adiposity, gastrointestinal peptide secretion, taste preference and glucose homeostasis. Therefore, GPR120 agonists present as a novel therapeutic option that could be exploited for the treatment of impaired metabolic health. This review summarizes the current knowledge of GPR120 functionality and the potential applications of GPR120-specific agonists for the treatment of disease states such as obesity, type 2 diabetes mellitus and cardiovascular disease.

  12. Natural History of Malignant Bone Disease in Renal Cancer: Final Results of an Italian Bone Metastasis Survey

    Science.gov (United States)

    Santini, Daniele; Procopio, Giuseppe; Porta, Camillo; Ibrahim, Toni; Barni, Sandro; Mazzara, Calogero; Fontana, Andrea; Berruti, Alfredo; Berardi, Rossana; Vincenzi, Bruno; Ortega, Cinzia; Ottaviani, Davide; Carteni, Giacomo; Lanzetta, Gaetano; Virzì, Vladimir; Santoni, Matteo; Silvestris, Nicola; Satolli, Maria Antonietta; Collovà, Elena; Russo, Antonio; Badalamenti, Giuseppe; Fedeli, Stefano Luzi; Tanca, Francesca Maria; Adamo, Vincenzo; Maiello, Evaristo; Sabbatini, Roberto; Felici, Alessandra; Cinieri, Saverio; Tonini, Giuseppe; Bracarda, Sergio

    2013-01-01

    Background Bone metastasis represents an increasing clinical problem in advanced renal cell carcinoma (RCC) as disease-related survival improves. There are few data on the natural history of bone disease in RCC. Patients and methods Data on clinicopathology, survival, skeletal-related events (SREs), and bone-directed therapies for 398 deceased RCC patients (286 male, 112 female) with evidence of bone metastasis were statistically analyzed. Results Median time to bone metastasis was 25 months for patients without bone metastasis at diagnosis. Median time to diagnosis of bone metastasis by MSKCC risk was 24 months for good, 5 months for intermediate, and 0 months for poor risk. Median number of SREs/patient was one, and 71% of patients experienced at least one SRE. Median times to first, second, and third SRE were 2, 5, and 12 months, respectively. Median survival was 12 months after bone metastasis diagnosis and 10 months after first SRE. Among 181 patients who received zoledronic acid (ZOL), median time to first SRE was significantly prolonged versus control (n = 186) (3 months vs 1 month for control; P<0.05). Conclusions RCC patients with bone metastasis are at continuous risk of SREs, and in this survey ZOL effectively reduced this risk. PMID:24386138

  13. Natural history of malignant bone disease in renal cancer: final results of an Italian bone metastasis survey.

    Directory of Open Access Journals (Sweden)

    Daniele Santini

    Full Text Available BACKGROUND: Bone metastasis represents an increasing clinical problem in advanced renal cell carcinoma (RCC as disease-related survival improves. There are few data on the natural history of bone disease in RCC. PATIENTS AND METHODS: Data on clinicopathology, survival, skeletal-related events (SREs, and bone-directed therapies for 398 deceased RCC patients (286 male, 112 female with evidence of bone metastasis were statistically analyzed. RESULTS: Median time to bone metastasis was 25 months for patients without bone metastasis at diagnosis. Median time to diagnosis of bone metastasis by MSKCC risk was 24 months for good, 5 months for intermediate, and 0 months for poor risk. Median number of SREs/patient was one, and 71% of patients experienced at least one SRE. Median times to first, second, and third SRE were 2, 5, and 12 months, respectively. Median survival was 12 months after bone metastasis diagnosis and 10 months after first SRE. Among 181 patients who received zoledronic acid (ZOL, median time to first SRE was significantly prolonged versus control (n = 186 (3 months vs 1 month for control; P<0.05. CONCLUSIONS: RCC patients with bone metastasis are at continuous risk of SREs, and in this survey ZOL effectively reduced this risk.

  14. Going nuclear in metabolic and cardiovascular disease

    OpenAIRE

    Glass, Christopher K.

    2006-01-01

    Estrogen receptors, PPARs, and liver X receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors that regulate diverse aspects of development and homeostasis. Recent studies of the biologic roles of these receptors and their mechanisms of action have significantly advanced our understanding of transcriptional programs that control lipid and carbohydrate metabolism, immunity and inflammation, and wound repair. These findings provide insights into the t...

  15. FGF23-FGF Receptor/Klotho Pathway as a New Drug Target for Disorders of Bone and Mineral Metabolism.

    Science.gov (United States)

    Fukumoto, Seiji

    2016-04-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and works by binding to Klotho-FGF receptor complex. Excessive and deficient actions of FGF23 result in hypophosphatemic and hyperphosphatemic diseases, respectively. Therefore, it is reasonable to think that modulating FGF23 activities may be a novel therapeutic measure for these diseases. Several preclinical reports indicate that the inhibition of FGF23 activities ameliorates hypophosphatemic rickets/osteomalacia caused by excessive actions of FGF23. In addition, phase I-II clinical trials of anti-FGF23 antibody in adult patients with X-linked hypophosphatemia rickets, the most prevalent cause of genetic FGF23-related hypophosphatemic rickets, indicated that the antibody enhances renal tubular phosphate reabsorption and increases serum phosphate. However, it is not known whether the inhibition of FGF23 activities actually brings clinical improvement of rickets and osteomalacia. Available data indicate that FGF23-FGF receptor/Klotho pathway can be a new drug target for disorders of phosphate and bone metabolism.

  16. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    Science.gov (United States)

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  17. Natural History of Malignant Bone Disease in Hepatocellular Carcinoma: Final Results of a Multicenter Bone Metastasis Survey

    Science.gov (United States)

    Santini, Daniele; Pantano, Francesco; Riccardi, Ferdinando; Di Costanzo, Giovan Giuseppe; Addeo, Raffaele; Guida, Francesco Maria; Ceruso, Mariella Spalato; Barni, Sandro; Bertocchi, Paola; Marinelli, Sara; Marchetti, Paolo; Russo, Antonio; Scartozzi, Mario; Faloppi, Luca; Santoni, Matteo; Cascinu, Stefano; Maiello, Evaristo; Silvestris, Franco; Tucci, Marco; Ibrahim, Toni; Masi, Gianluca; Gnoni, Antonio; Comandone, Alessandro; Fazio, Nicola; Conti, Alessandro; Imarisio, Ilaria; Pisconti, Salvatore; Giommoni, Elisa; Cinieri, Saverio; Catalano, Vincenzo; Palmieri, Vincenzo Ostilio; Infante, Giovanni; Aieta, Michele; Trogu, Antonio; Gadaleta, Cosmo Damiano; Brunetti, Anna Elisabetta; Lorusso, Vito; Silvestris, Nicola

    2014-01-01

    Background Bone is an uncommon site of metastasis in patients with advanced hepatocellular carcinoma (HCC). Therefore, there are few studies concerning the natural history of bone metastasis in patients with HCC. Patients and Methods Data on clinicopathology, survival, skeletal-related events (SREs), and bone-directed therapies for 211 deceased HCC patients with evidence of bone metastasis were statistically analyzed. Results The median age was 70 years; 172 patients were male (81.5%). The median overall survival was 19 months. The median time to the onset of bone metastasis was 13 months (22.2% at HCC diagnosis); 64.9% patients had multiple bone metastases. Spine was the most common site of bone metastasis (59.7%). Most of these lesions were osteolytic (82.4%); 88.5% of them were treated with zoledronic acid. At multivariate analysis, only the Child Score was significantly correlated with a shorter time to diagnosis of bone metastases (p = 0.001, HR = 1.819). The median survival from bone metastasis was 7 months. At multivariate analysis, HCC etiology (p = 0.005), ECOG performance status (p = 0.002) and treatment with bisphosphonate (p = 0.024) were associated with shorter survival after bone disease occurrence. The site of bone metastasis but not the number of bone lesions was associated with the survival from first skeletal related event (SRE) (p = 0.021) and OS (p = 0.001). Conclusions This study provides a significant improvement in the understanding the natural history of skeletal disease in HCC patients. An early and appropriate management of these patients is dramatically needed in order to avoid subsequent worsening of their quality of life. PMID:25170882

  18. Natural history of malignant bone disease in hepatocellular carcinoma: final results of a multicenter bone metastasis survey.

    Directory of Open Access Journals (Sweden)

    Daniele Santini

    Full Text Available BACKGROUND: Bone is an uncommon site of metastasis in patients with advanced hepatocellular carcinoma (HCC. Therefore, there are few studies concerning the natural history of bone metastasis in patients with HCC. PATIENTS AND METHODS: Data on clinicopathology, survival, skeletal-related events (SREs, and bone-directed therapies for 211 deceased HCC patients with evidence of bone metastasis were statistically analyzed. RESULTS: The median age was 70 years; 172 patients were male (81.5%. The median overall survival was 19 months. The median time to the onset of bone metastasis was 13 months (22.2% at HCC diagnosis; 64.9% patients had multiple bone metastases. Spine was the most common site of bone metastasis (59.7%. Most of these lesions were osteolytic (82.4%; 88.5% of them were treated with zoledronic acid. At multivariate analysis, only the Child Score was significantly correlated with a shorter time to diagnosis of bone metastases (p = 0.001, HR = 1.819. The median survival from bone metastasis was 7 months. At multivariate analysis, HCC etiology (p = 0.005, ECOG performance status (p = 0.002 and treatment with bisphosphonate (p = 0.024 were associated with shorter survival after bone disease occurrence. The site of bone metastasis but not the number of bone lesions was associated with the survival from first skeletal related event (SRE (p = 0.021 and OS (p = 0.001. CONCLUSIONS: This study provides a significant improvement in the understanding the natural history of skeletal disease in HCC patients. An early and appropriate management of these patients is dramatically needed in order to avoid subsequent worsening of their quality of life.

  19. Fatigue in Parkinson's disease: The contribution of cerebral metabolic changes.

    Science.gov (United States)

    Cho, Sang Soo; Aminian, Kelly; Li, Crystal; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2017-01-01

    Fatigue is a common and disabling non-motor symptom in Parkinson's disease associated with a feeling of overwhelming lack of energy. The aim of this study was to identify the neural substrates that may contribute to the development of fatigue in Parkinson's disease. Twenty-three Parkinson's disease patients meeting UK Brain Bank criteria for the diagnosis of idiopathic Parkinson's disease were recruited and completed the 2-[(18) F]fluoro-2-deoxy-D-glucose (FDG)-PET scan. The metabolic activities of Parkinson's disease patients with fatigue were compared to those without fatigue using statistical parametric mapping analysis. The Parkinson's disease group exhibiting higher level of fatigue showed anti-correlated metabolic changes in cortical regions associated with the salience (i.e., right insular region) and default (i.e., bilateral posterior cingulate cortex) networks. The metabolic abnormalities detected in these brain regions displayed a significant correlation with level of fatigue and were associated with a disruption of the functional correlations with different cortical areas. These observations suggest that fatigue in Parkinson's disease may be the expression of metabolic abnormalities and impaired functional interactions between brain regions linked to the salience network and other neural networks. Hum Brain Mapp 38:283-292, 2017. © 2016 Wiley Periodicals, Inc.

  20. Risk factors for developing mineral bone disease in phenylketonuric patients.

    Science.gov (United States)

    Mirás, Alicia; Bóveda, M Dolores; Leis, María R; Mera, Antonio; Aldámiz-Echevarría, Luís; Fernández-Lorenzo, José R; Fraga, José M; Couce, María L

    2013-03-01

    There is a compromised bone mass in phenylketonuria patients compared with normal population, but the mechanisms responsible are still a matter of investigation. In addition, tetrahydrobiopterin therapy is a new option for a significant proportion of these patients and the prevalence of mineral bone disease (MBD) in these patients is unknown. We conducted a cross-sectional observational study including 43 phenylketonuric patients. Bone densitometry, nutritional assessment, physical activity questionnaire, biochemical parameters, and molecular study were performed in all patients. Patients were stratified by phenotype, age and type of treatment. The MBD prevalence in phenylketonuria was 14%. Osteopenic and osteoporotic (n=6 patients) had an average daily natural protein intake significantly lower than the remaining (n=37) patients with PKU (14.33 ± 8.95 g vs 21.25 ± 20.85 g). Besides, a lower body mass index was found. There were no statistical differences in physical activity level, calcium, phosphorus and fat intake, and in phenylalanine, vitamin D, paratohormone, docosahexaenoic and eicosapentaenoic acid blood levels. Mutational spectrum was found in up to 30 different PAH genotypes and no relationship was established among genotype and development of MBD. None of the twelve phenylketonuric patients treated with tetrahydrobiopterin (27.9%), for an average of 7.1 years, developed MBD. Natural protein intake and blood levels of eicosapentaenoic acid were significantly higher while calcium intake was lower in these patients. This study shows that the decrease in natural protein intake can play an important role in MBD development in phenylketonuric patients. Therapy with tetrahydrobiopterin allows a more relaxed protein diet, which is associated with better bone mass.

  1. Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease

    Energy Technology Data Exchange (ETDEWEB)

    Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg; Baptist, Myma; Chang, Jessie; Collette, Nicole M.; Ovcharenko, Dmitriy; Plajzer-Frick, Ingrid; Rubin, Edward M.

    2005-04-15

    Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent with the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.

  2. The Application of Bone Marrow Transplantation to the Treatment of Genetic Diseases

    Science.gov (United States)

    Parkman, Robertson

    1986-06-01

    Genetic diseases can be treated by transplantation of either normal allogeneic bone marrow or, potentially, autologous bone marrow into which the normal gene has been inserted in vitro (gene therapy). Histocompatible allogeneic bone marrow transplantation is used for the treatment of genetic diseases whose clinical expression is restricted to lymphoid or hematopoietic cells. The therapeutic role of bone marrow transplantation in the treatment of generalized genetic diseases, especially those affecting the central nervous system, is under investigation. The response of a generalized genetic disease to allogeneic bone marrow transplantation may be predicted by experiments in vitro. Gene therapy can be used only when the gene responsible for the disease has been characterized. Success of gene therapy for a specific genetic disease may be predicted by its clinical response to allogeneic bone marrow transplantation.

  3. Associations of dietary calcium intake with metabolic syndrome and bone mineral density among the Korean population: KNHANES 2008-2011.

    Science.gov (United States)

    Kim, M K; Chon, S J; Noe, E B; Roh, Y H; Yun, B H; Cho, S; Choi, Y S; Lee, B S; Seo, S K

    2017-01-01

    Excessive amount of calcium intake increased risk for metabolic syndrome in men. However, modest amount decreased the risk of metabolic syndrome and osteoporosis in postmenopausal women. Modest amount of calcium also increased bone mineral density (BMD) in both men and postmenopausal women.

  4. 骨代谢与肠道菌群%Bone metabolism and gut microbiota

    Institute of Scientific and Technical Information of China (English)

    袁斯远; 何芳; 盛彤; 石见佳子; 王新祥

    2015-01-01

    背景:骨代谢与肠道菌群肠道内定植了数量众多、种类丰富的肠道菌群,它们和宿主间形成了互利共生的关系,对宿主的健康产生着重大影响。研究发现肠道菌群不仅调控肠道活动,并且能通过调节免疫系统状态进而干预骨代谢。目的:综述肠道菌群对骨代谢影响研究的新进展。方法:以“Gut microbiota,immunesystem,bonemetabolism,osteoporosis”为关键词检索PubMed数据库,选择内容与肠道菌群、免疫及骨代谢相关文献,同一领域文献则选择近期发表或发表在权威杂志文章。最总共纳入文献46篇,从肠道菌群与免疫、骨代谢与免疫、肠道菌群与骨代谢3方面进行综述。结果与结论:肠道菌群对骨质疏松症的影响研究将涉及到骨生理学、肠胃病学、免疫学以及微生物学等多门学科。无菌小鼠与人体内实验研究发现肠道菌群对骨代谢具有重要影响,利用抗生素、益生菌、益生元干预肠道菌群进一步证实了肠道菌群对骨量具有很好的调节作用。这些作用主要表现在迅速生长期,例如骨量需求较大的青春期,以及骨量丢失较明显的妇女更年期。%BACKGROUND:The gut microbiota in our intestine performs numerous useful functions and has a major impact on the host’s health. Recently some studies have revealed that the gut microbiota cannot only control intestinal activity but also affect bone metabolism by regulating the immune system. OBJECTIVE:To review the new research development in the effects of gut microbiota on bone metabolism. METHODS: We retrieved the PubMed database using “gut microbiota, immune system, bone metabolism, osteoporosis” as keywords. A total of 46 articles were included which were related to gut microbiota, immune system and bone metabolism. For the articles in the same field, those published recently or in authorized journals were selected. RESULTS AND CONCLUSION

  5. Obesity, Metabolic Syndrome, and Airway Disease: A Bioenergetic Problem?

    OpenAIRE

    2014-01-01

    Common pathophysiological mechanisms are increasingly being recognized between obesity, metabolic dysfunction, and airway disease. Obesity increases asthma risk or severity, in multiple studies across the globe. Metabolic changes of obesity such as diabetes or insulin resistance are associated with asthma as well as poorer lung function. Insulin resistance has also been found to increase asthma risk independent of body mass. Conversely, asthma has been associated with abnormal glucose and lip...

  6. Inflammation meets metabolic disease: Gut feeling mediated by GLP-1

    Directory of Open Access Journals (Sweden)

    Tamara eZietek

    2016-04-01

    Full Text Available Chronic diseases such as obesity and diabetes, cardiovascular and inflammatory bowel diseases (IBD share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways like the unfolded protein response (UPR, alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular the L cell-derived incretin hormone glucagon-like peptide 1 (GLP-1 has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D. Yet, accumulating data indicates a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment including the microbiota via receptors and transporters. Subsequently mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling.This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity and disease.

  7. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease.

    Science.gov (United States)

    Han, Thang S; Lean, Mike Ej

    2016-01-01

    The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30-40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5-10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35-40 kg/m(2) with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists.

  8. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Thang S Han

    2016-02-01

    Full Text Available The metabolic syndrome is a condition characterized by a special constellation of reversible major risk factors for cardiovascular disease and type 2 diabetes. The main, diagnostic, components are reduced HDL-cholesterol, raised triglycerides, blood pressure and fasting plasma glucose, all of which are related to weight gain, specifically intra-abdominal/ectopic fat accumulation and a large waist circumference. Using internationally adopted arbitrary cut-off values for waist circumference, having metabolic syndrome doubles the risk of cardiovascular disease, but offers an effective treatment approach through weight management. Metabolic syndrome now affects 30–40% of people by age 65, driven mainly by adult weight gain, and by a genetic or epigenetic predisposition to intra-abdominal/ectopic fat accumulation related to poor intra-uterine growth. Metabolic syndrome is also promoted by a lack of subcutaneous adipose tissue, low skeletal muscle mass and anti-retroviral drugs. Reducing weight by 5–10%, by diet and exercise, with or without, anti-obesity drugs, substantially lowers all metabolic syndrome components, and risk of type 2 diabetes and cardiovascular disease. Other cardiovascular disease risk factors such as smoking should be corrected as a priority. Anti-diabetic agents which improve insulin resistance and reduce blood pressure, lipids and weight should be preferred for diabetic patients with metabolic syndrome. Bariatric surgery offers an alternative treatment for those with BMI ≥ 40 or 35–40 kg/m2 with other significant co-morbidity. The prevalence of the metabolic syndrome and cardiovascular disease is expected to rise along with the global obesity epidemic: greater emphasis should be given to effective early weight-management to reduce risk in pre-symptomatic individuals with large waists.

  9. Metabolic Syndrome, Chronic Kidney, and Cardiovascular Diseases: Role of Adipokines

    Directory of Open Access Journals (Sweden)

    Manfredi Tesauro

    2011-01-01

    Full Text Available Obesity is a chronic disease, whose incidence is alarmingly growing. It is associated with metabolic abnormalities and cardiovascular complications. These complications are clustered in the metabolic syndrome (MetS leading to high cardiovascular morbidity and mortality. Obesity predisposes to diabetic nephropathy, hypertensive nephrosclerosis, and focal and segmental glomerular sclerosis and represents an independent risk factor for the development and progression of chronic kidney disease (CKD. Albuminuria is a major risk factor for cardiovascular diseases (CVDs. Microalbuminuria has been described as early manifestation of MetS-associated kidney damage and diabetic nephropathy. Obesity and MetS affect renal physiology and metabolism through mechanisms which include altered levels of adipokines such as leptin and adiponectin, oxidative stress, and inflammation. Secretory products of adipose tissue also deeply and negatively influence endothelial function. A better understanding of these interactions will help in designing more effective treatments aimed to protect both renal and cardiovascular systems.

  10. Metabolic aspects of adult patients with nonalcoholic fatty liver disease

    Science.gov (United States)

    Abenavoli, Ludovico; Milic, Natasa; Di Renzo, Laura; Preveden, Tomislav; Medić-Stojanoska, Milica; De Lorenzo, Antonino

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and it encompasses a spectrum from simple steatosis to steatohepatitis, fibrosis, or cirrhosis. The mechanisms involved in the occurrence of NAFLD and its progression are probably due to a metabolic profile expressed within the context of a genetic predisposition and is associated with a higher energy intake. The metabolic syndrome (MS) is a cluster of metabolic alterations associated with an increased risk for the development of cardiovascular diseases and diabetes. NAFLD patients have more than one feature of the MS, and now they are considered the hepatic components of the MS. Several scientific advances in understanding the association between NAFLD and MS have identified insulin resistance (IR) as the key aspect in the pathophysiology of both diseases. In the multi parallel hits theory of NAFLD pathogenesis, IR was described to be central in the predisposition of hepatocytes to be susceptible to other multiple pathogenetic factors. The recent knowledge gained from these advances can be applied clinically in the prevention and management of NAFLD and its associated metabolic changes. The present review analyses the current literature and highlights the new evidence on the metabolic aspects in the adult patients with NAFLD. PMID:27610012

  11. Role of staging bone marrow examination in children with Hodgkin disease

    NARCIS (Netherlands)

    Mahoney, DH; Schreuders, LC; Gresik, MV; McClain, KL

    1998-01-01

    Purpose. To determine the value of bone marrow trephine biopsy as part of the clinical staging for children presenting with Hodgkin disease. Patients and Methods, A retrospective study of pre-treatment bone marrow examinations was undertaken to examine the value of bone marrow staging in children wi

  12. Inhibition of autoimmune Chagas-like heart disease by bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Maria C Guimaro

    2014-12-01

    Full Text Available Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory.To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8β+ effector cells that expressed TCRγδ, vβ1 and vβ2 receptors, which infiltrated the adult hearts and the reporter heart grafts.Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.

  13. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  14. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  15. NAD+ metabolism in health and disease.

    Science.gov (United States)

    Belenky, Peter; Bogan, Katrina L; Brenner, Charles

    2007-01-01

    Nicotinamide adenine dinucleotide (NAD(+)) is both a coenzyme for hydride-transfer enzymes and a substrate for NAD(+)-consuming enzymes, which include ADP-ribose transferases, poly(ADP-ribose) polymerases, cADP-ribose synthases and sirtuins. Recent results establish protective roles for NAD(+) that might be applicable therapeutically to prevent neurodegenerative conditions and to fight Candida glabrata infection. In addition, the contribution that NAD(+) metabolism makes to lifespan extension in model systems indicates that therapies to boost NAD(+) might promote some of the beneficial effects of calorie restriction. Nicotinamide riboside, the recently discovered nucleoside precursor of NAD(+) in eukaryotic systems, might have advantages as a therapy to elevate NAD(+) without inhibiting sirtuins, which is associated with high-dose nicotinamide, or incurring the unpleasant side-effects of high-dose nicotinic acid.

  16. NF-κB, inflammation, and metabolic disease.

    Science.gov (United States)

    Baker, Rebecca G; Hayden, Matthew S; Ghosh, Sankar

    2011-01-05

    Metabolic disorders including obesity, type 2 diabetes, and atherosclerosis have been viewed historically as lipid storage disorders brought about by overnutrition. It is now widely appreciated that chronic low-grade inflammation plays a key role in the initiation, propagation, and development of metabolic diseases. Consistent with its central role in coordinating inflammatory responses, numerous recent studies have implicated the transcription factor NF-κB in the development of such diseases, thereby further establishing inflammation as a critical factor in their etiology and offering hope for the development of new therapeutic approaches for their treatment.

  17. Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal.

    Science.gov (United States)

    Wergedal, Jon E; Veskovic, Katarina; Hellan, Minea; Nyght, Christine; Balemans, Wendy; Libanati, Cesar; Vanhoenacker, Filip M; Tan, Johan; Baylink, David J; Van Hul, Wim

    2003-12-01

    Van Buchem disease is an autosomal recessive disease characterized by overgrowth of the skeleton. In a group of Dutch patients the disease is thought to be due to a 52-kb deletion that results in decreased expression of the SOST gene. To further characterize the disease, the morphology of the metacarpals of six adult subjects and two juveniles with Van Buchem disease were measured on hand x-rays along with nine normal adults and nine adult carriers of the disease. Serum bone formation markers, alkaline phosphatase, type I procollagen peptide, and osteocalcin, and the urinary bone resorption marker, cross-linked N-telopeptide, were determined. Van Buchem patients had increased metacarpal outer diameter, inner diameter, cortical thickness, and bone mineral density. Calculated bone volume and derived polar moment of inertia were markedly elevated (elevations of 158 +/- 33% and 497 +/- 95%, respectively) consistent with increased bone strength. Serum procollagen peptide and osteocalcin were significantly higher in Van Buchem patients. Urinary cross-linked N-telopeptide was significantly elevated in Van Buchem patients. None of these changes was found in Van Buchem carriers. These observations indicate that decreased expression of the SOST gene can lead to increased bone formation and to stronger bones.

  18. Altered cholesterol and fatty acid metabolism in Huntington disease.

    Science.gov (United States)

    Block, Robert C; Dorsey, E Ray; Beck, Christopher A; Brenna, J Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.

  19. Comparative study of positron emission tomography and quantitative digital radiography (QDR) in detecting effects of aging and diet on bone metabolism of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K.; Inoue, Tomio; Tomiyoshi, Katsumi; Sarwar, M.; Oriuchi, Noboru; Mizunuma, Hideki; Endo, Keigo [Gunma Univ., Maebashi (Japan). School of Medicine

    1998-07-01

    The purpose of this study was to compare positron emission tomography and quantitative digital radiography (QDR) in detecting the effects of aging and diet on bone metabolism. Bone imaging of guinea pigs was performed with fluorine-18 fluoride ions using a high-resolution animal PET system to analyze bone metabolism quantitatively in different age groups of guinea pigs, young (8 weeks), adult (36 weeks), and aged groups (96 weeks), and also in a dietary manipulation group (low calcium and low vitamin D{sub 3} diet for 1, 2, and 3 weeks). A three-compartment kinetic model was applied for the analysis of bone metabolism to evaluate the rate constant (K, K1-K4). There was a significant difference in K-constant between the young and other groups. The K-constant was higher (0.100{+-}0.005 ml/min/ml) in the young group than in adults (0.028{+-}0.001 ml/min/ml) (p<0.001) and the aged group (0.047{+-}0.020 ml/min/ml). This high value of the K-constant in the young group indicates high turnover in bone metabolism, but there was no significant difference between the adult and aged groups. Bone mineral density (BMD) was lower in the young group (0.15{+-}0.026 g/cm{sup 2}) than in the adult (0.230{+-}0.021 g/cm{sup 2}) (p<0.001) and aged groups (0.26{+-}0.03 g/cm{sup 2}). There was no significant difference in BMD between the adult and aged groups. Although there was no difference in BMD between the control and dietary manipulation groups, PET study revealed a significant difference in K-constant between them (0.028{+-}0.001 vs. 0.090{+-}0.009 ml/min/ml) (p<0.001). The quantitative skeletal dynamic PET study with {sup 18}F fluoride ions was more sensitive and superior in the early detection of metabolic disorders in bone disease than QDR. (author)

  20. Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats.

    Science.gov (United States)

    Abegg, Kathrin; Gehring, Nicole; Wagner, Carsten A; Liesegang, Annette; Schiesser, Marc; Bueter, Marco; Lutz, Thomas A

    2013-11-01

    Roux-en-Y gastric bypass (RYGB) surgery leads to bone loss in humans, which may be caused by vitamin D and calcium malabsorption and subsequent secondary hyperparathyroidism. However, because these conditions occur frequently in obese people, it is unclear whether they are the primary causes of bone loss after RYGB. To determine the contribution of calcium and vitamin D malabsorption to bone loss in a rat RYGB model, adult male Wistar rats were randomized for RYGB surgery, sham-operation-ad libitum fed, or sham-operation-body weight-matched. Bone mineral density, calcium and phosphorus balance, acid-base status, and markers of bone turnover were assessed at different time points for 14 wk after surgery. Bone mineral density decreased for several weeks after RYGB. Intestinal calcium absorption was reduced early after surgery, but plasma calcium and parathyroid hormone levels were normal. 25-hydroxyvitamin D levels decreased, while levels of active 1,25-dihydroxyvitamin D increased after surgery. RYGB rats displayed metabolic acidosis due to increased plasma lactate levels and increased urinary calcium loss throughout the study. These results suggest that initial calcium malabsorption may play a key role in bone loss early after RYGB in rats, but other factors, including chronic metabolic acidosis, contribute to insufficient bone restoration after normalization of intestinal calcium absorption. Secondary hyperparathyroidism is not involved in postoperative bone loss. Upregulated vitamin D activation may compensate for any vitamin D malabsorption.

  1. Pathological fracture of the femur in a patient with Paget's disease of bone: a case report.

    Science.gov (United States)

    Petrescu, Pompiliu HoraŢiu; Izvernariu, Dragoş Andrei; Iancu, Cătălina; Dinu, Gabriel Ovidiu; Berceanu-Văduva, Marcel Mihai; Crişan, Dan; Iacob, Mihaela; Bucur, Venera Margareta; RăuŢia, Ion Călin; Prejbeanu, Ion Radu; Dema, Sorin; DuŢă, Ciprian Constantin

    2016-01-01

    Paget's disease of bone is a benign disease characterized by exaggerated remodeling of the bone matrix after osteoclast-mediated bone destruction. Its etiology is still unknown, despite the fact that it was discovered and described in 1877, but genetic factors and environmental triggers were shown to play their part in the pathogenesis of the disease. The main clinical presentations of the disease are related to bone pain and deformities. Radiological diagnosis is the main detection tool, though many monostotic Paget's disease cases may remain undiagnosed. We present the case of an 81-year-old male patient admitted to the Clinic of Orthopedics, Emergency County Hospital, Timisoara, Romania, with intense pain and deformity of the upper left thigh. Radiological examination performed shows a complete fracture of the upper third diaphysis of the left femur with suggestive signs for Paget's disease of the bone therefore a biopsy was taken and the patient was treated by surgical realignment with favorable evolution. He was discharged 13 days after surgery. The biopsy of the bone revealed extensive bone remodeling with numerous osteoclasts and extensive bone matrix deposition, unevenly stained and unevenly mineralized and reverse cement lines, which are consistent with the diagnosis of Paget's disease of the bone. Histomorphometric analysis show intense matrix deposition with a highly active remodeling process. Computed tomography (CT) scans were performed three years later and show the extension of the disease into the lower half of the left femur.

  2. Machine learning based analytics of micro-MRI trabecular bone microarchitecture and texture in type 1 Gaucher disease.

    Science.gov (United States)

    Sharma, Gulshan B; Robertson, Douglas D; Laney, Dawn A; Gambello, Michael J; Terk, Michael

    2016-06-14

    Type 1 Gaucher disease (GD) is an autosomal recessive lysosomal storage disease, affecting bone metabolism, structure and strength. Current bone assessment methods are not ideal. Semi-quantitative MRI scoring is unreliable, not standardized, and only evaluates bone marrow. DXA BMD is also used but is a limited predictor of bone fragility/fracture risk. Our purpose was to measure trabecular bone microarchitecture, as a biomarker of bone disease severity, in type 1 GD individuals with different GD genotypes and to apply machine learning based analytics to discriminate between GD patients and healthy individuals. Micro-MR imaging of the distal radius was performed on 20 type 1 GD patients and 10 healthy controls (HC). Fifteen stereological and textural measures (STM) were calculated from the MR images. General linear models demonstrated significant differences between GD and HC, and GD genotypes. Stereological measures, main contributors to the first two principal components (PCs), explained ~50% of data variation and were significantly different between males and females. Subsequent PCs textural measures were significantly different between GD patients and HC individuals. Textural measures also significantly differed between GD genotypes, and distinguished between GD patients with normal and pathologic DXA scores. PCA and SVM predictive analyses discriminated between GD and HC with maximum accuracy of 73% and area under ROC curve of 0.79. Trabecular STM differences can be quantified between GD patients and HC, and GD sub-types using micro-MRI and machine learning based analytics. Work is underway to expand this approach to evaluate GD disease burden and treatment efficacy.

  3. Camurati-Engelmann's Disease on {sup 99m}Tc-MDP Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hai Jeon; Oh, So Won; Paeng, Jin Chul; Lee, You Kyung; Choi, In Ho; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    A 24 year-old female presented for a {sup 99m}Tc-methylene diphosphonate (MDP) whole body bone scan due to chronic pain in the bilateral lower extremities that has aggravated since 2002. She was diagnosed with Camurati-Engelmann disease (CED) based on the clinical and radiological findings in 2002, and she re-visited our institute to evaluate disease status at this time. CED is a rare autosomal dominant type of bone dysplasia characterized by progressive cortical thickening of long bones, and narrowing of medullary cavity, and thus presents with typical clinical symptoms and signs such as chronic pain in the extremities, muscle weakness, and waddling gait. On the {sup 99m}Tc-MDP bone scan performed to evaluate disease status, intense increased uptake was seen in the skull, facial bones, bilateral scapulae, bilateral long bones, and bilateral pelvic bones, which clearly demonstrated the extent of CED involvement.

  4. Therapeutic Effect of Cistanoside A on Bone Metabolism of Ovariectomized Mice

    Directory of Open Access Journals (Sweden)

    Xiaoxue Xu

    2017-01-01

    Full Text Available Cistanoside A (Cis A, an active phenylethanoid glycoside isolated from Cistanche deserticola Y. C. Ma, has received our attention because of its possible role in the treatment of osteoporosis. In the present study, we evaluated the effects of Cis A on an ovariectomized (OVX mice model and investigated its underlying molecular mechanisms of action. After 12 weeks of orally-administrated intervention, Cis A (20, 40 and 80 mg/kg body weight/day exhibited significant antiosteoporotic effects on OVX mice, evidenced by enhanced bone strength, bone mineral density and improved trabecular bone microarchitecture. Meanwhile, the activities of bone resorption markers, including tartrate-resistant acid phosphatase (TRAP, deoxypyridinoline (DPD and cathepsin K, were decreased, and the bioactivity of bone formation marker alkaline phosphatase (ALP was increased. Mechanistically, Cis A inhibited the expression of TNF-receptor associated factor 6 (TRAF6, an upstream molecule that is shared by both nuclear factor kappa-light chain enhancer of activated B cells (NF-κB and phosphatidylinositol 3-kinase (PI3K/Akt pathways and subsequently suppressed the levels of receptor activators of nuclear factor kappaB ligand (RANKL, downregulated the expression of NF-κB and upregulated osteoprotegerin (OPG, PI3K and Akt, which means Cis A possessed antiosteoporotic activity in ovariectomized mice via TRAF6-mediated NF-kappaB inactivation and PI3K/Akt activation. Put together, we present novel findings that Cis A, by downregulating TRAF6, coordinates the inhibition of NF-κB and stimulation of PI3K/Akt pathways to promote bone formation and prevent bone resorption. These data demonstrated the potential of Cis A as a promising agent for the treatment of osteoporosis disease.

  5. Mitochondria in metabolic disease: getting clues from proteomic studies.

    Science.gov (United States)

    Peinado, Juan R; Diaz-Ruiz, Alberto; Frühbeck, Gema; Malagon, Maria M

    2014-03-01

    Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.

  6. Effect of vitamin D on bone metabolism in diabetic rats and its related mechanism

    Institute of Scientific and Technical Information of China (English)

    王芳

    2014-01-01

    Objective To study the effect of 1,25-dihydroxyvitamin D3on bone metabolism in diabetic rats and the related molecular mechanism.Methods A total of 45healthy 6-8 weeks old male Sprague Dawley(SD)rats were treated with streptozotocin.The streptozotocin-induced diabetic rats were randomly assigned to diabetic group(DM),low dose vitamin D treated group(LD),and high dose vitamin D treated group(HD).Another 12healthy SD rats were used as normol control group(NC).The rats in NC group and DM group were fed with 0.05

  7. MODERN LIFE AND NEW DISEASES: METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Ahmet KORKMAZ

    2006-08-01

    Full Text Available Although modern human genome remained relatively constant, the profound changes in its environment has been appeared. Genome are needed time to adapt these changes and at this point, the discordance leed the problem which have high mortality, morbidity, so-called “diseases of civilisation”. Some of the main changes occurred in environment are daily lifestyle conditions and dietary habits. These changes has started with industrial revolution and hastened with 20th century. If the environmental changes is accepted to continue, it is clear to understand that “diseases of civilisation” remain as a serious public health problem in front of us. This problem is not only for industrialized Western civilitasion but also for our country that continue to industrialize. [TAF Prev Med Bull 2006; 5(4.000: 307-316

  8. Gene expression profile in osteoclasts from patients with Paget's disease of bone.

    Science.gov (United States)

    Michou, Laetitia; Chamoux, Estelle; Couture, Julie; Morissette, Jean; Brown, Jacques P; Roux, Sophie

    2010-03-01

    Paget's disease of bone (PDB) is a common metabolic bone disorder with a significant genetic component. To date, only one gene associated with PDB has been identified, the p62-Sequestosome1 gene (SQSTM1), and more than 20 mutations of this gene have been reported in PDB, the most common being the P392L substitution. In order to search for differentially expressed genes in PDB, we investigated the relative gene expression profile of candidate genes in osteoclast (OCL) cultures from 12 PDB patients and six unmatched healthy controls with known genetic status regarding p62, including healthy carriers of the P392L mutation. We selected 48 OCL-expressed candidate genes that may be involved in relevant pathways of PDB pathogenesis, such as OCL signaling, survival, bone resorption activity, or adhesion. In OCL cultures derived from peripheral blood mononuclear cells, total RNA extraction was performed, followed by real-time PCR experiments. Relative quantification analysis utilized the qBase method where relative expression levels were normalized with respect to a set of reference primer pairs for three housekeeping genes. When compared to non-mutated healthy controls, OCL cultures from PDB patients displayed a significant down-regulation in genes involved in apoptosis (CASP3 and TNFRSF10A), in cell signaling (TNFRSF11A), in the OCL bone resorbing function (ACP5 and CTSK) and in the gene coding for Tau protein (MAPT) (all comparisons, pOCL, and highlight the role of altered apoptosis pathways in these cells. They also suggest that the SQSTM1 P392L mutation plays a role in PDB pathogenesis, even at early preclinical stages in healthy carriers of the P392L mutation.

  9. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy?

    Institute of Scientific and Technical Information of China (English)

    Antonio; Desmond; McCarthy; Ana; María; Cortizo; Claudia; Sedlinsky

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus(DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphateactivated protein kinase(AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical(in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an antiosteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint.

  10. Metabolomics reveals metabolic biomarkers of Crohn's disease

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, J.K.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P.

    2009-06-01

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.

  11. Effect of oral hypoglycaemic agents on bone metabolism in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    B. Siddhartha Kumar

    2012-04-01

    Full Text Available Diabetes mellitus (DM and osteoporosis are the two important public health problems in India. The burden of both these conditions is expected to increase in the near future in view of changing lifestyle habits and ageing population. Indians are at risk of osteoporosis due to their low body mass index (BMI, genetic predisposition and nutritional factors. The diseases type 1 DM and type 2 DM (T2DM are associated with increased fracture risk in the disease population, in spite of difference in the bone mineral density (BMD. An increase in fracture risk is also reported among older patients with T2DM despite frequently reported normal or increased BMD. Administration of insulin stimulates osteoblast activity and bone mineral apposition rates. The impact of endogenous insulin production, insulin sensitivity, and exogenous insulin administration as an anabolic agent for bone in T2DM has not been clarified. Biguanides and sulphonylureas do not appear to have adverse effects on BMD. Preclinical evidence suggests that incretin-based drugs may be beneficial for bone, but clinical evidence to support this hypothesis is not yet available. Thiazolidinedione (TZD group of agents have been implicated in causing osteoporosis in various animal studies and some human studies available till date. The debate regarding this is issue is still ongoing. Randomized controlled studies with larger sample size preferably involving multiple centres, multiple ethnicities are required to answer these queries.

  12. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption.

    Science.gov (United States)

    An, Jing; Hao, Dingjun; Zhang, Qian; Chen, Bo; Zhang, Rui; Wang, Yi; Yang, Hao

    2016-07-01

    Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine.

  13. Metabolic syndrome as a risk factor for gallstone disease

    Institute of Scientific and Technical Information of China (English)

    Nahum Méndez-Sánchez; Norberto C. Chavez-Tapia; Daniel Motola-Kuba; Karla Sanchez-Lara; Guadalupe Ponciano-Rodríguez; Héctor Baptista; Martha H. Ramos; Misael Uribe

    2005-01-01

    AIM: To establish an association between the presence of metabolic syndrome and the development of gallstone disease.METHOIDS: We carried out a cross-sectional study in a check-up unit in a university hospital in Mexico City. We enrolled 245 subjects, comprising 65 subjects with gallstones (36 women, 29 men) and 180 controls (79women and 101 men without gallstones). Body mass index, waist circumference, blood pressure, plasma insulin, and serum lipids and lipoproteins levels were measured. Insulin resistance was calculated by homeostasis model assessment. Unconditional logistic regressionanalysis (univariate and multivariate) was used to calculate the risk of gallstone disease associated with the presence of at least three of the criteria (Adult Treatment Panel Ⅲ). Analyses were adjusted for age and sex.RESULTS: Among 245 subjects, metabolic syndrome was present in 40% of gallstone disease subjects, compared with 17.2% of the controls, adjusted by age and gender (odds ratio (OR) = 2.79; 95%CI, 1.46-5.33; P = 0.002),a dose-dependent effect was observed with each component of metabolic syndrome (OR = 2.36, 95%CI, 0.72-7.71;P = 0.16 with one component and OR = 5.54, 95%CI,1.35-22.74; P = 0.02 with four components of metabolic syndrome). Homeostasis model assessment was significantly associated with gallstone disease (adjusted OR = 2.25;95%CI, 1.08-4.69; P = 0.03).CONCLUSION: We conclude that as for cardiovascular disease and diabetes mellitus, gallstone disease appears to be strongly associated with metabolic syndrome.

  14. Assessing the human gut microbiota in metabolic diseases.

    Science.gov (United States)

    Karlsson, Fredrik; Tremaroli, Valentina; Nielsen, Jens; Bäckhed, Fredrik

    2013-10-01

    Recent findings have demonstrated that the gut microbiome complements our human genome with at least 100-fold more genes. In contrast to our Homo sapiens-derived genes, the microbiome is much more plastic, and its composition changes with age and diet, among other factors. An altered gut microbiota has been associated with several diseases, including obesity and diabetes, but the mechanisms involved remain elusive. Here we discuss factors that affect the gut microbiome, how the gut microbiome may contribute to metabolic diseases, and how to study the gut microbiome. Next-generation sequencing and development of software packages have led to the development of large-scale sequencing efforts to catalog the human microbiome. Furthermore, the use of genetically engineered gnotobiotic mouse models may increase our understanding of mechanisms by which the gut microbiome modulates host metabolism. A combination of classical microbiology, sequencing, and animal experiments may provide further insights into how the gut microbiota affect host metabolism and physiology.

  15. Metaflammation, NLRP3 Inflammasome Obesity and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-12-01

    Full Text Available BACKGROUND: Increasing prevalence of obesity gives rise to many problems associated with multiple morbidities, such as diabetes, hypertension, heart disease, sleep apnea and cancer. The mechanism of obesity is very complex, thus its link to various disease is poorly understood. This review highlights important concepts in our understanding of the pathogenesis of obesity and related complications. CONTENT: Many studies have tried to explore the exciting and puzzling links between metabolic homeostasis and inflammatory responses. A form of subclinical, low-grade systemic inflammation is known to be associated with both obesity and chronic disease. This, later called as "metaflammation", refers to metabolically triggered inflammation. The nutrient-sensing pathway and the immune response coordination are facilitated by these molecular sites in order to maintain homeostasis under diverse metabolic and immune conditions. Recent studies have found that the NLRP3 inflammasome during metabolic stress forms a tie linking TXNIP, oxidative stress, and IL-1β production. This provides new opportunities for research and therapy for the disease often described as the next global pandemic: type 2 diabetes mellitus (T2DM. SUMMARY: The crucial role of metaflammation in many complications of obesity shown by the unexpected overlap between inflammatory and metabolic sensors and their downstream tissue responses. Then great interest arose to explore the pathways that integrate nutrient and pathogen sensing, give more understanding in the mechanisms of insulin resistance type 2 diabetes, and other chronic metabolic pathologies. A family of intracellular sensors called NLR family is a critical component of the innate immune system. They can form multiprotein complexes, called inflammasome which is capable of responding to a wide range of stimuli including both microbial and self molecules by activating the cysteine protease caspase-1, leading to processing and

  16. Cross-sectional and longitudinal study protocols of the ‘ADIposity and BOne metabolism: effects of eXercise-induced weight loss in obese adolescents’ (ADIBOX) project

    Science.gov (United States)

    Chaplais, Elodie; Naughton, Geraldine; Greene, David; Pereira, Bruno; Thivel, David; Courteix, Daniel

    2016-01-01

    Introduction A need exists for sustainable and clinically effective weight management interventions, suitable for preventing well-linked chronic disease such as diabetes and cardiovascular disease and some less investigated secondary conditions such as bone alteration. The ADIposity and BOne metabolism: effects of eXercise-induced weight loss in obese adolescents (ADIBOX) protocol was designed to provide a better understanding of the interaction between adipokines and bone hormones in adolescents with obesity and how a 10-month physical activity programme may affect these interactions. Methods and analysis The ADIBOX protocol combines 2 studies. The first study involves a total of 68 adolescents aged 12–16 years. This cross-sectional study will include both males and females (1:1 ratio), either living with obesity/overweight (n=34; body mass index (BMI) ≤97th centile and ≥85th centile) or normal weight (n=34; BMI<85th centile). The second study is a longitudinal study that will include 50 obese adolescent girls and track them over a period of 42 weeks. Weight loss programme will consist of a combination of physical activity and a normocaloric diet. Bone and adiposity-related measurements will be performed every 14 weeks. Both studies will assess participants' anthropometric profile, nutrition and physical activity, body composition, bone densitometry and blood markers of bone, growth and adiposity. Ethics and dissemination The ADIBOX protocol complies with the ethics guidelines for clinical research and has been approved by their respective ethics committee (Australian Catholic University Committee Ethic, Australia and Hospital Sud Est 1 committee, France). Findings from this protocol are expected to clarify the possible interactions between adiposity and bone in childhood obesity and will be disseminated at several research conferences and published articles in peer-reviewed journals. Trial registration number NCT02626273; Pre-results. PMID:27797988

  17. The utility of magnetic resonance imaging for bone involvement in Gaucher disease. Assessing more than bone crises.

    Science.gov (United States)

    Andrade-Campos, Marcio; Valero, Esther; Roca, Mercedes; Giraldo, Pilar

    2016-10-21

    Bone effects are the most frequent cause of disability in Gaucher disease (GD). Magnetic resonance imaging (MRI) has improved the study of bone involvement making it possible to measure the extent of infiltration and to identify localized complications and other lesions. Here we describe the results of our analysis of all bone lesions registered in MRI studies performed in our GD Clinic. A retrospective study was undertaken for all patients with types 1 and 3 GD who underwent MRI evaluation and correlated with clinical, molecular, and other follow-up information obtained from the Spanish GD Registry. 350 MRI studies of 131 GD patients were reviewed (males 53.4%). Mean age: 37.5years (range 13-74yr), 94.6% (124) were GD1 patients. 113/131 (86.3%) of patients presented with at least one bone effect (bone infiltration, bone crisis, avascular necrosis) were 79.4%, while 28.8% showed another bone lesion such as neuronopathic-like arthropathy, hemangioma, other ischemic phenomena, infection-related lesions, secondary neoplasia and tissue infiltration. MRI is a routinely-used tool for the evaluation of GD lesions which improves the assessment of patients before and during therapy, identifies GD complications and finds other concomitant lesions. This work provides a new evaluation of MRI assessment in this complex rare disease.

  18. Perfusion and metabolism imaging studies in Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per

    2012-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are important tools in the evaluation of brain blood flow and glucose metabolism in Parkinson's disease (PD). However, conflicting results are reported in the literature depending on the type of imaging data...

  19. Metabolic disruption identified in the Huntington's disease transgenic sheep model.

    Science.gov (United States)

    Handley, Renee R; Reid, Suzanne J; Patassini, Stefano; Rudiger, Skye R; Obolonkin, Vladimir; McLaughlan, Clive J; Jacobsen, Jessie C; Gusella, James F; MacDonald, Marcy E; Waldvogel, Henry J; Bawden, C Simon; Faull, Richard L M; Snell, Russell G

    2016-02-11

    Huntington's disease (HD) is a dominantly inherited, progressive neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of HTT, encoding huntingtin. There are no therapies that can delay the progression of this devastating disease. One feature of HD that may play a critical role in its pathogenesis is metabolic disruption. Consequently, we undertook a comparative study of metabolites in our transgenic sheep model of HD (OVT73). This model does not display overt symptoms of HD but has circadian rhythm alterations and molecular changes characteristic of the early phase disease. Quantitative metabolite profiles were generated from the motor cortex, hippocampus, cerebellum and liver tissue of 5 year old transgenic sheep and matched controls by gas chromatography-mass spectrometry. Differentially abundant metabolites were evident in the cerebellum and liver. There was striking tissue-specificity, with predominantly amino acids affected in the transgenic cerebellum and fatty acids in the transgenic liver, which together may indicate a hyper-metabolic state. Furthermore, there were more strong pair-wise correlations of metabolite abundance in transgenic than in wild-type cerebellum and liver, suggesting altered metabolic constraints. Together these differences indicate a metabolic disruption in the sheep model of HD and could provide insight into the presymptomatic human disease.

  20. The Nature of Expansion of Paget’s Disease of Bone

    Science.gov (United States)

    2013-04-01

    cell line or normal marrow from uninvolved bones from PDB (5). We obtained the PSV10 cell line from Dr. G. David Roodman (Indiana University...H, Boykin CS, Zhang H, Ishizuka S, Dempster DW, Roodman GD, Windle JJ. A SQSTM1/p62 mutation linked to Paget’s disease increases the...Singer FR, Bruder JM, Roodman GD. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget’s disease of bone. J Clin Invest

  1. [Metabolic disorders and nutritional status in autoimmune thyroid diseases].

    Science.gov (United States)

    Kawicka, Anna; Regulska-Ilow, Bożena; Regulska-Ilow, Bożena

    2015-01-02

    In recent years, the authors of epidemiological studies have documented that autoimmune diseases are a major problem of modern society and are classified as diseases of civilization. Autoimmune thyroid diseases (ATDs) are caused by an abnormal immune response to autoantigens present in the thyroid gland - they often coexist with other autoimmune diseases. The most common dysfunctions of the thyroid gland are hypothyroidism, Graves-Basedow disease and Hashimoto's disease. Hashimoto's thyroiditis can be the main cause of primary hypothyroidism of the thyroid gland. Anthropometric, biochemical and physicochemical parameters are used to assess the nutritional status during the diagnosis and treatment of thyroid diseases. Patients with hypothyroidism are often obese, whereas patients with hyperthyroidism are often afflicted with rapid weight loss. The consequence of obesity is a change of the thyroid hormones' activity; however, weight reduction leads to their normalization. The activity and metabolic rate of thyroid hormones are modifiable. ATDs are associated with abnormalities of glucose metabolism and thus increased risk of developing diabetes mellitus type 1 and type 2. Celiac disease (CD) also increases the risk of developing other autoimmune diseases. Malnutrition or the presence of numerous nutritional deficiencies in a patient's body can be the cause of thyroid disorders. Coexisting deficiencies of such elements as iodine, iron, selenium and zinc may impair the function of the thyroid gland. Other nutrient deficiencies usually observed in patients suffering from ATD are: protein deficiencies, vitamin deficiencies (A, C, B6, B5, B1) and mineral deficiencies (phosphorus, magnesium, potassium, sodium, chromium). Proper diet helps to reduce the symptoms of the disease, maintains a healthy weight and prevents the occurrence of malnutrition. This article presents an overview of selected documented studies and scientific reports on the relationship of metabolic

  2. Evidence for a metabolic shift of arginine metabolism in sickle cell disease

    NARCIS (Netherlands)

    Schnog, JJB; Jager, EH; van der Dijs, FPL; Duits, AJ; Moshage, H; Muskiet, FD; Muskiet, FAJ

    2004-01-01

    Over the last few years, a pivotal role has been ascribed to reduced nitric oxide (NO) availability as a contributing factor to the vaso-occlusive process of sickle cell disease. We investigated whether arginine metabolism in sickle cell patients is different from healthy controls. Blood samples wer

  3. The impact of metabolic disease associated with metabolic syndrome on human pregnancy.

    Science.gov (United States)

    Malek, Antoine

    2014-01-01

    Metabolic diseases induced by metabolic syndrome (MS) have been increased during the past two decades. During healthy pregnancy maternal organs and placenta are challenged to adapt to the increasingly physiological changes. In addition to the increasingly proatherogenic MS, pregnant woman develops a high cardiac output, hypercoagulability, increased inflammatory activity and insulin resistance with dyslipidemia. The MS describes a cluster of metabolic changes associated with an impact on the physiology of many organs. While the metabolic syndrome is directly responsible for the development of atherosclerotic cardiovascular disease, additional impact on human pregnancy like preterm delivery with low-birth-weight infants as well as the development of diseases such as diabetes, preeclampsia and hypertension. Recent evidence suggests that MS is originated in fetal life in association with maternal nutrition during pregnancy and fetal programming which apparently increases the susceptibility for MS in children and later life. This review will describe the MS in association with the origin of the emerging diseases during pregnancy such as diabetes, preeclampsia and others. The influence of perinatal environment and maternal diet and smoking on MS as well as the genetic biomarkers of MS will be described.

  4. Periodontal and biochemical bone metabolism assessment on a chronic oral anticoagulation population treated with dicoumarins

    Science.gov (United States)

    López-Lacomba, Daniel; Roa-López, Antonio; González-Jaranay, Maximino; Gómez-Moreno, Gerardo

    2017-01-01

    Background The aim is to evaluate periodontal alteration and biochemical markers associated with bone turnover in chronic oral with dicoumarins anticoagulant treatment patients. Material and Methods 80 patients treated with oral anticoagulants were divided into 2 cohort: Group A (n=36) 6 month to 1 year with anticoagulant treatment and Group B (n=44) > 2 years with anticoagulant treatment. Clinical evaluation included: Clinical attachment level (CAL), plaque index (PI) and gingival index (GI). Analytically biochemical parameters of bone remodeling (calcium and phosphorus), formation (total acid phosphatase, alkaline phosphatase and osteocalcin) and resorption (tartrate-resistant acid phosphatase and beta-crosslaps) were evaluated. Results High values of PI (67-100%) especially in men and in Group B were observed. Men with anticoagulation treatment length showed an increased GI (49.167 vs 78.083) while Group B women showed a decreased GI in comparison with Group A (59.389 vs 42.120). Women presented a greater average CAL than men as well as Group B vs Group A but without statistical significance. All biochemical markers were decreased respect to values of general population. Osteocalcin in GroupB women showed a statistically significant outcome vs GroupA (p=0.004). Acid phosphatase (total and tartrate-resistant) has a slight increase in Group B women versus Group A, and Beta-crosslap showed lower values in Group A men than Group B and slightly lower in Group A women versus Group B, without statistical significance. Conclusions Patients showed a slight to moderate degree of periodontal affectation, especially gingivitis related to bacterial plaque. Periodontal disorders tended to be more severe in Group B. While bone remodeling showed an overall decrease with greater affectation of bone neoformation phenomena, bone destruction tended to recover and normalize in time. Key words:Periodontal disease, dicoumarin, biochemical markers, bone remodeling. PMID:28160591

  5. EFFECTS OF SHORT TERM PRACTICE OF BHASTRIKA PRANAYAMA ON METABOLIC FITNESS (METF AND BONE INTEGRITY (BI

    Directory of Open Access Journals (Sweden)

    Baljinder Singh Bal

    2015-07-01

    Full Text Available Purpose: The present study was conducted with the objective to determine the short term practice of bhastrika pranayama on Metabolic Fitness and Bone Integrity. Material: 30 university level females between the age group of 21-26 years were selected. The subjects were randomly matched and assigned into two groups: Group-A: Experimental (n 1=15; Group-B: Control (n 2=15. The subjects from Group-A: Experimental were provided to a 4-weeks bhastrika pranayama. Statistical Analysis: Student t test for paired samples was utilized to compare the means of the pre-test and the post-test. Results & Conclusions: Based on the analysis of the results obtained, we conclude that the significant differences were found in Metabolic Fitness (i.e., Maximal Oxygen Consumption (V O2max and blood pressure of University Level Girls. Insignificant between-group differences were noted in Blood Lipid, Blood Sugar and Bone Integrity of University Level Girls.

  6. Systemic metabolic radiotherapy with samarium-153 EDTMP for the treatment of painful bone metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, A. N. [University of Miami School of Medicine, Division of Nuclear Medicine, Miami, FL (United States)

    2001-03-01

    Various radioisotopes conjugated to pyrophosphate analogues have been developed for systemic metabolic radiotherapy. Samarium-153-EDTMP is a 1:1 complex of radioactive Samarium-153 and a Tetraphosphonate (ethylenediamine-tetramethylene phosphonic acid (EDTMP)). Samarium Sm-153-EDTMP has a high affinity for skeletal tissue and concentrates by chemiabsorption in areas of enhanced metabolic activity, where it associates with the hydroxyappetite crystal. Samarium-153 Lexidronam (Quadramet (R)) has been approved for routine use by the FDA. This agent offers several advantages over other agents used for palliating bone pain. Due to its half-life of 46 hours and its beta emissions, a high dose rate can be delivered to regions adjacent to enhanced osteoblastic activity over a short period of time with little residual long term activity being left in the bone marrow. This paper summarizes both animal studies and clinical studies performed with this agent. Special emphasis will be given to the pivotal Phase-III clinical studies and subsequent studies performed since its approval by the FDA. Special considerations regarding appropriate selection of patients, preparation, follow-up of patients and adjustments to the usual recommended dose (1 mCi/Kg (35 Mbq/kg)) will be discussed. Current and future treatment options utilizing Sm-153-EDTMP with other pharmaceuticals appear promising and will substantially extend its use into new areas. In addition, because it also emits a 103 keV gamma ray which makes it suitable for imaging and assessment of biodistribution, dosimetric application are possible in the future.

  7. Systemic metabolic radiotherapy with samarium-153 EDTMP for the treatment of painful bone metastasis.

    Science.gov (United States)

    Serafini, A N

    2001-03-01

    Various radioisotopes conjugated to pyrophosphate analogues have been developed for systemic metabolic radiotherapy. Samarium-153-EDTMP is a 1:1 complex of radioactive Samarium-153 and a Tetraphosphonate [ethylenediamine-tetramethylene phosphonic acid (EDTMP)]. Samarium Sm-153-EDTMP has a high affinity for skeletal tissue and concentrates by chemiabsorption in areas of enhanced metabolic activity, where it associates with the hydroxyapatite crystal. Samarium-153 Lexidronam [Quadramet (R)] has been approved for routine use by the FDA. This agent offers several advantages over other agents used for palliating bone pain. Due to its half-life of 46 hours and its beta emissions, a high dose rate can be delivered to regions adjacent to enhanced osteoblastic activity over a short period of time with little residual long term activity being left in the bone marrow. This paper summarizes both animal studies and clinical studies performed with this agent. Special emphasis will be given to the pivotal Phase-III clinical studies and subsequent studies performed since its approval by the FDA. Special considerations regarding appropriate selection of patients, preparation, follow-up of patients and adjustments to the usual recommended dose [1 mCi/kg (35 Mbq/kg)] will be discussed. Current and future treatment options utilizing Sm-153-EDTMP with other pharmaceuticals appear promising and will substantially extend its use into new areas. In addition, because it also emits a 103 keV gamma ray which makes it suitable for imaging and assessment of biodistribution, dosimetric applications are possible in the future.

  8. Bone scan

    Science.gov (United States)

    ... legs, or spine fractures) Diagnose a bone infection (osteomyelitis) Diagnose or determine the cause of bone pain, ... 2015:chap 43. Read More Broken bone Metabolism Osteomyelitis Review Date 12/10/2015 Updated by: Jatin ...

  9. Clinical and molecular studies related to bone metabolism in patients with congenital adrenal hyperplasia.

    Science.gov (United States)

    Martín, Silvia; Muñoz, Liliana; Pérez, Adriana; Sobrero, Gabriela; Picotto, Gabriela; Ochetti, Mariana; Carpentieri, Agata; Silvano, Liliana; de Barboza, Gabriela Díaz; Signorino, Malvina; Rupérez, Casilda; Bertolotto, Patricia; Ulla, María Rosa; Pellizas, Claudia; Montesinos, María; Tolosa de Talamoni, Nori; Miras, Mirta

    2014-11-01

    Patients with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency need glucocorticoid (GC) therapy, which alters bone mineral metabolism. We analyze clinical and biochemical parameters and different polymorphisms of candidate genes associated with bone mineral density (BMD) in CAH patients. The CAH patients treated with GC and healthy controls were studied. Anthropometric parameters, biochemical markers of bone turnover, and BMD were evaluated. Polymerase chain reaction technique was used to genotype different candidate genes. The 192-192 genotype frequency (IGF-I) was lower in poorly controlled patients than that from controls. In CAH patients, FF genotype (vitamin D receptor, VDR) correlated with lower lumbar spine BMD and there was a significant association between the 0-0 genotype (IGF-I) and high values of β-CrossLaps and a low total BMD. This study contributes to understanding of the association of genetic determinants of BMD with the variable response to GC treatment in CAH patients and demonstrates the usefulness of these genetic polymorphisms.

  10. The role played by phytase and metabolism in the accumulation of uranium in the poultry bones

    Energy Technology Data Exchange (ETDEWEB)

    Arruda-Neto, J.D.T.; Manso Guevara, M.V.; Vanin, V.R.; Deppman, A.; Likhachev, V.P.; Mesa, J.; Helene, O.A.M.; Martins, M.N.; Gouveia, A.N. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Cestari, A.C.; Jorge, S.A.C. [Universidade de Santo Amaro (UNISA), SP (Brazil); Nogueira, G.P.; Fonseca, L.E.C. [UNESP, SP (Brazil). Faculdade de Medicina Veterinaria; Zamboni, C.B.; Saiki, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Jorge, S.A.C. [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Imunologia Viral; Rodriguez, O.; Guzman, F [Institute of Nuclear Sciences and Technology, Havana (Cuba); Garcia, F. [Universidade Estadual de Santa Cruz, BA (Brazil)

    2002-07-01

    Groups of seven days old Cobb broilers were fed with feed doped with uranyl nitrate at a fixed concentration of 20 ppm-U, and two concentrations of phytase (120 and 180 ppm). Two animals per group were sacrificed weekly up to their adultness. The uranium content in tibia was measured by neutron activation analysis. It was observed that the biokinetics of U does not change by administration of phytase, but the U concentration in the bones increased by up to a factor of 2, and in a non expected periodically time oscillating fashion. Quite surprising too, the concentration of uranium ({mu}g-U/g-bone) is decreasing all along the animal life spanning period of 14-42 days, meaning that the skeleton mass is growing faster than the corresponding accumulation of uranium is. This last finding is interpreted as a possible interplay between two metabolic peculiarities, associated both with U transfer to (uptake), and U removed from (clearance) the bones, respectively. (author)

  11. Association between the stress fracture and bone metabolism/quality markers in lacrosse players

    Directory of Open Access Journals (Sweden)

    Wakamatsu K

    2012-07-01

    Full Text Available Kenta Wakamatsu,1 Keishoku Sakuraba,1 Yoshio Suzuki,2 Asako Maruyama,2 Yosuke Tsuchiya,3 Jiro Shikakura,2 Eisuke Ochi31Department of Sports Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan; 2School of Health and Sports Science, Juntendo University, Chiba, Japan; 3Laboratory of Health and Sports Sciences, Meiji Gakuin University, Kanagawa, JapanBackground: Overuse injury including stress fracture is a serious problem for athletes. Recently, the importance of bone metabolism and quality as factors preventing overuse injury has been increasingly recognized. Hence, we hypothesized that markers of bone metabolism and quality are related to overuse injuries.Methods: The subjects, which were elite university lacrosse players (male, n = 35; age, 19.8 ± 1.1; female, n = 49; age, 20.0 ± 1.0, were divided into a stress fracture group and a control group. We measured the subjects’ physical characteristics (height, weight, body mass index, and body fat and bone architecture was evaluated using quantitative ultrasound. Bone alkaline phosphatase, N-telopeptide cross-link of type I collagen, tartrate-resistant acid phosphatase 5b (TRAP-5b, homocysteine, and pentosidine were measured from blood samples obtained from all subjects.Results: No significant difference was observed between groups with respect to height, weight, body mass index, and body fat, as well as quantitative ultrasound. Further, there were no significant differences in the levels of bone alkaline phosphatase, N-telopeptide cross-link of type I collagen, or TRAP-5b between stress fracture and control groups in all subjects and in male subjects. However, a significant increase in TRAP-5b level was observed in the stress fracture group compared with the control in the female subjects (409.9 ± 209.3 and 318.6 ± 81.6 mU/dL, respectively; P < 0.05. Homocysteine and pentosidine did not differ between groups.Conclusion: These results suggest that osteoclast activity of

  12. Metabolic syndrome in inflammatory rheumatic diseases

    Directory of Open Access Journals (Sweden)

    G. La Montagna

    2011-09-01

    Full Text Available Toward the end of the last century a better knowledge of cardiovascular (CV risk factors and their associations led investigators to propose the existence of a unique pathophysiological condition called “metabolic” or “insulin resistance syndrome”. Among all, insulin-resistance and compensatory hyperinsulinemia are considered its most important treatment targets. Different definitions have been provided by World Health Organization (WHO and by The Third Report of The National Cholesterol Education Program’s Adult Treatment Panel (NCEP-ATP III. In particular, abdominal obesity, hypertension, low HDL cholesterol and hyperglicemia are the most common items used for its definition. The presence of MetS is effective in predicting the future risk of diabetes and coronaropathies. The evidence of a higher CV risk rate among different rheumatic inflammatory diseases has recently been associated with high prevalence of MetS in some cases. Rheumatoid or psoriatic arthritis have the large series among arthritis, whereas systemic lupus erythematosus among connective tissue disorders. This review analyses all most important studies about the evidence of MetS in rheumatic patients and the main clinical and prognostic significance of this relation.

  13. Phytanic acid metabolism in health and disease.

    Science.gov (United States)

    Wanders, Ronald J A; Komen, Jasper; Ferdinandusse, Sacha

    2011-09-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.

  14. Adrenergic Receptors and Metabolism: Role in development of cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Michele eCiccarelli

    2013-10-01

    Full Text Available Activation of the adrenergic system has a profound effects on metabolism. Increased circulating catecholamine and activation of the different adrenergic receptors deployed in the various organs produce important metabolic responses which include: 1 increased lipolysis and elevated levels of fatty acids in plasma, 2 increased gluconeogenesis by the liver to provide substrate for the brain and 3 moderate inhibition of insulin release by the pancreas to conserve glucose and to shift fuel metabolism of muscle in the direction of fatty acid oxidation. These physiological responses, typical of the stress conditions, are demonstrated to be detrimental for the functioning of different organs like the cardiac muscle when they become chronic. Indeed, a common feature of many pathological conditions involving over-activation of the adrenergic system is the development of metabolic alterations which can include insulin resistance, altered glucose and lipid metabolism and mitochondrial dysfunction. These patterns are involved with a variably extent among the different pathologies , however they are in general strictly correlated to the level of activation of the adrenergic system. Here we will review the effects of the different adrenergic receptors subtypes on the metabolic variation observed in important disease like Heart Failure.

  15. [Cytokines in bone diseases. Cytokine and postmenopausal osteoporosis].

    Science.gov (United States)

    Inada, Masaki; Miyaura, Chisato

    2010-10-01

    Bone resorption is regulated by various cytokines. In postmenopausal osteoporosis, bone loss due to estrogen deficiency is closely related to the production of bone-resorbing cytokine. Especially, the increased production of IL-1, IL-6 and TNF-α could induce the expression of RANKL in bone tissues to enhance osteoclastogenesis. Relationship between estrogen deficiency and various cytokines is important to clarify the pathogenesis of postmenopausal osteoporosis.

  16. 高通量血液透析与高通量血液透析滤过对慢性肾病患者骨及矿物质代谢的影响分析%Influence analysis of high flux hemodialysis and high flux hemodialysis filtration on bone and mineral metabolism of chronic kidney disease pa-tient

    Institute of Scientific and Technical Information of China (English)

    李金成

    2016-01-01

    Objective To explore the influence of high flux hemodialysis and high flux hemodialysis filtration on bone and mineral metabolism of chronic kidney disease patient.Methods 75 patients with chronic kidney disease from Octo-ber 2013 to October 2015 in our hospital were selected and randomly divided into the control group (38 cases) and the observation group (37 cases).The control group was given high flux hemodialysis,the observation group was given high flux hemodialysis filtration.The level of BUN,Scr,ALB,blood calcium,Blood phosphorus and parathyroid hormone before and after treatment in the two groups was compared.Results The level of BUN,Scr after treatment for 1,6 months in the two groups was lower than that before treatment,the level of ALB after treatment for 1,6 months in the two groups was higher than that before treatment,with significant difference (P﹤0.05).There was no significant difference in the level of BUN,Scr,ALB after treatment between the two groups (P﹥0.05).There was no significant difference in the level of blood calcium,blood phosphorus and parathyroid hormone after treatment for 1 month between the two groups (P﹥0.05).The level of blood calcium after treatment for 6 months in the observation group was higher than that in the control group, the level of blood phosphorus and parathyroid hormone after treatment for 6 months in the observation group was lower than that in the control group,with significant difference (P﹤0.05).Conclusion Both of high flux hemodialysis and high flux hemodialysis filtration can obvious improve renal function and bone and mineral metabolism of patients with chronic kidney disease.In comparison,the effect of high flux hemodialysis filtration is better.%目的:探讨高通量血液透析与高通量血液透析滤过对患者骨及矿物质代谢的影响。方法选取2013年10月~2015年10月本院收治的75例慢性肾病患者作为研究对象,随机分为对照组(38例)和观察组(37例)。对照组

  17. POSSIBILITY OF BONE METABOLISM MODULATOR (STRONTIUM RANELATE) USAGE FOR THE TREATMENT OF WOMEN WITH POSTMENOPAUSAL OSTEOPOROSIS AND ARTERIAL HYPERTENSION

    OpenAIRE

    2009-01-01

    Aim. To study effect of the bone metabolism modulator strontium ranelate on bone mineral density (BMD) and to evaluate it pleiotropic effects on cardiovascular remodeling in women with postmenopausal osteoporosis (PO) and a arterial hypertension (HT).Material and methods. 45 women with PO, HT (1-2 stage) and medium/high cardiovascular risk were included in the study. 23 patients of the main group received strontium ranelate 2 g once daily additionally to antihypertensive and calcium replaceme...

  18. POSSIBILITY OF BONE METABOLISM MODULATOR (STRONTIUM RANELATE) USAGE FOR THE TREATMENT OF WOMEN WITH POSTMENOPAUSAL OSTEOPOROSIS AND ARTERIAL HYPERTENSION

    OpenAIRE

    2016-01-01

    Aim. To study effect of the bone metabolism modulator strontium ranelate on bone mineral density (BMD) and to evaluate it pleiotropic effects on cardiovascular remodeling in women with postmenopausal osteoporosis (PO) and a arterial hypertension (HT).Material and methods. 45 women with PO, HT (1-2 stage) and medium/high cardiovascular risk were included in the study. 23 patients of the main group received strontium ranelate 2 g once daily additionally to antihypertensive and calcium replaceme...

  19. Derangements in phosphate metabolism in chronic kidney diseases/endstage renal disease: therapeutic considerations.

    Science.gov (United States)

    Molony, Donald A; Stephens, Brett W

    2011-03-01

    The changes in phosphate (PO(4)) metabolism across the spectrum of chronic kidney disease (CKD) and specific strategies to address these abnormalities by reducing PO(4) loads are discussed in this review. This review also addresses briefly the evidence for specific PO(4) serum targets in CKD and endstage renal disease (ESRD) and the potential for other biomarkers such as fibroblast growth factor-23 (FGF-23) to define disease and monitor the effectiveness of therapy. As renal function declines, single nephron excretion of PO(4) must increase to maintain PO(4) balance. Abnormalities in PO(4) metabolism occur early in CKD. Compensatory changes in renal PO(4) handling are sufficient to maintain a normal serum PO(4) level in early stages of CKD, but in more advanced CKD, these processes no longer suffice and overt hyperphosphatemia develops. The resulting increased PO(4) burden contributes directly to development of secondary hyperparathyroidism. The FGF-23 increases early in CKD, likely in response to abnormal PO(4) metabolism, and mediates processes that help restore serum PO(4) levels to normal in CKD stage 3 and in early stage 4. The increased PO(4) burden and subsequent overt hyperphosphatemia are associated with increased mortality and morbidity. Dietary PO(4) restriction, modification of dialysis prescriptions, and administration of oral PO(4) binders can restore PO(4) balance. As CKD progresses, population-based studies demonstrate that diet alone is typically not able to prevent or treat hyperphosphatemia. Dialysis modalities that are currently used often fail to remove sufficient PO(4) to prevent hyperphosphatemia in patients with an inadequately controlled dietary PO(4) load. This is particularly likely among patients without significant residual renal function. Thus, in the majority of ESRD patients, PO(4) binders remain the mainstay of therapy for hyperphosphatemia. All currently available PO(4) binders can restore serum PO(4) to the required level when

  20. Perfusion and metabolism imaging studies in Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per

    2012-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are important tools in the evaluation of brain blood flow and glucose metabolism in Parkinson's disease (PD). However, conflicting results are reported in the literature depending on the type of imaging data...... analysis employed. The present review gives a comprehensive summary of the perfusion and metabolism literature in the field of PD research, including quantitative PET studies, normalized PET and SPECT studies, autoradiography studies in animal models of PD, and simulation studies of PD data...

  1. Radiographic evaluation of the effect of obesity on alveolar bone in rats with ligature-induced periodontal disease

    Directory of Open Access Journals (Sweden)

    do Nascimento CM

    2013-10-01

    Full Text Available Cassiane Merigo do Nascimento,1 Tiago Cassol,2 Fernanda Soares da Silva,3 Maria Lucia Bonfleur,4 Carlos Augusto Nassar,5 Patricia Oehlmeyer Nassar5 1Biologica Science and Health Center, State University of West Paraná (UNIOESTE, Cascavel, Paraná, Brazil; 2State University of West Paraná (UNIOESTE, Cascavel, Paraná, Brazil; Department of 3Pharmacy, 4Fisiology, 5Periodontology, Dental School, State University of West Paraná (UNIOESTE, Cascavel, Paraná, Brazil Abstract: There is evidence that the lack of metabolic control of obese patients may accelerate periodontitis. The aim of this study was to evaluate radiographically the effect of cafeteria-diet-induced obesity on alveolar bone loss in rats subjected to periodontal disease. Twenty male Wistar rats were randomly divided into four groups: 1 control group, 2 control and ligature group; 3 cafeteria group; and 4 cafeteria and ligature group. The animals were evaluated for obesity and euthanized, and the mandible of each rat was removed to perform a radiographic evaluation of alveolar bone loss and its effect on diet-induced obesity. The results showed greater alveolar bone loss in the mice in Group 4 (P<0.01. Thus, we concluded that obese mice, on average, showed greater radiographic evidence of alveolar bone loss than mice undergoing induction of obesity. Keywords: periodontal disease, radiography, obesity

  2. Pre-B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease

    Energy Technology Data Exchange (ETDEWEB)

    Moschen, Alexander R.; Geiger, Sabine; Gerner, Romana [Christian Doppler Research Laboratory for Gut Inflammation and Department of Internal Medicine II (Gastroenterology and Hepatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck (Austria); Tilg, Herbert, E-mail: herbert.tilg@i-med.ac.at [Christian Doppler Research Laboratory for Gut Inflammation and Department of Internal Medicine II (Gastroenterology and Hepatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck (Austria)

    2010-08-07

    Chronic inflammation affects bone metabolism and is commonly associated with the presence of osteoporosis. Bone loss is directed by various immune mediators such as the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin 1-beta or interferon-gamma. Pre-B cell colony enhancing factor (PBEF)/nicotinamide phosphoribosyl transferase (NAMPT)/visfatin is a pleiotropic mediator acting as growth factor, cytokine and enzyme involved in energy and nicotinamide adenine dinucleotide (NAD) metabolism. PBEF/NAMPT/visfatin has been recently demonstrated to exert several pro-inflammatory functions. We studied serum levels of PBEF/NAMPT/visfatin in patients with inflammatory bowel diseases (IBD) and their relation with bone mineral density (BMD). Furthermore, we were interested whether PBEF/NAMPT/visfatin affects osteoclastogenesis and involved mediators. PBEF/NAMPT/visfatin serum levels were increased in patients with IBD, correlated positively with disease activity and negatively with BMD, especially in the lumbar spine. Osteoclast precursor cells were generated from peripheral blood mononuclear cells after stimulation with various growth factors such as macrophage colony-stimulating factor (M-CSF) and soluble ligand of receptor activator of nuclear factor kappa B (RANK). In these in vitro studies, PBEF/NAMPT/visfatin suppressed osteoclastogenesis and inhibited the differentiation of osteoclast precursors into tartrate-resistant acid phosphatase positive multinucleated cells. These effects were paralleled by the suppression of the osteoclast typical markers RANK, nuclear factor of activated T-cells c1 (NFATc1) and cathepsin-K. This is the first report demonstrating a potential role for this important cytokine/enzyme in inflammation-related bone disease.

  3. 糖尿病慢性肾脏疾病患者血清25羟维生素D3水平和胰岛素抵抗及骨代谢的关系研究%Study on relationship of serum level of 25 hydroxyl vitamin D3 with insulin resistance and bone metabolism in diabetic patients with chronic kidney disease

    Institute of Scientific and Technical Information of China (English)

    石梅

    2015-01-01

    目的:探讨糖尿病慢性肾脏疾病(CKD )患者血清25羟维生素D3[25(O H )D3]水平和IR及骨代谢的关系。方法选取2012年4月至2014年2月CKD患者200例作为研究对象,根据eGFR水平分为eGFR>45~59 ml/(min・1.73 m2)组60例、eGFR 30~44 ml/(min・1.73 m2)组60例和eG‐FR 15~29 ml/(min・1.73 m2)组80例。比较各组临床资料、IR和骨代谢指标,比较不同胰岛素抵抗指数(HOMA‐IR)患者的骨代谢指标。结果3组年龄、性别、BMI、血压和FPG比较,差异无统计学意义(P>0.05),糖尿病病程、CKD病程、尿蛋白、血脂、eGFR、HbA1c、FIns、HOMA‐IR和骨代谢指标比较,差异有统计学意义(P<0.05)。200例患者中,HOMA‐IR≥3.28(IR)者129例,HOMA‐IR<3.28(非IR)者71例。两组骨代谢指标比较,差异有统计学意义(P<0.05)。25(OH)D3水平与HOMA‐IR、左侧股骨近端骨密度(BMD)、腰椎BMD、血磷、血钙及骨特异性碱性磷酸酶(BSAP)呈正相关(P<0.05),与骨保护素和甲状旁腺激素(PTH)呈负相关(P<0.05)。结论 CKD患者血清25(OH)D3水平降低,与IR水平和骨代谢水平有相关性。%Objective To investigate the relationship of serum level of 25 hydroxyl vitamin D3 [25(OH)D3 ] with insulin resistance (IR) and bone metabolism in diabetic patients with chronic kidney disease (CKD) . Methods From April 2012 to February 2014 ,200 diabetic patients with CKD were selected ,and they were divided into three groups according to eGFR:60 subjects in eGFR> 45 ~ 59 ml/(min・1.73 m2 ) group ,60 subjects in eGFR 30~44 ml/(min・1.73 m2 ) group and 80 subjects in eGFR 15~29 ml/(min・1.73 m2 ) group .Clinical features ,IR and indexes of bone metabolism among different groups were compared .Indexes of bone metabolism between two groups with different HOMA‐IR level were also compared . Results The difference of age ,gender ,BMI ,blood

  4. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease.

    Science.gov (United States)

    Mazier, Wilfrid; Saucisse, Nicolas; Gatta-Cherifi, Blandine; Cota, Daniela

    2015-10-01

    The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.

  5. Natural History of Malignant Bone Disease in Gastric Cancer: Final Results of a Multicenter Bone Metastasis Survey

    Science.gov (United States)

    Silvestris, Nicola; Pantano, Francesco; Ibrahim, Toni; Gamucci, Teresa; De Vita, Fernando; Di Palma, Teresa; Pedrazzoli, Paolo; Barni, Sandro; Bernardo, Antonio; Febbraro, Antonio; Satolli, Maria Antonietta; Bertocchi, Paola; Catalano, Vincenzo; Giommoni, Elisa; Comandone, Alessandro; Maiello, Evaristo; Riccardi, Ferdinando; Ferrara, Raimondo; Trogu, Antonio; Berardi, Rossana; Leo, Silvana; Bertolini, Alessandro; Angelini, Francesco; Cinieri, Saverio; Russo, Antonio; Pisconti, Salvatore; Brunetti, Anna Elisabetta; Azzariti, Amalia; Santini, Daniele

    2013-01-01

    Background Bone metastasis represents an increasing clinical problem in advanced gastric cancer (GC) as disease-related survival improves. In literature, few data on the natural history of bone disease in GC are available. Patients and Methods Data on clinicopathology, skeletal outcomes, skeletal-related events (SREs), and bone-directed therapies for 208 deceased GC patients with evidence of bone metastasis were statistically analyzed. Results Median time to bone metastasis was 8 months (CI 95%, 6.125–9.875 months) considering all included patients. Median number of SREs/patient was one. Less than half of the patients (31%) experienced at least one and only 4 and 2% experienced at least two and three events, respectively. Median times to first and second SRE were 2 and 4 months, respectively. Median survival was 6 months after bone metastasis diagnosis and 3 months after first SRE. Median survival in patients who did not experience SREs was 5 months. Among patients who received zoledronic acid before the first SRE, the median time to appearance of first SRE was significantly prolonged compared to control (7 months vs 4 months for control; P: 0.0005). Conclusions To our knowledge, this retrospective analysis is the largest multicenter study to demonstrate that bone metastases from GC are not so rare, are commonly aggressive and result in relatively early onset of SREs in the majority of patients. Indeed, our large study, which included 90 patients treated with ZOL, showed, for the first time in literature, a significant extension of time to first SRE and increase in the median survival time after diagnosis of bone metastasis. Taken together, these data may support the beneficial effects of ZOL in GC patients. PMID:24204569

  6. Bone loss in rheumatoid arthritis. Influence of disease activity, duration of the disease, functional capacity, and corticosteroid treatment

    DEFF Research Database (Denmark)

    Hansen, M; Florescu, A; Stoltenberg, M;

    1996-01-01

    Axial and appendicular bone mass were studied in 95 patients with rheumatoid arthritis. The aims were to quantify bone mineral density (BMD) and to evaluate the importance of disease activity, duration of disease, functional capacity, and corticosteroid treatment for bone loss in patients...... BMDARM. The decreased BMD in patients with rheumatoid arthritis seems primarily to be caused by an impaired physical activity which may be related to disease activity. Corticosteroids did not decrease BMD in neither the axial nor the appendicular skeleton. The antiinflammatory effect of steroids lead...

  7. Influence of metabolic syndrome on upper gastrointestinal disease.

    Science.gov (United States)

    Sogabe, Masahiro; Okahisa, Toshiya; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-08-01

    A recent increase in the rate of obesity as a result of insufficient physical exercise and excess food consumption has been seen in both developed and developing countries throughout the world. Additionally, the recent increased number of obese individuals with lifestyle-related diseases associated with abnormalities in glucose metabolism, dyslipidemia, and hypertension, defined as metabolic syndrome (MS), has been problematic. Although MS has been highlighted as a risk factor for ischemic heart disease and arteriosclerotic diseases, it was also recently shown to be associated with digestive system disorders, including upper gastrointestinal diseases. Unlike high body weight and high body mass index, abdominal obesity with visceral fat accumulation is implicated in the onset of various digestive system diseases because excessive visceral fat accumulation may cause an increase in intra-abdominal pressure, inducing the release of various bioactive substances, known as adipocytokines, including tumor necrosis factor-α, interleukin-6, resistin, leptin, and adiponectin. This review article focuses on upper gastrointestinal disorders and their association with MS, including obesity, visceral fat accumulation, and the major upper gastrointestinal diseases.

  8. Lumbar gibbus in storage diseases and bone dysplasias

    Energy Technology Data Exchange (ETDEWEB)

    Levin, T.L. [Department of Radiology, Division of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, NY (United States); Berdon, W.E. [Department of Radiology, Division of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, NY (United States); Lachman, R.S. [International Skeletal Dysplasia Registry, Los Angeles, CA (United States); Anyane-Yeboa, K. [Department of Pediatrics, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, NY (United States); Ruzal-Shapiro, C. [Department of Radiology, Division of Pediatric Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, NY (United States); Roye, D.P. Jr. [Department of Orthopedic Surgery, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, NY (United States)

    1997-04-01

    Objective. The objective of this study was to review the problem of lumbar gibbus in children with storage diseases and bone dysplasias utilizing plain films and MR imaging. Materials and methods. Clinical histories and radiographic images in five patients with storage diseases [four mucopolysaccharidosis (MPS) and one mucolipidosis] and two with achondroplasia were reviewed. The International Skeletal Dysplasia Registry (Los Angeles, Calif.), surveyed for all patients with lumbar gibbus and skeletal dysplasias, provided 12 additional cases. Results. All patients had localized gibbus of the upper lumbar spine, characterized by anterior wedging and posterior displacement of the vertebrae at the apex of the curve, producing a beaked appearance. The curve, exaggerated in the sitting or standing position, was most severe in the two patients with MPS-IV (one of whom died). Both developed severe neurologic signs and symptoms requiring surgical intervention. In four patients, MR images demonstrated the apex of the curve to be at or below the conus. Two patients demonstrated anterior herniation of the intervertebral discs at the apex of the curve, though the signal intensity of the intervertebral discs was normal. Conclusion. Lumbar gibbus has important neurologic and orthopedic implications, and is most severe in patients with MPS. The etiology of the gibbus with vertebral beaking is multifactorial and includes poor truncal muscle tone, weight-bearing forces, growth disturbance and anterior disc herniation. The curve is generally at or below the conus. Neurologic complications are unusual, although orthopedic problems can arise. Due to their longer survival, patients with achondroplasia or Morquio`s disease are more vulnerable to eventual gibbus-related musculoskeletal complications. (orig.). With 6 figs., 2 tabs.

  9. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  10. Apolipoprotein M in lipid metabolism and cardiometabolic diseases

    DEFF Research Database (Denmark)

    Borup, Anna; Christensen, Pernille Meyer; Nielsen, Lars B.

    2015-01-01

    PURPOSE: This review will address recent findings on apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) in lipid metabolism and inflammatory diseases. RECENT FINDINGS: ApoM's likely role(s) in health and disease has become more diverse after the discovery that apoM functions...... as a chaperone for S1P. Hence, apoM has recently been implicated in lipid metabolism, diabetes and rheumatoid arthritis through in-vivo, in-vitro and genetic association studies. It remains to be established to which degree such associations with apoM can be attributed to its ability to bind S1P. SUMMARY......: The apoM/S1P axis and its implications in atherosclerosis and lipid metabolism have been thoroughly studied. Owing to the discovery of the apoM/S1P axis, the scope of apoM research has broadened. ApoM and S1P have been implicated in lipid metabolism, that is by modulating HDL particles. Also...

  11. When, how, and why a bone biopsy should be performed in patients with chronic kidney disease.

    Science.gov (United States)

    Torres, Pablo Ureña; Bover, Jordi; Mazzaferro, Sandro; de Vernejoul, Marie Christine; Cohen-Solal, Martine

    2014-11-01

    In chronic kidney disease the excessive production of parathyroid hormone increases the bone resorption rate and leads to histologic bone signs of secondary hyperparathyroidism. However, in other situations, the initial increase in parathyroid hormone and bone remodeling may be slowed down excessively by a multitude of factors including age, ethnic origin, sex, and treatments such as vitamin D, calcium salts, calcimimetics, steroids, and so forth, leading to low bone turnover or adynamic bone disease. Both high and low bone turnover diseases actually are observed equally in chronic kidney disease patients treated by dialysis, and all types of renal osteodystrophy are associated with an increased risk of skeletal fractures, reduced quality of life, and poor clinical outcomes. Unfortunately, the diagnosis of these bone abnormalities cannot be obtained correctly by current clinical, biochemical, and imaging methods. Therefore, bone biopsy has been, and still remains, the gold standard analysis for assessing the exact type of renal osteodystrophy. It is also the unique way to assess the mechanisms of action, safety, and efficacy of new bone-targeting therapies.

  12. Rheumatic manifestations of primary and metastatic bone tumors and paraneoplastic bone disease.

    Science.gov (United States)

    Waimann, Christian A; Lu, Huifang; Suarez Almazor, Maria E

    2011-11-01

    Bone tumors can show a wide range of nonspecific rheumatic manifestations. The presence of unexplained or atypical chronic bone pain, an enlarging bone mass, neurovascular compression syndromes, or pathologic fractures should alert us to the possibility of a bone tumor causing these symptoms. These patients must undergo a complete physical examination; adequate imaging; and, if needed, a biopsy to confirm their diagnosis and offer them an opportune treatment. In addition, bone tumors and other malignancies can present remote clinical manifestations and unusual laboratory findings (eg, HOA, hypophosphatemia, hyperphosphaturia, and hypercalcemia) that may be the first and early manifestation of an occult cancer. These findings should motivate a cancer screening according to age, sex, and personal history. Cancer therapies also have a big impact on bone health, increasing the risk of osteoporosis, osteomalacia, and/or osteonecrosis. Rheumatologists should be aware of possible long-term adverse events of cancer treatment to avoid future complications.

  13. The transition state analog inhibitor of Purine Nucleoside Phosphorylase (PNP) Immucillin-H arrests bone loss in rat periodontal disease models.

    Science.gov (United States)

    Deves, Candida; de Assunção, Thiago Milech; Ducati, Rodrigo Gay; Campos, Maria Martha; Basso, Luiz Augusto; Santos, Diogenes Santiago; Batista, Eraldo L

    2013-01-01

    Purine nucleoside phosphorylase (PNP) is a purine-metabolizing enzyme that catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to their respective bases and (deoxy)ribose-1-phosphate. It is a key enzyme in the purine salvage pathway of mammalian cells. The present investigation sought to determine whether the PNP transition state analog inhibitor (Immucillin-H) arrests bone loss in two models of induced periodontal disease in rats. Periodontal disease was induced in rats using ligature or LPS injection followed by administration of Immucillin-H for direct analysis of bone loss, histology and TRAP staining. In vitro osteoclast differentiation and activation of T CD4+ cells in the presence of Immucillin-H were carried out for assessment of RANKL expression, PNP and Cathepsin K activity. Immucillin-H inhibited bone loss induced by ligatures and LPS, leading to a reduced number of infiltrating osteoclasts and inflammatory cells. In vitro assays revealed that Immucillin-H could not directly abrogate differentiation of osteoclast precursor cells, but affected lymphocyte-mediated osteoclastogenesis. On the other hand, incubation of pre-activated T CD4+ with Immucillin-H decreased RANKL secretion with no compromise of cell viability. The PNP transition state analog Immucillin-H arrests bone loss mediated by T CD4+ cells with no direct effect on osteoclasts. PNP inhibitor may have an impact in the treatment of diseases characterized by the presence of pathogens and imbalances of bone metabolism.

  14. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  15. Metabolic syndrome in rheumatic diseases: epidemiology, pathophysiology, and clinical implications

    OpenAIRE

    Sidiropoulos, Prodromos I; Karvounaris, Stylianos A; Boumpas, Dimitrios T.

    2008-01-01

    Subjects with metabolic syndrome–a constellation of cardiovascular risk factors of which central obesity and insulin resistance are the most characteristic–are at increased risk for developing diabetes mellitus and cardiovascular disease. In these subjects, abdominal adipose tissue is a source of inflammatory cytokines such as tumor necrosis factor-alpha, known to promote insulin resistance. The presence of inflammatory cytokines together with the well-documented increased risk for cardiovasc...

  16. Burden of metastatic bone disease from genitourinary malignancies.

    Science.gov (United States)

    Mulders, Peter F; Abrahamsson, Per-Anders; Bukowski, Ronald M

    2010-11-01

    Bone metastases are common among patients with stage IV genitourinary cancers. Most patients with bone metastases develop at least one debilitating and potentially life-limiting skeletal-related event. These events are associated with increased medical expenses and decreased quality of life. Current guidelines recommend screening for bone metastases in men with high-risk prostate cancer, but guidance for screening and treatment of bone metastases from genitourinary cancers varies by country and setting. Several bisphosphonates have been evaluated in the advanced genitourinary cancer setting. Zoledronic acid has demonstrated efficacy in significantly reducing the risk of skeletal-related events in patients with bone metastases from a broad range of solid tumors including prostate, renal and bladder cancers, and is recommended for preserving bone health.

  17. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies.

    Science.gov (United States)

    Jacquot, J; Delion, M; Gangloff, S; Braux, J; Velard, F

    2016-04-01

    Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.

  18. The heart-liver metabolic axis: defective communication exacerbates disease.

    Science.gov (United States)

    Baskin, Kedryn K; Bookout, Angie L; Olson, Eric N

    2014-04-01

    The heart has been recognized as an endocrine organ for over 30 years (de Bold, 2011); however, little is known about how the heart communicates with other organs in the body, and even less is known about this process in the diseased heart. In this issue of EMBO Molecular Medicine, Magida and Leinwand (2014) introduce the concept that a primary genetic defect in the heart results in aberrant hepatic lipid metabolism, which consequently exacerbates hypertrophic cardiomyopathy (HCM). This study provides evidence in support of the hypothesis that crosstalk occurs between the heart and liver, and that this becomes disrupted in the diseased state.

  19. Effect of walking exercise on bone metabolism in postmenopausal women with osteopenia/osteoporosis.

    Science.gov (United States)

    Yamazaki, Satoshi; Ichimura, Shoichi; Iwamoto, Jun; Takeda, Tsuyoshi; Toyama, Yoshiaki

    2004-01-01

    The purpose of this prospective study was to determine whether moderate walking exercise in postmenopausal women with osteopenia/osteoporosis would affect bone metabolism. Fifty postmenopausal women, aged 49-75 years, with osteopenia/osteoporosis were recruited: 32 women entered the exercise program (the exercise group) and 18 served as controls (the control group). The exercise consisted of daily outdoor walking, the intensity of which was 50% of maximum oxygen consumption, with a duration of at least 1 h with more than 8000 steps, at a frequency of 4 days a week, over a 12-month period. Lumbar (L2-L4) bone mineral density (BMD) was measured at the baseline and every 6 months with dual-energy X-ray absorptiometry (DXA) in both groups. Serum bone-specific alkaline phosphatase (BAP) and urinary cross-linked N-terminal telopeptides of type I collagen (NTX) levels were measured at baseline and at months 1, 3, 6, 9, and 12 by EIA and ELISA, respectively, in the exercise group, and urinary NTX level was measured at the baseline and every 6 months in the control group. There were no significant differences in baseline characteristics including age, height, body weight, bone mass index, years since menopause, lumbar BMD, and urinary NTX level between the two groups. Although no significant changes were observed in lumbar BMD and the urinary NTX level in the control group, lumbar BMD in the exercise group was increased as compared with the control group, but was sustained from the baseline. In the exercise group, the urinary NTX level rapidly responded to walking exercise from month 3, and this reduction was sustained until month 12, followed by reduction in the serum BAP level. A moderately negative correlation was found between the percent change in the urinary NTX level at month 3 and that in lumbar BMD at month 12 in the exercise group. This study clearly demonstrates that the mechanism for the positive response of lumbar BMD to moderate walking exercise in

  20. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration.

    Science.gov (United States)

    Müller, Werner E G; Tolba, Emad; Schröder, Heinz C; Wang, Xiaohong

    2015-09-01

    The initial mineralization centers during human bone formation onto osteoblasts are composed of CaCO3 . Those bioseeds are enzymatically formed via carbonic anhydrase(s) in close association with the cell surface of the osteoblasts. Subsequently, the bicarbonate/carbonate anions are exchanged non-enzymatically by inorganic phosphate [Pi ]. One source for the supply of Pi is polyphosphate [polyP] which is a physiological polymer, formed in the osteoblasts as well as in the platelets. The energy-rich acid anhydride bonds within the polyP chain are cleaved by phosphatase(s); during this reaction free-energy might be released that could be re-used, as metabolic fuel, for the maintenance of the steady-state concentrations of the substrates/products during mineralization. Finally it is outlined that polyP, as a morphogenetically active scaffold, is even suitable for 3D cell printing.

  1. Dietary Intake Can Predict and Protect Against Changes in Bone Metabolism during Spaceflight and Recovery (Pro K)

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Shackelford, L.; Heer, M.

    2009-01-01

    Bone loss is not only a well-documented effect of spaceflight on astronauts, but also a condition that affects millions of men and women on Earth each year. Many countermeasures aimed at preventing bone loss during spaceflight have been proposed, and many have been evaluated to some degree. To date, those showing potential have focused on either exercise or pharmacological interventions, but none have targeted dietary intake alone as a factor to predict or minimize bone loss during spaceflight. The "Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery" investigation ("Pro K") is one of the first inflight evaluations of a dietary countermeasure to lessen bone loss of astronauts. This protocol will test the hypothesis that the ratio of acid precursors to base precursors (specifically animal protein to potassium) in the diet can predict directional changes in bone mineral during spaceflight and recovery. The ratio of animal protein to potassium in the diet will be controlled for multiple short (4-day) periods before and during flight. Based on multiple sets of bed rest data, we hypothesize that a higher ratio of the intake of animal protein to the intake of potassium will yield higher concentrations of markers of bone resorption and urinary calcium excretion during flight and during recovery from bone mineral loss after long-duration spaceflight.

  2. Research on the relationship between serum 25-hydroxyvitamin D and bone metabolism markers in children

    Institute of Scientific and Technical Information of China (English)

    Qing-Jun Meng; Qing Hua; Ting-Ting Dai

    2015-01-01

    Objective:To explore the relevance between serum 25-hydroxyvitamin D and bone metabolism markers in children.Methods:A total of 167 children who visited the Growth and Development Clinic due to growth retardation, dysphoria, night terrors, and hyperhidrosis from September, 2012 to September, 2013 were enrolled in the study. Serum 25-hydroxyvitamin D [25 (OH)VitD],BAP and OC levels were measured by enzyme-linked immune method (ELSIA), while IGF-Ⅰ was measured by chemiluminescence. The relevance of 25 (OH) VitD with BAP, OC and IGF-Ⅰ was analyzed.Results: Serum 25 (OH) VitD level was decreased gradually with increasing age. There were significant differences between infancy group and adolescence group. With increasing age, serum OC level increased gradually.With decreasing 25 (OH)VitD level, serum OC level increased gradually,serum IGF-Ⅰ level decreased gradually, whereas BAP had no significant change. 25 (OH)VitD level showed a negative positive linear correlation with OC, a positive linear correlation with IGF-Ⅰ, and no significant linear correlation with BAP in children.Conclusions:The level of 25 (OH)VitD, BAP, OC and IGF-Ⅰ vary in children with different ages. Adolescence and school-age children have severer vitamin D deficiency than infants. Vitamin D level may be correlated with BMD within a certain range. 25 (OH)VitD level showed a negative positive linear correlation with OC, a positive linear correlation with IGF-Ⅰ, and no significant linear correlation with BAP in children. Diagnosis of the body's VitD nutritional status by bone metabolism markers needs further study.

  3. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  4. Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease

    Energy Technology Data Exchange (ETDEWEB)

    Schauwecker, D.S.; Park, H.M.; Burt, R.W.; Mock, B.H.; Wellman, H.N.

    1988-10-01

    It is difficult to diagnose osteomyelitis in the presence of neurotrophic osteoarthropathy. We performed combined (99mTc)MDP bone scans and indium-111 (111In) leukocyte studies on 35 patients who had radiographic evidence of neuropathic foot disease and clinically suspected osteomyelitis. The (111In)leukocyte study determined if there was an infection and the bone scan provided the anatomic landmarks so that the infection could be localized to the bone or the adjacent soft tissue. Seventeen patients had osteomyelitis and all showed increased (111In)leukocyte activity localized to the bone, giving a sensitivity of 100%. Among the 18 patients without osteomyelitis, eight had no accumulation of (111In)leukocytes, seven had the (111In)leukocyte activity correctly localized to the soft tissue, two had (111In)leukocyte activity mistakenly attributed to the bone, and one had (111In)leukocyte accumulation in a proven neuroma which was mistakenly attributed to bone. These three false-positive results for osteomyelitis reduced the specificity to 83%. Considering only the 27 patients with a positive (111In)leukocyte study, the combined bone scan and (111In)leukocyte study correctly localized the infection to the soft tissues or bone in 89%. Uninfected neurotrophic osteoarthropathy does not accumulate (111In)leukocytes. We found the combined bone scan and (111In) leukocyte study useful for the detection and localization of infection to soft tissue or bone in patients with neuropathic foot disease.

  5. Evaluation of Bone Metabolism in Critically Ill Patients Using CTx and PINP

    Science.gov (United States)

    Gavala, Alexandra; Makris, Konstantinos; Korompeli, Anna

    2016-01-01

    Background. Prolonged immobilization, nutritional and vitamin D deficiency, and specific drug administration may lead to significant bone resorption. Methods and Patients. We prospectively evaluated critically ill patients admitted to the ICU for at least 10 days. Demographics, APACHE II, SOFA scores, length of stay (LOS), and drug administration were recorded. Blood collections were performed at baseline and on a weekly basis for five consecutive weeks. Serum levels of PINP, β-CTx, iPTH, and 25(OH)vitamin D were measured at each time-point. Results. We enrolled 28 patients of mean age 67.4 ± 2.3 years, mean APACHE II 22.2 ± 0.9, SOFA 10.1 ± 0.6, and LOS 31.6 ± 5.7 days. Nineteen patients were receiving low molecular weight heparin, 17 nor-epinephrine and low dose hydrocortisone, 18 transfusions, and 3 phenytoin. 25(OH)vitamin D serum levels were very low in all patients at all time-points; iPTH serum levels were increased at baseline tending to normalize on 5th week; β-CTx serum levels were significantly increased compared to baseline on 2nd week (peak values), whereas PINP levels were increased significantly after the 4th week. Conclusions. Our data show that critically ill patients had a pattern of hypovitaminosis D, increased iPTH, hypocalcaemia, and BTMs compatible with altered bone metabolism. PMID:28025639

  6. Evaluation of Bone Metabolism in Critically Ill Patients Using CTx and PINP

    Directory of Open Access Journals (Sweden)

    Alexandra Gavala

    2016-01-01

    Full Text Available Background. Prolonged immobilization, nutritional and vitamin D deficiency, and specific drug administration may lead to significant bone resorption. Methods and Patients. We prospectively evaluated critically ill patients admitted to the ICU for at least 10 days. Demographics, APACHE II, SOFA scores, length of stay (LOS, and drug administration were recorded. Blood collections were performed at baseline and on a weekly basis for five consecutive weeks. Serum levels of PINP, β-CTx, iPTH, and 25(OHvitamin D were measured at each time-point. Results. We enrolled 28 patients of mean age 67.4 ± 2.3 years, mean APACHE II 22.2 ± 0.9, SOFA 10.1 ± 0.6, and LOS 31.6 ± 5.7 days. Nineteen patients were receiving low molecular weight heparin, 17 nor-epinephrine and low dose hydrocortisone, 18 transfusions, and 3 phenytoin. 25(OHvitamin D serum levels were very low in all patients at all time-points; iPTH serum levels were increased at baseline tending to normalize on 5th week; β-CTx serum levels were significantly increased compared to baseline on 2nd week (peak values, whereas PINP levels were increased significantly after the 4th week. Conclusions. Our data show that critically ill patients had a pattern of hypovitaminosis D, increased iPTH, hypocalcaemia, and BTMs compatible with altered bone metabolism.

  7. Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients.

    Directory of Open Access Journals (Sweden)

    Min-Yu Tu

    Full Text Available Milk products are good sources of calcium that may reduce bone resorption and help prevent bone loss as well as promote bone remodeling and increase bone formation. Kefir is a product made by kefir grains that degrade milk proteins into various peptides with health-promoting effects, including antithrombotic, antimicrobial and calcium-absorption enhancing bioactivities. In a controlled, parallel, double-blind intervention study over 6 months, we investigated the effects of kefir-fermented milk (1,600 mg supplemented with calcium bicarbonate (CaCO3, 1,500 mg and bone metabolism in 40 osteoporosis patients, and compared them with CaCO3 alone without kefir supplements. Bone turnover markers were measured in fasting blood samples collected before therapy and at 1, 3, and 6 months. Bone mineral density (BMD values at the spine, total hip, and hip femoral neck were assessed by dual-energy x-ray absorptiometry (DXA at baseline and at 6 months. Among patients treated with kefir-fermented milk, the relationships between baseline turnover and 6 months changes in DXA-determined BMD were significantly improved. The serum β C-terminal telopeptide of type I collagen (β-CTX in those with T-scores > -1 patients significantly decreased after three months treatment. The formation marker serum osteocalcin (OC turned from negative to positive after 6 months, representing the effect of kefir treatment. Serum parathyroid hormone (PTH increased significantly after treatment with kefir, but decreased significantly in the control group. PTH may promote bone remodeling after treatment with kefir for 6 months. In this pilot study, we concluded that kefir-fermented milk therapy was associated with short-term changes in turnover and greater 6-month increases in hip BMD among osteoporotic patients.ClinicalTrials.gov NCT02361372.

  8. Bone Markers

    Science.gov (United States)

    ... markers may be seen in conditions such as: Osteoporosis Paget disease Cancer that has spread to the bone (metastatic bone disease) Hyperparathyroidism Hyperthyroidism Osteomalacia in adults and rickets in children—lack of bone mineralization, ...

  9. Bariatric surgery and bone disease: from clinical perspective to molecular insights.

    Science.gov (United States)

    Folli, F; Sabowitz, B N; Schwesinger, W; Fanti, P; Guardado-Mendoza, R; Muscogiuri, G

    2012-11-01

    The use of bariatric surgery for the treatment of morbid obesity has increased annually for the last decade. Although many studies have demonstrated the efficacy and durability of bariatric surgery for weight loss, there are limited data regarding long-term side effects of these procedures. Recently, there has been an increased focus on the impact of bariatric surgery on bone metabolism. Bariatric surgery utilizes one or more of three mechanisms of action resulting in sustained weight loss. These include restriction (gastric banding, vertical banded gastroplasty and sleeve gastrectomy), malabsorption surgery with or without associated restriction (Roux en Y gastric bypass, duodenal switch, biliopancreatic diversion and jejunoileal bypass) and changes in gut-derived hormones that control energy metabolism also referred to as neuro-hormonal control of energy metabolism (Roux en Y gastric bypass, duodenal switch, biliopancreatic diversion, jejunoileal bypass, surgical procedures as above and gastric sleeve). Weight reduction has been associated with increased bone resorption but the mechanisms behind this have not yet been fully elucidated. Each of the mechanisms of action of bariatric surgery (restriction, malabsorption, neuro-hormonal control of energy metabolism) may uniquely affect bone resorption. In this paper we will review the current state of knowledge regarding the relationship between bariatric surgery and bone metabolism with emphasis on possible mechanisms of action such as malnutrition, hormonal interactions and mechanical unloading of the skeleton. Further, we suggest a future research agenda.

  10. Cryptogenic cirrhosis: Metabolic liver disease due to insulin resistance

    Directory of Open Access Journals (Sweden)

    Binay K De

    2010-01-01

    Full Text Available Objective: Etiopathogenesis of cryptogenic cirrhosis (CC is not yet well established. Up to 20% of non-alcoholic fatty liver disease (NAFLD may progress to cirrhosis, mostly termed as cryptogenic. Insulin resistance and altered metabolic parameters form a major pathogenic link between NAFLD and CC. CC may thus be actually a metabolic liver disease. Materials and Methods: Thirty-four patients of CC and 32 patients having cirrhosis due to chronic hepatitis B (Hep B were assessed in a cross-sectional study in a tertiary hospital for insulin resistance, % β-cell activity, obesity indices, plasma glucose, lipid profiles, and many other parameters. Results: CC patients had higher homeostasis model assessment (HOMA-IR compared to Hep B group (P = 0.000016. A positive correlation between IR values and Child-Pugh score among CC patients was found ("r" = 0.87; P < 0.00001. Out of 34 CC patients, 15 (44.1% had obesity contrary to 6 (18.8% in the control group (P = 0.0022. Differences were observed in subcutaneous fat (P = 0.0022, intra-abdominal fat (P = 0.0055, waist circumference (P = 0.014, and percentage body fat (P = 0.047 between the two groups. Significant differences were observed in the levels of triglyceride, total cholesterol, and very low density lipoprotein (VLDL. Conclusion: Most of the CC patients showed significantly higher prevalence of HOMA-IR, obesity indices, and various parameters of "lipotoxicity" and metabolic syndrome, suggesting that CC may be the long-term consequence of a type of "metabolic liver disease." Further studies are required to evaluate the role of therapeutic interventions to enhance insulin sensitivity in such patients.

  11. Radionuclide conjugates of calcitonin for imaging bone disease and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Greenland, William Edward Peverell

    2002-07-01

    Salmon calcitonin (sCt) is a peptide with a higher affinity for human calcitonin receptors (hCtR) than human calcitonin. It has been used for treating osteoporosis, Paget's disease and bone pain. High levels of hCtRs are expressed on osteoclasts, bone metastases and primary breast and prostate cancers. The peptide was chosen for radiolabelling as a possible imaging agent. Direct labelling with {sup 99m}Tc via simultaneous reduction of the indigenous disulfide bond and {sup 99m}TcO{sub 4}{sup -} (VII) with the water soluble phenyl phosphine (TPPDS) was performed. The radiolabelled peptide was not suitable for use as a radiopharmaceutical due to the heterogeneity of the product as observed by reverse phase HPLC and due to poor binding to the human breast cancer cell line MCF7. The electospray MS suggested a {sup 99}Tc-TPPDS (III) core instead of the expected {sup 99}Tc=O (V) core. Normal sCt has 3 conjugatible primary amines leading to a mixture of 8 possible products. A sCt analogue (sCtA) with a single primary amine was produced and conjugated to the chelator TETA to produce a single conjugated species. The sCtA-TETA was labelled with cold Cu and characterised by electospray MS. The monodentate ligand Hynic was synthesised directly into the peptide using N-{alpha}-Fmoc-N-{epsilon}-(Hynic-Boc)-Lys a novel orthogonally protected amino acid. The peptide was labelled with {sup 99m}Tc with tricine coligands. The radiolabelled peptide produced a single peak as observed by reverse phase HPLC and bound to MCF7 cell in a specific manner. The electospray MS suggested that one of the tricine coligands is lost due to the heating effect and possibly replaced by an adjacent histidine acting as a ternary ligand. The sCtLys{sup 18}-Hynic{sup 99m}Tc(tricine){sub 2} labelled peptide is the lead radiolabelled peptide and could be used for a normal biodistribution animal study, followed by clinical evaluation in humans. (author)

  12. Bone marrow stroma in idiopathic myelofibrosis and other haematological diseases. An immunohistochemical study

    DEFF Research Database (Denmark)

    Lisse, I; Hasselbalch, H; Junker, P

    1991-01-01

    Bone marrow stroma was investigated immunohistochemically in 31 patients with haematological diseases, mainly idiopathic myelofibrosis (n = 8) and related chronic myeloproliferative disorders (n = 14). The bone marrow from patients with idiopathic myelofibrosis and some CML patients showed marked...... and capillarization, with the development of continuous sheets of basement membrane material beneath endothelial cells....

  13. Bone mineral density and vitamin D status in Parkinson's disease patients

    NARCIS (Netherlands)

    Bos, F. van den; Speelman, A.D.; Nimwegen-Arrachart, M.L. van; Schouw, Y.T. van der; Backx, F.J.; Bloem, B.R.; Munneke, M.; Verhaar, H.J.

    2013-01-01

    Bone loss is more common in Parkinson's disease (PD) than in the general population. Several factors may be involved in the development of bone loss, including malnutrition, immobilization, low body mass index, decreased muscle strength, vitamin D deficiency and medication use. This study investigat

  14. Improvement of Lumbar Bone Mass after Infliximab Therapy in Crohn’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Marina Mauro

    2007-01-01

    Full Text Available BACKGROUND: Patients with Crohn’s disease (CD have a high risk of developing osteoporosis, but the mechanisms underlying bone mass loss are unclear. Elevated proinflammatory cytokines, such as tumour necrosis factor-alpha (TNFα, have been implicated in the pathogenesis of bone resorption.

  15. Recurrent infarction of sphenoid bone with subperiosteal collection in a child with sickle cell disease.

    Science.gov (United States)

    Alsuhaibani, Adel H; Marzouk, Mohammed Abu

    2011-01-01

    Infarction of the orbital bone in patients with sickle cell disease is very rare. The authors report a young boy who presented twice with marked acute proptosis and eyelid swelling of the right eye resulting from infarction in the greater wing of the sphenoid bone accompanied by an orbital subperiosteal collection. The time interval between the 2 attacks was 3 years.

  16. Burden of metastatic bone disease from genitourinary malignancies.

    NARCIS (Netherlands)

    Mulders, P.F.A.; Abrahamsson, P.A.; Bukowski, R.M.

    2010-01-01

    Bone metastases are common among patients with stage IV genitourinary cancers. Most patients with bone metastases develop at least one debilitating and potentially life-limiting skeletal-related event. These events are associated with increased medical expenses and decreased quality of life. Current

  17. The emerging use of zebrafish to model metabolic disease

    Directory of Open Access Journals (Sweden)

    Asha Seth

    2013-09-01

    Full Text Available The zebrafish research community is celebrating! The zebrafish genome has recently been sequenced, the Zebrafish Mutation Project (launched by the Wellcome Trust Sanger Institute has published the results of its first large-scale ethylnitrosourea (ENU mutagenesis screen, and a host of new techniques, such as the genome editing technologies TALEN and CRISPR-Cas, are enabling specific mutations to be created in model organisms and investigated in vivo. The zebrafish truly seems to be coming of age. These powerful resources invoke the question of whether zebrafish can be increasingly used to model human disease, particularly common, chronic diseases of metabolism such as obesity and type 2 diabetes. In recent years, there has been considerable success, mainly from genomic approaches, in identifying genetic variants that are associated with these conditions in humans; however, mechanistic insights into the role of implicated disease loci are lacking. In this Review, we highlight some of the advantages and disadvantages of zebrafish to address the organism’s utility as a model system for human metabolic diseases.

  18. [Alteration of biological rhythms causes metabolic diseases and obesity].

    Science.gov (United States)

    Saderi, Nadia; Escobar, Carolina; Salgado-Delgado, Roberto

    2013-07-16

    The incidence of obesity worldwide has become a serious, constantly growing public health issue that reaches alarming proportions in some countries. To date none of the strategies developed to combat obesity have proved to be decisive, and hence there is an urgent need to address the problem with new approaches. Today, studies in the field of chronobiology have shown that our physiology continually adapts itself to the cyclical changes in the environment, regard-less of whether they are daily or seasonal. This is possible thanks to the existence of a biological clock in our hypothalamus which regulates the expression and/or activity of enzymes and hormones involved in regulating our metabolism, as well as all the homeostatic functions. It has been observed that this clock can be upset as a result of today's modern lifestyle, which involves a drop in physical activity during the day and the abundant ingestion of food during the night, among other factors, which together promote metabolic syndrome and obesity. Hence, the aim of this review is to summarise the recent findings that show the effect that altering the circadian rhythms has on the metabolism and how this can play a part in the development of metabolic diseases.

  19. Bisphenol A sulfonation is impaired in metabolic and liver disease

    Science.gov (United States)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta

    2016-01-01

    Background Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. Liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. PMID:26712468

  20. Cardiorenal metabolic syndrome in the African diaspora: rationale for including chronic kidney disease in the metabolic syndrome definition.

    Science.gov (United States)

    Lea, Janice P; Greene, Eddie L; Nicholas, Susanne B; Agodoa, Lawrence; Norris, Keith C

    2009-01-01

    Chronic kidney disease (CKD) is more likely to progress to end-stage renal disease (ESRD) in African Americans while the reasons for this are unclear. The metabolic syndrome is a risk factor for the development of diabetes, cardiovascular disease, and has been recently linked to incident CKD. Historically, fewer African Americans meet criteria for the definition of metabolic syndrome, despite having higher rates of cardiovascular mortality than Caucasians. The presence of microalbuminuria portends increased cardiovascular risks and has been shown to cluster with the metabolic syndrome. We recently reported that proteinuria is a predictor of CKD progression in African American hypertensives with metabolic syndrome. In this review we explore the potential value of including CKD markers--microalbuminuria/proteinuria or low glomerular filtration rate (GFR)-in refining the cluster of factors defined as metabolic syndrome, ie, "cardiorenal metabolic syndrome."

  1. Assessment of lumbar trabecular bone density by means of single energy quantitative CT in hospital control children and bone metabolic disorders, 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Kazutoshi; Miyamoto, Akie; Imai, Kaoru; Mochizuki, Yumiko; Hayashi, Kitami; Mitsuishi, Yoichi; Fukuyama, Yukio; Kohno, Atsushi; Shigeta, Teiko (Tokyo Women' s Medical Coll. (Japan))

    1990-03-01

    We studied the 3rd lumbar vertebral trabecular bone mineral density in 59 cross-sectional pictures of quantitative computed tomography (QCT) with CaCO{sub 3} phantom for 28 hospital control children and 30 cases of suspected bone metabolic disorders. The QCT value of bone mineral density of control children showed neither age dependency nor sexual difference before puberty: for males was 221.8{plus minus}30.2 mg CaCO{sub 3}/cm{sup 3} (Mean{plus minus}SD) under 4 years, 218.1{plus minus}39.7 at 5{approx}9 years and 217.2{plus minus}30.9 at 10{approx}15 years; and for females 220.9{plus minus}18.3 under 4 years and 240.0{plus minus}29.4 at 5{approx}9 years. The QCT values of bone mineral density in bed-ridden patients, children receiving glucocorticoids, and children receiving anticonvulsants were significantly lower than that in control children (p<0.005). The QCT value of bone mineral density of bed-ridden patients was significantly lower than that of children receiving glucocorticoids and of children receiving anticonvulsants (p<0.05, p<0.005 respectively). Our study confirmed that single energy quantitative CT was very useful in pediatric clinical application. (author).

  2. IL-6 and IGF-1 Signaling Within and Between Muscle and Bone: How Important is the mTOR Pathway for Bone Metabolism?

    Science.gov (United States)

    Bakker, Astrid D; Jaspers, Richard T

    2015-06-01

    Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well known to mediate these functions. In particular, we discuss the Akt/mammalian target of rapamycin (mTOR) pathway which in skeletal muscle is known for its key role in regulating the rate of mRNA translation (protein synthesis). Since the role of the mTOR pathway in bone is explored to a much lesser extent, we discuss what is known about this pathway in bone and the potential role of this pathway in bone remodeling. We will also discuss the possible ways of influencing IGF-1 or IL-6 signaling by osteocytes and the clinical implications of pharmacological or nutritional modulation of the Akt/mTOR pathway.

  3. Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease.

    Science.gov (United States)

    Matsuzawa, Yuji

    2006-01-01

    Abdominal fat accumulation has been shown to play crucial roles in the development of metabolic syndrome. Visceral fat accumulation particularly is closely correlated to the development of cardiovascular disease and obesity-related disorders such as diabetes mellitus, hyperlipidemia and hypertension. Given these clinical findings, the functions of adipocytes have been intensively investigated in the past 10 years, and have been revealed to act as endocrine cells that secrete various bioactive substances termed adipocytokines. Among adipocytokines, tumor-necrosis factor-alpha, plasminogen activator inhibitor type 1 and heparin-binding epidermal growth factor-like growth factor are produced in adipocytes as well as other organs, and contribute to the development of vascular diseases. Visfatin has been identified as a visceral-fat-specific protein that might be involved in the development of obesity-related diseases, such as diabetes mellitus and cardiovascular disease. In contrast to these adipocytokines, adiponectin, which is an adipose-tissue-specific, collagen-like protein, has been noted as an important antiatherogenic and antidiabetic protein, or as an anti-inflammatory protein. The functions of adipocytokine secretion might be regulated dynamically by nutritional state. Visceral fat accumulation causes dysregulation of adipocyte functions, including oversecretion of tumor-necrosis factor-alpha, plasminogen activator inhibitor type 1 and heparin-binding epidermal growth factor-like growth factor, and hyposecretion of adiponectin, which results in the development of a variety of metabolic and circulatory diseases. In this review, the importance of adipocytokines, particularly adiponectin, is discussed with respect to cardiovascular diseases.

  4. Understanding the Causes and Implications of Endothelial Metabolic Variation in Cardiovascular Disease through Genome-Scale Metabolic Modeling

    DEFF Research Database (Denmark)

    McGarrity, Sarah; Halldórsson, Haraldur; Palsson, Sirus

    2016-01-01

    of endothelial cell (EC) metabolism and its connections to cardiovascular disease (CVD) and explore the use of genome-scale metabolic models (GEMs) for integrating metabolic and genomic data. GEMs combine gene expression and metabolic data acting as frameworks for their analysis and, ultimately, afford...... mechanistic understanding of how genetic variation impacts metabolism. We demonstrate how GEMs can be used to investigate CVD-related genetic variation, drug resistance mechanisms, and novel metabolic pathways in ECs. The application of GEMs in personalized medicine is also highlighted. Particularly, we focus...... on the potential of GEMs to identify metabolic biomarkers of endothelial dysfunction and to discover methods of stratifying treatments for CVDs based on individual genetic markers. Recent advances in systems biology methodology, and how these methodologies can be applied to understand EC metabolism in both health...

  5. Carotid body, insulin and metabolic diseases: unravelling the links

    Directory of Open Access Journals (Sweden)

    Silvia V Conde

    2014-10-01

    Full Text Available The carotid bodies (CB are peripheral chemoreceptors that sense changes in arterial blood O2, CO2 and pH levels. Hypoxia, hypercapnia and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN. CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnoea (OSA is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future.

  6. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases

    Directory of Open Access Journals (Sweden)

    Müller G

    2012-08-01

    Full Text Available Günter MüllerDepartment of Biology 1, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, GermanyAbstract: Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy – hallmarks of personalized medicine – plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the

  7. Metabolic Disturbances in Children with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    A Rezaeian

    2014-04-01

    Full Text Available Introduction: Liver disease results in complex pathophysiologic disturbances affecting nutrient digestion, absorption, distribution, storage, and use. This article aimed to present a classification of metabolic disturbances in chronic liver disease in children?   Materials and Methods: In this review study databases including proquest, pubmedcentral, scincedirect, ovid, medlineplus were been searched with keyword words such as” chronic liver disease"  ” metabolic disorder””children” between 1999 to 2014. Finally, 8 related articles have been found.   Results: Metabolic disorder in this population could be categorized in four set: 1carbohydrates, 2proteins,3 fats and 4vitamins. 1 Carbohydrates: Children with CLD are at increased risk for fasting hypoglycemia, because the capacity for glycogen storage and gluconeogenesis is reduced as a result of abnormal hepatocyte function and loss of hepatocyte mass. 2 Proteins: The liver’s capacity for plasma protein synthesis is impaired by reduced substrate availability, impaired hepatocyte function, and increased catabolism. This results in hypoalbuminemia, leading to peripheral edema and contributing to ascites. Reduced synthesis of insulin-like growth factor (IGF-1 and its binding protein IGF-BP3 by the chronically diseased liver results in growth hormone resistance and may contribute to the poor growth observed in these children. 3 Fats: There is increased fat oxidation in children with end-stage liver disease in the fed and fasting states compared with controls, which is probably related to reduced carbohydrate availability. The increased lipolysis results in a decrease in fat stores, which may not be easily replenished in the setting of the fat malabsorption that accompanies cholestasis. Reduced bile delivery to the gut results in impaired fat emulsification, and hence digestion. The products of fat digestion are also poorly absorbed, because bile is also required for micelle formation

  8. Surgery or radiotherapy for the treatment of bone hydatid disease: a retrospective case series

    Directory of Open Access Journals (Sweden)

    Zengru Xie

    2015-04-01

    Conclusion: This retrospective case series describes, for the first time, the clinical outcomes in a series of patients treated with radiotherapy for bone hydatid disease. Although no direct comparison between the treatment groups could be made due to methodological limitations of the study design, this study indicates that well-designed prospective randomized controlled clinical trials assessing radiotherapy may be warranted in patients with inoperable hydatid disease of the bones.

  9. Lessons from Microglia Aging for the Link between Inflammatory Bone Disorders and Alzheimer's Disease

    OpenAIRE

    Zhou Wu; Hiroshi Nakanishi

    2015-01-01

    Bone is sensitive to overactive immune responses, which initiate the onset of inflammatory bone disorders, such as rheumatoid arthritis and periodontitis, resulting in a significant systemic inflammatory response. On the other hand, neuroinflammation is strongly implicated in Alzheimer’s disease (AD), which can be enhanced by systemic inflammation, such as that due to cardiovascular disease and diabetes. There is growing clinical evidence supporting the concept that rheumatoid arthritis and p...

  10. A Case of Thoracic Spinal Stenosis Secondary to Paget's Disease

    Institute of Scientific and Technical Information of China (English)

    Yu Zhao; Yi-peng Wang; Gui-xing Qiu; Jian-xiong Shen; Xi-sheng Weng; Xiang Li; Nai-guo Wang

    2010-01-01

    PAGET'S disease, also called osteitis deformans, is a metabolic bone disorder. It is characterized by increased bone resorption and the compensatory formation of new bones. The increased bone conversion and remodeling lead to the incrustation of woven bones and lamellar bones and finally result in the expansion, loosening, and excessive vascularization of the affected bones, rendering them susceptible to deformity and fracture.1 Paget's disease occurs much more com-monly in Anglo-Saxons than in Asians and Africans.

  11. Bone x-ray

    Science.gov (United States)

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  12. Theoretical discussion about the treatment of ankylosing spondylitis bone metabolism imbalance on the basis of spleen in taditional Chinese medicine%从脾论治强直性脊柱炎骨代谢失衡理论探讨

    Institute of Scientific and Technical Information of China (English)

    汪四海; 刘健; 张金山

    2013-01-01

    Abastraet:Ankylosing spondylitis (AS) bone metabolism imbalance has become the focus of research in recent years.Bone metabolism imbalances throughout the occurrence and development of AS so that bone metabolism imbalances in the occurrence and development of ankylosing spondylitis plays an important role which lacks of specific medicine in Western modern medicine.Liver,spleen and kidney deficiency have close relationships with the onset of AS:the pathogenesis of AS is spleen deficiency at first.If spleen qi is enough,liver and kidney is raised.Thus strong bones and muscles are possessed so that the disease is not born.If spleen qi is not enough,the liver is lost moisten and the kidney is lost hidden.Thus strong bones and muscles are not possessed so that Bi Zheng is born.Meanwhile,the spleen deficiency of traditional Chinese medicine always throughout bone metabolism disorder of AS:bone metabolism imbalance of AS is related to spleen and kidney deficiency which is on basis of the spleen deficiency early and appears both spleen and kidney deficiency later.Therefore,theoretical discussion about the treatment of Ankylosing Spondylitis bone metabolism imbalance on the basis of spleen in taditional Chinese medicine is put forward,which provides theoretical basis for the diseases.%强直性脊柱炎(AS)合并骨代谢失衡已成为近年来研究的热点,骨代谢失衡贯穿于AS的发生、发展整个过程,故骨代谢失衡在AS的发生、发展中起重要作用.西医在治疗上缺乏特效药,中医根据其病因病机与肝脾肾密切相关,肝主筋,肾主骨,脾主四肢、肌肉,AS的病机以脾虚为先,脾气健运,肝肾充养,筋骨强壮,诸病不生;若脾气亏虚,肝失濡养,肾失所藏,则筋骨失养,痹证乃生.同时,脾虚贯穿于AS骨代谢异常的始终,前期以脾虚为基础,后期则出现脾肾两虚,从而提出了从脾论治AS骨代谢失衡,也为临床治疗该病提供理论依据.

  13. Paget’s Disease of Bone Presented as Normal Pressure Hydrocephalus: A Case Report and Review of Literature

    Directory of Open Access Journals (Sweden)

    Abbas Tafakhori

    2012-07-01

    Full Text Available Background: Paget’s disease is a focal bone disorder manifested as bone overgrowth and disrupted bone integrity as a result of accelerated bone remodelling rate. Rarely, Paget’s disease of the base of the skull results in hydrocephalic dementia, and the triad of normal pressure hydrocephalus syndrome is a much more scarce entity.Case Report: Herein, we report an elderly woman who presented in Imam Khomeini Hospital, Tehran, Iran, with normal pressure hydrocephalus syndrome due to Paget’s bone disease. Furthermore, we have reviewed relevant previous studiesConclusion: Paget’s disease can be presented as normal pressure hydrocephalus syndrome

  14. EFFECTS OF LEVOTHYROXINE ON BONE METABOLISM IN PATIENTS WITH DIFFERENTIATED THYROID CANCER AFTER OPERATION AND 131I ABLATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the effects of substitutive and suppressive doses of levothyroxine on bone metabolism in patients with differentiated thyroid carcinoma after surgery and 131I ablation. Methods The patients, who had received levothyroxine(L-T4) for at least 3 years for treating their differentiated thyroid carcinoma after surgery and 131I therapy, were classified into substitutive group and suppressive group according to the levels of serum free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH). We compared the levels of FT3, FT4, TSH, serum parathyroid hormone (PTH), serum calcium (Ca), serum phosphate (P), serum alkaline phosphates (ALP) and Bone mineral density (BMD) to those of healthy volunteers well matched for sex, age, menopausal status, and body mass index (BMI). Results No significant differences were found in the bone density and biochemical parameters of bone metabolism of the subjects treated with substitutive or suppressive doses of L-T4 compared with the control subgroup. No significant differences were observed among the subgroups according to accumulative doses of 131I. No bone fracture was found in all the patients. Conclusion The substitutive and suppressive doses of L-T4 are safe and necessary for patients with differentiated thyroid carcinoma after surgery and 131I therapy. Such treatment for 3 years is not associated with increased risk of osteoporosis. Much longer term of follow up is still needed in patients receiving substitutive and suppressive doses of L-T4.

  15. Disease-modifying antirheumatic drugs and bone mass in rheumatoid arthritis.

    Science.gov (United States)

    Di Munno, O; Delle Sedie, A; Rossini, M; Adami, S

    2005-01-01

    This article reviews the effects of DMARDs (including biologic agents) on bone metabolism in rheumatoid arthritis (RA). At present there is no evidence that methotrexate, at least at dosages ranging from 5 to 20 mg/week, negatively affects bone mass as measured by DXA (BMD) as documented in both cross-sectional and longitudinal studies. Most studies of cyclosporine (CyA) use reporting a reduction in erosions and joint damage with no adverse effects on bone, did not measure BMD; CyA treatment is associated with a dose-dependent increase of bone turnover as well as a decrease in both animal and human studies; however, its use in RA setting at a dose < or =5 mg/Kg/ day has so far not been associated with clinical relevant adverse effects on bone metabolism. Anti-TNF-alpha agents, infliximab reduced markers of bone turnover in two longitudinal studies. Data on BMD are not available in RA; nevertheless, an increase in BMD has been documented in spondyloarthropathies with infliximab and etanercept. No clinical data concerning BMD are available on leflunomide as well as on the newer biologic agents (adalimumab, rituximab, anakinra).

  16. Metabolism of Cartilage Proteoglycans in Health and Disease

    Directory of Open Access Journals (Sweden)

    Demitrios H. Vynios

    2014-01-01

    Full Text Available Cartilage proteoglycans are extracellular macromolecules with complex structure, composed of a core protein onto which a variable number of glycosaminoglycan chains are attached. Their biosynthesis at the glycosaminoglycan level involves a great number of sugar transferases well-orchestrated in Golgi apparatus. Similarly, their degradation, either extracellular or intracellular in lysosomes, involves a large number of hydrolases. A deficiency or malfunction of any of the enzymes participating in cartilage proteoglycan metabolism may lead to severe disease state. This review summarizes the findings regarding this topic.

  17. Protective Effects of Long Term Administration of Zinc on Bone Metabolism Parameters in Male Wistar Rats Treated with Cadmium

    Directory of Open Access Journals (Sweden)

    Shiva Najafi

    2016-10-01

    Full Text Available Background Violent poisoning by cadmium in human is created through drinks or meals which have packed in the metallic tins with cadmium plating. The symptoms of variation in the mineral metabolism of bones are observed and different conditions maybe appeared. The toxic (poisonous effect due to cadmium can be neutralized by intervening zinc. This study has been designed to investigate the protective effects of zinc for reducing the poisonous effects due to cadmium on the metabolism in the parameters related to the bone in rat. Methods In this experimental study, 48 male rats of wistar species were distributed in eight experimental groups and tested in the investigative lab of Falavarjan university. These groups were received 0.5 cc physiological serum, 0.5 mg/kg Zinc, 0.5, 1, 2 mg/kg Cadmium respectively and some groups were included in those were taken all there cadmium and zinc concentrations synchronously. Blood samples were taken in a 60 days period and those factors related to the bone metabolism were measured. The data were analyzed by 2-ANOVA Ways, complementary tests through software SPSS 16. Results The results showed that 0.5, 1, 2 mg/kg doses cadmium chloride caused to increase alkaline Phosphatase, calcium, phosphorus, magnesium and decrease albumin as compared with control group. Also, synchronous usage of all three cadmium chloride concentrations with zinc cause to decrease alkaline phosphatase, calcium, phosphorus, magnesium and increase albumin concentration. In a word, the other bone parameters have been significant in different cadmium and zinc doses (P < 0.05. Conclusions Findings showed that zinc can play a protective role on the metabolism parameters related to bone against to poisoning caused by cadmium.

  18. Cyclic vomiting syndrome masking a fatal metabolic disease.

    LENUS (Irish Health Repository)

    Fitzgerald, Marianne

    2013-05-01

    Disorders of fatty acid oxidation are rare but can be fatal. Hypoglycaemia with acidosis is a cardinal feature. Cases may present during early childhood or can be delayed into adolescence or beyond. We present a case of multiple acyl-coenzyme A dehydrogenase deficiency (MADD), an extremely rare disorder of fatty acid oxidation. Our 20-year-old patient presented with cardiovascular collapse, raised anion gap metabolic acidosis and non-ketotic hypoglycaemia. She subsequently developed multi-organ failure and sadly died. She had a previous diagnosis of cyclic vomiting syndrome (CVS) for more than 10 years, warranting frequent hospital admissions. The association between CVS and MADD has been made before though the exact relationship is unclear. All patients with persistent severe CVS should have metabolic investigations to exclude disorders of fatty acid oxidation. In case of non-ketotic hypoglycaemia with acidosis, the patient should be urgently referred to a specialist in metabolic diseases. All practitioners should be aware of these rare disorders as a cause of unexplained acidosis.

  19. Preliminary results of automated removal of degenerative joint disease in bone scan lesion segmentation

    Science.gov (United States)

    Chu, Gregory H.; Lo, Pechin; Kim, Hyun J.; Auerbach, Martin; Goldin, Jonathan; Henkel, Keith; Banola, Ashley; Morris, Darren; Coy, Heidi; Brown, Matthew S.

    2013-03-01

    Whole-body bone scintigraphy (or bone scan) is a highly sensitive method for visualizing bone metastases and is the accepted standard imaging modality for detection of metastases and assessment of treatment outcomes. The development of a quantitative biomarker using computer-aided detection on bone scans for treatment response assessment may have a significant impact on the evaluation of novel oncologic drugs directed at bone metastases. One of the challenges to lesion segmentation on bone scans is the non-specificity of the radiotracer, manifesting as high activity related to non-malignant processes like degenerative joint disease, sinuses, kidneys, thyroid and bladder. In this paper, we developed an automated bone scan lesion segmentation method that implements intensity normalization, a two-threshold model, and automated detection and removal of areas consistent with non-malignant processes from the segmentation. The two-threshold model serves to account for outlier bone scans with elevated and diffuse intensity distributions. Parameters to remove degenerative joint disease were trained using a multi-start Nelder-Mead simplex optimization scheme. The segmentation reference standard was constructed manually by a panel of physicians. We compared the performance of the proposed method against a previously published method. The results of a two-fold cross validation show that the overlap ratio improved in 67.0% of scans, with an average improvement of 5.1% points.

  20. PTH (1-84) Replacement Therapy in Hypoparathyroidism: Effects on bone metabolism and structure

    DEFF Research Database (Denmark)

    Sikjær, Tanja Tvistholm; Rejnmark, Lars; Tietze, Anna;

    tunnelling. Cortical porosity tended to be higher in PTH-treated patients, especially in those with tunnelling. Occurrence of tunnelling was not associated with etiology, length of disease, concentration of PTH, ionized calcium, or 1,25-hydroxy vitamin D. Quantitative computed tomography (QCT) at the spine...... and hip were performed at baseline and at week 24 in 31 patients. At the lumbar spine (L1+L2), the increase in trabecular vBMD over the study period was significantly (p=0.02) higher in the PTH group (+12.2%) than in the placebo group (-0.7%). On the contrary, total vBMD decreased more in the PTH than....... The effect of PTH (1–84)-treatment in hypoPT is an increased bone turn-over with a decreased vBMD at cortical sites, and an increased vBMD at the trabecular sites, which is related to morphological changes in the bone microstructure with intratrabecular tunnelling and increased cortical porosity....

  1. PTH (1-84) Replacement Therapy in Hypoparathyroidism: Effects on bone metabolism and structure

    DEFF Research Database (Denmark)

    Sikjær, Tanja Tvistholm; Rejnmark, Lars; Tietze, Anna;

    2011-01-01

    tunnelling. Cortical porosity tended to be higher in PTH-treated patients, especially in those with tunnelling. Occurrence of tunnelling was not associated with etiology, length of disease, concentration of PTH, ionized calcium, or 1,25-hydroxy vitamin D. Quantitative computed tomography (QCT) at the spine...... and hip were performed at baseline and at week 24 in 31 patients. At the lumbar spine (L1+L2), the increase in trabecular vBMD over the study period was significantly (p=0.02) higher in the PTH group (+12.2%) than in the placebo group (-0.7%). On the contrary, total vBMD decreased more in the PTH than....... The effect of PTH (1–84)-treatment in hypoPT is an increased bone turn-over with a decreased vBMD at cortical sites, and an increased vBMD at the trabecular sites, which is related to morphological changes in the bone microstructure with intratrabecular tunnelling and increased cortical porosity....

  2. S-MRI score: A simple method for assessing bone marrow involvement in Gaucher disease

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M. [Radiology (Magnetic Resonance) Instituto Aragones de Ciencias de la Salud (I-CS), Zaragoza (Spain); Mota, J. [Diagnostic Imaging Department, Medimagen, Barcelona (Spain); Alfonso, P. [Radiology (Magnetic Resonance) Instituto Aragones de Ciencias de la Salud (I-CS), Zaragoza (Spain); Pocovi, M. [Biochemistry and Cellular and Molecular Biology Department, Zaragoza University (Spain); Giraldo, P. [Haematology Department, Miguel Servet University Hospital, 50009 Zaragoza (Spain)]. E-mail: pgiraldo@salud.aragon.es

    2007-04-15

    Semi quantitative MRI is a very useful procedure for evaluating the bone marrow burden (BMB) in Gaucher disease (GD). Score systems have been applied to obtain a parameter for evaluating the severity of bone disease. Our purpose was to test a simple, reproducible and accurate score to evaluate bone marrow involvement in GD patients. MRI was performed in spine, pelvis and femora at diagnosis in 54 adult GD1 patients, 61.1% of whom were female. Three MRI patterns and punctuation in each location were defined: normal, 0; non-homogeneous infiltration subtypes reticular, 1; mottled, 2; diffuse, 3; and homogeneous infiltration, 4. This score was called Spanish-MRI (S-MRI). Two independent observers applied the S-MRI and bone marrow burden score and compared the differences using the non-parametric Mann-Whitney test. Correlation rank test was calculated. In 46 patients (85.2%), bone involvement was observed. Thirty-nine (72.3%) had their spine affected, 35 (64.8%) pelvis and 33 (61.2%) femora. Fourteen patients had bone infarcts, 14 avascular necrosis, 2 vertebral fractures and 2 bone crises. Correlation analysis between S-MRI and BMB was (r {sup 2} = .675; p = .0001). No evidence of correlation was observed between CT activity and S-MRI nor between CT activity and BMB. We have found a relationship between genotype and bone infiltration according to S-MRI site and complications. S-MRI is a simple method that provides useful information to evaluate bone infiltration and detect silent complications. Our results correlated with the BMB score but offer higher sensitivity, specificity and accuracy for classifying the extent of bone disease.

  3. Epicardial adipose tissue in endocrine and metabolic diseases.

    Science.gov (United States)

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  4. Understanding the role of gut microbiome in metabolic disease risk.

    Science.gov (United States)

    Sanz, Yolanda; Olivares, Marta; Moya-Pérez, Ángela; Agostoni, Carlo

    2015-01-01

    The gut microbiota structure, dynamics, and function result from interactions with environmental and host factors, which jointly influence the communication between the gut and peripheral tissues, thereby contributing to health programming and disease risk. Incidence of both type-1 and type-2 diabetes has increased during the past decades, suggesting that there have been changes in the interactions between predisposing genetic and environmental factors. Animal studies show that gut microbiota and its genome (microbiome) influence alterations in energy balance (increased energy harvest) and immunity (inflammation and autoimmunity), leading to metabolic dysfunction (e.g., insulin resistance and deficiency). Thus, although they have different origins, both disorders are linked by the association of the gut microbiota with the immune-metabolic axis. Human studies have also revealed shifts in microbiome signatures in diseased subjects as compared with controls, and a few of them precede the development of these disorders. These studies contribute to pinpointing specific microbiome components and functions (e.g., butyrate-producing bacteria) that can protect against both disorders. These could exert protective roles by strengthening gut barrier function and regulating inflammation, as alterations in these are a pathophysiological feature of both disorders, constituting common targets for future preventive approaches.

  5. Determinants of increased cardiovascular disease in obesity and metabolic syndrome.

    Science.gov (United States)

    Vazzana, N; Santilli, F; Sestili, S; Cuccurullo, C; Davi, G

    2011-01-01

    Obesity is associated with an increased mortality and morbidity for cardiovascular disease (CVD) and adipose tissue is recognised as an important player in obesity-mediated CVD. The diagnosis of the metabolic syndrome (MS) appears to identify substantial additional cardiovascular risk above and beyond the individual risk factors, even though the pathophysiology underlying this evidence is still unravelled. The inflammatory response related to fat accumulation may influence cardiovascular risk through its involvement not only in body weight homeostasis, but also in coagulation, fibrinolysis, endothelial dysfunction, insulin resistance (IR) and atherosclerosis. Moreover, there is evidence that oxidative stress may be a mechanistic link between several components of MS and CVD, through its role in inflammation and its ability to disrupt insulin-signaling. The cross-talk between impaired insulin-signaling and inflammatory pathways enhances both metabolic IR and endothelial dysfunction, which synergize to predispose to CVD. Persistent platelet hyperreactivity/activation emerges as the final pathway driven by intertwined interactions among IR, adipokine release, inflammation, dyslipidemia and oxidative stress and provides a pathophysiological explanation for the excess risk of atherothrombosis in this setting. Despite the availability of multiple interventions to counteract these metabolic changes, including appropriate diet, regular exercise, antiobesity drugs and bariatric surgery, relative failure to control the incidence of MS and its complications reflects both the multifactorial nature of these diseases as well as the scarce compliance of patients to established strategies. Evaluation of the impact of these therapeutic strategies on the pathobiology of atherothrombosis, as discussed in this review, will translate into an optimized approach for cardiovascular prevention.

  6. Multilevel Approach of a 1-Year Program of Dietary and Exercise Interventions on Bone Mineral Content and Density in Metabolic Syndrome – the RESOLVE Randomized Controlled Trial

    Science.gov (United States)

    Courteix, Daniel; Valente-dos-Santos, João; Ferry, Béatrice; Lac, Gérard; Lesourd, Bruno; Chapier, Robert; Naughton, Geraldine; Marceau, Geoffroy; João Coelho-e-Silva, Manuel; Vinet, Agnès; Walther, Guillaume; Obert, Philippe; Dutheil, Frédéric

    2015-01-01

    Background Weight loss is a public health concern in obesity-related diseases such as metabolic syndrome (MetS). However, restrictive diets might induce bone loss. The nature of exercise and whether exercise with weight loss programs can protect against potential bone mass deficits remains unclear. Moreover, compliance is essential in intervention programs. Thus, we aimed to investigate the effects that modality and exercise compliance have on bone mineral content (BMC) and density (BMD). Methods We investigated 90 individuals with MetS who were recruited for the 1-year RESOLVE trial. Community-dwelling seniors with MetS were randomly assigned into three different modalities of exercise (intensive resistance, intensive endurance, moderate mixed) combined with a restrictive diet. They were compared to 44 healthy controls who did not undergo the intervention. Results This intensive lifestyle intervention (15–20 hours of training/week + restrictive diet) resulted in weight loss, body composition changes and health improvements. Baseline BMC and BMD for total body, lumbar spine and femoral neck did not differ between MetS groups and between MetS and controls. Despite changes over time, BMC or BMD did not differ between the three modalities of exercise and when compared with the controls. However, independent of exercise modality, compliant participants increased their BMC and BMD compared with their less compliant peers. Decreases in total body lean mass and negative energy balance significantly and independently contributed to decreases in lumbar spine BMC. Conclusion After the one year intervention, differences relating to exercise modalities were not evident. However, compliance with an intensive exercise program resulted in a significantly higher bone mass during energy restriction than non-compliance. Exercise is therefore beneficial to bone in the context of a weight loss program. Trial Registration ClinicalTrials.gov NCT00917917 PMID:26376093

  7. Contemporary Approaches for Identifying Rare Bone Disease Causing Genes

    Institute of Scientific and Technical Information of China (English)

    Charles R.Farber; Thomas L.Clemens

    2013-01-01

    Recent improvements in the speed and accuracy of DNA sequencing, together with increasingly sophisti-cated mathematical approaches for annotating gene networks, have revolutionized the field of human genetics and made these once time consuming approaches assessable to most investigators. In the field of bone research, a particularly active area of gene discovery has occurred in patients with rare bone disorders such as osteogenesis imperfecta (OI) that are caused by mutations in single genes. In this perspective, we highlight some of these technological advances and describe how they have been used to identify the genetic determinants underlying two previously unexplained cases of OI. The widespread availability of advanced methods for DNA sequencing and bioinformatics analysis can be expected to greatly facilitate identification of novel gene networks that normally function to control bone formation and maintenance.

  8. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  9. Parathyroid ultrasonography and bone metabolic profile of patients on dialysis with hyperparathyroidism

    Science.gov (United States)

    Ribeiro, Cláudia; Penido, Maria Goretti Moreira Guimarães; Guimarães, Milena Maria Moreira; Tavares, Marcelo de Sousa; Souza, Bruno das Neves; Leite, Anderson Ferreira; de Deus, Leonardo Martins Caldeira; Machado, Lucas José de Campos

    2016-01-01

    AIM To evaluate the parathyroid ultrasonography and define parameters that can predict poor response to treatment in patients with secondary hyperparathyroidism due to renal failure. METHODS This cohort study evaluated 85 patients with chronic kidney disease stage V with parathyroid hormone levels above 800 pg/mL. All patients underwent ultrasonography of the parathyroids and the following parameters were analyzed: Demographic characteristics (etiology of chronic kidney disease, gender, age, dialysis vintage, vascular access, use of vitamin D), laboratory (calcium, phosphorus, parathyroid hormone, alkaline phosphatase, bone alkaline phosphatase), and the occurrence of bone changes, cardiovascular events and death. The χ2 test were used to compare proportions or the Fisher exact test for small sample frequencies. Student t-test was used to detect differences between the two groups regarding continuous variables. RESULTS Fifty-three patients (66.4%) had parathyroid nodules with higher levels of parathyroid hormone, calcium and phosphorus. Sixteen patients underwent parathyroidectomy and had higher levels of phosphorus and calcium × phosphorus product (P = 0.03 and P = 0.006, respectively). They also had lower mortality (32% vs 68%, P = 0.01) and lower incidence of cardiovascular or cerebrovascular events (27% vs 73%, P = 0.02). Calcium × phosphorus product above 55 mg2/dL2 [RR 1.48 (1.06, 2.08), P = 0.03], presence of vascular calcification [1.33 (1.01, 1.76), P = 0.015] and previous occurrence of vascular events [RR 2.25 (1.27, 3.98), P < 0.001] were risk factors for mortality in this population. There was no association between the occurrence of nodules and mortality. CONCLUSION The identification of nodules at ultrasonography strengthens the indication for parathyroidectomy in patients with secondary hyperparathyroidism due to renal failure. PMID:27648407

  10. Dietary phosphorus excess: a risk factor in chronic bone, kidney, and cardiovascular disease?

    Science.gov (United States)

    Uribarri, Jaime; Calvo, Mona S

    2013-09-01

    There is growing evidence in the nephrology literature supporting the deleterious health effect of excess dietary phosphorus intake. This issue has largely escaped the attention of nutrition experts until this symposium, which raised the question of whether the same health concerns should be extended to the general population. The potential hazard of a high phosphorus intake in the healthy population is illustrated by findings from acute and epidemiologic studies. Acute studies in healthy young adults demonstrate that phosphorus intakes in excess of nutrient needs may significantly disrupt the hormonal regulation of phosphorus contributing to disordered mineral metabolism, vascular calcification, bone loss, and impaired kidney function. One of the hormonal factors acutely affected by dietary phosphorus loading is fibroblast growth factor-23, which may be a key factor responsible for many of the cardiovascular disease (CVD) complications of high phosphorus intake. Increasingly, large epidemiological studies suggest that mild elevations of serum phosphorus within the normal range are associated with CVD risk in healthy populations. Few population studies link high dietary phosphorus intake to mild changes in serum phosphorus due to study design issues specific to phosphorus and inaccurate nutrient composition databases. The increasing phosphorus intake due to the use of phosphorus-containing ingredients in processed food and the growing consumption of processed convenience and fast foods is an important factor that needs to be emphasized.

  11. Is there a role for scintigraphic imaging of bone manifestations in Gaucher disease? A review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, P. [State Hospital Klagenfurt (Austria). Dept. of Nuclear Medicine and Endocrinology, PET Center]|[State Hospital Klagenfurt (Austria). Dept. of Internal Medicine II; Kohlfuerst, S.; Gallowitsch, H.J.; Kresnik, E.; Lind, P. [State Hospital Klagenfurt (Austria). Dept. of Nuclear Medicine and Endocrinology, PET Center; Mehta, A.B.; Hughes, D.A. [Royal Free and University College Medical School, London (United Kingdom). Dept. of Academic Haematology

    2008-07-01

    Gaucher disease is the most prevalent inherited, lysosomal storage disease and is caused by deficient activity of the enzyme {beta}-glucocerebrosidase. Bone and bone marrow alterations are frequent in the most prevalent non-neuronopathic form of Gaucher disease. Imaging of bone manifestations in Gaucher disease is performed by a variety of imaging methods, conventional X-ray and MRI as the most frequently and most important ones. However, different modalities of scintigraphic imaging have also been used. This article gives an overview on scintigraphic imaging with respect to bone manifestations in Gaucher disease discussing the advantages and limitations of scintigraphic imaging in comparison to other imaging methods. (orig.)

  12. Pain and bone disease: a patient’s view

    Directory of Open Access Journals (Sweden)

    L. Brunetta

    2011-12-01

    Full Text Available Pain in thalassemia proves to be an emergent issue even if it is not possible to correlate it definitely to bone disease, but we strongly believe that a multidisciplinary approach, may be as decisive in this case as it was in the struggle against thalassemia. In fact, we strongly believe that the involvement of various specialists such as endocrinologists, orthopedist, anesthesiologist, in a close team coordinated by a specialist in thalassemia is absolutely necessary for achieving our aims. First of all, we need to implement clinical trials to identify the mechanisms of disease, to find the optimal management of the problem in order to provide new therapeutic methods for preventing the thalassemia-induced osteoporosis and to reduce the presence of very disabling pain for patients. Patients’ expectations for the future are to continuously improve the quality of life. To do that it is needed to identify pathways to prevent all the complications of thalassemia that cause widespread pain, above all osteoporosis. Although we have seen that osteoporosis is not the sole cause of pain for thalassemia patients, it is true that this seems to have a great incidence in thalassemia patients and it gives a significant contribute to an increased pain. 地中海贫血疼痛亟待解决,即使它可能与和骨病毫不相关,但我们坚信可以找到一种战胜地中海贫血症的多学科结合疗法。 事实上,如果要完成我们的目标,绝对有必要邀请一名地中海贫血专家,在内分泌学家、矫形外科医师和麻醉学家组成的队伍的配合下紧密展开工作。 首先,我们需要开展临床试验,确认发病机制,找出疾病最佳的控制方法,以找到预防地中海贫血诱发骨质疏松症的新疗法和减少疼痛的频率。 病患者对未来的期望是能够不断地提高自己的生活质量。要做到,病患者需要找到预防地中海贫血所有并发症引起的疼痛的方

  13. The unsolved case of “bone-impairing analgesics”: the endocrine effects of opioids on bone metabolism

    Science.gov (United States)

    Coluzzi, Flaminia; Pergolizzi, Joseph; Raffa, Robert B; Mattia, Consalvo

    2015-01-01

    The current literature describes the possible risks for bone fracture in chronic analgesics users. There are three main hypotheses that could explain the increased risk of fracture associated with central analgesics, such as opioids: 1) the increased risk of falls caused by central nervous system effects, including sedation and dizziness; 2) reduced bone mass density caused by the direct opioid effect on osteoblasts; and 3) chronic opioid-induced hypogonadism. The impact of opioids varies by sex and among the type of opioid used (less, for example, for tapentadol and buprenorphine). Opioid-associated androgen deficiency is correlated with an increased risk of osteoporosis; thus, despite that standards have not been established for monitoring and treating opioid-induced hypogonadism or hypoadrenalism, all patients chronically taking opioids (particularly at doses ≥100 mg morphine daily) should be monitored for the early detection of hormonal impairment and low bone mass density. PMID:25848298

  14. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  15. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  16. Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease: A Dynamic and Life-Threatening Triad

    Directory of Open Access Journals (Sweden)

    Mário Raimundo

    2011-01-01

    Full Text Available The metabolic syndrome (MS and chronic kidney disease (CKD have both become global public health problems, with increasing social and economic impact due to their high prevalence and remarkable impact on morbidity and mortality. The causality between MS and CKD, and its clinical implications, still does remain not completely understood. Moreover, prophylactic and therapeutic interventions do need to be properly investigated in this field. Herein, we critically review the existing clinical evidence that associates MS with renal disease and cardiovascular disease, as well as the associated pathophysiologic mechanisms and actual treatment options.

  17. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site.

    Science.gov (United States)

    Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E

    2014-07-01

    Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays.

  18. A New Data Analysis System to Quantify Associations between Biochemical Parameters of Chronic Kidney Disease-Mineral Bone Disease.

    Directory of Open Access Journals (Sweden)

    Mariano Rodriguez

    Full Text Available In hemodialysis patients, deviations from KDIGO recommended values of individual parameters, phosphate, calcium or parathyroid hormone (PTH, are associated with increased mortality. However, it is widely accepted that these parameters are not regulated independently of each other and that therapy aimed to correct one parameter often modifies the others. The aim of the present study is to quantify the degree of association between parameters of chronic kidney disease and mineral bone disease (CKD-MBD.Data was extracted from a cohort of 1758 adult HD patients between January 2000 and June 2013 obtaining a total of 46.141 records (10 year follow-up. We used an advanced data analysis system called Random Forest (RF which is based on self-learning procedure with similar axioms to those utilized for the development of artificial intelligence. This new approach is particularly useful when the variables analyzed are closely dependent to each other.The analysis revealed a strong association between PTH and phosphate that was superior to that of PTH and Calcium. The classical linear regression analysis between PTH and phosphate shows a correlation coefficient is 0.27, p<0.001, the possibility to predict PTH changes from phosphate modification is marginal. Alternatively, RF assumes that changes in phosphate will cause modifications in other associated variables (calcium and others that may also affect PTH values. Using RF the correlation coefficient between changes in serum PTH and phosphate is 0.77, p<0.001; thus, the power of prediction is markedly increased. The effect of therapy on biochemical variables was also analyzed using this RF.Our results suggest that the analysis of the complex interactions between mineral metabolism parameters in CKD-MBD may demand a more advanced data analysis system such as RF.

  19. Effects of spirulina, a blue-green alga, on bone metabolism