WorldWideScience

Sample records for bone conduction implant

  1. Quality standards for bone conduction implants.

    Science.gov (United States)

    Gavilan, Javier; Adunka, Oliver; Agrawal, Sumit; Atlas, Marcus; Baumgartner, Wolf-Dieter; Brill, Stefan; Bruce, Iain; Buchman, Craig; Caversaccio, Marco; De Bodt, Marc T; Dillon, Meg; Godey, Benoit; Green, Kevin; Gstoettner, Wolfgang; Hagen, Rudolf; Hagr, Abdulrahman; Han, Demin; Kameswaran, Mohan; Karltorp, Eva; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Li, Yongxin; Lorens, Artur; Martin, Jane; Manoj, Manikoth; Mertens, Griet; Mlynski, Robert; Mueller, Joachim; O'Driscoll, Martin; Parnes, Lorne; Pulibalathingal, Sasidharan; Radeloff, Andreas; Raine, Christopher H; Rajan, Gunesh; Rajeswaran, Ranjith; Schmutzhard, Joachim; Skarzynski, Henryk; Skarzynski, Piotr; Sprinzl, Georg; Staecker, Hinrich; Stephan, Kurt; Sugarova, Serafima; Tavora, Dayse; Usami, Shin-Ichi; Yanov, Yuri; Zernotti, Mario; Zorowka, Patrick; de Heyning, Paul Van

    2015-01-01

    Bone conduction implants are useful in patients with conductive and mixed hearing loss for whom conventional surgery or hearing aids are no longer an option. They may also be used in patients affected by single-sided deafness. To establish a consensus on the quality standards required for centers willing to create a bone conduction implant program. To ensure a consistently high level of service and to provide patients with the best possible solution the members of the HEARRING network have established a set of quality standards for bone conduction implants. These standards constitute a realistic minimum attainable by all implant clinics and should be employed alongside current best practice guidelines. Fifteen items are thoroughly analyzed. They include team structure, accommodation and clinical facilities, selection criteria, evaluation process, complete preoperative and surgical information, postoperative fitting and assessment, follow-up, device failure, clinical management, transfer of care and patient complaints.

  2. Sound Localization in Patients With Congenital Unilateral Conductive Hearing Loss With a Transcutaneous Bone Conduction Implant.

    Science.gov (United States)

    Vyskocil, Erich; Liepins, Rudolfs; Kaider, Alexandra; Blineder, Michaela; Hamzavi, Sasan

    2017-03-01

    There is no consensus regarding the benefit of implantable hearing aids in congenital unilateral conductive hearing loss (UCHL). This study aimed to measure sound source localization performance in patients with congenital UCHL and contralateral normal hearing who received a new bone conduction implant. Evaluation of within-subject performance differences for sound source localization in a horizontal plane. Tertiary referral center. Five patients with atresia of the external auditory canal and contralateral normal hearing implanted with transcutaneous bone conduction implant at the Medical University of Vienna were tested. Activated/deactivated implant. Sound source localization test; localization performance quantified using the root mean square (RMS) error. Sound source localization ability was highly variable among individual subjects, with RMS errors ranging from 21 to 40 degrees. Horizontal plane localization performance in aided conditions showed statistically significant improvement compared with the unaided conditions, with RMS errors ranging from 17 to 27 degrees. The mean RMS error decreased by a factor of 0.71 (p conduction implant. Some patients with congenital UCHL might be capable of developing improved horizontal plane localization abilities with the binaural cues provided by this device.

  3. Preoperative headband assessment for semi-implantable bone conduction hearing devices in conductive hearing loss: is it useful or misleading?

    Science.gov (United States)

    Rainsbury, James W; Williams, Blair A; Gulliver, Mark; Morris, David P

    2015-02-01

    To establish whether preoperative assessment using a conventional, percutaneous bone conducting implant (pBCI) processor on a headband accurately represents postoperative performance of a semi-implantable BCI (siBCI). Retrospective case series. Tertiary otology unit. Five patients with chronic otitis media (implanted unilaterally) and one with bilateral congenital ossicular fixation (implanted bilaterally). Semi-implantable bone conduction hearing implant. Functional hearing gain; preoperative (headband) versus postoperative (aided) speech discrimination; unaided bone conduction (BC) versus postoperative (aided) soundfield threshold. Significant functional gain was seen at all frequencies (one-tailed t test p G 0.01; n = 7). There was a 50 dB improvement in median speech reception threshold (SRT) from 70 dB unaided to 20 dB aided. Compared to the preoperative BC, aided siBCI thresholds were worse at 0.5 kHz, but at frequencies from 1 to 6 kHz, the siBCI closely matched the bone curve ( p G 0.01). The siBCI performed better than both pBCI processors on a headband at 3 to 4 kHz, except 1 kHz ( p G 0.01). BC thresholds may be a better indicator of implant performance than headband assessment. Candidacy assessment for siBCI implantation that relies on headband testing with pBCI processors should be interpreted with caution because the headband may under-represent the implanted device. This seems to be especially true at 3 kHz and above and may make it difficult for surgeons to conduct accurate informed consent discussions with patients about the realistic anticipated outcomes and benefits of the procedure.

  4. Active Bone Conduction Prosthesis: BonebridgeTM

    Directory of Open Access Journals (Sweden)

    Zernotti, Mario E.

    2015-10-01

    Full Text Available Introduction Bone conduction implants are indicated for patients with conductive and mixed hearing loss, as well as for patients with single-sided deafness (SSD. The transcutaneous technology avoids several complications of the percutaneous bone conduction implants including skin reaction, skin growth over the abutment, and wound infection. The Bonebridge (MED-EL, Austria prosthesis is a semi-implantable hearing system: the BCI (Bone Conduction Implant is the implantable part that contains the Bone Conduction-Floating Mass Transducer (BC-FMT, which applies the vibrations directly to the bone; the external component is the audio processor Amadé BB (MED-EL, Austria, which digitally processes the sound and sends the information through the coil to the internal part. Bonebridge may be implanted through three different approaches: the transmastoid, the retrosigmoid, or the middle fossa approach. Objective This systematic review aims to describe the world́s first active bone conduction implant system, Bonebridge, as well as describe the surgical techniques in the three possible approaches, showing results from implant centers in the world in terms of functional gain, speech reception thresholds and word recognition scores. Data Synthesis The authors searched the MEDLINE database using the key term Bonebridge. They selected only five publications to include in this systematic review. The review analyzes 20 patients that received Bonebridge implants with different approaches and pathologies. Conclusion Bonebridge is a solution for patients with conductive/mixed hearing loss and SSD with different surgical approaches, depending on their anatomy. The system imparts fewer complications than percutaneous bone conduction implants and shows proven benefits in speech discrimination and functional gain.

  5. Preliminary functional results and quality of life after implantation of a new bone conduction hearing device in patients with conductive and mixed hearing loss.

    Science.gov (United States)

    Ihler, Friedrich; Volbers, Laura; Blum, Jenny; Matthias, Christoph; Canis, Martin

    2014-02-01

    To review functional results and quality of life of the first patients implanted with a newly introduced bone conduction implant system. Retrospective chart analysis of 6 patients (6 ears) implanted for conductive hearing loss (CHL) and mixed hearing loss (MHL) in 1 tertiary referral center between July 2012 and February 2013. Implantation of a new bone conduction hearing device. Pure tone audiometry (air conduction and bone conduction thresholds, pure tone average, air-bone gap, and functional gain), speech audiometry (Freiburg Monosyllabic Test), intraoperative and postoperative complication rate, and patient satisfaction (Glasgow benefit inventory [GBI]) were assessed. Air-conduction pure tone average (PTA) was 58.8 ± 8.2 dB HL. Unaided average air-bone gap (ABG) was 33.3 ± 6.2 dB. Aided air-conduction PTA in sound field was 25.2 ± 5.1 dB HL. Aided average ABG was -0.3 ± 7.3 dB. Average functional gain was 33.6 ± 7.2 dB. Mean improvement of GBI was +36.1. No intraoperative complications occurred. During a follow-up period of 8.5 ± 2.2 months, no device failure and no need for revision surgery occurred. Audiometric results of the new bone conduction hearing system are satisfying and comparable to the results of devices that have been applied previously for CHL and MHL. Intraoperatively and postoperatively, no complications were noted.

  6. CT pre-operative planning of a new semi-implantable bone conduction hearing device

    Energy Technology Data Exchange (ETDEWEB)

    Law, Eric K.C.; Bhatia, Kunwar S.S. [Prince of Wales Hospital, The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Hong Kong, SAR (China); Tsang, Willis S.S.; Tong, Michael C.F. [Prince of Wales Hospital, The Chinese University of Hong Kong, Department of Otorhinolaryngology, Head and Neck Surgery, Hong Kong, SAR (China); Shi, Lin [The Chinese University of Hong Kong, Department of Medicine and Therapeutics, Hong Kong, SAR (China); The Chinese University of Hong Kong, Chow Yuk Ho Technology Center for Innovative Medicine, Hong Kong, SAR (China)

    2016-06-15

    Accommodating a novel semi-implantable bone conduction hearing device within the temporal bone presents challenges for surgical planning. This study describes the utility of CT in pre-operative assessment of such an implant. Retrospective review of pre-operative CT, clinical and surgical records of 16 adults considered for device implantation. Radiological suitability was assessed on CT using 3D simulation software. Antero-posterior (AP) dimensions of the mastoid bone and minimum skull thickness were measured. CT planning results were correlated with operative records. Eight and five candidates were suitable for device placement in the transmastoid and retrosigmoid positions, respectively, and three were radiologically unsuitable. The mean AP diameter of the mastoid cavity was 14.6 mm for the transmastoid group and 4.6 mm for the retrosigmoid group (p < 0.05). Contracted mastoid and/or prior surgery were predisposing factors for unsuitability. Four transmastoid and five retrosigmoid positions required sigmoid sinus/dural depression and/or use of lifts due to insufficient bone capacity. A high proportion of patients being considered have contracted or operated mastoids, which reduces the feasibility of the transmastoid approach. This finding combined with the complex temporal bone geometry illustrates the importance of careful CT evaluation using 3D software for precise device simulation. (orig.)

  7. Evaluation of long-term patient satisfaction and experience with the Baha(®) bone conduction implant

    DEFF Research Database (Denmark)

    Rasmussen, Jacob; Olsen, Steen Østergaard; Nielsen, Lars Holme

    2012-01-01

    Objective: Evaluate long-term patient satisfaction with bone-anchored hearing aids (the Baha(R), now referred to by Cochlear as a 'bone conduction implant') in our hospital clinic spanning the eighteen-year period from the inception of our Baha program. The researchers further wished to analyse t...

  8. Experimental study on bone tissue reaction around HA implants radiated after implantation

    International Nuclear Information System (INIS)

    Kudo, Masato; Matsui, Yoshiro; Tamura, Sayaka; Chen, Xuan; Uchida, Haruo; Mori, Kimie; Ohno, Kohsuke; Michi, Ken-ichi

    1998-01-01

    This study was conducted to investigate histologically and histomorphometrically the tissue reaction around hydroxylapatite (HA) implants that underwent irradiation in 3 different periods in the course of bone healing after implantation. The cylindrical high-density HA implants were implanted in 48 Japanese white rabbit mandibles. A single 15 Gy dose was applied to the mandible 5, 14, or 28 days after implantation. The rabbits were sacrificed 7, 14, 28, and 90 days after irradiation. Nonirradiated rabbits were used as controls. CMR, labeling with tetracycline and calcein, and non-decalcified specimens stained with toluidine blue were used for histological analyses and histomorphometric measurements. The results were as follows: In the rabbits irradiated 5 days after implantation, the HA-bone contact was observed later than that in the controls and the bone-implant contact surface ratio was lower than that in the controls at examination because necrosis of the newly-formed bone occurred just after irradiation. HA-bone contact of the rabbits irradiated 14 and 28 days after implantation was similar to that of the controls. And, bone remodeling was suppressed in rabbits of each group sacrificed at 90 days after irradiation. The results suggested that a short interval between implantation and irradiation causes direct contact between HA implant and bone and a long lapse of time before irradiation hardly affects the bone-implant contact, but delays bone remodeling. Therefore, it is necessary to prevent overloading the HA implants irradiated after implantation and pay utmost attention to conditions around the bone-implant contact. (author)

  9. Conductive component after cochlear implantation in patients with residual hearing conservation.

    Science.gov (United States)

    Chole, Richard A; Hullar, Timothy E; Potts, Lisa G

    2014-12-01

    Changes in auditory thresholds following cochlear implantation are generally assumed to be due to damage to neural elements. Theoretical studies have suggested that placement of a cochlear implant can cause a conductive hearing loss. Identification of a conductive component following cochlear implantation could guide improvements in surgical techniques or device designs. The purpose of this study is to characterize new-onset conductive hearing losses after cochlear implantation. In a prospective study, air- and bone-conduction audiometric testing were completed on cochlear implant recipients. An air-bone gap equal to or greater than 15 dB HL at 2 frequencies determined the presence of a conductive component. Of the 32 patients with preoperative bone-conduction hearing, 4 patients had a new-onset conductive component resulting in a mixed hearing loss, with air-conduction thresholds ranging from moderate to profound and an average air-bone gap of 30 dB HL. One had been implanted through the round window, 2 had an extended round window, and 1 had a separate cochleostomy. Loss of residual hearing following cochlear implantation may be due in part to a conductive component. Identifying the mechanism for this conductive component may help minimize hearing loss. Postoperative hearing evaluation should measure both air- and bone-conduction thresholds.

  10. First clinical experiences with an implantable bone conduction hearing aid at the University of Amsterdam

    NARCIS (Netherlands)

    van der Hulst, R. J.; Dreschler, W. A.; Tange, R. A.

    1993-01-01

    A transcutaneous bone-conduction hearing aid was implanted in 11 patients who were not suitable for transcranial sound amplification. Audiological and surgical selection criteria were followed strictly. One device had to be explanted and minor revision surgery was needed in two cases for skin

  11. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant

  12. Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Paul A. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States)]. E-mail: pclark4@gmail.com; Clark, Andrew M. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Rodriguez, Anthony [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Hussain, Mohammad A. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Mao, Jeremy J. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States)]. E-mail: jmao2@uic.edu

    2007-04-15

    Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-{mu}m intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 {+-} 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 {+-} 0.25 MPa to 2.24 {+-} 0.69 MPa, representing significant differences among several 60-{mu}m intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and 1 Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants.

  13. Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

    International Nuclear Information System (INIS)

    Clark, Paul A.; Clark, Andrew M.; Rodriguez, Anthony; Hussain, Mohammad A.; Mao, Jeremy J.

    2007-01-01

    Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-μm intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 ± 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 ± 0.25 MPa to 2.24 ± 0.69 MPa, representing significant differences among several 60-μm intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and 1 Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants

  14. Comparison Study of Percutaneous Osseointegrated Bone Conduction Device Complications When Using the 9 mm Abutment Versus 6 mm Abutment at Initial Implantation.

    Science.gov (United States)

    Wise, Sean R; LaRouere, Jacqueline S; Bojrab, Dennis I; LaRouere, Michael J

    2018-04-01

    To assess differences in the incidence, type, and management of complications encountered with implantation of percutaneous osseointegrated bone conduction devices when using a 9 mm abutment versus 6 mm abutment at initial implantation. Retrospective cohort study. One hundred thirty consecutive patients between January 2010 and December 2011 underwent single-stage percutaneous osseointegrated bone conduction device implantation using a 9 or 6 mm abutment. Clinical outcomes assessed for the two groups included the incidence, type, and management of postoperative complications. Abutment size, age, sex, indication for surgery, implant device type, duration of follow-up, and patient comorbidities were evaluated as potential factors affecting outcomes. Average duration of follow-up was 16 months (range 6-29 mo). Postoperative complications occurred in 38 (29.2%) patients. Twenty-four (18.4%) patients experienced minor complications requiring simple, local care; eight (6.1%) patients required in-office procedural intervention; and six (4.6%) patients required revision surgery in the operating room. Implant extrusion occurred in three (2.3%) patients. Eleven (8.5%) patients required placement of a longer abutment. Patients receiving the 6 mm abutment at initial surgery were significantly more likely to encounter a complication requiring in-office procedural intervention or revision surgery (p = 0.001). Minor complications after implantation of percutaneous osseointegrated bone conduction devices are common. The vast majority of these complications are due to localized skin reactions, most of which are readily addressed through local care. Patients receiving the 9 mm abutment during initial implantation are significantly less likely to require in-office procedural intervention or revision surgery postoperatively as compared with those receiving the shorter, 6 mm abutment.

  15. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis.

    Science.gov (United States)

    Caricasulo, Riccardo; Malchiodi, Luciano; Ghensi, Paolo; Fantozzi, Giuliano; Cucchi, Alessandro

    2018-05-15

    Different implant-abutment connections are available and it has been claimed they could have an effect on marginal bone loss. The aim of this review is to establish if implant connection configuration influences peri-implant bone loss (PBL) after functional loading. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Does the type of implant-abutment connection (external, internal, or conical) have an influence on peri-implant bone loss? A PubMed/MEDLINE electronic search was conducted to identify English language publications published in international journals during the last decade (from 2006 to 2016). The search was conducted by using the Medical Subject Headings (MeSH) keywords "dental implants OR dental abutment AND external connection OR internal connection OR conical connection OR Morse Taper." Selected studies were randomized clinical trials and prospective studies; in vitro studies, case reports and retrospective studies were excluded. Titles and abstracts and, in the second phase, full texts, were evaluated autonomously and in duplicate by two reviewers. A total of 1649 articles were found, but only 14 studies met the pre-established inclusion criteria and were considered suitable for meta-analytic analysis. The network meta-analysis (NMA) suggested a significant difference between the external and the conical connections; this was less evident for the internal and conical ones. Platform-switching (PS) seemed to positively affect bone levels, non-regarding the implant-connection it was applied to. Within the limitations of this systematic review, it can be concluded that crestal bone levels are better maintained in the short-medium term when internal kinds of interface are adopted. In particular, conical connections seem to be more advantageous, showing lower peri-implant bone loss, but further studies are necessary to investigate the efficacy of implant-abutment connection on stability of crestal

  16. Qualitative and quantitative observations of bone tissue reactions to anodised implants.

    Science.gov (United States)

    Sul, Young-Taeg; Johansson, Carina B; Röser, Kerstin; Albrektsson, Tomas

    2002-04-01

    Research projects focusing on biomaterials related factors; the bulk implant material, the macro-design of the implant and the microsurface roughness are routinely being conducted at our laboratories. In this study, we have investigated the bone tissue reactions to turned commercially pure (c.p.) titanium implants with various thicknesses of the oxide films after 6 weeks of insertion in rabbit bone. The control c.p. titanium implants had an oxide thickness of 17-200 nm while the test implants revealed an oxide thickness between 600 and 1000 nm. Routine histological investigations of the tissue reactions around the implants and enzyme histochemical detections of alkaline and acid phosphatase activities demonstrated similar findings around both the control and test implants. In general, the histomorphometrical parameters (bone to implant contact and newly formed bone) revealed significant quantitative differences between the control and test implants. The test implants demonstrated a greater bone response histomorphometrically than control implants and the osteoconductivity was more pronounced around the test implant surfaces. The parameters that differed between the implant surfaces, i.e. the oxide thickness, the pore size distribution, the porosity and the crystallinity of the surface oxides may represent factors that have an influence on the histomorphometrical results indicated by a stronger bone tissue response to the test implant surfaces, with an oxide thickness of more than 600 nm.

  17. Dynamics of bone graft healing around implants

    Directory of Open Access Journals (Sweden)

    Narayan Venkataraman

    2015-01-01

    A few questions arise pertaining to the use of bone grafts along with implants are whether these are successful in approximation with implant. Do they accelerate bone regeneration? Are all defects ultimately regenerated with new viable bone? Is the bone graft completely resorbed or integrated in new bone? Does the implant surface characteristic positively affect osseointegration when used with a bone graft? What type of graft and implant surface can be used that will have a positive effect on the healing type and time? Finally, what are the dynamics of bone graft healing around an implant? This review discusses the cellular and molecular mechanisms of bone graft healing in general and in vicinity of another foreign, avascular body, namely the implant surface, and further, the role of bone grafts in osseointegration and/or clinical success of the implants.

  18. Simulation of peri-implant bone healing due to immediate loading in dental implant treatments.

    Science.gov (United States)

    Chou, Hsuan-Yu; Müftü, Sinan

    2013-03-15

    The goal of this work was to investigate the role of immediate loading on the peri-implant bone healing in dental implant treatments. A mechano-regulatory tissue differentiation model that takes into account the stimuli through the solid and the fluid components of the healing tissue, and the diffusion of pluripotent stem cells into the healing callus was used. A two-dimensional axisymmetric model consisting of a dental implant, the healing callus tissue and the host bone tissue was constructed for the finite element analysis. Poroelastic material properties were assigned to the healing callus and the bone tissue. The effects of micro-motion, healing callus size, and implant thread design on the length of the bone-to-implant contact (BIC) and the bone volume (BV) formed in the healing callus were investigated. In general, the analysis predicted formation of a continuous layer of soft tissue along the faces of the implant which are parallel to the loading direction. This was predicted to be correlated with the high levels of distortional strain transferred through the solid component of the stimulus. It was also predicted that the external threads on the implant, redistribute the interfacial load, thus help reduce the high distortional stimulus and also help the cells to differentiate to bone tissue. In addition, the region underneath the implant apex was predicted to experience high fluid stimulus that results in the development of soft tissue. The relationship between the variables considered in this study and the outcome measures, BV and BIC, was found to be highly nonlinear. A three-way analysis of variance (ANOVA) of the results was conducted and it showed that micro-motion presents the largest hindrance to bone formation during healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    Directory of Open Access Journals (Sweden)

    Fredén Jansson KJ

    2015-10-01

    Full Text Available Karl-Johan Fredén Jansson,1 Bo Håkansson,1 Sabine Reinfeldt,1 Cristina Rigato,1 Måns Eeg-Olofsson2 1Department of Signals and Systems, Chalmers University of Technology, 2Deptartment of Otorhinolaryngology Head and Neck Surgery, Sahlgrenska University Hospital, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Purpose: The objective of this pilot study was to investigate if an active bone conduction implant (BCI used in an ongoing clinical study withstands magnetic resonance imaging (MRI of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO, total harmonic distortion (THD, and demagnetization were investigated. Implant activation and image artifacts were also evaluated.Methods and materials: One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI.Results: It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant.Conclusion: This pilot study indicates that the present BCI

  20. Evaluation of long-term patient satisfaction and experience with the Baha(®) bone conduction implant

    DEFF Research Database (Denmark)

    Rasmussen, Jacob; Olsen, Steen Østergaard; Nielsen, Lars Holme

    2012-01-01

    Objective: Evaluate long-term patient satisfaction with bone-anchored hearing aids (the Baha(R), now referred to by Cochlear as a 'bone conduction implant') in our hospital clinic spanning the eighteen-year period from the inception of our Baha program. The researchers further wished to analyse...... the various factors leading to patient satisfaction/dissatisfaction with their Baha. We developed a new questionnaire to obtain a comprehensive impression of individual patient practices, general satisfaction, and experiences with their Baha in respect to time spent using Baha, sound quality, annoyance from...... noise disturbance, ease of communication, cosmetic appearance, and satisfaction with the Baha amongst patient relatives, an aspect not previously investigated. Design: The study design was retrospective and executed as a postal questionnaire. The questionnaire was developed by the authors of this paper...

  1. Surface modification of implants in long bone.

    Science.gov (United States)

    Förster, Yvonne; Rentsch, Claudia; Schneiders, Wolfgang; Bernhardt, Ricardo; Simon, Jan C; Worch, Hartmut; Rammelt, Stefan

    2012-01-01

    Coatings of orthopedic implants are investigated to improve the osteoinductive and osteoconductive properties of the implant surfaces and thus to enhance periimplant bone formation. By applying coatings that mimic the extracellular matrix a favorable environment for osteoblasts, osteoclasts and their progenitor cells is provided to promote early and strong fixation of implants. It is known that the early bone ongrowth increases primary implant fixation and reduces the risk of implant failure. This review presents an overview of coating titanium and hydroxyapatite implants with components of the extracellular matrix like collagen type I, chondroitin sulfate and RGD peptide in different small and large animal models. The influence of these components on cells, the inflammation process, new bone formation and bone/implant contact is summarized.

  2. Comparison of Audiological Results Between a Transcutaneous and a Percutaneous Bone Conduction Instrument in Conductive Hearing Loss.

    Science.gov (United States)

    Gerdes, Timo; Salcher, Rolf Benedikt; Schwab, Burkard; Lenarz, Thomas; Maier, Hannes

    2016-07-01

    In conductive, mixed hearing losses and single-sided-deafness bone-anchored hearing aids are a well-established treatment. The transcutaneous transmission across the intact skin avoids the percutaneous abutment of a bone-anchored device with the usual risk of infections and requires less care.In this study, the audiological results of the Bonebridge transcutaneous bone conduction implant (MED-EL) are compared to the generally used percutaneous device BP100 (Cochlear Ltd., Sydney, Australia). Ten patients implanted with the transcutaneous hearing implant were compared to 10 matched patients implanted with a percutaneous device. Tests included pure-tone AC and BC thresholds and unaided and aided sound field thresholds. Speech intelligibility was determined in quiet using the Freiburg monosyllable test and in noise with the Oldenburg sentence test (OLSA) in sound field with speech from the front (S0). The subjective benefit was assessed with the Abbreviated Profile of Hearing Aid Benefit. In comparison with the unaided condition there was a significant improvement in aided thresholds, word recognition scores (WRS), and speech reception thresholds (SRT) in noise, measured in sound field, for both devices. The comparison of the two devices revealed a minor but not significant difference in functional gain (Bonebridge: PTA = 27.5 dB [mean]; BAHA: PTA = 26.3 dB [mean]). No significant difference between the two devices was found when comparing the improvement in WRSs and SRTs (Bonebridge: improvement WRS = 80% [median], improvement SRT = 6.5 dB SNR [median]; BAHA: improvement WRS = 77.5% [median], BAHA: improvement SRT = 6.9 dB SNR [median]). Our data show that the transcutaneous bone conduction hearing implant is an audiologically equivalent alternative to percutaneous bone-anchored devices in conductive hearing loss with a minor sensorineural hearing loss component.

  3. Managing peri-implant bone loss: current understanding.

    Science.gov (United States)

    Aljateeli, Manar; Fu, Jia-Hui; Wang, Hom-Lay

    2012-05-01

    With the improved macro- and micro-designs, dental implants enjoy a high survival rate. However, peri-implant bone loss has recently emerged to be the focus of implant therapy. As such, researchers and clinicians are in need of finding predictable techniques to treat peri-implant bone loss and stop its progression. Literature search on the currently available treatment modalities was performed and a brief description of each modality was provided. Numerous techniques have been proposed and none has been shown to be superior and effective in managing peri-implant bone loss. This may be because of the complex of etiological factors acting on the implant-supported prosthesis hence the treatment approach has to be individually tailored. Due to the lack of high-level clinical evidence on the management of peri-implant bone loss, the authors, through a literature review, attempt to suggest a decision tree or guideline, based on sound periodontal surgical principles, to aid clinicians in managing peri-implantitis associated bone loss. © 2011 Wiley Periodicals, Inc.

  4. Does platform switching really prevent crestal bone loss around implants?

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Hagiwara

    2010-08-01

    Full Text Available To maintain long-term implant stability, it is important to minimize bone loss around the implant. Several clinical studies have shown a mean marginal bone loss around dental implants of 1.5–2 mm in the first year after prosthetic restoration. Currently, concepts to prevent bone loss around dental implants have been reported as the platform switching (PLS. This technique use of prosthetic abutments with reduced width in relation to the implant platform diameter seems to have the greatest potential to limit the crestal resorption. However, there are only a few reports on the mechanism of action or the extent of bone loss prevention, and as such, it is difficult to say that the effect of PLS has been thoroughly examined. Excluding case reports, articles on PLS can be broadly categorized into: (1 radiographic evaluation of crestal bone level in humans, (2 histological and histomorphometrical analysis in animals, or (3 finite element analysis. This review revealed a shortage of published data for above three categories related PLS. Researchers have attempted to explain the mechanism of action of PLS; however, it is necessary to conduct further studies, including histological studies using animals, to clarify the mechanism fully.

  5. Influence of controlled immediate loading and implant design on peri-implant bone formation.

    Science.gov (United States)

    Vandamme, Katleen; Naert, Ignace; Geris, Liesbet; Vander Sloten, Jozef; Puers, Robert; Duyck, Joke

    2007-02-01

    Tissue formation at the implant interface is known to be sensitive to mechanical stimuli. The aim of the study was to compare the bone formation around immediately loaded versus unloaded implants in two different implant macro-designs. A repeated sampling bone chamber with a central implant was installed in the tibia of 10 rabbits. Highly controlled loading experiments were designed for a cylindrical (CL) and screw-shaped (SL) implant, while the unloaded screw-shaped (SU) implant served as a control. An F-statistic model with alpha=5% determined statistical significance. A significantly higher bone area fraction was observed for SL compared with SU (pimplant contact occurred was the highest for SL and significantly different from SU (pimplant contact was observed, a loading (SL versus SU: p=0.0049) as well as an implant geometry effect (SL versus CL: p=0.01) was found, in favour of the SL condition. Well-controlled immediate implant loading accelerates tissue mineralization at the interface. Adequate bone stimulation via mechanical coupling may account for the larger bone response around the screw-type implant compared with the cylindrical implant.

  6. Scapular Free Vascularised Bone Flaps for Mandibular Reconstruction: Are Dental Implants Possible?

    Directory of Open Access Journals (Sweden)

    Martin Lanzer

    2015-09-01

    Full Text Available Objectives: Free fibula flap remains the flap of choice for reconstruction of mandibular defects. If free fibula flap is not possible, the subscapular system of flaps is a valid option. In this study, we evaluated the possibility of dental implant placement in patients receiving a scapular free flap for oromandibular reconstruction. Material and Methods: We retrospectively reviewed 10 patients undergoing mandible reconstruction with a subscapular system free-tissue (lateral border of the scapula transfer at the University Hospital Zürich between January 1, 2010 and January 1, 2013. Bone density in cortical and cancellous bone was measured in Hounsfield units (HU. Changes of bone density, height and width were analysed using IBM SPSS Statistics 22. Comparisons of bone dimensions as well as bone density were performed using a chi-square test. Results: Ten patients were included. Implantation was conducted in 50%. However, all patients could have received dental implants considering bone stock. Loss of bone height and width were significant (P < 0.001. There was a statistical significant increase in bone density in cortical (P < 0.001 and cancellous (P = 0.004 bone. Conclusions: Dental implants are possible after scapular free flap reconstruction of oromandibular defects. Bone height and width were reduced, while bone density increased with time.

  7. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  8. Hearing outcomes of the active bone conduction system Bonebridge® in conductive or mixed hearing loss.

    Science.gov (United States)

    Carnevale, Claudio; Til-Pérez, Guillermo; Arancibia-Tagle, Diego J; Tomás-Barberán, Manuel D; Sarría-Echegaray, Pedro L

    2018-05-18

    The active transcutaneous bone conduction implant Bonebridge ® , is indicated for patients affected by bilateral conductive/mixed hearing loss or unilateral sensorineural hearing loss, showing hearing outcomes similar to other percutaneous bone conduction implants, but with a lower rate of complications. The aim of this study was to analyze the hearing outcomes in a series of 26 patients affected by conductive or mixed hearing loss and treated with Bonebridge ® . 26 of 30 patients implanted with Bonebridge ® between October 2012 and May 2017, were included in the study. We compared the air conduction thresholds at the frequencies 500, 1000, 2000, 3000, 4000Hz, the SRT50% and the percentage of correct answers at an intensity of 50dB with and without the implant. "Pure tone average" with the implant was 34.91dB showing an average gain of 33.46dB. Average SRT 50% with the implant was 34.33dB, whereas before the surgery no patient achieved 50% of correct answers at a sound intensity of 50dB. The percentage of correct answers at 50dB changed from 11% without the implant to 85% with it. We only observed one complication consisting of an extrusion of the implant in a patient with a history of 2 previous rhytidectomies. The hearing outcomes obtained in our study are similar to those published in the literature. Bonebridge ® represents an excellent alternative in the treatment of conductive or mixed hearing loss, and with a lower rate of complications. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Magnetic resonance imaging investigation of the bone conduction implant - a pilot study at 1.5 Tesla.

    Science.gov (United States)

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

  10. New bone formation and trabecular bone microarchitecture of highly porous tantalum compared to titanium implant threads: A pilot canine study.

    Science.gov (United States)

    Lee, Jin Whan; Wen, Hai Bo; Gubbi, Prabhu; Romanos, Georgios E

    2018-02-01

    This study evaluated new bone formation activities and trabecular bone microarchitecture within the highly porous region of Trabecular Metal™ Dental Implants (TM) and between the threads of Tapered Screw-Vent® Dental Implants (TSV) in fresh canine extraction sockets. Eight partially edentulated dogs received four implants (4.1 mmD × 13 mmL) bilaterally in mandibular fresh extraction sockets (32 TM, 32 TSV implants), and allowed to heal for 2, 4, 8, and 12 weeks. Calcein was administered to label mineralizing bone at 11 and 4 days before euthanasia for dogs undergoing all four healing periods. Biopsies taken at each time interval were examined histologically. Histomorphometric assay was conducted for 64 unstained and 64 stained slides at the region of interest (ROI) (6 mm long × 0.35 mm deep) in the midsections of the implants. Topographical and chemical analyses were also performed. Histomorphometry revealed significantly more new bone in the TM than in the TSV implants at each healing time (p = .0014, .0084, .0218, and .0251). Calcein-labeled data showed more newly mineralized bone in the TM group than in the TSV group at 2, 8, and 12 weeks (p = .045, .028, .002, respectively) but not at 4 weeks (p = .081). Histologically TM implants exhibited more bone growth and dominant new immature woven bone at an earlier time point than TSV implants. The parameters representing trabecular bone microarchitecture corroborated faster new bone formation in the TM implants when compared to the TSV implants. TM exhibited an irregular faceted topography compared to a relatively uniform microtextured surface for TSV. Chemical analysis showed peaks associated with each implant's composition material, and TSV also showed peaks reflecting the elements of the calcium phosphate blasting media. Results suggest that the healing pathway associated with the highly porous midsection of TM dental implant could enable faster and stronger secondary implant stability than

  11. Impact of dental implant insertion method on the peri-implant bone tissue: Experimental study

    Directory of Open Access Journals (Sweden)

    Stamatović Novak

    2013-01-01

    Full Text Available Background/Aim. The function of dental implants depends on their stability in bone tissue over extended period of time, i.e. on osseointegration. The process through which osseointegration is achieved depends on several factors, surgical insertion method being one of them. The aim of this study was to histopathologically compare the impact of the surgical method of implant insertion on the peri-implant bone tissue. Methods. The experiment was performed on 9 dogs. Eight weeks following the extraction of lower premolars implants were inserted using the one-stage method on the right mandibular side and two-stage method on the left side. Three months after implantation the animals were sacrificed. Three distinct regions of bone tissue were histopathologically analyzed, the results were scored and compared. Results. In the specimens of one-stage implants increased amount of collagen fibers was found in 5 specimens where tissue necrosis was also observed. Only moderate osteoblastic activity was found in 3 sections. The analysis of bone-to-implant contact region revealed statistically significantly better results regarding the amount of collagen tissue fibers for the implants inserted in the two-stage method (Wa = 59 105, α = 0.05. No necrosis and osteoblastic activity were observed. Conclusion. Better results were achieved by the two-stage method in bone-to-implant contact region regarding the amount of collagen tissue, while the results were identical regarding the osteoblastic activity and bone tissue necrosis. There was no difference between the methods in the bone-implant interface region. In the bone tissue adjacent to the implant the results were identical regarding the amount of collagen tissue, osteoblastic reaction and bone tissue necrosis, while better results were achieved by the two-stage method regarding the number of osteocytes.

  12. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  13. Evaluation of peri-implant bone using fractal analysis

    International Nuclear Information System (INIS)

    Jung, Yun Hoa

    2005-01-01

    The purpose of this study was to investigate whether the fractal dimension of successive panoramic radiographs of bone after implant placement is useful in the characterization of structural change in alveolar bone. Twelve subjects with thirty-five implants were retrospectively followed-up from one week to six months after implantation. Thirty-six panoramic radiographs from twelve patients were classified into 1 week. 1-2 months and 3-6 months after implantation and digitized. The windows of bone apical and mesial or distal to the implant were defined as peri apical region of interest (ROI) and inter dental ROI; the fractal dimension of the image was calculated. There was not a statistically significant difference in fractal dimensions during the period up to 6 months after implantation. The fractal dimensions were higher in 13 and 15 mm than 10 and 11.5 mm implant length at inter dental ROIs in 3-6 months after implantation (p<0.01). Longer fixtures showed the higher fractal dimension of bone around implant. This investigation needs further exploration with large numbers of implants for longer follow-up periods.

  14. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year.

    Science.gov (United States)

    Shin, Young-Kyu; Han, Chong-Hyun; Heo, Seong-Joo; Kim, Sunjai; Chun, Heoung-Jae

    2006-01-01

    To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading.

  15. [Researches on biomechanics of micro-implant-bone interface and optimum design of micro implant's neck].

    Science.gov (United States)

    Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa

    2007-07-01

    To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.

  16. Survival of Dental Implants Placed in Grafted and Nongrafted Bone: A Retrospective Study in a University Setting.

    Science.gov (United States)

    Tran, Duong T; Gay, Isabel C; Diaz-Rodriguez, Janice; Parthasarathy, Kavitha; Weltman, Robin; Friedman, Lawrence

    2016-01-01

    To compare dental implant survival rates when placed in native bone and grafted sites. Additionally, risk factors associated with dental implant loss were identified. This study was based on the hypothesis that bone grafting has no effect on implant survival rates. A retrospective chart review was conducted for patients receiving dental implants at the University of Texas, School of Dentistry from 1985 to 2012. Exclusion criteria included patients with genetic diseases, radiation and chemotherapy, or an age less than 18 years. To avoid misclassification bias, implants were excluded if bone grafts were only done at the same time of placement. Data on age, sex, tobacco use, diabetes, osteoporosis, anatomical location of the implant, implant length and width, bone graft, and professional maintenance were collected for analysis. A total of 1,222 patients with 2,729 implants were included. The cumulative survival rates at 5 and 10 years were 92% and 87% for implants placed in native bone and 90% and 79% for implants placed in grafted bone, respectively. The results from multivariate analysis (Cox regression) indicated no significant difference in survival between the two groups; having maintenance therapy after implant placement reduced the failure rate by 80% (P dental implant survival rate when implants were placed in native bone or bone-grafted sites. Smoking and lack of professional maintenance were significantly related to increased implant loss.

  17. Mecanobiología de la interfase hueso-implante dental Mechanobiology of bone-dental implant interphase

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vanegas Acosta

    2010-03-01

    Full Text Available La osteointegración es la conexión estructural y funcional entre el hueso y un implante. Cuando un implante se inserta en el hueso, se crea la denominada interfase hueso-implante, una zona de unión entre la superficie del biomaterial del implante y el hueso circundante. La cicatrización de esta interfase depende de las condiciones biológicas del hueso, las características de diseño del implante y la distribución de cargas entre hueso e implante. En este artículo se hace una revisión del proceso de cicatrización de la interfase hueso-implante para el caso de un implante dental. El objetivo es describir la secuencia de eventos biológicos iniciados con la lesión causada por la inserción del implante y que concluyen con la formación de nuevo hueso en la interfase. Esta descripción incluye una novedosa clasificación de los fenómenos mecánicos que intervienen durante el proceso de cicatrización de los tejidos lesionados. Esta descripción mecanobiológica de la interfase hueso-implante dental se utiliza para determinar las características más relevantes a tener en cuenta en la formulación de un modelo matemático de la osteointegración de implantes dentales.The osteointegration is the structural and functional connection between bone and implant. When an implant is inserted in bone, it creates the so-called bone-implant interphase, a joint zone between implant biomaterial surface and the surrounding bone. The healing of this interphase depends on bone biological conditions, characteristic of implant design and the distribution of loads between bone and implant. The aim of present article is to review of healing process of bone-implant interphase for a dental implant and also to describe the sequence of biological events beginning with lesion caused by implant insertion and leading to the formation of a new bone in the interphase. This description includes a novel classification of mechanical phenomena present in the healing

  18. Bone-Implant Contact around Crestal and Subcrestal Dental Implants Submitted to Immediate and Conventional Loading

    Directory of Open Access Journals (Sweden)

    Ana Emília Farias Pontes

    2014-01-01

    Full Text Available The present study aims to evaluate the influence of apicocoronal position and immediate and conventional loading in the percentage of bone-implant contact (BIC. Thus, 36 implants were inserted in the edentulous mandible from six dogs. Three implants were installed in each hemimandible, in different positions in relation to the ridge: Bone Level (at crestal bone level, Minus 1 (one millimeter apical to crestal bone, and Minus 2 (two millimeters apical to crestal bone. In addition, each hemimandible was submitted to a loading protocol: immediate (prosthesis installed 24 hours after implantation or conventional (prosthesis installed 120 days after implantation. Ninety days after, animals were killed, and implant and adjacent tissues were prepared for histometric analysis. BIC values from immediate loaded implants were 58.7%, 57.7%, and 51.1%, respectively, while conventional loaded implants were 61.8%, 53.8%, and 68.4%. Differences statistically significant were not observed among groups (P=0.10, ANOVA test. These findings suggest that different apicocoronal positioning and loading protocols evaluated did not interfere in the percentage of bone-implant contact, suggesting that these procedures did not jeopardize osseointegration.

  19. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  20. Bonebridge Implantation for Conductive Hearing Loss in a Patient with Oval Window Atresia.

    Science.gov (United States)

    Kim, Minbum

    2015-08-01

    The occurrence of oval window atresia is a rare anomaly with conductive hearing loss. Traditional atresia surgeries involve challenging surgical techniques with risks of irreversible inner ear damage. Recent reports on Bonebridge (Medel, Innsbruck, Austria), a novel implantable bone conduction hearing aid system, assert that the device is safe and effective for conductive hearing loss. We present a case of Bonebridge implantation in an eight-year-old girl with bilateral oval window atresia.

  1. Osseointegration of subperiosteal implants using bovine bone substitute and various membranes

    DEFF Research Database (Denmark)

    Aaboe, Merete; Schou, S.; Hjørting-Hansen, E.

    2000-01-01

    Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits......Osseointegration, subperiosteal implant, bone substitute, bovine bone, guided bone, regeneration, histology, rabbits...

  2. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  3. Objective and subjective outcome of a new transcutaneous bone conduction hearing device

    DEFF Research Database (Denmark)

    Eberhard, Kristine Elisabeth; Olsen, Steen Østergaard; Miyazaki, Hidemi

    2016-01-01

    Objective: To examine the objective and subjective outcome of a new transcutaneous bone conduction hearing device. Study Design: Prospective, consecutive case series. Patients: Twelve patients were implanted. Eight patients had a conductive/mixed (con/mix) hearing loss. Four had single sided...... to beneficial outcome. In Speech, Spatial and Qualities of Hearing Scale 12, ''quality of hearing'' scored especially high. The con/mix hearing loss group showed larger benefit especially in SDS, SRT50% in noise and the subjective evaluations, whereas frequency and duration of use were similar. Conclusion......: This study on the first 12 Nordic patients implanted with a new transcutaneous bone conduction hearing device demonstrates significant objective, as well as subjective hearing benefit. Patient satisfaction was high, as was the frequency of use....

  4. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  5. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  6. The influence of bone graft procedures on primary stability and bone change of implants placed in fresh extraction sockets.

    Science.gov (United States)

    Jun, Sang Ho; Park, Chang-Joo; Hwang, Suk-Hyun; Lee, Youn Ki; Zhou, Cong; Jang, Hyon-Seok; Ryu, Jae-Jun

    2018-12-01

    This study was to evaluate the effect of bone graft procedure on the primary stability of implants installed in fresh sockets and assess the vertical alteration of peri-implant bone radiographically. Twenty-three implants were inserted in 18 patients immediately after tooth extraction. The horizontal gap between the implant and bony walls of the extraction socket was grafted with xenografts. The implant stability before and after graft procedure was measured by Osstell Mentor as implant stability quotient before bone graft (ISQ bbg) and implant stability quotient after bone graft (ISQ abg). Peri-apical radiographs were taken to measure peri-implant bone change immediately after implant surgery and 12 months after implant placement. Data were analyzed by independent t test; the relationships between stability parameters (insertion torque value (ITV), ISQ abg, and ISQ bbg) and peri-implant bone changes were analyzed according to Pearson correlation coefficients. The increase of ISQ in low primary stability group (LPSG) was 6.87 ± 3.62, which was significantly higher than the increase in high primary stability group (HPSG). A significant correlation between ITV and ISQ bbg ( R  = 0.606, P  = 0.002) was found; however, age and peri-implant bone change were not found significantly related to implant stability parameters. It was presented that there were no significant peri-implant bone changes at 1 year after bone graft surgery. Bone graft procedure is beneficial for increasing the primary stability of immediately placed implants, especially when the ISQ of implants is below 65 and that bone grafts have some effects on peri-implant bone maintenance.

  7. Lithium chloride enhances bone regeneration and implant osseointegration in osteoporotic conditions.

    Science.gov (United States)

    Jin, Yifan; Xu, Lihua; Hu, Xiaohui; Liao, Shixian; Pathak, Janak L; Liu, Jinsong

    2016-10-06

    Osteoporotic patients have a high risk of dental and orthopedic implant failure. Lithium chloride (LiCl) has been reported to enhance bone formation. However, the role of LiCl in the success rate of dental and orthopedic implants in osteoporotic conditions is still unknown. We investigated whether LiCl enhances implant osseointegration, implant fixation, and bone formation in osteoporotic conditions. Sprague-Dawley female rats (n = 18) were ovariectomized (OVX) to induce osteoporosis, and another nine rats underwent sham surgery. Three months after surgery, titanium implants were implanted in the tibia of the OVX and sham group rats. After implantation, the OVX rats were gavaged with 150 mg/kg/2 days of LiCl (OVX + LiCl group) or saline (OVX group), and sham group rats were gavaged with saline for 3 months. Implant osseointegration and bone formation were analyzed using histology, biomechanical testing, and micro computed tomography (micro-CT). More bone loss was observed in the OVX group compared to the control, and LiCl treatment enhanced bone formation and implant fixation in osteoporotic rats. In the OVX group, bone-implant contact (BIC) was decreased by 81.2 % compared to the sham group. Interestingly, the OVX + LiCl group showed 4.4-fold higher BIC compared to the OVX group. Micro-CT data of tibia from the OVX + LiCl group showed higher bone volume, trabecular thickness, trabecular number, and osseointegration compared to the OVX group. Maximum push-out force and implant-bone interface shear strength were 2.9-fold stronger in the OVX + LiCl group compared to the OVX group. In conclusion, LiCl enhanced implant osseointegration, implant fixation, and bone formation in osteoporotic conditions, suggesting LiCl as a promising therapeutic agent to prevent implant failure and bone loss in osteoporotic conditions.

  8. Influence of Different Implant Geometry in Clinical Longevity and Maintenance of Marginal Bone: A Systematic Review.

    Science.gov (United States)

    Lovatto, Sabrina Telles; Bassani, Rafaela; Sarkis-Onofre, Rafael; Dos Santos, Mateus Bertolini Fernandes

    2018-03-26

    To assess, through a systematic review, the influence of different implant geometries on clinical longevity and maintenance of marginal bone tissue. An electronic search was conducted in MEDLINE, Scopus, and Web of Science databases, limited to studies written in English from 1996 to 2017 using specific search strategies. Only randomized controlled trials (RCTs) that compared dental implants and their geometries were included. Two reviewers independently selected studies, extracted data, and assessed the risk of bias of included studies. From the 4006 references identified by the search, 24 were considered eligible for full-text analysis, after which 10 studies were included in this review. A similar behavior of marginal bone loss between tapered and cylindrical geometries was observed; however, implants that had micro-threads in the neck presented a slight decrease of marginal bone loss compared to implants with straight or smooth neck. Success and survival rates were high, with cylindrical implants presenting higher success and survival rates than tapered ones. Implant geometry seems to have little influence on marginal bone loss (MBL) and survival and success rates after 1 year of implant placement; however, the evidence in this systematic review was classified as very low due to limitations such as study design, sample size, and publication bias. Thus, more well-designed RCTs should be conducted to provide evidence regarding the influence of implant geometry on MBL and survival and success rates after 1 year of implant placement. © 2018 by the American College of Prosthodontists.

  9. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  10. Biomechanics and strain mapping in bone as related to immediately-loaded dental implants

    Science.gov (United States)

    Du, Jing; Lee, Jihyun; Jang, Andrew; Gu, Allen; Hossaini-Zadeh, Mehran; Prevost, Richard; Curtis, Don; Ho, Sunita

    2015-01-01

    The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models. PMID:26162549

  11. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices

    Directory of Open Access Journals (Sweden)

    R Bernhardt

    2012-04-01

    Full Text Available Histological imaging is still considered the gold standard for analysing bone formation around metallic implants. Generally, a limited number of histological sections per sample are used for the approximation of mean values of peri-implant bone formation. In this study we compared statistically the results of bone-implant contact (BIC and bone-implant volume (BIV obtained by histological sections, with those obtained by X-ray absorption images from synchrotron radiation micro-computed tomography (SRµCT using osseointegrated screw-shaped implants from a mini-pig study. Comparing the BIC results of 3-4 histological sections per implant sample with the appropriate 3-4 SRµCT slices showed a non-significant difference of 1.9 % (p = 0.703. The contact area assessed by the whole 3D information from the SRµCT measurement in comparison to the histomorphometric results showed a non-significant difference in BIC of 4.9 % (p = 0.171. The amount of the bone-implant volume in the histological sections and the appropriate SRµCT slices showed a non-significant difference by only 1.4 % (p = 0.736 and also remains non-significant with 2.6 % (p = 0.323 using the volumetric SRµCT information. We conclude that for a clinical evaluation of implant osseointegration with histological imaging at least 3-4 sections per sample are sufficient to represent the BIC or BIV for a sample. Due to the fact that in this study we have found a significant intra-sample variation in BIC of up to ± 35 % the selection of only one or two histological sections per sample may strongly influence the determined BIC.

  12. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  13. Biocompatibility of orthopaedic implants on bone forming cells

    OpenAIRE

    Kapanen, A. (Anita)

    2002-01-01

    Abstract Reindeer antler was studied for its possible use as a bone implant material. A molecular biological study showed that antler contains a growth factor promoting bone formation. Ectopic bone formation assay showed that antler is not an equally effective inducer as allogenic material. Ectopic bone formation assay was optimised for biocompatibility studies of orthopaedic NiTi implants. Ti-6Al-4V and stainless steel were used as reference materials. The assay...

  14. Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    Science.gov (United States)

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns

    2015-01-01

    Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836

  15. Osteoporotic rat models for evaluation of osseointegration of bone implants

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Beucken, J.J.J.P van den; Jansen, J.A.

    2014-01-01

    Osseointegration of dental and orthopedic bone implants is the important process that leads to mechanical fixation of implants and warrants implant functionality. In view of increasing numbers of osteoporotic patients, bone implant surface optimization strategies with instructive and drug-loading

  16. Contemporary guided bone regeneration therapy for unaesthetic anterior peri-implantitis case

    Directory of Open Access Journals (Sweden)

    Benso Sulijaya

    2016-12-01

    Full Text Available Background: Dental implant is one of an alternative solutions reconstruction therapy for missing teeth. Complication of dental implant could occurs and leading to implant failure. In order to restore the complication, surgical treatment with guided bone regeneration (GBR is indicated. The potential use of bone substitutes is widely known to be able to regenerate the bone surrounding the implant and maintain bone volume. Purpose: The study aimed to demonstrate the effectiveness of implant-bone fully coverage by using sandwich technique of biphasic calcium phosphate (BCP and demineralized freeze-dried bone allografts (DFDBA bone substitutes combined with collagen resorbable membrane. Case: A 24-year-old male came with diagnosis of peri-implantitis on implant #11. Clinical finding indicated that implant thread was exposed on the labial aspect. Case management: After initial therapy including oral hygiene improvement performed, an operator did a contemporary GBR to correct the defect. Bone graft materials used were 40% β-tri calcium phosphate (β-TCP-60% hydroxyapatite (HA on the outer layer and DFDBA on the inner layer of the defect. Resorbable collagen membrane was used to cover the graft. Conclusion: GBR with sandwich technique could serve as one of the treatment choices for correcting an exposed anterior implant that would enhance the successful aesthetic outcome.

  17. Histological study on the new bone formation of the implanted bone allograft in sheep

    International Nuclear Information System (INIS)

    Li Youchen; Sun Guiying; Shi Zhancheng

    1999-01-01

    The purpose of this study is to compare the formation of new bone in the implanted frozen irradiated bone allograft with the fresh bone autograft. The work on animal model included resection and implantation of sheep's tibial diaphysis and intramedullary nail fixation, with total number 20. Tibias were harvested at 6, 12, and 24 months after operation. Sheep were fed with tetracycline I week before bone harvesting. Bones were examined with usual and fluorescence microscopes. The results showed that the progress of graft incorporation in allografts were generally similar to that of autografts. Capillaries penetration and callus formation extended from the host end to surround the host-graft junction in 6 months. Incorporation of new bone was nearly completed in 12 months; then the speed of new bone formation was decreased, and the implanted bone graft was almost completely substituted with non-nal bone structure in 24 months

  18. An Unusual Bone Loss Around Implants

    Directory of Open Access Journals (Sweden)

    Amirreza Rokn

    2013-01-01

    Full Text Available AbstractPre-implant disease is an inflammatory process, which can affect the surrounding tissues of a functional Osseointegrated implant that is usually as a result of a disequilibrium between the micro-flora and the body defense system.This case reports a 57 years old male with unusual bone loss around dental implants.This was an unusual case of peri-implantitis which occurred only in the implants on one side of the mouth although they all were unloaded implants.

  19. Bone reactions at implants subjected to experimental peri-implantitis and static load. A study in the dog

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2002-01-01

    during a 12-week interval, the screws were reactivated. Thus, the model included 3 different experimental sites of each surface group: group M+L (mucositis+load); group P (peri-implantitis); group P+L (peri-implantitis+load). Fluorochrome labels were injected and standardized radiographs obtained....... The animals were sacrificed and block biopsies of all implant sites dissected and prepared for histological analysis. RESULTS: It was demonstrated that the lateral static load failed to induce peri-implant bone loss at implants with mucositis and failed to enhance the bone loss at implants with experimental...... peri-implantitis. The proportion of bone labels and the bone density in the interface zone were significantly higher in group P+L than in group P. CONCLUSION: It is suggested that a lateral static load with controlled forces may not be detrimental to implants exhibiting mucositis or peri-implantitis....

  20. [Osteoclasts and early bone remodeling after orthodontic micro-implant placement].

    Science.gov (United States)

    Zhang, Wei; Guo, Jia-jia; Zhu, Wen-qian; Tang, Guo-hua

    2013-08-01

    To observe the incidence of osteoclasts during early bone remodeling after orthodontic micro-implant placement. Twenty New Zealand rabbits were randomly allotted into 4 groups. One micro-implant was implanted proximal to the epiphyseal plate of the tibia. Animals were sacrificed on day 3, 7, 14 and 28 (n=5). The sequence of histological changes around the micro-implants were evaluated by hematoxylin and eosin (HE) staining. Osteoclasts were identified by TRAP staining. The differences of the number of the osteoclasts among each time point were analyzed by one way ANOVA with SPSS 19.0 software package. After 3 days of implantation, a large number of erythrocytes, inflammatory cells, mesenchymal cells and bone debris were seen at the implant bone interfaces. Few osteoclasts were observed. On day 7, granular woven bone was formed and some osteoclasts were found in the Howship's lacunae. New bone formation and mineralization were apparent on day 14. Meanwhile, large amounts of osteoclasts were found in the latticed woven bone. On day 28, woven trabeculae with lamellate structures connected to lamellar bone and fewer osteoclasts were identified. Semi-quantitative analysis showed that the number of the osteoclasts was at peak on day 14. There were significant differences among each time point (Pmicro-implant insertion.

  1. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    Science.gov (United States)

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study.

    Science.gov (United States)

    Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed

    2014-01-01

    Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability.

  3. Development and application of a direct method to observe the implant/bone interface using simulated bone.

    Science.gov (United States)

    Yamaguchi, Yoko; Shiota, Makoto; FuJii, Masaki; Sekiya, Michi; Ozeki, Masahiko

    2016-01-01

    Primary stability after implant placement is essential for osseointegration. It is important to understand the bone/implant interface for analyzing the influence of implant design on primary stability. In this study rigid polyurethane foam is used as artificial bone to evaluate the bone-implant interface and to identify where the torque is being generated during placement. Five implant systems-Straumann-Standard (ST), Straumann-Bone Level (BL), Straumann-Tapered Effect (TE), Nobel Biocare-Brånemark MKIII (MK3), and Nobel Biocare-Brånemark MKIV (MK4)-were used for this experiment. Artificial bone blocks were prepared and the implant was installed. After placement, a metal jig and one side artificial bone block were removed and then the implant embedded in the artificial bone was exposed for observing the bone-implant interface. A digital micro-analyzer was used for observing the contact interface. The insertion torque values were 39.35, 23.78, 12.53, 26.35, and 17.79 N cm for MK4, BL, ST, TE, and MK3, respectively. In ST, MK3, TE, MK4, and BL the white layer areas were 61 × 103 μm(2), 37 × 103 μm(2), 103 × 103 μm(2) in the tapered portion and 84 × 03 μm(2) in the parallel portion, 134 × 103 μm(2), and 98 × 103 μm(2) in the tapered portion and 87 × 103 μm(2) in the parallel portion, respectively. The direct observation method of the implant/artificial bone interface is a simple and useful method that enables the identification of the area where implant retention occurs. A white layer at the site of stress concentration during implant placement was identified and the magnitude of the stress was quantitatively estimated. The site where the highest torque occurred was the area from the thread crest to the thread root and the under and lateral aspect of the platform. The artificial bone debris created by the self-tapping blade accumulated in both the cutting chamber and in the space between the threads and artificial bone.

  4. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Science.gov (United States)

    Pozhitkov, Alex E; Daubert, Diane; Brochwicz Donimirski, Ashley; Goodgion, Douglas; Vagin, Mikhail Y; Leroux, Brian G; Hunter, Colby M; Flemmig, Thomas F; Noble, Peter A; Bryers, James D

    2015-01-01

    Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  5. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion.

    Directory of Open Access Journals (Sweden)

    Alex E Pozhitkov

    Full Text Available Peri-implantitis is an inflammatory disease that results in the destruction of soft tissue and bone around the implant. Titanium implant corrosion has been attributed to the implant failure and cytotoxic effects to the alveolar bone. We have documented the extent of titanium release into surrounding plaque in patients with and without peri-implantitis. An in vitro model was designed to represent the actual environment of an implant in a patient's mouth. The model uses actual oral microbiota from a volunteer, allows monitoring electrochemical processes generated by biofilms growing on implants and permits control of biocorrosion electrical current. As determined by next generation DNA sequencing, microbial compositions in experiments with the in vitro model were comparable with the compositions found in patients with implants. It was determined that the electrical conductivity of titanium implants was the key factor responsible for the biocorrosion process. The interruption of the biocorrosion current resulted in a 4-5 fold reduction of corrosion. We propose a new design of dental implant that combines titanium in zero oxidation state for osseointegration and strength, interlaid with a nonconductive ceramic. In addition, we propose electrotherapy for manipulation of microbial biofilms and to induce bone healing in peri-implantitis patients.

  6. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  7. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses.

    Science.gov (United States)

    Hsu, J T; Huang, H L; Tsai, M T; Wu, A Y J; Tu, M G; Fuh, L J

    2013-02-01

    This study investigated the effects of bone stiffness (elastic modulus) and three-dimensional (3D) bone-to-implant contact ratio (BIC%) on the primary stabilities of dental implants using micro-computed tomography (micro-CT) and resonance frequency analyses. Artificial sawbone models with five values of elastic modulus (137, 123, 47.5, 22, and 12.4 MPa) comprising two types of trabecular structure (solid-rigid and cellular-rigid) were investigated for initial implant stability quotient (ISQ), measured using the wireless Osstell resonance frequency analyzer. Bone specimens were attached to 2 mm fibre-filled epoxy sheets mimicking the cortical shell. ISQ was measured after placing a dental implant into the bone specimen. Each bone specimen with an implant was subjected to micro-CT scanning to calculate the 3D BIC% values. The similarity of the cellular type of artificial bone to the trabecular structure might make it more appropriate for obtaining accurate values of primary implant stability than solid-bone blocks. For the cellular-rigid bone models, the ISQ increased with the elastic modulus of cancellous bone. The regression correlation coefficient was 0.96 for correlations of the ISQ with the elasticity of cancellous bone and with the 3D BIC%. The initial implant stability was moderately positively correlated with the elasticity of cancellous bone and with the 3D BIC%. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Bone Cells Dynamics during Peri-Implantitis: a Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Maria Helena Fernandes

    2016-09-01

    Full Text Available Objectives: The present manuscript aims a detailed characterization of the bone cells dynamics during physiological bone remodelling and, subsequently, to address the cellular and molecular mechanisms that play a fundamental role in the immune-inflammatory-induced uncoupled bone remodelling observed in peri-implantitis. Results: An intimate relationship between the immune system and bone is acknowledged to be determinant for bone tissue remodelling and integrity. Due to the close interaction of immune and bone cells, the two systems share a number of surface receptors, cytokines, signalling pathways and transcription factors that are involved in mutual regulatory mechanisms. This physiological equilibrium is disturbed in pathological conditions, as verified in peri-implantitis establishment and development. Activation of the innate and adaptive immune response, challenged by the local bacterial infection, induces the synthesis of high levels of a variety of pro- and anti-inflammatory cytokines that disturb the normal functioning of the bone cells, by uncoupling bone resorption and formation, ending up with a net alveolar bone loss and subsequent implant failure. Most data points to an immune-inflammatory induced osteoclast differentiation and function, as the major underlying mechanism to the uncoupled bone resorption to bone formation. Further, the disturbed functioning of osteoblasts, reflected by the possible expression of a fibro-osteoblastic phenotype, may also play a role. Conclusions: Alveolar bone loss is a hallmark of peri-implantitis. A great deal of data is still needed on the cellular and humoral crosstalk in the context of an integrated view of the osteoimmunologic interplay occurring in the peri-implantitis environment subjacent to the bone loss outcome.

  9. Implantation of tetrapod-shaped granular artificial bones or β-tricalcium phosphate granules in a canine large bone-defect model.

    Science.gov (United States)

    Choi, Sungjin; Liu, I-Li; Yamamoto, Kenichi; Honnami, Muneki; Sakai, Takamasa; Ohba, Shinsuke; Echigo, Ryosuke; Suzuki, Shigeki; Nishimura, Ryouhei; Chung, Ung-Il; Sasaki, Nobuo; Mochizuki, Manabu

    2014-03-01

    We investigated biodegradability and new bone formation after implantation of tetrapod-shaped granular artificial bone (Tetrabone®) or β-tricalcium phosphate granules (β-TCP) in experimental critical-size defects in dogs, which were created through medial and lateral femoral condyles. The defect was packed with Tetrabone® (Tetrabone group) or β-TCP (β-TCP group) or received no implant (control group). Computed tomography (CT) was performed at 0, 4 and 8 weeks after implantation. Micro-CT and histological analysis were conducted to measure the non-osseous tissue rate and the area and distribution of new bone tissue in the defect at 8 weeks after implantation. On CT, β-TCP was gradually resorbed, while Tetrabone® showed minimal resorption at 8 weeks after implantation. On micro-CT, non-osseous tissue rate of the control group was significantly higher compared with the β-TCP and Tetrabone groups (Pbone tissue of the β-TCP group was significantly greater than those of the Tetrabone and control groups (Pbone distribution of the Tetrabone group was significantly greater than those of the β-TCP and control groups (Pbone defects in dogs.

  10. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling

    DEFF Research Database (Denmark)

    Lin, M.; Overgaard, S; Glerup, H

    2001-01-01

    inserted bilaterally into the femoral condyles of 10 skeletally mature mongrel dogs. The implants were initially surrounded by a 2 mm gap. Implants with 0.3 microg rhTGF-beta1 were compared with implants without growth factor. The dogs were sacrificed after six weeks. Bone remodeling was evaluated...... by histomorphometry on Goldner-stained undecalcified sections. The bone volume in the gap was increased significantly from 17.6% in the control group to 25.6% in the rhTGF-beta1 group (p = 0.03). Also bone surface was increased in the rhTGF-beta1 group. The osteoclast covered surfaces were increased from 3.......6% in the control group to 5.9% in the rhTGF-beta1 group (p = 0.02). In the surrounding trabecular bone no significant changes in bone remodeling parameters was demonstrated. This study suggests that rhTGF-beta1 adsorbed onto TCP-ceramic coated implants accelerates repair activity in the newly formed bone close...

  11. Peri-implant stress correlates with bone and cement morphology: Micro-FE modeling of implanted cadaveric glenoids.

    Science.gov (United States)

    Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S

    2015-11-01

    Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Transcription factor and bone marrow stromal cells in osseointegration of dental implants

    Directory of Open Access Journals (Sweden)

    SG Yan

    2018-05-01

    Full Text Available Titanium implants are widely used in dental clinics and orthopaedic surgery. However, bone formation surrounding the implant is relatively slow after inserting the implant. The current study assessed the effects of bone marrow stromal cells (BMSCs with forced expression of special AT-rich sequence-binding protein 2 (SATB2 on the osseointegration of titanium implants. To determine whether SATB2 overexpression in BMSCs can enhance the osseointegration of implants, BMSCs were infected with the retrovirus encoding Satb2 (pBABE-Satb2 and were locally applied to bone defects before implanting the titanium implants in the mouse femur. Seven and twenty-one days after implantation, the femora were isolated for immunohistochemical (IHC staining, haematoxylin eosin (H&E staining, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR, and micro-computed tomography (μCT analysis. IHC staining analysis revealed that SATB2-overexpressing BMSCs were intensely distributed in the bone tissue surrounding the implant. Histological analysis showed that SATB2-overexpressing BMSCs significantly enhanced new bone formation and bone-to-implant contact 3 weeks after implantation. Real-time qRT-PCR results showed that the local delivery of SATB2-overexpressing BMSCs enhanced expression levels of potent osteogenic transcription factors and bone matrix proteins in the implantation sites. μCT analysis demonstrated that SATB2-overexpressing BMSCs significantly increased the density of the newly formed bone surrounding the implant 3 weeks post-operatively. These results conclude that local delivery of SATB2-overexpressing BMSCs significantly accelerates osseointegration of titanium implants. These results provide support for future pharmacological and clinical applications of SATB2, which accelerates bone regeneration around titanium implants.

  13. Implant stability and marginal bone level of microgrooved zirconia dental implants: A 3-month experimental study on dogs

    Directory of Open Access Journals (Sweden)

    Delgado-Ruíz Rafael Arcesio

    2014-01-01

    Full Text Available Background/Aim. The modification of implant surfaces could affect mechanical implant stability as well as dynamics and quality of peri-implant bone healing. The aim of this 3-month experimental study in dogs was to investigate implant stability, marginal bone levels and bone tissue response to zirconia dental implants with two laser-micro-grooved intraosseous surfaces in comparison with nongrooved sandblasted zirconia and sandblasted, high-temperature etched titanium implants. Methods. Implant surface characterization was performed using optical interferometric profilometry and energy dispersive X-ray spectroscopy. A total of 96 implants (4 mm in diameter and 10 mm in length were inserted randomly in both sides of the lower jaw of 12 Fox Hound dogs divided into groups of 24 each: the control (titanium, the group A (sandblasted zirconia, the group B (sandblasted zirconia plus microgrooved neck and the group C (sandblasted zirconia plus all microgrooved. All the implants were immediately loaded. Insertion torque, periotest values, radiographic crestal bone level and removal torque were recorded during the 3-month follow-up. Qualitative scanning electon micro-scope (SEM analysis of the bone-implant interfaces of each group was performed. Results. Insertion torque values were higher in the group C and control implants (p the control > the group B > the group A (p the control > the group B > the group A (p < 0.05. SEM showed that implant surfaces of the groups B and C had an extra bone growth inside the microgrooves that corresponded to the shape and direction of the microgrooves. Conclusion. The addition of micro-grooves to the entire intraosseous surface of zirconia dental implants enhances primary and secondary implant stability, promotes bone tissue ingrowth and preserves crestal bone levels.

  14. Influence of Implant Positions and Occlusal Forces on Peri-Implant Bone Stress in Mandibular Two-Implant Overdentures: A 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Alvarez-Arenal, Angel; Gonzalez-Gonzalez, Ignacio; deLlanos-Lanchares, Hector; Brizuela-Velasco, Aritza; Dds, Elena Martin-Fernandez; Ellacuria-Echebarria, Joseba

    2017-12-01

    The aim of this study was to evaluate and compare the bone stress around implants in mandibular 2-implant overdentures depending on the implant location and different loading conditions. Four 3-dimensional finite element models simulating a mandibular 2-implant overdenture and a Locator attachment system were designed. The implants were located at the lateral incisor, canine, second premolar, and crossed-implant levels. A 150 N unilateral and bilateral vertical load of different location was applied, as was 40 N when combined with midline load. Data for von Mises stress were produced numerically, color coded, and compared between the models for peri-implant bone and loading conditions. With unilateral loading, in all 4 models much higher peri-implant bone stress values were recorded on the load side compared with the no-load side, while with bilateral occlusal loading, the stress distribution was similar on both sides. In all models, the posterior unilateral load showed the highest stress, which decreased as the load was applied more mesially. In general, the best biomechanical environment in the peri-implant bone was found in the model with implants at premolar level. In the crossed-implant model, the load side greatly altered the biomechanical environment. Overall, the overdenture with implants at second premolar level should be the chosen design, regardless of where the load is applied. The occlusal loading application site influences the bone stress around the implant. Bilateral occlusal loading distributes the peri-implant bone stress symmetrically, while unilateral loading increases it greatly on the load side, no matter where the implants are located.

  15. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis.

    Science.gov (United States)

    Han, Jingyun; Sun, Yuchun; Wang, Chao

    2017-08-01

    To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption. © 2016 by the American College of Prosthodontists.

  16. Usage of demineralized bone powder in dental implant surgery

    International Nuclear Information System (INIS)

    Chang Joon Yim

    1999-01-01

    While there is much concern in the dental community about the risk of disease transfer with processed bone a] iografts, there has never been a case of disease transfer with DFDB. Exclusionary techniques and chemical processing of the allogeneic bone has rendered these grafts safe for human implantation. The literature indicates that there has been considerable interest in the biology and applied science of osteoinduction. The accumulated evidence supports the concept of cartilage and bone cell differentiation induced by a unique bone motphogenetic protein (BMP). Currently clinical usage has been focused on the alveolar bone defects associated with the dental implant surgery, which has become one of the most important areas in dental outpatient clinic. Increased application of the endosseous dental implant system results in a lot of demands to regenerate the alveolar bone defects around the dental implants. Anderegg et al.(1991) reported the excellent results from the combination of DFDB powder and expanded PTFE (polytetrafluorethylene) membranes. Since 1980 the author experienced the human DFDB powders for the oral and maxillofacial surgery and the dental implant surgery. Yim and Kim(1993) evaluated 93 surgical sites where DFDB was used and found 96.7% of success rates at re-entry surgery. Mellonig and Triplett (1993) reported 97% of success rates, and Gelb (1993) obtained 98% of success rates. Fugazzotto (1994) placed 59 dental implants at the time of sinus lifts with the composite graft of DFDB and resorbable tricalcium phosphate and none of implants was lost on uncovering and only one was lost while functioning. Yim (1994) placed 44 dental implants at the time of sinus lifts with DFDB, and none of implants was lost on uncovering. Zinner and Small (1996) placed 215 dental implants at the time of sinus lifts (52 sinuses) with the composite graft of DFDB, and other materials, 3 implants of which were failed on uncovering. To date, maxillary sinus lift graft with

  17. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  18. Bone compaction enhances implant fixation in a canine gap model

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Toft, Marianne

    2005-01-01

    A new bone preparation technique, compaction, has increased fixation of implants inserted with exact-fit or press-fit to bone. Furthermore, a demonstrated spring-back effect of compacted bone might be of potential value in reducing the initial gaps that often exist between clinical inserted...... implants and bone. However, it is unknown whether the compression and breakage of trabeculae during the compaction procedure results in impaired gap-healing of compacted bone. Therefore, we compared compaction with conventional drilling in a canine gap model. Grit-blasted titanium implants (diameter 6 mm...... that the beneficial effect of reduced gap size, as compacted bone springs back, is not eliminated by an impaired gap-healing of compacted bone....

  19. Hearing improvement with softband and implanted bone-anchored hearing devices and modified implantation surgery in patients with bilateral microtia-atresia.

    Science.gov (United States)

    Wang, Yibei; Fan, Xinmiao; Wang, Pu; Fan, Yue; Chen, Xiaowei

    2018-01-01

    To evaluate auditory development and hearing improvement in patients with bilateral microtia-atresia using softband and implanted bone-anchored hearing devices and to modify the implantation surgery. The subjects were divided into two groups: the softband group (40 infants, 3 months to 2 years old, Ponto softband) and the implanted group (6 patients, 6-28 years old, Ponto). The Infant-Toddler Meaning Auditory Integration Scale was used conducted to evaluate auditory development at baseline and after 3, 6, 12, and 24 months, and visual reinforcement audiometry was used to assess the auditory threshold in the softband group. In the implanted group, bone-anchored hearing devices were implanted combined with the auricular reconstruction surgery, and high-resolution CT was used to assess the deformity preoperatively. Auditory threshold and speech discrimination scores of the patients with implants were measured under the unaided, softband, and implanted conditions. Total Infant-Toddler Meaning Auditory Integration Scale scores in the softband group improved significantly and approached normal levels. The average visual reinforcement audiometry values under the unaided and softband conditions were 76.75 ± 6.05 dB HL and 32.25 ± 6.20 dB HL (P hearing devices is effective for auditory development and hearing improvement in infants with bilateral microtia-atresia. Wearing softband bone-anchored hearing devices before auricle reconstruction and combining bone-anchored hearing device implantation with auricular reconstruction surgery may bethe optimal clinical choice for these patients, and results in more significant hearing improvement and minimal surgical and anesthetic injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair

    Science.gov (United States)

    Agarwal, Rachit; García, Andrés J.

    2015-01-01

    Bone tissue has a remarkable ability to regenerate and heal itself. However, large bone defects and complex fractures still present a significant challenge to the medical community. Current treatments center on metal implants for structural and mechanical support and auto- or allo-grafts to substitute long bone defects. Metal implants are associated with several complications such as implant loosening and infections. Bone grafts suffer from donor site morbidity, reduced bioactivity, and risk of pathogen transmission. Surgical implants can be modified to provide vital biological cues, growth factors and cells in order to improve osseointegration and repair of bone defects. Here we review strategies and technologies to engineer metal surfaces to promote osseointegration with the host tissue. We also discuss strategies for modifying implants for cell adhesion and bone growth via integrin signaling and growth factor and cytokine delivery for bone defect repair. PMID:25861724

  1. Osseointegration Of Implants In Rabbit Bone With A Low Calcium Diet And Irradiation

    International Nuclear Information System (INIS)

    Kim, So Jung; Hwang, Eui Hwan; Lee, Sang Rae

    2000-01-01

    To investigate osseointergration of titanium implants into the tibia of rabbits, which were fed a low calcium diet and irradiated. To prepare the experimental model, control group was fed a normal diet and experimental group was fed a low calcium diet for 4 weeks. And then, titanium implants were inserted into the tibia of each rabbit. Experimental group was subdivided into two groups; low calcium diet/non-irradiation group and low calcium diet/irradiation group. The low calcium diet/irradiation group was irradiated with a single absorbed dose of 15 Gy at the 5th postoperative days. On the 12th, 19th, 33rd, 47th, and 61st days after implantation(1, 2, 4, 6, and 8 weeks after irradiation), the bone formation in the bone-implant interface area was examined by light microscopy and fluorescent microscopy. 1. In the control group, there began to form woven bone in the bone-implant interface area on the 12th days after implantation. As the experimental time was going on, the amount of bone which was in contact with the implant was increased. 2. In the low calcium diet/non-irradiation group, there began to form woven bone in the bone-implant interface area on the 19th days after implantation. Although the amount of bone which was in contact with the implant was increased as the experimental time was going on, the extent of increased bone was slightly weak as compared with control group. 3. In the low calcium diet/irradiation group, there began to form woven bone incompletely in the bone-implant interface area on the 19th days after implantation, but there were vascular connective tissues in the bone- implant interface area over the entire experimental period. 4. In the control group and low calcium diet/non-irradiation group, bone labeling bands were observed on the 33rd days after implantation, which suggests that the bone formation and remodeling was in process, but interstitial bone remodeling was not observed in the low calcium diet/irradiation group.

  2. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone

    NARCIS (Netherlands)

    Tami, A.E.; Leitner, M.M.; Baucke, M.G.; Mueller, T.L.; Lenthe, van G.H.; Müller, R.; Ito, K.

    2009-01-01

    In osteoporotic bones, resorption exceeds formation during the remodelling phase of bone turnover. As a consequence, decreased bone volume and bone contact result in the peri-implant region. This may subsequently lead to loss of fixation. In this study we investigated whether the presence of

  3. Survival of dental implants in native and grafted bone in irradiated head and neck cancer patients: a retrospective analysis.

    Science.gov (United States)

    Buddula, Aravind; Assad, Daniel A; Salinas, Thomas J; Garces, Yolanda I

    2011-01-01

    To study the long-term survival of dental implants placed in native or grafted bone in irradiated bone in subjects who had received radiation for head and neck cancer. A retrospective chart review was conducted for all patients who received dental implants following radiation treatment for head and neck cancer between May 1, 1987 and July 1, 2008. Only patients irradiated with a radiation dose of 50 Gy or greater and those who received dental implants in the irradiated field after head and neck radiation were included in the study. The associations between implant survival and patient/implant characteristics were estimated by fitting univariate marginal Cox proportional hazards models. A total of 48 patients who had prior head and neck radiation had 271 dental implants placed during May 1987-July 2008. There was no statistically significant difference between implant failure in native and grafted bone (P=0.76). Survival of implants in grafted bone was 82.3% and 98.1% in maxilla and mandible, respectively, after 3 years. Survival of implants in native bone in maxilla and mandible was 79.8% and 100%, respectively, after 3 years. For implants placed in the native bone, there was a higher likelihood of failure in the maxilla compared to the mandible and there was also a tendency for implants placed in the posterior region to fail compared to those placed in the anterior region. There was no significant difference in survival when implants were placed in native or grafted bone in irradiated head and neck cancer patients. For implants placed in native bone, survival was significantly influenced by the location of the implant (maxilla or mandible, anterior or posterior).

  4. Three-phase bone scintigraphy of hydroxyapatite ocular implants

    International Nuclear Information System (INIS)

    Leitha, T.; Staudenherz, A.; Scholz, U.

    1995-01-01

    Hydroxyapatite ocular implants are replicas of lamellar bone tissue derived from the exoskeleton of a reef-building coral by a hydrothermal chemical exchange reaction. Attached to the eye muscles, they act as a passive framework for fibrovascular ingrowth and can be drilled to hold the visible part of the artificial eye and allow synchronous eye movement. Fibrovascular ingrowth has to be confirmed by bone scintigraphy before the drilling procedure. This study monitored the vascular ingrowth into the implant in ten patients over 12 months to establish a clinically feasible imaging protocol. Tracer accumulation was monitored visually and quantitatively in dynamic and single-photon emission tomography (SPET) scans after the intravenous administration of 600 MBq of 99m Tc-DPD. The implants showed no tracer accumulation in the arterial or blood pool phase. Accordingly, dynamic scintigraphy can be omitted from the imaging protocol. Delayed tracer accumulation appeared no earlier than 2 and no later than 6 months after surgery. Planar scintigraphy is not recommended as high-resolution SPET is necessary to separate the implant from the surrounding bone. We conclude that imaging can be confined to high-resolution SPET 3 h after tracer injection, no earlier than 3 months after surgery. The vascularized hydroxyapatite orbital implant is an important in vivo model for bone-seeking agents to study their uptake kinetics independently of any soft tissue and bone disease. Our results provide evidence that in normal bones the chemical adsorption of 99m Tc-DPD into the crystalline structure of hydroxyapatite is the only quantitatively relevant uptake mechanism. (orig.)

  5. Three-phase bone scintigraphy of hydroxyapatite ocular implants

    Energy Technology Data Exchange (ETDEWEB)

    Leitha, T. [Univ. Clinic of Nuclear Medicine, Univ. of Vienna (Austria); Staudenherz, A. [Univ. Clinic of Nuclear Medicine, Univ. of Vienna (Austria); Scholz, U. [First Univ. Clinic of Ophthalmology, Univ. of Vienna (Austria)

    1995-04-01

    Hydroxyapatite ocular implants are replicas of lamellar bone tissue derived from the exoskeleton of a reef-building coral by a hydrothermal chemical exchange reaction. Attached to the eye muscles, they act as a passive framework for fibrovascular ingrowth and can be drilled to hold the visible part of the artificial eye and allow synchronous eye movement. Fibrovascular ingrowth has to be confirmed by bone scintigraphy before the drilling procedure. This study monitored the vascular ingrowth into the implant in ten patients over 12 months to establish a clinically feasible imaging protocol. Tracer accumulation was monitored visually and quantitatively in dynamic and single-photon emission tomography (SPET) scans after the intravenous administration of 600 MBq of {sup 99m}Tc-DPD. The implants showed no tracer accumulation in the arterial or blood pool phase. Accordingly, dynamic scintigraphy can be omitted from the imaging protocol. Delayed tracer accumulation appeared no earlier than 2 and no later than 6 months after surgery. Planar scintigraphy is not recommended as high-resolution SPET is necessary to separate the implant from the surrounding bone. We conclude that imaging can be confined to high-resolution SPET 3 h after tracer injection, no earlier than 3 months after surgery. The vascularized hydroxyapatite orbital implant is an important in vivo model for bone-seeking agents to study their uptake kinetics independently of any soft tissue and bone disease. Our results provide evidence that in normal bones the chemical adsorption of {sup 99m}Tc-DPD into the crystalline structure of hydroxyapatite is the only quantitatively relevant uptake mechanism. (orig.)

  6. Influences of microgap and micromotion of implant-abutment interface on marginal bone loss around implant neck.

    Science.gov (United States)

    Liu, Yang; Wang, Jiawei

    2017-11-01

    To review the influences and clinical implications of micro-gap and micro-motion of implant-abutment interface on marginal bone loss around the neck of implant. Literatures were searched based on the following Keywords: implant-abutment interface/implant-abutment connection/implant-abutment conjunction, microgap, micromotion/micromovement, microleakage, and current control methods available. The papers were then screened through titles, abstracts, and full texts. A total of 83 studies were included in the literature review. Two-piece implant systems are widely used in clinics. However, the production error and masticatory load result in the presence of microgap and micromotion between the implant and the abutment, which directly or indirectly causes microleakage and mechanical damage. Consequently, the degrees of microgap and micromotion further increase, and marginal bone absorption finally occurs. We summarize the influences of microgap and micromotion at the implant-abutment interface on marginal bone loss around the neck of the implant. We also recommend some feasible methods to reduce their effect. Clinicians and patients should pay more attention to the mechanisms as well as the control methods of microgap and micromotion. To reduce the corresponding detriment to the implant marginal bone, suitable Morse taper or hybrid connection implants and platform switching abutments should be selected, as well as other potential methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  8. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    Science.gov (United States)

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  9. Comparative study of longitudinal changes in peri-implant bone microstructure

    International Nuclear Information System (INIS)

    Suzuki, Yusuke; Matsunaga, Satoru; Abe, Shinichi; Ide, Yoshinobu; Usami, Akinobu

    2010-01-01

    The load applied to an implant is directly transmitted to the jaw and is considered to be one of the causes of remodeling of internal trabecular bones. However, the longitudinal changes during loading and the rearrangement of the trabecular bone structure are mostly unknown. The aim of this study was to clarify the changes in internal jaw bone structure longitudinally during natural tooth eruption as well as tooth extraction and post-implantation periods in a dog model by micro computed tomography (micro-CT). Maxillae of 16 male beagle dogs were used in this study. First, 4 dogs with all maxillary molar teeth erupted were euthanized as a control group. Next, 6 teeth consisting of the bilateral maxillary fourth premolars, and first and second molars were extracted from each of the 12 dogs. Then, 4 dogs of the tooth-extracted group were euthanized 3 months after extraction of the teeth. At this time, three implants were inserted in the left side of the maxilla of the remaining 8 dogs, and the superstructures were placed after 3 months. Four of these 8 dogs with implants were euthanized at 3 months and the other 4 at 1 year after placement of the superstructure. Then, the maxillary bone was removed from each dog as a specimen and sequential micro-CT images were taken. After reconstruction of three-dimensional images, morphological and metrical observation of the jaw trabecular bone structure was performed. A decrease of the trabecular bone in the tooth-extracted group was morphologically and morphometrically observed, whereas the implanted group showed thick, rich trabecular bone. Although a longitudinal decrease in the bone tissue volume was recognized both in the tooth-extracted and the implanted groups, the amount was smaller in the implanted group than in the tooth-extracted group. The results suggested that the application of load by implants in the case of tooth loss inhibits resorption of the alveolar bone and prevents thinning of the jaw. (author)

  10. Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: micro-CT analysis.

    Science.gov (United States)

    Finelle, Gary; Papadimitriou, Dimitrios E V; Souza, André B; Katebi, Negin; Gallucci, German O; Araújo, Mauricio G

    2015-04-01

    To assess (i) the outcome of changing the horizontal-offset dimension on the peri-implant soft tissues and the crestal bone and (ii) the effect of different healing abutments (flared vs. straight) on the marginal peri-implant soft tissues and crestal bone. Two-piece dental implants diameters of 3.5 and 4.5 mm were placed at least 1 mm subcrestal in five beagle dogs. Three different investigational groups: (i) 3.5-mm-diameter implant with narrow healing abutment (3.5N), (ii) 4.5-mm-diameter implant with narrow healing abutment (4.5N), and (iii) 3.5-mm-diameter implant with wide healing abutment (3.5W), were assessed. After 4 months of healing, the vertical distance from the marginal crestal bone (MB) to the implant shoulder (IS); the vertical distance from the IS to the first bone-to-implant contact; and the horizontal distance of bone ingrowth on the implant platform were measured with a high-resolution micro-CT (Xradia MicroXCT-200 system). Implants with a narrow healing caps showed an interproximal MB located between 0 and 1 mm above the implant shoulder, while the 3.5W group exhibits a mean value -0.50 mm. As all implants in group 3.5N presented a fBIC located at the level of the IS. For the 4.5N group, the mean fBIC-IS distance was -0.52 mm apically to the IS. For the 3.5WC group, the mean fBIC-IS distance was -1.42 mm. Horizontal bone apposition was only observed for the 3.5N group and the 4.5N group. The dimension of the horizontal offset would play a minimal role in reducing bone remodeling, whereas the configuration of the transmucosal component would directly influence marginal bone remodeling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Bone attachment to glass-fibre-reinforced composite implant with porous surface.

    Science.gov (United States)

    Mattila, R H; Laurila, P; Rekola, J; Gunn, J; Lassila, L V J; Mäntylä, T; Aho, A J; Vallittu, P K

    2009-06-01

    A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n=5-6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC-bone interface was significantly higher (283.3+/-55.3N) than the shear force at interfaces of solid PMMA/bone (14.4+/-11.0 N; pshielding effect.

  12. Survival of dental implants in native and grafted bone in irradiated head and neck cancer patients: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Aravind Buddula

    2011-01-01

    Full Text Available Aim: To study the long-term survival of dental implants placed in native or grafted bone in irradiated bone in subjects who had received radiation for head and neck cancer. Materials and Methods: A retrospective chart review was conducted for all patients who received dental implants following radiation treatment for head and neck cancer between May 1, 1987 and July 1, 2008. Only patients irradiated with a radiation dose of 50 Gy or greater and those who received dental implants in the irradiated field after head and neck radiation were included in the study. The associations between implant survival and patient/implant characteristics were estimated by fitting univariate marginal Cox proportional hazards models. Results: A total of 48 patients who had prior head and neck radiation had 271 dental implants placed during May 1987-July 2008. There was no statistically significant difference between implant failure in native and grafted bone (P=0.76. Survival of implants in grafted bone was 82.3% and 98.1% in maxilla and mandible, respectively, after 3 years. Survival of implants in native bone in maxilla and mandible was 79.8% and 100%, respectively, after 3 years. For implants placed in the native bone, there was a higher likelihood of failure in the maxilla compared to the mandible and there was also a tendency for implants placed in the posterior region to fail compared to those placed in the anterior region. Conclusion: There was no significant difference in survival when implants were placed in native or grafted bone in irradiated head and neck cancer patients. For implants placed in native bone, survival was significantly influenced by the location of the implant (maxilla or mandible, anterior or posterior.

  13. Time Course of Peri-Implant Bone Regeneration around Loaded and Unloaded Implants in a Rat Model

    Science.gov (United States)

    Jariwala, Shailly H.; Wee, Hwabok; Roush, Evan P.; Whitcomb, Tiffany L.; Murter, Christopher; Kozlansky, Gery; Lakhtakia, Akhlesh; Kunselman, Allen R.; Donahue, Henry J.; Armstrong, April D.; Lewis, Gregory S.

    2018-01-01

    The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 μm or 100 μm displacement, 1 Hz, 60 seconds) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0 % and 37.2 ± 10.0 %, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119 % increase in pull-out strength was measured in the loaded implants. PMID:27381807

  14. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    Science.gov (United States)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  15. Bone Adaptation Around Orthopaedic Implants of Varying Materials

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading......The bone adaptation around orthopaedic implants is simulated using a three-dimensional finite element model. The remodeling scheme has its origin in optimization methods, and includes anisotropy and time-dependent loading...

  16. Functional results after Bonebridge implantation in adults and children with conductive and mixed hearing loss.

    Science.gov (United States)

    Rahne, Torsten; Seiwerth, Ingmar; Götze, Gerrit; Heider, Cornelia; Radetzki, Florian; Herzog, Michael; Plontke, Stefan K

    2015-11-01

    In patients with conductive hearing loss caused by middle ear disorders or atresia of the ear canal, a Bonebridge implantation can improve hearing by providing vibratory input to the temporal bone. The expected results are improved puretone thresholds and speech recognition. In the European Union, approval of the Bonebridge implantation was recently extended to children. We evaluated the functional outcome of a Bonebridge implantation for eight adults and three children. We found significant improvement in the puretone thresholds, with improvement in the air-bone gap. Speech recognition after surgery was significantly higher than in the best-aided situation before surgery. The Bonebridge significantly improved speech recognition in noisy environments and sound localization. In situations relevant to daily life, hearing deficits were nearly completely restored with the Bonebridge implantation in both adults and children.

  17. Low-intensity pulsed ultrasound enhances bone formation around miniscrew implants.

    Science.gov (United States)

    Ganzorig, Khaliunaa; Kuroda, Shingo; Maeda, Yuichi; Mansjur, Karima; Sato, Minami; Nagata, Kumiko; Tanaka, Eiji

    2015-06-01

    Miniscrew implants (MSIs) are currently used to provide absolute anchorage in orthodontics; however, their initial stability is an issue of concern. Application of low-intensity pulsed ultrasound (LIPUS) can promote bone healing. Therefore, LIPUS application may stimulate bone formation around MSIs and enhance their initial stability. To investigate the effect of LIPUS exposure on bone formation after implantation of titanium (Ti) and stainless steel (SS) MSIs. MSIs made of Ti-6Al-4V and 316L SS were placed on rat tibiae and treated with LIPUS. The bone morphology around MSIs was evaluated by scanning electron microscopy and three-dimensional micro-computed tomography. MC3T3-E1 cells cultured on Ti and SS discs were treated with LIPUS, and the temporary expression of alkaline phosphatase (ALP) was examined. Bone-implant contact increased gradually from day 3 to day 14 after MSI insertion. LIPUS application increased the cortical bone density, cortical bone thickness, and cortical bone rate after implantation of Ti and SS MSIs (P<0.05). LIPUS exposure induced ALP upregulation in MC3T3-E1 cells at day 3 (P<0.05). LIPUS enhanced bone formation around Ti and SS MSIs, enhancing the initial stability of MSIs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces

    Directory of Open Access Journals (Sweden)

    John Jansen

    2012-07-01

    Full Text Available The mechanical and biological properties of bone implants need to be optimal to form a quick and firm connection with the surrounding environment in load bearing applications. Bone is a connective tissue composed of an organic collagenous matrix, a fine dispersion of reinforcing inorganic (calcium phosphate nanocrystals, and bone-forming and -degrading cells. These different components have a synergistic and hierarchical structure that renders bone tissue properties unique in terms of hardness, flexibility and regenerative capacity. Metallic and polymeric materials offer mechanical strength and/or resilience that are required to simulate bone tissue in load-bearing applications in terms of maximum load, bending and fatigue strength. Nevertheless, the interaction between devices and the surrounding tissue at the implant interface is essential for success or failure of implants. In that respect, coatings can be applied to facilitate the process of bone healing and obtain a continuous transition from living tissue to the synthetic implant. Compounds that are inspired by inorganic (e.g., hydroxyapatite crystals or organic (e.g., collagen, extracellular matrix components, enzymes components of bone tissue, are the most obvious candidates for application as implant coating to improve the performance of bone implants. This review provides an overview of recent trends and strategies in surface engineering that are currently investigated to improve the biological performance of bone implants in terms of functionality and biological efficacy.

  19. Immediately loaded mini dental implants as overdenture retainers: 1-Year cohort study of implant stability and peri-implant marginal bone level.

    Science.gov (United States)

    Šćepanović, Miodrag; Todorović, Aleksandar; Marković, Aleksa; Patrnogić, Vesna; Miličić, Biljana; Moufti, Adel M; Mišić, Tijana

    2015-05-01

    This 1-year cohort study investigated stability and peri-implant marginal bone level of immediately loaded mini dental implants used to retain overdentures. Each of 30 edentulous patients received 4 mini dental implants (1.8 mm × 13 mm) in the interforaminal mandibular region. The implants were immediately loaded with pre-made overdentures. Outcome measures included implant stability and bone resorption. Implant stability was measured using the Periotest Classic(®) device immediately after placement and on the 3rd and 6th weeks and the 4th, 6th and 12th months postoperatively. The peri-implant marginal bone level (PIBL) was evaluated at the implant's mesial and distal sides from the polished platform to the marginal crest. Radiographs were taken using a tailored film holder to reproducibly position the X-ray tube at the 6th week, 4th and 12th months postoperatively. The primary stability (Periotest value, PTV) measured -0.27 ± 3.41 on a scale of -8 to + 50 (lower PTV reflects higher stability). The secondary stability decreased significantly until week 6 (mean PTV = 7.61 ± 7.05) then increased significantly reaching (PTV = 6.17 ± 6.15) at 12 months. The mean PIBL measured -0.40 mm after 1 year of functional loading, with no statistically significant differences at the various follow-ups (p = 0.218). Mini dental implants placed into the interforaminal region could achieve a favorable primary stability for immediate loading. The follow-up Periotest values fluctuated, apparently reflecting the dynamics of bone remodeling, with the implants remaining clinically stable (98.3%) after 1 year of function. The 1-year bone resorption around immediately loaded MDIs is within the clinically acceptable range for standard implants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    Science.gov (United States)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  1. Role of clinician's experience and implant design on implant stability. An ex vivo study in artificial soft bones.

    Science.gov (United States)

    Romanos, Georgios E; Basha-Hijazi, Abdulaziz; Gupta, Bhumija; Ren, Yan-Fang; Malmstrom, Hans

    2014-04-01

    Clinical experience in implant placement is important in order to prevent implant failures. However, the implant design affects the primary implant stability (PS) especially in poor quality bones. Therefore, the aim of this study was to compare the effect of clinician surgical experience on PS, when placing different type of implant designs. A total of 180 implants (90 parallel walled-P and 90 tapered-T) were placed in freshly slaughtered cow ribs. Bone quality was evaluated by two examiners during surgery and considered as 'type IV' bone. Implants (ø 5 mm, length: 15 mm, Osseotite, BIOMET 3i, Palm Beach Gardens, FL, USA) were placed by three different clinicians (master/I, good/II, non-experienced/III, under direct supervision of a manufacturer representative; 30 implants/group). An independent observer assessed the accuracy of placement by resonance frequency analysis (RFA) with implant stability quotient (ISQ) values. Two-way analysis of variance (ANOVA) and Tukey's post hoc test were used to detect the surgical experience of the clinicians and their interaction and effects of implant design on the PS. All implants were mechanically stable. The mean ISQ values were: 49.57(± 18.49) for the P-implants and 67.07(± 8.79) for the T-implants. The two-way ANOVA showed significant effects of implant design (p bone. © 2012 Wiley Periodicals, Inc.

  2. Bone Texture Fractal Dimension Analysis of Ultrasound-Treated Bone around Implant Site: A Double-Blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Elaf Akram Abdulhameed

    2018-01-01

    Full Text Available Objectives. To evaluate the efficacy of bone texture fractal dimension (FD analysis method in predicting implant stability from intraoral periapical radiographs using two implant protocols. Materials and Methods. A double-blind clinical trial was conducted on 22 subjects who needed dental implants. The participants were randomized into two groups, the control group with standard implant protocol treatment and the intervention group with added low-intensity power ultrasound treatment (LIPUS besides the standard implant protocol. The FD values of bone density were carried out on the mesial and distal sides of the implant on digital intraoral radiographs using the box-counting method. Both resonance frequency (RF and fractal dimension (FD were assessed in three time intervals: after surgery and before and after loading. Results. FD on both the mesial and distal sides serve as very good-to-excellent tests with high validity (ROC area exceeding 0.8 in predicting high implant stability (ISQ ≥ 70. The mesial side measurements were consistently better than the distal side among the intervention groups. The optimum cutoff value for the FD-mesial side that predicts a highly stable implant (ISQ ≥ 70 is ≥1.505. At this optimum cutoff value, the mesial side FD is associated with a perfect sensitivity (100% and fairly high specificity (86.5%. Conclusion. The FD analysis could be recommended as an adjunctive quantitative method in prediction of the implant stability with very high sensitivity and specificity. This trial is registered with ISRCTN72648040.

  3. Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

    Science.gov (United States)

    Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.

    2017-08-01

    The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.

  4. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface.

    Science.gov (United States)

    Shah, Furqan A; Snis, Anders; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders

    2016-01-01

    For load-bearing orthopaedic applications, metal implants having an interconnected pore structure exhibit the potential to facilitate bone ingrowth and the possibility for reducing the stiffness mismatch between the implant and bone, thus eliminating stress-shielding effects. 3D printed solid and macro-porous Ti6Al4V implants were evaluated after six-months healing in adult sheep femora. The ultrastructural composition of the bone-implant interface was investigated using Raman spectroscopy and electron microscopy, in a correlative manner. The mineral crystallinity and the mineral-to-matrix ratios of the interfacial tissue and the native bone were found to be similar. However, lower Ca/P ratios, lower carbonate content, but higher proline, phenylalanine and tyrosine levels indicated that the interfacial tissue remained less mature. Bone healing was more advanced at the porous implant surface (vs. the solid implant surface) based on the interfacial tissue ν1 CO3(2-)/ν2 PO4(3-) ratio, phenylalanine and tyrosine levels approaching those of the native bone. The mechanosensing infrastructure in bone, the osteocyte lacuno-canalicular network, retained ∼40% more canaliculi per osteocyte lacuna, i.e., a 'less aged' morphology at the interface. The osteocyte density per mineralised surface area was ∼36-71% higher at the interface after extended healing periods. In osseointegration research, the success of an implant surface or design is commonly determined by quantifying the amount of new bone, rather than its maturation, composition and structure. This work describes a novel correlative methodology to investigate the ultrastructure and composition of bone formed around and within 3D printed Ti6Al4V implants having an interconnected open-pore structure. Raman spectroscopy demonstrates that the molecular composition of the interfacial tissue at different implant surfaces may vary, suggesting differences in the extent to which bone maturation occurs even after long

  5. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  6. Influence of simulated bone-implant contact and implant diameter on secondary stability: a resonance frequency in vitro study.

    Science.gov (United States)

    Veltri, Mario; González-Martín, Oscar; Belser, Urs C

    2014-08-01

    This study tested the hypothesis of no differences in resonance frequency for standardized amounts of simulated bone-implant contact around implants with different diameters. In addition, it was evaluated if resonance frequency is able to detect a difference between stable and rotation mobile ("spinning") implants. Implants with diameters of 3.3, 4.1 and 4.8 mm were placed in a purposely designed metal mould where liquid polyurethane resin was then poured to obtain a simulated bone-implant specimen. By regulating the mould, it was possible to create the following simulated bone-implant contact groups: 3.3 mm (198.6 mm(2)); 4.1 mm (198.8 mm(2)); 4.8 mm (200.2 mm(2)); 4.8 mm (231.7 mm(2)); 4.8 mm (294.7 mm(2)). Each group included 10 specimens. After resin setting, resonance frequency was measured. On the last group, measurements were repeated after establishing implant rotational mobility. One-way ANOVA tests with post hoc comparisons, a Pearson's correlation coefficient and a t-test for repeated measurements were used to evaluate statistically significant differences. Implants with different diameters but with the same amount of simulated osseointegration revealed no differences in resonance frequency. On the contrary, an increase of simulated bone-implant contact resulted in significantly higher resonance frequency. A clear direct linear correlation resulted between resonance frequency and simulated bone-implant contact. Furthermore, a significant difference resulted between resonance frequency measured before and after creation of rotational mobility. Within the conditions of this study, the secondary stability was correlated with the simulated bone-implant contact. In addition, resonance frequency was able to discern between stable and rotation mobile implants. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Implant failure in osteosynthesis of fractures of long bones ...

    African Journals Online (AJOL)

    Patients who had open operative treatment of fractures of long bones were reviewed retrospectively to identify the incidence of and risk factors for implant failure. One hundred and five patients had open reduction and internal fixation of 117 fractures of long bones, out of which four patients suffered implant failure.

  8. [Influence of implants prepared by selective laser melting on early bone healing].

    Science.gov (United States)

    Liu, J Y; Chen, F; Ge, Y J; Wei, L; Pan, S X; Feng, H L

    2018-02-18

    To evaluate the influence of the rough surface of dental implants prepared by selective laser melting (SLM) on early bone healing around titanium implants. A total of sixteen titanium implants were involved in our research, of which eight implants were prepared by SLM (TIXOS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex) and the other eight were sandblasted, large-grit and acid-etched (SLA) implants (IMPLUS Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex). All of the dental implants were inserted into the healed extraction sockets of the mandible of two adult male Beagle dogs. Half of the dental implants were designed to be healed beneath the mucosa and the other half were intended to be healed transgingivally and were immediately loaded by acrylic resin bridge restoration. Three types of tetracycline fluorescent labels, namely calcein blue, alizarin complexone and calcein, were administered into the veins of the Beagle dogs 2, 4, and 8 weeks after implant placement respectively for fluorescent evaluation of newly formed bone peri-implant. Both Beagle dogs were euthanized 12 weeks after implant insertion and the mandible block specimens containing the titanium implants and surrounding bone and soft tissue of each dog were carefully sectioned and dissected. A total of 16 hard tissue slices were obtained and stained with toluidine blue for microscopic examination and histomorphometric measurements. Histological observation was made for each slice under light microscope and laser scanning confocal microscope (LSCM). Comparison on new bone formation around titanium implants of each group was made and mineral apposition rate (MAR) was calculated for each group. Dental implants prepared by selective laser melting had achieved satisfying osseointegration to surrounding bone tissue after the healing period of 12 weeks. Newly formed bone tissue was observed creeping on the highly porous surface of the SLM implant and growing

  9. The Effects of Subcrestal Implant Placement on Crestal Bone Levels and Bone-to-Abutment Contact: A Microcomputed Tomographic and Histologic Study in Dogs.

    Science.gov (United States)

    Fetner, Michael; Fetner, Alan; Koutouzis, Theofilos; Clozza, Emanuele; Tovar, Nick; Sarendranath, Alvin; Coelho, Paulo G; Neiva, Kathleen; Janal, Malvin N; Neiva, Rodrigo

    2015-01-01

    Implant design and the implant-abutment interface have been regarded as key influences on crestal bone maintenance over time. The aim of the present study was to determine crestal bone changes around implants placed at different depths in a dog model. Thirty-six two-piece dental implants with a medialized implant-abutment interface and Morse taper connection (Ankylos, Dentsply) were placed in edentulous areas bilaterally in six mongrel dogs. On each side of the mandible, three implants were placed randomly at the bone crest, 1.5 mm subcrestally, or 3.0 mm subcrestally. After 3 months, the final abutments were torqued into place. At 6 months, the animals were sacrificed and samples taken for microcomputed tomographic (micro-CT) and histologic evaluations. Micro-CT analysis revealed similar crestal or marginal bone loss among groups. Both subcrestal implant groups lost significantly less crestal and marginal bone than the equicrestal implants. Bone loss was greatest on the buccal of the implants, regardless of implant placement depth. Histologically, implants placed subcrestally were found to have bone in contact with the final abutment and on the implant platform. Implants with a centralized implant-abutment interface and Morse taper connection can be placed subcrestally without significant loss of crestal or marginal bone. Subcrestal placement of this implant system appears to be advantageous in maintaining bone height coronal to the implant platform.

  10. Review of recent publications on bone implant interactions

    International Nuclear Information System (INIS)

    Moseke, C.

    2001-01-01

    Review of recent development in bone implant manufacturing and properties have been reported. The desirable implant mechanical, chemical, biological and surface properties have been discussed. Implant materials as well as their surface treatment and coating for achievement of best therapeutic results have been also presented

  11. Remodeling of the Mandibular Bone Induced by Overdentures Supported by Different Numbers of Implants.

    Science.gov (United States)

    Li, Kai; Xin, Haitao; Zhao, Yanfang; Zhang, Zhiyuan; Wu, Yulu

    2016-05-01

    The objective of this study was to investigate the process of mandibular bone remodeling induced by implant-supported overdentures. computed tomography (CT) images were collected from edentulous patients to reconstruct the geometry of the mandibular bone and overdentures supported by implants. Based on the theory of strain energy density (SED), bone remodeling models were established using the user material subroutine (UMAT) in abaqus. The stress distribution in the mandible and bone density change was investigated to determine the effect of implant number on the remodeling of the mandibular bone. The results indicated that the areas where high Mises stress values were observed were mainly situated around the implants. The stress was concentrated in the distal neck region of the distal-most implants. With an increased number of implants, the biting force applied on the dentures was almost all taken up by implants. The stress and bone density in peri-implant bone increased. When the stress reached the threshold of remodeling, the bone density began to decrease. In the posterior mandible area, the stress was well distributed but increased with decreased implant numbers. Changes in bone density were not observed in this area. The computational results were consistent with the clinical data. The results demonstrate that the risk of bone resorption around the distal-most implants increases with increased numbers of implants and that the occlusal force applied to overdentures should be adjusted to be distributed more in the distal areas of the mandible.

  12. Comparison of Marginal Bone Loss Between Implants with Internal and External Connections: A Systematic Review.

    Science.gov (United States)

    Palacios-Garzón, Natalia; Mauri-Obradors, Elisabeth; Roselló-LLabrés, Xavier; Estrugo-Devesa, Albert; Jané-Salas, Enric; López-López, José

    The objective of this systematic review was to compare the loss of marginal bone between implants with internal and external connections by analyzing results reported in studies published after 2010. A literature search in MEDLINE with the keywords "dental implant connections, external internal implant connection, bone loss implant designs, internal and external connection implant studies in humans" was conducted. Clinical trials on human beings, comparing both connections and published in English, from 2010 to 2016 were selected. Their methodologic quality was assessed using the Jadad scale. From the initial search, 415 articles were obtained; 32 were chosen as potentially relevant based on their titles and abstracts. Among them, only 10 finally met the inclusion criteria. A total of 1,523 patients with 3,965 implants were analyzed. Six out of 10 studies observed that internal connections showed significantly less bone loss compared with external connections. The remaining four articles did not find statistically significant differences between the two connections. According to this systematic review and considering its limitation due to the degree of heterogeneity between the included studies, both internal and external connections present high survival rates. To assess whether marginal bone loss differs significantly between the two connections, more homogenous clinical studies are needed with identical implant characteristics, larger samples, and longer follow-up periods. Studies included in this review and characterized by long-term follow-ups showed that the external connection is a reliable connection on a long-term basis.

  13. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Conductivity in insulators due to implantation of conducting species

    International Nuclear Information System (INIS)

    Prawer, S.; Kalish, R.

    1993-01-01

    Control of the surface conductivity of insulators can be accomplished by high dose ion implantation of conductive species. The use of C + as the implant species is particularly interesting because C can either form electrically insulating sp 3 bonds or electrically conducting sp 2 bonds. In the present work, fused quartz plates have been irradiated with 100 keV C + ions to doses up to 1 x 10 17 ions/cm 2 at room temperature and at 200 deg C. The ion beam induced conductivity was monitored in-situ and was found to increase by up to 8 orders to magnitude for the ion dose range studied. Xe implantations over a similar range did not induce any changes in the conductivity showing that the increase in conductivity is caused by the presence of the C in the fused quartz matrix and not by damage. The dependence of the conductivity on implantation temperature and on post implantation annealing sheds light on the clustering of the C implants. The temperature dependence of the conductivity for the highest doses employed (1 x 10 17 C + /cm 2 ) can be described very well by lnσ α T. This is considered to be a peculiar dependence which does not comply with any of the standard models for conduction. 9 refs., 1 tab., 6 figs

  15. Bone-anchored hearing aids in conductive and mixed hearing losses: why do patients reject them?

    Science.gov (United States)

    Siau, Richard T K; Dhillon, Baljeet; Siau, Derrick; Green, Kevin M J

    2016-10-01

    This study aimed to report the bone-anchored hearing aid uptake rate and the reasons for their rejection by patients with conductive and mixed hearing losses. A retrospective review was performed of 113 consecutive patients with unilateral or bilateral conductive or mixed hearing loss referred to the Greater Manchester bone-anchored hearing aid (BAHA) programme between September 2008 and August 2011. 98 (86.7 %) patients were deemed audiologically suitable for BAHA implantation. Of these, 38 (38.8 %) had BAHA implanted; 60 (61.2 %) patients declined. Of those who declined, 27 (45 %) cited anxiety over surgery, 18 (30 %) cited cosmetic reasons, 16 (26.7 %) perceived limited benefit from the device and six (10 %) preferred conventional hearing aids. Our study highlights a 38.8 % BAHA uptake rate in audiologically suitable patients. The main reasons cited for rejection of BAHA were anxiety over surgery and cosmetic concerns. It is important that clinicians address these early during consultation with prospective BAHA recipients and avoid rushing to implant these patients with a bone-anchored hearing aid.

  16. Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia.

    Science.gov (United States)

    Ajami, Elnaz; Bell, Spencer; Liddell, Robert S; Davies, John E

    2016-07-15

    The aim of this work was to investigate the effect of implant surface design on early bone anchorage in the presence of hyperglycemia. 108 Wistar rats were separated into euglycemic (EG) controls and STZ-treated hyperglycemic (HG) groups, and received bilateral femoral custom rectangular implants of two surface topographies: grit blasted (GB) and grit-blast with a superimposed calcium phosphate nanotopography (GB-DCD). The peri-implant bone was subjected to a tensile disruption test 5, 7, and 9days post-operatively (n=28/time point); the force was measured; and the residual peri-implant bone was observed by scanning electron microscopy (SEM). Disruption forces at 5days were not significantly different from zero for the GB implants (p=0.24) in either metabolic group; but were for GB+DCD implants in both metabolic groups (pmicro-surfaced implants showed significantly different disruption forces at all time points (e.g. >15N and implants, as all values were very low (implant bone showed compromised intra-fibrillar collagen mineralization in hyperglycemia, while inter-fibrillar and cement line mineralization remained unaffected. Enhanced bone anchorage to the implant surfaces was observed on the nanotopographically complex surface independent of metabolic group. The compromised intra-fibrillar mineralization observed provides a mechanism by which early bone mineralization is affected in hyperglycemia. It is generally accepted that the hyperglycemia associated with diabetes mellitus compromises bone quality, although the mechanism by which this occurs is unknown. Uncontrolled hyperglycemia is therefore a contra-indication for bone implant placement. It is also known that nano-topographically complex implant surfaces accelerate early peri-implant healing. In this report we show that, in our experimental model, nano-topographically complex surfaces can mitigate the compromised bone healing seen in hyperglycemia. Importantly, we also provide a mechanistic explanation for

  17. Bone compaction enhances fixation of weightbearing titanium implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2005-01-01

    are weightbearing, the effects of compaction on weightbearing implants were examined. The hypothesis was that compaction would increase implant fixation compared with conventional drilling. Porous-coated titanium implants were inserted bilaterally into the weightbearing portion of the femoral condyles of dogs....... In each dog, one knee had the implant cavity prepared with drilling, and the other knee was prepared with compaction. Eight dogs were euthanized after 2 weeks, and eight dogs were euthanized after 4 weeks. Femoral condyles from an additional eight dogs represented Time 0. Compacted specimens had higher...... bone-implant contact and periimplant bone density at 0 and 2 weeks, but not at 4 weeks. A biphasic response of compaction was found with a pushout test, as compaction increased ultimate shear strength and energy absorption at 0 and 4 weeks, but not at 2 weeks. This biphasic response indicates...

  18. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern...... from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants...... with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: DBM; DBM/CB with ratio of 1/3; DBM/allograft with ratio of 1/3; or allograft (Gold standard), respectively. Standardised surgical procedure was used1. At sacrifice, 6 weeks after surgery, both distal femurs were harvested...

  19. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants

    Directory of Open Access Journals (Sweden)

    Aw MS

    2012-09-01

    Full Text Available Moom Sinn Aw,1 Kamarul A Khalid,2,3 Karan Gulati,1 Gerald J Atkins,2 Peter Pivonka,4 David M Findlay,2 Dusan Losic11School of Chemical Engineering, 2Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, SA, Australia; 3Department of Orthopaedics, Traumatology and Rehabilitation, Faculty of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia; 4Engineering Computational Biology Group, School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA, AustraliaPurpose: The aim of this study was to investigate the application of the three-dimensional bone bioreactor for studying drug-release kinetics and distribution of drugs in the ex vivo cancellous bone environment, and to demonstrate the application of nanoengineered titanium (Ti wires generated with titania nanotube (TNT arrays as drug-releasing implants for local drug deliveryMethods: Nanoengineered Ti wires covered with a layer of TNT arrays implanted in bone were used as a drug-releasing implant. Viable bovine trabecular bone was used as the ex vivo bone substrate embedded with the implants and placed in the bone reactor. A hydrophilic fluorescent dye (rhodamine B was used as the model drug, loaded inside the TNT–Ti implants, to monitor drug release and transport in trabecular bone. The distribution of released model drug in the bone was monitored throughout the bone structure, and concentration profiles at different vertical (0–5 mm and horizontal (0–10 mm distances from the implant surface were obtained at a range of release times from 1 hour to 5 days.Results: Scanning electron microscopy confirmed that well-ordered, vertically aligned nanotube arrays were formed on the surface of prepared TNT–Ti wires. Thermogravimetric analysis proved loading of the model drug and fluorescence spectroscopy was used to show drug-release characteristics in-vitro. The drug release from implants inserted into bone ex

  20. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  1. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging.

    Science.gov (United States)

    Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J

    2006-03-07

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  2. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A [Department of Orthopaedics of the University of Jena at the Waldkrankenhaus ' Rudolf Elle' , Jena (Germany); Sachse, A [Department of Orthopaedics of the University of Jena at the Waldkrankenhaus ' Rudolf Elle' , Jena (Germany); Keller, M [Department of Orthopaedics of the University of Jena at the Waldkrankenhaus ' Rudolf Elle' , Jena (Germany); Aurich, M [Department of Orthopaedics of the University of Jena at the Waldkrankenhaus ' Rudolf Elle' , Jena (Germany); Wetzel, W-D [Department of Orthopaedics of the University of Jena at the Waldkrankenhaus ' Rudolf Elle' , Jena (Germany); Hortschansky, P [Hans-Knoell-Institut fuer Naturstoffforschung, Jena (Germany); Schmuck, K [DePuy Biotech GmbH, Jena (Germany); Lohmann, M [Hasylab at DESY, Hamburg (Germany); Reime, B [Hasylab at DESY, Hamburg (Germany); Metge, J [CELLS-ALBA, Universitat Autonoma de Barcelona (Spain); Arfelli, F [Department of Physics, University of Trieste, Trieste (Italy); Menk, R [ELETTRA, Trieste (Italy); Rigon, L [ELETTRA, Trieste (Italy); Muehleman, C [Department of Biochemistry, Rush Medical College, Chicago, IL (United States); Bravin, A [European Synchrotron Radiation Facility, BP220 38043, Grenoble (France); Coan, P [European Synchrotron Radiation Facility, BP220 38043, Grenoble (France); Mollenhauer, J [Department of Orthopaedics of the University of Jena at the Waldkrankenhaus ' Rudolf Elle' , Jena (Germany)

    2006-03-07

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  3. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J

    2006-01-01

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening

  4. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging

    Science.gov (United States)

    Wagner, A.; Sachse, A.; Keller, M.; Aurich, M.; Wetzel, W.-D.; Hortschansky, P.; Schmuck, K.; Lohmann, M.; Reime, B.; Metge, J.; Arfelli, F.; Menk, R.; Rigon, L.; Muehleman, C.; Bravin, A.; Coan, P.; Mollenhauer, J.

    2006-03-01

    Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.

  5. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  6. The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low- to medium-density bone.

    Science.gov (United States)

    Wang, Tong-Mei; Lee, Ming-Shu; Wang, Juo-Song; Lin, Li-Deh

    2015-01-01

    This study investigated the effect of implant design and bone quality on insertion torque (IT), implant stability quotient (ISQ), and insertion energy (IE) by monitoring the continuous change in IT and ISQ while implants were inserted in artificial bone blocks that simulate bone of poor or poor-to-medium quality. Polyurethane foam blocks (Sawbones) of 0.16 g/cm³ and 0.32 g/cm³ were respectively used to simulate low density and low- to medium-density cancellous bone. In addition, some test blocks were laminated with a 1-mm 0.80 g/cm³ polyurethane layer to simulate cancellous bone with a thin cortical layer. Four different implants (Nobel Biocare Mk III-3.75, Mk III-4.0, Mk IV-4.0, and NobelActive-4.3) were placed into the different test blocks in accordance with the manufacturer's instructions. The IT and ISQ were recorded at every 0.5-mm of inserted length during implant insertion, and IE was calculated from the torque curve. The peak IT (PIT), final IT (FIT), IE, and final ISQ values were statistically analyzed. All implants showed increasing ISQ values when the implant was inserted more deeply. In contrast to the ISQ, implants with different designs showed dissimilar IT curve patterns during the insertion. All implants showed a significant increase in the PIT, FIT, IE, and ISQ when the test-block density increased or when the 1-mm laminated layer was present. Tapered implants showed FIT or PIT values of more than 40 Ncm for all of the laminated test blocks and for the nonlaminated test blocks of low to medium density. Parallel-wall implants did not exhibit PIT or FIT values of more than 40 Ncm for all of the test blocks. NobelActive-4.3 showed a significantly higher FIT, but a significantly lower IE, than Mk IV-4.0. While the existence of cortical bone or implant designs significantly affects the dynamic IT profiles during implant insertion, it does not affect the ISQ to a similar extent. Certain implant designs are more suitable than others if high IT is

  7. Marginal bone loss around non-submerged implants is associated with salivary microbiome during bone healing.

    Science.gov (United States)

    Duan, Xiao-Bo; Wu, Ting-Xi; Guo, Yu-Chen; Zhou, Xue-Dong; Lei, Yi-Ling; Xu, Xin; Mo, An-Chun; Wang, Yong-Yue; Yuan, Quan

    2017-06-01

    Marginal bone loss during bone healing exists around non-submerged dental implants. The aim of this study was to identify the relationship between different degrees of marginal bone loss during bone healing and the salivary microbiome. One hundred patients were recruited, and marginal bone loss around their implants was measured using cone beam computed tomography during a 3-month healing period. The patients were divided into three groups according to the severity of marginal bone loss. Saliva samples were collected from all subjected and were analysed using 16S MiSeq sequencing. Although the overall structure of the microbial community was not dramatically altered, the relative abundance of several taxonomic groups noticeably changed. The abundance of species in the phyla Spirochaeta and Synergistetes increased significantly as the bone loss became more severe. Species within the genus Treponema also exhibited increased abundance, whereas Veillonella, Haemophilus and Leptotrichia exhibited reduced abundances, in groups with more bone loss. Porphyromonasgingivalis, Treponemadenticola and Streptococcus intermedius were significantly more abundant in the moderate group and/or severe group. The severity of marginal bone loss around the non-submerged implant was associated with dissimilar taxonomic compositions. An increased severity of marginal bone loss was related to increased proportions of periodontal pathogenic species. These data suggest a potential role of microbes in the progression of marginal bone loss during bone healing.

  8. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    Science.gov (United States)

    Schouten, Corinne; Meijer, Gert J; van den Beucken, Jeroen J J P; Spauwen, Paul H M; Jansen, John A

    2009-09-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated+TGF-beta1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0-500 microm; middle: 500-1000 microm; and outer: 1000-1500 microm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.

  9. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur ( 35 S) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia

  10. Partially Biodegradable Distraction Implant to Replace Conventional Implants in Alveolar Bone of Insufficient Height: A Preliminary Study in Dogs.

    Science.gov (United States)

    Li, Tao; Zhang, Yongqiang; Shao, Bo; Gao, Yuan; Zhang, Chen; Cao, Qiang; Kong, Liang

    2015-12-01

    Dental implants have been widely used in the last few decades. However, patients with insufficient bone height need reconstructive surgeries before implant insertion. The distraction implant (DI) has been invented to simplify the treatment procedure, but the shortcomings of DIs have limited their clinical use. We incorporated biodegradable polyester into a novel DI called the partially biodegradable distraction implant (PBDI). The purpose of this study was to assess the radiological, histological, and biomechanical properties of the PBDI in animal models. PBDIs were manufactured and inserted into the atrophied mandibles of nine dogs. Box-shaped alveolar bones were segmented and distracted. The dogs were randomly divided into three groups that were sacrificed 1, 2, and 3 months after the implant insertion. Actual augmentation height (AAH) of the bone segments was measured to evaluate the effect of distraction. X-ray examination and micro-CT reconstruction and analysis were used to evaluate the regenerated bone in the distraction gap and bone around the functional element. Histological sections were used to evaluate the osseointegration and absorption of the PBDI. Fatigue tests were used to evaluate the biomechanical properties of the PBDI. Little change was found in AAH among the three groups. X-ray examination and micro-CT reconstruction showed good growth of regenerated bone in the distraction gap. Alveolar bone volume around the functional element increased steadily. No obvious bone absorption occurred in the alveolar crest around PBDI. Three months after distraction, the functional element achieved osseointegration, and the support element began to be absorbed. All PBDIs survived the fatigue test. The PBDI is a novel and reliable dental implant. It becomes a conventional implant after the absorption of the support element and the removal of the distraction screw. It is a promising replacement for conventional implants in patients with insufficient alveolar bone

  11. Novel hybrid drilling protocol: evaluation for the implant healing--thermal changes, crestal bone loss, and bone-to-implant contact.

    Science.gov (United States)

    Calvo-Guirado, José Luis; Delgado-Peña, Jorge; Maté-Sánchez, Jose E; Mareque Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E

    2015-07-01

    To evaluate a new hybrid drilling protocol, by the analysis of thermal changes in vitro, and their effects in the crestal bone loss and bone-to-implant contact in vivo. Temperature changes during simulated osteotomies with a hybrid drilling technique (biologic plus simplified) (test) versus an incremental drilling technique (control) were investigated. One hundred and twenty random osteotomies were performed (60 by group) in pig ribs up to 3.75-mm-diameter drill to a depth of 10 mm. Thermal changes and time were recorded by paired thermocouples. In a parallel experiment, bilateral mandibular premolars P2, P3, P4, and first molar M1 were extracted from six dogs. After 2-month healing, implant sites were randomly prepared using either of the drilling techniques. Forty eight implants of 3.75 mm diameter and 10 mm length were inserted. The dogs were euthanized at 30 and 90 days, and crestal bone loss (CBL) and bone-to-implant contact (BIC) were evaluated. The control group showed maximum temperatures of 35.3 °C ± 1.8 °C, ΔT of 10.4 °C, and a mean time of 100 s/procedure; meanwhile, the test group showed maximum temperatures of 36.7 °C ± 1.2 °C, ΔT of 8.1 °C, and a mean time of 240 s/procedure. After 30 days, CBL values for both groups (test: 1.168 ± 0.194 mm; control: 1.181 ± 0.113 mm) and BIC values (test: 43 ± 2.8%; control: 45 ± 1.3%) were similar, without significant differences (P > 0.05). After 90 days, CBL (test: 1.173 ± 0.187 mm; control: 1.205 ± 0.122 mm) and BIC (test: 64 ± 3.3%; control: 64 ± 2.4%) values were similar, without significant differences (P > 0.05). The BIC values were increased at 90 days in both groups compared with the 30-day period (P drilling procedure in vitro. Crestal bone loss and bone-to-implant contact in the hybrid drilling protocol are comparable with the conventional drilling protocol and do not affect the osseointegration process in vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Results of bone regenerate study after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants in experimental femoral neck fractures (experimental study

    Directory of Open Access Journals (Sweden)

    K. S. Kazanin

    2015-01-01

    Full Text Available Objective - to analyze the results of X-ray, cytomorphometric and immunohistochemistry experimental studies of bone regenerates after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants. Material and methods. The study was conducted on experimental femoral neck fractures in rabbit males. Reparative osteogenesis processes were studied in groups of bioinert titanium implant osteosynthesis and calcium phosphate-coated bioactive titanium implant osteosynthesis. The animals were clinically followed-up during the postoperative period. X-ray, cytomorphometric and immunohistochemistry studies of samples extracted from femoral bones were conducted over time on days 1, 7, 14, 30 and 60. The animal experiments were kept and treated according to recommendations of international standards, Helsinki Declaration on animal welfare and approved by the local ethics committee. All surgeries were performed under anesthesia, and all efforts were made to minimize the suffering of the animals. Results. In the animal group without femoral neck fracture osteosynthesis, femoral neck pseudoarthrosis was observed at the end of the experiment. The results of cytomorphometric and immunohistochemistry studies conducted on day 60 of the experiment confirmed that the cellular composition of the bone regenerate in the group of calcium phosphate-coated bioactive titanium implants corresponded to a more mature bone tissue than in the group of bioinert titanium implants. Conclusion. The results of the statistical analysis of cytomorphometric and immunohistochemistry data show that the use of calcium phosphate-coated bioactive titanium implants allows to achieve significantly earlier bone tissue regeneration.

  13. Stability of dental implants in grafted bone in the anterior maxilla: longitudinal study.

    LENUS (Irish Health Repository)

    Al-Khaldi, Nasser

    2010-06-06

    We aimed to assess the stability over time of dental implants placed in grafted bone in the maxilla using resonance frequency analysis, and to compare the stability of implants placed in grafted and non-grafted bone. Data were collected from 23 patients (15 test and 8 controls) in whom 64 implants (Brånemark system, Nobel Biocare, Göteborg, Sweden) were placed in accordance with the two-stage surgical protocol. In the test group 36 fixtures were placed in grafted bone, and in the control group 28 fixtures were placed in non-grafted bone. Resonance frequency analysis was used to assess the test sites at implant placement and abutment connection. The mean (SD) implant stability quotient (ISQ) for test sites at the time of implant placement was 61.91 (6.68), indicating excellent primary stability, and was 63.53 (5.76) at abutment connection. ISQ values at abutment connection were similar for test and control sites. Implants placed in grafted bone compared favourably with those in non-grafted bone, and showed excellent stability.

  14. Evaluation of interference fit and bone damage of an uncemented femoral knee implant.

    Science.gov (United States)

    Berahmani, Sanaz; Hendriks, Maartje; de Jong, Joost J A; van den Bergh, Joop P W; Maal, Thomas; Janssen, Dennis; Verdonschot, Nico

    2018-01-01

    During implantation of an uncemented femoral knee implant, press-fit interference fit provides the primary stability. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much press-fit interference fit is eventually achieved. Five cadaveric femora were prepared and implantation was performed by an experienced surgeon. Micro-CT- and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. Additionally, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions. By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67mm (SD 0.17mm), which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48mm (SD 0.27mm), which was close to the nominal value of 1.5mm. We observed combinations of bone damage and elastic deformation in all bone specimens, which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation. The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components to achieve adequate primary stability for all patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    Science.gov (United States)

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (Pbone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  16. Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design.

    Science.gov (United States)

    Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana

    2013-07-01

    The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.

  17. Effects of mechanical repetitive load on bone quality around implants in rat maxillae.

    Directory of Open Access Journals (Sweden)

    Yusuke Uto

    Full Text Available Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD, Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively, as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution

  18. Clinical and Radiologic Outcomes of Submerged and Nonsubmerged Bone-Level Implants with Internal Hexagonal Connections in Immediate Implantation: A 5-Year Retrospective Study.

    Science.gov (United States)

    Wu, Shiyu; Wu, Xiayi; Shrestha, Rachana; Lin, Jinying; Feng, Zhicai; Liu, Yudong; Shi, Yunlin; Huang, Baoxin; Li, Zhipeng; Liu, Quan; Zhang, Xiaocong; Hu, Mingxuan; Chen, Zhuofan

    2018-02-01

    To evaluate the 5-year clinical and radiologic outcome of immediate implantation using submerged and nonsubmerged techniques with bone-level implants and internal hexagonal connections and the effects of potential influencing factors. A total of 114 bone-level implants (XiVE S plus) with internal hexagonal connections inserted into 72 patients were included. Patients were followed up for 5 years. A t-test was used to statistically evaluate the marginal bone loss between the submerged and nonsubmerged groups. The cumulative survival rate (CSR) was calculated according to the life table method and illustrated with Kaplan-Meier survival curves. Comparisons of the CSR between healing protocols, guided bone regeneration, implants with different sites, lengths, and diameters were performed using log-rank tests. The 5-year cumulative implant survival rates with submerged and nonsubmerged healing were 94% and 96%, respectively. No statistically significant differences in terms of marginal bone loss, healing protocol, application of guided bone regeneration, implant site, or length were observed. High CSRs and good marginal bone levels were achieved 5 years after immediate implantation of bone-level implants with internal hexagonal connections using both the submerged and nonsubmerged techniques. Factors such as implant length, site, and application of guided bone regeneration did not have an impact on the long-term success of the implants. © 2017 by the American College of Prosthodontists.

  19. Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants

    OpenAIRE

    Kurz, Anja; Caversaccio, Marco; Kompis, Martin; Flynn, Marc

    2014-01-01

    Bone Anchored Hearing Implants (BAHI) are routinely used in patients with conductive or mixed hearing loss, e.g. if conventional air conduction hearing aids cannot be used. New sound processors and new fitting software now allow the adjustment of parameters such as loudness compression ratios or maximum power output separately. Today it is unclear, how the choice of these parameters influences aided speech understanding in BAHI users. In this prospective experimental study, the effect ...

  20. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis

    Science.gov (United States)

    Strietzel, Frank Peter; Neumann, Konrad; Hertel, Moritz

    2015-01-01

    Objective To address the focused question, is there an impact of platform switching (PS) on marginal bone level (MBL) changes around endosseous implants compared to implants with platform matching (PM) implant-abutment configurations? Material and methods A systematic literature search was conducted using electronic databases PubMed, Web of Science, Journals@Ovid Full Text and Embase, manual search for human randomized clinical trials (RCTs) and prospective clinical controlled cohort studies (PCCS) reporting on MBL changes at implants with PS-, compared with PM-implant-abutment connections, published between 2005 and June 2013. Results Twenty-two publications were eligible for the systematic review. The qualitative analysis of 15 RCTs and seven PCCS revealed more studies (13 RCTs and three PCCS) showing a significantly less mean marginal bone loss around implants with PS- compared to PM-implant-abutment connections, indicating a clear tendency favoring the PS technique. A meta-analysis including 13 RCTs revealed a significantly less mean MBL change (0.49 mm [CI95% 0.38; 0.60]) at PS implants, compared with PM implants (1.01 mm [CI95% 0.62; 1.40] (P marginal bone loss compared with PM technique. Due to heterogeneity of the included studies, their results require cautious interpretation. PMID:24438506

  1. Immediate provisionalization of immediate implants in the esthetic zone: a prospective case series evaluating implant survival, esthetics, and bone maintenance.

    Science.gov (United States)

    Levin, Barry P; Wilk, Brian L

    2013-05-01

    This prospective study evaluates immediately placed and immediately provisionalized implants in the esthetic zone. All implants were TiO2-blasted, fluoride-modified, grade 4 titanium, with a coronal microthread design. Bone grafting and guided bone regeneration (GBR) was performed at all sites, and screw-retained temporary restorations were delivered on the day of surgery. All of the provisional crown(s) were out of occlusal function and remained in place for at least 8 weeks prior to initiation of definitive restorative therapy. Bone maintenance (BM) was considered successful if radiographs demonstrated proximal bone levels even or coronal to the implant platform. Of the 29 implants placed, 25 (86 percent) achieved bone maintenance at least 12 months post-loading with the final restorations. This study was considered successful, with 100 percent implant survival after at least 1 year loading of the final restoration, and 100 percent of patients were satisfied with the esthetics of their implant treatment.

  2. Bone-anchored hearing devices in children with unilateral conductive hearing loss: a patient-carer perspective.

    Science.gov (United States)

    Banga, Rupan; Doshi, Jayesh; Child, Anne; Pendleton, Elizabeth; Reid, Andrew; McDermott, Ann-Louise

    2013-09-01

    We sought to determine the outcome of implantation of a bone-anchored hearing device in children with unilateral conductive hearing loss. A retrospective case note analysis was used in a tertiary referral pediatric hospital to study 17 consecutive cases of pediatric patients with unilateral conductive hearing loss who were fitted with a bone-anchored hearing device between 2005 and 2010. The average age of the patients at the time of bone-anchored hearing device fitting was 10 years 6 months (range, 6 years 3 months to 16 years). Qualitative subjective outcome measures demonstrated benefit. The vast majority of patients reported improved social and physical functioning and improved quality of life. All 17 patients are currently using their bone-anchored hearing device on a daily basis after a follow-up of 6 months. This study has shown improved quality of life in children with unilateral hearing loss after implantation of their bone-anchored hearing device. There was a high degree of patient satisfaction and improvement in health status reported by children and/or carers. Bone-anchored hearing devices have an important role in the management of children with symptomatic unilateral hearing loss. Perhaps earlier consideration of a bone-anchored hearing device would be appropriate in selected cases.

  3. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    Science.gov (United States)

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  4. Binaural Hearing Ability With Bilateral Bone Conduction Stimulation in Subjects With Normal Hearing: Implications for Bone Conduction Hearing Aids.

    Science.gov (United States)

    Zeitooni, Mehrnaz; Mäki-Torkko, Elina; Stenfelt, Stefan

    The purpose of this study is to evaluate binaural hearing ability in adults with normal hearing when bone conduction (BC) stimulation is bilaterally applied at the bone conduction hearing aid (BCHA) implant position as well as at the audiometric position on the mastoid. The results with BC stimulation are compared with bilateral air conduction (AC) stimulation through earphones. Binaural hearing ability is investigated with tests of spatial release from masking and binaural intelligibility level difference using sentence material, binaural masking level difference with tonal chirp stimulation, and precedence effect using noise stimulus. In all tests, results with bilateral BC stimulation at the BCHA position illustrate an ability to extract binaural cues similar to BC stimulation at the mastoid position. The binaural benefit is overall greater with AC stimulation than BC stimulation at both positions. The binaural benefit for BC stimulation at the mastoid and BCHA position is approximately half in terms of decibels compared with AC stimulation in the speech based tests (spatial release from masking and binaural intelligibility level difference). For binaural masking level difference, the binaural benefit for the two BC positions with chirp signal phase inversion is approximately twice the benefit with inverted phase of the noise. The precedence effect results with BC stimulation at the mastoid and BCHA position are similar for low frequency noise stimulation but differ with high-frequency noise stimulation. The results confirm that binaural hearing processing with bilateral BC stimulation at the mastoid position is also present at the BCHA implant position. This indicates the ability for binaural hearing in patients with good cochlear function when using bilateral BCHAs.

  5. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    Science.gov (United States)

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. © The Author(s) 2015.

  6. Buccal bone loss after immediate implantation can be reduced by the flapless approach

    Directory of Open Access Journals (Sweden)

    ARTHUR BELÉM NOVAES JR

    2011-10-01

    Full Text Available Aim: The aim of this study was to evaluate the buccal bone remodeling after immediate implantation with flap or flapless approach. Material and Methods: The mandibular bilateral premolars of 3 dogs were extracted and immediately three implants were placed in both hemi-arches of each dog. Randomly, one hemi-arch was treated with the flapless approach, while in the contra lateral hemi-arch tooth extractions and implant placement were done after mucoperiosteal flap elevation. Non-submerged healing of 12 weeks was provided for both groups. Histomorphometric analysis was done to compare buccal and lingual bone height loss, bone density and bone-to-implant contact in the groups. Fluorescence analysis was performed to investigate the dynamic of bone remodeling in the different groups. Results: There was a significant association between the surgical flap and the extent of bone resorption around immediate implants. The loss of buccal bone height was significantly lower in the flapless group when compared to the flap group (0.98 mm x 2.14 mm, respectively, p<0.05. The coronal and apical buccal bone densities of the flap group were significantly higher when compared to the lingual components, showing anatomical differences between the bone plates. Fluorescence analysis showed no major differences in bone healing between the flap and flapless groups, supporting that the higher loss of buccal bone height is linked to the anatomic characteristics of this plate and to the negative influence of the detachment of the periosteum in immediate implant therapy. Conclusion: The flapless approach for immediate post-extraction implants reduces the buccal bone height loss.

  7. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla

    Directory of Open Access Journals (Sweden)

    Shrikar R Desai

    2013-01-01

    Full Text Available Aim: The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. Materials and Methods: A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45° to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. Results: The results of total deformation (micro-movement and Von mises stress were found to be lower for tapered long implant (10 mm than short implant (6 mm while using both vertical as well as oblique loading. Conclusion: Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  8. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla.

    Science.gov (United States)

    Desai, Shrikar R; Singh, Rika; Karthikeyan, I

    2013-09-01

    The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  9. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats.

    Science.gov (United States)

    Alghamdi, Hamdan S; Bosco, Ruggero; Both, Sanne K; Iafisco, Michele; Leeuwenburgh, Sander C G; Jansen, John A; van den Beucken, Jeroen J J P

    2014-07-01

    The prevalence of osteoporosis will increase within the next decades due to the aging world population, which can affect the bone healing response to dental and orthopedic implants. Consequently, local drug targeting of peri-implant bone has been proposed as a strategy for the enhancement of bone-implant integration in osteoporotic conditions. In the present study, an established in-vivo femoral condyle implantation model in osteoporotic and healthy bone is used to analyze the osteogenic capacity of titanium implants coated with bisphosphonate (BP)-loaded calcium phosphate nanoparticles (nCaP) under compromised medical conditions. After 4 weeks of implantation, peri-implant bone volume (%BV; by μCT) and bone area (%BA; by histomorphometry) were significantly increased within a distance of 500 μm from implant surfaces functionalized with BP compared to control implants in osteoporotic and healthy conditions. Interestingly, the deposition of nCaP/BP coatings onto implant surfaces increased both peri-implant bone contact (%BIC) and volume (%BV) compared to the deposition of nCaP or BP coatings individually, in osteoporotic and healthy conditions. The results of real-time PCR revealed similar osteogenic gene expression levels to all implant surfaces at 4-weeks post-implantation. In conclusion, simultaneous targeting of bone formation (by nCaP) and bone resorption (by BP) using nCaP/BP surface coatings represents an effective strategy for synergistically improvement of bone-implant integration, especially in osteoporotic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bone density around the fixture after function of implant molar prosthesis using CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Hyun; Hwang, In Taik; Jung, Byung Hyun; Kim, Jae Duk; Kang, Dong Wan [School of Dentistry, Oral Biology Research Institute, Chosun University, Gwangju (Korea, Republic of)

    2010-03-15

    The purpose of this study was to examine the significance of increased bone density according to whether bone grafts were applied using demographic data with Cone Beam Computed Tomography (CBCT) and to compare the bone densities between before and after implant prosthesis using the Hounsfield index. Thirty-six randomly selected computed tomography (CT) scans were used for the analysis. The same sites were evaluated digitally using the Hounsfield scale with V-Implant 2.0TM, and the results were compared with maxillary posterior bone graft. Statistical data analysis was carried out to determine the correlation between the recorded Hounsfield unit (HU) of the bone graft and implant prosthesis using a Mann-Whitney U test and Wilcoxon Matched-pairs test. The bone grafted maxillary posterior teeth showed an increase in the mean values from-157 HU to 387 HU, whereas non-grafted maxillary posterior teeth showed an increase from 62 HU to 342 HU. After implantation, the grafted and non-grafted groups showed significantly higher bone density than before implantation. However, the grafted group showed significantly more changes than the non-grafted group. Bone density measurements using CBCT might provide an objective assessment of the bone quality as well as the correlation between bone density (Hounsfield scale) and bone grafts in the maxillary molar area.

  11. Successful bone-anchored hearing aid implantation in a patient with osteogenesis imperfecta.

    Science.gov (United States)

    Coutinho, M B; Marques, C; Mendes, G J; Gonçalves, C

    2015-11-01

    To report a case of successful bone-anchored hearing aid implantation in an adult patient with type III osteogenesis imperfecta, which is commonly regarded as a contraindication to this procedure. A 45-year-old man with type III osteogenesis imperfecta presented with mixed hearing loss. There was a mild sensorineural component in both ears, with an air-bone gap between 45 and 50 dB HL. He was implanted with a bone-anchored hearing aid. The audiological outcome was good, with no complications and good implant stability (as measured by resonance frequency analysis). To our knowledge, this is the first recorded case of bone-anchored hearing aid implantation in a patient with osteogenesis imperfecta.

  12. Friction coefficient and effective interference at the implant-bone interface.

    Science.gov (United States)

    Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E

    2015-09-18

    Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants

    Directory of Open Access Journals (Sweden)

    Serkan Dundar

    2016-01-01

    Full Text Available The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland, which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N. The maximum stress values occurred in FIII (300 N when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.

  14. Prevalence of Dental Implants and Evaluation of Peri-implant Bone Levels in Patients Presenting to a Dental School: A Radiographic Cross-Sectional 2-Year Study.

    Science.gov (United States)

    Alkan, Eylem Ayhan; Mau, Lian Ping; Schoolfield, John; Guest, Gary F; Cochran, David L

    To evaluate the number of patients with dental implants who present to a dental school clinic for screening and to report the prevalence of peri-implant bone level change detected on digital panoramic radiographs of those subjects. Patient screening files for 9,422 patients over a 2-year period were examined to see how many patients presented with dental implants. Those patients with at least one implant were further evaluated by measuring the bone level on the mesial and distal sides of the implant using the screening radiograph. A total of 187 patients (2%) had at least one implant. In regard to implants, 423 were examined and 146 (33%) had no detectable bone loss defined as bone level below the top of the implant. When thresholds of bone loss were evaluated, 109 implants (25%) had ≥ 2 mm of bone loss on either the mesial or distal sides or both. The median bone loss was 1.74 mm for the 277 implants with detectable bone loss and 2.97 mm for the 109 implants that had ≥ 2 mm bone loss. Interestingly, patients who were ≥ 70 years of age had significantly (P = .03) more bone loss in the mandible compared with the maxilla, while patients who were 60 to 69 years of age had significantly greater loss in the maxilla. These data reveal that for patients presenting to the dental school for a screening over a 2-year period, 1.98% had one or more dental implants. Furthermore, those patients with implants had a minimum amount of bone loss as measured from the top of the implant.

  15. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  16. Implant-bone boundary, management with coordinative of zinc and vanadium compounds

    International Nuclear Information System (INIS)

    Granciuc, Victoria; Manascurta, Ghenadie; Granciuc, Gheorge

    2013-01-01

    Theoretical concept about description of the implant integration into the bone on a microscopic view remains to be a wide studied subject. The study of the morphological samples with sections on the border implant-bone had been done on different depths and sides of the implant using hematoxylin-eosin stain. Remarkable result had been observed on comparative analysis of studied groups on administrating TS-2Z and TS-1Z,TS-9V that did stimulate bone regeneration. Histological studies confirm the results of improvement of biochemical and blood indexes after implant surgery at the laboratory animals that had received coordinative compounds of Zn(L-H)2; Zn(L-H)etazol; [Vo(L- H)etazol]2SO4. (authors)

  17. Bone morphology changes around two types of bone-level implants installed in fresh extraction sockets - a histomorphometric study in Beagle dogs

    NARCIS (Netherlands)

    Alharbi, H.M.; Babay, N.; Alzoman, H.; Basudan, S.; Anil, S.; Jansen, J.A.

    2015-01-01

    BACKGROUND: Minimizing crestal bone loss following immediate implant placement is considered the most challenging aspect in implant therapy. Implant surface topography and chemical modifications have been shown to influence the success of Osseointegration. The Straumann((R)) Bone Level implant,

  18. Regular and platform switching: bone stress analysis varying implant type.

    Science.gov (United States)

    Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes

    2012-04-01

    This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon

  19. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M.; Gil, Francisco Javier; Boyd, Steven K.; Rodríguez, Daniel

    2016-01-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  20. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria [Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby (Denmark); Manzanares-Céspedes, Maria Cristina [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Sevilla, Pablo [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), Barcelona (Spain); Nart, José [Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Sant Cugat (Spain); Manzanares, Norberto [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Manero, José M. [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain); Gil, Francisco Javier [Universitat Internacional de Catalunya, Sant Cugat (Spain); Boyd, Steven K. [McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta (Canada); Rodríguez, Daniel, E-mail: daniel.rodriguez.rius@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain)

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  1. The combined use of rhBMP-2/ACS, autogenous bone graft, a bovine bone mineral biomaterial, platelet-rich plasma, and guided bone regeneration at nonsubmerged implant placement for supracrestal bone augmentation. A case report.

    Science.gov (United States)

    Sclar, Anthony G; Best, Steven P

    2013-01-01

    This case report presents the clinical application and outcomes of the use of a combined approach to treat a patient with a severe alveolar defect. Recombinant human bone morphogenetic protein-2 in an absorbable collagen sponge carrier, along with autogenous bone graft, bovine bone mineral, platelet-rich plasma, and guided bone regeneration, were used simultaneous with nonsubmerged implant placement. At 1 year postsurgery, healthy peri-implant soft tissues and radiographically stable peri-implant crestal bone levels were observed along with locally increased radiographic bone density. In addition, a cone beam computed tomography (CBCT) scan demonstrated apparent supracrestal peri-implant bone augmentation with the appearance of normal alveolar ridge contours, including the facial bone wall.

  2. The impact on bone tissues of immediate implant-supported mandibular overdentures with cusped and cuspless teeth

    Directory of Open Access Journals (Sweden)

    Khalid A. Arafa

    2016-01-01

    Full Text Available Objectives: To examine the effects on bone tissues of immediate implant-supported mandibular overdentures with cusped or cuspless teeth. Methods: A randomized controlled trial was conducted at the Dental Clinic, Faculty of Dentistry, Al-Azhar University, Assiut Branch, Egypt, over a 12-month period from September 2013 to September 2014. Twenty patients were treated with immediate implant-supported overdentures: one group received overdentures with cusped teeth, and the other group received overdentures with cuspless teeth. The rate of implant success was assessed clinically and radiographically at 3, 6, 9, and 12 months. The data were collected by a questionnaire, an observation checklist, and radiography. The data were then analyzed using computerized methods. Results: Overdentures with cusped teeth showed a significant improvement in the clinical criteria, including the absence of clinical implant mobility, pain, and bone resorption, while the clinical criteria for the absence of peri-implant radiolucency were insignificantly different between the 2 groups (p>0.05. There were no significant differences in the clinical evaluations for bone levels at the time of insertion or 3 months after insertions, while significant differences were found at 6, 9, and 12 months after insertion. Conclusion: Overdentures with cusped teeth supported by immediate implants were found superior regarding many clinical criteria than those cuspless counterparts.

  3. The impact on bone tissues of immediate implant-supported mandibular overdentures with cusped and cuspless teeth.

    Science.gov (United States)

    Arafa, Khalid A

    2016-01-01

    To examine the effects on bone tissues of immediate implant-supported mandibular overdentures with cusped or cuspless teeth. A randomized controlled trial was conducted at the Dental Clinic, Faculty of Dentistry, Al-Azhar University, Assiut Branch, Egypt, over a 12-month period from September 2013 to September 2014. Twenty patients were treated with immediate implant-supported overdentures: one group received overdentures with cusped teeth, and the other group received overdentures with cuspless teeth. The rate of implant success was assessed clinically and radiographically at 3, 6, 9, and 12 months. The data were collected by a questionnaire, an observation checklist, and radiography. The data were then analyzed using computerized methods.  Overdentures with cusped teeth showed a significant improvement in the clinical criteria, including the absence of clinical implant mobility, pain, and bone resorption, while the clinical criteria for the absence of peri-implant radiolucency were insignificantly different between the 2 groups (p more than 0.05). There were no significant differences in the clinical evaluations for bone levels at the time of insertion or 3 months after insertions, while significant differences were found at 6, 9, and 12 months after insertion. Overdentures with cusped teeth supported by immediate implants were found superior regarding many clinical criteria than those cuspless counterparts.

  4. Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration.

    Science.gov (United States)

    Rodriguez, Rudy U; Kemper, Nathan; Breathwaite, Erick; Dutta, Sucharita M; Hsu, Erin L; Hsu, Wellington K; Francis, Michael P

    2016-07-26

    Bone repair frequently requires time-consuming implant construction, particularly when using un-formed implants with poor handling properties. We therefore developed osteoinductive, micro-fibrous surface patterned demineralized bone matrix (DBM) fibers for engineering both defect-matched and general three-dimensional implants. Implant molds were filled with demineralized human cortical bone fibers there were compressed and lyophilized, forming mechanically strong shaped DBM scaffolds. Enzyme linked immunosorbent assays and mass spectrometry confirmed that DBM fibers contained abundant osteogenic growth factors (bone morphogenetic proteins, insulin-like growth factor-I) and extracellular matrix proteins. Mercury porosimetry and mechanical testing showed interconnected pores within the mechanically stable, custom DBM fiber scaffolds. Mesenchymal stem cells readily attached to the DBM and showed increasing metabolic activity over time. DBM fibers further increased alkaline phosphatase activity in C2C12 cells. In vivo, DBM implants elicited osteoinductive potential in a mouse muscle pouch, and also promoted spine fusion in a rat arthrodesis model. DBM fibers can be engineered into custom-shaped, osteoinductive and osteoconductive implants with potential for repairing osseous defects with precise fitment, potentially reducing operating time. By providing pre-formed and custom implants, this regenerative allograft may improve patient outcomes following surgical bone repair, while further advancing personalized orthopedic and craniomaxillofacial medicine using three-dimensional-printed tissue molds.

  5. Nanosized Hydroxyapatite Coating on PEEK Implants Enhances Early Bone Formation: A Histological and Three-Dimensional Investigation in Rabbit Bone

    Directory of Open Access Journals (Sweden)

    Pär Johansson

    2015-06-01

    Full Text Available Polyether ether ketone (PEEK has been frequently used in spinal surgery with good clinical results. The material has a low elastic modulus and is radiolucent. However, in oral implantology PEEK has displayed inferior ability to osseointegrate compared to titanium materials. One idea to reinforce PEEK would be to coat it with hydroxyapatite (HA, a ceramic material of good biocompatibility. In the present study we analyzed HA-coated PEEK tibial implants via histology and radiography when following up at 3 and 12 weeks. Of the 48 implants, 24 were HA-coated PEEK screws (test and another 24 implants served as uncoated PEEK controls. HA-coated PEEK implants were always osseointegrated. The total bone area (BA was higher for test compared to control implants at 3 (p < 0.05 and 12 weeks (p < 0.05. Mean bone implant contact (BIC percentage was significantly higher (p = 0.024 for the test compared to control implants at 3 weeks and higher without statistical significance at 12 weeks. The effect of HA-coating was concluded to be significant with respect to early bone formation, and HA-coated PEEK implants may represent a good material to serve as bone anchored clinical devices.

  6. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  7. Comparison of marginal bone loss between internal- and external-connection dental implants in posterior areas without periodontal or peri-implant disease.

    Science.gov (United States)

    Kim, Dae-Hyun; Kim, Hyun Ju; Kim, Sungtae; Koo, Ki-Tae; Kim, Tae-Il; Seol, Yang-Jo; Lee, Yong-Moo; Ku, Young; Rhyu, In-Chul

    2018-04-01

    The purpose of this retrospective study with 4-12 years of follow-up was to compare the marginal bone loss (MBL) between external-connection (EC) and internal-connection (IC) dental implants in posterior areas without periodontal or peri-implant disease on the adjacent teeth or implants. Additional factors influencing MBL were also evaluated. This retrospective study was performed using dental records and radiographic data obtained from patients who had undergone dental implant treatment in the posterior area from March 2006 to March 2007. All the implants that were included had follow-up periods of more than 4 years after loading and satisfied the implant success criteria, without any peri-implant or periodontal disease on the adjacent implants or teeth. They were divided into 2 groups: EC and IC. Subgroup comparisons were conducted according to splinting and the use of cement in the restorations. A statistical analysis was performed using the Mann-Whitney U test for comparisons between 2 groups and the Kruskal-Wallis test for comparisons among more than 2 groups. A total of 355 implants in 170 patients (206 EC and 149 IC) fulfilled the inclusion criteria and were analyzed in this study. The mean MBL was 0.47 mm and 0.15 mm in the EC and IC implants, respectively, which was a statistically significant difference ( P <0.001). Comparisons according to splinting (MBL of single implants: 0.34 mm, MBL of splinted implants: 0.31 mm, P =0.676) and cement use (MBL of cemented implants: 0.27 mm, MBL of non-cemented implants: 0.35 mm, P =0.178) showed no statistically significant differences in MBL, regardless of the implant connection type. IC implants showed a more favorable bone response regarding MBL in posterior areas without peri-implantitis or periodontal disease.

  8. [Atraumatic bone expansion: Interest of piezo-surgery, conicals expanders and immediate implantation combination].

    Science.gov (United States)

    Iraqui, O; Lakhssassi, N; Berrada, S; Merzouk, N

    2016-06-01

    The durability of dental implants depends on the presence of a 1mm coating bone sheath all around the fixture. Therefore, bone resorption represents a challenge for the practitioner. Bone expansion is a surgical technique that allows the management of horizontal bone atrophy. Cortical bone splitting allows for an enlargement of the residual crest by displacement of the vestibular bone flap. The immediate placement of implants secures the widening and allows for a 97% survival rate. However, bone expansion is hard to undertake in sites with high bone density. Furthermore, the use of traditional instruments increases patient's stress and the risk for an interruptive fracture during bone displacement. Non-traumatic bone expansion is one solution to this problem. The combination of piezo-surgery and conical expanders allows for a secured displacement of the selected bone flap as well as an immediate implant placement, avoiding the risk of slipping, overheating, or fracture, all within an undeniable operative comfort. Non-traumatic bone expansion is a reliable, reproducible, conservative, and economical in time and cost procedure. We describe our atraumatic bone expension and immediate implant placement technique in high bone density sites and illustrate it by a clinical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Processing of microCT implant-bone systems images using Fuzzy Mathematical Morphology

    International Nuclear Information System (INIS)

    Bouchet, A; Pastore, J; Colabella, L; Omar, S; Ballarre, J

    2016-01-01

    The relationship between a metallic implant and the existing bone in a surgical permanent prosthesis is of great importance since the fixation and osseointegration of the system leads to the failure or success of the surgery. Micro Computed Tomography is a technique that helps to visualize the structure of the bone. In this study, the microCT is used to analyze implant-bone systems images. However, one of the problems presented in the reconstruction of these images is the effect of the iron based implants, with a halo or fluorescence scattering distorting the micro CT image and leading to bad 3D reconstructions. In this work we introduce an automatic method for eliminate the effect of AISI 316L iron materials in the implant-bone system based on the application of Compensatory Fuzzy Mathematical Morphology for future investigate about the structural and mechanical properties of bone and cancellous materials. (paper)

  10. Endochondral vs. intramembranous demineralized bone matrices as implants for osseous defects.

    Science.gov (United States)

    Nidoli, M C; Nielsen, F F; Melsen, B

    1999-05-01

    This study focuses on the difference in regenerative capacity between endochondral and intramembranous demineralized bone matrices (DBMs) when implanted into bony defects. It also focuses on the possible influence of the type of skeletal recipient site (orthotopic or heterotopic). Of 34 Wistar rats, 10 served as a source of DBM, and 24 were divided into two groups of 12 animals. In group A identical defects were produced in the parietal bones, whereas in group B the defects were produced in each radius. The right defects were implanted with endochondral DBM and the left defects were implanted with intramembranous DBM. Descriptive and/or histomorphometric analyses were performed by means of light and polarized microscopy, and radiography (group B). Right and left data were compared to disclose differences in bone-healing capacity. The quantitative results demonstrated that endochondral DBM displays a greater regenerative capacity than intramembranous DBM when implanted heterotopically. The different clinical performances of endochondral and intramembranous bone grafts might be explained on the basis of the mechanical rather than the osteoinductive principle. The qualitative results suggest that the type of bone deposition induced by the DBMs is not related to the type of implanted DBM. Recipient site characteristics and/or environmental factors seem decisive in the occurrence of either types of ossification.

  11. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement.

    Science.gov (United States)

    Yunus, Barunawaty

    2011-06-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  12. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Barunawaty [Faculty of Dentistry, Hasanuddin University, Makassar (Malaysia)

    2011-06-15

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  13. Assessment of the increased calcification of the jaw bone with CT-Scan after dental implant placement

    International Nuclear Information System (INIS)

    Yunus, Barunawaty

    2011-01-01

    This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.

  14. Locally delivered ethyl-2,5-dihydroxybenzoate using 3D printed bone implant for promotion of bone regeneration in a osteoporotic animal model

    Directory of Open Access Journals (Sweden)

    B-J Kwon

    2018-01-01

    Full Text Available Osteoporosis is a disease characterized by low bone mass, most commonly caused by an increase in bone resorption that is not matched by sufficient bone formation. The most common complications of postmenopausal osteoporosis are bone-related defects and fractures. Fracture healing is a multifactorial bone regeneration process, influenced by both biological and mechanical factors related to age, osteoporosis and stability of the osteosynthesis. During the treatment of bone defects in osteoporotic conditions, imbalanced bone remodeling is the leading cause for implant failure. To overcome these problems, ethyl-2,5-dihydroxybenzoate (E-2,5-DHB, a drug that promotes bone formation and inhibits bone resorption, was used. E-2,5-DHB-incorporating titanium (Ti implants using poly(lactic-co-glycolic acid (PLGA coating for local delivery of E-2,5-DHB were developed and the effects on bone healing of femoral defects were evaluated in an osteoporotic model. The release of E-2,5-DHB resulted in decreased bone resorption and increased bone formation around the implant. Thus, it was confirmed that, in the osteoporotic model, bone healing was increased and implant fixation was enhanced. These results suggested that E-2,5-DHB-coated Ti implants have great potential as an ultimate local drug delivery system for bone tissue scaffolds.

  15. Effect on Bone Architecture of Marginal Grooves in Dental Implants Under Occlusal Loaded Conditions in Beagle Dogs.

    Science.gov (United States)

    Kato, Hatsumi; Kuroshima, Shinichiro; Inaba, Nao; Uto, Yusuke; Sawase, Takashi

    2018-02-01

    The aim of this study was to clarify whether marginal grooves on dental implants affect osseointegration, bone structure, and the alignment of collagen fibers to determine bone quality under loaded conditions. Anodized Ti-6Al-4V alloy dental implants, with and without marginal grooves (test and control implants, respectively), were used (3.7 × 8.0 mm). Fourth premolars and first molars of 6 beagle mandibles were extracted. Two control and test implants were placed in randomly selected healed sites at 12 weeks after tooth extraction. Screw-retained single crowns for first molars were fabricated. Euthanasia was performed at 8 weeks after the application of occlusal forces. Implant marginal bone level, bone to implant contact (BIC), bone structure around dental implants, and the alignment of collagen fibers determining bone quality were analyzed. The marginal bone level in test implants was significantly higher than that in control implants. Occlusal forces significantly increased BIC in test implants ( P = .007), whereas BIC did not change in control implants, irrespective of occlusal forces ( P = .303). Moreover, occlusal forces significantly increased BIC in test implants compared with control implants ( P = .032). Additionally, occlusal forces preferentially aligned collagen fibers in test implants, but not control implants. Hence, marginal grooves on dental implants have positive effects on increased osseointegration and adapted bone quality based on the preferential alignment of collagen fibers around dental implants under loaded conditions.

  16. Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites.

    Science.gov (United States)

    Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin

    To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively

  17. Comparative evaluation of the effectiveness of the implantation in the lateral part of the mandible between short tissue level (TE) and bone level (BL) implant systems.

    Science.gov (United States)

    Hadzik, Jakub; Botzenhart, Ute; Krawiec, Maciej; Gedrange, Tomasz; Heinemann, Friedhelm; Vegh, Andras; Dominiak, Marzena

    2017-09-01

    Short dental implants can be an alternative method of treatment to a vertical bone augmentation procedure at sites of reduced alveolar height. However, for successful treatment, an implant system that causes a minimal marginal bone loss (MBL) should be taken into consideration. The aim of the study has been to evaluate implantation effectiveness for bone level and tissue level short implants provided in lateral aspects of partially edentulous mandible and limited alveolar ridge height. The MBL and primary as well as secondary implant stability were determined in the study. Patients were randomly divided into two groups according to the method of treatment provided. Sixteen short Bone Level Implants (OsseoSpeed TX, Astra tech) and 16 short Tissue Level Implants (RN SLActive ® , Straumann) were successfully placed in the edentulous part of the mandible. The determination of the marginal bone level was based on radiographic evaluation after 12 and 36 weeks. Implant stability was measured immediately after insertion and after 12 weeks. The marginal bone level of Bone Level Implants was significantly lower compared to Tissue Level Implants. Furthermore, the Bone Level Implants had greater primary and secondary stability in comparison with Tissue Level Implants (Primary: 77.8 ISQ versus 66.5 ISQ; Secondary: 78.9 ISQ versus 73.9 ISQ, respectively). Since short Bone Level Implants showed a significantly decreased MBL 12 and 36 weeks after implantation as well as better results for the primary stability compared to Tissue Level Implants, they should preferentially be used for this mentioned indication. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Chronological Age as Factor Influencing the Dental Implant Osseointegration in the Jaw Bone

    Directory of Open Access Journals (Sweden)

    Jan Papež

    2018-04-01

    Full Text Available The objectives of this study were to evaluate osseointegration of dental implant in the jaw bone in the young and elderly population and comparing the results to assess indicators and risk factors as age for the success or failure of dental implants. A retrospective study of 107 implants (Impladent, LASAK, Czech Republic was prepared. The patients at implants surgery were divided in three groups. The patients were followed-up for a 7-year period. We evaluated osseointegration from long term point of view as a change of marginal bone levels close to dental implant. Marginal bone levels were recorded and analysed with regard to different patient- and implant-related factors. An influence of chronological age on change of marginal bone levels during 6-year retrospective study vas evaluated. The study examined 47 patient charts and 107 implants from the Second Faculty of Medicine, Charles University and University Hospital Motol. We proved that young healthy patients with long bridges or Branemarks have the same progression of marginal bone levels changes. The chronological age hasn’t therefore direct influence on the osseointegration from long term point of view. But we found that the length of dental suprastrucure-prosthetic construction negatively influences marginal bone changes, though these results weren’t statistically significant. More extensive dental implant suprastrucure undergoes smaller osseointegration. On the other hand the length of dental suprastrucure (prosthetic construction negatively influences dental osseointegration in both groups of patient.

  19. Formation of blood clot on biomaterial implants influences bone healing.

    Science.gov (United States)

    Shiu, Hoi Ting; Goss, Ben; Lutton, Cameron; Crawford, Ross; Xiao, Yin

    2014-12-01

    The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This article reviews the formation of a blood clot during bone healing in relation to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting in conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in relation to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

  20. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats.

    Science.gov (United States)

    Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B

    2008-12-01

    Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P smoke on bone healing may represent a new concern for implant success/failure.

  1. The development of a composite bone model for training on placement of dental implants.

    Science.gov (United States)

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-04-01

    It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane.

  2. Protocol for Bone Augmentation with Simultaneous Early Implant Placement: A Retrospective Multicenter Clinical Study

    Directory of Open Access Journals (Sweden)

    Peter Fairbairn

    2015-01-01

    Full Text Available Purpose. To present a novel protocol for alveolar bone regeneration in parallel to early implant placement. Methods. 497 patients in need of extraction and early implant placement with simultaneous bone augmentation were treated in a period of 10 years. In all patients the same specific method was followed and grafting was performed utilizing in situ hardening fully resorbable alloplastic grafting materials consisting of β-tricalcium phosphate and calcium sulfate. The protocol involved atraumatic extraction, implant placement after 4 weeks with simultaneous bone augmentation, and loading of the implant 12 weeks after placement and grafting. Follow-up periods ranged from 6 months to 10 years (mean of 4 years. Results. A total of 601 postextraction sites were rehabilitated in 497 patients utilizing the novel protocol. Three implants failed before loading and three implants failed one year after loading, leaving an overall survival rate of 99.0%. Conclusions. This standardized protocol allows successful long-term functional results regarding alveolar bone regeneration and implant rehabilitation. The concept of placing the implant 4 weeks after extraction, augmenting the bone around the implant utilizing fully resorbable, biomechanically stable, alloplastic materials, and loading the implant at 12 weeks seems to offer advantages when compared with traditional treatment modalities.

  3. Minimal guided bone regeneration procedure for immediate implant placement in the esthetic zone

    Directory of Open Access Journals (Sweden)

    Nettemu Sunil Kumar

    2013-01-01

    Full Text Available The anterior maxilla presents a challenging milieu interior for ideal placement of implants because of the compromised bone quality. With the advent of intraoral bone harvesting and augmentation techniques, immediate implant placement into fresh extraction sockets have become more predictable. Immediate implant placement has numerous advantages compared to the delayed procedure including superior esthetic and functional outcomes, maintenance of soft and hard tissue integrity and increased patient compliance. This case report exhibits immediate implant placement in the maxillary esthetic zone by combining a minimal invasive autogenous block bone graft harvest technique for ensuring successful osseointegration of the implant at the extraction site.

  4. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  5. Effects of the implant design on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models.

    Science.gov (United States)

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2014-09-01

    Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.

  6. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    Science.gov (United States)

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  7. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Zihui Li

    Full Text Available Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (remodeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (remodeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  8. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  9. Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?

    Science.gov (United States)

    Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li

    2014-12-01

    The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.

  10. The relationship between dental implant stability and trabecular bone structure using cone-beam computed tomography

    Science.gov (United States)

    2016-01-01

    Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (Pmicro-CT and CBCT (Pimplant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692

  11. A study on the resistance at bone-implant interface during implant insertion in a cadaver goat jaw model

    Directory of Open Access Journals (Sweden)

    Goutam Das

    2016-01-01

    Full Text Available Background: The aim of the study is to determine the resistance at bone-implant interface during insertion of dental implant. Materials and Methods: Freshly procured cadaver goat mandibles were collected from slaughterhouses. Four dental implants of two different diameters were inserted into osteotomized sites of the goat mandibles. The gradual changes in resonance frequency (RF were recorded in RF analyzer for the five consecutive turns of implant insertion. Results and Observations: RF was found to be positively correlated with diameter of dental implants. Conclusion: RF analysis can be used to determine the type of resistance the implant faces during insertion and the kind of bone density through which it passes. It gives a forecast of expected initial stability.

  12. Minimum Abutment Height to Eliminate Bone Loss: Influence of Implant Neck Design and Platform Switching.

    Science.gov (United States)

    Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide

    This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.

  13. Evaluation of marginal bone loss of dental implants with internal or external connections and its association with other variables: A systematic review.

    Science.gov (United States)

    de Medeiros, Rodrigo Antonio; Pellizzer, Eduardo Piza; Vechiato Filho, Aljomar José; Dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho

    2016-10-01

    Different factors can influence marginal bone loss around dental implants, including the type of internal and external connection between the implant and the abutment. The evidence needed to evaluate these factors is unclear. The purpose of this systematic review was to evaluate marginal bone loss by radiographic analysis around dental implants with internal or external connections. A systematic review was conducted following the criteria defined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Initially, a population, intervention, comparison, and outcome(s) (PICO) question was defined: does the connection type (internal or external) influence marginal bone loss in patients undergoing implantation? An electronic search of PubMed/MEDLINE and Scopus databases was performed for studies in English language published between January 2000 and December 2014 by 2 independent reviewers, who analyzed the marginal bone loss of dental implants with an internal and/or external connection. From an initial screening yield of 595 references and after considering inclusion and exclusion criteria, 17 articles were selected for this review. Among them, 10 studies compared groups of implants with internal and external connections; 1 study evaluated external connections; and 6 studies analyzed internal connections. A total of 2708 implants were placed in 864 patients. Regarding the connection type, 2347 implants had internal connections, and 361 implants had external connections. Most studies showed lower marginal bone loss values for internal connection implants than for external connection implants. Osseointegrated dental implants with internal connections exhibited lower marginal bone loss than implants with external connections. This finding is mainly the result of the platform switching concept, which is more frequently found in implants with internal connections. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry

  14. Primary stability and self-tapping blades: biomechanical assessment of dental implants in medium-density bone.

    Science.gov (United States)

    Kim, Yung-Soo; Lim, Young-Jun

    2011-10-01

    The aim of this biomechanical study was to assess the influence of self-tapping blades in terms of primary implant stability between implants with self-tapping blades and implants without self-tapping blades using five different analytic methods, especially in medium-density bone. Two different types of dental implants (4 × 10 mm) were tested: self-tapping and non-self-tapping. The fixture design including thread profiles was exactly the same between the two groups; the only difference was the presence of cutting blades on one half of the apical portion of the implant body. Solid rigid polyurethane blocks with corresponding densities were selected to simulate medium-density bone. Five mechanical assessments (insertion torque, resonance frequency analysis [RFA], reverse torque, pull-out and push in test) were performed for primary stability. Implants without self-tapping blades showed significantly higher values (P0.05). The outcomes of the present study indicate that the implant body design without self-tapping blades has a good primary stability compared with that with self-tapping blades in medium-density bone. Considering the RFA, a distinct layer of cortical bone on marginal bone will yield implant stability quotient values similar to those in medium-bone density when implants have the same diameter. © 2011 John Wiley & Sons A/S.

  15. Development of a Novel Bone Conduction Verification Tool Using a Surface Microphone: Validation With Percutaneous Bone Conduction Users.

    Science.gov (United States)

    Hodgetts, William; Scott, Dylan; Maas, Patrick; Westover, Lindsey

    2018-03-23

    . There were 90 planned comparisons of interest, three at each frequency (3 × 10) for the three input levels (30 × 3). Therefore, to minimize a type 1 error associated with multiple comparisons, we adjusted alpha using the Holm-Bonferroni method. There were five comparisons that yielded significant differences between the skull simulator and surface microphone (test and retest) in the estimation of audibility. However, the mean difference in these effects was small at 3.3 dB. Both sensors yielded equivalent results for the majority of comparisons. Models of bone conduction devices that have intact skin cannot be measured with the skull simulator. This study is the first to present and evaluate a new tool for bone conduction verification. The surface microphone is capable of yielding equivalent audibility measurements as the skull simulator for percutaneous bone conduction users at multiple input levels. This device holds potential for measuring other bone conduction devices (Sentio, BoneBridge, Attract, Soft headband devices) that do not have a percutaneous implant.

  16. Morphological and chemical evaluation of bone with apatite-coated Al2O3 implants as scaffolds for bone repair

    Directory of Open Access Journals (Sweden)

    A. L. M. Maia F.

    2013-12-01

    Full Text Available The clinical challenge in the reconstruction of bone defects has stimulated several studies in search of alternatives to repair these defects. The ceramics are considered as synthetic scaffolds and are used in dentistry and orthopedics. This study aimed to evaluate by micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS, the influence of uncoated and apatite-coated Al2O3 implants on bone regeneration. Twelve samples of Al2O3 implants were prepared and half of this samples (n = 6 were apatite-coated by the modified biomimetic method and then the ceramic material were implanted in the tibia of rabbits. Three experimental groups were tested: Group C - control, surgery procedure without ceramic implant, Group Ce - uncoated Al2O3 implants (n = 6 and Group CeHA - apatite-coated Al2O3 implants (n = 6. The deposition of bone tissue was determined by measuring the weight content of Ca and P through surface mapping of bone-implant interface by µ-EDXRF and through point analysis by EDS. It was observed after thirty days of treatment a greater deposition of Ca and P in the group treated with CeHA (p <0.001 compared to group C. The results suggest that ceramic coated with hydroxyapatite (CeHA can be an auxiliary to bone deposition in tibia defect model in rabbits.

  17. Bone changes in ridge split with immediate implant placement: A systematic review

    Directory of Open Access Journals (Sweden)

    Mohamed M. Dohiem

    2015-12-01

    Conclusion: Alveolar ridge splitting might be considered a predictable approach that demonstrates a high implant survival rate, adequate horizontal bone gain and minimal postoperative complications. Weak evidence showed the effect of flap design and immediate implantation on marginal bone loss and survival rate.

  18. Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study

    Directory of Open Access Journals (Sweden)

    GVA Stadelmann

    2008-07-01

    Full Text Available It is a clinical challenge to obtain a sufficient orthopaedic implant fixation in weak osteoporotic bone. When the primary implant fixation is poor, micromotions occur at the bone-implant interface, activating osteoclasts, which leads to implant loosening. Bisphosphonate can be used to prevent the osteoclastic response, but when administered systemically its bioavailability is low and the time it takes for the drug to reach the periprosthetic bone may be a limiting factor. Recent data has shown that delivering bisphosphonate locally from the implant surface could be an interesting solution. Local bisphosphonate delivery increased periprosthetic bone density, which leads to a stronger implant fixation, as demonstrated in rats by the increased implant pullout force. The aim of the present study was to verify the positive effect on periprosthetic bone remodelling of local bisphosphonate delivery in an osteoporotic sheep model. Four implants coated with zoledronate and two control implants were inserted in the femoral condyle of ovariectomized sheep for 4 weeks. The bone at the implant surface was 50% higher in the zoledronate-group compared to control group. This effect was significant up to a distance of 400µm from the implant surface. The presented results are similar to what was observed in the osteoporotic rat model, which suggest that the concept of releasing zoledronate locally from the implant to increase the implant fixation is not species specific. The results of this trial study support the claim that local zoledronate could increase the fixation of an implant in weak bone.

  19. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    Science.gov (United States)

    Langhoff, J D; Mayer, J; Faber, L; Kaestner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. The new surface anodized screws demonstrated similar or slightly higher bone-implant-contact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p = 0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p = 0.06). The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.

  20. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    Science.gov (United States)

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that

  1. Improved Bone Micro Architecture Healing Time after Implant Surgery in an Ovariectomized Rat.

    Science.gov (United States)

    Takahashi, Takahiro; Watanabe, Takehiro; Nakada, Hiroshi; Sato, Hiroki; Tanimoto, Yasuhiro; Sakae, Toshiro; Kimoto, Suguru; Mijares, Dindo; Zhang, Yu; Kawai, Yasuhiko

    2016-01-01

    The present animal study investigated whether oral intake of synthetic bone mineral (SBM) improves peri-implant bone formation and bone micro architecture (BMA). SBM was used as an intervention experimental diet and AIN-93M was used as a control. The SBM was prepared by mixing dicalcium phosphate dihydrate (CaHPO 4 ·2H 2 O) and magnesium and zinc chlorides (MgCl 2 and ZnCl 2 , respectively), and hydrolyzed in double-distilled water containing dissolved potassium carbonate and sodium fluoride. All rats were randomly allocated into one of two groups: a control group was fed without SBM (n = 18) or an experimental group was fed with SBM (n = 18), at seven weeks old. At 9 weeks old, all rats underwent implant surgery on their femurs under general anesthesia. The implant was inserted into the insertion socket prepared at rats' femur to a depth of 2.5 mm by using a drill at 500 rpm. Nine rats in each group were randomly selected and euthanized at 2 weeks after implantation. The remaining nine rats in each group continued their diets, and were euthanized in the same manner at 4 weeks after implantation. The femur, including the implant, was removed from the body and implant was pulled out by an Instron universal testing machine. After the implant removal, BMA was evaluated by bone surface ratio (BS/BV), bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), trabecular star volume (Vtr), and micro-CT images. BS/BV, BV/TV, TbTh and Vtr were significantly greater in the rats were fed with SBM than those were fed without SBM at 2 and 4 weeks after implantation (P implant formation and BMA, prominent with trabecular bone structure. The effect of SBM to improve secondary stability of the implant, and shortening the treatment period should be investigated in the future study.

  2. Evaluation of the Survival Rate and Bone Loss of Implants with Various Lengths

    Directory of Open Access Journals (Sweden)

    AR. Rokn

    2006-12-01

    Full Text Available Statement of Problem: The replacement of missing teeth with implant-associated restorations has become a widely used treatment modality in recent years. The length of dental implants may be a critical factor in achieving and maintaining osseointegration.Purpose: The aim of this study was to evaluate the survival rate and bone loss of dental implants with different lengthsMaterials and Methods: A retrospective cohort study was performed on 60 ITI-system implants, evenly distributed into three groups including 8, 10 and 12 mm high implants in the posterior segments of both jaws. Demographic information, oral hygiene,cigarette smoking, implant length, duration of implant placement (at least 24 months,bleeding on probing index and pocket probing depth were recorded for all participants.Bone loss was calculated using pre- and post-operative panoramic radiographs.Results: The mean rate of bone loss was different among the three groups and were found to be 0.21 (0.45, 0.3 (0.41 and 0.43 (0.55 mm in the 8, 10, and 12 mm high implants, respectively. Neither mean bone loss nor bleeding on probing index showed significant differences with implant length. A significant correlation was found between implant length and pocket probing depth (P<0.0001.Conclusion: The results of this study suggest that both short (8 mm high and long (10 or 12 mm high implants may be used with nearly equal success rates in the posterior segments of the jaws.

  3. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  4. Biodegradable magnesium-based implants in bone studied by synchrotron radiation microtomography

    Science.gov (United States)

    Moosmann, Julian; Zeller-Plumhoff, Berit; Wieland, D. C. Florian; Galli, Silvia; Krüger, Diana; Dose, Thomas; Burmester, Hilmar; Wilde, Fabian; Bech, Martin; Peruzzi, Niccolò; Wiese, Björn; Hipp, Alexander; Beckmann, Felix; Hammel, Jörg; Willumeit-Römer, Regine

    2017-09-01

    Permanent implants made of titanium or its alloys are the gold standard in many orthopedic and traumatological applications due to their good biocompatibility and mechanical properties. However, a second surgical intervention is required for this kind of implants as they have to be removed in the case of children that are still growing or on patient's demand. Therefore, magnesium-based implants are considered for medical applications as they are degraded under physiological conditions. The major challenge is tailoring the degradation in a manner that is suitable for a biological environment and such that stabilization of the bone is provided for a controlled period. In order to understand failure mechanisms of magnesium-based implants in orthopedic applications and, further, to better understand the osseointegration, screw implants in bone are studied under mechanical load by means of a push-out device installed at the imaging beamline P05 of PETRA III at DESY. Conventional absorption contrast microtomography and phasecontrast techniques are applied in order to monitor the bone-to-implant interface under increasing load conditions. In this proof-of-concept study, first results from an in situ push-out experiment are presented.

  5. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Samit K., E-mail: samitnandi1967@gmail.com [Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata (India); Kundu, Biswanath, E-mail: biswa_kundu@rediffmail.com [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Mukherjee, Jayanta [Institute of Animal Health and Veterinary Biologicals, Kolkata (India); Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2015-04-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations.

  6. Converted marine coral hydroxyapatite implants with growth factors: In vivo bone regeneration

    International Nuclear Information System (INIS)

    Nandi, Samit K.; Kundu, Biswanath; Mukherjee, Jayanta; Mahato, Arnab; Datta, Someswar; Balla, Vamsi Krishna

    2015-01-01

    Herein we report rabbit model in vivo bone regeneration of hydrothermally converted coralline hydroxyapatite (HCCHAp) scaffolds without (group I) and with growth factors namely insulin like growth factor-1 (IGF-1) (group II) and bone morphogenetic protein-2 (BMP-2) (group III). All HCCHAp scaffolds have been characterized for phase purity and morphology before implantation. Calcined marine coral was hydrothermally converted using a mineralizer/catalyst to phase pure HAp retaining original pore structure and geometry. After sintering at 1250 °C, the HCCHAp found to have ~ 87% crystallinity, 70–75% porosity and 2 ± 0.5 MPa compressive strength. In vitro growth factor release study at day 28 revealed 77 and 98% release for IGF-1 and BMP-2, respectively. The IGF-1 release was more sustained than BMP-2. In vivo bone healing of different groups was compared using chronological radiology, histological evaluations, scanning electron microscopy and fluorochrome labeling up to 90 days of implantation. In vivo studies showed substantial reduction in radiolucent zone and decreased radiodensity of implants in group II followed by group III and group I. These observations clearly suggest in-growth of osseous tissue, initiation of bone healing and complete union between implants and natural bone in group II implants. A statistical score sheet based on histological observations showed an excellent osseous tissue formation in group II and group III scaffolds and moderate bone regeneration in group I scaffolds. - Highlights: • In vivo bone regeneration of hydrothermally converted coralline hydroxyapatite • Scaffolds with and without growth factors (IGF-1 and BMP-2) • In vitro drug release was more sustained for IGF-1 than BMP-2. • Growth factor significantly improved osseous tissue formation of implanted scaffold. • Established through detailed statistical score sheet from histological observations

  7. Development of implants composed of bioactive materials for bone repair

    Science.gov (United States)

    Xiao, Wei

    The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.

  8. Placement of fin type dental implant in three different surgical situations of alveolar bone

    Directory of Open Access Journals (Sweden)

    Coen Pramono D

    2007-03-01

    Full Text Available Three different dental implant placements according to surgical implant bed situations were observed in its bone integration 3 months after dental implant insertion. This observation was done on implant system which has plateau or fin system. Elf implants were placed in the upper jaw in two patients. In case one, two implants were inserted immediately after tooth extraction, and the other six implants were placed in the alveolar crest regions in delayed implantation or in which the teeth had been extracted over 6 months of period. In case two, three implants were inserted in the post trauma region in the anterior maxilla, which the labial plate had been lost and reconstructed with bone grafting procedure using a mixture of alloplastic and autogenous bones. The alveolar reconstruction was needed to be performed due to only thin alveolar crest width was left intact. All of those implants observed showed in good integration.

  9. The impact on bone tissues of immediate implant-supported mandibular overdentures with cusped and cuspless teeth

    OpenAIRE

    Khalid A. Arafa

    2016-01-01

    Objectives: To examine the effects on bone tissues of immediate implant-supported mandibular overdentures with cusped or cuspless teeth. Methods: A randomized controlled trial was conducted at the Dental Clinic, Faculty of Dentistry, Al-Azhar University, Assiut Branch, Egypt, over a 12-month period from September 2013 to September 2014. Twenty patients were treated with immediate implant-supported overdentures: one group received overdentures with cusped teeth, and the other group receive...

  10. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    International Nuclear Information System (INIS)

    Zuki, Mervet El; Omami, Galal; Horner, Keith

    2014-01-01

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  11. Assessment of trabecular bone changes around endosseous implants using image analysis techniques: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Zuki, Mervet El [Dept. of Oral Medicine and Radiology, Benghazi University College of Dentistry, Benghazi (Libya); Omami, Galal [Oral Diagnosis and Polyclinics, Faculty of Dentistry, The University of Hong Kong (Hong Kong); Horner, Keith [Dept. of Oral Radiology, University Dental Hospital of Manchester, Manchester (United Kingdom)

    2014-06-15

    The objective of this study was to assess the trabecular bone changes that occurred around functional endosseous dental implants by means of radiographic image analysis techniques. Immediate preoperative and postoperative periapical radiographs of de-identified implant patients at the University Dental Hospital of Manchester were retrieved, screened for specific inclusion criteria, digitized, and quantified for structural elements of the trabecular bone around the endosseous implants, by using image analysis techniques. Data were analyzed using SPSS version 11.5. P values of less than 0.05 were considered statistically significant. A total of 12 implants from 11 patients were selected for the study, and 26 regions of interest were obtained. There was a significant increase in the bone area in terms of the mean distance between nodes (p=0.006) and a significant decrease in the marrow area in terms of the bone area (p=0.006) and the length of marrow spaces (p=0.032). It appeared that the bone around the implant underwent remodeling that resulted in a net increase in bone after implant placement.

  12. Experimental and numerical study of cemented bone-implant interface behaviour

    Directory of Open Access Journals (Sweden)

    P. Zlamal

    2011-01-01

    Full Text Available Although the total hip replacement (THR is a long-proven method of surgical treatment of diseases and disorders of the human hip, the surgery brings some risk of long-term instability of the joint. The aim of the research was to investigate the cemented bone-implant interface behavior. The main problems (cement layer degradation and bone-cement interface debonding during physiological loading conditions have been investigated using a custom hip simulator. The experimental setup was designed to allow cyclic loading of the sample of pelvic bone with implanted cemented acetabular component. The hip contact force of required direction and magnitude was applied to the implant using a spherical femoral component head. The most unfavorable activity (downstairs walking was simulated. The process of damage accumulation in the fixation was monitored by repeated scanning using high resolution micro Computed Tomography (µCT. Use of micro-focus source and large high-resolution flat panel detector allows investigation of structural changes and crack propagation both in the cement layer and the trabecular bone.

  13. Bone graft materials in fixation of orthopaedic implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

    2013-01-01

    Bone graft is widely used within orthopaedic surgery especially in revision joint arthroplasty and spine fusion. The early implant fixation in the revision situation of loose joint prostheses is important for the long-term survival. Bone autograft has been considered as gold standard in many...... orthopaedic procedures, whereas allograft is the gold standard by replacement of extensive bone loss. However, the use of autograft is associated with donor site morbidity, especially chronic pain. In addition, the limited supply is a significant clinical challenge. Limitations in the use of allograft include...... the risk of bacterial contamination and disease transmission as well as non-union and poor bone quality. Other bone graft and substitutes have been considered as alternative in order to improve implant fixation. Hydroxyapatite and collagen type I composite (HA/Collagen) have the potential in mimicking...

  14. Influence of peri-implant artifacts on bone morphometric analysis with micro-computed tomography.

    Science.gov (United States)

    Song, Jin Wook; Cha, Jung Yul; Bechtold, Till Edward; Park, Young Chel

    2013-01-01

    To determine the optimal dilation pixel size distance from the mini-implant interface needed to compensate for the metal artifact on micro-computed tomography (micro-CT) for bone morphometric analysis. A total of 72 self-drilling mini-implants were placed into the buccal alveolar bone of six male beagle dogs. After 12 weeks of orthodontic loading, specimens were harvested and scanned with micro-CT (Skyscan 1076) at a resolution of 9 μm. Using the reload plug-in and dilation procedure of CTAn, the percentage of bone-implant contact (BIC) and bone volume density (BV/TV, bone volume/total volume), respectively, were measured from one to seven pixels from the metal implant surface. Each pixel size of dilation (PSD) were compared with that of a ground histologic section, and the optimal PSD for bone morphometric analysis using micro-CT was determined. BIC values from micro-CT analysis decreased when the PSD increased (P micro-CT showed the highest correlation coefficient with BIC from histologic slides when the PSD was 5 to 7 (P micro-CT showed a very high correlation with BV/TV from histologic slides in all ranges (P micro-CT, at least 5 PSD from the metal implant surface is needed.

  15. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  16. Dental Implants in an Aged Population: Evaluation of Periodontal Health, Bone Loss, Implant Survival, and Quality of Life.

    Science.gov (United States)

    Becker, William; Hujoel, Philippe; Becker, Burton E; Wohrle, Peter

    2016-06-01

    To evaluate aged partially and fully edentulous patients who received dental implants and were maintained over time. Further, to determine how the partially and edentulous ageing populations (65 and above) with dental implants maintain bone levels, proper oral hygiene, and perceive benefits of dental implants. Since 1995, patients receiving dental implants have been prospectively entered into an Access-based computerized program (Triton Tacking System). Patient demographics (age, sex), bone quality, quantity, implant location, and type of surgery have been continuously entered into the database. The database was queried for patients receiving implants (first stage) between 66 and 93 years of age. Thirty-one patients were within this age group. Twenty-five patients returned to the clinic for periodontal and dental implant evaluation. The Periodontal Index was used to evaluate selected teeth in terms of probing depth, bleeding on probing, plaque accumulation, and mobility. Using NIH Image J, radiographs taken at second stage and last examination were measured for changes in interproximal bone levels. Once identified, each patient anomalously filled out an abbreviated quality of health life form. Due to small sample size, descriptive statistics were used to compare clinical findings. Fifteen males ranging from 78 to 84 (mean age 84 years) years and 16 females from 66 to 93 (mean age 83 years) (age range 66-93) were contacted by phone or mail and asked to return to our office for a re-examination. For this group, the first dental implants were placed in 1996 (n = initial two implants) and continuously recorded through 2013 (n = last seven implants). Thirty-one patients received a total of 84 implants. Two patients were edentulous, and the remaining were partially edentulous. Four implants were lost. Between implant placement and 6- to 7-year interval, 13 patients with 40 implants had a cumulative survival rate of 94.6%. Of the original group (n = 33), three

  17. [Principles of bone tissue structures interaction with full removable dentures fixed on intraosseous implantates modelling].

    Science.gov (United States)

    Shashmurina, V R; Chumachenko, E N; Olesova, V N; Volozhin, A I

    2008-01-01

    Math modelling "removable dentures-implantate-bone" with size and density of bone tissue as variables was created. It allowed to study biomechanical bases of mandibular bone tissue structures interaction with full removable dentures of different constructions and fixed on intraosseous implantates. Analysis of the received data showed that in the majority of cases it was expedient to recommend 3 bearing (abutments) system of denture making. Rest on 4 and more implantates was appropriate for patients with reduced density of spongy bone and significant mandibular bone atrophy. 2 abutment system can be used in patients with high density of spongy bone and absence of mandibular bone atrophy.

  18. Bone reactions adjacent to titanium implants subjected to static load. A study in the dog (I)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The aim of the study was to evaluate the effect of lateral static load induced by an expansion force on the bone/implant interface and adjacent peri-implant bone. In 3 beagle dogs, the 2nd, 3rd and 4th mandibular premolars were extracted bilaterally. Twelve weeks later 8 implants of the ITI Dental...... Implant System were placed in each dog. Crowns connected in pairs were screwed on the implants 12 weeks after implant installation. The connected crowns contained an orthodontic expansion screw yielding 4 loading units in each dog. Clinical registrations, standardized radiographs and fluorochrome labeling...... were carried out during the 24-week loading period. Biopsies were harvested and processed for ground sectioning. The sections were subjected to histological examination. No evident marginal bone loss was observed at either test or control sites. The bone density and the mineralized bone-to-implant...

  19. Bone healing response in cyclically loaded implants: Comparing zero, one, and two loading sessions per day.

    Science.gov (United States)

    de Barros E Lima Bueno, Renan; Dias, Ana Paula; Ponce, Katia J; Wazen, Rima; Brunski, John B; Nanci, Antonio

    2018-05-31

    When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micromotion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at the tissue-implant interface during repeated loading. Machined screw shaped Ti implants were placed in rat tibiae in a hole slightly bigger than the implant diameter. Implants were held stable by a specially-designed bone plate that permits controlled loading. Three loading regimens were applied, (a) zero loading, (b) one daily loading session of 60 cycles with an axial force of 1.5 N/cycle for 7 days, and (c) two such daily sessions with the same axial force also for 7 days. Finite element analysis was used to characterize the mechanobiological conditions produced by the loading sessions. After 7 days, the implants with surrounding interfacial tissue were harvested and processed for histological, histomorphometric and DNA microarray analyses. Histomorphometric analyses revealed that the group subjected to repeated loading sessions exhibited a significant decrease in bone-implant contact and increase in bone-implant distance, as compared to unloaded implants and those subjected to only one loading session. Gene expression profiles differed during osseointegration between all groups mainly with respect to inflammatory and unidentified gene categories. The results indicate that increasing the daily cyclic loading of implants induces deleterious changes in the bone healing response, most likely due to the accumulation of tissue damage and associated inflammatory reaction at the bone-implant interface. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Nanomechanical properties of bone around cement-retained abutment implants. A minipig study

    Directory of Open Access Journals (Sweden)

    R.R.M. de Barros

    2016-06-01

    Full Text Available Aim The nanomechanical evaluation can provide additional information about the dental implants osseointegration process. The aim of this study was to quantify elastic modulus and hardness of bone around cemented-retained abutment implants positioned at two different crestal bone levels. Materials and methods The mandibular premolars of 7 minipigs were extracted. After 8 weeks, 8 implants were inserted in each animal: crestally on one side of the mandible and subcrestally on the other (crestal and subcrestal groups. Functional loading were immediately provided with abutments cementation and prostheses installation. Eight weeks later, the animals euthanasia was performed and nanoindentation analyses were made at the most coronal newly formed bone region (coronal group, and below in the threaded region (threaded group of histologic sections. Results The comparisons between subcrestal and crestal groups did not achieve statistical relevance; however the elastic modulus and hardness levels were statistically different in the two regions of evaluation (coronal and threaded. Conclusions The crestal and subcrestal placement of cement-retained abutment implants did not affect differently the nanomechanical properties of the surrounding bone. However the different regions of newly formed bone (coronal and threaded groups were extremely different in both elastic modulus and hardness, probably reflecting their differences in bone composition and structure.

  1. Bone Healing Around Dental Implants: Simplified vs Conventional Drilling Protocols at Speed of 400 rpm.

    Science.gov (United States)

    Gil, Luiz Fernando; Sarendranath, Alvin; Neiva, Rodrigo; Marão, Heloisa F; Tovar, Nick; Bonfante, Estevam A; Janal, Malvin N; Castellano, Arthur; Coelho, Paulo G

    This study evaluated whether simplified drilling protocols would provide comparable histologic and histomorphometric results to conventional drilling protocols at a low rotational speed. A total of 48 alumina-blasted and acid-etched Ti-6Al-4V implants with two diameters (3.75 and 4.2 mm, n = 24 per group) were bilaterally placed in the tibiae of 12 dogs, under a low-speed protocol (400 rpm). Within the same diameter group, half of the implants were inserted after a simplified drilling procedure (pilot drill + final diameter drill), and the other half were placed using the conventional drilling procedure. After 3 and 5 weeks, the animals were euthanized, and the retrieved bone-implant samples were subjected to nondecalcified histologic sectioning. Histomorphology, bone-to-implant contact (BIC), and bone area fraction occupancy (BAFO) analysis were performed. Histology showed that new bone was formed around implants, and inflammation or bone resorption was not evident for both groups. Histomorphometrically, when all independent variables were collapsed over drilling technique, no differences were detected for BIC and BAFO; when drilling technique was analyzed as a function of time, the conventional groups reached statistically higher BIC and BAFO at 3 weeks, but comparable values between techniques were observed at 5 weeks; 4.2-mm implants obtained statistically higher BAFO relative to 3.75-mm implants. Based on the present methodology, the conventional technique improved bone formation at 3 weeks, and narrower implants were associated with less bone formation.

  2. Middle ear implant in conductive and mixed congenital hearing loss in children.

    Science.gov (United States)

    Roman, Stéphane; Denoyelle, Françoise; Farinetti, Anne; Garabedian, Erea-Noel; Triglia, Jean-Michel

    2012-12-01

    Active middle ear implant can be used in children and adolescents with congenital hearing loss. The authors report their experience with the semi implantable Medel Vibrant Soundbridge(®) (VSB) in the audiologic rehabilitation of such patients. In this retrospective study, audiological and surgical data of 10 children (10.5±4 years) implanted with 12 VSB in 2 tertiary cares ENT Departments were analysed. Two children with bilateral external auditory canal (EAC) atresia and mixed hearing loss (mean air conduction (AC) thresholds=65dB HL) were bilaterally implanted. Eight children presented with microtia associated with EAC atresia bilaterally (n=3) and unilaterally (n=5). All of them had a conductive hearing loss in the implanted ear (mean (AC) thresholds were 58.75dB HL preoperatively). The Floating Mass Transducer was crimped on the long process of the incus (n=8) or on the suprastructure of the stapes (n=4). There were no intra- or postoperative surgical complications. All the children wore their implants after 5 weeks. Postoperative mean bone conduction (BC) thresholds were unchanged. The mean aided thresholds with VSB (four frequencies warble tones at 0.5, 1, 2 and 4 kHz) were 28dB HL (± 10). Word discrimination threshold in quiet conditions in free field with the VSB unilaterally activated was 50% at 38dB SPL (± 9). The results indicate that satisfaction of the children and their parents is very encouraging but surgeons should be cautious with this new approach in relation to the pinna reconstruction and to possible risks to inner ear and facial nerve. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Meta-Analysis of Correlations Between Marginal Bone Resorption and High Insertion Torque of Dental Implants.

    Science.gov (United States)

    Li, Haoyan; Liang, Yongqiang; Zheng, Qiang

    2015-01-01

    To evaluate correlations between marginal bone resorption and high insertion torque value (> 50 Ncm) of dental implants and to assess the significance of immediate and early/conventional loading of implants under a certain range torque value. Specific inclusion and exclusion criteria were used to retrieve eligible articles from Ovid, PubMed, and EBSCO up to December 2013. Screening of eligible studies, quality assessment, and data extraction were conducted in duplicate. The results were expressed as random/fixed-effects models using weighted mean differences for continuous outcomes with 95% confidence intervals. Initially, 154 articles were selected (11 from Ovid, 112 from PubMed, and 31 from EBSCO). After exclusion of duplicate articles and articles that did not meet the inclusion criteria, six clinical studies were selected. Assessment of P values revealed that correlations between marginal bone resorption and high insertion torque were not statistically significant and that there was no difference between immediately versus early/conventionally loaded implants under a certain range of torque. None of the meta-analyses revealed any statistically significant differences between high insertion torque and conventional insertion torque in terms of effects on marginal bone resorption.

  4. Bone implant sockets made using three different procedures: a stability study in dogs

    Science.gov (United States)

    Campo, Julián

    2012-01-01

    Objective: This study compared the effects of three different methods of preparing bone implant sockets (drilling, osteotomes, and piezoelectric device) on osseointegration using resonance frequency analysis (RFA). Study Design: An experimental prospective study was designed. Material and Methods: Ten adult beagle dogs were studied. After 5 weeks, 23 out of 28 initially placed implants in the iliac crest were evaluated, comparing these three different procedures of bone implant socket. Student’s t-test (paired, two-tailed) was used to reveal differences among the three groups at each time point (SPSS 16.0, IL, USA). Results: After a 5-week healing period, the implants placed in sockets that were made using an osteotome or piezoelectric device were slightly more stable than those made by drilling. Reduced mechanical and heat injury to the bone is beneficial for maintaining and improving stability during the critical early healing period. Conclusion: Using RFA, there was evidence of a slight increase in implant stability in the iliac crest after 5 weeks of healing when the implant socket was made using a piezoelectric device or expansion procedure as compare with the drilling method. Key words:Bone implant sockets, drilling, osteotomes, piezoelectric, resonance frequency analysis, stability. PMID:24558558

  5. Vibrant Soundbridge and Bone Conduction Hearing Aid in Patients with Bilateral Malformation of External Ear

    Directory of Open Access Journals (Sweden)

    Mondelli, Maria Fernanda Capoani Garcia

    2015-10-01

    Full Text Available Introduction Hearing loss is the most common clinical finding in patients with malformation of the external ear canal. Among the possibilities of treatment, there is the adaptation of hearing aids by bone conduction and the adaptation of implantable hearing aids. Objective To assess speech perception with the use of Vibrant Soundbridge (VBS - MED-EL, Innsbruck, Austria associated with additional amplification in patients with bilateral craniofacial malformation. Method We evaluated 11 patients with bilateral malformation over 12 years with mixed hearing loss or bilateral conductive. They were using the Softband (Oticon Medical, Sweden and bone conduction hearing aid in the ear opposite the one with the VSB. We performed the evaluation of speech perception using the Hearing in Noise Test. Results Participants were eight men and three women with a mean of 19.5 years. The signal / noise ratio presented significant results in patients fitted with VSB and bone conduction hearing aid. Conclusion The results of speech perception were significantly better with use of VBS combined with bone conduction hearing aids.

  6. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Gustavo, E-mail: gustavo_mendonca@dentistry.unc.edu [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Universidade Catolica de Brasilia, Curso de Odontologia, Taguatinga/DF (Brazil); Baccelli Silveira Mendonca, Daniela [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil) and Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States); Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto [Departmento de Quimica, Universidade Federal de Sao Carlos-UFSCAR, Rod. Washington Luiz, 13565-905 Sao Carlos, SP (Brazil); Golin, Alexsander Luiz [Departmento de Engenharia Mecanica, Faculdade de Engenharia Mecanica, Pontificia Universidade Catolica de Curitiba, Curitiba, PR (Brazil); Aragao, Francisco J.L. [Universidade Catolica de Brasilia, Pos-Graduacao em Ciencias Genomicas e Biotecnologia, SGAN Quadra 916, Modulo B, Av. W5 Norte 70.790-160-Asa Norte Brasilia/DF (Brazil); Embrapa Recursos Geneticos e Biotecnologia, Laboratorio de Introducao e Expressao de Genes, PqEB W5 Norte, 70770-900, Brasilia, DF (Brazil); Cooper, Lyndon F., E-mail: lyndon_cooper@dentistry.unc.edu [Bone Biology and Implant Therapy Laboratory, Department of Prosthodontics, University of North Carolina at Chapel Hill, 404 Brauer Hall, CB 7450, Chapel Hill, NC 27511 (United States)

    2011-12-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p {<=} 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 {+-} 2.5, 11.3 {+-} 2.4, 11.1 {+-} 3.5, 9.7 {+-} 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p < 0.05). Nanostructured topographic features composed of TiO{sub 2} or ZrO{sub 2} applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: {yields} Nanostructured surfaces using a sol-gel technique coated cpTi with TiO{sub 2} or ZrO{sub 2}. {yields} Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. {yields} Nanofeatures improved the differentiation of rat MSCs into osteoblasts. {yields} Nanofeatures improved increased bone-to-implant contact and

  7. Nanostructured implant surface effect on osteoblast gene expression and bone-to-implant contact in vivo

    International Nuclear Information System (INIS)

    Mendonca, Gustavo; Baccelli Silveira Mendonca, Daniela; Pagotto Simoes, Luis Gustavo; Araujo, Andre Luis; Leite, Edson Roberto; Golin, Alexsander Luiz; Aragao, Francisco J.L.; Cooper, Lyndon F.

    2011-01-01

    The aim of this study was to investigate the response of nanostructured implant surfaces at the level of osteoblast differentiation and its effects in bone-to-implant contact (BIC) and removal-torque values (RTV). CpTi grade IV implants (1.6 x 4.0 mm) were machined or machined and subsequently coated with an oxide solution. The surfaces were divided into: machined (M), titania-anatase (An), titania-rutile (Ru), and zirconia (Zr). Surfaces were examined by scanning electron microscopy, atomic force microscopy, and by X-ray microanalysis. Implants were inserted in rat tibia and harvested from 0 to 21 days for measurement of Alkaline Phosphatase, Bone Sialoprotein, Osteocalcin, Osteopontin, and RUNX-2 mRNA levels by real time PCR; from 0 to 56 days for RTV; and from 0 to 56 days for BIC. The roughness parameter (Sa) was compared by one-way ANOVA followed by Tukey Test. Comparison of Torque removal values and histomorphometric measurements on implants in vivo was performed by Kruskal-Wallis test and the significance level for all statistical analyses was set at p ≤ 0.05. mRNA levels on all nanostructured surfaces were increased compared to M. At 56 days, the mean RTV in Ncm was 11.6 ± 2.5, 11.3 ± 2.4, 11.1 ± 3.5, 9.7 ± 1.4 for An, Ru, Zr, and M, respectively. Higher BIC (%) was measured for all the nanostructured surfaces versus M at 21 and 56 days (p 2 or ZrO 2 applied to machined cpTi implant promoted greater mesenchymal stem cell commitment to the osteoblast phenotype and associated increased BIC and physical association with bone. Highlights: → Nanostructured surfaces using a sol-gel technique coated cpTi with TiO 2 or ZrO 2 . → Evaluated molecular and mechanical effect of nanofeatures in vivo in rat tibiae. → Nanofeatures improved the differentiation of rat MSCs into osteoblasts. → Nanofeatures improved increased bone-to-implant contact and removal torque values. → TiO 2 or ZrO 2 nanofeatures improved the biological response of machined titanium.

  8. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV Bone: An Overview

    Directory of Open Access Journals (Sweden)

    Hamdan S. Alghamdi

    2018-01-01

    Full Text Available Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged in compromised (bone conditions, as are frequently present in elderly people. The biomechanical characteristics of bone in aged patients do not offer proper stability to implants, being similar to type-IV bone (Lekholm & Zarb classification, in which a decreased clinical fixation of implants has been clearly demonstrated. However, the search for improved osseointegration has continued forward for the new evolution of modern dental implants. This represents a continuum of developments spanning more than 20 years of research on implant related-factors including surgical techniques, implant design, and surface properties. The methods to enhance osseointegration of dental implants in low quality (type-IV bone are described in a general manner in this review.

  9. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview.

    Science.gov (United States)

    Alghamdi, Hamdan S

    2018-01-13

    Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged in compromised (bone) conditions, as are frequently present in elderly people. The biomechanical characteristics of bone in aged patients do not offer proper stability to implants, being similar to type-IV bone (Lekholm & Zarb classification), in which a decreased clinical fixation of implants has been clearly demonstrated. However, the search for improved osseointegration has continued forward for the new evolution of modern dental implants. This represents a continuum of developments spanning more than 20 years of research on implant related-factors including surgical techniques, implant design, and surface properties. The methods to enhance osseointegration of dental implants in low quality (type-IV) bone are described in a general manner in this review.

  10. Translocation of autogenous bone particles to improve peri-implant osteogenesis.

    NARCIS (Netherlands)

    Tabassum, A.; Walboomers, X.F.; Meijer, G.J.; Jansen, J.B.M.J.

    2012-01-01

    During the placement of titanium implants into bone, particles are loosened and translocated as a result of the inherent roughness of the surface. Such bone particles have been shown to play a significant role in new bone formation. Therefore, the aim of the present study was to establish a new

  11. Comparison of marginal bone loss and implant success between axial and tilted implants in maxillary All-on-4 treatment concept rehabilitations after 5 years of follow-up.

    Science.gov (United States)

    Hopp, Milena; de Araújo Nobre, Miguel; Maló, Paulo

    2017-10-01

    There is need for more scientific and clinical information on longer-term outcomes of tilted implants compared to implants inserted in an axial position. Comparison of marginal bone loss and implant success after a 5-year follow-up between axial and tilted implants inserted for full-arch maxillary rehabilitation. The retrospective clinical study included 891 patients with 3564 maxillary implants rehabilitated according to the All-on-4 treatment concept. The follow-up time was 5 years. Linear mixed-effect models were performed to analyze the influence of implant orientation (axial/tilted) on marginal bone loss and binary logistic regression to assess the effect of patient characteristics on occurrence of marginal bone loss >2.8 mm. Only those patients with measurements of at least one axial and one tilted implant available were analyzed. This resulted in a data set of 2379 implants (1201 axial, 1178 tilted) in 626 patients (=reduced data set). Axial and tilted implants showed comparable mean marginal bone losses of 1.14 ± 0.71 and 1.19 ± 0.82 mm, respectively. Mixed model analysis indicated that marginal bone loss levels at 5 years follow up was not significantly affected by the orientation (axial/tilted) of the implants in the maxillary bone. Smoking and female gender were associated with marginal bone loss >2.8 mm in a logistic regression analysis. Five-year implant success rates were 96%. The occurrence of implant failure showed to be statistically independent from orientation. Within the limitations of this study and considering a follow-up time of 5 years, it can be concluded that tilted implants behave similarly with regards to marginal bone loss and implant success in comparison to axial implants in full-arch rehabilitation of the maxilla. Longer-term outcomes (10 years +) are needed to verify this result. © 2017 Wiley Periodicals, Inc.

  12. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs

    DEFF Research Database (Denmark)

    Jensen, T B; Overgaard, S; Lind, M

    2007-01-01

    Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules...... (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant...... surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1. After three...

  13. Estimating the benefit of a second bone anchored hearing implant in unilaterally implanted users with a testband.

    OpenAIRE

    Kompis, Martin; Kurz, Anja; Flynn, Mark; Caversaccio, Marco

    2016-01-01

    Conclusion Using a second bone anchored hearing implant (BAHI) mounted on a testband in unilaterally implanted BAHI users to test its potential advantage pre-operatively under-estimates the advantage of two BAHIs placed on two implants. Objectives To investigate how well speech understanding with a second BAHI mounted on a testband approaches the benefit of bilaterally implanted BAHIs. Method Prospective study with 16 BAHI users. Eight were implanted unilaterally (group A) and eight were impl...

  14. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    Yeo, In-Sung; Min, Seung-Ki; An, Young-Bai

    2010-01-01

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  15. Preliminary audiologic and peri-operative outcomes of the Sophono™ transcutaneous bone conduction device: A systematic review.

    Science.gov (United States)

    Bezdjian, Aren; Bruijnzeel, Hanneke; Daniel, Sam J; Grolman, Wilko; Thomeer, Hans G X M

    2017-10-01

    To delineate the auditory functional improvement and peri-operative outcomes of the Sophono™ transcutaneous bone conduction device. Eligible articles presenting patients implanted with the Sophono™ were identified through a comprehensive search of PubMed and Embase electronic databases. All relevant articles were reviewed to justify inclusion independently by 2 authors. Studies that successfully passed critical appraisal for directness of evidence and risk of bias were included. From a total of 125 articles, 8 studies encompassing 86 patients using 99 implants were selected. Most patients (79.1%) were children. Ear atresia (67.5%) was the most frequently reported indication for Sophono™ implantation. Overall pure tone average auditory improvement was 31.10 (±8.29) decibel. During a mean follow-up time of 12.48 months, 25 patients (29%) presented with post-operative complications from which 3 were deemed as serious implant-related adverse events (3.5%). The Sophono™ transcutaneous bone conduction device shows promising functional improvement, no intra-operative complications and minor post-operative skin related complications. If suitable, the device could be a proposed solution for the rehabilitation of hearing in children meeting eligibility criteria. A wearing schedule must be implemented in order to reduce magnet-related skin complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Peri-Implant Bone Loss and Peri-Implantitis: A Report of Three Cases and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Vanchit John

    2016-01-01

    Full Text Available Dental implant supported restorations have been added substantially to the clinical treatment options presented to patients. However, complications with these treatment options also arise due to improper patient selection and inadequate treatment planning combined with poor follow-up care. The complications related to the presence of inflammation include perimucositis, peri-implant bone loss, and peri-implantitis. Prevalence rates of these complications have been reported to be as high as 56%. Treatment options that have been reported include nonsurgical therapy, the use of locally delivered and systemically delivered antibiotics, and surgical protocols aimed at regenerating the lost bone and soft tissue around the implants. The aim of this article is to report on three cases and review some of the treatment options used in their management.

  17. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    Science.gov (United States)

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (pimplants using micro-CT analysis using a region-based segmentation method.

  18. Finite Element Analysis of Bone Stress for Miniscrew Implant Proximal to Root Under Occlusal Force and Implant Loading.

    Science.gov (United States)

    Shan, Li-Hua; Guo, Na; Zhou, Guan-jun; Qie, Hui; Li, Chen-Xi; Lu, Lin

    2015-10-01

    Because of the narrow interradicular spaces and varying oral anatomies of individual patients, there is a very high risk of root proximity during the mini implants inserting. The authors hypothesized that normal occlusal loading and implant loading affected the stability of miniscrew implants placed in proximity or contact with the adjacent root. The authors implemented finite element analysis (FEA) to examine the effectiveness of root proximity and root contact. Stress distribution in the bone was assessed at different degrees of root proximity by generating 4 finite element models: the implant touches the root surface, the implant was embedded in the periodontal membrane, the implant touches the periodontal surface, and the implant touches nothing. Finite element analysis was then carried out with simulations of 2 loading conditions for each model: condition A, involving only tooth loading and condition B, involving both tooth and implant loading. Under loading condition A, the maximum stress on the bone for the implant touching the root was the distinctly higher than that for the other models. For loading condition B, peak stress areas for the implant touching the root were the area around the neck of the mini implant and the point of the mini implant touches the root. The results of this study suggest that normal occlusal loading and implant loading contribute to the instability of the mini implant when the mini implant touches the root.

  19. Clinical Parameters and Crestal Bone Loss in Internal Versus External Hex Implants at One Year after Loading

    Directory of Open Access Journals (Sweden)

    HamidReza Arab

    2015-09-01

    Full Text Available Introduction: The survival of an implant system is affected by the choice of antirotational design, which can include an external or internal hex. Implant success also is affected by the maintenance of the crestal bone around implants. The aim of present study was to evaluate the crestal bone loss and clinical parameters related to bone loss in patients loaded with an external or internal hex 3i implant (3i Implant Innovation, Palm Beach Gardens, FL, USA. The evaluations were performed one year after loading. Materials and Methods: A total of 39 implants (23 external hex, 16 internal hex were placed randomly in 23 patients (10 male, 13 female by a submerged approach. None of patients had compromised conditions or parafunctional habits. At placement and at one year after loading, periapical radiographs were taken via the parallel method from the implant sites. Results: Crestal bone loss was -0.712±0.831 mm in implants with an internal hex connection and -0.139±0.505 mm in implants with an external hex connection (P≤0.05. No correlation was found between crestal bone loss and parameters such as age, gender, jaw, implant location (anterior, premolar, or molar, implant diameter, or implant length. Conclusions: Crestal bone loss was greater in patients with internal hex 3i implants than in those with external implants. Similar results in other clinical factors were found between the groups.

  20. Abutment height influences the effect of platform switching on peri-implant marginal bone loss.

    Science.gov (United States)

    Galindo-Moreno, Pablo; León-Cano, Ana; Monje, Alberto; Ortega-Oller, Inmaculada; O'Valle, Francisco; Catena, Andrés

    2016-02-01

    The purpose was to radiographically analyze and compare the marginal bone loss (MBL) between implants with different mismatching distance and to study the influence of the prosthetic abutment height on the MBL in association with the related mismatching distances. This retrospective study included 108 patients in whom 228 implants were placed, 180 with diameter of 4.5 mm and 48 with diameter of 5 mm. All patients received OsseoSpeed™ implants with internal tapered conical connection (Denstply Implants). Different mismatching distances were obtained, given that all implants were loaded with the same uni-abutment type (Lilac; Denstply Implants). Data were gathered on age, gender, bone substratum, smoking habits, previous history of periodontitis, and prosthetic features. MBL was analyzed radiographically at 6 and 18 months post-loading. Mixed linear analysis of mesial and distal MBL values yielded significant effects of abutment, implant diameter, follow-up period, bone substratum, smoking, and abutment × time interaction. MBL was greater at 18 vs. 6 months, for short vs. long abutments, for grafted vs. pristine bone, for a heavier smoking habit, and for implants with a diameter of 5.0 vs. 4.5 mm. Greater mismatching does not minimize the MBL; abutment height, smoking habit, and bone substratum may play a role in the MBL over the short- and medium term. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    Science.gov (United States)

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  2. High resolution X-ray imaging of bone-implant interface by large area flat-panel detector

    International Nuclear Information System (INIS)

    Kytyr, D; Jirousek, O; Dammer, J

    2011-01-01

    The aim of the research was to investigate the cemented bone-implant interface behavior (cement layer degradation and bone-cement interface debonding) with emphasis on imaging techniques suitable to detect the early defects in the cement layer. To simulate in vivo conditions a human pelvic bone was implanted with polyurethane acetabular cup using commercial acrylic bone cement. The implanted cup was then loaded in a custom hip simulator to initiate fatigue crack propagation in the bone cement. The pelvic bone was then repetitively scanned in a micro-tomography device. Reconstructed tomography images showed failure processes that occurred in the cement layer during the first 250,000 cycles. A failure in cemented acetabular implant - debonding, crumbling and smeared cracks - has been found to be at the bone-cement interface. Use of micro-focus source and high resolution flat panel detector of large physical dimensions allowed to reconstruct the micro-structural models suitable for investigation of migration, micro-motions and consecutive loosening of the implant. The large area flat panel detector with physical dimensions 120 x 120mm with 50μm pixel size provided a superior image quality compared to clinical CT systems with 300-150μm pixel size.

  3. Radiographic evaluation of marginal bone levels adjacent to parallel-screw cylinder machined-neck implants and rough-surfaced microthreaded implants using digitized panoramic radiographs.

    Science.gov (United States)

    Nickenig, Hans-Joachim; Wichmann, Manfred; Schlegel, Karl Andreas; Nkenke, Emeka; Eitner, Stephan

    2009-06-01

    The purpose of this split-mouth study was to compare macro- and microstructure implant surfaces at the marginal bone level during a stress-free healing period and under functional loading. From January to February 2006, 133 implants (70 rough-surfaced microthreaded implants and 63 machined-neck implants) were inserted in the mandible of 34 patients with Kennedy Class I residual dentitions and followed until February 2008. The marginal bone level was radiographically determined, using digitized panoramic radiographs, at four time points: at implant placement (baseline level), after the healing period, after 6 months of functional loading, and at the end of follow-up. The median follow-up time was 1.9 (range: 1.9-2.1) years. The machined-neck group had a mean crestal bone loss of 0.5 mm (range: 0-2.3) after the healing period, 0.8 mm after 6 months (range: 0-2.4), and 1.1 mm (range: 0-3) at the end of follow-up. The rough-surfaced microthreaded implant group had a mean bone loss of 0.1 mm (range: -0.4-2) after the healing period, 0.4 mm (range: 0-2.1) after 6 months, and 0.5 mm (range: 0-2.1) at the end of follow-up. The two implant types showed significant differences in marginal bone levels (healing period: P=0.01; end of follow-up: Pimplants showed that implants with the microthreaded design caused minimal changes in crestal bone levels during healing (stress-free) and under functional loading.

  4. Healing of extraction sockets filled with BoneCeramic® prior to implant placement: preliminary histological findings.

    Science.gov (United States)

    De Coster, Peter; Browaeys, Hilde; De Bruyn, Hugo

    2011-03-01

    Various grafting materials have been designed to minimize edentulous ridge volume loss following tooth extraction by encouraging new bone formation in healing sockets. BoneCeramic® is a composite of hydroxyapatite and bèta-tricalcium phosphate with pores of 100-500 microns. The aim of this study was to evaluate bone regeneration in healing sockets substituted with BoneCeramic® prior to implant procedures. Fifteen extraction sockets were substituted with BoneCeramic® and 14 sockets were left to heal naturally in 10 patients (mean age 59.6 years). Biopsies were collected only from the implant recipient sites during surgery after healing periods ranging from 6-74 weeks (mean 22). In total, 24 biopsies were available; 10 from substituted and 14 from naturally healed sites. In one site, the implant was not placed intentionally and, in four substituted sites, implant placement had to be postponed due to inappropriate healing, hence from five sites biopsies were not available. Histological sections were examined by transmitted light microscope. At the time of implant surgery, bone at substituted sites was softer than in controls, compromising initial implant stability. New bone formation at substituted sites was consistently poorer than in controls, presenting predominantly loose connective tissue and less woven bone. The use of BoneCeramic® as a grafting material in fresh extraction sockets appears to interfere with normal healing processes of the alveolar bone. On the basis of the present preliminary findings, its indication as a material for bone augmentation, when implant placement is considered within 6-38 weeks after extraction, should be revised. © 2009, Copyright the Authors. Journal Compilation © 2011, Wiley Periodicals, Inc.

  5. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji [Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2015-03-15

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  6. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    International Nuclear Information System (INIS)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji

    2015-01-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  7. Metals for bone implants. Part 1. Powder metallurgy and implant rendering.

    Science.gov (United States)

    Andani, Mohsen Taheri; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael J; Elahinia, Mohammad

    2014-10-01

    New metal alloys and metal fabrication strategies are likely to benefit future skeletal implant strategies. These metals and fabrication strategies were looked at from the point of view of standard-of-care implants for the mandible. These implants are used as part of the treatment for segmental resection due to oropharyngeal cancer, injury or correction of deformity due to pathology or congenital defect. The focus of this two-part review is the issues associated with the failure of existing mandibular implants that are due to mismatched material properties. Potential directions for future research are also studied. To mitigate these issues, the use of low-stiffness metallic alloys has been highlighted. To this end, the development, processing and biocompatibility of superelastic NiTi as well as resorbable magnesium-based alloys are discussed. Additionally, engineered porosity is reviewed as it can be an effective way of matching the stiffness of an implant with the surrounding tissue. These porosities and the overall geometry of the implant can be optimized for strain transduction and with a tailored stiffness profile. Rendering patient-specific, site-specific, morphology-specific and function-specific implants can now be achieved using these and other metals with bone-like material properties by additive manufacturing. The biocompatibility of implants prepared from superelastic and resorbable alloys is also reviewed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Cecilia Larsson Wexell

    2016-01-01

    Full Text Available This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.

  9. Retrospective analysis of survival rates and marginal bone loss on short implants in the mandible.

    Science.gov (United States)

    Draenert, Florian G; Sagheb, Keyvan; Baumgardt, Katharina; Kämmerer, Peer W

    2012-09-01

    Short implants have become an interesting alternative to bone augmentation in dental implantology. Design of shorter implants and longer surveillance times are a current research issue. The goal of this study was to show the survival rates of short implants below 9 mm in the partly edentulous mandibular premolar and molar regions with fixed prosthetics. Marginal vertical and 2D bone loss was evaluated additionally. Different implant designs are orientationally evaluated. A total of 247 dental implants with fixed prosthetics (crowns and bridges) in the premolar and molar region of the mandible were evaluated; 47 implants were 9 mm or shorter. Patient data were evaluated to acquire implant survival rates, implant diameter, gender and age. Panoramic X-rays were analysed for marginal bone loss. Average surveillance time was 1327 days. Cumulative survival rate (CSR) of short implants was 98% (1 implants lost) compared to 94% in the longer implants group without significance. Thirty-five of the short implants were Astratech (0 losses) and 12 were Camlog Screw Line Promote Plus (1 loss). Early vertical and two-dimensional marginal bone loss was not significantly different in short and regular length implant group with an average of 0.6 mm and 0.7 mm(2) in short implants over the observation period. Within the limitations of this study, we conclude that short implants with a length of 9 mm or less have equal survival rates compared with longer implants over the observation period of 1-3 years. © 2011 John Wiley & Sons A/S.

  10. Vitamin E Phosphate Coating Stimulates Bone Deposition in Implant-related Infections in a Rat Model.

    Science.gov (United States)

    Lovati, Arianna B; Bottagisio, Marta; Maraldi, Susanna; Violatto, Martina B; Bortolin, Monica; De Vecchi, Elena; Bigini, Paolo; Drago, Lorenzo; Romanò, Carlo L

    2018-06-01

    Implant-related infections are associated with impaired bone healing and osseointegration. In vitro antiadhesive and antibacterial properties and in vivo antiinflammatory effects protecting against bone loss of various formulations of vitamin E have been demonstrated in animal models. However, to the best of our knowledge, no in vivo studies have demonstrated the synergistic activity of vitamin E in preventing bacterial adhesion to orthopaedic implants, thus supporting the bone-implant integration. The purpose of this study was to test whether a vitamin E phosphate coating on titanium implants may be able to reduce (1) the bacterial colonization of prosthetic implants and (2) bone resorption and osteomyelitis in a rat model of Staphylococcus aureus-induced implant-related infection. Twelve rats were bilaterally injected in the femurs with S aureus UAMS-1-Xen40 and implanted with uncoated or vitamin E phosphate-coated titanium Kirschner wires without local or systemic antibiotic prophylaxis. Eight rats represented the uninfected control group. A few hours after surgery, two control and three infected animals died as a result of unexpected complications. With the remaining rats, we assessed the presence of bacterial contamination with qualitative bioluminescence imaging and Gram-positive staining and with quantitative bacterial count. Bone changes in terms of resorption and osteomyelitis were quantitatively analyzed through micro-CT (bone mineral density) and semiquantitatively through histologic scoring systems. Six weeks after implantation, we found only a mild decrease in bacterial count in coated versus uncoated implants (Ti versus controls: mean difference [MD], -3.705; 95% confidence interval [CI], -4.416 to -2.994; p E-treated group compared with uncoated implants (knee joint: MD, -11.88; 95% CI, -16.100 to -7.664; p E-coated nails compared with the uncoated nails. These preliminary findings indicate that vitamin E phosphate implant coatings can exert a

  11. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws.

    Science.gov (United States)

    Carlsson, Gunnar E

    2014-08-01

    To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results.

  12. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

    Science.gov (United States)

    2014-01-01

    PURPOSE To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. CONCLUSION In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results. PMID:25177466

  13. Adapted preparation technique for screw-type implants: explorative in vitro pilot study in a porcine bone model.

    Science.gov (United States)

    Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter

    2007-02-01

    The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.

  14. Peri-Implant Crestal Bone Loss: A Putative Mechanism

    Directory of Open Access Journals (Sweden)

    Yuko Ujiie

    2012-01-01

    Full Text Available Purpose. The immunological mechanisms of peri-implant crestal bone loss have, hitherto, not been elucidated. We hypothesized that bacterial products from the microgap cause upregulation of cytokines in otherwise healthy peri-implant cells, which results in osteoclast formation and, ultimately, in bone resorption. Materials and Methods. We used RT-PCR and ELISA to assay mediators of osteoclastogenesis in rat and human macrophages (r-and hMO; bone marrow derived stromal cells (r-and hBMCs; and human gingival fibroblasts (hGF—with or without stimulation by LPS. TRAP positive multinucleate cells were assessed for their resorptive ability. Results. We show that IL-1α, IL-1β, and IL-6 were expressed by all examined cell types, and TNF-α was upregulated in hGF. Secretion of IL-1α and IL-1β proteins was stimulated in hMO by LPS, and IL-6 protein secretion was highly stimulated in hBMCs and hGF. Both LPS and RANKL stimulated macrophages to form osteoclast-like TRAP positive cells, which resorbed calcium phosphate substrates. Conclusion. Taken together, the results of our study support the hypothesis that bacterial endotoxins upregulate enhanced mediators of osteoclastogenesis in resident cells found in the healthy peri-implant compartment and that the local synergistic action of cytokines secreted by such cells results in the genesis of resorptively active osteoclasts.

  15. The clinical study of the early soft tissue healing and marginal bone resorption after non-submerged implants

    International Nuclear Information System (INIS)

    Xu Anchen; Yang Desheng; Hu Bei; Leng Bin; Zhang Li

    2009-01-01

    Objective: To compare the amount of early marginal bone resorption in the first three months after non-submerged implants and to explore the relationship between the amount of early marginal bone resorption and the soft tissue healing in the first month. Method: ITI with non-submerged implants were implanted in 33 patients. Digital panoramic radiographs were taken during the operation, one month and three months later. The amount of marginal bone resorption was measured in the first, second and the third month after implant operation. The soft tissue healing was observed after 10 days. Results: There was significant difference (P<0.01) in the amount of early marginal bone resorption between one month and three months later. The early marginal bone resorption in the first month after implantation kept correlation with the soft tissue healing on 10th day(r=0.794, P<0.01). Conclusion: The amount of early marginal bone resorption in the first month exceeds that in the second and the third months after implant operation, and the soft tissue healing affects the amount of early marginal bone resorption in the first month. Biological seal is the critical factor influencing the early marginal bone resorption. (authors)

  16. A comparative study of zirconium and titanium implants in rat: osseointegration and bone material quality.

    Science.gov (United States)

    Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina

    2014-02-01

    Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.

  17. Potential Bone to Implant Contact Area of Short Versus Standard Implants: An In Vitro Micro-Computed Tomography Analysis.

    Science.gov (United States)

    Quaranta, Alessandro; DʼIsidoro, Orlando; Bambini, Fabrizio; Putignano, Angelo

    2016-02-01

    To compare the available potential bone-implant contact (PBIC) area of standard and short dental implants by micro-computed tomography (μCT) assessment. Three short implants with different diameters (4.5 × 6 mm, 4.1 × 7 mm, and 4.1 × 6 mm) and 2 standard implants (3.5 × 10 mm and 3.3 × 9 mm) with diverse design and surface features were scanned with μCT. Cross-sectional images were obtained. Image data were manually processed to find the plane that corresponds to the most coronal contact point between the crestal bone and implant. The available PBIC was calculated for each sample. Later on, the cross-sectional slices were processed by a 3-dimensional (3D) software, and 3D images of each sample were used for descriptive analysis and display the microtopography and macrotopography. The wide-diameter short implant (4.5 × 6 mm) showed the higher PBIC (210.89 mm) value followed by the standard (178.07 mm and 185.37 mm) and short implants (130.70 mm and 110.70 mm). Wide-diameter short implants show a surface area comparable with standard implants. Micro-CT analysis is a promising technique to evaluate surface area in dental implants with different macrodesign, microdesign, and surface features.

  18. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    Science.gov (United States)

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    OBJECTIVE Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model. METHODS Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9-L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing. RESULTS The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks. CONCLUSIONS Using PSs with a thin HA coating applied using a sputtering process

  19. Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis.

    Science.gov (United States)

    Hong, Hae Ryong; Pae, Ahran; Kim, Yooseok; Paek, Janghyun; Kim, Hyeong-Seob; Kwon, Kung-Rock

    2012-01-01

    The aim of this study was to analyze and compare the level and distribution of peri-implant bone stresses associated with mandibular two-implant overdentures with different implant positions. Mathematical models of mandibles and overdentures were designed using finite element analysis software. Two intraosseous implants and ball attachment systems were placed in the interforaminal region. The overdenture, which was supported by the two implants, was designed to withstand bilateral and unilateral vertical masticatory loads (total 100 N). In all, eight types of models, which differed according to assigned implant positions, height of attachments, and angulation, were tested: MI (model with implants positioned in the lateral incisor sites), MC (implants in canine sites), MP (implants in premolar sites), MI-Hi (greater height of attachments), MC-M (canine implants placed with mesial inclination), MC-D (canine implants placed with distal inclination), MC-B (canine implants placed with buccal inclination), and MC-L (canine implants placed with lingual inclination). Peri-implant bone stress levels associated with overdentures retained by lateral incisor implants resulted in the lowest stress levels and the highest efficiency in distributing peri-implant stress. MI-Hi showed increased stress levels and decreased efficiency in stress distribution. As the implants were inclined, stress levels increased and the efficiency of stress distribution decreased. Among the inclined models, MC-B showed the lowest stress level and best efficiency in stress distribution. The lowest stress and the best stability of implants in mandibular two-implant overdentures were obtained when implants were inserted in lateral incisor areas with shorter attachments and were placed parallel to the long axes of the teeth.

  20. A new classification of peri-implant bone morphology: a radiographic study of patients with lower implant-supported mandibular overdentures

    NARCIS (Netherlands)

    Zhang, L.; Geraets, W.; Zhou, Y.; Wu, W.; Wismeijer, D.

    2014-01-01

    Objective This study aimed to classify peri-implant bone defects (PIBDs) on the basis of their radiographic appearance in a cohort of patients with lower implant-supported overdentures. Materials and methods Eighty-three patients with lower implant-supported overdentures were recruited to

  1. Marginal bone loss and dental implant failure may be increased in smokers.

    Science.gov (United States)

    Veitz-Keenan, Analia

    2016-03-01

    An electronic search was performed in PubMed, Web of Science and the Cochrane Central Register of Controlled Trials up to February 2015. References of included studies were also searched. No language restrictions were applied. Study selection: Prospective, retrospective and randomised clinical trials that compared marginal bone loss and failure rates between smokers and non-smokers. Implant failure was considered as total loss of the implant. Studies with patients who had periodontal disease prior to treatment or who had metabolic diseases were excluded. Two reviewers were involved in the research and screening process and disagreements were resolved by discussion. The quality of the studies was analysed using the Newcastle-Ottawa scale for non-randomised clinical trials. Data extracted from the studies included, when available: follow up period, number of subjects, smoking status, number of implants placed, implant system, implant length and diameter, healing period, antibiotics and mouth-rinse use, marginal bone loss, failure rate and drop-outs. For binary outcomes (implant failure) the estimate of the intervention effect was expressed in the form of an odds ratio (OR) with the confidence interval (CI) of 95%. For continuous outcomes (marginal bone loss) the average and standard deviation (SD) were used to calculate the standardised mean difference with a 95% CI. Meta-analysis was performed for studies with similar outcomes, I(2) a statistical test was used to express the heterogeneity among the studies. Publication bias was explored as well. A total of 15 observational studies were included in the review. The number of participants ranged from 60 to 1727 and the average age was 52.5 years. The follow-up period ranged from eight to 240 months. The total number of implants placed was 5840 in smokers and 14,683 in non-smokers. The Branemak system, (Noble Biocare AB, Goteborg, Sweden), was the most commonly used implant system. There was a statistically significant

  2. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    International Nuclear Information System (INIS)

    Pilmane, M; Salms, G; Salma, I; Skagers, A; Locs, J; Loca, D; Berzina-Cimdina, L

    2011-01-01

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNFα), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  3. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pilmane, M [Riga Stradins University, Institute of Anatomy and Anthropology, Dzirciema 16, LV-1007, Riga (Latvia); Salms, G; Salma, I; Skagers, A [Riga Stradins University, Department of Oral and Maxillofacial Surgery, Dzirciema 20. LV-1007, Riga (Latvia); Locs, J; Loca, D; Berzina-Cimdina, L, E-mail: pilmane@latnet.lv [Riga Technical University, Riga Biomaterials innovation and development centre, Pulka 3/3, LV-1007, Riga (Latvia)

    2011-06-23

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNF{alpha}), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  4. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep.

    Science.gov (United States)

    Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren

    2017-11-01

    Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.

  5. Zygomatic bone graft for oral-antral communication closure and implant placement.

    Science.gov (United States)

    Peñarrocha-Diago, Miguel; García, Berta; Gomez, Dolores; Balaguer, José

    2007-01-01

    The roots of molar and premolar maxillary teeth are often very close to the floor of the maxillary sinus. As a result, extraction of these teeth can leave an oral-antral communication or lead to a fistula that requires treatment. A woman with an oral-antral communication secondary to extraction of a maxillary molar is presented. The communication was closed by means of a bone graft harvested from the wall of the sinus (zygomatic bone). After 3 months, 2 dental implants were placed, one in the pterygoid area and the other with parasinusal angulation. Rehabilitation followed in the form of a screw-retained, fixed prosthesis 3 months after implant placement. There have been no complications after 1 year of follow-up. This surgical technique allowed closure of an oral-antral communication produced by molar extraction through placement of a zygomatic bone graft and subsequent placement of 2 dental implants.

  6. Esthetic evaluation of single-tooth implants in the anterior maxilla following autologous bone augmentation.

    Science.gov (United States)

    Hof, M; Pommer, B; Strbac, G D; Sütö, D; Watzek, G; Zechner, W

    2013-08-01

    Autologous bone augmentation to rebuild compromised alveolar ridge contour prior to implant placement allows for favorable three-dimensional implant positioning to achieve optimum implant esthetics. The aim of the present study was to evaluate peri-implant soft tissue conditions around single-tooth implants following bone grafts in the esthetic zone of the maxilla. Sixty patients underwent autologous bone augmentation of deficient maxillary sites prior to placement of 85 implants in the esthetic zone. In case of multiple implants per patient, one implant was randomly selected. Objective evaluation of 60 single-tooth implants was performed using the Pink-Esthetic-Score (PES) and Papilla Index (PI) and supplemented by subjective patient evaluation, as well as clinical and radiologic examination. Objective ratings of implant esthetics were satisfactory (median PES: 11, median PI: 2) and significantly correlated with high patient satisfaction (mean VAS score: 80%). Both esthetic indices demonstrated respectable levels of inter- as well as intra-observer agreement. Poor implant esthetics (low PES and PI ratings) were significantly associated with increased anatomic crown height, while no influence of horizontal implant-tooth distance could be found. The present investigation indicates that favorable esthetic results may be achieved in the augmented anterior maxilla. However, bony reconstruction of compromised alveolar ridges does not guarantee optimum implant esthetics. © 2011 John Wiley & Sons A/S.

  7. Clinical and Radiographic Assessment of Peri-Implant Tissue in Posterior Areas with and Without the Need for Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Seyed Reza Arabi

    2016-07-01

    Full Text Available Background Dental implants are increasingly used in resorbed alveolar ridges, and the success of implants inserted concomitantly with guided bone regeneration (GBR needs to be evaluated. Objectives This study aimed to clinically and radiographically assess the peri-implant tissues in the posterior maxilla and mandible in cases in which dehiscence or fenestration occurred at the time of implant surgery and treated with GBR (simultaneously with implant placement in one session. A comparison was also made between the above-mentioned patients and controls in which implants were placed in intact bone (entire length of implant in bone. Patients and Methods This study was conducted on 12 patients as cases who received 17 standard implants (dehiscence or fenestration occurred after placement of 4 mm diameter standard implants and GBR was performed and 10 patients as the control group (those who received 17 standard implants, 4 mm in diameter and 10 mm in length, in adequate bone. Periapical (PA radiographs were obtained in the first 24 hours post-surgery. Radiographs were repeated at one month, at the time of loading (two months post-surgery, and at three and six months after loading to assess marginal bone loss. To assess the peri-implant soft tissue, thickness and width of the keratinized gingiva were evaluated. Data were analyzed using t-test and repeated measures analysis of variance. The level of significance was set to P = 0.05. Results The difference in distance from the bone crest to the implant shoulder between the two groups of cases and controls was significant at the following time points: baseline and 2 months post-surgery (P = 0.000, baseline and 6 months after loading (P = 0.01, 2 months post-surgery and 3 months after loading (P = 0.00, and 2 months post-surgery and 6 months after loading (P = 0.00. Changes in the width of the keratinized gingiva were not significant in the two groups of cases and controls at 2 months post-surgery (P = 0

  8. Influence of Piezosurgery on Bone Healing around Titanium Implants: A Histological Study in Rats.

    Science.gov (United States)

    Sirolli, Marcelo; Mafra, Carlos Eduardo Secco; Santos, Rodrigo Albuquerque Basílio Dos; Saraiva, Luciana; Holzhausen, Marinella; César, João Batista

    2016-01-01

    The aim of this study was to evaluate histomorphometrically the influence of two techniques of dental implant site preparation on bone healing around titanium implants. Fifteen male Wistar rats (±300 g) were used in the study. Each tibia was randomly assigned to receive the implant site preparation either with a conventional drilling technique (control - DRILL group) or with a piezoelectric device (PIEZO group). The animals were sacrificed after 30 days and then the following histomorphometric parameters were evaluated (percentage) separately for cortical and cancellous regions: proportion of mineralized tissue (PMT) adjacent to implant threads (500 μm adjacent); bone area within the threads (BA) and bone-implant contact (BIC). The results demonstrated that there were no statistically significant differences between both groups for cancellous BIC (p>0.05) and cortical PMT (p>0.05). On the other hand, a higher percentage of BA was observed in the PIEZO group in the cortical (71.50±6.91 and 78.28±4.38 for DRILL and PIEZO groups, respectively; ppiezosurgery also showed higher PMT values in the cancellous zone (9.35±5.54 and 18.72±13.21 for DRILL and PIEZO groups, respectively; ppiezosurgery was beneficial to bone healing rates in the cancellous bone region, while the drill technique produced better results in the cortical bone.

  9. Assessment of activated porous granules on implant fixation and early bone formation in sheep

    Directory of Open Access Journals (Sweden)

    Ming Ding

    2016-04-01

    Conclusion: In conclusion, despite nice bone formation and implant fixation in all groups, bioreactor activated graft material did not convincingly induce early implant fixation similar to allograft, and neither bioreactor nor by adding BMA credited additional benefit for bone formation in this model.

  10. A 5-year clinical and computerized tomographic implant follow-up in sinus-lifted maxillae and native bone.

    Science.gov (United States)

    Sbordone, Carolina; Toti, Paolo; Ramaglia, Luca; Guidetti, Franco; Sbordone, Ludovico; Martuscelli, Ranieri

    2014-09-01

    The present study analysed apical and marginal bone remodelling around dental implants placed in both maxillary (sinus elevated with particulated autogenous osseous graft) and corresponding native bone areas, with a follow-up of 5 years. The clinical survival of implants was also observed. In this retrospective chart review, 27 patients were enrolled, with 55 dental implants inserted from 2000 to 2006, 26 of which were followed (one implant per patient); if required, patients were treated via sinus lift with autogenous bone and particulate technique. The internal controls were implants positioned in native areas beneath the sinus. Radiologic survey was assessed via computerized tomographic analysis measuring apical bone level (ABL) and marginal bone level (MBL), at 1- (T1 ), 3- (T2 ) and 5 years (T3 ), around implants (buccal, b; palatal, p; mesial, m; and distal sides, d). Clinical probing depth (CPD) and clinical attachment level (CAL) for all the four peri-implant aspects were measured. Cumulative survival rate (CSR) and survival rate (SR) of implants were calculated. Significances for paired and unpaired comparisons were searched for. A significant degree of apical resorption was recorded between T1 and T3 for the mesial particulate group; again, a significant difference was discovered between the native and particulate procedures for mABL. A further feature was discovered for the particulate procedure, for which ABLs resulted negative at least for three of the aspects. Regarding MBL measurements, similar behaviours were revealed using time-comparison analysis for the two procedures at the buccal aspect. Comparisons among diameters, irrespective of the procedure, showed that resorption times for the bMBL were shorter as the diameter of the implant became wider. The implant CSR was 92% in native areas (two failures/25 implants) and 93.3% in sinuses lifted with particulate bone (two failures/30 implants). The results suggest that a protrusion of the implant

  11. Dental Implant Surrounding Marginal Bone Level Evaluation: Platform Switching versus Platform Matching—One-Year Retrospective Study

    Directory of Open Access Journals (Sweden)

    Eisner Salamanca

    2017-01-01

    Full Text Available The benefits and feasibility of platform switching have been discussed in several studies, reporting lesser crestal bone loss in platform-switched implants than in platform-matched implants. Objective. The aim of the present study was to observe the changes in vertical and horizontal marginal bone levels in platform-switched and platform-matched dental implants. Materials and Methods. 51 patients received 60 dental implants in the present study over a 1-year period. Measurement was performed between the implant shoulder and the most apical and horizontal marginal defect by periapical radiographs to examine the changes of peri-implant alveolar bone before and 12 months after prosthodontic restoration delivery. Results. These marginal bone measurements showed a bone gain of 0.23±0.58 mm in the vertical gap and 0.22±0.53 mm in the horizontal gap of platform matching, while in platform switching a bone gain of 0.93±1 mm (P<0.05 in the vertical gap and 0.50±0.56 mm in the horizontal gap was found. The average vertical gap reduction from the baseline until 12 months was 0.92±1.11 mm in platform switching and 0.29±0.85 mm in platform matching (P<0.05. Conclusions. Within the limitations of the present study, platform switching seemed to be more effective for a better peri-implant alveolar bone vertical and horizontal gap reduction at 1 year.

  12. Autogenous bone graft and ePTFE membrane in the treatment of peri-implantitis. II. Stereologic and histologic observations in cynomolgus monkeys

    DEFF Research Database (Denmark)

    Schou, Søren; Holmstrup, Palle; Skovgaard, Lene Theil

    2003-01-01

    autogenous bone graft; guided bone regeneration; histology; membrane; non-human primates; oral implants; osseointegration; pathalogy; peri-implantitis; stereology; treatment......autogenous bone graft; guided bone regeneration; histology; membrane; non-human primates; oral implants; osseointegration; pathalogy; peri-implantitis; stereology; treatment...

  13. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    International Nuclear Information System (INIS)

    Calasans-Maia, M.; Sales, E.; Lopes, R. T.; Granjeiro, J. M.; Lima, I.

    2010-01-01

    Zinc is known to play a relevant role in growth and development; it has stimulatory effects on in vitro and in vivo bone formation and an inhibitory effect on in vitro osteoclastic bone resorption. The inorganic component of the bone tissue is nonstoichiometric apatite; changes in the composition of hidroxyapatite are subject of studies in order to improve the tissue response after implantation. The objective of this study was to investigate the effect of 0.5% zinc-containing hydroxyapatite in comparison to hydroxyapatite on osseous repair of rabbit's tibia. Cylinders (2x6 mm) of both materials were produced according to the specification of the International Organization for Standardization. Ethics Commission on Teaching and Research in Animals approved this project (HUAP-195/06). Fifteen White New Zealand rabbits were submitted to general anesthesia and two perforations (2 mm) were made in each tibia for implantation of zinc-containing hydroxyapatite cylinders (left tibia) and hydroxyapatite cylinders (right tibia). After 1, 2 and 4 weeks, the animals were killed and one fragment of each tibia with the cylinder was collected and embedded in a methacrylate-based resin and cut into slices (∼200 μm thickness), parallel to the implant's long axis with a precision diamond saw for Synchrotron Radiation X-ray Microfluorescence investigation. The accomplishment of the standard procedures helped the planning, execution and the comparative analysis of the results. The chemical and physical properties of the biomaterials were modified after its implantation and the incorporation of zinc. Both materials are biocompatible and promote osteoconduction and favored bone repair.

  14. Effect of microthreads on coronal bone healing of narrow-diameter implants with reverse-tapered design in beagle dogs.

    Science.gov (United States)

    Chang, Yun-Young; Kim, Su-Hwan; Park, Keun-Oh; Yun, Jeong-Ho

    2017-12-01

    The objective of this study was to investigate the effect of microthreads on the coronal bone healing of narrow-diameter implants with reverse-tapered design. A total of 52 implants were classified into two groups according to presence or absence of coronal microthreads, the reverse-tapered narrow-diameter implant (RTN) group, and the reverse-tapered narrow-diameter implant with microthreads (RTNM) group. The implants were installed in split-mouth design in the edentulous mandible of six dogs. Three animals were sacrificed at 4 weeks and three at 8 weeks. Resonance frequency analysis, bone measurement using microcomputed tomography (micro-CT), removal torque test, and histometric analysis were performed. No significant differences in implant stability quotient value were observed between the groups at baseline, 4 weeks, or 8 weeks. Bone measurement using micro-CT showed that bone-implant contact volume (BICV) and bone-implant contact volume ratio (BICVR) in the coronal part of RTNM were statistically higher than those in RTN at 4 and 8 weeks. Histometric analysis showed statistically higher bone-implant contact length (BICL) in the coronal part of RTNM than in RTN at 4 weeks; however, bone-implant contact ratio (BICR) was not significantly different between the groups. At 8 weeks, the BICL and BICR did not differ significantly between the groups. Removal torque test showed no significant differences between the groups at 4 and 8 weeks. The microthreads might facilitate more coronal bone-implant contact due to increased surface areas at an early healing phase; however, they did not significantly affect coronal bone healing at 8 weeks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

     Introduction: Replacement of extensive local bone loss especially in revision joint arthroplasties is a significant clinical challenge. Autogenous and allogenic cancellous bone grafts have been the gold standard in reconstructive orthopaedic surgery, but it is well known that there is morbidity...... associated with harvesting of autogenous bone graft and limitations in the quantity of bone available. Disadvantages of allograft include the risk of bacterial or viral contamination and non union as well as the potential risk of disease transmission. Alternative options are attractive and continue...... to be sought. Hydroxyapatite and collagen composites have the potential in mimicking and replacing skeletal bones. Aim: This study attempted to determine the effect of hydroxyapatite/collagen composites in the fixation of bone implants. The composites used in this study is produced by Institute of Science...

  16. Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants

    Directory of Open Access Journals (Sweden)

    Daniel Jogaib Fernandes

    2015-09-01

    Full Text Available The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66, bovine femurs (n = 18 and rabbit tibia (n = 12 with different cortical thicknesses (1 to 8 mm. Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001, bovine (p = 0.0035 and rabbit (p < 0.05 sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability.

  17. The use of bone block allografts in sinus augmentation, followed by delayed implant placement: A case series

    Directory of Open Access Journals (Sweden)

    Eurico D Aloja

    2013-01-01

    Full Text Available Purpose: This article reports the clinical outcomes observed in a large number of patients receiving block bone allograft used for sinus augmentation and delayed implant placement. Patients and Methods: In total, 28 patients (13 males with a mean age of 49.8 ± 10.1 years (range: 33-67 years were included in this case series. All selected patients suffered from severe alveolar ridge atrophy in the posterior maxilla and required bone augmentation procedures, followed by implant placement after 6 months. All patients were followed for 18 months after the grafting, with scheduled monthly visits and/or more frequent visits if required. The survival rates for both the bone blocks and placed implants were then evaluated. Results: A total of 42 blocks and 90 implants were placed. Only one bone graft and 5 implants failed; the survival rate was 97.2% and 95.5% for the bone grafts and implants, respectively. The graft failed due to the onset of post-surgical infectious sinusitis, while in some patients′ implants showed absence of osteointegration at the end of the healing phase. Of note, all failed implants were observed in heavy smokers; in all other patients, blocks and implants were successful. Conclusions: This preliminary case series suggests that the grafting of bone allograft followed by delayed implant placement may be a promising strategy for sinus augmentation. More extended and larger follow-up studies are needed to confirm this preliminary data.

  18. Implant angulation: 2-year retrospective analysis on the influence of dental implant angle insertion on marginal bone resorption in maxillary and mandibular osseous onlay grafts.

    Science.gov (United States)

    Ramaglia, Luca; Toti, Paolo; Sbordone, Carolina; Guidetti, Franco; Martuscelli, Ranieri; Sbordone, Ludovico

    2015-05-01

    The purpose of this study was to determine the existence of correlations between marginal peri-implant linear bone loss and the angulation of implants in maxillary and mandibular augmented areas over the course of a 2-year survey. Dependent variables described the sample of the present retrospective chart review. By using three-dimensional radiographs, input variables, describing the implant angulation (buccal-lingual angle [φ] and mesial-distal angle [θ]) were measured; outcome variables described survival rate and marginal bone resorption (MBR) around dental implants in autogenous grafts (10 maxillae and 14 mandibles). Pairwise comparisons and linear correlation coefficient were computed. The peri-implant MBR in maxillary buccal and palatal areas appeared less intensive in the presence of an increased angulation of an implant towards the palatal side. Minor MBR was recorded around mandibular dental implants positioned at a right angle and slightly angulated towards the mesial. Resorption in buccal areas may be less intensive as the angulation of placed implants increases towards the palatal area in the maxilla, whereas for the mandible, a greater inclination towards the lingual area could be negative. In the mandibular group, when the implant was slightly angulated in the direction of the distal area, bone resorption seemed to be more marked in the buccal area. In the planning of dental implant placement in reconstructed alveolar bone with autograft, the extremely unfavourable resorption at the buccal aspect should be considered; this marginal bone loss seemed to be very sensitive to the angulation of the dental implant.

  19. A novel implantation model for evaluation of bone healing response to dental implants: the goat iliac crest.

    NARCIS (Netherlands)

    Schouten, C.; Meijer, G.J.; Beucken, J.J.J.P van den; Spauwen, P.H.M.; Jansen, J.A.

    2010-01-01

    OBJECTIVES: Despite the availability of numerous animal models for testing the biological performance of dental and orthopedic implants, the selection of a suitable model is complex. This paper presents a new model for objective and standardized evaluation of bone responses to implants using the

  20. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    Directory of Open Access Journals (Sweden)

    Ji Cheol Bae

    2017-12-01

    Full Text Available In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL/β-tricalcium phosphate (β-TCP/bone decellularized extracellular matrix (bdECM scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, % but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %. Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.

  1. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    Science.gov (United States)

    Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo

    2017-01-01

    In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results. PMID:29258172

  2. Abutment-to-fixture load transfer and peri-implant bone stress

    NARCIS (Netherlands)

    van Oers, R.F.; Feilzer, A.J.

    2015-01-01

    Purpose: To uncover design principles for the abutment-fixture complex that reduce the stress concentration on the bone. Methods: A 3-dimensional finite element model was used to vary shape, elasticity, and connectivity of the abutment-fixture complex. We compared peri-implant bone stress of these

  3. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation--parameters definition.

    Science.gov (United States)

    Soares, Priscilla Barbosa Ferreira; Nunes, Sarah Arantes; Franco, Sinésio Domingues; Pires, Raphael Rezende; Zanetta-Barbosa, Darceny; Soares, Carlos José

    2014-01-01

    The clinical performance of dental implants is strongly defined by biomechanical principles. The aim of this study was to quantify the Vicker's hardness (VHN) and elastic modulus (E) surround bone to dental implant in different regions, and to discuss the parameters of dynamic microindantion test. Ten cylindrical implants with morse taper interface (Titamax CM, Neodent; 3.5 mm diameter and 7 mm a height) were inserted in rabbit tibia. The mechanical properties were analyzed using microhardness dynamic indenter with 200 mN load and 15 s penetration time. Seven continuous indentations were made distancing 0.08 mm between each other perpendicularly to the implant-bone interface towards the external surface, at the limit of low (Lp) and high implant profile (Hp). Data were analyzed by Student's t-test (a=0.05) to compare the E and VHN values obtained on both regions. Mean and standard deviation of E (GPa) were: Lp. 16.6 ± 1.7, Hp. 17.0 ± 2.5 and VHN (N/mm2): Lp. 12.6 ± 40.8, Hp. 120.1 ± 43.7. No statistical difference was found between bone mechanical properties of high and low profile of the surround bone to implant, demonstrating that the bone characterization homogeneously is pertinent. Dynamic microindantion method proved to be highly useful in the characterization of the individual peri-implant bone tissue.

  4. Factors affecting the possibility to detect buccal bone condition around dental implants using cone beam computed tomography

    DEFF Research Database (Denmark)

    Liedke, Gabriela S; Spin-Neto, Rubens; da Silveira, Heloisa E D

    2016-01-01

    OBJECTIVES: To evaluate factors with impact on the conspicuity (possibility to detect) of the buccal bone condition around dental implants in cone beam computed tomography (CBCT) imaging. MATERIAL AND METHODS: Titanium (Ti) or zirconia (Zr) implants and abutments were inserted into 40 bone blocks...... in a way to obtain variable buccal bone thicknesses. Three combinations regarding the implant-abutment metal (TiTi, TiZr, or ZrZr) and the number of implants (one, two, or three) were assessed. Two CBCT units (Scanora 3D - Sc and Cranex 3D - Cr) and two voxel resolutions (0.2 and 0.13 mm) were used...... variable. Odds ratio (OR) were calculated separately for each CBCT unit. RESULTS: Implant-abutment combination (ZrZr) (OR Sc = 19.18, OR Cr = 11.89) and number of implants (3) (OR Sc = 12.10, OR Cr = 4.25) had major impact on buccal bone conspicuity. The thinner the buccal bone, the higher the risk...

  5. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  6. No influence of simultaneous bone-substitute application on the success of immediately loaded dental implants: a retrospective cohort study.

    Science.gov (United States)

    Kopp, Sigmar; Behrend, Detlef; Kundt, Günther; Ottl, Peter; Frerich, Bernhard; Warkentin, Mareike

    2013-06-01

    To examine the influence of bone-substitute application during implantation on the success of immediately placed and loaded dental implants. A total of 147 consecutive patients (age, 16.5-80.4 years) were provided with 696 immediately loaded implants. The mean follow-up time was 34.1 months. Of these implants, 50.4% (n=351) were immediately placed into extraction sockets. A total of 119 implants were added by simultaneous bone-substitute application (NanoBone, Artoss GmbH, Rostock Germany), whereas the other implants were placed in healed bone. Univariate and multivariate analysis was performed using IBM SPSS V.20. The overall implant success rate was 96.1%. Implants with simultaneous bone replacement had a hazard ratio of 0.877 (p=0.837); 95% CI, 0.253-3.04). Factors found to be statistically significant modifiers of success on multivariate analysis (p<0.05) included type of superstructure (p<0.001), implant-abutment connection (p<0.001), membrane use (p=0.010), and jaw (p=0.026). None of the other factors investigated were significant modifiers. The present study demonstrates high success rates for immediately loaded implants and their superstructures independent of the simultaneous application of bone substitute. The declared aim of socket preservation, the prevention avoiding bone loss, is achieved in the immediate implant placement scenario under immediate-loading conditions.

  7. Biomechanical Evaluation of Glenoid Reconstruction With an Implant-Free J-Bone Graft for Anterior Glenoid Bone Loss.

    Science.gov (United States)

    Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Heuberer, Philipp R; Arciero, Robert A; Anderl, Werner; Mazzocca, Augustus D

    2017-10-01

    The anatomic restoration of glenoid morphology with an implant-free J-shaped iliac crest bone graft offers an alternative to currently widely used glenoid reconstruction techniques. No biomechanical data on the J-bone grafting technique are currently available. To evaluate (1) glenohumeral contact patterns, (2) graft fixation under cyclic loading, and (3) the initial stabilizing effect of anatomic glenoid reconstruction with the implant-free J-bone grafting technique. Controlled laboratory study. Eight fresh-frozen cadaveric shoulders and J-shaped iliac crest bone grafts were used for this study. J-bone grafts were harvested, prepared, and implanted according to a previously described, clinically used technique. Glenohumeral contact patterns were measured using dynamic pressure-sensitive sensors under a compressive load of 440 N with the humerus in (a) 30° of abduction, (b) 30° of abduction and 60° of external rotation, (c) 60° of abduction, and (d) 60° of abduction and 60° of external rotation. Using a custom shoulder-testing system allowing positioning with 6 degrees of freedom, a compressive load of 50 N was applied, and the peak force needed to translate the humeral head 10 mm anteriorly at a rate of 2.0 mm/s was recorded. All tests were performed (1) for the intact glenoid, (2) after the creation of a 30% anterior osseous glenoid defect parallel to the longitudinal axis of the glenoid, and (3) after anatomic glenoid reconstruction with an implant-free J-bone graft. Furthermore, after glenoid reconstruction, each specimen was translated anteriorly for 5 mm at a rate of 4.0 mm/s for a total of 3000 cycles while logging graft protrusion and mediolateral bending motions. Graft micromovements were recorded using 2 high-resolution, linear differential variable reluctance transducer strain gauges placed in line with the long leg of the graft and the mediolateral direction, respectively. The creation of a 30% glenoid defect significantly decreased glenohumeral

  8. Simulation of the mechanical behavior of a HIP implant. Implant fixed to bone by cementation under arbitrary load

    Science.gov (United States)

    Oldani, C. R.; Dominguez, A. A.

    2007-11-01

    In a previous work a finite elements model was constructed to simulate a fatigue assay according to the norm IRAM 9422-3. Three materials were studied, two of them are the most used in this type of implant (Stainless steel 3161 and alloy T16A14V) and the third was a new developed titanium alloy (Ti35Nb7Zr5Ta). Static loads were applied to the model according to the highest requirements of the norm and the stress - strain distribution were determined. In this study a simplified analysis of the material's fatigue was done according to the previous work. The best behavior of the titanium alloys vs. the stainless steel was evident. With the objective of studying the behavior of both: the implant and the femur bone, new finite elements models were realized, in which the presence of the bone was considered. Inside the bone, the femoral component of the implant was placed in a similar way of a cemented prosthesis in a total hip arthroplasty. The advantage of the titanium implant related to the stainless steel one, was very clear.

  9. Simulation of the mechanical behavior of a HIP implant. Implant fixed to bone by cementation under arbitrary load

    Energy Technology Data Exchange (ETDEWEB)

    Oldani, C R [Materials Department - FCEFyN - Universidad Nacional de Cordoba, Av.Velez Sarsfield 1611 (5016) Cordoba (Argentina); Dominguez, A A [INTI Cordoba, Av. Velez Sarsfield 1561 (5016) Cordoba (Argentina)

    2007-11-15

    In a previous work a finite elements model was constructed to simulate a fatigue assay according to the norm IRAM 9422-3. Three materials were studied, two of them are the most used in this type of implant (Stainless steel 3161 and alloy T16A14V) and the third was a new developed titanium alloy (Ti35Nb7Zr5Ta). Static loads were applied to the model according to the highest requirements of the norm and the stress - strain distribution were determined. In this study a simplified analysis of the material's fatigue was done according to the previous work. The best behavior of the titanium alloys vs. the stainless steel was evident. With the objective of studying the behavior of both: the implant and the femur bone, new finite elements models were realized, in which the presence of the bone was considered. Inside the bone, the femoral component of the implant was placed in a similar way of a cemented prosthesis in a total hip arthroplasty. The advantage of the titanium implant related to the stainless steel one, was very clear.

  10. The impact of glucocorticosteroids administered for systemic diseases on the osseointegration and survival of dental implants placed without bone grafting-A retrospective study in 31 patients.

    Science.gov (United States)

    Petsinis, Vassilis; Kamperos, Georgios; Alexandridi, Foteini; Alexandridis, Konstantinos

    2017-08-01

    To evaluate the impact of glucocorticosteroids, administered for the treatment of systemic diseases, on the osseointegration and survival of dental implants placed without bone grafting. A retrospective study was conducted in search of patients treated with dental implants while receiving glucocorticosteroid therapy for various systemic diseases. In these cases, a conventional two-stage surgical protocol was used, without bone regeneration procedures. The osseointegration was clinically and radiographically tested at the uncovering of the implants. The follow-up after loading was set at a minimum of 3 years. A total of 31 patients were included in the study. Of the 105 dental implants placed, 104 were osseointegrated (99%). No bone absorption was radiographically noted at the uncovering of the osseointegrated implants. All of the osseointegrated implants were successfully loaded for the prosthetic restoration. The mean follow-up period after loading was 71 months, with an implant survival rate of 99%. Glucocorticosteroid intake for systemic diseases does not have a significant impact on the osseointegration and the 3-year survival of dental implants placed with a conventional two-stage surgical protocol and without bone grafting. Therefore, it should not be considered a contraindication for dental implant placement. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    OpenAIRE

    Langhoff, J; Mayer, J; Faber, L; Kästner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods...

  12. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants

    Directory of Open Access Journals (Sweden)

    Bartłomiej Wysocki

    2017-06-01

    Full Text Available Additive Manufacturing (AM methods are generally used to produce an early sample or near net-shape elements based on three-dimensional geometrical modules. To date, publications on AM of metal implants have mainly focused on knee and hip replacements or bone scaffolds for tissue engineering. The direct fabrication of metallic implants can be achieved by methods, such as Selective Laser Melting (SLM or Electron Beam Melting (EBM. This work compares the SLM and EBM methods used in the fabrication of titanium bone implants by analyzing the microstructure, mechanical properties and cytotoxicity. The SLM process was conducted in an environmental chamber using 0.4–0.6 vol % of oxygen to enhance the mechanical properties of a Ti-6Al-4V alloy. SLM processed material had high anisotropy of mechanical properties and superior UTS (1246–1421 MPa when compared to the EBM (972–976 MPa and the wrought material (933–942 MPa. The microstructure and phase composition depended on the used fabrication method. The AM methods caused the formation of long epitaxial grains of the prior β phase. The equilibrium phases (α + β and non-equilibrium α’ martensite was obtained after EBM and SLM, respectively. Although it was found that the heat transfer that occurs during the layer by layer generation of the component caused aluminum content deviations, neither methods generated any cytotoxic effects. Furthermore, in contrast to SLM, the EBM fabricated material met the ASTMF136 standard for surgical implant applications.

  13. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    Science.gov (United States)

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.

    Science.gov (United States)

    Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld

    2005-03-01

    Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.

  15. Does the Laser-Microtextured Short Implant Collar Design Reduce Marginal Bone Loss in Comparison with a Machined Collar?

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. To compare marginal bone loss between subgingivally placed short-collar implants with machined collars and those with machined and laser-microtextured collars. Materials and Methods. The investigators used a retrospective study design and included patients who needed missing posterior teeth replaced with implants. Short-collar implants with identical geometries were divided into two groups: an M group, machined collar; and an L group, machined and laser-microtextured collar. Implants were evaluated according to marginal bone loss, implant success, and probing depth (PD at 3 years of follow-up. Results. Sixty-two patients received 103 implants (56 in the M group and 47 in the L group. The cumulative survival rate was 100%. All implants showed clinically acceptable marginal bone loss, although bone resorption was lower in the L group (0.49 mm than in the M group (1.38 mm at 3 years (p<0.01. A significantly shallower PD was found for the implants in the L group during follow-up (p<0.01. Conclusions. Our results suggest predictable outcomes with regard to bone loss for both groups; however, bone resorption was less in the L group than in the M group before and after loading. The laser-microtextured collar implant may provide a shallower PD than the machined collar implant.

  16. Costal bone abnormalities: an unusual cause of spontaneous bilateral breast implant deflation†

    Science.gov (United States)

    Brooker, Jack E.; Gusenoff, Jeffrey A.

    2014-01-01

    Augmentation mammoplasty is the most common aesthetic surgical procedure performed in the USA. Prosthetic failure is a major reason for surgical reintervention. A number of causes for this have been documented, but costal bone abnormalities leading to perforation of the prosthesis are very unusual. We present the case of a woman who experienced spontaneous deflation of both saline implants in close succession, and who was found to have sharp bony spicules on both sides of her chest. Pathology examination reported reactive changes, suggestive of heterotopic bone. Examination of the implants showed no defects besides small punctures on the back wall, which coincided with the position of the spicules of bone. There are a number of possible causes for these bony growths which we examine in turn. The chest wall should be examined in all cases where unexplained implant deflation has occurred. PMID:25535321

  17. Development of a novel method for surgical implant design optimization through noninvasive assessment of local bone properties.

    Science.gov (United States)

    Schiuma, D; Brianza, S; Tami, A E

    2011-03-01

    A method was developed to improve the design of locking implants by finding the optimal paths for the anchoring elements, based on a high resolution pQCT assessment of local bone mineral density (BMD) distribution and bone micro-architecture (BMA). The method consists of three steps: (1) partial fixation of the implant to the bone and creation of a reference system, (2) implant removal and pQCT scan of the bone, and (3) determination of BMD and BMA of all implant-anchoring locations along the actual and alternative directions. Using a PHILOS plate, the method uncertainty was tested on an artificial humerus bone model. A cadaveric humerus was used to quantify how the uncertainty of the method affects the assessment of bone parameters. BMD and BMA were determined along four possible alternative screw paths as possible criteria for implant optimization. The method is biased by a 0.87 ± 0.12 mm systematic uncertainty and by a 0.44 ± 0.09 mm random uncertainty in locating the virtual screw position. This study shows that this method can be used to find alternative directions for the anchoring elements, which may possess better bone properties. This modification will thus produce an optimized implant design. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Significance of buccopalatal implant position, biotype, platform switching, and pre-implant bone augmentation on the level of the midbuccal mucosa

    NARCIS (Netherlands)

    Zuiderveld, Elise G; den Hartog, Laurens; Vissink, Arjan; Raghoebar, Gerry M; Meijer, Henny J A

    2014-01-01

    This study assessed whether buccopalatal implant position, biotype, platform switching, and pre-implant bone augmentation affects the level of the midbuccal mucosa (MBM). Ninety patients with a single-tooth implant in the esthetic zone were included. The level of the MBM was measured on photographs

  19. Micro-computerised tomography optimisation for the measurement of bone mineral density around titanium dental implants

    International Nuclear Information System (INIS)

    Park, C.; Swain, M.; Duncan, W.

    2010-01-01

    Titanium dental implants (screws) are commonly used to replace missing teeth by forming a biological union with bone ('osseointegration'). Micro-computerised tomography (μCT) may be useful for measuring bone mineral density around dental implants. Major issues arise because of various artefacts that occur with polychromatic X-rays associated bench type instruments that may compromise interpretation of the observations. In this study various approaches to minimise artefacts such as; beam hardening, filtering and edge effects are explored with a homogeneous polymeric material, Teflon, with and without an implant present. The implications of the limitations of using such polychromatic μCT systems to quantify bone mineral density adjacent to the implant are discussed. (author)

  20. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation

    International Nuclear Information System (INIS)

    Lee, Jae Hyup; Baek, Hae-Ri; Lee, Ji-Ho; Ryu, Mi Young; Seo, Jun-Hyuk; Lee, Kyung-Mee

    2014-01-01

    Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space. (paper)

  1. In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing

    Directory of Open Access Journals (Sweden)

    A-F. Obaton

    2017-08-01

    Full Text Available Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 μm were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conformed to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 μm lattice cell size is more favourable to bone penetration than the 1200 μm lattice cell size, as the bone penetration is 84% for 900 μm against 54% for 1200 μm cell structures. The lower bone penetration value for the 1200 μm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration.

  2. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation

    NARCIS (Netherlands)

    Wang, J.; Zheng, Y.; Zhao, J.; Liu, T.; Gao, L.; Gu, Z.; Wu, G.

    2012-01-01

    Objectives To delineate the dynamic micro-architectures of bone induced by low-dose bone morphogenetic protein (BMP)-2/7 heterodimer in peri-implant bone defects compared to BMP2 and BMP7 homodimer. Material and Methods Peri-implant bone defects (8 mm in diameter, 4 mm in depth) were created

  3. Analysis nuclear punctual method of the interface between an implanted bio coral and bone

    International Nuclear Information System (INIS)

    Irigaray, J.L.; Oudadesse, H.; Braye, F.

    1994-01-01

    We adopted the Particles Induced X-ray Emission nuclear analysis, which allows to obtain informations on the atomic element distribution at level of bone surfaces and of the implanted biomaterial. It characterizes the consolidation between bone and bio material, a few weeks after its implant. 5 refs., 2 figs., 1 tab

  4. Marginal Bone Loss Around Early-Loaded SLA and SLActive Implants: Radiological Follow-Up Evaluation Up to 6.5 Years.

    Science.gov (United States)

    Şener-Yamaner, Işil Damla; Yamaner, Gökhan; Sertgöz, Atilla; Çanakçi, Cenk Fatih; Özcan, Mutlu

    2017-08-01

    The aim of this study was to compare marginal bone loss around early-loaded SLA and SLActive tissue-level implants (Straumann Dental Implants; Institut Straumann AG, Basel, Switzerland) after a mean of 81-month follow-up period. One hundred seven SLA and 68 SLActive implants were placed in 55 patients and loaded with final restoration after 8 and 3 weeks of healing time, respectively. Marginal bone loss around implants was determined radiographically at initial and after a mean observation time ranging between 20 and 81 months. The effect of location (mandible vs maxilla), smoking habit, sex, implant length and diameter, and the type of prosthesis on the marginal bone loss was evaluated. The overall cumulative survival rate was 98.2% being 99% for SLA implants and 97% for SLActive implants. After 20-month follow-up period, mean marginal bone loss values for the SLA and SLActive implants were 0.24 and 0.17 mm, respectively. After 81 months, mean marginal bone loss for the SLA and SLActive implants reached 0.71 and 0.53 mm, respectively. Marginal bone loss was affected by the length and type of implant and patients' smoking habit after a mean observation time of 20 months. However, none of the parameters had any significant effect on the marginal bone loss after a follow-up period of 81 months. With both SLA and SLActive implants, successful clinical results could be achieved up to 6.5 years of follow-up period.

  5. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study.

    Science.gov (United States)

    Marcián, Petr; Borák, Libor; Valášek, Jiří; Kaiser, Jozef; Florian, Zdeněk; Wolff, Jan

    2014-12-18

    The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of abutment height on interproximal implant bone level in the early healing: A randomized clinical trial.

    Science.gov (United States)

    Blanco, Juan; Pico, Alexandre; Caneiro, Leticia; Nóvoa, Lourdes; Batalla, Pilar; Martín-Lancharro, Pablo

    2018-01-01

    The aim of this randomized clinical trial was to compare the effect on the interproximal implant bone loss (IBL) of two different heights (1 and 3 mm) of definitive abutments placed at bone level implants with a platform switched design. Twenty-two patients received forty-four implants (6.5-10 mm length and 3.5-4 mm diameter) to replace at least two adjacent missing teeth, one bridge set to each patient-two implants per bridge. Patients were randomly allocated, and two different abutment heights, 1 and 3 mm using only one abutment height per bridge, were used. Clinical and radiological measurements were performed at 3 and 6 months after surgery. Interproximal bone level changes were compared between treatment groups. The association between IBL and categorical variables (history of periodontitis, smoking, implant location, implant diameter, implant length, insertion torque, width of keratinized mucosa, bone density, gingival biotype and antagonist) was also performed. At 3 months, implants with a 1-mm abutment had significantly greater IBL (0.83 ± 0.19 mm) compared to implants with a 3-mm abutment (0.14 ± 0.08 mm). At 6 months, a greater IBL was observed at implants with 1-mm abutments compared to implants with 3-mm abutments (0.91 ± 0.19 vs. 0.11 ± 0.09 mm). The analysis of the relation between patient characteristics and clinical variables with IBL revealed no significant differences at any moment except for smoking. Abutment height is an important factor to maintain interproximal implant bone level in early healing. Short abutments led to a greater interproximal bone loss in comparison with long abutments after 6 months. Other variables except smoking showed no relation with interproximal bone loss in early healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Marginal bone-level alterations of loaded zirconia and titanium dental implants: an experimental study in the dog mandible.

    Science.gov (United States)

    Thoma, Daniel S; Benic, Goran I; Muñoz, Fernando; Kohal, Ralf; Sanz Martin, Ignacio; Cantalapiedra, Antonio G; Hämmerle, Christoph H F; Jung, Ronald E

    2016-04-01

    The aim was to test whether or not the marginal bone-level alterations of loaded zirconia implants are similar to the bone-level alterations of a grade 4 titanium one-piece dental implant. In six dogs, all premolars and the first molars were extracted in the mandible. Four months later, three zirconia implants (BPI, VC, ZD) and a control titanium one-piece (STM) implant were randomly placed in each hemimandible and left for transmucosal healing (baseline). Six months later, CAD/CAM crowns were cemented. Sacrifice was scheduled at 6-month postloading. Digital X-rays were taken at implant placement, crowns insertion, and sacrifice. Marginal bone-level alterations were calculated, and intra- and intergroup comparisons performed adjusted by confounding factors. Implants were successfully placed. Until crown insertion, two implants were fractured (one VC, one ZD). At sacrifice, 5 more implants were (partly) fractured (one BPI, four ZD), and one lost osseointegration (VC). No decementation of crowns occurred. All implant systems demonstrated a statistically significant (except VC) loss of marginal bone between baseline and crown insertion ranging from 0.29 mm (VC; P = 0.116) to 0.80 mm (ZD; P = 0.013). The estimated marginal bone loss between baseline and 6 months of loading ranged between 0.19 mm (BPI) and 1.11 mm (VC), being statistically significant for STM and VC only (P implants and control implants (STM vs. BPI P = 0.007; vs. VC P = 0.001; vs. ZD P = 0.011). Zirconia implants were more prone to fracture prior to and after loading with implant-supported crowns compared to titanium implants. Individual differences and variability in the extent of the bone-level changes during the 12-month study period were found between the different implant types and materials. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  9. Bone Conduction: Anatomy, Physiology, and Communication

    National Research Council Canada - National Science Library

    Henry, Paula; Letowski, Tomasz R

    2007-01-01

    ... conduction transmission, and the use of the bone conduction pathway for communication. Bone conduction for the transmission of communication is effective and feasible for Soldiers because it provides a means of providing radio communication in combination with hearing protection devices.

  10. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection.

    Science.gov (United States)

    Inzana, J A; Trombetta, R P; Schwarz, E M; Kates, S L; Awad, H A

    2015-11-04

    Surgical implant-associated bone infections (osteomyelitis) have severe clinical and socioeconomic consequences. Treatment of chronic bone infections often involves antibiotics given systemically and locally to the affected site in poly (methyl methacrylate) (PMMA) bone cement. Given the high antibiotic concentrations required to affect bacteria in biofilm, local delivery is important to achieve high doses at the infection site. PMMA is not suitable to locally-deliver some biofilm-specific antibiotics, including rifampin, due to interference with PMMA polymerisation. To examine the efficacy of localised, combinational antibiotic delivery compared to PMMA standards, we fabricated rifampin- and vancomycin-laden calcium phosphate scaffolds (CPS) by three-dimensional (3D) printing to treat an implant-associated Staphylococcus aureus bone infection in a murine model. All vancomycin- and rifampin-laden CPS treatments significantly reduced the bacterial burden compared with vancomycin-laden PMMA. The bones were bacteria culture negative in 50 % of the mice that received sustained release vancomycin- and rifampin-laden CPS. In contrast, 100 % of the bones treated with vancomycin monotherapy using PMMA or CPS were culture positive. Yet, the monotherapy CPS significantly reduced the bacterial metabolic load following revision compared to PMMA. Biofilm persisted on the fixation hardware, but the infection-induced bone destruction was significantly reduced by local rifampin delivery. These data demonstrate that, despite the challenging implant-retaining infection model, co-delivery of rifampin and vancomycin from 3D printed CPS, which is not possible with PMMA, significantly improved the outcomes of implant-associated osteomyelitis. However, biofilm persistence on the fixation hardware reaffirms the importance of implant exchange or other biofilm eradication strategies to complement local antibiotics.

  11. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection

    Directory of Open Access Journals (Sweden)

    JA Inzana

    2015-11-01

    Full Text Available Surgical implant-associated bone infections (osteomyelitis have severe clinical and socioeconomic consequences. Treatment of chronic bone infections often involves antibiotics given systemically and locally to the affected site in poly (methyl methacrylate (PMMA bone cement. Given the high antibiotic concentrations required to affect bacteria in biofilm, local delivery is important to achieve high doses at the infection site. PMMA is not suitable to locally-deliver some biofilm-specific antibiotics, including rifampin, due to interference with PMMA polymerisation. To examine the efficacy of localised, combinational antibiotic delivery compared to PMMA standards, we fabricated rifampin- and vancomycin-laden calcium phosphate scaffolds (CPS by three-dimensional (3D printing to treat an implant-associated Staphylococcus aureus bone infection in a murine model. All vancomycin- and rifampin-laden CPS treatments significantly reduced the bacterial burden compared with vancomycin-laden PMMA. The bones were bacteria culture negative in 50 % of the mice that received sustained release vancomycin- and rifampin-laden CPS. In contrast, 100 % of the bones treated with vancomycin monotherapy using PMMA or CPS were culture positive. Yet, the monotherapy CPS significantly reduced the bacterial metabolic load following revision compared to PMMA. Biofilm persisted on the fixation hardware, but the infection-induced bone destruction was significantly reduced by local rifampin delivery. These data demonstrate that, despite the challenging implant-retaining infection model, co-delivery of rifampin and vancomycin from 3D printed CPS, which is not possible with PMMA, significantly improved the outcomes of implant-associated osteomyelitis. However, biofilm persistence on the fixation hardware reaffirms the importance of implant exchange or other biofilm eradication strategies to complement local antibiotics.

  12. Development and Assessment of a 3D-Printed Scaffold with rhBMP-2 for an Implant Surgical Guide Stent and Bone Graft Material: A Pilot Animal Study

    OpenAIRE

    Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo

    2017-01-01

    In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent an...

  13. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs.

    NARCIS (Netherlands)

    Schwarz, F.; Herten, M. van; Sager, M.; Bieling, K.; Sculean, A.; Becker, J.

    2007-01-01

    OBJECTIVES: The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. MATERIAL AND METHODS: Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to

  14. Piezosurgery in Bone Augmentation Procedures Previous to Dental Implant Surgery: A Review of the Literature

    Science.gov (United States)

    Magrin, Gabriel Leonardo; Sigua-Rodriguez, Eder Alberto; Goulart, Douglas Rangel; Asprino, Luciana

    2015-01-01

    The piezosurgery has been used with increasing frequency and applicability by health professionals, especially those who deal with dental implants. The concept of piezoelectricity has emerged in the nineteenth century, but it was applied in oral surgery from 1988 by Tomaso Vercellotti. It consists of an ultrasonic device able to cut mineralized bone tissue, without injuring the adjacent soft tissue. It also has several advantages when compared to conventional techniques with drills and saws, such as the production of a precise, clean and low bleed bone cut that shows positive biological results. In dental implants surgery, it has been used for maxillary sinus lifting, removal of bone blocks, distraction osteogenesis, lateralization of the inferior alveolar nerve, split crest of alveolar ridge and even for dental implants placement. The purpose of this paper is to discuss the use of piezosurgery in bone augmentation procedures used previously to dental implants placement. PMID:26966469

  15. Survival, Function, and Complications of Oral Implants Placed in Bone Flaps in Jaw Rehabilitation: A Systematic Review.

    Science.gov (United States)

    Zhang, Lei; Ding, Qian; Liu, Cunrui; Sun, Yannan; Xie, Qiufei; Zhou, Yongsheng

    2016-01-01

    This systematic review attempted to determine the survival rate of implants placed in bone flaps in jaw rehabilitation and the functional gains and the most common complications related to these implants. An electronic search was undertaken of PubMed, EMBASE, and CNKI records from 1990 through July 2014. Two independent examiners read the titles and abstracts of the results to identify studies that met the inclusion criteria. Subsequently, the reference lists of the selected publications were hand searched. Descriptive statistics were used to report all data related to the survival rate of implants placed in bone flaps in jaw rehabilitation, the functional gains, and complications. A total of 20 studies were included for systematic review without repetition. The mean follow-up time after implant placement ranged from 1.75 to 9.5 years. Within the limitations of available studies, the survival rate of implants placed in bone flaps in jaw rehabilitation ranged from 82.4% to 100%. Of the 20 included studies, 15 reported a survival rate higher than 90%. The cumulative survival rate was 93.2%, with the longest follow-up time being 12.9 years. The most common complications related to these implants were peri-implant bone resorption or peri-implant inflammation, and peri-implant soft tissue proliferation. The main factors associated with the survival rate of implants in bone flaps were reported as time of implant placement and radiotherapy. Despite some persistent soft tissue problems and implant loss, most patients reached a satisfactory functional and esthetic outcome, as evaluated by clinical examination and subjectively by the patients at interview. Implant-supported dental prosthetic rehabilitation in reconstructed jaws improved the quality of life in terms of speech, nutrition, oral competence, and facial appearance. Placement of implants in bone flaps in jaw rehabilitation was demonstrated to be a reliable technique with a high survival rate. Multicentered

  16. Preoperative implant planning considering alveolar bone grafting needs and complication prediction using panoramic versus CBCT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [OIC, OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven (Belgium); Noriega, Jorge [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-09-15

    This study was performed to determine the efficacy of observers' prediction for the need of bone grafting and presence of perioperative complications on the basis of cone-beam computed tomography (CBCT) and panoramic radiographic (PAN) planning as compared to the surgical outcome. One hundred and eight partially edentulous patients with a need for implant rehabilitation were referred for preoperative imaging. Imaging consisted of PAN and CBCT images. Four observers carried out implant planning using PAN image datasets, and at least one month later, using CBCT image datasets. Based on their own planning, the observers assessed the need for bone graft augmentation as well as complication prediction. The implant length and diameter, the need for bone graft augmentation, and the occurrence of anatomical complications during planning and implant placement were statistically compared. In the 108 patients, 365 implants were installed. Receiver operating characteristic analyses of both PAN and CBCT preoperative planning showed that CBCT performed better than PAN-based planning with respect to the need for bone graft augmentation and perioperative complications. The sensitivity and the specificity of CBCT for implant complications were 96.5% and 90.5%, respectively, and for bone graft augmentation, they were 95.2% and 96.3%, respectively. Significant differences were found between PAN-based planning and the surgery of posterior implant lengths. Our findings indicated that CBCT-based preoperative implant planning enabled treatment planning with a higher degree of prediction and agreement as compared to the surgical standard. In PAN-based surgery, the prediction of implant length was poor.

  17. The effects of hydroxyapatite coating and bone allograft on fixation of loaded experimental primary and revision implants.

    Science.gov (United States)

    Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E

    2003-06-01

    We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.

  18. Effects of Implant-Associated Osteomyelitis on Cefuroxime Bone Pharmacokinetics

    DEFF Research Database (Denmark)

    Tøttrup, Mikkel; Bue, Mats; Koch, Janne

    2016-01-01

    Background: The prolonged antibiotic therapy that is often needed for successful management of osteomyelitis may be related to incomplete penetration of antibiotics into the target site. The objective of this study was to assess the effects of implant-associated osteomyelitis on cefuroxime...... cavity up to MICs of 2 mg/L compared with the other tissues, but the time was shorter for higher MICs.  Conclusions: Cefuroxime penetration into infected cancellous bone was incomplete but comparable with that in healthy bone. The destructive bone processes associated with acute osteomyelitis reduced...

  19. Crestal bone loss around submerged and nonsubmerged dental implants: A systematic review.

    Science.gov (United States)

    Al Amri, Mohammad D

    2016-05-01

    To my knowledge, there is no systematic review of crestal bone loss (CBL) around submerged and nonsubmerged dental implants. The purpose of this review was to systematically assess CBL around submerged and nonsubmerged dental implants. The addressed focused question was, "Does crestal and subcrestal placement of dental implants influence crestal bone levels?" Databases were searched from 1986 through October 2015 using different combinations of the following keywords: crestal, sub-crestal, bone loss, dental implant, submerged, and nonsubmerged. Reference lists of potentially relevant original and review articles were hand-searched to identify any further studies. Letters to the editor, case reports, commentaries, studies on platform-switched implants, and studies published in languages other than English were excluded. In total, 13 studies (6 human and 7 animal), which were performed at universities, were included. In the human studies, the number of participants ranged from 8 to 84 individuals. The follow-up period ranged from 1 to 5 years. CBL at the test sites ranged from 0.17 mm to 0.9 mm and at control sites from 0.02 mm to 1.4 mm. Five human studies reported no significant difference in CBL around implants placed at the test and control sites. All animal studies were performed in dogs with a mean age ranging from 1 to approximately 2 years. The follow-up period ranged from 2 to 6 months. Four animal studies reported no significant difference in CBL around submerged and nonsubmerged implants. No significant difference in CBL was found around submerged and nonsubmerged dental implants. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    International Nuclear Information System (INIS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Fedder, Gary K; Miller, Mark

    2009-01-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa

  1. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Naoya, E-mail: tani110@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Fujibayashi, Shunsuke, E-mail: shfuji@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Takemoto, Mitsuru, E-mail: m.take@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Sasaki, Kiyoyuki, E-mail: kiy-sasaki@spcom.co.jp [Sagawa Printing Co., Ltd., 5-3, Inui, Morimoto-Cho, Mukou-Shi, Kyoto 617-8588 (Japan); Otsuki, Bungo, E-mail: bungo@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan); Nakamura, Takashi, E-mail: ntaka@kuhp.kyoto-u.ac.jp [National Hospital Organization Kyoto Medical Center, 1-1, Mukaihatacho, Hukakusa, Hushimi, Kyoto 612-8555 (Japan); Matsushita, Tomiharu, E-mail: matsushi@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Kokubo, Tadashi, E-mail: kokubo@isc.chubu.ac.jp [Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan); Matsuda, Shuichi, E-mail: smat522@kuhp.kyoto-u.ac.jp [Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507 (Japan)

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900 μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone–implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8 weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956 μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2 weeks than the other implants. After 4 weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4 weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. - Highlights: • We studied the effect of pore size on bone tissue in-growth in a rabbit in vivo model. • Titanium samples with 300/600/900 μm pore size in three-dimensionally controlled shapes were fabricated by additive manufacturing. • Samples were

  2. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    Science.gov (United States)

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cyclosporine-a and bone density around titanium implants: a histometric study in rabbits

    Directory of Open Access Journals (Sweden)

    Celso Eduardo Sakakura

    2011-06-01

    Full Text Available Aim: Cyclosporine A (CsA is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA received daily subcutaneous injection of CsA (10mg/kg body weight and the control group (CTL received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 – p < 0.01. In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 – p <0.05. In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 – p= 0.001. Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.

  4. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  5. Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography.

    Science.gov (United States)

    Le Cann, Sophie; Tudisco, Erika; Perdikouri, Christina; Belfrage, Ola; Kaestner, Anders; Hall, Stephen; Tägil, Magnus; Isaksson, Hanna

    2017-11-01

    Metallic implants are commonly used as surgical treatments for many orthopedic conditions. The long-term stability of implants relies on an adequate integration with the surrounding bone. Unsuccessful integration could lead to implant loosening. By combining mechanical loading with high-resolution 3D imaging methods, followed by image analysis such as Digital Volume Correlation (DVC), we aim at evaluating ex vivo the mechanical resistance of newly formed bone at the interface. X-rays tomography is commonly used to image bone but induces artefacts close to metallic components. Utilizing a different interaction with matter, neutron tomography is a promising alternative but has not yet been used in studies of bone mechanics. This work demonstrates that neutron tomography during in situ loading is a feasible tool to characterize the mechanical response of bone-implant interfaces, especially when combined with DVC. Experiments were performed where metal screws were implanted in rat tibiae during 4 weeks. The screws were pulled-out while the samples were sequentially imaged in situ with neutron tomography. The images were analyzed to quantify bone ingrowth around the implants. DVC was used to track the internal displacements and calculate the strain fields in the bone during loading. The neutron images were free of metal-related artefacts, which enabled accurate quantification of bone ingrowth on the screw (ranging from 60% to 71%). DVC allowed successful identification of the deformation and cracks that occurred during mechanical loading and led to final failure of the bone-implant interface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study.

    Science.gov (United States)

    Limbert, Georges; van Lierde, Carl; Muraru, O Luiza; Walboomers, X Frank; Frank, Milan; Hansson, Stig; Middleton, John; Jaecques, Siegfried

    2010-05-07

    The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation). In order to reach these objectives, a microCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of microCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young's modulus of the trabecular bone tissue to be 5, 10 and 15GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Effect of plasma-rich in platelet-derived growth factors on peri-implant bone healing: An experimental study in canines

    Science.gov (United States)

    Birang, Reza; Torabi, Alireza; Shahabooei, Mohammad; Rismanchian, Mansour

    2012-01-01

    Background: Tissue engineering principles can be exploited to enhance alveolar and peri-implant bone reconstruction by applying such biological factors as platelet-derived growth factors. The objective of the present study is to investigate the effect of autologous plasma-rich in growth factors (on the healing of peri-implant bone in canine mandible). Materials and Methods: In this prospective experimental animal study, two healthy canines of the Iranian mix breed were selected. Three months after removing their premolar teeth on both sides of the mandible, 12 implants of the Osteo Implant Corporationsystem, 5 mm in diameter and 10 mm in length, were selected to be implanted. Plasma rich in growth factors (PRGF) were applied on six implants while the other six were used as plain implants without the plasma. The implants were installed in osteotomy sites on both sides of the mandible to be removed after 4 weeks with the surrounding bones using a trephine bur. Mesio-distal sections and implant blocks, 50 μ in diameter containing the peri-implant bone, were prepared By basic fuchin toluidine-bluefor histological and histomorphometric evaluation by optical microscope. The data were analyzed using Mann-Whitney Test (PPRGF and control groups had no statistically significant differences (P=0.261, P=0.2) although the parameters showed higher measured values in the PRGF group. However, compared to the control, application of PRGF had significantly increased bone-to-implant contact (P=0.028) Conclusion: Based on the results, it may be concluded that application of PRGF on the surface of implant may enhance bone-to-implant contact. PMID:22363370

  8. Evaluation of guided bone generation around implants placed into fresh extraction sockets: an experimental study in dogs

    DEFF Research Database (Denmark)

    Gotfredsen, K; Nimb, L; Buser, D

    1993-01-01

    Immediate placement of implants into fresh extraction sockets would have the principal advantage of decreasing the recommended period of healing. It also would result in a guided placement of the implant, and it could reduce the resorption of the alveolar bone in the extraction area. However, when...... an implant is placed immediately into an extraction socket, it may not engage the walls of the socket near the crest of the alveolar ridge. With the presence of a bone defect around an implant, ingrowth of soft tissue could compromise the achievement of osseointegration in the crestal bone area....... The objective of this study was to evaluate the crestal bone healing response adjacent to implants placed immediately into fresh extraction sockets with and without covering membranes. Eight adult mongrel dogs had the third and fourth mandibular premolars extracted bilaterally. Thirty-two submerged titanium...

  9. An animal model to evaluate skin-implant-bone integration and gait with a prosthesis directly attached to the residual limb.

    Science.gov (United States)

    Farrell, Brad J; Prilutsky, Boris I; Kistenberg, Robert S; Dalton, John F; Pitkin, Mark

    2014-03-01

    Despite the number of advantages of bone-anchored prostheses, their use in patients is limited due to the lack of complete skin-implant integration. The objective of the present study was to develop an animal model that would permit both detailed investigations of gait with a bone-anchored limb prosthesis and histological analysis of the skin-implant-bone interface after physiological loading of the implant during standing and walking. Full-body mechanics of walking in two cats were recorded and analyzed before and after implantation of a percutaneous porous titanium pylon into the right tibia and attachment of a prosthesis. The rehabilitation procedures included initial limb casting, progressively increasing loading on the implant, and standing and locomotor training. Detailed histological analysis of bone and skin ingrowth into implant was performed at the end of the study. The two animals adopted the bone-anchored prosthesis for standing and locomotion, although loads on the prosthetic limb during walking decreased by 22% and 62%, respectively, 4months after implantation. The animals shifted body weight to the contralateral side and increased propulsion forces by the contralateral hindlimb. Histological analysis of the limb implants demonstrated bone and skin ingrowth. The developed animal model to study prosthetic gait and tissue integration with the implant demonstrated that porous titanium implants may permit bone and skin integration and prosthetic gait with a bone-anchored prosthesis. Future studies with this model will help optimize the implant and prosthesis properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site.

    Science.gov (United States)

    Tamimi, Faleh; Torres, Jesus; Al-Abedalla, Khadijeh; Lopez-Cabarcos, Enrique; Alkhraisat, Mohammad H; Bassett, David C; Gbureck, Uwe; Barralet, Jake E

    2014-07-01

    Onlay grafts made of monolithic microporous monetite bioresorbable bioceramics have the capacity to conduct bone augmentation. However, there is heterogeneity in the graft behaviour in vivo that seems to correlate with the host anatomy. In this study, we sought to investigate the metabolic activity of the regenerated bone in monolithic monetite onlays by using positron emission tomography-computed tomography (PET-CT) in rats. This information was used to optimize the design of monetite onlays with different macroporous architecture that were then fabricated using a 3D-printing technique. In vivo, bone augmentation was attempted with these customized onlays in rabbits. PET-CT findings demonstrated that bone metabolism in the calvarial bone showed higher activity in the inferior and lateral areas of the onlays. Histological observations revealed higher bone volume (up to 47%), less heterogeneity and more implant osseointegration (up to 38%) in the augmented bone with the customized monetite onlays. Our results demonstrated for the first time that it is possible to achieve osseointegration of dental implants in bone augmented with 3D-printed synthetic onlays. It was also observed that designing the macropore geometry according to the bone metabolic activity was a key parameter in increasing the volume of bone augmented within monetite onlays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Implant failure in lower limb long bone diaphyseal fractures at a tertiary hospital in Ile- Ife. Nigeria.

    Science.gov (United States)

    Esan, O; Ikem, I C; Orimolade, E A; Esan, O T

    2014-06-01

    This included determining aetiology of failure and comparing the failure rate in implant fixations using solid intramedullary nail and DCP. A retrospective study conducted at the Orthopaedic Department, Obafemi Awolowo University Teaching Hospital, Ile-Ife,Nigeria. Records of all operated cases of lower limb long bone diaphyseal fractures including those with failed fixations from August 2006-July 2011 were reviewed. Data retrieved included type of implant used, aetiology and characteristics of Implant failure. Data were analysed using SPSS version 16. Frequency distribution of the variables of interest was done. Difference in failure rate of intramedullary nail versus DCP was tested using chi-square. Statistical significance was inferred at pfractures and met inclusion criteria, of which 135 had intramedullary nail fixation and 86 had DCP. The rate of implant failure in intramedullary nail was 1.5% while it was 5.8% in patients with DCP (p=0.113; 0R=4.10; 95% CI=0.65- 43.77). Implant fracture was the commonest type of failure seen (100% versus 60%) and non union was the commonest cause of failure seen (50% versus 40%) in the intramedullary nailing and DCP groups respectively. The likelihood of a failed implant is higher in fixations done with DCP compared with intramedullary nail though the difference was not statistically significant. Commonest reason for failure in both groups was non-union. Findings from this study may guide surgeons in choice of implant in the management of long bone fractures.

  12. Patient-specific in silico models can quantify primary implant stability in elderly human bone.

    Science.gov (United States)

    Steiner, Juri A; Hofmann, Urs A T; Christen, Patrik; Favre, Jean M; Ferguson, Stephen J; van Lenthe, G Harry

    2018-03-01

    Secure implant fixation is challenging in osteoporotic bone. Due to the high variability in inter- and intra-patient bone quality, ex vivo mechanical testing of implants in bone is very material- and time-consuming. Alternatively, in silico models could substantially reduce costs and speed up the design of novel implants if they had the capability to capture the intricate bone microstructure. Therefore, the aim of this study was to validate a micro-finite element model of a multi-screw fracture fixation system. Eight human cadaveric humerii were scanned using micro-CT and mechanically tested to quantify bone stiffness. Osteotomy and fracture fixation were performed, followed by mechanical testing to quantify displacements at 12 different locations on the instrumented bone. For each experimental case, a micro-finite element model was created. From the micro-finite element analyses of the intact model, the patient-specific bone tissue modulus was determined such that the simulated apparent stiffness matched the measured stiffness of the intact bone. Similarly, the tissue modulus of a small damage region around each screw was determined for the instrumented bone. For validation, all in silico models were rerun using averaged material properties, resulting in an average coefficient of determination of 0.89 ± 0.04 with a slope of 0.93 ± 0.19 and a mean absolute error of 43 ± 10 μm when correlating in silico marker displacements with the ex vivo test. In conclusion, we validated a patient-specific computer model of an entire organ bone-implant system at the tissue-level at high resolution with excellent overall accuracy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:954-962, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels

    Directory of Open Access Journals (Sweden)

    João Paulo Mendes TRIBST

    2017-12-01

    Full Text Available Abstract This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA. The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm, C2 (2 mm, C3 (3 mm, C4 (4 mm, C5 (5 mm and C6 (6 mm. The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6. The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads’ presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant’s thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.

  14. Bone replacement following dental trauma prior to implant surgery - present status

    NARCIS (Netherlands)

    Hallman, Mats; Mordenfeld, Arne; Strandkvist, Tomas

    Dento-alveolar trauma often leads to a need for reconstruction of the alveolar crest before an implant can be placed. Although autogenous bone grafts is considered the 'gold standard', this may be associated with patient morbidity and graft resorption. Consequently, the use of bone substitutes has

  15. Fate of bone marrow stromal cells in a syngenic model of bone formation.

    Science.gov (United States)

    Boukhechba, Florian; Balaguer, Thierry; Bouvet-Gerbettaz, Sébastien; Michiels, Jean-François; Bouler, Jean-Michel; Carle, Georges F; Scimeca, Jean-Claude; Rochet, Nathalie

    2011-09-01

    Bone marrow stromal cells (BMSCs) have been demonstrated to induce bone formation when associated to osteoconductive biomaterials and implanted in vivo. Nevertheless, their role in bone reconstruction is not fully understood and rare studies have been conducted to follow their destiny after implantation in syngenic models. The aim of the present work was to use sensitive and quantitative methods to track donor and recipient cells after implantation of BMSCs in a syngenic model of ectopic bone formation. Using polymerase chain reaction (PCR) amplification of the Sex determining Region Y (Sry) gene and in situ hybridization of the Y chromosome in parallel to histological analysis, we have quantified within the implants the survival of the donor cells and the colonization by the recipient cells. The putative migration of the BMSCs in peripheral organs was also analyzed. We show here that grafted cells do not survive more than 3 weeks after implantation and might migrate in peripheral lymphoid organs. These cells are responsible for the attraction of host cells within the implants, leading to the centripetal colonization of the biomaterial by new bone.

  16. Alveolar Bone Resorption Evaluation Around Single-piece Designed Bicortical Implants, Using Immediate Loading Protocol, Based on Orthopantomographs

    Directory of Open Access Journals (Sweden)

    Száva Dániel-Tamás

    2017-12-01

    Full Text Available Background: Inserting dental implants in severely atrophied jawbones is a great challenge for the dental practitioner. There are an increasing number of patients who choose dental implantanchored prosthetic restorations despite compromised bone quality and quantity. There have been numerous attempts in adapting implant design for the atrophic crestal bone. One-piece, needle-type basal implant design is a typical design for these cases. These implants are inserted in the remaining compact bone located in the basal aspect of the jawbones. If high primary stability is achieved, these implants are used for immediate loading protocol. From many points of view, this technique is based on contradictory principles compared to classic implant surgery and loading protocols. The aim of this study was to investigate the long-term success of basal one-piece short-diameter dental implants used for immediate loading protocol.

  17. Bone Morphometric Evaluation around Immediately Placed Implants Covered with Porcine-Derived Pericardium Membrane: An Experimental Study in Dogs

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo

    2012-01-01

    Full Text Available Objective. To investigate whether porcine-derived bioresorbable pericardium membrane coverage enhances the osseointegration around implants placed in fresh extraction sockets. Study Design. Twenty-four commercially available endosseous implants were placed in the fresh extraction sockets of the mandibular first molar of mature beagles (. On one side, implants and osteotomy sites were covered with porcine-derived bioresorbable pericardium membranes, whereas on the other side, no membranes were used. After 6 weeks, samples were retrieved and were histologically processed for histomorphometric analysis. Results. The histological observation showed that bone loss and soft tissue migration in the coronal region of the implant were evident for the control group, whereas bone fill was evident up to the neck of the implant for the membrane-covered group. Bone-to-implant contact was significantly higher for the membrane-covered group compared to the control group, 75% and 45% (, respectively. Conclusion. The experimental membranes proved to regenerate bone around implants placed in fresh extraction sockets without soft tissue intrusion.

  18. Evaluation of 4 mm implants in mandibular edentulous patients with reduced bone height. Surgical preliminary results

    Directory of Open Access Journals (Sweden)

    J.L. Calvo-Guirado

    2014-06-01

    Full Text Available Aim: Growing evidence has suggested the utility of short dental implants for oral reconstructive procedures in clinical situations of limited vertical bone height. The aim of this short comunication was to evaluate the clinical use of implants < 10 mm in length and to determine short implant-supported prosthesis success in the atrophic jaw. Materials and methods: Six women and three men were recruited for the treatment of edentulous mandibles. A total of 6 implants were inserted in each patient: two anterior implants of conventional lenght and four posterior 4 mm Titanium Zirconium (TiZr implants. The insertion torque and bone denisty were evaluated. Results: The mean insertion torque for the 4 mm implants was lower than for conventional ones, without any statistical difference. Moreover, most of the patients (88% showed a D2 bone type. Conclusion: The provision of short implant-supported prostheses in patients with atrophic alveolar ridges appears to be a successful treatment option in the short term; however, more scientific evidence is needed for the long term.

  19. The fabrication of bioresorbable implants for bone defects replacement using computer tomogram and 3D printing

    Science.gov (United States)

    Kuznetsov, P. G.; Tverdokhlebov, S. I.; Goreninskii, S. I.; Bolbasov, E. N.; Popkov, A. V.; Kulbakin, D. E.; Grigoryev, E. G.; Cherdyntseva, N. V.; Choinzonov, E. L.

    2017-09-01

    The present work demonstrates the possibility of production of personalized implants from bioresorbable polymers designed for replacement of bone defects. The stages of creating a personalized implant are described, which include the obtaining of 3D model from a computer tomogram, development of the model with respect to shape of bone fitment bore using Autodesk Meshmixer software, and 3D printing process from bioresorbable polymers. The results of bioresorbable polymer scaffolds implantation in pre-clinical tests on laboratory animals are shown. The biological properties of new bioresorbable polymers based on poly(lactic acid) were studied during their subcutaneous, intramuscular, bone and intraosseous implantation in laboratory animals. In all cases, there was a lack of a fibrous capsule formation around the bioresorbable polymer over time. Also, during the performed study, conclusions were made on osteogenesis intensity depending on the initial state of bone tissue.

  20. Suppurative Inflammation and Local Tissue Destruction Reduce the Penetration of Cefuroxime to Infected Bone Implant Cavities

    DEFF Research Database (Denmark)

    Jensen, L Kruse; Koch, J; Henriksen, N Lind

    2017-01-01

    with Staphylococcus aureus IAO present for 5 days. In the present study, a comprehensive histopathological characterization of the peri-implant bone tissue was performed and correlated with the reduced penetration of cefuroxime. In two pigs, the levels of oxygen, pyruvate and lactate was estimated in the implant...... cavity. A peri-implant pathological bone area (PIBA) developed with a width of 1.2 up to 3.8 mm. PIBAs included: (1) suppuration, resulting in destruction of the implant cavity contour, and (2) a non-vascular zone of primarily necrotic bone tissue. A strong negative correlation was seen between PIBA...... width and cefuroxime area under the concentration time curves (AUC[0-last]) and peak concentration of cefuroxime (Cmax). All metabolic measurements demonstrated hypoxia. In conclusion, subacute suppurative bone inflammation with local tissue destruction can result in decreased penetration of antibiotics...

  1. Quantitative analysis on orientation of human bone integrated with midpalatal implant by micro X-ray diffractometer

    International Nuclear Information System (INIS)

    Murata, Masaru; Akazawa, Toshiyuki; Yuasa, Toshihiro; Okayama, Miki; Tazaki, Junichi; Hanawa, Takao; Arisue, Makoto; Mizoguchi, Itaru

    2012-01-01

    Highlights: ► A titanium fixture is implanted into palatal bone of an 18-year-old patient as the unmoved anchorage for the orthodontic treatment. ► The fixture is integrated with compact bone with cortical bone-like osteon. ► Microbeam X-ray diffraction denotes the crystallinity and orientation of HAp. ► X-ray images of c-face in HAp reveal functionally graded distribution of bone quality. ► The crystal growth of c-face is caused by propagation of the continuous lateral stress. - Abstract: A midpalatal implant system has been used as the unmoved anchorage for teeth movement. An 18-year-old male patient presented with reversed occlusion and was diagnosed as malocclusion. A pure titanium fixture (lengths: 4 mm, diameter: 3.3 mm, Orthosystem ® , Institute Straumann, Switzerland) was implanted into the palatal bone of the patient as the orthodontic anchorage. The implant anchorage was connected with the upper left and right first molars, and had been used for 3 years. After dynamic treatments, the titanium fixture connected with bone was removed surgically, fixed in formalin solution, and embedded in resin. Specimens were cut along the frontal section of face and the direction of longitudinal axis of the implant, stained, and observed histologically. The titanium fixture was integrated directly with compact bone showing cortical bone-like structure such as lamella and osteon. In addition, to qualitatively characterize the implant-supported human bone, the crystallinity and orientation of hydroxyapatite (HAp) phase were evaluated by the microbeam X-ray diffraction analysis. Preferential alignment of c-axis of HAp crystals was represented by the relative intensity ratio of (0 0 2)-face diffraction peak to (3 1 0)-face one. The values decreased monotonously along the direction of the lateral stress from the site near the implant thread to the distant site in all horizontal lines of the map. These results indicated that the X-ray images for the intensity of c

  2. Quantitative analysis on orientation of human bone integrated with midpalatal implant by micro X-ray diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Masaru, E-mail: murata@hoku-iryo-u.ac.jp [Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho 061-0293 (Japan); Akazawa, Toshiyuki [Hokkaido Research Organization, Nishi-11, Kita-19, Kita-ku, Sapporo 060-0819 (Japan); Yuasa, Toshihiro; Okayama, Miki; Tazaki, Junichi [Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho 061-0293 (Japan); Hanawa, Takao [Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Arisue, Makoto; Mizoguchi, Itaru [Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer A titanium fixture is implanted into palatal bone of an 18-year-old patient as the unmoved anchorage for the orthodontic treatment. Black-Right-Pointing-Pointer The fixture is integrated with compact bone with cortical bone-like osteon. Black-Right-Pointing-Pointer Microbeam X-ray diffraction denotes the crystallinity and orientation of HAp. Black-Right-Pointing-Pointer X-ray images of c-face in HAp reveal functionally graded distribution of bone quality. Black-Right-Pointing-Pointer The crystal growth of c-face is caused by propagation of the continuous lateral stress. - Abstract: A midpalatal implant system has been used as the unmoved anchorage for teeth movement. An 18-year-old male patient presented with reversed occlusion and was diagnosed as malocclusion. A pure titanium fixture (lengths: 4 mm, diameter: 3.3 mm, Orthosystem{sup Registered-Sign }, Institute Straumann, Switzerland) was implanted into the palatal bone of the patient as the orthodontic anchorage. The implant anchorage was connected with the upper left and right first molars, and had been used for 3 years. After dynamic treatments, the titanium fixture connected with bone was removed surgically, fixed in formalin solution, and embedded in resin. Specimens were cut along the frontal section of face and the direction of longitudinal axis of the implant, stained, and observed histologically. The titanium fixture was integrated directly with compact bone showing cortical bone-like structure such as lamella and osteon. In addition, to qualitatively characterize the implant-supported human bone, the crystallinity and orientation of hydroxyapatite (HAp) phase were evaluated by the microbeam X-ray diffraction analysis. Preferential alignment of c-axis of HAp crystals was represented by the relative intensity ratio of (0 0 2)-face diffraction peak to (3 1 0)-face one. The values decreased monotonously along the direction of the lateral stress from the site near the

  3. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  4. A 5-year prospective radiographic evaluation of marginal bone levels adjacent to parallel-screw cylinder machined-neck implants and rough-surfaced microthreaded implants using digitized panoramic radiographs.

    Science.gov (United States)

    Nickenig, Hans-Joachim; Wichmann, Manfred; Happe, Arndt; Zöller, Joachim E; Eitner, Stephan

    2013-10-01

    The purpose of this split-mouth study was to compare macro- and microstructure implant surfaces at the marginal bone level over five years of functional loading. From January to February 2006, 133 implants (70 rough-surfaced microthreaded implants and 63 machined-neck implants) were inserted in the mandible of 34 patients with Kennedy Class I residual dentitions and followed until December 2011. Marginal bone level was radiographically determined at six time points: implant placement (baseline), after the healing period, after six months, and at two years, three years, and five years follow-up. Median follow-up time was 5.2 years (range: 5.1-5.4). The machined-neck group had a mean crestal bone loss of 0.5 mm (0.0-2.3) after the healing period, 1.1 mm (0.0-3.0) at two years follow-up, and 1.4 mm (0.0-2.9) at five years follow-up. The rough-surfaced microthreaded implant group had a mean bone loss of 0.1 mm (-0.4 to 2.0) after the healing period, 0.5 mm (0.0-2.1) at two years follow-up, and 0.7 mm (0.0-2.3) at five years follow-up. The two implant types showed significant differences in marginal bone levels. Rough-surfaced microthreaded design caused significantly less loss of crestal bone levels under long-term functional loading in the mandible when compared to machined-neck implants. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Bone mineral density after implantation of a femoral neck hip prosthesis--a prospective 5 year follow-up.

    Science.gov (United States)

    Steens, Wolfram; Boettner, Friedrich; Bader, Rainer; Skripitz, Ralf; Schneeberger, Alberto

    2015-08-12

    Bone resorption in the proximal femur due to stress shielding has been observed in a number of conventional cementless implants used in total hip arthroplasty. Short femoral-neck implants are claiming less interference with the biomechanics of the proximal femur. The goal of this study was to prospectively investigate the in vivo changes of bone-mineral density as a parameter of bone remodeling around a short, femoral neck prosthesis over the first 5 years following implantation. The secondary goal was to report on its clinical outcome. We are reporting on the changes of bone mineral density of the proximal femur and the clinical outcome up to five years after implantation of a short femoral neck prosthesis. Bone mineral density was determined using dual energy x-ray absorptiometry, performed 10 days, three, 12 and 60 months after surgery. 20 patients with a mean age of 47 years (range 17 to 65) were clinically assessed using the Harris Hip Score. The WOMAC was used as a patient-relevant outcome-measure. In contrast to conventional implants DEXA-scans overall revealed a slight increase of bone mineral density in the proximal femur in the 12 months following the implantation. The Harris Hip Score improved from an average preoperative score of 46 to a postoperative score at 12 months of 91 points and 95 points at 60 months, the global WOMAC index from 5.3 preoperatively to 0.8 at 12 months and 0.6 at 60 months postoperatively. At 60 months after implantation of a short femoral neck prosthesis, all regions except one (region of interest #5) showed no significant changes in BMD compared to baseline measurements at 10 days which is less to the changes in bone mineral density seen in conventional implants.

  6. Advances in bone augmentation to enable dental implant placement: Consensus Report of the Sixth European Workshop on Periodontology.

    Science.gov (United States)

    Tonetti, Maurizio S; Hämmerle, Christoph H F

    2008-09-01

    Bone augmentation procedures to enable dental implant placement are frequently performed in practice. In this session the European Workshop on Periodontology discussed the evidence in support of the procedures and examined both adverse events and implant performance in the augmented bone. While the available evidence improved both in quantity and quality since previous workshops the conclusions that could be drawn were limited by elements of design and/or reporting that are amenable to improvement. With regards to lateral bone augmentation, a sizable body of evidence supports its use to enable dental implant placement. The group recognized the potential for vertical ridge augmentation procedures to allow implant placement in clinical practice but questioned the applicability of these data to a wider array of operators and clinical settings. With regards to sinus floor augmentation, perforation of the sinus membrane, graft infection and graft loss resulting in inability of implant placement were the major reported adverse events. In cases with dental implants placed in pristine sites. The consensus emphasized the research need to answer questions on: (i) long-term performance of dental implants placed in augmented bone; (ii) the clinical performance of dental implants placed in augmented or pristine sites; and (iii) the clinical benefits of bone augmentation with respect to alternative treatments.

  7. Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.

    Science.gov (United States)

    Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan

    2011-01-01

    With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Chemical and structural analysis of the bone-implant interface by TOF-SIMS, SEM, FIB and TEM: Experimental study in animal

    International Nuclear Information System (INIS)

    Palmquist, Anders; Emanuelsson, Lena; Sjövall, Peter

    2012-01-01

    Although bone-anchored implants are widely used in reconstructive medicine, the mechanism of osseointegration is still not fully understood. Novel analytical tools are needed to further understand this process, where both the chemical and structural aspects of the bone-implant interface are important. The aim of this study was to evaluate the advantages of combining time-of-flight secondary ion mass spectroscopy (TOF-SIMS) with optical (LM), scanning (SEM) and transmission electron microscopy (TEM) techniques for studying the bone-implant interface of bone-anchored implants. Laser-modified titanium implants with surrounded bone retrieved after 8 weeks healing in rabbit were dehydrated and resin embedded. Three types of sample preparation were studied to evaluate the information gained by combining TOF-SIMS, SEM, FIB and TEM. The results show that imaging TOF-SIMS can provide detailed chemical information, which in combination with structural information from microscopy methods provide a more complete characterization of anatomical structures at the bone-implant interface. By investigating various sample preparation techniques, it is shown that grinded cross section samples can be used for chemical imaging using TOF-SIMS, if careful consideration of potential preparation artifacts is taken into account. TOF-SIMS analysis of FIB-prepared bone/implant cross section samples show distinct areas corresponding to bone tissue and implant with a sharp interface, although without chemical information about the organic components.

  9. Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model

    NARCIS (Netherlands)

    Boot, W.; Gawlitta, Debby; Nikkels, P. G J; Pouran, B.; van Rijen, M. H P; Dhert, W. J A; Vogely, H. C.

    Background: Uncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics

  10. Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model

    NARCIS (Netherlands)

    Boot, W; Gawlitta, D; Nikkels, P G J; Pouran, B; van Rijen, M H P; Dhert, W J A|info:eu-repo/dai/nl/10261847X; Vogely, H Ch

    BACKGROUND: Uncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics

  11. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2017-01-01

    Full Text Available Background. Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods. Calcium-modified (CA and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results. Bone-implant contact (BIC at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p=0.027, while SLActive displayed not significantly higher values at 30 (p=0.51 and 60 days (p=0.061. Conclusion. Both implant surfaces show an intimate interaction with newly formed bone.

  12. The effects of simulated bone loss on the implant-abutment assembly and likelihood of fracture: an in vitro study.

    Science.gov (United States)

    Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M

    2013-01-01

    The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.

  13. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  15. In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model

    Directory of Open Access Journals (Sweden)

    Su A. Park

    2018-02-01

    Full Text Available Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry.

  16. Suboccipital neuropathy after bone conduction device placement

    NARCIS (Netherlands)

    Faber, H.T.; Ru, J.A. de

    2013-01-01

    OBJECTIVE: To describe the clinical characteristics of a 70-year-old female with occipital neuropathy following bone conduction device surgery. DESCRIPTION: A 65-year-old woman underwent bone conduction device placement surgery on the left temporal bone. Postoperatively she progressively developed

  17. [The Léon [correction of Laurent] Guedj implant concept: simplification of the surgical phase in implantology].

    Science.gov (United States)

    Fabie, L; Guedj, L; Pichaud, Ch; Fabie, M

    2002-11-01

    We present a new self-drilling self-tapping dental implant that simplifies the operative technique and optimizes osseointegration. The implant, the instrumentation, and the operative technique are described. An experimental study was conducted in a sheep with pathological and histomorphological analysis at three months. A clinical evaluation was also conducted in 18 patients who had 27 implants. The experimental study demonstrated good quality osseointegration, without bone necrosis. Three sectors were identified. Histomorphometric analysis demonstrated that mean bone contact reached 40% on cancellous bone and 65% on cortical bone. In the clinical series, one implant had to be removed due to a problem with gum healing. All the other implants were well tolerated. The advantage of this new technique is the use of the implant as the drilling instrument. Much time is saved. In addition, the bone-implant contact is better since the bone cavity is exactly adapted to the implant. The risk of bone lesion is reduced due to the smaller number of drillings.

  18. Implant planning on NobelClinician software‎ : incidence of bone density on the implants orientation for completely edentulous maxillae

    OpenAIRE

    Vankelst, Maëva

    2016-01-01

    The Purpose of this study wasto compare bone density in straight and tilted implants using the software NobelClinician on fifteen maxillary edentulous. For each patient, two schedules were created on NobelClinician: a first plan of 6 implants placed axially and a second plan where the last implant of each sector was tilted of 30 ° from the occlusal plane. The laying of the first four implants being common to both plans.The study was performed on DICOM files coming from the CBCT’s of 15 patien...

  19. A new condyle implant design concept for an alloplastic temporomandibular joint in bone resorption cases.

    Science.gov (United States)

    Ramos, António; Mesnard, Michel

    2016-10-01

    The purpose of this article is to present and evaluate an innovative intramedullary implant concept developed for total alloplastic reconstruction in bone resorption cases. The main goal of this innovative concept is to avoid the main problems experienced with temporomandibular (TMJ) devices on the market, associated with bone fixation and changes in kinematics. A three-dimensional finite element model was developed based on computed tomography (CT) scan images, before and after implantation of the innovative implant concept. To validate the numerical model, a clean cadaveric condyle was instrumented with four rosettes and loaded before and after implantation with the innovative concept TMJ implant. The experimental results validate the numerical models comparing the intact and implanted condyles, as they present good correlation. They show that the most critical region is around rosette #1, with an increase in strains in the proximal region of the condyle of 140%. The maximum principal strain and stress generated with the implant is less than 2200 με and 75 MPa in the posterior region of the cortical bone. Shortly after insertion of this press-fit implant, stress and strain results appear to be within the normal limits and show some similarities with the intact condyle. If these responses do not change over time, the screw fixation used at present could be avoided or replaced. This solution reduces bone resection and lessens surgical damage to the muscles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications.

    Science.gov (United States)

    Meischel, M; Eichler, J; Martinelli, E; Karr, U; Weigel, J; Schmöller, G; Tschegg, E K; Fischerauer, S; Weinberg, A M; Stanzl-Tschegg, S E

    2016-01-01

    Aim of this study was to evaluate the response of bone to novel biodegradable polymeric composite implants in the femora of growing rats. Longitudinal observation of bone reaction at the implant site (BV/TV) as well as resorption of the implanted pins were monitored using in vivo micro-focus computed tomography (µCT). After 12, 24 and 36 weeks femora containing the implants were explanted, scanned with high resolution ex vivo µCT, and the surface roughness of the implants was measured to conclude on the ingrowth capability for bone tissue. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to observe changes on the surface of Polyhydroxybutyrate (PHB) during degradation and cell ingrowth. Four different composites with zirconium dioxide (ZrO2) and Herafill(®) were compared. After 36 weeks in vivo, none of the implants did show significant degradation. The PHB composite with ZrO2 and a high percentage (30%) of Herafill® as well as the Mg-alloy WZ21 showed the highest values of bone accumulation (increased BV/TV) around the implant. The lowest value was measured in PHB with 3% ZrO2 containing no Herafill®. Roughness measurements as well as EDX and SEM imaging could not reveal any changes on the PHB composites׳ surfaces. Biomechanical parameters, such as the adhesion strength between bone and implant were determined by measuring the shear strength as well as push-out energy of the bone-implant interface. The results showed that improvement of these mechanical properties of the studied PHBs P3Z, P3Z10H and P3Z30H is necessary in order to obtain appropriate load-bearing material. The moduli of elasticity, tensile strength and strain properties of the PHB composites are close to that of bone and thus promising. Compared to clinically used PLGA, PGA and PLA materials, their additional benefit is an unchanged local pH value during degradation, which makes them well tolerated by cells and immune system. They might be used

  1. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation.

    Science.gov (United States)

    Pellicer-Chover, H; Peñarrocha-Oltra, D; Aloy-Prosper, A; Sanchis-Gonzalez, J-C; Peñarrocha-Diago, M-A; Peñarrocha-Diago, M

    2017-11-01

    To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p> 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p> 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p> 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up.

  2. [On the preparation and mechanical properties of PVA hydrogel bionic cartilage/bone composite artificial articular implants].

    Science.gov (United States)

    Meng, Haoye; Zheng, Yudong; Huang, Xiaoshan; Yue, Bingqing; Xu, Hong; Wang, Yingjun; Chen, Xiaofeng

    2010-10-01

    In view of the problems that conventional artificial cartilages have no bioactivity and are prone to peel off in repeated uses as a result of insufficient strength to bond with subchondral bone, we have designed and prepared a novel kind of PVA-BG composite hydrogel as bionic artificial articular cartilage/bone composite implants. The effects of processes and conditions of preparation on the mechanical properties of implant were explored. In addition, the relationships between compression strain rate, BG content, PVA hydrogels thickness and compressive tangent modulus were also explicated. We also analyzed the effects of cancellous bone aperture, BG and PVA content on the shear strength of bonding interface of artificial articular cartilage with cancellous bone. Meanwhile, the bonding interface of artificial articular cartilage and cancellous bone was characterized by scanning electron microscopy. It was revealed that the compressive modulus of composite implants was correspondingly increased with the adding of BG content and the augments of PVA hydrogel thickness. The compressive modulus and bonding interface were both related to the apertures of cancellous bone. The compressive modulus of composite implants was 1.6-2.23 MPa and the shear strength of bonding interface was 0.63-1.21 MPa. These results demonstrated that the connection between artificial articular cartilage and cancellous bone was adequately firm.

  3. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation.

    Science.gov (United States)

    Liu, S; Broucek, J; Virdi, A S; Sumner, D R

    2012-01-01

    Fixation of metallic implants to bone through osseointegration is important in orthopaedics and dentistry. Model systems for studying this phenomenon would benefit from a non-destructive imaging modality so that mechanical and morphological endpoints can more readily be examined in the same specimens. The purpose of this study was to assess the utility of an automated microcomputed tomography (μCT) program for predicting bone-implant contact (BIC) and mechanical fixation strength in a rat model. Femurs in which 1.5-mm-diameter titanium implants had been in place for 4 weeks were either embedded in polymethylmethacrylate (PMMA) for preparation of 1-mm-thick cross-sectional slabs (16 femurs: 32 slabs) or were used for mechanical implant pull-out testing (n= 18 femurs). All samples were scanned by μCT at 70 kVp with 16 μm voxels and assessed by the manufacturer's software for assessing 'osseointegration volume per total volume' (OV/TV). OV/TV measures bone volume per total volume (BV/TV) in a 3-voxel-thick ring that by default excludes the 3 voxels immediately adjacent to the implant to avoid metal-induced artefacts. The plastic-embedded samples were also analysed by backscatter scanning electron microscopy (bSEM) to provide a direct comparison of OV/TV with a well-accepted technique for BIC. In μCT images in which the implant was directly embedded within PMMA, there was a zone of elevated attenuation (>50% of the attenuation value used to segment bone from marrow) which extended 48 μm away from the implant surface. Comparison of the bSEM and μCT images showed high correlations for BV/TV measurements in areas not affected by metal-induced artefacts. In addition for bSEM images, we found that there were high correlations between peri-implant BV/TV within 12 μm of the implant surface and BIC (correlation coefficients ≥0.8, p implant pull-out strength (r= 0.401, p= 0.049) and energy to failure (r= 0.435, p= 0.035). Thus, the need for the 48-μm-thick exclusion

  4. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    Science.gov (United States)

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation.

    Science.gov (United States)

    Wang, Jingxiao; Zheng, Yuanna; Zhao, Juan; Liu, Tie; Gao, Lixia; Gu, Zhiyuan; Wu, Gang

    2012-01-01

    To delineate the dynamic micro-architectures of bone induced by low-dose bone morphogenetic protein (BMP)-2/7 heterodimer in peri-implant bone defects compared to BMP2 and BMP7 homodimer. Peri-implant bone defects (8 mm in diameter, 4 mm in depth) were created surrounding SLA-treated titanium implants (3.1 mm in diameter, 10 mm in length) in minipig's calvaria. We administrated collagen sponges with adsorbed low-dose (30 ng/mm(3) ) BMP2/7 to treat the defects using BMP2, BMP7 or no BMP as controls.2, 3 and 6 weeks after implantation, we adopted micro-computer tomography to evaluate the micro-architectures of new bone using the following parameters: relative bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), connectivity density, and structure mode index (SMI). Bone implant contact (BIC) was also revealed histologically. Consistent with 2 and 3 weeks, after 6 weeks post-operation, BMP2/7 resulted in significantly higher BV/TV (63.033 ± 2.055%) and significantly lower SMI (-4.405 ± 0.500) than BMP2 (BV/TV: 43.133 ± 2.001%; SMI: -0.086 ± 0.041) and BMP7 (BV/TV: 41.467 ± 1.850%; SMI: -0.044 ± 0.016) respectively. Significant differences were also found in Tb.N, Tb.Th and Tb.Sp at all time points. At 2 weeks, BMP2/7 resulted in significantly higher BIC than the controls. Low-dose BMP2/7 heterodimer facilitated more rapid bone regeneration in better quality in peri-implant bone defects than BMP2 and BMP7 homodimers. © 2011 John Wiley & Sons A/S.

  6. The effect of distal ulnar implant stem material and length on bone strains.

    Science.gov (United States)

    Austman, Rebecca L; Beaton, Brendon J B; Quenneville, Cheryl E; King, Graham J W; Gordon, Karen D; Dunning, Cynthia E

    2007-01-01

    Implant design parameters can greatly affect load transfer from the implant stem to the bone. We have investigated the effect of length or material of distal ulnar implant stems on the surrounding bone strains. Eight cadaveric ulnas were instrumented with 12 strain gauges and secured in a customized jig. Strain data were collected while loads (5-30 N) were applied to the medial surface of the native ulnar head. The native ulnar head was removed, and a stainless steel implant with an 8-cm-long finely threaded stem was cemented into the canal. After the cement had cured, the 8-cm stem was removed, leaving a threaded cement mantle in the canal that could accept shorter threaded stems of interest. The loading protocol was then repeated for stainless steel stems that were 7, 5, and 3 cm in length, as well as for a 5-cm-long titanium alloy (TiAl(6)V(4)) stem. Other stainless steel stem lengths between 3 and 7 cm were tested at intervals of 0.5 cm, with only a 20 N load applied. No stem length tested matched the native strains at all gauge locations. No significant differences were found between any stem length and the native bone at the 5th and 6th strain gauge positions. Strains were consistently closer to the native bone strains with the titanium stem than the stainless steel stem for each gauge pair that was positioned on the bone overlying the stem. The 3-cm stem results were closer to the native strains than the 7-cm stem for all loads at gauges locations that were on top of the stem. The results from this study suggest that the optimal stem characteristics for distal ulnar implants from a load transfer point of view are possessed by shorter (approximately 3 to 4 cm) titanium stems.

  7. Surface Modification Of Implants For Bone Surgery

    Directory of Open Access Journals (Sweden)

    Marciniak J.

    2015-09-01

    Full Text Available The study discusses the methods of surface modification methods for AISAI 316 L steel and Ti6Al4V ELI titanium alloy, dedicated to complex design implants used in bone surgery. Results of structural tests have been presented along with those evaluating the physicochemical properties of the formed surface layers. Clinical feasibility of the surface layers has also been evaluated.

  8. The effects of PRGF on bone regeneration and on titanium implant osseointegration in goats: a histologic and histomorphometric study.

    Science.gov (United States)

    Anitua, Eduardo; Orive, Gorka; Pla, Rafael; Roman, Pedro; Serrano, Victoriano; Andía, Isabel

    2009-10-01

    The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained from venous blood of three goats and applied either as a 3D fibrin scaffold (scaffold-like PRGF) in the regeneration of artificial defects or as liquid PRGF via humidifying the implants before their insertion. Initially, 12 defects were filled with scaffold-like PRGF and another 12 were used as controls. The histological analysis at 8 weeks revealed mature bone trabeculae when PRGF was used, whereas the control samples showed mainly connective tissue with incipient signs of bone formation. For the second set of experiments, 26 implants (13 humidified with liquid PRGF) were placed in the tibiae of goats. Histological and histomorphometric results demonstrated that application of liquid PRGF increased the percentage of bone-implant contact in 84.7%. The whole surface of the PRGF-treated implants was covered by newly formed bone, whereas only the upper half was surrounded in control implants. In summary, PRGF can accelerate bone regeneration in artificial defects and improve the osseointegration of titanium dental implants.

  9. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs: part 1. Augmentation using bone graft substitutes and autogenous bone.

    Science.gov (United States)

    Schwarz, Frank; Mihatovic, Ilja; Golubovic, Vladimir; Hegewald, Andrea; Becker, Jürgen

    2012-01-01

    To assess the influence of two barrier membranes and two bone graft substitutes mixed with autogenous bone (AB) on staged guided bone regeneration and osseointegration of titanium implants in dogs. Four saddle-type defects each were prepared in the upper jaw of six fox hounds and randomly filled with a natural bone mineral (NBM)+AB and a biphasic calcium phosphate (SBC)+AB and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, dissected blocks were processed for histomorphometrical analysis (e.g., treated area [TA], bone-to-implant contact [BIC]). The mean TA values (mm(2) ) and BIC values (%) tended to be higher in the PEG groups(TA: NBM+AB [10.4 ± 2.5]; SBC+AB [10.4 ± 5.8]/BIC: NBM+AB [86.4 ± 20.1]; SBC+AB [80.1 ± 21.5]) when compared with the corresponding CM groups (TA: NBM+AB [9.7 ± 4.8]; SBC+AB [7.8 ± 4.3]/BIC: NBM+AB [71.3 ± 20.8]; SBC+AB [72.4 ± 20.3]). A significant difference was observed for the mean TA values in the SBC+AB groups. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. However, the application of PEG may be associated with increased TA values. © 2011 John Wiley & Sons A/S.

  10. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    NARCIS (Netherlands)

    Schouten, C.; Meijer, G.J.; Beucken, J.J.J.P van den; Spauwen, P.H.M.; Jansen, J.A.

    2009-01-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not

  11. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Bosco, R.; Both, S.K.; Iafisco, M.; Leeuwenburgh, S.C.G.; Jansen, J.A.; Beucken, J.J.J.P van den

    2014-01-01

    The prevalence of osteoporosis will increase within the next decades due to the aging world population, which can affect the bone healing response to dental and orthopedic implants. Consequently, local drug targeting of peri-implant bone has been proposed as a strategy for the enhancement of

  12. Immediate implant placement into posterior sockets with or without buccal bone dehiscence defects: A retrospective cohort study.

    Science.gov (United States)

    Hu, Chen; Gong, Ting; Lin, Weimin; Yuan, Quan; Man, Yi

    2017-10-01

    To evaluate bone reconstruction and soft tissue reactions at immediate implants placed into intact sockets and those with buccal bone dehiscence defects. Fifty-nine internal connection implants from four different manufacturers were immediately placed in intact sockets(non-dehiscence group, n=40), and in alveoli with buccal bone dehiscence defects: 1) Group 1(n= N10), the defect depth measured 3-5 mm from the gingival margin. 2) Group 2(n=9), the depth ranged from 5mm to 7mm. The surrounding bony voids were grafted with deproteinized bovine bone mineral (DBBM) particles. Cone beam computed tomography(CBCT) was performed immediately after surgery (T1), and at 6 months later(T2). Radiographs were taken at prosthesis placement and one year postloading(T3). Soft tissue parameters were measured at baseline (T0), prosthesis placement and T3. No implants were lost during the observation period. For the dehiscence groups, the buccal bone plates were radiographically reconstructed to comparable horizontal and vertical bone volumes compared with the non-dehiscence group. Marginal bone loss occurred between the time of final restoration and 1-year postloading was not statistically different(P=0.732) between groups. Soft tissue parameters did not reveal inferior results for the dehiscence groups. Within the limitations of this study, flapless implant placement into compromised sockets in combination with DBBM grafting may be a viable technique to reconstitute the defected buccal bone plates due to space maintenance and primary socket closure provided by healing abutments and bone grafts. Immediate implants and DBBM grafting without using membranes may be indicated for sockets with buccal bone defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hydroxyapatite coating on cobalt alloys using electrophoretic deposition method for bone implant application

    Science.gov (United States)

    Aminatun; M, Shovita; I, Chintya K.; H, Dyah; W, Dwi

    2017-05-01

    Damage on bone due to osteoporosis and cancer triggered high demand for bone implant prosthesis which is a permanent implant. Thus, a prosthesis coated with hydroxyapatite (HA) is required because it is osteoconductive that can trigger the growth of osteoblast cells. The purpose of this study is to determine the optimum concentration of HA suspension in terms of the surface morphology, coating thickness, adhesion strength and corrosion rate resulting in the HA coating with the best characteristics for bone implant. Coating using electrophoretic deposition (EPD) method with concentrations of 0.02M, 0.04M, 0.06M, 0.08M, and 0.1M was performed on the voltage and time of 120V and 30 minutes respectively. The process was followed by sintering at the temperature of 900 °C for 10 minutes. The results showed that the concentration of HA suspension influences the thickness and the adhesion of layer of HA. The higher the concentration of HA-ethanol suspension the thicker the layer of HA, but its coating adhesion strength values became lower. The concentration of HA suspension of 0.04 M is the best concentration, with characteristics that meet the standards of the bone implant prosthesis. The characteristics are HA coating thickness of 199.93 ± 4.85 μm, the corrosion rate of 0.0018 mmpy and adhesion strength of 4.175 ± 0.716 MPa.

  14. [Evaluation of hazards caused by magnetic field emitted from magnetotherapy applicator to the users of bone conduction hearing prostheses].

    Science.gov (United States)

    Zradziński, Patryk; Karpowicz, Jolanta; Gryz, Krzysztof; Leszko, Wiesław

    2017-06-27

    Low frequency magnetic field, inducing electrical field (Ein) inside conductive structures may directly affect the human body, e.g., by electrostimulation in the nervous system. In addition, the spatial distribution and level of Ein are disturbed in tissues neighbouring the medical implant. Numerical models of magneto-therapeutic applicator (emitting sinusoidal magnetic field of frequency 100 Hz) and the user of hearing implant (based on bone conduction: Bonebridge type - IS-BB or BAHA (bone anchorde hearing aid) type - IS-BAHA) were worked out. Values of Ein were analyzed in the model of the implant user's head, e.g., physiotherapist, placed next to the applicator. It was demonstrated that the use of IS-BB or IS-BAHA makes electromagnetic hazards significantly higher (up to 4-fold) compared to the person without implant exposed to magnetic field heterogeneous in space. Hazards for IS-BAHA users are higher than those for IS-BB users. It was found that applying the principles of directive 2013/35/EU, at exposure to magnetic field below exposure limits the direct biophysical effects of exposure in hearing prosthesis users may exceed relevant limits. Whereas applying principles and limits set up by Polish labor law or the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the compliance with the exposure limits also ensures the compliance with relevant limits of electric field induced in the body of hearing implant user. It is necessary to assess individually electromagnetic hazard concerning hearing implant users bearing in mind significantly higher hazards to them compared to person without implant or differences between levels of hazards faced by users of implants of various structural or technological solutions. Med Pr 2017;68(4):469-477. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Evaluation of hazards caused by magnetic field emitted from magnetotherapy applicator to the users of bone conduction hearing prostheses

    Directory of Open Access Journals (Sweden)

    Patryk Zradziński

    2017-08-01

    Full Text Available Background: Low frequency magnetic field, inducing electrical field (Ein inside conductive structures may directly affect the human body, e.g., by electrostimulation in the nervous system. In addition, the spatial distribution and level of Ein are disturbed in tissues neighbouring the medical implant. Material and Methods: Numerical models of magneto-therapeutic applicator (emitting sinusoidal magnetic field of frequency 100 Hz and the user of hearing implant (based on bone conduction: Bonebridge type – IS-BB or BAHA (bone anchorde hearing aid type – IS-BAHA were worked out. Values of Ein were analyzed in the model of the implant user’s head, e.g., physiotherapist, placed next to the applicator. Results: It was demonstrated that the use of IS-BB or IS-BAHA makes electromagnetic hazards significantly higher (up to 4-fold compared to the person without implant exposed to magnetic field heterogeneous in space. Hazards for IS-BAHA users are higher than those for IS-BB users. It was found that applying the principles of directive 2013/35/EU, at exposure to magnetic field below exposure limits the direct biophysical effects of exposure in hearing prosthesis users may exceed relevant limits. Whereas applying principles and limits set up by Polish labor law or the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines, the compliance with the exposure limits also ensures the compliance with relevant limits of electric field induced in the body of hearing implant user. Conclusions: It is necessary to assess individually electromagnetic hazard concerning hearing implant users bearing in mind significantly higher hazards to them compared to person without implant or differences between levels of hazards faced by users of implants of various structural or technological solutions. Med Pr 2017;68(4:469–477

  16. Dental CT and orthodontic implants: imaging technique and assessment of available bone volume in the hard palate

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre E-mail: andre.gahleitner@univie.ac.at; Podesser, Birgit; Schick, Susanne; Watzek, Georg; Imhof, Herwig

    2004-09-01

    Purpose: Palatal implants (PI) have been introduced for orthodontic treatment of dental and skeletal dysgnathia. Due to the restricted amount of bone in this region, precise preoperative anatomic information is necessary. The aim of this study was to determine whether dental CT could serve as a tool to locate the optimal size and position for orthodontic implant placement. Materials and methods: In 32 patients, where palatal implant placement was planned, axial CT scans of the maxillary bone were acquired. Using a standard dental software package (Easy Vision dental software package 2.1, Philips; Best, The Netherlands), paracoronal views were reconstructed and measurements of palatal bone height in 3 mm increments, dorsally from the incisive canal, were performed in the median and both paramedian regions. Results: The overall mean bone height was 5.01 mm (S.D. 2.60), ranging from 0 to 16.9 mm. The maximum palatal bone height was 6.17 mm (S.D. 2.81) at 6 mm dorsally from the incisive canal. Due to the lack of adequate bone (less than 4 mm), implant placement was not performed in 3 cases (7%). In the remaining 39 cases (93.0%), primary implant stability was achieved and complications, such as perforation of the palate, could be avoided. Conclusion: The results demonstrate that dental CT promises to be a valuable tool in evaluating the potential and optimal size and site for orthodontic implant placement.

  17. Dental CT and orthodontic implants: imaging technique and assessment of available bone volume in the hard palate

    International Nuclear Information System (INIS)

    Gahleitner, Andre; Podesser, Birgit; Schick, Susanne; Watzek, Georg; Imhof, Herwig

    2004-01-01

    Purpose: Palatal implants (PI) have been introduced for orthodontic treatment of dental and skeletal dysgnathia. Due to the restricted amount of bone in this region, precise preoperative anatomic information is necessary. The aim of this study was to determine whether dental CT could serve as a tool to locate the optimal size and position for orthodontic implant placement. Materials and methods: In 32 patients, where palatal implant placement was planned, axial CT scans of the maxillary bone were acquired. Using a standard dental software package (Easy Vision dental software package 2.1, Philips; Best, The Netherlands), paracoronal views were reconstructed and measurements of palatal bone height in 3 mm increments, dorsally from the incisive canal, were performed in the median and both paramedian regions. Results: The overall mean bone height was 5.01 mm (S.D. 2.60), ranging from 0 to 16.9 mm. The maximum palatal bone height was 6.17 mm (S.D. 2.81) at 6 mm dorsally from the incisive canal. Due to the lack of adequate bone (less than 4 mm), implant placement was not performed in 3 cases (7%). In the remaining 39 cases (93.0%), primary implant stability was achieved and complications, such as perforation of the palate, could be avoided. Conclusion: The results demonstrate that dental CT promises to be a valuable tool in evaluating the potential and optimal size and site for orthodontic implant placement

  18. Immediate Placement of Dental Implants into Fresh Extraction Socket of Periapical Lesion with Bone Augmentation Using Growth Factors (PRGF) and Graft Bone (Bio-Oss)

    OpenAIRE

    Piuryk, V. P.; Kareem, Shujairi Ahmed

    2016-01-01

    Immediate implant placement and loading can be done in a compromised bone. Curettage, cleaning of the whole area up to good bone quality and primary stability are the main necessities for success. The effect of local application of scaffold-like preparation rich in growth factors (PRGF) on bone regeneration in artificial defects and the potential effect of humidifying titanium dental implants with liquid PRGF on their osseointegration were investigated. The PRGF formulations were obtained fro...

  19. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    Science.gov (United States)

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (pimplant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  20. 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Snoek Henriksen, Susan; Martinetti, Roberta

    2017-01-01

    allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while......, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016....

  1. Fixation of Hydroxyapatite-Coated Revision Implants Is Improved by the Surgical Technique of Cracking the Sclerotic Bone Rim

    Science.gov (United States)

    Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld

    2013-01-01

    Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940

  2. The role of bone conduction hearing aids in congenital unilateral hearing loss: A systematic review.

    Science.gov (United States)

    Liu, C Carrie; Livingstone, Devon; Yunker, Warren K

    2017-03-01

    To systematically review the literature on the audiological and/or quality of life benefits of a bone conduction hearing aid (BCHA) in children with congenital unilateral conductive or sensorineural deafness. A systematic search was performed according to the PRISMA guidelines using the PubMed, Medline, and Embase databases. Data were collected on the following outcomes of interest: speech reception threshold, speech discrimination, sound localization, and quality of life measures. Given the heterogeneity of the data for quantitative analysis, the results are qualitatively summarized. Eight studies were included in the review. Four studies examined the audiological outcomes associated with bone conduction hearing aid implantation. There was a consistent gain in speech reception thresholds and speech discrimination, especially in noisy environments. Results pertaining to sound localization was inconsistent. The studies that examined quality of life measures reported a high usage rate of BCHAs among children. Quality of life improvements are reported with suggested benefit in the subdomain of learning. Given the potential benefits of a BCHA, along with the fact that it can be safely trialed using a headband, it is reasonable to trial a BCHA in children with congenital unilateral deafness. Should the trial offer audiological and/or quality of life benefits for the individual child, then BCHA implantation can be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantitative analysis on orientation of human bone integrated with midpalatal implant by micro X-ray diffractometer

    Science.gov (United States)

    Murata, Masaru; Akazawa, Toshiyuki; Yuasa, Toshihiro; Okayama, Miki; Tazaki, Junichi; Hanawa, Takao; Arisue, Makoto; Mizoguchi, Itaru

    2012-12-01

    A midpalatal implant system has been used as the unmoved anchorage for teeth movement. An 18-year-old male patient presented with reversed occlusion and was diagnosed as malocclusion. A pure titanium fixture (lengths: 4 mm, diameter: 3.3 mm, Orthosystem®, Institute Straumann, Switzerland) was implanted into the palatal bone of the patient as the orthodontic anchorage. The implant anchorage was connected with the upper left and right first molars, and had been used for 3 years. After dynamic treatments, the titanium fixture connected with bone was removed surgically, fixed in formalin solution, and embedded in resin. Specimens were cut along the frontal section of face and the direction of longitudinal axis of the implant, stained, and observed histologically. The titanium fixture was integrated directly with compact bone showing cortical bone-like structure such as lamella and osteon. In addition, to qualitatively characterize the implant-supported human bone, the crystallinity and orientation of hydroxyapatite (HAp) phase were evaluated by the microbeam X-ray diffraction analysis. Preferential alignment of c-axis of HAp crystals was represented by the relative intensity ratio of (0 0 2)-face diffraction peak to (3 1 0)-face one. The values decreased monotonously along the direction of the lateral stress from the site near the implant thread to the distant site in all horizontal lines of the map. These results indicated that the X-ray images for the intensity of c-face in HAp revealed functionally graded distribution of cortical bone quality. The micro-scale measurements of HAp structure could be a useful method for evaluating the mechanical stress distribution in human hard tissues.

  4. Modifying the conductivity of polypyrrole through low-energy lead ion implantation

    International Nuclear Information System (INIS)

    Booth, Marsilea Adela; Leveneur, Jérôme; Costa, Alexsandro Santos; Kennedy, John; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2012-01-01

    Interest lies in the creation of novel nanocomposite materials obtained through mixing, impregnation or incorporation techniques. One such technique is ion implantation which possesses the potential for retaining properties from the base material and implanted material as well as any effects observed from combining the two. To this end low-energy (15 keV) implantation of lead ions of various fluences was performed in conducting polypyrrole films. The presence of lead-rich particles was evidenced through transmission electron microscopy. An interesting trend was observed between fluence and conductivity. Of the fluences tested, the optimum fluences of lead ion implantation in polypyrrole films for enhanced conductivity are 5 × 10 14 at. cm −2 and 2 × 10 15 at. cm −2 . The conductivity and stability appear to result from a combination of effects: polymer degradation arising from ion beam damage, an increase in charge-carriers (dications) present after implantation and precipitation of Pb-rich nanoparticles. Monitoring conductivity over time showed increased retention of conductivity levels after lead implantation. Improvements in stability for polypyrrole open avenues for application and bring polypyrrole one step closer to practical use. A mechanism is suggested for this advantageous retained conductivity. -- Highlights: ► Implanted and characterized polypyrrole films with Pb ions at different fluences. ► Samples indicate high conductivity when implanted with particular fluences. ► Increase in charge carriers and precipitation of conductive Pb-rich phase. ► Conductivity stability is higher for some implanted fluences than for pristine polypyrrole.

  5. The hydroxylapatite-bone interface: 10 years after implant installation.

    NARCIS (Netherlands)

    Beekmans, H.C.; Meijer, G.J.; Barkhuysen, R.; Blijdorp, P.A.; Merkx, M.A.W.; Jansen, J.A.

    2008-01-01

    Reconstruction of a severely atrophied maxilla by sinus augmentation with a mixture of hydroxylapatite (HA) granules and autologous cancellous bone is claimed to be a predictable means to facilitate implant placement. To the authors' knowledge, this is the first human histological case report of

  6. Osteodistraction With Dental Implant-Borne Devices for Bone Regeneration in Atrophied Premaxilla.

    Science.gov (United States)

    Carlino, Francesco; Villani, Gian Piero; Berti, Andrea; Pantaleo, Giuseppe; Cortese, Antonio; Claudio, Pier Paolo

    2016-11-01

    Aim of this work is to present the evolution of an innovative technique for tooth/implant supported bone distraction, leading to proper oral rehabilitation in patients with atrophic alveolar bone, even when a complete premaxilla expansion is needed, or in patients in whom implants were already present, but inserted in wrong position.Distraction osteogenesis was selected because of its moderate invasiveness, the few surgical steps needed, and the proper cost/benefits balance. This procedure is particularly suited for young patients with remarkable aesthetic demands related to active social and working life, as for elderly patients expecting lower surgical stress and risks.

  7. Bone-anchored titanium implants for auricular rehabilitation: case report and review of literature.

    Science.gov (United States)

    Gumieiro, Emne Hammoud; Dib, Luciano Lauria; Jahn, Ricardo Schmitutz; Santos Junior, João Ferreira dos; Nannmark, Ulf; Granström, Gösta; Abrahão, Márcio

    2009-01-01

    Osseointegrated implants have acquired an important role in the prosthetic rehabilitation of patients with craniofacial defects. The main indications are lack of local tissue for autogenous reconstruction, previous reconstruction failure and selection of this technique by the patient. This paper presents a clinical case and discusses indications and advantages of the osseointegrated implant technique for retention of auricular prostheses. Case report, Universidade Federal de São Paulo (UNIFESP). A female patient received three auricular implants after surgical resection of a hemangioma in her left ear. The time taken for osseointegration of the temporal bone was three months. After fabrication of the implant-retained auricular prosthesis, the patient was monitored for 12 months. The clinical parameters evaluated showed good postoperative healing, healthy peri-implant tissue, good hygiene and no loss of implants. Good hygiene combined with thin and immobile peri-implant soft tissues resulted in minimal complications. Craniofacial implant integration appears to be site-dependent; increasing age affects osseointegration in the temporal bone. The frequency of adverse skin reactions in peri-implant tissues is generally low. The surgical technique for rehabilitation using implant-retained auricular prostheses seems to be simple. It is associated with low rates of adverse skin reactions and long-term complications. Prostheses anchored by osseointegrated implants seem to provide better retention than do prostheses supported on spectacle frames, less risk of discoloration through the use of adhesives and better esthetic results than do prostheses anchored in the surgical cavity.

  8. Bone Reduction to Facilitate Immediate Implant Placement and Loading Using CAD/CAM Surgical Guides for Patients With Terminal Dentition.

    Science.gov (United States)

    Alzoubi, Fawaz; Massoomi, Nima; Nattestad, Anders

    2016-10-01

    The aim of this study is to present a method, using 3 computer-aided design/computer-aided manufacturing (CAD/CAM) surgical guides, to accurately obtain the desired bone reduction followed by immediate implant placements and loading for patients diagnosed with terminal dentition. Patients who had bone reduction, implants placed, and immediate loading using Anatomage Invivo 5 CAD/CAM surgical guides between the period 2013 and 2015 were evaluated retrospectively. Patients diagnosed with terminal dentition and treated using the "3-guide technique" were identified. Pre- and postsurgical images were superimposed to evaluate deviations of the bone reduction and deviations at the crest, apex, and angle of implants placed. Twenty-six implants placed in 5 patients were included in this study. The overall deviation means measured for bone reduction was 1.98 mm. The overall deviation means measured for implant placement at the crest, apex, and angle were 1.43 mm, 1.90 mm, and 4.14°, respectively. The CAD/CAM surgical guide fabrication is an emerging tool that may facilitate the surgical process and aid in safe and predictable execution of bone reduction and immediate implant placement. Using 3 CAD/CAM surgical guides, a method is presented to obtain the desired bone reduction followed by immediate implant placement and loading for patients diagnosed with terminal dentition. This method may improve guide stability for patients with terminal dentition undergoing complete implant-supported treatment by taking advantage of the teeth to be extracted.

  9. The influence of micro and macro-geometry in term of bone-implant interface in two implant systems: an histomorphometrical study.

    Science.gov (United States)

    Rocci, A; Calcaterra, R; DI Girolamo, M; Rocci, M; Rocci, C; Baggi, L

    2015-01-01

    Many factors could affect the osseous healing of implants such as surface topography of biomaterial, the status of the bone/implant site, implant loading conditions, surgical technique and implant design. The aim of this study was to analyze the BIC of 2 different implants systems characterized by different micro and macrogeometry, that were placed in the posterior maxillary and mandibular jaws of humans, clinically unloaded and retrieved for histomorphometric analyses after 12 weeks. The patients were divided in two groups (Group I and II); group I was composed by 4 patients that each received in the posterior areas of mandible one type A implant [GTB-Plan1Health Amaro (UD) Italy] one type B implant (OsseoSpeed Astra Tech, Dentsply Molndal, Sweden). Group II was composed by 3 patients that each received in the posterior areas of jawsbone one type A implant [GTB-Plan1Health Amaro (UD) Italy] one type B implant (OsseoSpeed Astra Tech, Dentsply Molndal, Sweden). After 12 weeks of healing all the implants of both groups were harvested with the peri-implant bone tissues. Osseointegration process was evaluated throughout measurements of BIC. No statistical significance differences were found among the mean percentage of BIC of Group I - type A were 66,51% versus 49,96% in Group I - type B, as well as among the mean percentage of BIC of Group II - type A were 43.7% versus 60.02% in Group II - type B. Our results highlight that the mean percentage of BIC after 12 weeks from the implants placement without functional loading is not influenced by the composition of the implant surface.

  10. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone

    Directory of Open Access Journals (Sweden)

    M. Niinomi

    2011-01-01

    Full Text Available β-type titanium alloys with low Young's modulus are required to inhibit bone atrophy and enhance bone remodeling for implants used to substitute failed hard tissue. At the same time, these titanium alloys are required to have high static and dynamic strength. On the other hand, metallic biomaterials with variable Young's modulus are required to satisfy the needs of both patients and surgeons, namely, low and high Young's moduli, respectively. In this paper, we have discussed effective methods to improve the static and dynamic strength while maintaining low Young's modulus for β-type titanium alloys used in biomedical applications. Then, the advantage of low Young's modulus of β-type titanium alloys in biomedical applications has been discussed from the perspective of inhibiting bone atrophy and enhancing bone remodeling. Further, we have discussed the development of β-type titanium alloys with a self-adjusting Young's modulus for use in removable implants.

  11. Aspects of temporal bone anatomy and pathology in conjunction with cochlear implant surgery

    Energy Technology Data Exchange (ETDEWEB)

    Stjernholm, Christina [Karolinska Inst., Stockholm (Sweden). Soedersjukhuset

    2003-07-01

    Cochlear implantation is a treatment for patients with severe sensorineural hearing loss/deafness, who get no help from ordinary hearing aids. The cochlear implant is surgically placed under the skin near the ear and a very thin electrode array is introduced into the cochlea of the inner ear, where it stimulates the remaining nerve fibers. The operation is complicated; it is performed with the aid of a microscope, and involves drilling very close to vital vessels and important nerves. High resolution computed tomography (CT) of the temporal bone is a part of the preoperative evaluation preceding cochlear implantation. It is a method for visualizing the bony structures of the middle and inner ear - to diagnose pathology and to describe the anatomy. The first work concerns CT of the temporal bone and cochlear implant surgery in children with CHARGE association. This is a rare condition with multiple congenital abnormalities, sometimes lethal. Children with CHARGE have different combinations of disabilities, of which impairments of vision and hearing, as well as balance problems and facial palsy can lead to developmental delay. There have been few reports of radiological temporal bone changes and none of cochlear implant surgery for this group. The work includes a report of the findings on preoperative CT and at surgery, as well as postimplant results in two children. A review of the latest diagnostic criteria of CHARGE and the temporal bone changes found in international literature is also included. The conclusion was that certain combinations of temporal bone changes in CHARGE are, if not specific, at least extremely rare in other materials. CT can visualize these changes and be used as a diagnostic tool. This is important, since some of the associated disabilities are not so obvious from the start. Early treatment is vital for the child's development. This work also shows that cochlear implantation may help some of these often very isolated children to

  12. Aspects of temporal bone anatomy and pathology in conjunction with cochlear implant surgery

    International Nuclear Information System (INIS)

    Stjernholm, Christina

    2003-01-01

    Cochlear implantation is a treatment for patients with severe sensorineural hearing loss/deafness, who get no help from ordinary hearing aids. The cochlear implant is surgically placed under the skin near the ear and a very thin electrode array is introduced into the cochlea of the inner ear, where it stimulates the remaining nerve fibers. The operation is complicated; it is performed with the aid of a microscope, and involves drilling very close to vital vessels and important nerves. High resolution computed tomography (CT) of the temporal bone is a part of the preoperative evaluation preceding cochlear implantation. It is a method for visualizing the bony structures of the middle and inner ear - to diagnose pathology and to describe the anatomy. The first work concerns CT of the temporal bone and cochlear implant surgery in children with CHARGE association. This is a rare condition with multiple congenital abnormalities, sometimes lethal. Children with CHARGE have different combinations of disabilities, of which impairments of vision and hearing, as well as balance problems and facial palsy can lead to developmental delay. There have been few reports of radiological temporal bone changes and none of cochlear implant surgery for this group. The work includes a report of the findings on preoperative CT and at surgery, as well as postimplant results in two children. A review of the latest diagnostic criteria of CHARGE and the temporal bone changes found in international literature is also included. The conclusion was that certain combinations of temporal bone changes in CHARGE are, if not specific, at least extremely rare in other materials. CT can visualize these changes and be used as a diagnostic tool. This is important, since some of the associated disabilities are not so obvious from the start. Early treatment is vital for the child's development. This work also shows that cochlear implantation may help some of these often very isolated children to communicate

  13. The efficacy of short (6 mm) dental implants with a novel thread design.

    Science.gov (United States)

    Bechara, Soheil; Nimčenko, Tatjana; Kubilius, Ričardas

    2017-01-01

    To assess efficacy of short (6 mm) implants with a novel macrostructure and thread design placed in a compromised bone situations of edentulous posterior regions of maxilla (3-4 mm of bone height under sinus floor) as compared to results of clinical situations treated with simultaneous maxillary sinus grafting and placement of long (≥10 mm) implants of the same company. Clinical cases of conducted clinical study. Patients with compromised bone height in edentulous posterior regions of maxilla were randomly divided into two groups. Short (6mm length) implant treatment conducted in the test group and simultaneous sinus lift with standard length implant placement treatment in the control group. In general implant stability quotient (ISQ) and marginal bone level (MBL) changes values in both groups were comparable. However, significant negative correlation was found between implant's diameter and MBL changes. Implant's length has little if none impact on initial implant anchorage, especially in greatly compromised residual bone situations. Results have confirmed that implant initial stability mainly depends on implant's macro-design and further its development on implant's micro-design: namely, implant diameter rather than length, tapered shape and improved thread design determines primarily acquired mechanical anchorage, while bioactive surface treatment ensures development of biological stability.

  14. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation.

    Science.gov (United States)

    Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P

    2017-07-01

    Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Influence of surgical and prosthetic techniques on marginal bone loss around titanium implants. Part I: immediate loading in fresh extraction sockets.

    Science.gov (United States)

    Berberi, Antoine N; Tehini, Georges E; Noujeim, Ziad F; Khairallah, Alexandre A; Abousehlib, Moustafa N; Salameh, Ziad A

    2014-10-01

    Delayed placement of implant abutments has been associated with peri-implant marginal bone loss; however, long-term results obtained by modifying surgical and prosthetic techniques after implant placement are still lacking. This study aimed to evaluate the marginal bone loss around titanium implants placed in fresh extraction sockets using two loading protocols after a 5-year follow-up period. A total of 36 patients received 40 titanium implants (Astra Tech) intended for single-tooth replacement. Implants were immediately placed into fresh extraction sockets using either a one-stage (immediate loading by placing an interim prosthesis into functional occlusion) or a two-stage prosthetic loading protocol (insertion of abutments after 8 weeks of healing time). Marginal bone levels relative to the implant reference point were evaluated at four time intervals using intraoral radiographs: at time of implant placement, and 1, 3, and 5 years after implant placement. Measurements were obtained from mesial and distal surfaces of each implant (α = 0.05). One-stage immediate implant placement into fresh extraction sockets resulted in a significant reduction in marginal bone loss (p sockets reduced marginal bone loss and did not compromise the success rate of the restorations. © 2014 by the American College of Prosthodontists.

  16. Effect of surface contamination on osseointegration of dental implants surrounded by circumferential bone defects.

    LENUS (Irish Health Repository)

    Mohamed, Seif

    2010-05-01

    This study was designed to evaluate the effect of surface contamination on osseointegration of dental implants surrounded by a circumferential bone defect and to compare osseointegration around Osseotite with that around Nanotite implants.

  17. Bone-Conduction ABR Tests.

    Science.gov (United States)

    Cone-Wesson, Barbara

    1995-01-01

    This article discusses the accuracy of bone-conduction auditory brainstem response (BC-ABR) tests to determine the presence and severity of conductive hearing impairment. It provides warnings about technical pitfalls and recommends incorporating BC-ABR protocols for routine clinical use. It concludes that the method allows estimating cochlear…

  18. A radiographic evaluation of progressive loading on crestal and bone density changes around single osseointegrated implants in the posterior maxilla

    Directory of Open Access Journals (Sweden)

    Ommati Shabestari Gh.

    2009-11-01

    Full Text Available "nBackground and Aim: The aim of this clinical study was to determine the effectiveness of progressive loading procedures on preserving crestal bone height and improving peri-implant bone density around maxillary implants restored with single crowns by an accurate longitudinal radiographic assessment technique. "n "n "nMaterials and Methods: Eleven Micro-Thread Osseo Speed dental implants were placed in 11 subjects and permitted to heal for 6 weeks before surgical uncovering. Following an 8-week healing period, implants underwent a progressive loading protocol by increasing the height of the occlusal table in increments from adding acrylic resin to an acrylic crown. The progressively loaded crowns were placed in 2 mm infraocclusion for the first 2 months, light occlusion for the second 2 months, and full occlusion for the third 2 months. At forth 2 months, a metal ceramic crown replaced the acrylic crown. Digital radiographs of each implant were made at the time of restoration, then after 2, 4, 6, 8, and 12 months of function. Digital image analysis was done to measure changes in crestal bone height and peri-implant bone density. "n "n "nResults: The mean values of crestal bone loss at 12 months were 0.11 ± 0.19 mm, and when tested with Friedman across the time periods, the differences were not statistically significant (p> 0.05. The mean values of bone density in the crestal, middle, and apical area were tested with Repeated Measure ANOVA across the time periods, the differences were statistically significant (p<0.05. "n "n "nConclusion: Progressive loading doesn’t cause crestal bone loss. The peri-implant density measurements of the progressively loaded implants show continuous increase in crestal, middle and apical peri-implant bone density by time. "n 

  19. Maxillary reconstruction with bone transport distraction and implants after partial maxillectomy.

    Science.gov (United States)

    Castro-Núñez, Jaime; González, Marcos Daniel

    2013-02-01

    Maxillary and mandibular bone defects can result from injury, congenital defect, or accident, or as a consequence of surgical procedures when treating pathology or defects affecting jaw bones. The glandular odontogenic cyst is an infrequent type of odontogenic cyst that can leave a bony defect after being treated by aggressive surgical means. First described in 1987 by Padayachee and Van Wyk, it is a potentially aggressive entity, having a predisposition to recur when treated conservatively, with only 111 cases having been reported hitherto. Most reports emphasize its clinical, radiographic, and histologic features, including a few considerations on rehabilitation for these patients. The aim of this article is to present the case of a 24-year-old male patient who, in 2001, was diagnosed with a glandular odontogenic cyst and to focus on the surgical approach and rehabilitation scheme. We performed an anterior partial maxillectomy. The osseous defect was treated using bone transport distraction. Dental and occlusal rehabilitation was achieved with titanium implants over transported bone and an implant-supported overdenture. A 9-year follow-up shows no evidence of recurrence of the pathology, adequate shape and amount of bone, functional occlusal and dental rehabilitation, and patient's satisfaction. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  1. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  2. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT.

    Science.gov (United States)

    González-García, Raúl; Monje, Florencio

    2013-08-01

    The aim of this study was to objectively assess the reliability of the cone-beam computed tomography (CBCT) as a tool to pre-operatively determine radiographic bone density (RBD) by the density values provided by the system, analyzing its relationship with histomorphometric bone density expressed as bone volumetric fraction (BV/TV) assessed by micro-CT of bone biopsies at the site of insertion of dental implants in the maxillary bones. Thirty-nine bone biopsies of the maxillary bones at the sites of 39 dental implants from 31 edentulous healthy patients were analyzed. The NobelGuide™ software was used for implant planning, which also allowed fabrication of individual stereolithographic surgical guides. The analysis of CBCT images allowed pre-operative determination of mean density values of implant recipient sites along the major axis of the planned implants (axial RBD). Stereolithographic surgical guides were used to guide implant insertion and also to extract cylindrical bone biopsies from the core of the exact implant site. Further analysis of several osseous micro-structural variables including BV/TV was performed by micro-CT of the extracted bone biopsies. Mean axial RBD was 478 ± 212 (range: 144-953). A statistically significant difference (P = 0.02) was observed among density values of the cortical bone of the upper maxilla and mandible. A high positive Pearson's correlation coefficient (r = 0.858, P micro-CT at the site of dental implants in the maxillary bones. Pre-operative estimation of density values by CBCT is a reliable tool to objectively determine bone density. © 2012 John Wiley & Sons A/S.

  3. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

    OpenAIRE

    Carlsson, Gunnar E

    2014-01-01

    PURPOSE To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth an...

  4. Application of interconnected porous hydroxyapatite ceramic block for onlay block bone grafting in implant treatment: A case report.

    Science.gov (United States)

    Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki

    2017-12-01

    Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.

  5. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    OpenAIRE

    Ogawa, Takahiro; Yamada,Masahiro; Ueno,; Tsukimura,Naoki; Ikeda,; Nakagawa,; Hori,; Suzuki,

    2012-01-01

    Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integratio...

  6. Evaluation of standardized porcine bone models to test primary stability of dental implants, using biomechanical tests and Micro-CT. An in vitro pilot study

    Directory of Open Access Journals (Sweden)

    C. Delmondes Freitas Dantas

    2015-06-01

    Full Text Available Aim This study evaluated a new porcine bone model to test the primary stability of different implants, analyzing Micro-CT, insertion torque, and pull-out strength. Materials and methods Bone cylinders were prepared from porcine bone and separated into 2 groups: 10 high density bone cylinders (HDB, and 10 low density bone cylinders (LDB. Then, 3D pre-implant analyses were performed, evaluating tridimensional bone density (ratio of trabecular bone volume and total tomographic volume, BV/TV, trabecular separation; percentage of closed pores; percentage of open pores; percentage of total porosity, in 3 bone levels (L1 bone volume corresponding to the internal part of the threads; L2 corresponding to the area between 0 to 0.5 mm from the end of threads; L3 corresponding to the area between 0.5 to 1.5 mm from the end of threads. Twenty implants of two different macrostructures were inserted in the bone cylinders, and divided into 4 groups (5 implants each: Group 1, e-Fix HE implant placed in HDB cylinder; Group 2, e-Fix HE implant in LDB cylinder; Group 3, e-Fix HE Silver implant placed in HDB cylinder; Group 4, e-Fix HE Silver implant in LDB cylinder. The insertion torque was recorded and bone cylinders were re-evaluated by Micro-CT (post-implant analysis. Then a pull-out strength test was performed. Results 3D analysis showed that pre- and post-implants intra-groups evaluation had statistically significant differences in Group 3 and 4, for all tomographic parameters assessed. Group 3 showed the best values for biomechanical tests (Friedman Test, p<0.05. Conclusion This methodology can produce standardized bone cylinders of high and low bone density, in which different implant designs are able to promote different effects, evidenced by biomechanical and image analysis.

  7. Electrical conductivity of platinum-implanted polymethylmethacrylate nanocomposite

    Science.gov (United States)

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2011-12-01

    Platinum/polymethylmethacrylate (Pt/PMMA) nanocomposite material was formed by low energy ion implantation of Pt into PMMA, and the transition from insulating to conducting phase was explored. In situ resistivity measurements were performed as the implantation proceeded, and transmission electron microscopy was used for direct visualization of Pt nanoparticles. Numerical simulation was carried out using the TRIDYN computer code to calculate the expected depth profiles of the implanted platinum. The maximum dose for which the Pt/PMMA system remains an insulator/conductor composite was found to be ϕ0 = 1.6 × 1016 cm-2, the percolation dose was 0.5 × 1016 cm-2, and the critical exponent was t = 1.46, indicating that the conductivity is due only to percolation. The results are compared with previously reported results for a Au/PMMA composite.

  8. Steroid therapy and conduction disturbances after transcatheter aortic valve implantation.

    Science.gov (United States)

    Havakuk, Ofer; Konigstein, Maayan; Ben Assa, Eyal; Arbel, Yaron; Abramowitz, Yigal; Halkin, Amir; Bazan, Samuel; Shmilovich, Haim; Keren, Gad; Finkelstein, Ariel; Banai, Shmuel

    2016-10-01

    Direct mechanical compression of the frame struts on the adjacent bundle branch with local inflammatory reaction might cause conduction system disturbances and need for pacemaker implantation following transcatheter aortic valve implantation (TAVI). We assessed the impact of preprocedural anti-inflammatory steroid therapy on the occurrence of conduction disturbances following TAVI. From a cohort of 324 patients who underwent transfemoral TAVI, 39 (12%) were pretreated with steroids because of iodine allergy (n=29) or active obstructive pulmonary disease (n=10). We compared the rate of occurrence of new conduction disturbances and pacemaker implantation between TAVI patients with (n=39) and without (n=285) steroid treatment, using Cox logistic regression estimates and proportional hazards models. The overall occurrence of new conduction defects and the need for new pacemaker implantation were similar among steroid and non-steroid-treated patients (38.4% vs 37.5% and 25.6% vs 25.3%, respectively). New conduction disturbances were more prevalent in patients treated with CoreValve prosthesis, low implantation, and smaller aortic annulus diameter (P<.001, P<.001, and P=.006, respectively). Thirty-day mortality and complication rates were similar between the groups. Although safe, steroid treatment prior to TAVI failed to reduce the incidence of new conduction defects and the need for pacemaker implantation. © 2016 John Wiley & Sons Ltd.

  9. Bone-anchored titanium implants for auricular rehabilitation: case report and review of literature

    Directory of Open Access Journals (Sweden)

    Emne Hammoud Gumieiro

    Full Text Available CONTEXT AND OBJECTIVE: Osseointegrated implants have acquired an important role in the prosthetic rehabilitation of patients with craniofacial defects. The main indications are lack of local tissue for autogenous reconstruction, previous reconstruction failure and selection of this technique by the patient. This paper presents a clinical case and discusses indications and advantages of the osseointegrated implant technique for retention of auricular prostheses. TYPE OF STUDY: Case report, Universidade Federal de São Paulo (UNIFESP. METHODS: A female patient received three auricular implants after surgical resection of a hemangioma in her left ear. The time taken for osseointegration of the temporal bone was three months. After fabrication of the implant-retained auricular prosthesis, the patient was monitored for 12 months. RESULTS: The clinical parameters evaluated showed good postoperative healing, healthy peri-implant tissue, good hygiene and no loss of implants. Good hygiene combined with thin and immobile peri-implant soft tissues resulted in minimal complications. Craniofacial implant integration appears to be site-dependent; increasing age affects osseointegration in the temporal bone. The frequency of adverse skin reactions in peri-implant tissues is generally low. CONCLUSION: The surgical technique for rehabilitation using implant-retained auricular prostheses seems to be simple. It is associated with low rates of adverse skin reactions and long-term complications. Prostheses anchored by osseointegrated implants seem to provide better retention than do prostheses supported on spectacle frames, less risk of discoloration through the use of adhesives and better esthetic results than do prostheses anchored in the surgical cavity

  10. A comparision of two types of decalcified freeze-dried bone allograft in treatment of dehiscence defects around implants in dogs

    Directory of Open Access Journals (Sweden)

    Ahmad Moghareh Abed

    2011-01-01

    Full Text Available Background: Decalcified freeze-dried bone allograft (DFDBA may have the potential to enhance bone formation around dental implants. Our aim in this study was the evaluation and comparison of two types of DFDBA in treatment of dehiscence defects around Euroteknika® implants in dogs. Methods : In this prospective clinical trial animal study, all mandibular premolars of three Iranian dogs were extracted. After 3 months of healing, fifteen SLA type Euroteknika® dental implants (Natea with 4.1mm diameter and 10mm length were placed in osteotomy sites with dehiscence defects of 5mm length, 4 mm width, and 3mm depth. Guided bone regeneration (GBR procedures were performed using Cenobone and collagen membrane for six implants, the other six implants received Dembone and collagen membrane and the final three implants received only collagen membrane. All implants were submerged. After 4 months of healing, implants were uncovered and stability (Implant Stability Quotient of all implants was measured. Then, block biopsies of each implant site were taken and processed for ground sectioning and histomorphometric analysis. The data was analyzed by ANOVA and Pearson tests. P value less than 0.05 was considered to be significant. Results: All implants osseointegrated after 4 months. The mean values of bone to implant contact for histomorphometric measurements of Cenobone, Denobone, and control groups were 77.36 ± 9.96%, 78.91 ± 11.9% and 71.56 ± 5.61% respectively, with no significant differences among the various treatment groups. The correlation of Implant Stability Quotient and histomorphometric techniques was 0.692. Conclusion: In treating of dehiscence defects with GBR technique in this study, adding DFDBA did not significantly enhance the percentages of bone-to-implant contact measurements; and Implant Stability Quotient Resonance Frequency Analysis appeared to be a precise technique.

  11. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients.

    Directory of Open Access Journals (Sweden)

    Kanthanat Chatvaratthana

    Full Text Available Resonance frequency analysis (RFA is clinically used in dentistry to access the stiffness of dental implants in surrounding bone. However, the clear advantages and disadvantages of this method are still inconclusive. The aim of this study was to investigate and compare implant stability quotient (ISQ values obtained from RFA with parameters obtained from a cone beam computed tomography (CBCT scan of the same region.Nineteen implants (Conelog were inserted in the posterior maxillary and mandibular partially edentulous regions of 16 patients. At the time of implant placement, the ISQ values were obtained using RFA (Osstell. CBCT was used to measure the thickness of the crestal, cortical, buccolingual cortical, and cancellous bone at 3, 6, and 9 mm below the crestal bone level, as indicated by radiographic markers. The ratio of the thickness of the cortical to cancellous bone at varying depths was also calculated and classified into 4 groups (Group 1-4.There was a strong correlation between the crestal cortical bone thickness and ISQ values (P<0.001. The thickness of the buccolingual cortical bone and ratio of the cortical to cancellous bone thickness at 3 mm were significantly related to the ISQ (P = 0.018 and P = 0.034, respectively. Furthermore, the ISQs in Group 1 were the highest compared with those in Group 2 and Group 3, whereas the CBCT parameters at 6 and 9 mm did not have any specific correlation with the ISQ values.This study showed that the ISQ values obtained from RFA highly correlated with the quantity and quality of bone 3 mm below the crestal bone level. The correlation between the ISQ and bone surrounding the implant site was dependent on the depth of measurement. Therefore, RFA can help to predict the marginal bone level, as confirmed in this study.

  12. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  13. Bone Conduction: Anatomy, Physiology, and Communication

    National Research Council Canada - National Science Library

    Henry, Paula; Letowski, Tomasz R

    2007-01-01

    .... This report combines results of an extensive literature review of the anatomy and physiology of human hearing, theories behind the mechanisms of bone conduction transmission, devices for use in bone...

  14. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration

    Directory of Open Access Journals (Sweden)

    Eap S

    2015-02-01

    Full Text Available Sandy Eap,1,2,* Laetitia Keller,1–3,* Jessica Schiavi,1,2 Olivier Huck,1,2 Leandro Jacomine,4 Florence Fioretti,1,2 Christian Gauthier,4 Victor Sebastian,1,3,5 Pascale Schwinté,1,2 Nadia Benkirane-Jessel1,21INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France; 2Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; 3Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain; 4CNRS (National Center for Scientific Research, ICS (Charles Sadron Institute, Strasbourg, France; 5Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain*These authors contributed equally to this workAbstract: New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone nanofibrous implant (from 700 µm to 1 cm thick was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII, 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7

  15. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction.

    Science.gov (United States)

    Xu, Yichi; Meng, Haoye; Yin, Heyong; Sun, Zhen; Peng, Jiang; Xu, Xiaolong; Guo, Quanyi; Xu, Wenjing; Yu, Xiaoming; Yuan, Zhiguo; Xiao, Bo; Wang, Cheng; Wang, Yu; Liu, Shuyun; Lu, Shibi; Wang, Zhaoxu; Wang, Aiyuan

    2018-01-01

    Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12-24 (Pformation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo , quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.

  16. Evaluation of autogenous PRGF+β-TCP with or without a collagen membrane on bone formation and implant osseointegration in large size bone defects. A preclinical in vivo study.

    Science.gov (United States)

    Batas, Leonidas; Stavropoulos, Andreas; Papadimitriou, Serafim; Nyengaard, Jens R; Konstantinidis, Antonios

    2016-08-01

    The aim of this study was to evaluate whether the adjunctive use of a collagen membrane enhances bone formation and implant osseointegration in non-contained defects grafted with chair-side prepared autologous platelet-rich growth factor (PRGF) adsorbed on a β-TCP particulate carrier. Large box-type defects (10 × 6 mm; W × D) were prepared in the edentulated and completely healed mandibles of six Beagles dogs. An implant with moderately rough surface was placed in the center of each defect leaving the coronal 6 mm of the implant not covered with bone. The remaining defect space was then filled out with chair-side prepared autologous PRGF adsorbed on β-TCP particles and either covered with a collagen membrane (PRGF/β-TCP+CM) (6 defects) or left without a membrane (PRGF/β-TCP) (5 defects). Histology 4 months post-op showed new lamellar and woven bone formation encompassing almost entirely the defect and limited residual β-TCP particles. Extent of osseointegration of the previously exposed portion of the implants varied, but in general was limited. Within the defect, new mineralized bone (%) averaged 43.2 ± 9.86 vs. 39.9 ± 13.7 in the PRGF/β-TCP+CM and PRGF/β-TCP group (P = 0.22) and relative mineralized bone-to-implant contact (%) averaged 26.2 ± 16.45 vs. 35.91 ± 24.45, respectively (P = 0.5). First, bone-to-implant contact from the implant top was 4.1 ± 1.5 and 3.2 ± 2.3 (P = 0.9), in the PRGF/β-TCP+CM and PRGF/β-TCP group, respectively. Implantation of chair-side prepared autologous PRGF adsorbed on a β-TCP carrier in non-contained peri-implant defects resulted in large amounts of bone regeneration, but osseointegration was limited. Provisions for GBR with a collagen membrane did not significantly enhance bone regeneration or implant osseointegration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone

    DEFF Research Database (Denmark)

    Nimb, L; Jensen, J S; Gotfredsen, K

    1995-01-01

    A canine study was performed to make a histological and biomechanical evaluation of the interface between bone and two different bioceramic implants. A newly developed glass-ceramic formed by P2O5, CaO, SiO2, and Al2O3, giving a crystal phase composed of CaP2O6-AlPO4-SiP2O7, was compared...... analysis. The ultimate shear strength for the HA-coated implants was significantly higher than in the glass-ceramic group. When these values were related to the histomorphometric measurements, the difference could be explained by the tissue-to-implant contact. The glass-ceramic showed direct contact only...... with nonmineralized, osteoid bone. The HA-coated implants, however, were integrated into the bone. The study indicated that porous glass-ceramic containing AlPO4 causes local osteomalacia and might not be suitable for clinical purposes....

  18. Lateral approach for maxillary sinus membrane elevation without bone materials in maxillary mucous retention cyst with immediate or delayed implant rehabilitation: case reports.

    Science.gov (United States)

    Han, Ji-Deuk; Cho, Seong-Ho; Jang, Kuk-Won; Kim, Seong-Gwang; Kim, Jung-Han; Kim, Bok-Joo; Kim, Chul-Hun

    2017-08-01

    This case series study demonstrates the possibility of successful implant rehabilitation without bone augmentation in the atrophic posterior maxilla with cystic lesion in the sinus. Sinus lift without bone graft using the lateral approach was performed. In one patient, the cyst was aspirated and simultaneous implantation under local anesthesia was performed, whereas the other cyst was removed under general anesthesia, and the sinus membrane was elevated in a second process, followed by implantation. In both cases, tapered 11.5-mm-long implants were utilized. With all of the implants, good stability and appropriate bone height were achieved. The mean bone level gain was 5.73 mm; adequate bone augmentation around the implants was shown, the sinus floor was moved apically, and the cyst was no longer radiologically detected. Completion of all of the treatments required an average of 12.5 months. The present study showed that sufficient bone formation and stable implantation in a maxilla of insufficient bone volume are possible through sinus lift without bone materials. The results serve to demonstrate, moreover, that surgical treatment of mucous retention cyst can facilitate rehabilitation. These techniques can reduce the risk of complications related to bone grafts, save money, and successfully treat antral cyst.

  19. Comparison of conventional twist drill protocol and piezosurgery for implant insertion: an ex vivo study on different bone types.

    Science.gov (United States)

    Sagheb, Keyvan; Kumar, Vinay V; Azaripour, Adriano; Walter, Christian; Al-Nawas, Bilal; Kämmerer, Peer W

    2017-02-01

    The aim of this ex vivo study was to compare implant insertion procedures using piezosurgery and conventional drilling in different qualities of bone. Implant bed preparation time, generated heat, and primary implant stability were analyzed. Fresh ex vivo porcine bone block samples (cancellous, mixed, and cortical bone) were obtained. The bone quality was quantified by ultrasound transmission velocity (UTV). Each bone sample received three implants of the same diameter using each of the techniques of piezosurgery and conventional twist drills. Time for preparation was taken and the temperature while performing the osteotomy was measured using infrared spectroscopy. The primary implant stability after osteotomy was measured using resonance frequency analysis (RFA) and extrusion torque (ET). ANOVA with post hoc Tukey test was carried out to compare the values for the three different groups. The UTV values strongly correlated with the density of the bone samples. There was a significant increase in time (threefold, P piezosurgery group. Piezosurgery and conventional implant bed drilling procedure do have similar mechanical outcomes regarding primary stability with high RFA values, but the preparation does need more time for piezosurgery group, so that piezosurgery might be a valuable tool in only very specific cases for implant bed preparation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Evaluation of the Cortical Bone Reaction Around of Implants Using a Single-Use Final Drill: A Histologic Study.

    Science.gov (United States)

    Gehrke, Sergio Alexandre

    2015-07-01

    This study was designed to compare the cortical bone reaction following traditional osteotomy or the use of a single-use final drill in the osseointegration of implants in the tibia of rabbits. For this study, 48 conical implants, of standard surface type and design and manufactured by the same company, were inserted into the tibiae of 12 rabbits and removed after 30 or 60 days for histologic analysis. Two test groups were prepared according to the drill sequence used for the osteotomy at the preparation sites: in the control group was used a conventional drill sequence with several uses, whereas the test group (tesG) used a single-use final drill. The bone-to-implant contact and qualitative factors of the resulting cortical bone were assessed. Both techniques produced good implant integration. Differences in the linear bone-to-implant contact were observed between the drilling procedures as time elapsed in vivo, with the tesG appearing to have clinical advantages. Both groups exhibited new bone in quantity and in quality; however, the tesG exhibited a higher level of new bone deposition than the control group. Within the limitations of this study, the findings suggest that the use of a single-use final drill leads to better and faster organization of the cortical bone area during the evaluated period and may avoid the possible problems that can be caused by worn drills.

  1. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used...

  2. Peri-implant bone strains and micro-motion following in vivo service: a postmortem retrieval study of 22 tibial components from total knee replacements.

    Science.gov (United States)

    Mann, Kenneth A; Miller, Mark A; Goodheart, Jacklyn R; Izant, Timothy H; Cleary, Richard J

    2014-03-01

    Biological adaptation following placement of a total knee replacements (TKRs) affects peri-implant bone mineral density (BMD) and implant fixation. We quantified the proximal tibial bone strain and implant-bone micro-motion for functioning postmortem retrieved TKRs and assessed the strain/micro-motion relationships with chronological (donor age and time in service) and patient (body weight and BMD) factors. Twenty-two tibial constructs were functionally loaded to one body weight (60% medial/40% lateral), and the bone strains and tray/bone micro-motions were measured using a digital image correlation system. Donors with more time in service had higher bone strains (p = 0.044), but there was not a significant (p = 0.333) contribution from donor age. Donors with lower peri-implant BMD (p = 0.0039) and higher body weight (p = 0.0286) had higher bone strains. Long term implants (>11 years) had proximal bone strains 900 µϵ that were almost twice as high as short term (implants 570 µϵ. Micro-motion was greater for younger donors (p = 0.0161) and longer time in service (p = 0.0008). Increased bone strain with long term in vivo service could contribute to loosening of TKRs by failure of the tibial peri-implant bone. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Management of Retrograde Peri-Implantitis Using an Air-Abrasive Device, Er,Cr:YSGG Laser, and Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Nikolaos Soldatos

    2018-01-01

    Full Text Available Background. The placement of an implant in a previously infected site is an important etiologic factor contributing to implant failure. The aim of this case report is to present the management of retrograde peri-implantitis (RPI in a first maxillary molar site, 2 years after the implant placement. The RPI was treated using an air-abrasive device, Er,Cr:YSGG laser, and guided bone regeneration (GBR. Case Description. A 65-year-old Caucasian male presented with a draining fistula associated with an implant at tooth #3. Tooth #3 revealed periapical radiolucency two years before the implant placement. Tooth #3 was extracted, and a ridge preservation procedure was performed followed by implant rehabilitation. A periapical radiograph (PA showed lack of bone density around the implant apex. The site was decontaminated with an air-abrasive device and Er,Cr:YSGG laser, and GBR was performed. The patient was seen every two weeks until suture removal, followed by monthly visits for 12 months. The periapical X-rays, from 6 to 13 months postoperatively, showed increased bone density around the implant apex, with no signs of residual clinical or radiographic pathology and probing depths ≤4 mm. Conclusions. The etiology of RPI in this case was the placement of an implant in a previously infected site. The use of an air-abrasive device, Er,Cr:YSGG, and GBR was utilized to treat this case of RPI. The site was monitored for 13 months, and increased radiographic bone density was noted.

  4. Evaluating of bone healing around porous coated titanium implant and potential systematic bias on the traditional sampling method

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2013-01-01

    Introduction: The mechanical properties of bone can largely be explained by bone density and the anisotropic orientation of the trabecular bone. The type of trabecular structure plays an important role in determining the mechanical properties of cancellous bone. Gap-healing and implant fixation...... (Biomet Inc.) of 10 mm in length and 6 mm in diameter were inserted bilaterally into the proximal humerus of 8 skeletally mature sheep. Thus two implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with allograft. Standardised surgical procedure was used. At sacrifice, 6...... weeks after surgery, both proximal humeri were harvested. The specimens were randomized to superficial or profound groups. In the superficial group, mechanical testing or histological analysis was carried out on the superficial part of the implant. In the profound group, the mechanical testing...

  5. Use of the frontal process of the maxillary bone for implant placement to retain a nasal prosthesis: a clinical report.

    Science.gov (United States)

    Proussaefs, Periklis

    2004-01-01

    Implant placement to provide support and retention for nasal prostheses has been described in the literature. The anatomic sites that have been utilized for implant placement are the nasal bones, the premaxillary area through the nasal fossae, and the anterior wall of the frontal sinus. In the patient described, after a presurgical computerized tomography scan to determine adequacy of bone volume, 1 conventional threaded hydroxyapatite-coated root-form implant, created for intraoral use, was placed in the frontal process of the maxillary bone and 2 additional conventional implants were placed in the premaxillary area through the nasal fossa. Six months after implant placement, second-stage surgery was completed. A single bar connecting the 3 implants was fabricated. The removable nasal prosthesis was retained on the bar with 2 clips. An examination 1 year postsurgery revealed no clinical signs of pathosis. Long-term clinical follow-up of this case should continue and a sufficient number of additional cases should be investigated before use of the frontal process of the maxillary bone for implant retention can be recommended on a routine basis.

  6. Bone modelling at fresh extraction sockets: immediate implant placement versus spontaneous healing: an experimental study in the beagle dog.

    Science.gov (United States)

    Vignoletti, Fabio; Discepoli, Nicola; Müller, Anna; de Sanctis, Massimo; Muñoz, Fernando; Sanz, Mariano

    2012-01-01

    The purpose of this investigation is to describe histologically the undisturbed healing of fresh extraction sockets when compared to immediate implant placement. In eight beagle dogs, after extraction of the 3P3 and 4P4, implants were inserted into the distal sockets of the premolars, while the mesial sockets were left to heal spontaneously. Each animal provided four socket sites (control) and four implant sites (test). After 6 weeks, animals were sacrificed and tissue blocks were dissected, prepared for ground sectioning. The relative vertical buccal bone resorption in relation to the lingual bone was similar in both test and control groups. At immediate implant sites, however, the absolute buccal bone loss observed was 2.32 (SD 0.36) mm, what may indicate that while an apical shift of both the buccal and lingual bone crest occurred at the implant sites, this may not happen in naturally healing sockets. The results from this investigation showed that after tooth extraction the buccal socket wall underwent bone resorption at both test and control sites. This resorption appeared to be more pronounced at the implant sites, although the limitations of the histological evaluation method utilized preclude a definite conclusion. © 2011 John Wiley & Sons A/S.

  7. Influence of two barrier membranes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Part 2: augmentation using bone graft substitutes.

    Science.gov (United States)

    Mihatovic, Ilja; Becker, Jürgen; Golubovic, Vladimir; Hegewald, Andrea; Schwarz, Frank

    2012-03-01

    To assess the influence of two barrier membranes and two bone graft substitutes on staged guided bone regeneration and osseointegration of titanium implants in dogs. Saddle-type defects were prepared in the lower jaws of 6 fox hounds and randomly filled with a natural bone mineral (NBM) and a biphasic calcium phosphate (SBC) and allocated to either an in situ gelling polyethylene glycol (PEG) or a collagen membrane (CM). At 8 weeks, modSLA titanium implants were inserted and left to heal in a submerged position. At 8+2 weeks, respectively, dissected blocks were processed for histomorphometrical analysis (e.g., mineralized tissue [MT], bone-to-implant contact [BIC]). The mean MT values (mm2) and BIC values (%) tended to be higher in the PEG groups (MT: NBM [3.4±1.7]; SBC [4.2±2]/BIC: NBM [67.7±16.9]; SBC [66.9±17.8]) when compared with the corresponding CM groups (MT: NBM [2.5±0.8]; SBC [2.3±1.6]/BIC: NBM [54.1±22.6]; SBC [61±8.7]). These differences, however, did not reach statistical significance. It was concluded that all augmentation procedures investigated supported bone regeneration and staged osseointegration of modSLA titanium implants. © 2011 John Wiley & Sons A/S.

  8. Maxillary sinus floor elevation surgery with BioOss (R) mixed with a bone marrow concentrate or autogenous bone : test of principle on implant survival and clinical performance

    NARCIS (Netherlands)

    Rickert, D.; Vissink, A.; Slot, Jan; Sauerbier, S.; Meijer, H. J. A.; Raghoebar, G. M.

    The purpose of this study was to assess implant survival and 1-year clinical performance of implants placed in the posterior maxilla that had been subjected to maxillary sinus floor elevation surgery with bovine bone mineral (BioOss (R)) mixed with autogenous bone marrow concentrate or autogenous

  9. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    Science.gov (United States)

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  10. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    Science.gov (United States)

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  11. Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae.

    Science.gov (United States)

    Torcasio, Antonia; Zhang, Xiaolei; Van Oosterwyck, Hans; Duyck, Joke; van Lenthe, G Harry

    2012-05-01

    Although research has been addressed at investigating the effect of specific loading regimes on bone response around the implant, a precise quantitative understanding of the local mechanical response close to the implant site is still lacking. This study was aimed at validating micro-CT-based finite element (μFE) models to assess tissue strains after implant placement in a rat tibia. Small implants were inserted at the medio-proximal site of 8 rat tibiae. The limbs were subjected to axial compression loading; strain close to the implant was measured by means of strain gauges. Specimen-specific μFE models were created and analyzed. For each specimen, 4 different models were created corresponding to different representations of the bone-implant interface: bone and implant were assumed fully osseointegrated (A); a low stiffness interface zone was assumed with thickness of 40 μm (B), 80 μm (C), and 160 μm (D). In all cases, measured and computational strains correlated highly (R (2) = 0.95, 0.92, 0.93, and 0.95 in A, B, C, and D, respectively). The averaged calculated strains were 1.69, 1.34, and 1.15 times higher than the measured strains for A, B, and C, respectively, and lower than the experimental strains for D (factor = 0.91). In conclusion, we demonstrated that specimen-specific FE analyses provide accurate estimates of peri-implant bone strains in the rat tibia loading model. Further investigations of the bone-implant interface are needed to quantify implant osseointegration.

  12. Removal of a Dental Implant Displaced into the Maxillary Sinus by Means of the Bone Lid Technique

    Directory of Open Access Journals (Sweden)

    Pietro Fusari

    2013-01-01

    Full Text Available Background. Rehabilitation of edentulous jaws with implant-supported prosthesis has become a common practice among oral surgeons in the last three decades. This therapy presents a very low incidence of complications. One of them is the displacement of dental implants into the maxillary sinus. Dental implants, such as any other foreign body into the maxillary sinus, should be removed in order to prevent sinusitis. Methods. In this paper, we report a case of dental implant migrated in the maxillary sinus and removed by means of the bone lid technique. Results and Conclusion. The migration of dental implants into the maxillary sinus is rarely reported. Migrated implants should be considered for removal in order to prevent possible sinusal diseases. The implant has been removed without any complications, confirming the bone lid technique to be safe and reliable.

  13. Conduction Abnormalities and Pacemaker Implantations After SAPIEN 3 Vs SAPIEN XT Prosthesis Aortic Valve Implantation.

    Science.gov (United States)

    Husser, Oliver; Kessler, Thorsten; Burgdorf, Christof; Templin, Christian; Pellegrini, Costanza; Schneider, Simon; Kasel, Albert Markus; Kastrati, Adnan; Schunkert, Heribert; Hengstenberg, Christian

    2016-02-01

    Transcatheter aortic valve implantation is increasingly used in patients with aortic stenosis. Post-procedural intraventricular conduction abnormalities and permanent pacemaker implantations remain a serious concern. Recently, the Edwards SAPIEN 3 prosthesis has replaced the SAPIEN XT. We sought to determine the incidences of new-onset intraventricular conduction abnormalities and permanent pacemaker implantations by comparing the 2 devices. We analyzed the last consecutive 103 patients undergoing transcatheter aortic valve implantation with SAPIEN XT before SAPIEN 3 was used in the next 105 patients. To analyze permanent pacemaker implantations and new-onset intraventricular conduction abnormalities, patients with these conditions at baseline were excluded. Electrocardiograms were recorded at baseline, after the procedure, and before discharge. SAPIEN 3 was associated with higher device success (100% vs 92%; P=.005) and less paravalvular leakage (0% vs 7%; Ppacemaker implantations was 12.6% (23 of 183) with no difference between the 2 groups (SAPIEN 3: 12.5% [12 of 96] vs SAPIEN XT: 12.6% [11 of 87]; P=.99). SAPIEN 3 was associated with a higher rate of new-onset intraventricular conduction abnormalities (49% vs 27%; P=.007) due to a higher rate of fascicular blocks (17% vs 5%; P=.021). There was no statistically significant difference in transient (29% [20 of 69] vs persistent 19% [12 of 64]; P=.168) left bundle branch blocks (28% [19 of 69] vs 17% [11 of 64]; P=.154) when SAPIEN 3 was compared with SAPIEN XT. We found a trend toward a higher rate of new-onset intraventricular conduction abnormalities with SAPIEN 3 compared with SAPIEN XT, although this did not result in a higher permanent pacemaker implantation rate. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation.

    Science.gov (United States)

    Long, Jason P; Hollister, Scott J; Goldstein, Steven A

    2012-10-11

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopedic implants and then fabricated selected designs from titanium (Ti)-alloy with selective laser sintering (SLS) technology. In the present study, we examined how implant architecture and mechanical stimulation influence osseointegration within an in vivo environment. To do this, we evaluated three implant designs (two optimized and one non-optimized) using a unique in vivo model that applied cyclic, tension/compression loads to the implants. Eighteen (six per implant design) adult male canines had implants surgically placed in their proximal, tibial metaphyses. Experimental duration was 12 weeks; daily loading (peak load of ±22 N for 1000 cycles) was applied to one of each animal's bilateral implants for the latter six weeks. Following harvest, osseointegration was assessed by non-destructive mechanical testing, micro-computed tomography (microCT) and back-scatter scanning electron microscopy (SEM). Data revealed that implant loading enhanced osseointegration by significantly increasing construct stiffness, peri-implant trabecular morphology, and percentages of interface connectivity and bone ingrowth. While this experiment did not demonstrate a clear advantage associated with the optimized implant designs, osseointegration was found to be significantly influenced by aspects of implant architecture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

    Directory of Open Access Journals (Sweden)

    Ghanaati Shahram

    2013-01-01

    Full Text Available Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP or an hydroxyapatite/silicon dioxide (HA/SiO2-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.

  16. Comparison between skin-mounted fiducials and bone-implanted fiducials for image-guided neurosurgery

    Science.gov (United States)

    Rost, Jennifer; Harris, Steven S.; Stefansic, James D.; Sillay, Karl; Galloway, Robert L., Jr.

    2004-05-01

    Point-based registration for image-guided neurosurgery has become the industry standard. While the use of intrinsic points is appealing because of its retrospective nature, affixing extrinsic objects to the head prior to scanning has been demonstrated to provide much more accurate registrations. Points of reference between image space and physical space are called fiducials. The extrinsic objects which generate those points are fiducial markers. The markers can be broken down into two classifications: skin-mounted and bone-implanted. Each has distinct advantages and disadvantages. Skin-mounted fiducials require simply sticking them on the patient in locations suggested by the manufacturer, however, they can move with tractions placed on the skin, fall off and perhaps the most dangerous problem, they can be replaced by the patient. Bone implanted markers being rigidly affixed to the skull do not present such problems. However, a minor surgical intervention (analogous to dental work) must be performed to implant the markers prior to surgery. Therefore marker type and use has become a decision point for image-guided surgery. We have performed a series of experiments in an attempt to better quantify aspects of the two types of markers so that better informed decisions can be made. We have created a phantom composed of a full-size plastic skull [Wards Scientific Supply] with a 500 ml bag of saline placed in the brain cavity. The skull was then sealed. A skin mimicking material, DragonSkinTM [SmoothOn Company] was painted onto the surface and allowed to dry. Skin mounted fiducials [Medtronic-SNT] and bone-implanted markers [Z-Kat]were placed on the phantom. In addition, three additional bone-implanted markers were placed (two on the base of the skull and one in the eye socket for use as targets). The markers were imaged in CT and 4 MRI sequences (T1-weighted, T2 weighted, SPGR, and a functional series.) The markers were also located in physical space using an Optotrak

  17. Maintenance of marginal bone support and soft tissue esthetics at immediately provisionalized OsseoSpeed implants placed into extraction sites: 2-year results.

    Science.gov (United States)

    Noelken, Robert; Neffe, Bettina Anna; Kunkel, Martin; Wagner, Wilfried

    2014-02-01

    Placement of implants into extraction sockets targets the maintenance of peri-implant hard and soft tissue structures and the support of a natural and esthetic contour. The main advantages of immediate implant insertion in comparison with delayed implant placement protocols are as follows: a reduced treatment time, less number of sessions, and, thus, the less invasive procedure. This study examines the clinical performance (survival rate, marginal bone levels and Pink Esthetic Score [PES]) of OsseoSpeed implants placed into extraction sockets with immediate provisionalization in the anterior maxilla after a follow-up of at least 12 months. Twenty patients received a total number of 37 OsseoSpeed implants which were immediately inserted into extraction sockets with or without facial bone deficiencies of various dimensions. A flapless procedure was applied, and the implants were immediately provisionalized with temporary crowns without occlusal contacts. Facial gaps between implant surface and facial bone or the previous contour of the alveolar process were grafted with autogenous bone chips. Implants in diameters 3.5, 4.0, 4.5, and 5.0 with lengths of 11-17 mm were used in the study. During the course of the study, interproximal marginal bone levels, the thickness of the facial bony wall, implant success rate according to the criteria established by Buser, and the PES were assessed per implant. One patient with three implants did not continue the study after prosthesis delivery, the remaining 34 implants were still in function at the final follow-up (survival rate: 100%). The mean follow-up period was 27 months (range, 12-40 months). Marginal bone height at the level of the implant shoulder averaged -0.1 ± 0.55 mm (range, -1.25 to 1.47 mm) at the final follow-up. The mean PES ratings were 11.3 ± 1.8 (range, 6-14) at the final follow-up. In 78% of the patients, the PES was preserved or even improved. Success rates, marginal bone levels, and esthetic results suggest

  18. In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Bachy, Manon; Proudhon, Henry; Ku, David N; Hannouche, Didier; Petite, Hervé; Corté, Laurent

    2017-08-01

    Recently, it has been shown that constructs of poly(vinyl alcohol) (PVA) hydrogel fibers reproduce closely the tensile behavior of ligaments. However, the biological response to these systems has not been explored yet. Here, we report the first in vivo evaluation of these implants and focus on the integration in bone, using a rabbit model of bone tunnel healing. Implants consisted in bundles of PVA hydrogel fibers embedded in a PVA hydrogel matrix. Half of the samples were coated with a composite coating of hydroxyapatite (HA) particles embedded in PVA hydrogel. The biological integration was evaluated at 6 weeks using histology and micro-CT imaging. For all implants, a good biological tolerance and growth of new bone tissue are reported. All the implants were surrounded by a fibrous layer comparable to what was previously observed for poly(ethylene terephthalate) (PET) fibers currently used in humans for ligament reconstruction. An image analysis method is proposed to quantify the thickness of this fibrous capsule. Implants coated with HA were not significantly osteoconductive, which can be attributed to the slow dissolution of the selected hydroxyapatite. Overall, these results confirm the relevance of PVA hydrogel fibers for ligament reconstruction and adjustments are proposed to enhance its osseointegration.

  19. Influence of Orthotropy on Biomechanics of Peri-Implant Bone in Complete Mandible Model with Full Dentition

    Directory of Open Access Journals (Sweden)

    Xi Ding

    2014-01-01

    Full Text Available Objective. The study was to investigate the impact of orthotropic material on the biomechanics of dental implant, based on a detailed mandible with high geometric and mechanical similarity. Materials and Methods. Multiple data sources were used to elaborate detailed biological structures and implant CAD models. In addition, an extended orthotropic material assignment methodology based on harmonic fields was used to handle the alveolar ridge region to generate compatible orthotropic fields. The influence of orthotropic material was compared with the commonly used isotropic model and simplified orthotropic model. Results. The simulation results showed that the values of stress and strain on the implant-bone interface almost increased in the orthotropic model compared to the isotropic case, especially for the cancellous bone. However, the local stress concentration was more obvious in the isotropic case compared to that in orthotropic case. The simple orthotropic model revealed irregular stress and strain distribution, compared to the isotropic model and the real orthotropic model. The influence of orthotropy was little on the implant, periodontal ligament, tooth enamel, and dentin. Conclusion. The orthotropic material has significant effect on stress and strain of implant-bone interface in the mandible, compared with the isotropic simulation. Real orthotropic mechanical properties of mandible should be emphasized in biomechanical studies of dental implants.

  20. Induced hemocompatibility and bone formation as biological scaffold for cell therapy implant

    Directory of Open Access Journals (Sweden)

    Keng-Liang Ou

    2016-06-01

    Full Text Available Although stem cells can become almost any type of specialized cell in the human body and may have the potential to generate replacement cells for tissues and organs, the transplantation of these cells are hindered by immune rejection and teratoma formation. However, scientists have found a promising solution for these problems-they have discovered the ability to isolate stem cells from a patient’s umbilical cord blood or bone marrow. Even more recently, small stem cells, such as spore-like stem cells, Blastomere-Like Stem Cells (BLSCs, and Very-Small Embryonic-Like stem cells (VSELs isolated directly from the peripheral blood have beeninvestigated as a novel approach to stem cell therapy as they can be isolated directly from the peripheral blood. A newly-discovered population of multipotent stem cells in this class has been dubbed StemBios (SB cells. The potential therapeutic uses of such stem cells have been explored in many ways, one of which includes dental remodeling and construction. Using adult stem cells, scientists have engineered and cultivated teeth in mice that may one day be used for human implantation.It follows that such regeneration may be possible, to a certain degree, in human patients as well. This idea leads to the present study on the effect of SB cell therapy on early osseointegrationof dental implants. Titanium (Ti dental implants have been proven to be a reliable and predictable treatment for restoration of edentulous regions. The osseointegration process can be described in two stages: primary stability (mechanical stability and secondary stability (biological stability. The mechanical stabilization of the implant reflects the interaction between the bone density and the features of the implant designs and can be determined after implant insertion. Alternatively,the biological stabilization of the implant is a physiologic healing process. It is couple to the biological interaction between the external surface of the

  1. Assessment of alveolar bone height and width using 64-MDCT examination for dental implants

    International Nuclear Information System (INIS)

    Sekiya, Kotaro; Kaneda, Takashi; Sekiya, Keiko; Mori, Shintaro; Sakayanagi, Masashi

    2011-01-01

    There have been many reports showing the usefulness of CT examinations for preoperative dental implant treatment, and some reports on clinical statistics using CT examinations. However, there have been few reports on alveolar bone height and width of over 1,000 Japanese cases. The purpose of this study was to evaluate alveolar bone height and width of 4,123 sites in 1,056 Japanese cases using preoperative CT examinations. The subjects consisted of 4,123 regions in 1,056 cases (370 males and 686 females, mean age 56.1 years old, range 15-87) of preoperative CT examinations conducted from January 2008 to March 2009. The CT examinations were performed using the Aquilion TM 64 (Toshiba Medical Systems Corporation) as the multi detector row CT (MDCT) unit, and ZIOSTATION (ZIOSOFT) as the workstation. The CT images were displayed on the workstation, and the alveolar bone height and width were measured to one decimal place (rounded off to two decimal places). The average alveolar bone height was 14.8 mm (SD±3.8) in the upper anterior area, 11.2 mm (SD±5.5) in the upper premolar area, 6.8 mm (SD±5.4) in the upper molar area, 19.5 mm (SD±5.4) in the lower anterior area, 14.2 mm (SD±3.9) in the lower premolar area, and 13.4 mm (SD±3.4) in the lower molar area. The average alveolar bone width was 4.3 mm (SD±1.9) in the anterior area, 5.7 mm (SD±2.3) in the upper premolar area, 7.9 mm (SD±3.1) in the upper molar area, 4.8 mm (SD±2.1) in the lower anterior area, 5.9 mm (SD±2.2) in the lower premolar area, and 6.9 mm (SD±2.5) in the lower molar area. Our results using preoperative CT examinations indicated that many of the Japanese cases had insufficient alveolar bone height and width for dental implants. (author)

  2. The Influence of Surface Roughness on the Displacement of Osteogenic Bone Particles during Placement of Titanium Screw-Type Implants

    NARCIS (Netherlands)

    Tabassum, A.; Walboomers, F.; Wolke, J.G.C.; Meijer, G.J.; Jansen, J.A.

    2011-01-01

    Background: Previously, we demonstrated that bone debris, which is translocated during dental implant placement, has osteogenic potential. Therefore, it was hypothesized that implant surface roughness can influence the amount of translocated bone debris/particles and thereby the osteogenic response.

  3. Histology of a dental implant with a platform switched implant-abutment connection

    Directory of Open Access Journals (Sweden)

    Vittoria Perrotti

    2011-10-01

    Full Text Available Background: Peri-implant crestal bone must be stable for aesthetic reasons. Aim of this study was a histologic analysis of an implant with a platform switched implant-abutment connection. Materials and methods: A 32-year-old male patient participated in this study. The patient needed a bilateral mandibular restoration. Four implants were used, and were immediately restored and loaded the same day of insertion. After a 6 weeks healing period, one implant with platform-switched abutment was retrieved with trephine. Before retrieval the implant was osseointegrated and not mobile. On one side of the implant, a 1 mm resorption of the crestal bone was present. On the contrary, on the other side no bone resorption had occurred and about 1 mm of bone was present over the implant shoulder. Results: The bone-implant contact percentage was 65.1 ± 6.3 %. Platform- switching could help in maintaining the height of the peri-implant crestal bone.

  4. Investigation of Peri-Implant Bone Healing Using Autologous Plasma Rich in Growth Factors in the Canine Mandible After 12 Weeks: A Pilot Study

    Science.gov (United States)

    Birang, Reza; Tavakoli, Mohammad; Shahabouei, Mohammad; Torabi, Alireza; Dargahi, Ali; Soolari, Ahmad

    2011-01-01

    Introduction: Faster reconstruction of patients’ masticatory systems is the aim of modern dentistry. A number of studies have indicated that application of growth factors to the surface of a dental implant leads to accelerated and enhanced osseointegration. The objective of the present study was to investigate the effect of plasma rich in growth factors on peri-implant bone healing. Materials and Methods: For the purpose of this study, two healthy, mixed-breed canines were selected, and the premolars were extracted from both sides of the mandible. Three months after premolar removal, 12 implants, each 5 mm in diameter and 10 mm in length, were placed in osteotomy sites on both sides of the mandible. Prior to placement, plasma rich in growth factors was applied to the surfaces of six implants, while the other six were used without plasma rich in growth factors. The implants were removed after 12 weeks along with the bone surrounding the sites using a trephine bur. One mesiodistal section containing the surrounding bone from each implant block, 50 µm in diameter, was prepared for histologic and histomorphometric investigation with an optical microscope. Results: The sites with implants treated with plasma rich in growth factors showed more bone-to-implant contact compared to control sites. Also, higher values for bone trabecular thickness and bone maturity were recorded for the PRGF-treated sites than for the control sites. Conclusion: Application of plasma rich in growth factors to the surface of an implant may enhance the bone healing process as well as bone-to-implant contact, thereby helping to achieve faster osseointegration. PMID:22145011

  5. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.

    Science.gov (United States)

    Cai, Xinjie; Yang, Fang; Yan, Xiangzhen; Yang, Wanxun; Yu, Na; Oortgiesen, Daniel A W; Wang, Yining; Jansen, John A; Walboomers, X Frank

    2015-04-01

    The implantation of bone marrow-derived mesenchymal stem cells (MSCs) has previously been shown successful to achieve periodontal regeneration. However, the preferred pre-implantation differentiation strategy (e.g. maintenance of stemness, osteogenic or chondrogenic induction) to obtain optimal periodontal regeneration is still unknown. This in vivo study explored which differentiation approach is most suitable for periodontal regeneration. Mesenchymal stem cells were obtained from Fischer rats and seeded onto poly(lactic-co-glycolic acid)/poly(ɛ-caprolactone) electrospun scaffolds, and then pre-cultured under different in vitro conditions: (i) retention of multilineage differentiation potential; (ii) osteogenic differentiation approach; and (iii) chondrogenic differentiation approach. Subsequently, the cell-scaffold constructs were implanted into experimental periodontal defects of Fischer rats, with empty scaffolds as controls. After 6 weeks of implantation, histomorphometrical analyses were applied to evaluate the regenerated periodontal tissues. The chondrogenic differentiation approach showed regeneration of alveolar bone and ligament tissues. The retention of multilineage differentiation potential supported only ligament regeneration, while the osteogenic differentiation approach boosted alveolar bone regeneration. Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Bone tissue engineering for spine fusion : An experimental study on ectopic and orthotopic implants in rats

    NARCIS (Netherlands)

    van Gaalen, SM; Dhert, WJA; van den Muysenberg, A; Oner, FC; van Blitterswijk, C; Verbout, AJ; de Bruijn, J.D.

    2004-01-01

    Alternatives to the use of autologous bone as a bone graft in spine surgery are needed. The purpose of this study was to examine tissue-engineered bone constructs in comparison with control scaffolds without cells in a posterior spinal implantation model in rats. Syngeneic bone marrow cells were

  7. Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Andreasen, Christina Møller; Dencker, Mads L.

    2015-01-01

    hydroxyapatite (ABM/P-15); hydroxyapatite + βtricalciumphosphate+ Poly-Lactic-Acid (HA/βTCP-PDLLA); or ABM/P-15+HA/βTCP-PDLLA. After nine weeks, bone-implant blocks were harvested and sectioned for micro-CT scanning, push-out test, and histomorphometry. Significant bone formation and implant fixation could...

  8. Scattering of the radiofrequency electromagnetic field by orthopedic bone support frame implants

    International Nuclear Information System (INIS)

    Mohsin, S.A.; Sheikh, N.M.

    2009-01-01

    The interaction of the fields in MRI (Magnetic Resonance Imaging) with orthopedic implants is investigated. The primary interaction is the scattering of the MRI RF (Radiofrequency) field by the implants. As a specific case study, the scattel-cd field due to a bone support frame implant is computed by the finite-element-method. The support frame has steel pins of significant length embedded in tissue. The induced surface current distributions on the steel pins and the spatial electric field distributions in the surrounding tissue have been obtained. (author)

  9. Marginal bone levels at single tooth implants with a conical fixture design. The influence of surface macro- and microstructure.

    Science.gov (United States)

    Norton, M R

    1998-04-01

    The concept of a conical implant design to accommodate single tooth replacement, has previously been shown to result in excessive bone loss, around the machined titanium conical collar, usually down to the 1st thread. This unusually aggressive loss of bone was shown to occur within a short period of time, post loading, with greater than 3 mm of bone loss occurring within the 1st 6 months to 1 year. The influence of implant design, surface texture and microleakage have all been highlighted as a potential cause. A modification of the surface structure, both at the macroscopic and microscopic level, as well as an altered fixture-abutment interface design has resulted in the maintenance of marginal bone around a single tooth titanium implant with a similar conical design. The radiographic follow-up of 33 implants loaded for up to 4 years, has revealed, by comparison, a most favourable maintenance of marginal bone around the conical collar, with a mean marginal bone loss of 0.32 mm mesially and 0.34 mm distally for the whole group. The cumulative mean marginal bone loss mesially and distally is 0.42 mm and 0.40 mm from 1 to 2 years, 0.54 mm and 0.43 mm from 2 to 3 years, 0.51 mm and 0.24 mm from 3 to 4 years, and 0.62 mm and 0.60 mm for implants past their 4 year recall.

  10. Benefits of mineralized bone cortical allograft for immediate implant placement in extraction sites: an in vivo study in dogs.

    Science.gov (United States)

    Orti, Valérie; Bousquet, Philippe; Tramini, Paul; Gaitan, Cesar; Mertens, Brenda; Cuisinier, Frédéric

    2016-10-01

    The aim of the present study was to evaluate the effectiveness of using a mineralized bone cortical allograft (MBCA), with or without a resorbable collagenous membrane derived from bovine pericardium, on alveolar bone remodeling after immediate implant placement in a dog model. Six mongrel dogs were included. The test and control sites were randomly selected. Four biradicular premolars were extracted from the mandible. In control sites, implants without an allograft or membrane were placed immediately in the fresh extraction sockets. In the test sites, an MBCA was placed to fill the gap between the bone socket wall and implant, with or without a resorbable collagenous membrane. Specimens were collected after 1 and 3 months. The amount of residual particles and new bone quality were evaluated by histomorphometry. Few residual graft particles were observed to be closely embedded in the new bone without any contact with the implant surface. The allograft combined with a resorbable collagen membrane limited the resorption of the buccal wall in height and width. The histological quality of the new bone was equivalent to that of the original bone. The MBCA improved the quality of new bone formation, with few residual particles observed at 3 months. The preliminary results of this animal study indicate a real benefit in obtaining new bone as well as in enhancing osseointegration due to the high resorbability of cortical allograft particles, in comparison to the results of xenografts or other biomaterials (mineralized or demineralized cancellous allografts) that have been presented in the literature. Furthermore, the use of an MBCA combined with a collagen membrane in extraction and immediate implant placement limited the extent of post-extraction resorption.

  11. Finite Element Analysis of Stress Distribution in Three Commonly Used Implant Systems in D2 and D4 Bone Densities

    Directory of Open Access Journals (Sweden)

    C Radha

    2016-01-01

    Materials and Methods : Pro-engineer 3-0 software was used to create the geometric models of the three implant systems (Nobel biocare, Biohorizon, Adin and two bone densities D2 and D4. Six 3D models were created to simulate each one of the three implant systems supporting a metal ceramic crown placed in two different densities of bone D2 and D4. The Poisson′s ratio(΅ and Youngs modulus(E of elasticity were assigned to different materials used for the models. Vertical and oblique loads of 450N each were applied on all six models. Von Mises stress analysis was done with ANSYS software. Results : Von Mises stresses were more within D4 type bone than D2 type, for all the three systems of implants and less stresses were seen in Biohorizon implant followed by Nobel Biocare and Adin implant particularly in D4 bone. Conclusion: The study concluded that the selection of a particular implant system should be based on the scientific research rather than on popularity.

  12. Marginal bone loss evaluation around immediate non-occlusal microthreaded implants placed in fresh extraction sockets in the maxilla: a 3-year study.

    Science.gov (United States)

    Calvo-Guirado, José L; Gómez-Moreno, Gerardo; Aguilar-Salvatierra, Antonio; Guardia, Javier; Delgado-Ruiz, Rafael A; Romanos, Georgios E

    2015-07-01

    To evaluate marginal bone loss over 3 years around immediate microthreaded implants placed in the maxillary anterior/esthetic zone and immediately restored with single crowns. Seventy-one implants (with microthreads up to the platform--rough surface body and neck, internal connection and platform switching) were placed in fresh extraction sockets in the maxillary arches of 30 men and 23 women (mean age 37.85 ± 7.09 years, range 27-60). All subjects had at least 3 mm of soft tissue to allow the establishment of adequate biologic width and to reduce bone resorption. Each patient received a provisional restoration immediately after implant placement with slight occlusal contact. Mesial and distal bone height was evaluated using digital radiography on the day following implant placement (baseline) and after 1, 2, and 3 years. Primary stability was measured with resonance frequency analysis. No implants failed, resulting in a cumulative survival rate of 100% after 3 years. Marginal bone loss from implant collar to bone crest measured at baseline (peri-implant bone defect at the fresh extraction socket) and after 3 years was 0.86 mm ± 0.29 mm. Mesial and distal site crestal bone loss ranged from 3.42 mm ± 1.2 mm at baseline to 3.51 mm ± 1.5 mm after 3 years (P = 0.063) and from 3.38 mm ± 0.9 mm at baseline to 3.49 mm ± 0.9 mm after 3 years, respectively (P = 0.086). This prospective study found minimal marginal bone loss and a 100% implant survival rate over the 3-year follow-up for microthreaded immediate implants subjected to immediate non-occlusal loading. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  14. Single-staged vs. two-staged implant placement using bone ring technique in vertically deficient alveolar ridges - Part 1: histomorphometric and micro-CT analysis.

    Science.gov (United States)

    Nakahara, Ken; Haga-Tsujimura, Maiko; Sawada, Kosaku; Kobayashi, Eizaburo; Mottini, Matthias; Schaller, Benoit; Saulacic, Nikola

    2016-11-01

    Simultaneous implant placement with bone grafting shortens the overall treatment period, but might lead to the peri-implant bone loss or even implant failure. The aim of this study was to compare the single-staged to two-staged implant placement using the bone ring technique. Four standardized alveolar bone defects were made in the mandibles of nine dogs. Dental implants (Straumann BL ® , Basel, Switzerland) were inserted simultaneously with bone ring technique in test group and after 6 months of healing period in control group. Animals of both groups were euthanized at 3 and 6 months of osseointegration period. The harvested samples were analyzed by means of histology and micro-CT. The amount of residual bone decreased while the amount of new bone increased up to 9 months of healing period. All morphometric parameters remained stable between 3 and 6 months of osseointegration period within groups. Per a given time point, median area of residual bone graft was higher in test group and area of new bone in control group. The volume of bone ring was greater in test than in control group, reaching the significance at 6 months of osseointegration period (P = 0.002). In the present type of bone defect, single-staged implant placement may be potentially useful to shorten an overall treatment period. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Steroid implants and markers of bone turnover in steers | Knetter ...

    African Journals Online (AJOL)

    The current study was designed to test the hypothesis that recently identified indicators of bone and cartilage turnover could be detected in the peripheral circulation, and that these markers might reflect accelerated ageing effects of the widely used steroidal implants, trenbolone acetate (TBA) and estradiol-17β (E2).

  16. Influence of titanium implant surface characteristics on bone regeneration in dehiscence-type defects: an experimental study in dogs.

    Science.gov (United States)

    Schwarz, Frank; Sager, Martin; Kadelka, Ines; Ferrari, Daniel; Becker, Jürgen

    2010-05-01

    The aim of the present study was to compare bone regeneration in dehiscence-type defects at titanium implants with chemically modified sandblasted/acid-etched (modSLA) or dual acid-etched surfaces with a calcium phosphate nanometre particle modification (DCD/CaP). Buccal dehiscence-type defects were surgically created following implant site preparation in both the upper and the lower jaws of 12 fox hounds. Both types of implants were randomly allocated in a split-mouth design and left to heal in a submerged position for 2 and 8 weeks. Dissected blocks were processed for histomorphometrical analysis [e.g. new bone height (NBH), percentage of bone-to-implant contact (BIC), area of new bone fill (BF), and area of mineralized tissue (MT) within BF]. At 2 and 8 weeks, both groups revealed comparable mean BF (2.3+/-0.6 to 2.5+/-0.6 mm(2)versus 2.0+/-0.6 to 1.4+/-0.5 mm(2)) and MT (31.1+/-14.3-83.2+/-8.2%versus 38.9+/-15.9-84.4+/-6.3%) values. However, modSLA implants revealed significantly higher mean NBH (2.4+/-0.8 to 3.6+/-0.3 mm versus 0.9+/-0.8 to 1.8+/-1.4 mm) and BIC (53.3+/-11.3-79.5+/-6.6%versus 19.3+/-16.4-47.2+/-30.7%) values than DCD/CaP implants. ModSLA implants may have a higher potential to support osseointegration in dehiscence-type defects than DCD/CaP implants.

  17. Five-year study of implant placement in regenerated bone and rehabilitation with telescopic crown retained dentures: a case report.

    Science.gov (United States)

    Zafiropoulos, Gregory-George; Hoffmann, Oliver

    2009-01-01

    Various implant-supported restorations have been used successfully for several decades to rehabilitate edentulous patients. Telescopic crowns are a common treatment modality used to connect dentures to natural teeth. Although previous findings indicate that telescopic crowns can be placed successfully on implants to support overdentures, only limited data are available on this treatment approach. Eight months after extraction of all nonsalvageable teeth and socket preservation, 11 implants were inserted into the mandible and maxillae of one patient. These implants were restored 4 months later using telescopic crown-supported dentures. Bleeding on probing (BOP), plaque index (PI), clinical attachment (PAL), and radiographic bone level were evaluated over 5 years. All implants remained in function over the 5-year evaluation period. Radiography showed stable bone levels for all implants. No changes in BOP or PI (range, 2%-4% for both parameters) were observed over this time. The PAL deteriorated by 1.5 mm during the first 3 years, with no subsequent changes. We conclude that telescopic crowns can be used successfully as attachments for overdentures supported by implants in regenerated bone.

  18. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit.

    Science.gov (United States)

    de Wild, Michael; Schumacher, Ralf; Mayer, Kyrill; Schkommodau, Erik; Thoma, Daniel; Bredell, Marius; Kruse Gujer, Astrid; Grätz, Klaus W; Weber, Franz E

    2013-12-01

    The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (μCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone

  19. Hypoxia-Inducible Factor-1α: A Potential Factor for the Enhancement of Osseointegration between Dental Implants and Tissue-Engineered Bone

    Directory of Open Access Journals (Sweden)

    Duohong Zou

    2011-07-01

    Full Text Available Introduction: Tissue-engineered bones are widely utilized to protect healthy tissue, reduce pain, and increase the success rate of dental implants. one of the most challenging obstacles lies in obtaining effective os-seointegration between dental implants and tissue-engineered structures. Deficiencies in vascularization, osteogenic factors, oxygen, and other nutrients inside the tissue-engineered bone during the early stages following implantation all inhibit effective osseointe-gration. Oxygen is required for aerobic metabolism in bone and blood vessel tissues, but oxygen levels inside tissue-engineered bone are not suf-ficient for cell proliferation. HIF-1α is a pivotal regulator of hypoxic and ischemic vascular responses, driving transcriptional activation of hundreds of genes involved in vascular reactivity, angiogenesis, arteriogenesis, and osteogenesis.The hypothesis: Hypoxia-Inducible Factor-1α seems a potential factor for the enhancement of osseointegration between dental implants and tissue-engineered bone.Evaluation of the hypothesis: Enhancement of HIF-1α protein expression is recognized as the most promising approach for angiogenesis, because it can induce multiple angiogenic targets in a coordinated manner. Therefore, it will be a novel potential therapeutic methods targeting HIF-1α expression to enhance osseointegration be-tween dental implants and tissue-engineered bone.

  20. A rare case report of peri-implant bone necrosis: Mapping the distance of initial peri-implant complication toward a path of success

    Directory of Open Access Journals (Sweden)

    S K Salaria

    2011-01-01

    Full Text Available In the past decade, science of implant placement has greatly advanced and at the same time much success has been experienced with the endosseous implant. Despite the long-term predictability of the implants, however, biological, technical and esthetic complications do occur. The use of osseointegrated implants as a foundation for prosthetic replacement of missing teeth has been highly predictable, but still at present, there is no consensus of how to best manage the complications occurring after implant placement. In this report, we discuss post-insertion complication of bone necrosis and its successful management.

  1. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium-zirconium alloy dental implants.

    Science.gov (United States)

    Akça, Kıvanç; Eser, Atılım; Çavuşoğlu, Yeliz; Sağırkaya, Elçin; Çehreli, Murat Cavit

    2015-05-01

    The aim of this study was to investigate conventionally and early loaded titanium and titanium-zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium-zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium-zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium-zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium-zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

  2. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Morphological Studies of Local Influence of Implants with Coatings Based on Superhard Compounds on Bone Tissue under Conditions of Induced Trauma

    Directory of Open Access Journals (Sweden)

    Galimzyan KABIROV

    2015-07-01

    Full Text Available In this paper we analyze the response of bone tissue to a transosseous introduction of implants made of copper (Cu, medical steel 12X18H9T, steel with nitrides of titanium and hafnium coatings (TiN + HfN, as well as steel coated with titanium and zirconium nitrides (TiN + ZrN into the diaphysis of the tibia of experimental rats. The obtained results showed that the restoration of the injured bone and bone marrow in groups with implants made of steel 12X18H9T occurred without the participation of the granulation and cartilaginous tissues, but with implants made of steel coated with titanium and hafnium nitrides (TiN + HfN, this bone recovery also took place in the early term. At the same time, in groups, where the implants were made of copper (Cu, implants were made of steel coated with titanium and zirconium nitrides (TiN + ZrN were used, such phenomena as necrosis, lysis and destruction of the bone were registered and the bone tissue repair went through formation of the cartilaginous tissue.

  4. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values

    OpenAIRE

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    Objective: The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. Materials and Methods: CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were g...

  5. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    Science.gov (United States)

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  6. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    Science.gov (United States)

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  7. Bone loss at implant with titanium abutments coated by soda lime glass containing silver nanoparticles: a histological study in the dog.

    Directory of Open Access Journals (Sweden)

    Arturo Martinez

    Full Text Available The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression.

  8. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants.

    LENUS (Irish Health Repository)

    Leonard, Gary

    2009-03-01

    This study was designed to compare the bone healing process around plateau root from (PRF) and screw root from (SRF) titanium dental implants over the immediate 12 week healing period post implant placement.

  9. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells

    International Nuclear Information System (INIS)

    Howlett, C.R.; Zreiqat, H.; O'Dell, R.; Noorman, J.; Evans, P.; Dalton, B.A.; McFarland, C.; Steele, J.G.

    1994-01-01

    Our group is investigating the potential of modifying the surface atomic layers of biomaterials by ion beam implantation in order to stimulate adhesion of bone cells to these treated biomaterials. In this study alumina that had been implanted with magnesium ions (Mg)-(Al 2 O 3 ), was compared to unmodified alumina (Al 2 O 3 ) for the adhesion of cells cultured from explanted human bone. The attachment and spreading of cultured human bone derived cells onto (Mg)-(Al 2 O 3 ) was significantly enhanced as compared to Al 2 O 3 . The role of adsorption of serum adhesive glycoproteins firbronectin (Fn) and vitronectin (Vn) in the adhesion of human bone derived cells to (Mg)-(Al 2 O 3 ) was determined. (Author)

  10. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy

    International Nuclear Information System (INIS)

    Wu Weigang; Zheng Qixin; Guo Xiaodong; Sun Jianhua; Liu Yudong

    2009-01-01

    In the world, bone tuberculosis is still very difficult to treat and presents a challenge to clinicians. In this study, we utilized 3D printing technology to fabricate a programmed release multi-drug implant for bone tuberculosis therapy. The construction of the drug implant was a multi-layered concentric cylinder divided into four layers from the center to the periphery. Isoniazid and rifampicin were distributed individually into the different layers in a specific sequence of isoniazid-rifampicin-isoniazid-rifampicin. The drug release assays in vitro and in vivo showed that isoniazid and rifampicin were released orderly from the outside to the center to form the multi-drug therapeutic alliance, and the peak concentrations of drugs were detected in sequence at 8 to 12 day intervals. In addition, no negative effect on the proliferation of rabbit bone marrow mesenchymal stem cells was detected during the cytocompatibility assay. Due to its ideal pharmacologic action and cytocompatibility, the programmed release multi-drug implant with a complex construction fabricated by 3D printing technology could be of interest in prevention and treatment of bone tuberculosis.

  11. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Weigang; Zheng Qixin; Guo Xiaodong; Sun Jianhua; Liu Yudong, E-mail: Zheng-qx@163.co [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2009-12-15

    In the world, bone tuberculosis is still very difficult to treat and presents a challenge to clinicians. In this study, we utilized 3D printing technology to fabricate a programmed release multi-drug implant for bone tuberculosis therapy. The construction of the drug implant was a multi-layered concentric cylinder divided into four layers from the center to the periphery. Isoniazid and rifampicin were distributed individually into the different layers in a specific sequence of isoniazid-rifampicin-isoniazid-rifampicin. The drug release assays in vitro and in vivo showed that isoniazid and rifampicin were released orderly from the outside to the center to form the multi-drug therapeutic alliance, and the peak concentrations of drugs were detected in sequence at 8 to 12 day intervals. In addition, no negative effect on the proliferation of rabbit bone marrow mesenchymal stem cells was detected during the cytocompatibility assay. Due to its ideal pharmacologic action and cytocompatibility, the programmed release multi-drug implant with a complex construction fabricated by 3D printing technology could be of interest in prevention and treatment of bone tuberculosis.

  12. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis.

    Science.gov (United States)

    Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon; Liu, Sean Shih-Yao

    2016-04-01

    This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200 g nickel-titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P titanium alloy MSIs. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Natural History of Bone Response to Hydroxyapatite-Coated Hip Prostheses Implanted in Humans

    OpenAIRE

    Frayssinet, P.; Hardy, D.; Hanker, J. S.; Giammara, B. L.

    1995-01-01

    A series of 15 autopsied femurs containing hydroxyapatite- coated (HA-coated) prostheses was analysed histologically. Their implantation time ranged from 5 days up to 3 years. The coating thickness of some prostheses and the percentage of the coating in contact with bone at different levels were evaluated using an image analysis device. After the newly formed bone tissue had became mature, several bone morphotypes were identified at the coating contact. From the proximal to the distal part of...

  14. Does the number of implants have any relation with peri-implant disease?

    Directory of Open Access Journals (Sweden)

    Bernardo Born PASSONI

    2014-10-01

    Full Text Available Objective: The aim of this study was to evaluate the relationship between the number of pillar implants of implant-supported fixed prostheses and the prevalence of periimplant disease. Material and Methods: Clinical and radiographic data were obtained for the evaluation. The sample consisted of 32 patients with implant-supported fixed prostheses in function for at least one year. A total of 161 implants were evaluated. Two groups were formed according to the number of implants: G1 ≤5 implants and G2 >5 implants. Data collection included modified plaque index (MPi, bleeding on probing (BOP, probing depth (PD, width of keratinized mucosa (KM and radiographic bone loss (BL. Clinical and radiographic data were grouped for each implant in order to conduct the diagnosis of mucositis or peri-implantitis. Results: Clinical parameters were compared between groups using Student’s t test for numeric variables (KM, PD and BL and Mann-Whitney test for categorical variables (MPi and BOP. KM and BL showed statistically significant differences between both groups (p<0.001. Implants from G1 – 19 (20.43% – compared with G2 – 26 (38.24% – showed statistically significant differences regarding the prevalence of peri-implantitis (p=0.0210. Conclusion: It seems that more than 5 implants in total fixed rehabilitations increase bone loss and consequently the prevalence of implants with periimplantitis. Notwithstanding, the number of implants does not have any influence on the prevalence of mucositis.

  15. Biomechanical study of the bone tissue with dental implants interaction

    Directory of Open Access Journals (Sweden)

    Navrátil P.

    2011-12-01

    Full Text Available The article deals with the stress-strain analysis of human mandible in the physiological state and after the dental implant application. The evaluation is focused on assessing of the cancellous bone tissue modeling-level. Three cancellous bone model-types are assessed: Non-trabecular model with homogenous isotropic material, nontrabecular model with inhomogeneous material obtained from computer tomography data using CT Data Analysis software, and trabecular model built from mandible section image. Computational modeling was chosen as the most suitable solution method and the solution on two-dimensional level was carried out. The results show that strain is more preferable value than stress in case of evaluation of mechanical response in cancellous bone. The non-trabecular model with CT-obtained material model is not acceptable for stress-strain analysis of the cancellous bone for singularities occurring on interfaces of regions with different values of modulus of elasticity.

  16. Implants in free fibula flap supporting dental rehabilitation - Implant and peri-implant related outcomes of a randomized clinical trial.

    Science.gov (United States)

    Kumar, Vinay V; Ebenezer, Supriya; Kämmerer, Peer W; Jacob, P C; Kuriakose, Moni A; Hedne, Naveen; Wagner, Wilfried; Al-Nawas, Bilal

    2016-11-01

    The objective of this study was to assess the difference in success rates of implants when using two or four implant-supported-overdentures following segmental mandibular reconstruction with fibula free flap. This prospective, parallel designed, randomized clinical study was conducted with 1:1 ratio. At baseline, all participants already had segmental reconstruction of mandible with free fibula flap. The participants were randomized into two groups: Group-I received implant-supported-overdentures on two tissue-level implants and Group-II received implant-supported-overdentures on four tissue-level implants. Success rates of the implants were evaluated at 3 months, 6 months and 12 months following implant loading using marginal bone level changes as well as peri-implant indices (Buser et al., 1990). 52 patients were randomized into two treatment groups (26 each), out of which 18 patients (36 implants) of Group-I and 17 patients (68 implants) of Group-II were evaluated. One implant in Group-I was lost due to infective complications and one patient in the same group had superior barrel necrosis. There was a statistically significant increase at both time points (p = 0.03, p = 0.04 at 6 months, 12 months) in the amount of marginal bone loss in Group-I (0.4 mm, 0.5 mm at 6 months, 12 months) as compared to Group-II (0.1 mm, 0.2 mm at 6 months, 12 months). There were no clinically significant changes peri-implant parameters between both groups. Peri-implant soft tissue hyperplasia was seen in both groups, 32% of implants at 3-months, 26% at 6-months and 3% at 12-months follow-up. The results of this study show that patients with 2-implant-supported-overdentures had higher marginal bone loss as compared to patients with 4-implant-supported-overdentures. There were no clinically significant differences in peri-implant soft tissue factors in patients with 2- or 4-implant-supported-overdentures. Hyperplastic peri-implant tissues are common in the early implant

  17. Marginal Bone Remodeling around healing Abutment vs Final Abutment Placement at Second Stage Implant Surgery: A 12-month Randomized Clinical Trial.

    Science.gov (United States)

    Nader, Nabih; Aboulhosn, Maissa; Berberi, Antoine; Manal, Cordahi; Younes, Ronald

    2016-01-01

    The periimplant bone level has been used as one of the criteria to assess the success of dental implants. It has been documented that the bone supporting two-piece implants undergoes resorption first following the second-stage surgery and later on further to abutment connection and delivery of the final prosthesis. The aim of this multicentric randomized clinical trial was to evaluate the crestal bone resorption around internal connection dental implants using a new surgical protocol that aims to respect the biological distance, relying on the benefit of a friction fit connection abutment (test group) compared with implants receiving conventional healing abutments at second-stage surgery (control group). A total of partially edentulous patients were consecutively treated at two private clinics, with two adjacent two-stage implants. Three months after the first surgery, one of the implants was randomly allocated to the control group and was uncovered using a healing abutment, while the other implant received a standard final abutment and was seated and tightened to 30 Ncm. At each step of the prosthetic try-in, the abutment in the test group was removed and then retightened to 30 Ncm. Horizontal bone changes were assessed using periapical radiographs immediately after implant placement and at 3 (second-stage surgery), 6, 9 and 12 months follow-up examinations. At 12 months follow-up, no implant failure was reported in both groups. In the control group, the mean periimplant bone resorption was 0.249 ± 0.362 at M3, 0.773 ± 0.413 at M6, 0.904 ± 0.36 at M9 and 1.047 ± 0.395 at M12. The test group revealed a statistically significant lower marginal bone loss of 20.88% at M3 (0.197 ± 0.262), 22.25% at M6 (0.601 ± 0.386), 24.23% at M9 (0.685 ± 0.341) and 19.2% at M9 (0.846 ± 0.454). The results revealed that bone loss increased over time, with the greatest change in bone loss occurring between 3 and 6 months. Alveolar bone loss was significantly greater in the

  18. A Paradigm for the Development and Evaluation of Novel Implant Topologies for Bone Fixation: In Vivo Evaluation

    OpenAIRE

    Long, Jason P.; Hollister, Scott J.; Goldstein, Steven A.

    2012-01-01

    While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopaedic implants and then fabricated select...

  19. Biomechanical Influence of Implant Neck Designs on Stress Distribution over Adjacent Bone: A Three-Dimensional Non-Linear Finite Element Analysis

    Science.gov (United States)

    Ikman Ishak, Muhammad; Shafi, Aisyah Ahmad; Mohamad, Su Natasha; Jizat, Noorlindawaty Md

    2018-03-01

    The design of dental implant body has a major influence on the stress dissipation over adjacent bone as numbers of implant failure cases reported in past clinical studies. Besides, the inappropriate implant features may cause excessive high or low stresses which could possibly contribute to pathologic bone resorption or atrophy. The aim of this study is to evaluate the effect of different configurations of implant neck on stress dispersion within the adjacent bone via three-dimensional (3-D) finite element analysis (FEA). A set of computed tomography (CT) images of craniofacial was used to reconstruct a 3-D model of mandible using an image-processing software. The selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone model consisted of both compact (cortical) and porous (cancellous) structures. Three dental implant sets (crown, implant body, and abutment) with different designs of implant neck – straight, tapered with 15°, and tapered with 30° were modelled using a computer-aided design (CAD) software and all models were then analysed via 3-D FEA software. Top surface of first molar crown was subjected to occlusal forces of 114.6 N, 17.2 N, and 23.4 N in the axial, lingual, and mesio-distal directions, respectively. All planes of the mandible model were rigidly constrained in all directions. The result has demonstrated that the straight implant body neck is superior in attributing to high stress generation over adjacent bone as compared to others. This may associate with lower frictional resistance produced than those of tapered designs to withstand the applied loads.

  20. Evaluation of periprosthetic bone mineral density and postoperative migration of humeral head resurfacing implants

    DEFF Research Database (Denmark)

    Mechlenburg, Inger; Klebe, Thomas Martin; Døssing, Kaj Verner

    2014-01-01

    BACKGROUND: Implant migration, bone mineral density (BMD), length of glenohumeral offset (LGHO), and clinical results were compared for the Copeland (Biomet Inc, Warsaw, IN, USA) and the Global C.A.P. (DePuy Int, Warsaw, IN, USA) humeral head resurfacing implants (HHRIs). METHODS: The study...... improved over time for both implant groups (P migration and good clinical results. Periprosthetic BMD and LGHO both increased for the Copeland HHRI more than for the Global C.A.P HHRI....

  1. Early Loading of Fluoridated Implants Placed in Fresh Extraction Sockets and Healed Bone: A 3- to 5-Year Clinical and Radiographic Follow-Up Study of 39 Consecutive Patients.

    Science.gov (United States)

    Oxby, Gert; Oxby, Fredrik; Oxby, Johan; Saltvik, Tomas; Nilsson, Peter

    2015-10-01

    Immediate placement of implants in extraction sockets for early loading is an attractive treatment modality due to reduced treatment time. However, the outcome of fluoridated implants in this situation with regard to bone levels and health of soft tissues is not well documented. To evaluate the outcome of early loading of OsseoSpeed(™) dental implants placed into fresh extraction sockets and healed bone in consecutive patients treated in a private clinic. A total of 182 OsseoSpeed(™) implants (Astra Tech Implant System, DENTSPLY Implants, Mölndal, Sweden), 72 in immediate extraction sockets and 110 in healed sites, were placed in 39 consecutive patients. The implants were loaded with permanent restorations within 60 days (average 31 days). Clinical and radiographic follow-up examinations were performed annually for at least 3 years (mean 55 months). An aesthetic index was used to evaluate the soft tissues adjacent to the prosthetic restorations. No implant was lost during the observation period, giving a survival rate of 100%. Bone level changes during the observation period were minimal, with a mean marginal bone loss of 0.3 ± 0.9 mm around the delayed implants and a mean marginal bone gain of 0.3 ± 1.4 mm around the immediate implants (p = .0036). The frequency distribution of bone level revealed that 85% of implants placed in fresh extraction sockets and 84% of implants in healed bone did not show any loss of bone level during follow-up (p = NS). Soft tissue complications were observed at two immediate implant sites in one patient. The remaining 180 implants received the highest aesthetic score. Moreover, no signs of peri-implant purulent infection or aggressive bone loss were found during the follow-up period. Early loading of fluoridated implants with permanent constructions appears to be a viable therapy for implants placed immediately in extraction sites and in healed bone. © 2014 Wiley Periodicals, Inc.

  2. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    Science.gov (United States)

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications. © 2013 Wiley Periodicals, Inc.

  3. No effect of platelet-rich plasma with frozen or processed bone allograft around noncemented implants

    DEFF Research Database (Denmark)

    Jensen, T B; Rahbek, O; Overgaard, S

    2005-01-01

    by isolating the buffy coat from autologous blood samples. Bone allograft was used fresh-frozen or processed by defatting, freeze drying, and irradiation. Cylindrical hydroxyapatite-coated titanium implants were inserted bilaterally in the femoral condyles of eight dogs. Each implant was surrounded by a 2.5-mm...

  4. Influence of Trabecular Bone on Peri-Implant Stress and Strain Based on Micro-CT Finite Element Modeling of Beagle Dog.

    Science.gov (United States)

    Liao, Sheng-Hui; Zhu, Xing-Hao; Xie, Jing; Sohodeb, Vikesh Kumar; Ding, Xi

    2016-01-01

    The objective of this investigation is to analyze the influence of trabecular microstructure modeling on the biomechanical distribution of the implant-bone interface. Two three-dimensional finite element mandible models, one with trabecular microstructure (a refined model) and one with macrostructure (a simplified model), were built. The values of equivalent stress at the implant-bone interface in the refined model increased compared with those of the simplified model and strain on the contrary. The distributions of stress and strain were more uniform in the refined model of trabecular microstructure, in which stress and strain were mainly concentrated in trabecular bone. It was concluded that simulation of trabecular bone microstructure had a significant effect on the distribution of stress and strain at the implant-bone interface. These results suggest that trabecular structures could disperse stress and strain and serve as load buffers.

  5. Bone cutting capacity and osseointegration of surface-treated orthodontic mini-implants.

    Science.gov (United States)

    Kim, Ho-Young; Kim, Sang-Cheol

    2016-11-01

    The objective of the study was to evaluate the practicality and the validity of different surface treatments of self-drilling orthodontic mini-implants (OMIs) by comparing bone cutting capacity and osseointegration. Self-drilling OMIs were surface-treated in three ways: Acid etched (Etched), resorbable blasting media (RBM), partially resorbabla balsting media (Hybrid). We compared the bone cutting capacity by measuring insertion depths into artificial bone (polyurethane foam). To compare osseointegration, OMIs were placed in the tibia of 25 rabbits and the removal torque value was measured at 1, 2, 4, and 8 weeks after placement. The specimens were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The bone cutting capacity of the etched and hybrid group was lower than the machined (control) group, and was most inhibited in the RBM group ( p drilling OMIs, without a corresponding reduction in bone cutting capacity.

  6. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    Guo, Yue; Ren, Ling; Liu, Chang; Yuan, Yajiang; Lin, Xiao; Tan, Lili; Chen, Shurui; Yang, Ke; Mei, Xifan

    2013-01-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  7. Microgap and Micromotion at the Implant Abutment Interface Cause Marginal Bone Loss Around Dental Implant but More Evidence is Needed.

    Science.gov (United States)

    Alqutaibi, Ahmed Yaseen; Aboalrejal, Afaf Noman

    2018-06-01

    Influences of micro-gap and micromotion of the implant-abutment interface on marginal bone loss around implant neck. Liu Y, Wang J. Arch Oral Biol 2017;83:153-60. This study was financially supported by grants from the National Natural Science Foundation of China (81570956) and the Bureau of Science and Technology of Wuhan ([2014]160, 2015060101010051) TYPE OF STUDY/DESIGN: Comprehensive literature review. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography intensity values.

    Science.gov (United States)

    Alkhader, Mustafa; Hudieb, Malik; Khader, Yousef

    2017-01-01

    The aim of this study was to investigate the predictability of bone density at posterior mandibular implant sites using cone-beam computed tomography (CBCT) intensity values. CBCT cross-sectional images for 436 posterior mandibular implant sites were selected for the study. Using Invivo software (Anatomage, San Jose, California, USA), two observers classified the bone density into three categories: low, intermediate, and high, and CBCT intensity values were generated. Based on the consensus of the two observers, 15.6% of sites were of low bone density, 47.9% were of intermediate density, and 36.5% were of high density. Receiver-operating characteristic analysis showed that CBCT intensity values had a high predictive power for predicting high density sites (area under the curve [AUC] =0.94, P < 0.005) and intermediate density sites (AUC = 0.81, P < 0.005). The best cut-off value for intensity to predict intermediate density sites was 218 (sensitivity = 0.77 and specificity = 0.76) and the best cut-off value for intensity to predict high density sites was 403 (sensitivity = 0.93 and specificity = 0.77). CBCT intensity values are considered useful for predicting bone density at posterior mandibular implant sites.

  9. Assessment of the effects of laser photobiomodulation on peri-implant bone repair through energy dispersive x-ray fluorescence: A study of dogs

    Science.gov (United States)

    Menezes, R. F.; Araújo, N. C.; Carneiro, V. S. M.; Moreno, L. M.; Guerra, L. A. P.; Santos Neto, A. P.; Gerbi, M. E. M.

    2016-03-01

    Bone neoformation is essential in the osteointegration of implants and has been correlated with the repair capacity of tissues, the blood supply and the function of the cells involved. Laser therapy accelerates the mechanical imbrication of peri-implant tissue by increasing osteoblastic activity and inducing ATP, osteopontin and the expression of sialoproteins. Objective: The aim of the present study was to assess peri-implant bone repair using the tibia of dogs that received dental implants and laser irradiation (AsGaAl 830nm - 40mW, CW, f~0.3mm) through Energy Dispersive X-ray Fluorescence (EDXRF). Methodology: Two groups were established: G1 (Control, n=20; two dental implants were made in the tibia of each animal; 10 animals); G2 (Experimental, n=20, two dental implants were made in the tibia each animal + Laser therapy; 10 animals). G2 was irradiated every 48 hours for two weeks, with a total of seven sessions. The first irradiation was conducted during the surgery, at which time a point in the surgical alveolus was irradiated prior to the placement of the implant and four new spatial positions were created to the North, South, East and West (NSEW) of the implant. The subsequent sessions involved irradiation at these four points and at one infra-implant point (in the direction of the implant apex). Each point received 4J/cm2 and a total dose of 20J/cm2 per session (treatment dose=140J/cm2). The specimens were removed 15 and 30 days after the operation for the EDXRF test. The Mann- Whitney statistical test was used to assess the results. Results: The increase in the calcium concentration in the periimplant region of the irradiated specimens (G2) was statistically significant (p repair in the peri-implant region.

  10. Evaluation of four designs of short implants placed in atrophic areas with reduced bone height: a three-year, retrospective, clinical and radiographic study.

    Science.gov (United States)

    Lopez Torres, J A; Gehrke, S A; Calvo Guirado, J L; Aristazábal, L F R

    2017-09-01

    The aim of the present study was to evaluate retrospectively the clinical and radiographic behaviour of four commercially-available short implants with different macrodesigns and microdesigns in areas in which the height of the bone was reduced. We took into account the success and survival, peri-implant crestal bone loss, and the level of probing at which the gum bled. Patients were included if they had been given one or more short implants (≤8.5mm long) in the posterior jaws at least three years earlier. Three hundred and ninety-one short implants were placed in 170 subjects, and were divided in four groups based on the brand of implant. The implants were evaluated one, two, and three years after they had been inserted. Short implants had a three-year survival and success rate of 90% in all groups, and bone loss was acceptable after three years with no significant differences between them. These results support the use of short implants as an effective and safe treatment. However, within the limitations of this study, the design of the implant does seem to influence the behaviour of peri-implant bone at the crestal level. Copyright © 2017. Published by Elsevier Ltd.

  11. Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-12-01

    Full Text Available Metallic biomaterials are widely used in maxillofacial surgery. While titanium is presumed to be the gold standard, magnesium-based implants are a current topic of interest and investigation due to their biocompatible, osteoconductive and degradable properties. This study investigates the effects of poly-ε-caprolactone-coated and previtalised magnesium implants on osteointegration within murine calvarial bone defects: After setting a 3 mm × 3 mm defect into the calvaria of 40 BALB/c mice the animals were treated with poly-ε-caprolactone-coated porous magnesium implants (without previtalisation or previtalised with either osteoblasts or adipose derived mesenchymal stem cells, porous Ti6Al4V implants or without any implant. To evaluate bone formation and implant degradation, micro-computertomographic scans were performed at day 0, 28, 56 and 84 after surgery. Additionally, histological thin sections were prepared and evaluated histomorphometrically. The outcomes revealed no significant differences within the differently treated groups regarding bone formation and the amount of osteoid. While the implant degradation resulted in implant shifting, both implant geometry and previtalisation appeared to have positive effects on vascularisation. Although adjustments in degradation behaviour and implant fixation are indicated, this study still considers magnesium as a promising alternative to titanium-based implants in maxillofacial surgery in future.

  12. Post-marketing surveillance of CustomBone Service implanted in children under 7 years old.

    Science.gov (United States)

    Frassanito, Paolo; Tamburrini, Gianpiero; Massimi, Luca; Di Rocco, Concezio; Nataloni, Angelo; Fabbri, Greta; Caldarelli, Massimo

    2015-01-01

    The CustomBone Service is a bioceramic implant suitable for cranial repair in both adults and children, although there are no clinical data about its use in children under 7 years of age. This surveillance study investigates the outcome in this age group. Twenty-eight children under 7 years old (range, 2.5-6 years) received CustomBone Service from July 2006 to May 2013 in 16 international hospitals. Data of 23 children (12 males and 11 females), harboring 24 prosthesis, were available with a minimum follow-up of 1 year. Sites of the cranial defect were frontal or parietal (20.8 % each), parieto-temporal (16.7 %), fronto-parietal or occipital (12.5 % each), fronto-parieto-temporal or fronto-temporal (8.3 % each). Initial diseases were trauma (54.2 %), malformation (37.5 %), or tumor of the bone/skin (8.3 %). Rupture of the implant occurred in a single case during the implant (1/26 surgeries, 3.8 %) and the cranial repair was achieved by means of the back-up prosthesis. Five adverse events were registered during the follow-up period consisting of three cases of fracture and two of exposure/infection of the prosthesis. All cases required the removal of the device (20.8 %). The failure rate of CustomBone Service under 7 years of age was higher than reported in adults and children over 7 years old (20.8 vs. 3.8 %), However, CustomBone Service may be considered a valid option under 7 years old since other materials are burdened by more significant rates of complications in the long-term period. Due to specific properties of this material, indication to CustomBone Service in toddlers should be carefully evaluated by the surgeon on a case-by-case basis.

  13. Effect of Flapless Immediate Implantation and Filling the Buccal Gap with Xenograft Material on the Buccal Bone Level: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mojgan Paknejad

    2017-12-01

    Full Text Available Objectives: Following tooth extraction, soft and hard tissue alterations occur; Different factors can affect this process. The objective of this study was to determine the effect of gap filling on buccal alveolar crestal bone level after immediate implant placement after 4- to 6-month observation period.Materials and Methods: This   randomized clinical trial was performed on 20 patients (mean age of 38.8 years requiring tooth extraction in a total of 27 areas in the anterior maxilla. The treatment strategy was as follows: atraumatic flapless tooth extraction, implant placement, insertion of a graft (test group or no material (control group between the implant and the socket wall, connection healing abutment placement and suturing the area. Clinical and cone beam computed tomographic examinations were performed before implant placement (baseline, 24 hours after surgery and 4-6 months (T2 after implant placement, to assess the buccal plate height (BH and implant complications.Results: After 4 months of healing, a reduction in different bone measurements was noticed in the two groups. No statistically significant differences were assessed in bone height measurements between the test and control groups at different time points. The study demonstrated that immediate implantation resulted in 1.30 and 1.66 mm reduction in buccal bone plate in the test and control groups, respectively.Conclusions: The study demonstrated that immediate implantation in the extraction socket together with xenograft failed to prevent bone resorption.

  14. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  15. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  16. The Failure Envelope Concept Applied To The Bone-Dental Implant System.

    Science.gov (United States)

    Korabi, R; Shemtov-Yona, K; Dorogoy, A; Rittel, D

    2017-05-17

    Dental implants interact with the jawbone through their common interface. While the implant is an inert structure, the jawbone is a living one that reacts to mechanical stimuli. Setting aside mechanical failure considerations of the implant, the bone is the main component to be addressed. With most failure criteria being expressed in terms of stress or strain values, their fulfillment can mean structural flow or fracture. However, in addition to those effects, the bony structure is likely to react biologically to the applied loads by dissolution or remodeling, so that additional (strain-based) criteria must be taken into account. While the literature abounds in studies of particular loading configurations, e.g. angle and value of the applied load to the implant, a general study of the admissible implant loads is still missing. This paper introduces the concept of failure envelopes for the dental implant-jawbone system, thereby defining admissible combinations of vertical and lateral loads for various failure criteria of the jawbone. Those envelopes are compared in terms of conservatism, thereby providing a systematic comparison of the various failure criteria and their determination of the admissible loads.

  17. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  18. The effect of thread pattern upon implant osseointegration.

    Science.gov (United States)

    Abuhussein, Heba; Pagni, Giorgio; Rebaudi, Alberto; Wang, Hom-Lay

    2010-02-01

    Implant design features such as macro- and micro-design may influence overall implant success. Limited information is currently available. Therefore, it is the purpose of this paper to examine these factors such as thread pitch, thread geometry, helix angle, thread depth and width as well as implant crestal module may affect implant stability. A literature search was conducted using MEDLINE to identify studies, from simulated laboratory models, animal, to human, related to this topic using the keywords of implant thread, implant macrodesign, thread pitch, thread geometry, helix angle, thread depth, thread width and implant crestal module. The results showed how thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Excess helix angles in spite of a faster insertion may jeopardize the ability of implants to sustain axial load. Deeper threads seem to have an important effect on the stabilization in poorer bone quality situations. The addition of threads or microthreads up to the crestal module of an implant might provide a potential positive contribution on bone-to to-implant contact as well as on the preservation of marginal bone; nonetheless this remains to be determined. Appraising the current literature on this subject and combining existing data to verify the presence of any association between the selected characteristics may be critical in the achievement of overall implant success.

  19. Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir

    DEFF Research Database (Denmark)

    Jensen, Louise Kruse; Koch, Janne; Aalbæk, Bent

    2017-01-01

    weight of Staphylococcus aureus or saline was inserted into the right tibial bone of 12 pigs. The animals were consecutively killed on day 2, 4 and 6 following implantation. Bone tissue around the implant was histologically evaluated. Identification of S. aureus was performed immunohistochemically...... on tissue section and with scanning electron microscopy and peptide nucleic acid in situ hybridization on implants. The distance of the peri-implanted pathological bone area (PIBA), measured perpendicular to the implant, was significantly larger in infected animals compared to controls (p = 0...

  20. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    Li Huiwu; Dai Kerong; Tang Tingting; Zhang Xiaoling; Yan Mengning; Lou Jueren

    2007-01-01

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals