WorldWideScience

Sample records for bone collagen matrix

  1. Effect of Bio-Oss ® Collagen and Collagen matrix on bone formation

    OpenAIRE

    Wong, R.W.K; Rabie, A B M

    2010-01-01

    Objective: to compare the amount of new bone produced by Bio-Oss ® Collagen to that produced by collagen matrix in vivo. Method: eighteen bone defects, 5mm by 10mm were created in the parietal bone of 9 New Zealand White rabbits. 6 defects were grafted with Bio-Oss ® Collagen. 6 defects were grafted with collagen matrix alone (positive control) and 6 were left empty (negative control). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quant...

  2. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Science.gov (United States)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  3. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    Directory of Open Access Journals (Sweden)

    Andreas O. Parashis

    2014-01-01

    Full Text Available Alveolar ridge preservation (ARP has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM in combination with freeze-dried bone allograft (FDBA for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP.

  4. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    OpenAIRE

    Zhang, Jian; Lazarenko, Oxana P.; Blackburn, Michael L.; Badger, Thomas M.; Ronis, Martin J. J.; Chen, Jin-Ran

    2012-01-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16...

  5. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells.

    Science.gov (United States)

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2013-06-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16/p21 in bone. Feeding a diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only prior to puberty [postnatal day 21 (PND21) to PND34] prevents OVX-induced effects on expression of these molecules at PND68. In order to provide more evidence and gain a better understanding on the association between bone collagen matrix and resident bone cell fate, in vitro studies on the cellular senescence pathway using primary calvarial cells and three cell lines (ST2 cells, OB6, and MLO-Y4) were conducted. We found that senescence was inhibited by collagen in a dose-response manner. Treatment of cells with serum from OVX rats accelerated osteoblastic cell senescence pathways, but serum from BB-fed OVX rats had no effect. In the presence of low collagen or treatment with OVX rat serum, ST2 cells exhibited higher potential to differentiate into adipocytes. Finally, we demonstrated that bone cell senescence is associated with decreased Sirt1 expression and activated p53, p16, and p21. These results suggest that (1) a significant prevention of OVX-induced bone cell senescence from adult rats can occur after only 14 days consumption of a BB-containing diet immediately prior to puberty, and (2) the molecular mechanisms underlying this effect involves, at least in part, prevention of collagen degradation. PMID:22555620

  6. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Directory of Open Access Journals (Sweden)

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  7. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm-3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  8. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    Science.gov (United States)

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6μm, a specific surface area of 40m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. PMID:27040244

  9. Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Wu

    2016-03-01

    Full Text Available Various kinds of three-dimensional (3D scaffolds have been designed to mimic the biological spontaneous bone formation characteristics by providing a suitable microenvironment for osteogenesis. In view of this, a natural bone-liked composite scaffold, which was combined with inorganic (hydroxyapatite, Hap and organic (type I collagen, Col phases, has been developed through a self-assembly process. This 3D porous scaffold consisting of a c-axis of Hap nanocrystals (nHap aligning along Col fibrils arrangement is similar to natural bone architecture. A significant increase in mechanical strength and elastic modulus of nHap/Col scaffold is achieved through biomimetic mineralization process when compared with simple mixture of collagen and hydroxyapatite method. It is suggested that the self-organization of Hap and Col produced in vivo could also be achieved in vitro. The oriented nHap/Col composite not only possesses bone-like microstructure and adequate mechanical properties but also enhances the regeneration and reorganization abilities of bone tissue. These results demonstrated that biomimetic nHap/Col can be successfully reconstructed as a bone graft substitute in bone tissue engineering.

  10. Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds.

    Directory of Open Access Journals (Sweden)

    Max M Villa

    Full Text Available Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.

  11. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  12. Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report

    OpenAIRE

    Faundez, Antonio; Taylor, Sofia; Kaelin, André

    2006-01-01

    In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained...

  13. The Role of Collagen Organization on the Properties of Bone.

    Science.gov (United States)

    Garnero, Patrick

    2015-09-01

    Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone

  14. Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment.

    Directory of Open Access Journals (Sweden)

    Rachel F Cox

    Full Text Available Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.

  15. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  16. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering

    OpenAIRE

    Won, J. E.; Yun, Y. R.; Jang, J. H.; S. H. Yang; Kim, J. H.; W. Chrzanowski; Wall, I. B.; Knowles, J. C.; Kim, H. W.

    2015-01-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctio...

  17. Molecules in Focus: Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils

    Science.gov (United States)

    Chiquet, Matthias; Birk, David E.; Bönnemann, Carsten G.; Koch, Manuel

    2014-01-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix towards the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  18. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils.

    Science.gov (United States)

    Chiquet, Matthias; Birk, David E; Bönnemann, Carsten G; Koch, Manuel

    2014-08-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix toward the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  19. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I.

    Directory of Open Access Journals (Sweden)

    Francesco Paduano

    Full Text Available The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs on hydrogel scaffolds derived from bone extracellular matrix (bECM in comparison to those seeded on collagen I (Col-I, one of the main components of dental pulp ECM.DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF supplements. DPSCs cultivated on tissue culture polystyrene (TCPS with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP, dentin matrix protein 1 (DMP-1 and matrix extracellular phosphoglycoprotein (MEPE was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR and mineral deposition was observed by Von Kossa staining.When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions.These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.

  20. Long-term voluntary exercise of male mice induces more beneficial effects on cancellous and cortical bone than on the collagenous matrix

    OpenAIRE

    2009-01-01

    Abstract The effects of lifelong physical exercise on the composition, structure and mechanical properties of bone are not well understood. Earlier, we found that voluntary physical exercise improved various properties of bone in maturing male mice up to 6 months of age. In the present study, we extended the previous study to 18 months. Half of the mice (total N=144) had access to running wheels while half were kept sedentary. The collagen network was assessed biochemically and by ...

  1. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration

    International Nuclear Information System (INIS)

    This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases. (paper)

  2. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016. PMID:27060915

  3. A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix

    OpenAIRE

    Hui Liang; Xiaoran Li; Bin Wang; Bing Chen; Yannan Zhao; Jie Sun; Yan Zhuang; Jiajia Shi; He Shen; Zhijun Zhang; Jianwu Dai

    2016-01-01

    Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of ...

  4. Spectroscopic characterization of collagen cross-links in bone

    Science.gov (United States)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  5. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. PMID:20540098

  6. Osteogenesis imperfecta (lethal) bones contain types III and V collagens.

    OpenAIRE

    Pope, F. M.; Nicholls, A. C.; Eggleton, C; Narcissi, P; Hey, E N; Parkin, J M

    1980-01-01

    Lethal osteogenesis imperfecta (OI-L) and normal fetal bones contain types I and V collagen with relatively more type V in OI-L bones. The latter, unlike normal fetal bone, also contain some type III collagen. Such altered collagen ratios could directly produce the bony fragility and radiotranslucency of OI-L bones. Since this is an inherited osteoporosis similar alterations in acquired osteoporoses are also possible.

  7. Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption

    International Nuclear Information System (INIS)

    Mineralised tissues such as bone consist of two material phases: collagen protein fibrils, secreted by osteoblasts, form model structures for subsequent deposition of mineral, calcium hydroxyapatite. Collagen and mineral are removed in a three-dimensional manner by osteoclasts during bone turnover in skeletal growth or repair. Bone active drugs have recently been developed for skeletal diseases, and there is revived interest in changes in the structure of mineralised tissues seen in disease and upon treatment. The resolution of atomic force microscopy and use of unmodified samples has enabled us to image bone and dentine collagen exposed by the natural process of cellular dissolution of mineralised matrix. The morphology of bone and dentine has been analysed when fully mineralised and after osteoclast-mediated bone resorption, and compared with results from other microscopy techniques. Banded type I collagen, with 66.5±1.4 nm axial D-periodicity and 62.2±7.0 nm diameter, has been identified within resorption lacunae in bone and 69.4±4.3 nm axial D-periodicity and 140.6±12.4 nm diameter in dentine substrates formed by human and rabbit osteoclasts, respectively. This observation suggests a route by which the material and morphological properties of bone collagen can be analysed in situ, compared with collagen from non-skeletal sites, and contrasted in diseases of medical importance, such as osteoporosis, where skeletal tissue is mechanically weakened

  8. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  9. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    Science.gov (United States)

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  10. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration.

    Science.gov (United States)

    Bhuiyan, Didarul B; Middleton, John C; Tannenbaum, Rina; Wick, Timothy M

    2016-08-01

    A bone graft is a complicated structure that provides mechanical support and biological signals that regulate bone growth, reconstruction, and repair. A single-component material is inadequate to provide a suitable combination of structural support and biological stimuli to promote bone regeneration. Multicomponent composite biomaterials lack adequate bonding among the components to prevent phase separation after implantation. We have previously developed a novel multistep polymerization and fabrication process to construct a nano-hydroxyapatite-poly(D,L-lactide-co-glycolide)-collagen biomaterial (abbreviated nHAP-PLGA-collagen) with the components covalently bonded to each other. In the present study, the mechanical properties and osteogenic potential of nHAP-PLGA-collagen are characterized to assess the material's suitability to support bone regeneration. nHAP-PLGA-collagen films exhibit tensile strength very close to that of human cancellous bone. Human mesenchymal stem cells (hMSCs) are viable on 2D nHAP-PLGA-collagen films with a sevenfold increase in cell population after 7 days of culture. Over 5 weeks of culture, hMSCs deposit matrix and mineral consistent with osteogenic differentiation and bone formation. As a result of matrix deposition, nHAP-PLGA-collagen films cultured with hMSCs exhibit 48% higher tensile strength and fivefold higher moduli compared to nHAP-PLGA-collagen films without cells. More interestingly, secretion of matrix and minerals by differentiated hMSCs cultured on the nHAP-PLGA-collagen films for 5 weeks mitigates the loss of mechanical strength that accompanies PLGA hydrolysis. PMID:27120980

  11. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic...... activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen......-expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...

  12. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    Science.gov (United States)

    Song, Wei; Markel, David C.; Wang, Sunxi; Shi, Tong; Mao, Guangzhao; Ren, Weiping

    2012-03-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.

  13. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J C; Berner, A [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane (Australia); Heymer, A; Eulert, J; Noeth, U, E-mail: johannes.reichert@qut.edu.a [Orthopaedic Institute, Division of Tissue Engineering, Koenig-Ludwig-Haus, Julius-Maximilians-University, Wuerzburg (Germany)

    2009-12-15

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 10{sup 5} MSCs ml{sup -1} were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and beta-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade epsilon-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  14. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    International Nuclear Information System (INIS)

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 105 MSCs ml-1 were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and β-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade ε-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  15. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering.

    Science.gov (United States)

    Won, Jong-Eun; Yun, Ye-Rang; Jang, Jun-Hyeog; Yang, Sung-Hee; Kim, Joong-Hyun; Chrzanowski, Wojciech; Wall, Ivan B; Knowles, Jonathan C; Kim, Hae-Won

    2015-07-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctional and structurally-stable biomatrices. The hybrid protein, integrated homogeneously with collagen fibrillar networks, preserved structural stability over a month. Biological efficacy of the hybrid matrix was proven onto tethered surface of biopolymer porous scaffolds. Mesenchymal stem cells quickly anchored to the hybrid matrix, forming focal adhesions, and substantially conformed to cytoskeletal extensions, benefited from the fibronectin adhesive domains. Cells achieved high proliferative capacity to reach confluence rapidly and switched to a mature and osteogenic phenotype more effectively, resulting in greater osteogenic matrix syntheses and mineralization, driven by the engineered osteocalcin. The hybrid biomimetic matrix significantly improved in vivo bone formation in calvarial defects over 6 weeks. Based on the series of stimulated biological responses in vitro and in vivo the novel hybrid proteinaceous composition will be potentially useful as stem cell interfacing matrices for osteogenesis and bone regeneration. PMID:25934278

  16. Crosslinked collagen/chitosan matrix for artificial livers

    NARCIS (Netherlands)

    Wang, X.H.; Li, D.P.; Wang, W.J.; Feng, Q.L.; Cui, F.Z.; Xu, Y.X.; Song, X.H.; Werf, van der Mark

    2003-01-01

    Matrices composed of collagen and chitosan may create an appropriate environment for the regeneration of livers. In this study, we have prepared, characterized and evaluated a new collagen/chitosan matrix (CCM). The CCM was made by using crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiim

  17. Shrinking mechanism of a porous collagen matrix immersed in solution.

    Science.gov (United States)

    Chen, Po-Yang; Hsieh, Hsyue-Jen; Huang, Lynn L H

    2014-12-01

    The porous structure of collagen-based matrices enables the infiltration of cells both in in vitro and clinical applications. Reconstituted porous collagen matrices often collapse when they are in contact with aqueous solutions; however, the mechanism for the collapse of the pores is not understood. We, therefore, investigated the interactions between the collagen matrix and different solutions, and discuss the mechanisms for the change in microstructure of the matrix on immersing it in solution. When a dried collagen matrix was immersed in aqueous solutions, the matrix shrunk and pores close to the surface closed. The shrinkage ratio and thickness of the compact microstructure close to the superficial area decreased with increasing ethanol content in the solution. The original porous structure of the collagen matrix was preserved when the matrix was immersed in absolute ethanol. The shrinkage of a porous collagen matrix in contact with aqueous solutions was attributed to the liquid/gas interfacial tension. The average pore diameter of the matrix also significantly affected the shrinkage of the matrix. The shrinkage of the matrix, explained using the Young-Laplace equation, was found to result from the pressure drop, and especially in the pores located superficially, leading to the collapse of the matrix microstructure. The integrity of the porous microstructure allows better penetration of cells in medical applications. The numbers of NIH/3T3 fibroblasts penetrated through the hydrated Col/PBS porous collagen matrices pre-immersed in absolute ethanol with subsequent water and DMEM culture medium replacements were significantly higher than those through matrices hydrated directly in DMEM. PMID:24678021

  18. Induction of Bone Matrix Protein Expression by Native Bone Matrix Proteins in C2C12 Culture

    Institute of Scientific and Technical Information of China (English)

    ZHEN-MING HU; SEAN A. F. PEEL; STEPHEN K. C. HO; GEORGE K. B. SANDOR; CAMERON M. L. CLOKIE

    2009-01-01

    Objective To study the expression of bone matrix protein (BMP) induced by bovine bone morphogenetic proteins (BMPs) in vitro. Methods Type I collagen, osteopontin (OPN), osteonectin (ON), osteocalcin (OC), and bone sialoprotein (BSP) were detected by immunohistochemistry in C2C12 cultured from day 1 to day 28. Results The signaling of bone matrix protein expression became weaker except for type I collagen, OC and BSP after 5 days. Fourteen days after culture, the positive signaling of type I collagen, OPN, ON, OC, and BSP was gradually declined, and could be detected significantly as compared with that of the negative control on day 28. BMP assay showed that the Ikaline phosphatase (ALP) activity was higher in C2C12 culture than in the control during the 14-day culture. Also, total protein and DNA significantly increased during the 14-day culture. High levels of ALP were seen in preosteoblasts and osteoblsts in vivo and in differentiating ostcoblasts in vitro. ALP was well recognized as a marker reflecting osteoblastic activity. Conclusion Native bovine BMP induces conversion of myoblasts into osteoblasts, produces type 1 collagen, and plays significantly role in osteoinduction and bone matrix mineralization of C2C12 in vitro.

  19. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte;

    1998-01-01

    Markers of bone formation [C-terminal and N-terminal propeptides of procollagen I (PICP, PINP), osteocalcin and alkaline phosphatase] and bone resorption [C-terminal cross-linked telopeptide of collagen I (ICTP) and hydroxypyridinium cross-links, pyridinoline (Pyr) and deoxypyridinoline (Dpyr......)] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low, and the...... serum levels were lower in all children and adults with mild OI and a quantitative collagen defect than in patients with severe OI and a qualitative collagen I defect. ICTP, Pyr and Dpyr were generally normal or reduced, but elevated in severely affected adults with a qualitative collagen I defect. The...

  20. Collagens and proteoglycans of the corneal extracellular matrix

    Directory of Open Access Journals (Sweden)

    Y.M. Michelacci

    2003-08-01

    Full Text Available The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. The cornea also contains unusually high amounts of type VI collagen, which form microfibrillar structures, FACIT collagens (XII and XIV, and other nonfibrillar collagens (XIII and XVIII. FACIT collagens and other molecules, such as leucine-rich repeat proteoglycans, play important roles in modifying the structure and function of collagen fibrils.Proteoglycans are macromolecules composed of a protein core with covalently linked glycosaminoglycan side chains. Four leucine-rich repeat proteoglycans are present in the extracellular matrix of corneal stroma: decorin, lumican, mimecan and keratocan. The first is a dermatan sulfate proteoglycan, and the other three are keratan sulfate proteoglycans. Experimental evidence indicates that the keratan sulfate proteoglycans are involved in the regulation of collagen fibril diameter, and dermatan sulfate proteoglycan participates in the control of interfibrillar spacing and in the lamellar adhesion properties of corneal collagens. Heparan sulfate proteoglycans are minor components of the cornea, and are synthesized mainly by epithelial cells. The effect of injuries on proteoglycan synthesis is discussed.

  1. Effect of collagen sponge and fibrin glue on bone repair

    Science.gov (United States)

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  2. Effect of collagen sponge and fibrin glue on bone repair

    Directory of Open Access Journals (Sweden)

    Thiago de Santana SANTOS

    2015-12-01

    Full Text Available ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05. Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous.

  3. Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix.

    Science.gov (United States)

    Ng, Adeline H; Omelon, Sidney; Variola, Fabio; Allo, Bedilu; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2016-02-01

    Adynamic bone is the most frequent type of bone lesion in patients with chronic kidney disease; long-term use of antiresorptive therapy may also lead to the adynamic bone condition. The hallmark of adynamic bone is a loss of bone turnover, and a major clinical concern of adynamic bone is diminished bone quality and an increase in fracture risk. Our current study aims to investigate how bone quality changes with age in our previously established mouse model of adynamic bone. Young and old mice (4 months old and 16 months old, respectively) were used in this study. Col2.3Δtk (DTK) mice were treated with ganciclovir and pamidronate to create the adynamic bone condition. Bone quality was evaluated using established techniques including bone histomorphometry, microcomputed tomography, quantitative backscattered electron imaging, and biomechanical testing. Changes in mineral and matrix properties were examined by powder X-ray diffraction and Raman spectroscopy. Aging controls had a natural decline in bone formation and resorption with a corresponding deterioration in trabecular bone structure. Bone turnover was severely blunted at all ages in adynamic animals, which preserved trabecular bone loss normally associated with aging. However, the preservation of trabecular bone mass and structure in old adynamic mice did not rescue deterioration of bone mechanical properties. There was also a decrease in cortical bone toughness in old adynamic mice that was accompanied by a more mature collagen matrix and longer bone crystals. Little is known about the effects of metabolic bone disease on bone fracture resistance. We observed an age-related decrease in bone toughness that was worsened by the adynamic condition, and this decrease may be due to material level changes at the tissue level. Our mouse model may be useful in the investigation of the mechanisms involved in fractures occurring in elderly patients on antiresorptive therapy who have very low bone turnover. PMID:26332924

  4. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte; Juul, A; Teisner, Børge; Skovby, F

    1998-01-01

    )] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low, and the...... in vivo findings correlated with in vitro results of collagen I SDS-PAGE. Bone turnover is reduced in OI children and mildly affected OI adults, whereas bone resorption is elevated in severely affected adults. These findings may prove helpful for diagnosis and decision-making regarding therapy in OI....

  5. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  6. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    Science.gov (United States)

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  7. Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone regenerative effect in a humerus drill defect - a pilot study in six sheep

    DEFF Research Database (Denmark)

    Jensen, Jonas; Foldager, Casper Bindzus; Jakobsen, Thomas Vestergaard;

    2010-01-01

    We assessed the use of a filler compound together with the osteoinductive demineralized bone matrix (DBM), Colloss E. The filler was comprised of carboxymethyl-cellulose and collagen type 1. The purpose of the study was to see if the filler compound would enhance the bone formation and distribute...

  8. Tumor matrix protein collagen XIα1 in cancer

    Science.gov (United States)

    Raglow, Zoe; Thomas, Sufi M

    2015-01-01

    The extracellular matrix is increasingly recognized as an essential player in cancer development and progression. Collagens are one of the most important components of the extracellular matrix, and have themselves been implicated in many aspects of neoplastic transformation. Collagen XI is a minor collagen whose main physiologic function is to regulate the diameter of major collagen fibrils. The α1 chain of collagen XI (colXIα1), has known pathogenic roles in several musculoskeletal disorders. Recent research has highlighted the importance of colXIα1 in many types of cancer, including its roles in metastasis, angiogenesis, and drug resistance, as well as its potential utility in screening tests and as a therapeutic target. High levels of colXIα1 overexpression have been reported in multiple expression profile studies examining differences between cancerous and normal tissue, and between beginning and advanced stage cancer. Its expression has been linked to poor progression-free and overall survival. The consistency of this data across cancer types is particularly striking, including colorectal, ovarian, breast, head and neck, lung, and brain cancers. This review discusses the role of collagen XIα1 in cancer and its potential as a target for cancer therapy. PMID:25511741

  9. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    Science.gov (United States)

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  10. Enhancing amine terminals in an amine-deprived collagen matrix.

    LENUS (Irish Health Repository)

    Tiong, William H C

    2008-10-21

    Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.

  11. Thermal stabilization of collagen in skin and decalcified bone

    International Nuclear Information System (INIS)

    The state of collagen molecules in the fibres of tail tendon, skin and demineralized bone has been investigated in situ using differential scanning calorimetry (DSC). Hydroxyproline analysis and tissue digestion with bacterial collagenase and trypsin were used to confirm that the common cause of all the DSC endotherms was collagen denaturation. This occurred within a narrow temperature range in tendons, but over a wide temperature range in demineralized bone and old skin and demonstrated that in tendon and demineralized bone at least the same type I collagen molecule exists in different thermal states. Hypothesizing that this might be caused by different degrees of confinement within the fibre lattice, experiments were performed to measure the effect of changing the lattice dimensions by extracting the collagen into dilute solution with pepsin, swelling the lattice in acetic acid, and contracting the lattice by dehydration. A theoretical analysis was undertaken to predict the effect of dehydration. Results were consistent with the hypothesis, demonstrating that collagen molecules within the natural fibres of bone and old skin are located at different intermolecular spacings, revealing differences between molecules in the magnitude of either the attractive or repulsive forces controlling their separation. One potential cause of such variation is known differences in covalent cross-linking

  12. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica;

    2012-01-01

    marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA......Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...

  13. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing.

    Science.gov (United States)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. PMID:27523994

  14. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  15. Quantitative description of collagen fibre network on trabecular bone surfaces based on AFM imaging.

    Science.gov (United States)

    Hua, W-D; Chen, P-P; Xu, M-Q; Ao, Z; Liu, Y; Han, D; He, F

    2016-04-01

    The collagen fibre network is an important part of extracellular matrix (ECM) on trabecular bone surface. The geometry features of the network can provide us insights into its physical and physiological properties. However, previous researches have not focused on the geometry and the quantitative description of the collagen fibre network on trabecular bone surface. In this study,we developed a procedure to quantitatively describe the network and verified the validity of the procedure. The experiment proceeds as follow. Atomic force microscopy (AFM) was used to acquire submicron resolution images of the trabecular surface. Then, an image analysing procedure was built to extract important parameters, including, fibre orientation, fibre density, fibre width, fibre crossing numbers, the number of holes formed by fibre s, and the area of holes from AFM images. In order to verify the validity of the parameters extracted by image analysing methods, we adopted two other methods, which are statistical geometry model and computer simulation, to calculate those same parameters and check the consistency of the three methods' results. Statistical tests indicate that there is no significant difference between three groups. We conclude that, (a) the ECM on trabecular surface mainly consists of random collagen fibre network with oriented fibres; (b) our method based on image analysing can be used to characterize quantitative geometry features of the collagen fibre network effectively. This method may provide a basis for quantitative investigating the architecture and function of collagen fibre network. PMID:26583563

  16. Structural features underlying raloxifene's biophysical interaction with bone matrix.

    Science.gov (United States)

    Bivi, Nicoletta; Hu, Haitao; Chavali, Balagopalakrishna; Chalmers, Michael J; Reutter, Christopher T; Durst, Gregory L; Riley, Anna; Sato, Masahiko; Allen, Matthew R; Burr, David D; Dodge, Jeffrey A

    2016-02-15

    Raloxifene, a selective estrogen receptor modulator (SERM), reduces fracture risk at least in part by improving the mechanical properties of bone in a cell- and estrogen receptor-independent manner. In this study, we determined that raloxifene directly interacts with the bone tissue. Through the use of multiple and complementary biophysical techniques including nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), we show that raloxifene interacts specifically with the organic component or the organic/mineral composite, and not with hydroxyapatite. Structure-activity studies reveal that the basic side chain of raloxifene is an instrumental determinant in the interaction with bone. Thus, truncation of portions of the side chain reduces bone binding and also diminishes the increase in mechanical properties. Our results support a model wherein the piperidine interacts with bone matrix through electrostatic interactions with the piperidine nitrogen and through hydrophobic interactions (van der Waals) with the aliphatic groups in the side chain and the benzothiophene core. Furthermore, in silico prediction of the potential binding sites on the surface of collagen revealed the presence of a groove with sufficient space to accommodate raloxifene analogs. The hydroxyl groups on the benzothiophene nucleus, which are necessary for binding of SERMs to the estrogen receptor, are not required for binding to the bone surface, but mediate a more robust binding of the compound to the bone powder. In conclusion, we report herein a novel property of raloxifene analogs that allows them to interact with the bone tissue through potential contacts with the organic matrix and in particular collagen. PMID:26795112

  17. Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Søe, Kent; Andersen, Thomas Levin;

    2014-01-01

    Osteoblast recruitment during bone remodeling is obligatory to re-construct the bone resorbed by the osteoclast. This recruitment is believed to be triggered by osteoclast products and is therefore likely to start early during the remodeling cycle. Several osteoclast products with osteoblast...... recruitment potential are already known. Here we draw the attention on the osteoblast recruitment potential of the collagen that is freshly demineralized by the osteoclast. Our evidence is based on observations on adult human cancellous bone, combined with in vitro assays. First, freshly eroded surfaces where...... osteoblasts have to be recruited show the presence of non-degraded demineralized collagen and close cell-collagen interactions, as revealed by electron microscopy, while surface-bound collagen strongly attracts osteoblast lineage cells in a transmembrane migration assay. Compared with other extracellular...

  18. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils

    OpenAIRE

    1986-01-01

    The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bo...

  19. Collagens

    OpenAIRE

    Gordon, Marion K.; Hahn, Rita A.

    2009-01-01

    The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three α chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recog...

  20. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

     Introduction: Replacement of extensive local bone loss especially in revision joint arthroplasties is a significant clinical challenge. Autogenous and allogenic cancellous bone grafts have been the gold standard in reconstructive orthopaedic surgery, but it is well known that there is morbidity...... associated with harvesting of autogenous bone graft and limitations in the quantity of bone available. Disadvantages of allograft include the risk of bacterial or viral contamination and non union as well as the potential risk of disease transmission. Alternative options are attractive and continue to be...... sought. Hydroxyapatite and collagen composites have the potential in mimicking and replacing skeletal bones. Aim: This study attempted to determine the effect of hydroxyapatite/collagen composites in the fixation of bone implants. The composites used in this study is produced by Institute of Science and...

  1. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  2. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander; Flyvbjerg, Allan; Nowak, Jette; Petersen, Michael M; ØLgaard, Klaus; Feldt-Rasmussen, Ulla

    2004-01-01

    microfibrils in GHD rats as compared to their controls (P < 0.009). In conclusion, we report for the first time that collagen morphology in bone is markedly altered in rats with isolated GHD. Whether similar conditions are present in GHD patients need further investigations. The changes described, however, may...

  3. Microstructural and physicochemical analysis of collagen in intramuscular pin bones of Bocachico fish (Prochilodus sp.

    Directory of Open Access Journals (Sweden)

    Héctor Suárez

    2015-06-01

    Full Text Available Background: the presence of intramuscular pin bones hinders the production and commercialization of fish fillet products; however, application of physical processes, such as thermal treatments, offers alternatives for the degradation of said bones. Objective: the present study aimed to conduct a microstructural and physicochemical analysis of Bocachico intramuscular pin bones subjected to a thermal treatment. Methods: collagen extracted from intramuscular pin bones of Bocachico fillets was analyzed using SDS-polyacrylamide gel electrophoresis and viscosity. Pin bones were subjected to 1.5, 2, and 3 minutes heating time and analyzed using electron microscopy and cutting force. Results: intramuscular pin bones contain type I collagen. Threeminute thermal treatment degraded collagen components present in the internal pin bone structure, coinciding with the lowest values of the cutting force test. Conclusions: according to our results, collagen degradation initiates in the internal structure of intramuscular pin bones and moves towards the external layer which does not show the effects of thermal treatment.

  4. Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress

    Directory of Open Access Journals (Sweden)

    Barrio Daniel A

    2001-08-01

    Full Text Available Abstract Background The tissue accumulation of protein-bound advanced glycation endproducts (AGE may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS and nitric oxide synthase (NOS expression on these AGE-collagen mediated effects. Results AGE-collagen decreased the adhesion of UMR106 cells, but had no effect on the attachment of MC3T3E1 cells. In the UMR106 cell line, AGE-collagen also inhibited cellular proliferation, spreading and alkaline phosphatase (ALP activity. In preosteoblastic MC3T3E1 cells (24-hour culture, proliferation and spreading were significantly increased by AGE-collagen. After one week of culture (differentiated MC3T3E1 osteoblasts AGE-collagen inhibited ALP activity, but had no effect on cell number. In mineralizing MC3T3E1 cells (3-week culture AGE-collagen induced a decrease in the number of surviving cells and of extracellular nodules of mineralization, without modifying their ALP activity. Intracellular ROS production, measured after a 48-hour culture, was decreased by AGE-collagen in MC3T3E1 cells, but was increased by AGE-collagen in UMR106 cells. After a 24-hour culture, AGE-collagen increased the expression of endothelial and inducible NOS, in both osteoblastic cell lines. Conclusions These results suggest that the accumulation of AGE on bone extracellular matrix could regulate the proliferation and differentiation of osteoblastic cells. These effects appear to depend on the stage of osteoblastic development, and possibly involve the modulation of NOS expression and intracellular ROS pathways.

  5. Long-range movement and fibril association of type X collagen within embryonic cartilage matrix.

    OpenAIRE

    Chen, Q A; Gibney, E; Fitch, J M; Linsenmayer, C; Schmid, T.M.; Linsenmayer, T F

    1990-01-01

    A recent immunoelectron microscopic study of type X collagen in developing cartilage gave results that could be explained by movement of the molecule from one region of the cartilage matrix to another, there becoming associated with preexisting collagen fibrils. In the present study, to test the feasibility of this model we incubated pieces of nonhypertrophic, embryonic chicken sternal cartilage (which has no endogenous type X collagen) in medium with type X collagen and then used immunofluor...

  6. Nanoporous Structure of Bone Matrix at Osteoporosis from Data of Atomic Force Microscopy and IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. A. Gaidash

    2011-01-01

    Full Text Available It was found that in an osteoporotic bone the fraction of nanosized pores decreases, the mineral phase amorphizes, hydrated shells around mineralized particles of the bone matrix thicken, and adhesion forces increase. This contributes to the formation of water clusters similar to bulk water clusters compared to the healthy bone tissue and leads to the accumulation of more viscous liquid with increased intermolecular interaction forces in the pores of the bone matrix. Given this, the rates of chemical reactions proceeding in the water phase of ultrathin channels of general parts of collagen fibrils decrease. Ultimately, nanopores of collagen-apatite interfaces lose, to a certain extent, the capability of catalyzing the hydroxyapatite crystallization.

  7. Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata

    Science.gov (United States)

    Kingsley, R. J.; Tsuzaki, M.; Watabe, N.; Mechanic, G. L.

    1990-01-01

    Decalcification of the calcareous spicules from the gorgonian Leptogorgia virgulata reveals an organic matrix that may be divided into water insoluble and soluble fractions. The insoluble fraction displays characteristics typical of collagen, which is an unusual component of an invertebrate calcium carbonate structure. This matrix fraction exhibits a collagenous amino acid profile and behavior upon SDS-PAGE. Furthermore, the reducible crosslink, dihydroxylysinonorleucine (DHLNL), is detected in this fraction. The composition of the matrix varies seasonally; i.e., the collagenous composition is most prevalent in the summer. These results indicate that the insoluble matrix is a dynamic structure. Potential roles of this matrix in spicule calcification are discussed.

  8. In Vitro Mineralization of an Osteoid-Like Dense Collagen Construct for Bone Tissue Engineering

    Science.gov (United States)

    Marelli, Benedetto

    The aim of this doctoral research was to design and evaluate strategies to rapidly achieve an acellular mineralization of an osteoid-like dense collagen gel for potential applications in bone regeneration. It was hypothesized that the collagen fibrillar density (CFD) affects the microenvironment and the physical properties of the framework of collagen gels. To test this hypothesis, and as a first objective, the mineralization of collagen gel sheets, rolls and strips with increasing CFDs was investigated in vitro in simulated body fluid (SBF). Collagen gels with physiologically relevant CFDs (14.1 wt%) led to greater extent of mineralization (12 dry wt% at day 14 in SBF), when compared to highly hydrated gels. Chemical characterization confirmed this mineral phase to be CHA, which significantly increased the gel apparent modulus and ultimate tensile strength (UTS). Surprisingly, CFD also affected the electrostatic properties of collagen gel, as investigated by quantifying the extent of anionic and cationic dyes bound to collagen gels with different CFDs. It was therefore proposed that the increase in gel CFD led to a more physiological microenvironment, resulting in a higher number of fibril-to-fibril contact points and an increase in charge concentration, which facilitated the mineral formation and validated the proposed osteoid model. As a second objective, the mineralization of dense collagen (DC) gels with physiologically relevant CFD (14.1 wt%) was enhanced and accelerated by mimicking the role of anionic non collagenous proteins (NCPs) in the native osteoid, which act as CHA nucleators. Two strategies were implemented: first, the influence of collagen fibrillization pH on the extent of DC gel mineralization was investigated. Since the collagen molecule is slightly positively charged at physiological pH (isoelectric point at pH 7.8), it was hypothesized that it would be more negatively charged if formed in an alkaline environment, i.e., above its isoelectric

  9. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    International Nuclear Information System (INIS)

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of 3H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of 3H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls. (auth.)

  10. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  11. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    International Nuclear Information System (INIS)

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  12. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Li Jingfeng; Lin Zhenyu; Zheng Qixin, E-mail: zheng-qx@163.com; Guo Xiaodong, E-mail: gxdwh@yahoo.com.cn; Lan Shenghui; Liu Sunan; Yang Shuhua

    2010-10-12

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  13. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Zhou YY

    2015-04-01

    Full Text Available Yuanyuan Zhou,1,2 Hongchang Yao,1 Jianshe Wang,1 Dalu Wang,1 Qian Liu,1 Zhongjun Li11College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China; 2Institute of Enviromental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People’s Republic of ChinaAbstract: In bone tissue engineering, collagen/hydroxyapatite (HAP fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the

  14. Remineralization of demineralized bone matrix (DBM) via alternating solution immersion (ASI).

    Science.gov (United States)

    Soicher, Matthew A; Christiansen, Blaine A; Stover, Susan M; Leach, J Kent; Fyhrie, David P

    2013-10-01

    In order to achieve successful clinical outcomes, biomaterials used for bone grafts must possess a number of traits including biocompatibility and osteoconductivity. These materials must also demonstrate appropriate mechanical stability to withstand handling as well as support potentially significant stresses at the implant site. Synthetic and natural polymer scaffolds used for bone tissue engineering (BTE) often lack necessary mechanical properties. Our goal was to internally mineralize natural collagenous matrix, thereby increasing mechanical properties of the material to useful levels. Published methods for intrafibrillar collagen mineralization were applied to clinically relevant-sized constructs but did not successfully deposit mineral in the interior of the constructs. To address this limitation, we developed a new technique for the remineralization of demineralized bone matrix (DBM) based on alternating solution immersion, or ASI. Mineral was removed from equine bone specimens, leaving behind a demineralized bone matrix (DBM). This matrix provides a framework for the nucleation and growth of a replacement mineral phase. Plain film radiography and microcomputed tomography (microCT) indicated accumulation of mineral within the DBM, and mechanical testing (3 point bending and compression) revealed a significant increase in stiffness between the DBM and the remineralized bone matrix (RBM). We believe this remineralization process will be useful in the preparation of stiff and strong allografts for clinical application. PMID:23759125

  15. Peri-implant soft tissue augmentation with a porcine collagen matrix.

    Directory of Open Access Journals (Sweden)

    Yuri Castro

    2014-12-01

    Full Text Available Resumen: Una buena cantidad y grosor de tejido queratinizado alrededor de implantes ha sido asociado con una mejor salud periimplantaria, menos pérdida ósea y una mejora en la estética. El propósito de este caso clínico fue evaluar un nuevo xenoinjerto de origen porcino (matriz de colágeno al ser utilizada como un injerto interposicional para aumentar el grosor de la mucosa periimplantaria. Son pocos los estudios que utilizan la matriz de colágeno como sustituto del injerto conectivo subepitelial alrededor de implantes. El caso clínico incluyó un implante a nivel de la pieza 15, en el cual durante la colocación del pilar de cicatrización se aprovechó para engrosar la mucosa periimplantaria utilizando una matriz de colágeno. Se obtuvo un aumento de grosor de 1,5mm manteniéndose la cantidad de mucosa queratinizada de 4mm. Se concluyó que la matriz de colágeno de origen porcino es una buena alternativa para aumentar el grosor de la mucosa periimplantaria, además de reducir la morbilidad, ser de fácil manejo y de fácil sutura. Abstract: A good amount and width of keratinized tissue around implants has been associated with better health periimplant, less bone loss and improved aesthetics. The purpose of this case was to evaluate a new porcine xenograft (collagen matrix when used as an interpositional graft to increase the thickness of the peri-implant mucosa. Few studies using the collagen matrix as a substitute for subepithelial connective graft around implants are. The case involved an implant clinical at level of teeth 15 during placement of scar took the opportunity to swell the peri-implant mucosa with the collagen matrix. An increase in thickness of 1.5 mm while maintaining the amount of keratinized mucosa 4mm was obtained. We conclude that the collagen matrix of porcine origin is a good alternative to increase the thickness of the peri-implant mucosa and reduce morbidity, be easy to handle and easy to suture.

  16. Periosteal Sharpey's Fibres: a Novel Bone Matrix Regulatory System?

    Directory of Open Access Journals (Sweden)

    JeanElizabethAaron

    2012-08-01

    Full Text Available Sharpey’s “perforating” fibres (SF are well known skeletally in tooth anchorage. Elsewhere they provide anchorage for the periosteum and are less well documented. Immunohistochemistry has transformed their potential significance by identifying their collagen type III (CIII content and enabling their mapping in domains as permeating arrays of fibres (5-25 microns thick, protected from osteoclastic resorption by their poor mineralization. As periosteal extensions they are crucial in early skeletal development and central to intramembranous bone healing, providing unique microanatomical avenues for musculoskeletal exchange, their composition (eg collagen type VI, elastin, tenacin combined with a multiaxial pattern of insertion suggesting a role more complex than attachment alone would justify. A proportion permeate the cortex to the endosteum (and beyond, fusing into a CIII-rich osteoid layer (<2 microns thick encompassing all resting surfaces, and with which they apparently integrate into a PERIOSTEAL-SHARPEY FIBRE-ENDOSTEUM (PSE structural continuum. This intraosseous system behaves in favour of bone loss or gain depending upon extraneous stimuli (ie like Frost’s hypothetical “mechanostat”. Thus the birefringent fibres are sensitive to humoral factors (eg oestrogen causes retraction, rat femur model, physical activity (eg running causes expansion, rat model, ageing (eg causes fragmentation, pig mandible model and pathology (eg atrophied in osteoporosis, hypertrophied in osteoarthritis, human proximal femur, and with encroaching mineral particles hardening the usually soft parts. In this way the unobtrusive periosteal SF network may regulate bone status, perhaps even contributing to predictable “hotspots” of trabecular disconnection, particularly at sites of tension prone to fatigue, and with the network deteriorating significantly before bone matrix loss.

  17. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    OpenAIRE

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labe...

  18. Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering.

    Science.gov (United States)

    Weisgerber, D W; Erning, K; Flanagan, C L; Hollister, S J; Harley, B A C

    2016-08-01

    A particular challenge in biomaterial development for treating orthopedic injuries stems from the need to balance bioactive design criteria with the mechanical and geometric constraints governed by the physiological wound environment. Such trade-offs are of particular importance in large craniofacial bone defects which arise from both acute trauma and chronic conditions. Ongoing efforts in our laboratory have demonstrated a mineralized collagen biomaterial that can promote human mesenchymal stem cell osteogenesis in the absence of osteogenic media but that possesses suboptimal mechanical properties in regards to use in loaded wound sites. Here we demonstrate a multi-scale composite consisting of a highly bioactive mineralized collagen-glycosaminoglycan scaffold with micron-scale porosity and a polycaprolactone support frame (PCL) with millimeter-scale porosity. Fabrication of the composite was performed by impregnating the PCL support frame with the mineral scaffold precursor suspension prior to lyophilization. Here we evaluate the mechanical properties, permeability, and bioactivity of the resulting composite. Results indicated that the PCL support frame dominates the bulk mechanical response of the composite resulting in a 6000-fold increase in modulus compared to the mineral scaffold alone. Similarly, the incorporation of the mineral scaffold matrix into the composite resulted in a higher specific surface area compared to the PCL frame alone. The increased specific surface area in the collagen-PCL composite promoted increased initial attachment of porcine adipose derived stem cells versus the PCL construct. PMID:27104930

  19. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects

    International Nuclear Information System (INIS)

    Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF). In a murine femoral defect model, defect sites treated with CS/CB-bFGF had a significantly larger callus volume than those treated with CS/native bFGF. In addition, treatment with CS/CB-bFGF resulted in the rapid formation of a hard callus bridge and a larger total callus volume at the host–graft junction than treatment with CS/bFGF. Our results suggest that the combined use of CS and CB-bFGF helps accelerate the union of allogenic bone grafts. (paper)

  20. Collagens and proteoglycans of the corneal extracellular matrix

    OpenAIRE

    Michelacci Y.M.

    2003-01-01

    The cornea is a curved and transparent structure that provides the initial focusing of a light image into the eye. It consists of a central stroma that constitutes 90% of the corneal depth, covered anteriorly with epithelium and posteriorly with endothelium. Its transparency is the result of the regular spacing of collagen fibers with remarkably uniform diameter and interfibrillar space. Corneal collagen is composed of heterotypic fibrils consisting of type I and type V collagen molecules. Th...

  1. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1

    OpenAIRE

    Manka, Szymon W; Carafoli, Federico; Visse, Robert; Bihan, Dominique; Raynal, Nicolas; Farndale, Richard W.; Murphy, Gillian; Enghild, Jan Johannes; Hohenester, Erhard; Nagase, Hideaki

    2012-01-01

    Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydr...

  2. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods

    Science.gov (United States)

    Raeesi, Vahid; Chan, Warren C. W.

    2016-06-01

    Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome.Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ~14 and ~21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside

  3. Effect of collagen turnover and matrix metalloproteinase activity on healing of venous leg ulcers

    NARCIS (Netherlands)

    Meyer, F.J.; Burnand, K.G.; Abisi, S.; TeKoppele, J.M.; Els, B. van; Smith, A.

    2008-01-01

    Background: The presence of fibrous tissue in poorly healing venous leg ulcers suggests abnormal collagen metabolism. The aim was to determine whether there were differences in collagen turnover and matrix metalloproteinase (MMP) activity between ulcers that healed, those that did not heal and norma

  4. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    Science.gov (United States)

    Schoeninger, Margaret J.; DeNiro, Michael J.

    1984-04-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The δ15N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9%. more positive than those from animals that fed exclusively in the terrestrial environment; ranges for the two groups overlap by less than 1%. Bone collagen δ15N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen δ15N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3%. difference in the δ15N values of their bone collagen. Specifically, carnivorous and herbivorous terrestrial animals have mean δ15N values for bone collagen of + 8.0 and + 5.3%., respectively. Among marine animals, those that fed on fish have a mean δ15N value for bone collagen of + 16.5%., whereas those that fed on invertebrates have a mean δ15N value of + 13.3%. These results support previous suggestions of a 3%. enrichment in δ15N values at each successively higher trophic level. In contrast to the results for δ15N values, the ranges of bone collagen δ13C values from marine and terrestrial feeders overlap to a great extent. Additionally, bone collagen δ13C values do not reflect the trophic levels at which the animals fed. These results indicate that bone collagen δ15N values will be useful in determining relative dependence on marine and terrestrial food sources and in investigating trophic level relationships among different animal species within an ecosystem. This approach should be applicable to animals represented by prehistoric or fossilized

  5. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods.

    Science.gov (United States)

    Raeesi, Vahid; Chan, Warren C W

    2016-07-01

    Collagen (I) impairs the targeting of nanoparticles to tumor cells by obstructing their diffusion inside dense tumor interstitial matrix. This potentially makes large nanoparticles (>50 nm) reside near the tumor vessels and thereby compromises their functionality. Here we propose a strategy to locally improve nanoparticle transport inside collagen (I) component of the tumor tissue. We first used heat generating gold nanorods to alter collagen (I) matrix by local temperature elevation. We then explored this impact on the transport of 50 nm and 120 nm inorganic nanoparticles inside collagen (I). We demonstrated an increase in average diffusivity of 50 nm and 120 nm in the denatured collagen (I) by ∼14 and ∼21 fold, respectively, compared to intact untreated collagen (I) matrix. This study shows how nanoparticle-mediated hyperthermia inside tumor tissue can improve the transport of large nanoparticles through collagen (I) matrix. The ability to increase nanoparticles diffusion inside tumor stroma allows their targeting or other functionalities to take effect, thereby significantly improving cancer therapeutic or diagnostic outcome. PMID:26822539

  6. Bony defect repair in rabbit using hybrid rapid prototyping polylactic co glycolic acid/β tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Long Pang

    2013-01-01

    Full Text Available Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP scaffolds comprising polylactic-co-glycolic acid (PLGA, β-tricalciumphosphate (β-TCP, collagen I and apatite (PLGA/β-TCP-collagen I/apatite on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs. Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

  7. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  8. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  9. Diabetes-induced fibrotic matrix inhibits intramembranous bone healing

    OpenAIRE

    Khosravi, Roozbeh; Trackman, Philip C.

    2014-01-01

    Diabetes diminishes bone healing and ossification. Reduced bone formation in intramembranous ossification is known, yet the mechanism(s) behind impaired intramembranous bone healing are unclear. Here we report the formation of a fibrotic matrix during healing of intramembranous calvarial bone defects that appears to exclude new bone growth. Our histological analyses of 7-day and 14-day calvaria bone healing tissue in chemically-induced diabetic mice and non-diabetic mice showed the accumulati...

  10. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  11. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    International Nuclear Information System (INIS)

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O2 plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration

  12. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    Science.gov (United States)

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. PMID:27211297

  13. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.

    Science.gov (United States)

    Luo, Qing; Leng, Huijie; Wang, Xiaodu; Zhou, Yanheng; Rong, Qiguo

    2014-02-01

    Microdamage would be accumulated in bone due to high-intensity training or even normal daily activity, which may consequently cause fragility fracture or stress fracture. On the other hand, microdamage formation serves as a toughening mechanism in bone. However, the mechanisms that control microdamage initiation and accumulation in bone are still poorly understood. Our previous finite element model indicated that different interfacial properties between mineral and collagen in bone may lead to distinct patterns of microdamage accumulation. Therefore, the current study was designed to examine such prediction and to investigate the role of water and mineral-collagen interactions on microdamage accumulation in bone. To address these issues, 48 mice femurs were divided randomly into four groups. These groups were dehydrated or treated with perfluorotripropylamine (PFTA) or NaF solution to change water distribution and mineral-collagen interfacial bonding in bone. After three-point bending fatigue tests, the types of microdamage (i.e., linear microcracks or diffuse damage) formed in bone were compared between different groups. The results suggested that (1) bone tissues with strong mineral-collagen interfacial bonding facilitate the formation of linear microcraks, and (2) water has little contribution to the growth of microcracks. PMID:24122969

  14. Development of a nanofiltration method for bone collagen 14C AMS dating

    Science.gov (United States)

    Boudin, Mathieu; Boeckx, Pascal; Buekenhoudt, Anita; Vandenabeele, Peter; Van Strydonck, Mark

    2013-01-01

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  15. Development of a nanofiltration method for bone collagen {sup 14}C AMS dating

    Energy Technology Data Exchange (ETDEWEB)

    Boudin, Mathieu, E-mail: mathieu.boudin@ugent.be [Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels (Belgium); Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry, Coupure Links 653, B-9000 Ghent (Belgium); Boeckx, Pascal [Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry, Coupure Links 653, B-9000 Ghent (Belgium); Buekenhoudt, Anita [Flemish Institute for Technological Research, Separation and Conversion Technology, Boeretang 200, B-2400 Mol (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium); Van Strydonck, Mark [Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels (Belgium)

    2013-01-15

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased {sup 14}C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) {approx}100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. {sup 14}C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant

  16. Development of a nanofiltration method for bone collagen 14C AMS dating

    International Nuclear Information System (INIS)

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  17. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering.

    Science.gov (United States)

    Toosi, Shirin; Naderi-Meshkin, Hojjat; Kalalinia, Fatemeh; Peivandi, Mohammad Taghi; HosseinKhani, Hossein; Bahrami, Ahmad Reza; Heirani-Tabasi, Asieh; Mirahmadi, Mahdi; Behravan, Javad

    2016-08-01

    Nowadays composite scaffolds based on synthetic and natural biomaterials have got attention to increase healing of non-union bone fractures. To this end, different aspects of collagen sponge incorporated with poly(glycolic acid) (PGA) fiber were investigated in this study. Collagen solution (6.33 mg/mL) with PGA fibers (collagen/fiber ratio [w/w]: 4.22, 2.11, 1.06, 0.52) was freeze-dried, followed by dehydrothermal cross-linking to obtain collagen sponge incorporating PGA fibers. Properties of scaffold for cell viability, proliferation, and differentiation of mesenchymal stem cells (MSCs) were evaluated. Scanning electron microscopy showed that collagen sponge exhibited an interconnected pore structure with an average pore size of 190 μm, irrespective of PGA fiber incorporation. The collagen-PGA sponge was superior to the original collagen sponge in terms of the initial attachment, proliferation rate, and osteogenic differentiation of the bone marrow-MSCs (BM-MSC). The shrinkage of sponges during cell culture was significantly suppressed by fiber incorporation. Incorporation of PGA fiber is a simple and promising way to reinforce collagen sponge without impairing biocompatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2020-2028, 2016. PMID:27059133

  18. Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Liu Bin

    2012-09-01

    Full Text Available Abstract Background Polycystic Kidney Disease (PKD kidneys exhibit increased extracellular matrix (ECM collagen expression and metalloproteinases (MMPs activity. We investigated the role of these increases on cystic disease progression in PKD kidneys. Methods We examined the role of type I collagen (collagen I and membrane bound type 1 MMP (MT1-MMP on cyst development using both in vitro 3 dimensional (3D collagen gel culture and in vivo PCK rat model of PKD. Results We found that collagen concentration is critical in controlling the morphogenesis of MDCK cells cultured in 3D gels. MDCK cells did not form 3D structures at collagen I concentrations lower than 1 mg/ml but began forming tubules when the concentration reaches 1 mg/ml. Significantly, these cells began to form cyst when collagen I concentration reached to 1.2 mg/ml, and the ratios of cyst to tubule structures increased as the collagen I concentration increased. These cells exclusively formed cyst structures at a collagen I concentration of 1.8 mg/ml or higher. Overexpression of MT1-MMP in MDCK cells significantly induced cyst growth in 3D collagen gel culture. Conversely, inhibition of MMPs activity with doxycycline, a FDA approved pan-MMPs inhibitor, dramatically slowed cyst growth. More importantly, the treatment of PCK rats with doxycycline significantly decreased renal tubule cell proliferation and markedly inhibited the cystic disease progression. Conclusions Our data suggest that increased collagen expression and MMP activity in PKD kidneys may induce cyst formation and expansion. Our findings also suggest that MMPs may serve as a therapeutic target for the treatment of human PKD.

  19. Collagen immobilization of multi-layered BCP-ZrO2 bone substitutes to enhance bone formation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Col-BCP-ZrO. • Collagen fibers were formed and attached firmly on the surface of BCP-ZrO. • Highly interconnected but uniform porosity were obtained. • High biocompatible, strength scaffolds and new bone were evident in Col-BCP-ZrO2. - Abstract: A porous microstructure of multi-layered BCP-ZrO2 bone substitutes was fabricated using the sponge replica method in which the highly interconnected structure was immobilized with collagen via ethyl(dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide crosslinking. Their struts are combined with a three-layered BCP/BCP-ZrO2/ZrO2 microstructure. Collagen fibers were firmly attached to the strut surface of the BCP-ZrO2 scaffolds. With control of the three-layered microstructure and collagen immobilization, the compressive strength of the scaffolds increased significantly to 6.8 MPa compared to that of the monolithic BCP scaffolds (1.3 MPa). An in vitro study using MTT, confocal observation, and real-time polymer chain reaction analysis demonstrated that the proliferation and differentiation of the pre-osteoblast-like MC3T3-E1 cells was improved due to the collagen incorporation. Remarkable enhancement of bone regeneration was observed without any immunological reaction in the femurs of rabbits during 1 and 5 months of implantation. Furthermore, the interfaces between new bone and the scaffold struts bonded directly without any gaps

  20. Collagen immobilization of multi-layered BCP-ZrO{sub 2} bone substitutes to enhance bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Linh, Nguyen Thuy Ba [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Jang, Dong-Woo [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Lee, Byong-Taek, E-mail: lbt@sch.ac.kr [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of)

    2015-08-01

    Graphical abstract: - Highlights: • Col-BCP-ZrO. • Collagen fibers were formed and attached firmly on the surface of BCP-ZrO. • Highly interconnected but uniform porosity were obtained. • High biocompatible, strength scaffolds and new bone were evident in Col-BCP-ZrO{sub 2}. - Abstract: A porous microstructure of multi-layered BCP-ZrO{sub 2} bone substitutes was fabricated using the sponge replica method in which the highly interconnected structure was immobilized with collagen via ethyl(dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide crosslinking. Their struts are combined with a three-layered BCP/BCP-ZrO{sub 2}/ZrO{sub 2} microstructure. Collagen fibers were firmly attached to the strut surface of the BCP-ZrO{sub 2} scaffolds. With control of the three-layered microstructure and collagen immobilization, the compressive strength of the scaffolds increased significantly to 6.8 MPa compared to that of the monolithic BCP scaffolds (1.3 MPa). An in vitro study using MTT, confocal observation, and real-time polymer chain reaction analysis demonstrated that the proliferation and differentiation of the pre-osteoblast-like MC3T3-E1 cells was improved due to the collagen incorporation. Remarkable enhancement of bone regeneration was observed without any immunological reaction in the femurs of rabbits during 1 and 5 months of implantation. Furthermore, the interfaces between new bone and the scaffold struts bonded directly without any gaps.

  1. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Gay, S.; Hoeoek, M.; Gay, R.E.; Magargal, W.W.; Reynertson, R.H.

    1986-03-05

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, (/sup 35/S)-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall.

  2. Extracellular matrix of smooth muscle cells: interaction of collagen type V with heparan sulfate proteoglycan

    International Nuclear Information System (INIS)

    Alteration in the extracellular matrix produced by smooth muscle cells may play a role in the development of atherosclerotic lesions. Consequently the authors have initiated studies on the structural organization of the extracellular matrix produced by cultured smooth muscle cells. Immunohisotological examination of this matrix using well-characterized mono- and polyclonal antibodies showed a partial codistribution of heparan sulfate (HS) proteoglycans with a number of different matrix components including collagen types I, III, IV, V and VI, laminin and fibronectin. Subsequent binding studies between isolated matrix proteins and HS showed that the polysaccharide interacts strongly with type V collagen and to a lesser extent with fibronectin as well as collagen types III and VI. The interaction between type V and HS was readily inhibited by heparin and highly sulfated HS but not be dermatan sulfate, chondroitin sulfate or HS with a low sulfate content. Furthermore, [35S]-HS proteoglycans isolated from cultured smooth muscle cells could be adsorbed on a column of sepharose conjugated with native type V collagen and eluted in a salt gradient. Hence, the interaction between type V and HS may play a major part in stabilizing the extracellular matrix of the vessel wall

  3. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Chung, Chong-Pyoung, E-mail: ccpperio@snu.ac.kr [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a

  4. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  5. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, Ludmila; Yamada, Susan S; Wimer, Helen;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic a...

  6. Kinetics of gene expression and bone remodelling in the clinical phase of collagen induced arthritis

    DEFF Research Database (Denmark)

    Denninger, Katja Caroline Marie; Litman, Thomas; Marstrand, Troels;

    2015-01-01

    Introduction: Pathological bone changes differ considerably between inflammatory arthritic diseases and most studies have focused on bone erosion. Collagen-induced arthritis (CIA) is a model for rheumatoid arthritis, which, in addition to bone erosion, demonstrates bone formation at the time of...... clinical manifestations. The objective of this study was to use this model to characterise the histological and molecular changes in bone remodelling, and relate these to the clinical disease development. Methods: A histological and gene expression profiling time-course study on bone remodelling in CIA was...... declined and remodelling of formed bone dominated. Global gene expression profiling showed simultaneous upregulation of genes related to bone changes and inflammation in week 0 to 2 after onset of clinical disease. Furthermore, we observed time-dependent expression of genes involved in early and late...

  7. Cervical collagen imaging for determining preterm labor risks using a colposcope with full Mueller matrix capability

    Science.gov (United States)

    Stoff, Susan; Chue-Sang, Joseph; Holness, Nola A.; Gandjbakhche, Amir; Chernomordik, Viktor; Ramella-Roman, Jessica

    2016-02-01

    Preterm birth is a worldwide health issue, as the number one cause of infant mortality and neurological disorders. Although affecting nearly 10% of all births, an accurate, reliable diagnostic method for preterm birth has, yet, to be developed. The primary constituent of the cervix, collagen, provides the structural support and mechanical strength to maintain cervical closure, through specific organization, during fetal gestation. As pregnancy progresses, the disorganization of the cervical collagen occurs to allow eventual cervical pliability so the baby can be birthed through the cervical opening. This disorganization of collagen affects the mechanical properties of the cervix and, if the changes occur prematurely, may be a significant factor leading to preterm birth. The organization of collagen can be analyzed through the use of Mueller Matrix Polarimetric imaging of the characteristic birefringence of collagen. In this research, we have built a full Mueller Matrix Polarimetry attachment to a standard colposcope to enable imaging of human cervixes during standard prenatal exams at various stages of fetal gestation. Analysis of the polarimetric images provides information of quantity and organization of cervical collagen at specific gestational stages of pregnancy. This quantitative information may provide an indication of risk of preterm birth.

  8. The extracellular matrix of hydra is a porous sheet and contains type IV collagen.

    Science.gov (United States)

    Shimizu, Hiroshi; Aufschnaiter, Roland; Li, Li; Sarras, Michael P; Borza, Dorin-Bogdan; Abrahamson, Dale R; Sado, Yoshikazu; Zhang, Xiaoming

    2008-01-01

    Hydra, as an early diploblastic metazoan, has a well-defined extracellular matrix (ECM) called mesoglea. It is organized in a tri-laminar pattern with one centrally located interstitial matrix that contains type I collagen and two sub-epithelial zones that resemble a basal lamina containing laminin and possibly type IV collagen. This study used monoclonal antibodies to the three hydra mesoglea components (type I, type IV collagens and laminin) and immunofluorescent staining to visualize hydra mesoglea structure and the relationship between these mesoglea components. In addition, hydra mesoglea was isolated free of cells and studied with immunofluorescence and scanning electron microscopy (SEM). Our results show that type IV collagen co-localizes with laminin in the basal lamina whereas type I collagen forms a grid pattern of fibers in the interstitial matrix. The isolated mesoglea can maintain its structural stability without epithelial cell attachment. Hydra mesoglea is porous with multiple trans-mesoglea pores ranging from 0.5 to 1 microm in diameter and about six pores per 100 microm(2) in density. We think these trans-mesoglea pores provide a structural base for epithelial cells on both sides to form multiple trans-mesoglea cell-cell contacts. Based on these findings, we propose a new model of hydra mesoglea structure. PMID:18602803

  9. The extracellular matrix of hydra is a porous sheet and contains type IV collagen

    Science.gov (United States)

    Shimizu, Hiroshi; Aufschnaiter, Roland; Li, Li; Sarras, Michael P.; Borza, Dorin-Bogdan; Abrahamson, Dale R.; Sado, Yoshikazu; Zhang, Xiaoming

    2008-01-01

    Hydra, as an early diploblastic metazoan, has a well defined extracellular matrix (ECM) called-mesoglea. It is organized in a tri-laminar pattern with one centrally located interstitial matrix that contains type I collagen and two sub-epithelial zones that resemble a basal lamina containing laminin and possibly type IV collagen. This study used monoclonal antibodies to the three hydra mesoglea components (type I, type IV collagens and laminin) and immunofluorescent staining to visualize hydra mesoglea structure and the relationship between these mesoglea components. In addition, hydra mesoglea was isolated free of cells and studied with immunofluorescence and SEM. Our results show that type IV collagen co-localizes with laminin in the basal lamina whereas type I collagen forms a grid pattern of fibers in the interstitial matrix. The isolated-mesoglea can maintain its structural stability without epithelial cell attachment. Hydra mesogleais porous with multiple trans-mesoglea pores ranging from 0.5 to 1 µm in diameter and about 6 pores per 100 µm2 in density. We think these trans-mesoglea pores provide a structural base for epithelial cells on both sides to form multiple trans-mesoglea cell-cell contacts. Based on these findings, we propose a new model of hydra mesoglea structure. PMID:18602803

  10. Induced Elastic Matrix Deposition Within Three-Dimensional Collagen Scaffolds

    OpenAIRE

    Venkataraman, Lavanya; Ramamurthi, Anand

    2011-01-01

    The structural stability of a cyclically distending elastic artery and the healthy functioning of vascular smooth muscle cells (SMCs) within are maintained by the presence of an intact elastic matrix and its principal protein, elastin. The accelerated degradation of the elastic matrix, which occurs in several vascular diseases, coupled with the poor ability of adult SMCs to regenerate lost elastin, can therefore adversely impact vascular homeostasis. Similarly, efforts to tissue engineer elas...

  11. A strategy to quantitate global phosphorylation of bone matrix proteins.

    Science.gov (United States)

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials. PMID:26851341

  12. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    Science.gov (United States)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  13. Study on de novo collagen biosynthesis and degradation markers of bone

    International Nuclear Information System (INIS)

    This investigation was carried out to study the performance of de novo biochemical markers of serum pro collagen type-1 amino terminal extension (PINP), as a marker of collagen biosynthesis, and urinary collagen crosslink free deoxypyridinoline (DPD) as a marker of collagen degradation. Moreover, urinary calcium C Ca) and inorganic phosphorus (P), as markers of bone demineralization, in addition to urinary creatinine (Cr), to reflect status of renal function, were also studied in order to assess the activity of bone turnover in osteoporotic (OST), postmenopausal (POST), peri menopausal(PERI), premenopausal (PRE) women and also in young adult (YON) ones. The obtained results showed that urinary creatinine levels were within the normal ranges in all women even in the elderly osteoporotic and postmenopausal women. Serum PINP did not reflect osteoblastic activity. Urinary DPD proved to be a good marker in monitoring the postmenopausal bone resorption and urinary Ca was a reliable marker for bone loss in osteoporosis and bone turnover in the postmenopausal status

  14. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique.

    OpenAIRE

    Al-Munajjed, Amir A; Plunkett, Niamh A; Gleeson, John P.; Weber, Tim; Jungreuthmayer, Christian; Levingstone, Tanya; Hammer, Joachim; O'Brien, Fergal J.

    2009-01-01

    The objective of this study was to develop a biomimetic, highly porous collagen-hydroxyapatite (HA) composite scaffold for bone tissue engineering (TE), combining the biological performance and the high porosity of a collagen scaffold with the high mechanical stiffness of a HA scaffold. Pure collagen scaffolds were produced using a lyophilization process and immersed in simulated body fluid (SBF) to provide a biomimetic coating. Pure collagen scaffolds served as a control. The mechanical, mat...

  15. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation of...... bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served as...

  16. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  17. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.

    Science.gov (United States)

    Lin, Bo-Nian; Whu, Shu Wen; Chen, Chih-Hwa; Hsu, Fu-Yin; Chen, Jyh-Cheng; Liu, Hsia-Wei; Chen, Chien-Hao; Liou, Hau-Min

    2013-11-01

    Platelet rich plasma (PRP), which includes many growth factors, can activate osteoid production, collagen synthesis and cell proliferation. Nanohydroxyapatite-type I collagen beads (CIB), which mimetic natural bone components, are not only flexible fillers for bone defect but also encourage osteogenesis. Bone marrow mesenchymal stem cells (BMSCs) are often used as an abundant cell source for tissue engineering. We used a rabbit model to combine PRP, CIB and BMSCs (CIB+PRP+BMSC) into a bone-like substitute to study its impact on bone regeneration, when compared to defect alone, PRP, CIB+PRP, and PRP+BMSC. CIB+PRP upregulated more alkaline phosphatase (ALP) activity in BMSCs than PRP alone at 4 weeks postoperation. CIB+PRP+BMSC and PRP+BMSC did not differ significantly in DNA content, total collagen content, and ALP activity at 8 weeks. In histological assay, both CIB+PRP+BMSC and PRP+BMSC showed more bone regeneration at 4 and 8 weeks. Higher trabecular bone volume in tissue volume (BV/TV) (31.15±2.67% and 36.93±1.01%), fractal dimension (FD) (2.30±0.18 and 2.65±0.02) and lower trabecular separation (Tb.Sp) (2.30±0.18 and 1.35±0.16) of CIB+PRP+BMSC than of other groups at 4 and 8 weeks, and approach to of bone tissue (BV/TV=24.35±2.13%; FD=2.65±0.06; Tb.Sp=4.19±0.95). CIB+PRP+BMSC significantly enhanced new bone formation at 4 week. Therefore, nanohydroxyapatite-type I collagen beads combined with PRP and BMSCs produced a bone substitute with efficiently improved bone regeneration that shows promise to repair bone defects. PMID:22744907

  18. Mimicking the nanostructure of bone matrix to regenerate bone.

    Science.gov (United States)

    Kane, Robert; Ma1, Peter X

    2013-11-01

    Key features of bone tissue structure and composition are capable of directing cellular behavior towards the generation of new bone tissue. Bone tissue, as well as materials derived from bone, have a long and successful history of use as bone grafting materials. Recent developments in design and processing of synthetic scaffolding systems has allowed the replication of the bone's desirable biological activity in easy to fabricate polymeric materials with nano-scale features exposed on the surface. The biological response to these new tissue-engineering scaffold materials oftentimes exceeds that seen on scaffolds produced using biological materials. PMID:24688283

  19. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

    Science.gov (United States)

    Lim, Youn-Mook; Jeong, Sung In; An, Sung-Jun; Kang, Seong-Soo

    2015-01-01

    PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane. PMID:26816579

  20. COLLAGEN MUTATION CAUSES CHANGES OF THE MICRODAMAGE MORPHOLOGY IN BONE OF AN OI MOUSE MODEL

    OpenAIRE

    Dong, X. Neil; Zoghi, Mahyar; Ran, Qitao; Wang, Xiaodu

    2010-01-01

    Previous studies have postulated that ultrastructural changes may alter the pattern and capacity of microdamage accumulation in bone. Using an osteogenesis imperfecta (OI) mouse model, this study was performed to investigate the correlation of collagen mutation with the microdamage morphology and the associated brittleness of bone. In this study, femurs from mild OI and wild type mice were fatigued under four-point bending to create microdamage in the specimens. Then, the microdamage morpholo...

  1. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.

    Directory of Open Access Journals (Sweden)

    Virginia L Harvey

    Full Text Available Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N and ratio of carbon to nitrogen (C:N. Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands, chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae, recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP. All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4C analysis.

  2. Antibacterial and osteoinductive properties of demineralized bone matrix treated with silver

    International Nuclear Information System (INIS)

    The problems incurred by storage of demineralized bone allograft material and its potential use in contaminated operative sites make an antibacterial property desirable. Silver was considered for this role because of its wide spectrum of antibacterial susceptibility, low incidence of resistance, and its ability to persistently inhibit bacteria after binding to collagen matrices. Demineralized bone matrix prepared from rat diaphyseal bone segments was treated by exposure fo AgCl, AgNO3 and NaNO3 solutions prior to lyophilization. The resulting material was tested for bacterial inhibition after incubation in saline solutions for various times and showed inhibition persisting for at least four weeks (Ag-treated material only). Silver treating the matrix was found to partially inhibit the osteoinductive capacity at 10(-3) and 10(-2) M but not at 10(-5) M as measured by intramuscular implantation in the rat for six weeks. Control and NaNo3-treated specimens showed normal bone growth as measured by ashing and by 99mTc binding, and confirmed by radiologic densities. Histologic sections showed dense microdeposits on dense material predominately near the decalcified bone surfaces, but also within the matrix. The results suggest that pretreatment with silver at concentrations in the 10(-4) range would render the implant material antibacterial, protect its sterility, and leave the osteoinductive capacity intact

  3. Antibacterial and osteoinductive properties of demineralized bone matrix treated with silver

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, S.J.; Spadaro, J.A.; Webster, D.A.

    The problems incurred by storage of demineralized bone allograft material and its potential use in contaminated operative sites make an antibacterial property desirable. Silver was considered for this role because of its wide spectrum of antibacterial susceptibility, low incidence of resistance, and its ability to persistently inhibit bacteria after binding to collagen matrices. Demineralized bone matrix prepared from rat diaphyseal bone segments was treated by exposure fo AgCl, AgNO3 and NaNO3 solutions prior to lyophilization. The resulting material was tested for bacterial inhibition after incubation in saline solutions for various times and showed inhibition persisting for at least four weeks (Ag-treated material only). Silver treating the matrix was found to partially inhibit the osteoinductive capacity at 10(-3) and 10(-2) M but not at 10(-5) M as measured by intramuscular implantation in the rat for six weeks. Control and NaNo3-treated specimens showed normal bone growth as measured by ashing and by 99mTc binding, and confirmed by radiologic densities. Histologic sections showed dense microdeposits on dense material predominately near the decalcified bone surfaces, but also within the matrix. The results suggest that pretreatment with silver at concentrations in the 10(-4) range would render the implant material antibacterial, protect its sterility, and leave the osteoinductive capacity intact.

  4. Bioinspired nanocomposite structures for bone tissue regeneration based on collagen, gelatin, polyamide and hydroxyapatite

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Balík, Karel; Šupová, Monika; Hrušková, Daniela; Sucharda, Zbyněk; Černý, Martin; Sedláček, R.

    2009-01-01

    Roč. 12, 89-91 (2009), s. 13-15. ISSN 1429-7248 R&D Projects: GA ČR GA106/09/1000 Institutional research plan: CEZ:AV0Z30460519 Keywords : nanocomposite * bone regeneration * collagen Subject RIV: JI - Composite Materials

  5. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen.

    Science.gov (United States)

    Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B

    2014-01-01

    The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. PMID:24210921

  6. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    OpenAIRE

    Cho Hwan; Seo Sung; Park So; Park Jong; Shin Duk; Park Il

    2012-01-01

    Abstract Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone ...

  7. Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Robert C. Rennert

    2013-01-01

    Full Text Available Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC, and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting.

  8. A Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Ko-Ning Ho

    2016-03-01

    Full Text Available Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry resembles human bone. The aim of this study was to compare the performance of a novel bioresorbable purified fibrillar collagen and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP ceramic composite versus collagen alone and a bovine xenograft-collagen composite in beagles. Collagen plugs, bovine graft-collagen composite and HA/β-TCP-collagen composite were implanted into the left and right first, second and third mandibular premolars, and the fourth molar was left empty for natural healing. In total, 20 male beagle dogs were used, and quantitative and histological analyses of the extraction ridge was done. The smallest width reduction was 19.09% ± 8.81% with the HA/β-TCP-collagen composite at Week 8, accompanied by new bone formation at Weeks 4 and 8. The HA/β-TCP-collagen composite performed well, as a new osteoconductive and biomimetic composite biomaterial, for socket bone preservation after tooth extraction.

  9. The extracellular matrix of Gadus morhua muscle contains types III, V, VI and IV collagens in addition to type I

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Lawson, M.A.

    2005-01-01

    Confocal microscopy and immuno‐histochemistry were used to examine collagens in the extracellular matrix of cod Gadus morhua swimming muscle. In addition to the well known presence of type I fibrous collagen, types III and VI were also found in the myocommata and the endomysium. The beaded collagen......, type VI, was found in the endomysium and the network forming collagen, type IV, was found in the basement membrane. This is the first report of type V collagen in cod muscle and of types II, IV and VI in the muscle of a teleost....

  10. Towards Tuning the Mechanical Properties of Three-Dimensional Collagen Scaffolds Using a Coupled Fiber-Matrix Model

    Directory of Open Access Journals (Sweden)

    Shengmao Lin

    2015-08-01

    Full Text Available Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

  11. Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling

    OpenAIRE

    Weisgerber, D.W.; Caliari, S.R.; Harley, B.A.C.

    2015-01-01

    Biomaterials for bone tissue engineering must be able to instruct cell behavior in the presence of the complex biophysical and biomolecular environments encountered in vivo. While soluble supplementation strategies have been identified to enhance osteogenesis, they are subject to significant diffusive loss in vivo or the need for frequent re-addition in vitro. This investigation therefore explored whether biophysical and biochemical properties of a mineralized collagen-GAG scaffold were suffi...

  12. Multiscale imaging of bone microdamage

    OpenAIRE

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and fu...

  13. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    Science.gov (United States)

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering. PMID:26998869

  14. Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases.

    Science.gov (United States)

    Skliris, Antonis; Labropoulou, Vassiliki T; Papachristou, Dionysios J; Aletras, Alexios; Karamanos, Nikos K; Theocharis, Achilleas D

    2013-05-01

    Serglycin (SG) is mainly expressed by hematopoetic cells as an intracellular proteoglycan. Multiple myeloma cells constitutively secrete SG, which is also localized on the cell surface in some cell lines. In this study, SG isolated from myeloma cells was found to interact with collagen type I (Col I), which is a major bone matrix component. Notably, myeloma cells positive for cell-surface SG (csSG) adhered significantly to Col I, compared to cells lacking csSG. Removal of csSG by treatment of the cells with chondroitinase ABC or blocking of csSG by an SG-specific polyclonal antibody significantly reduced the adhesion of myeloma cells to Col I. Significant up-regulation of expression of the matrix metalloproteinases MMP-2 and MMP-9 at both the mRNA and protein levels was observed when culturing csSG-positive myeloma cells on Col I-coated dishes or in the presence of soluble Col I. MMP-9 and MMP-2 were also expressed in increased amounts by myeloma cells in the bone marrow of patients with multiple myeloma. Our data indicate that csSG of myeloma cells affects key functional properties, such as adhesion to Col I and the expression of MMPs, and imply that csSG may serve as a potential prognostic factor and/or target for pharmacological interventions in multiple myeloma. PMID:23387827

  15. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    Science.gov (United States)

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries. PMID:27039117

  16. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization

    OpenAIRE

    Muralidharan, Nagarajan; Jeya Shakila, Robinson; Sukumar, Durairaj; Jeyasekaran, G.

    2011-01-01

    Acid soluble (ASC) and pepsin soluble (PSC) collagens were extracted from the skin, bone and muscle of a trash fish, leather jacket (Odonus niger) by three different extraction methods. Method I gave 46–50% yield for ASC, Method II gave 49–58% yield for both ASC and PSC and Method III gave 64–71% yield for PSC. The addition of pepsin had increased the yield by 30–45%. The yields of collagen from skin and bone were higher than muscle. SDS-PAGE pattern revealed that skin and bone collagen as Ty...

  17. The crucial role of collagen-binding integrins in maintaining the mechanical properties of human scleral fibroblasts-seeded collagen matrix

    OpenAIRE

    Hu, Shoulong; Cui, Dongmei; Yang, Xiao; Hu, Jianmin; Wan, Wenjuan; Zeng, Junwen

    2011-01-01

    Purpose The aim of this study was to identify the presence of collagen-binding integrin subunits in human scleral fibroblasts (HSFs) and investigate their actual functions in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Methods Primary HSFs were cultured in vitro. Reverse- transcription PCR was used to detect mRNA expression of integrin α1, α2, and β1 subunits in HSFs. In addition, western blot analysis and immunofluorescence were used to detect their protei...

  18. Innovative Biomaterials Based on Collagen-Hydroxyapatite and Doxycycline for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Narcisa Mederle

    2016-01-01

    Full Text Available Bone regeneration is a serious challenge in orthopedic applications because of bone infections increase, tumor developing, and bone loss due to trauma. In this context, the aim of our study was to develop innovative biomaterials based on collagen and hydroxyapatite (25, 50, and 75% which mimic bone composition and prevent or treat infections due to doxycycline content. The biomaterials were obtained by freeze-drying in spongious forms and were characterized by water uptake capacity and microscopy. The in vitro release of doxycycline was also determined and established by non-Fickian drug transport mechanism. Among the studied biomaterials, the most suitable one to easily deliver the drug and mimic bone structure, having compact structure and lower capacity to uptake water, was the one with 75% hydroxyapatite and being cross-linked.

  19. Type II collagen peptide is able to accelerate embryonic chondrocyte differentiation: an association with articular cartilage matrix resorption in osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Elena Vasil'evna Chetina

    2010-01-01

    Conclusion. The effect of CP on gene expression and collagen decomposition activity depends on the morphotype of embryonic chondrocytes. Lack of effect of CP on collagen decomposition activity in both the embryonic hypertrophic chondrocytes and the cartilage explants from OA patients supports the hypothesis that the hypertrophic morphotype is a dominant morphotype of articular chondrocytes in OA. Moreover, collagen decomposition products can be involved in the resorption of matrix in OA and in the maintenance of chronic nature of the pathology.

  20. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria;

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle...

  1. Effects of fibril- or fixed-collagen on matrix metalloproteinase-1and tissue inhibitor of matrix metalloproteinase-1 production in the human hepatocyte cell line HLE

    Institute of Scientific and Technical Information of China (English)

    Makoto Nakamuta; Kazuhiro Kotoh; Munechika Enjoji; Hajime Nawata

    2005-01-01

    AIM: Matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are central to the spontaneous resolution of liver fibrosis. The mechanisms involved have been investigated in hepatic steilate cells (ISC), but not in hepatocytes. We investigated the effects of fibril- and fixed-collagen on MMP-1 and TIMP-1 production in hepatocytes, using the HLE cell line.METHODS: Fibril type T and Ⅳ collagen were prepared by HCl digestion of type T and Ⅳ collagen, respectively.For fixed-collagen, culture dishes were coated with fibril type Ⅰ or Ⅳ collagen and fixed by ultraviolet. Type Ⅰcollagenase activity was measured using fluorescein isothiocyanate-labeled type Ⅰ collagen. MMP-1 and TIMP-1 in HLE cells were measured by a one-step sandwich enzyme immunoassay.RESULTS: Both fibril type Ⅰand Ⅳ collagen significantly increased type Ⅰ coilagenase activity about two-fold compared with no fibril collagen. The effects of the fibril collagen were not affected by the coating condition. There was no significant difference in the effects on collagenase activity between cells cultured in medium containing fibril type Ⅰ collagen and those cultured in the presence of type Ⅳ collagen. Both types of fibril collagen significantly increased MMP-1 production, and showed more than 10-fold higher levels of MMP-1 than the control. The enhanced MMP-1 production by fibril collagens was unaffected by the coating condition. By contrast, TIMP-1 production was not changed by the addition of fibril type Ⅰ or Ⅳ collagen,and neither was it affected by the coating conditions.Coating with type Ⅰ collagen significantly suppressed MMP-1production by almost one-tenth compared with no coating.By contrast, lIMP-1 production was not affected by either the absence of a collagen coat or by increasing the concentration of the coating collagen.CONCLUSION: These results indicated that, in HLE cells,fibril- and fixed-collagen have opposite effects on MMP-1

  2. Collagen cross-link metabolites in urine as markers of bone metastases in prostatic carcinoma.

    Science.gov (United States)

    Miyamoto, K K; McSherry, S A; Robins, S P; Besterman, J M; Mohler, J L

    1994-04-01

    The efficacy of radionuclide bone scans in monitoring metastatic bone activity remains controversial. Objective measurement of bone tumor burden would be useful for the evaluation of new therapies for metastatic carcinoma of the prostate. The recent discovery of the urinary excretion of pyridinoline (cross-link of mature collagen found in cartilage and bone) and deoxypyridinoline (collagen cross-link specific to bone) measured by high pressure liquid chromatography has provided sensitive specific indexes of cartilage and bone breakdown in rheumatoid arthritis, osteoporosis and metabolic bone diseases. We compared the urinary excretion of deoxypyridinoline,pyridinoline and hydroxyproline relative to urinary creatinine (nmol./mmol.creatinine) in 27 patients with benign prostatic hyperplasia (patient age 70.0 +/- 8.5 years, standard deviation), 29 with clinically confined prostate cancer (age 70.2 +/- 9.7 years), and 26 with prostate cancer and bone metastases (age 71.1 +/- 7.7 years). No diurnal variation of deoxypyridinoline or pyridinoline urinary excretion was detected in 5 patients with metastases. Urinary excretion of pyridinoline and deoxypyridinoline was significantly greater in patients with metastatic carcinoma of the prostate compared with patients with either benign prostatic hyperplasia (Mann-Whitney-Wilcoxon rank sum analysis, p r = 0.55, p r = 0.57, p r = 0.36, p = 0.08). Serial measurements of pyridinoline and deoxypyridinoline progressively increased in 3 patients with clinical progression documented by new metastatic lesions by bone scan. Measurement of pyridinoline and deoxypyridinoline excretion cannot diagnose metastatic disease. However, these markers should be evaluated further for quantitative assessment of bone metastases. PMID:7510346

  3. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    Science.gov (United States)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  4. Collagen mutation causes changes of the microdamage morphology in bone of an OI mouse model.

    Science.gov (United States)

    Dong, X Neil; Zoghi, Mahyar; Ran, Qitao; Wang, Xiaodu

    2010-12-01

    Previous studies have postulated that ultrastructural changes may alter the pattern and capacity of microdamage accumulation in bone. Using an osteogenesis imperfecta (OI) mouse model, this study was performed to investigate the correlation of collagen mutation with the microdamage morphology and the associated brittleness of bone. In this study, femurs from mild OI and wild type mice were fatigued under four-point bending to create microdamage in the specimens. Then, the microdamage morphology of these specimens was examined using the bulk-staining technique with basic fuchsin. Similar with the results of previous studies, it was observed that linear microcracks were formed more easily in compression, whereas diffuse damage was induced more readily in tension for both wild-type and mild-type mice. However, less diffuse damage was found in the tensile side of mild OI mouse femurs (collagen mutation) compared with those of wild type mice, showing that the microdamage morphology is correlated to the brittleness of bone. The results of this study provide direct evidence that supports the prediction made by the previous numerical simulation studies, suggesting that microdamage morphology in bone is significantly correlated with the integrity of the collagen phase. PMID:20736092

  5. Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans

    OpenAIRE

    1985-01-01

    Heparan sulfate and heparin, two sulfated glycosaminoglycans (GAGs), extracted collagen-tailed acetylcholinesterase (AChE) from the extracellular matrix (ECM) of the electric organ of Discopyge tschudii. The effect of heparan sulfate and heparin was abolished by protamine; other GAGs could not extract the esterase. The solubilization of the asymmetric AChE apparently occurs through the formation of a soluble AChE-GAG complex of 30S. Heparitinase treatment but not chondroitinase ABC treatment ...

  6. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix

    OpenAIRE

    Walther, M.; Altenberger, S; Kriegelstein, S; Volkering, C; Röser, A.

    2014-01-01

    Surgical principal and objective Treatment of focal cartilage defects (traumatic or osteochondrosis dissecans) of the talus using a collagen matrix. The goal is to stabilize the superclot formed after microfracturing to accommodate cartilage repair. The procedure can be carried out via miniarthrotomy, without medial malleolus osteotomy. Indications International Cartilage Repair Society (ICRS) grade III and IV focal cartilage defects of the talus > 1.5 cm2. Contraindications Generalized osteo...

  7. Clinical evaluation of a collagen matrix to enhance the width of keratinized gingiva around dental implants

    OpenAIRE

    Lee, Kang-Ho; Kim, Byung-Ock; Jang, Hyun-Seon

    2010-01-01

    Purpose The purpose of this study was to evaluate the effect of collagen matrix with apically positioned flap (APF) on the width of keratinized gingiva, comparing to the results of APF only and APF combined with free gingival graft (FGG) at the second implant surgery. Methods Nine patients were selected from those who had received treatments at the Department of Periodontics, Chosun University Dental Hospital, Gwangju, Korea. We performed APF, APF combined with FGG, and APF combined with coll...

  8. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones

    Directory of Open Access Journals (Sweden)

    Rubenbauer Bianka

    2009-12-01

    Full Text Available Abstract Background Non-unions are severe complications in orthopaedic trauma care and occur in 10% of all fractures. The golden standard for the treatment of ununited fractures includes open reduction and internal fixation (ORIF as well as augmentation with autologous-bone-grafting. However, there is morbidity associated with the bone-graft donor site and some patients offer limited quantity or quality of autologous-bone graft material. Since allogene bone-grafts are introduced on the market, this comparative study aims to evaluate healing characteristics of ununited bones treated with ORIF combined with either iliac-crest-autologous-bone-grafting (ICABG or demineralized-bone-matrix (DBM. Methods and results From 2000 to 2006 out of sixty-two consecutive patients with non-unions presenting at our Level I Trauma Center, twenty patients had ununited diaphyseal fractures of long bones and were treated by ORIF combined either by ICABG- (n = 10 or DBM-augmentation (n = 10. At the time of index-operation, patients of the DBM-group had a higher level of comorbidity (ASA-value: p = 0.014. Mean duration of follow-up was 56.6 months (ICABG-group and 41.2 months (DBM-group. All patients were clinically and radiographically assessed and adverse effects related to bone grafting were documented. The results showed that two non-unions augmented with ICABG failed osseous healing (20% whereas all non-unions grafted by DBM showed successful consolidation during the first year after the index operation (p = 0.146. No early complications were documented in both groups but two patients of the ICABG-group suffered long-term problems at the donor site (20% (p = 0.146. Pain intensity were comparable in both groups (p = 0.326. However, patients treated with DBM were more satisfied with the surgical procedure (p = 0.031. Conclusion With the use of DBM, the costs for augmentation of the non-union-site are more expensive compared to ICABG (calculated difference: 160

  9. The crucial role of collagen-binding integrins in maintaining the mechanical properties of human scleral fibroblasts-seeded collagen matrix

    Science.gov (United States)

    Hu, Shoulong; Cui, Dongmei; Yang, Xiao; Hu, Jianmin; Wan, Wenjuan

    2011-01-01

    Purpose The aim of this study was to identify the presence of collagen-binding integrin subunits in human scleral fibroblasts (HSFs) and investigate their actual functions in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Methods Primary HSFs were cultured in vitro. Reverse- transcription PCR was used to detect mRNA expression of integrin α1, α2, and β1 subunits in HSFs. In addition, western blot analysis and immunofluorescence were used to detect their protein in HSFs. Monoclonal antibodies were applied directly against the extracellular domains of integrin subunits in HSFs cultured in the three-dimensional collagen gels to block the interaction between HSFs and the extracellular collagen matrix. The effects of anti-integrin antibodies on HSFs morphology in collagen gel were observed. The effects of the added antibodies on fibroblast-mediated collagen gels’ contraction were evaluated. Furthermore, the changes in mechanical creep properties of collagen gel were measured by a biomechanics test instrument. Results The mRNA and protein expressions of collagen-binding integrin α1, α2, and β1 subunits were present in HSFs. The elongated bipolar cells converted to spherical shapes after 6 h after the addition of integrin α1β1 and α2β1 antibody. The blocking of integrin α1β1 and α2β1 subunits noticeably decreased the contraction in the collagen gels. In addition, all samples were subjected to a constantly applied load of 0.03 N for 600 s. The blocking of integrin α1β1 and α2β1 subunits also induced increases in the values of final extension, creep extension, and creep rate, compared to those of the controls (p0.05). Conclusions Our findings suggested that HSF integrin α1β1 and α2β1 participated in maintaining the mechanical creep properties of the HSFs-seeded collagen matrix. Furthermore, integrin α2β1 might play a more crucial role in maintaining the mechanical creep properties of the collagen matrix than does

  10. Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation

    OpenAIRE

    Kim, Ji-Beom; Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Ji Hye; Yoo, Won Joon; Cho, Tae-Joon; Choi, In Ho

    2015-01-01

    Background Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. Methods The immature rabbit tibial DO model (20 mm length-gain) was u...

  11. Bone induction by composites of bioresorbable carriers and demineralized bone in rats: a comparative study of fibrin-collagen paste, fibrin sealant, and polyorthoester with gentamicin

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Bang, G;

    1992-01-01

    fibrin-collagen paste and fibrin sealant inhibited bone induction and produced a chronic inflammation; part of the fibrin-collagen paste was still present at 4 weeks. Polyorthoester with gentamicin was almost completely absorbed, induced minimal tissue reaction, and did not inhibit osteoinduction....

  12. Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis

    DEFF Research Database (Denmark)

    Veidal, Sanne S; Vassiliadis, Efstathios; Barascuk, Natasha;

    2010-01-01

    During fibrogenesis in the liver, in which excessive remodelling of the extracellular matrix (ECM) occurs, both the quantity of type III collagen (CO3) and levels of matrix metalloproteinases (MMPs), including MMP-9, increase significantly. MMPs play major roles in ECM remodelling, via their...... activity in the proteolytic degradation of extracellular macromolecules such as collagens, resulting in the generation of specific cleavage fragments. These neo-epitopes may be used as markers of fibrosis....

  13. Markers of type I collagen degradation and synthesis in the monitoring of treatment response in bone metastases from breast carcinoma.

    OpenAIRE

    Blomqvist, C; Risteli, L; Risteli, J.; Virkkunen, P.; Sarna, S.; Elomaa, I.

    1996-01-01

    Thirty-six patients with bone metastases included in a trial of supportive calcitonin on the treatment response to systemic therapy were monitored by conventional radiography, conventional indicators of bone metabolism [alkaline phosphatase (AP), osteocalcin (gla), urinary hydroxyproline excretion (OHP), urinary calcium (uCa), serum calcium (sCa)] and collagen metabolites (ICTP, the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen; PICP, the carboxy-terminal propeptid...

  14. Pressure therapy upregulates matrix metalloproteinase expression and downregulates collagen expression in hypertrophic scar tissue

    Institute of Scientific and Technical Information of China (English)

    HUANG Dong; SHEN Kuan-hong; WANG Hong-gang

    2013-01-01

    Background Pressure therapy improves hypertrophic scar healing,but the mechanisms for this process are not well understood.We sought to investigate the differential expression of matrix metalloproteinases (Mmps) and collagen in posttraumatic hypertrophic scar tissue with mechanical pressure and delineate the molecular mechanisms of pressure therapy for hypertrophic scars.Methods Fibroblast lines of normal skin and scar tissue were established and a mechanical pressure system was devised to simulate pressure therapy.Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting assays were used to compare differences in the mRNA and protein expression of Mmps and collagen in scar fibroblasts before and after pressure therapy.Results The expression differed between the hypertrophic scar cell line and the normal cell line.RT-PCR assays showed that Collagen I,highly expressed in the hypertrophic scar cell line,decreased significantly after pressure therapy.Mmp2,Mmp9,and Mmp12 expression in the hypertrophic scar tissue increased significantly after pressure therapy (P <0.05).Western blotting assays further revealed that Mmp9 and Mmp12 expression increased significantly in the hypertrophic scar tissue after pressure therapy (P <0.05) but not Mmp2 expression (P >0.05).Conclusion Mechanical pressure induces degradation of Collagen Ⅰ in hypertrophic scar tissue by affecting the expression of Mmp9 and Mmp12.

  15. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  16. MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix.

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    Full Text Available Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK and focal adhesion kinase (FAK and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63

  17. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    Science.gov (United States)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  18. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.

    Science.gov (United States)

    Wojtowicz, Abigail M; Shekaran, Asha; Oest, Megan E; Dupont, Kenneth M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-03-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the alpha(2)beta(1) integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  19. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo.

    Science.gov (United States)

    Schofer, Markus D; Tünnermann, Lisa; Kaiser, Hendric; Roessler, Philip P; Theisen, Christina; Heverhagen, Johannes T; Hering, Jacqueline; Voelker, Maximilian; Agarwal, Seema; Efe, Turgay; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R J

    2012-09-01

    The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for

  20. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling.

    Science.gov (United States)

    Horn, Margaux A; Trafford, Andrew W

    2016-04-01

    Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways. PMID:26578393

  1. Sources of carbon isotope variation in kangaroo bone collagen and tooth enamel

    Science.gov (United States)

    Murphy, Brett P.; Bowman, David M. J. S.; Gagan, Michael K.

    2007-08-01

    The stable carbon isotopic composition (expressed as δ 13C) of herbivore remains is commonly used to reconstruct past changes in the relative abundance of C 4 versus C 3 grass biomass (C 4 relative abundance). However, the strength of the relationship between herbivore δ 13C and C 4 relative abundance in extant ecosystems has not been thoroughly examined. We determined sources of variation in δ 13C of bone collagen and tooth enamel of kangaroos ( Macropus spp.) collected throughout Australia by measuring δ 13C of bone collagen (779 individuals) and tooth enamel (694 individuals). An index of seasonal water availability, i.e. the distribution of rainfall in the C 4 versus C 3 growing seasons, was used as a proxy for C 4 relative abundance, and this variable explained a large proportion of the variation in both collagen δ 13C (68%) and enamel δ 13C (68%). These figures increased to 78% and 77%, respectively, when differences between kangaroo species were accounted for. Vegetation characteristics, such as woodiness and the presence of an open forest canopy, had no effect on collagen or enamel δ 13C. While there was no relationship between collagen δ 13C and kangaroo age at death, tooth enamel produced later in life, following weaning, was enriched in 13C by 3.5‰ relative to enamel produced prior to weaning. From the observed relationships between seasonal water availability and collagen and enamel δ 13C, enrichment factors ( ɛ∗) for collagen-diet and enamel-diet (post-weaning) were estimated to be 5.2‰ ± 0.5 (95% CI) and 11.7‰ ± 0.6 (95% CI), respectively. The findings of this study confirm that at a continental scale, collagen and enamel δ 13C of a group of large herbivores closely reflect C 4 relative abundance. This validates a fundamental assumption underpinning the use of isotopic analysis of herbivore remains to reconstruct changes in C 4 relative abundance.

  2. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  3. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  4. Iron nanoparticles from blood coated with collagen as a matrix for synthesis of nanohydroxyapatite

    Indian Academy of Sciences (India)

    M Chamundeeswari; B Santhosh Kumar; T Muthukumar; L Muthuraman; K Purna Sai; T P Sastry

    2013-12-01

    A simple wet precipitation technique was used to prepare nanobiocomposite containing iron nanoparticles coated with collagen. This nanobiocomposite was used as matrix for the synthesis of nanohydroxyapatite. The physicochemical characteristic studies of the nanohydroxyapatite thus formed were carried out using fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energydispersive X-ray spectroscopy and X-ray diffraction technique to confirm the formation of hydroxyapatite on iron nanoparticle–collagen complex. The results of the above studies supported the formation of iron nanoparticle–collagen–hydroxyapatite composite. The biological studies such as biocompatibility and hemocompatibility were carried out for nanohydroxyapatite using different cell lines and blood sample. The results of biocompatibility and hemolytic assay revealed that the prepared nanobiocomposite was 100 % biocompatible and hemocompatible. This nanobiocomposite may be used for biomedical application such as injectables for targeted delivery and as scaffold for tissue engineering.

  5. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    Science.gov (United States)

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1. PMID:24334769

  6. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  7. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinholt, E.M.; Solheim, E. (Institute for Surgical Research, Rikshospitalet, University of Oslo (Norway)); Bang, G. (Department of Oral Pathology and Forensic Odontology, University of Bergen (Norway)); Sudmann, E. (Hagavik Orthopedic Hospital, University of Bergen (Norway))

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by {sup 85}Sr uptake. The composite implant was technically easier to use than DBM alone. (author).

  8. Development of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Wilairat Leeanansaksiri

    2013-01-01

    Full Text Available The aim of this study was to investigate physical and biological properties of collagen (COL and demineralized bone powder (DBP scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75–125 µm, 125–250 µm, and 250–500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells, osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250–500 mm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250–500 mm particle size could be considered a potential bone tissue engineering implant.

  9. Comparison of growth-induced resorption and denervation-induced resorption on the release of [3H]tetracycline, 45calcium, and [3H]collagen from whole bones of growing rats

    International Nuclear Information System (INIS)

    The major effect of immobilization during growth is a smaller bone mass induced by either an increased bone resorption or a decreased bone formation. Using a method of analyzing radioisotopic loss of [3H]tetracycline and [3H]collagen from bone prelabeled in vivo, we compared the amount of bone resorption due to immobilization with bone resorption induced by growth. One hind limb was denervated in growing male rats, 6 weeks of age, that had been chronically prelabeled with [3H]tetracycline, 45calcium, and [3H]proline. The total radioactivity of the whole femur and tibia/fibula from the denervated limb was compared with that from bones of the control limb at 0, 1, 2, 4, and 8 weeks after denervation. The effect of growth on bone formation was measured by net increases in bone length, volume, and mass of matrix and mineral. Experimental bones had a significantly smaller volume and mass. Bone resorption was much greater during growth modeling than during denervation. The additional bone resorption induced by denervation was a small fraction (one-fourth) of the resorption induced by growth. Denervation during growth resulted in less bone being formed due to a smaller gain in matrix and mineral mass as a result of a reduction in bone formation

  10. Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration

    CERN Document Server

    Qiao, Xiangchen; Yang, Xuebin; Tronci, Giuseppe; Wood, David J

    2015-01-01

    Poly-dl-lactic acid (PDLLA) was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 {\\deg}C; 5% CO2) in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC) for five weeks. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), Fourier transform infra-red spectroscopy (FTIR) and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory...

  11. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    Science.gov (United States)

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  12. High‐throughput collagen fingerprinting of intact microfaunal remains; a low‐cost method for distinguishing between murine rodent bones

    Science.gov (United States)

    Gu, Muxin; Shameer, Sanu; Patel, Soyab; Chamberlain, Andrew T.

    2016-01-01

    Rationale Microfaunal skeletal remains can be sensitive indicators of the contemporary ecosystem in which they are sampled and are often recovered in owl pellets in large numbers. Species identification of these remains can be obtained using a range of morphological criteria established for particular skeletal elements, but typically dominated by a reliance on cranial characters. However, this can induce biases under different environmental and taphonomic conditions. The aim of this research was to develop a high‐throughput method of objectively identifying rodent remains from archaeological deposits using collagen fingerprinting, most notably the identification of rats from other myomorph rodents as a means to identify disturbances in the archaeofauna through the presence of invasive taxa not contemporary with the archaeological deposits. Methods Collagen was extracted from complete microfaunal skeletal remains in such a manner as to leave the bones morphologically intact (i.e., weaker concentration of acid than previously used over shorter length of time). Acid‐soluble collagen was then ultrafiltered into ammonium bicarbonate and digested with trypsin prior to dilution in the MALDI matrix and acquisition of peptide mass fingerprints using a matrix‐assisted laser desorption/ionisation time‐of‐flight (MALDI‐TOF) mass spectrometer. Results Collagen fingerprinting was able to distinguish between Rattus, Mus, Apodemus and Micromys at the genus level; at the species level, R. rattus and R. norvegicus could be separated whereas A. flavicollis and A. sylvaticus could not. A total of 12,317 archaeological microvertebrate samples were screened for myomorph signatures but none were found to be invasive rats (Rattus) or mice (Mus). Of the contemporary murine fauna, no harvest mice (Micromys) were identified and only 24 field mouse (Apodemus) discovered. Conclusions As a result, no evidence of recent bioturbation could be inferred from the faunal remains of these

  13. Small-Angle X-ray Study of the Three-Dimensional Collagen/Mineral Superstructure in Intramuscular Fish Bone

    International Nuclear Information System (INIS)

    Synchrotron small-angle X-ray scattering (SAXS) was conducted on native intramuscular shad/herring bone samples. Two-dimensional SAXS patterns were quantitatively analyzed with special consideration for preferred orientation effects, leading to new insights into the three-dimensional superstructure of mineralized collagen fibrils in shad/herring bone

  14. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  15. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway

    OpenAIRE

    Na Li; Min Zhang; Gregor P. C. Drummen; Yu Zhao; Yin Fen Tan; Su Luo; Xiao Bo Qu

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone...

  16. Defective collagen crosslinking in bone, but not in ligament or cartilage, in bruck syndrome: Indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17

    NARCIS (Netherlands)

    Bank, R.A.; Robins, S.P.; Wijmenga, C.; Breslau-Siderius, L.J.; Bardoel, A.F.J.; Sluijs, H.A. van der; Pruijs, H.E.H.; Tekoppele, J.M.

    1999-01-01

    Bruck syndrome is characterized by the presence of osteoporosis, joint contractures, fragile bones, and short stature. We report that lysine residues within the telopeptides of collagen type I in bone are underhydroxylated, leading to aberrant crosslinking, but that the lysine residues in the triple

  17. A mouse 3T6 fibroblast cell culture model for the study of normal and protein-engineered collagen synthesis and deposition into the extracellular matrix.

    Science.gov (United States)

    Lamandé, S R; Bateman, J F

    1993-07-01

    Mouse 3T6 fibroblasts deposited an organized collagenous extracellular matrix during long-term culture in the presence of ascorbic acid. The matrix produced by the cells had a similar distribution of collagen types as the mouse dermal matrix, comprising predominantly type I with smaller amounts of types III and V collagens. By day 8 of culture more than 70% of the collagen in the 3T6 matrix was involved in covalent crosslinkages and required pepsin digestion for extraction. Incorporation of NaB3H4 into reducible crosslinks and aldehydes directly demonstrated the involvement of the alpha 1 (I)CB6 and alpha 2(I)CB3.5 in crosslinks. The pattern of reducible crosslinks in the in vitro 3T6 matrix was similar to that in mouse skin suggesting a comparable fibril organization. Processing of procollagen to collagen occurred efficiently throughout the culture period and the rate of collagen production was unaltered during 15 days of culture, indicating that the development of a collagenous matrix does not directly play a role in procollagen processing or biosynthetic regulation. The existence of a preformed matrix did however, increase the efficiency with which newly synthesised collagen was incorporated into the pericellular matrix. At day 0, when there was no measurable matrix present, 29% of the collagen synthesised was deposited, while by day 15, 88% of the collagen was laid down in the matrix. The development of this 3T6 culture system, where collagen is efficiently incorporated into an organized extracellular matrix, will facilitate detailed studies on matrix organization and regulation and provide a system in which protein-engineered mutant collagens can be expressed to determine their effects on the production of a functional extracellular matrix. PMID:8412990

  18. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    OpenAIRE

    Jung-Bo Huh; June-Jip Yang; Kyung-Hee Choi; Ji Hyeon Bae; Jeong-Yeol Lee; Sung-Eun Kim; Sang-Wan Shin

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were fo...

  19. A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold

    International Nuclear Information System (INIS)

    From a clinical perspective, the use of injectable scaffolds is very attractive as it minimizes patient discomfort, risk of infection, scar formation and the cost of treatment. Bone refers to a family of materials that are constructed by mineralized collagen fibrils. The main objective of this research was to develop a bone-like nano-hydroxyapatite/collagen (nHAC) loaded chitosan (C)/β-glycerophosphate (GP) injectable scaffold. The feasibility of developing a thermo-sensitive and injectable chitosan solution in the presence of nHAC was demonstrated. Bone-marrow-derived messenchymal stem cells (MSCs) were used to measure the cell proliferation of C/GP/nHAC scaffolds based on the cell count kit-8 (CCK-8) assay. It was found that MSCs proliferated normally with the C/GP/nHAC composite scaffolds. The C/GP/nHAC composite scaffolds developed in this study exhibited good injectability, thermo-irreversible properties and solidified under mild conditions. No more than 0.02 g ml-1 of nHAC filler was required to form a non-decaying hydrogel.

  20. Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone.

    Science.gov (United States)

    Yamamoto, Tsuneyuki; Hasegawa, Tomoka; Sasaki, Muneteru; Hongo, Hiromi; Tabata, Chihiro; Liu, Zhusheng; Li, Minqi; Amizuka, Norio

    2012-04-01

    This study was designed to elucidate details of the structure and formation process of the alternate lamellar pattern known to exist in lamellar bone. For this purpose, we examined basic internal lamellae in femurs of young rats by transmission and scanning electron microscopy, the latter employing two different macerations with NaOH at concentrations of 10 and 24%. Observations after the maceration with 10% NaOH showed that the regular and periodic rotation of collagen fibrils caused an alternation between two types of lamellae: one consisting of transversely and nearly transversely cut fibrils, and the other consisting of longitudinally and nearly longitudinally cut fibrils. This finding confirms the consistency of the twisted plywood model. The maceration method with 24% NaOH removed bone components other than cells, thus allowing for three-dimensional observations of osteoblast morphology. Osteoblasts extended finger-like processes paralleling the inner bone surface, and grouped in such a way that, within a group, the processes arranged in a similar direction. Transmission electron microscopy showed that newly deposited fibrils were arranged alongside these processes. For the formation of the alternating pattern, our findings suggest that: (1) osteoblasts control the collagen fibril arrangement through their finger-like process position; (2) osteoblasts behave similarly within a group; (3) osteoblasts move their processes synchronously and periodically to promote alternating different fibril orientation; and (4) this dynamic sequential deposition of fibrils results in the alternate lamellar (or twisted plywood) pattern. PMID:22362877

  1. Enalapril alters the formation of the collagen matrix in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Bomfim Alfredo de Souza

    2003-01-01

    Full Text Available OBJECTIVE: To assess the effect of the inhibition of the angiotensin-converting enzyme on the collagen matrix (CM of the heart of newborn spontaneously hypertensive rats (SHR during embryonic development. METHODS: The study comprised the 2 following groups of SHR (n=5 each: treated group - rats conceived from SHR females treated with enalapril maleate (15 mg. kg-1.day-1 during gestation; and nontreated group - offspring of nontreated females. The newborns were euthanized within the first 24 hours after birth and their hearts were removed and processed for histological study. Three fields per animal were considered for computer-assisted digital analysis and determination of the volume densities (Vv of the nuclei and CM. The images were segmented with the aid of Image Pro Plus® 4.5.029 software (Media Cybernetics. RESULTS: No difference was observed between the treated and nontreated groups in regard to body mass, cardiac mass, and the relation between cardiac and body mass. A significant reduction in the Vv[matrix] and a concomitant increase in the Vv[nuclei] were observed in the treated group as compared with those in the nontreated group. CONCLUSION: The treatment with enalapril of hypertensive rats during pregnancy alters the collagen content and structure of the myocardium of newborns.

  2. Use of DSC to detect the heterogeneity of hydrothermal stability in the polyphenol-treated collagen matrix.

    Science.gov (United States)

    Tang, H R; Covington, A D; Hancock, R A

    2003-11-01

    The hydrothermal stability of the collagen matrixes treated with plant polyphenols (tannins) depends on not only the strength of the polyphenol-collagen interactions but also the distribution uniformity of polyphenolic molecules within the collagen fibrils. Traditional methods of uniformity tests rely heavily on the expertise of workers and are thus subjective. This paper describes a differential scanning calorimetry (DSC) study of the sheepskin collagen samples treated with hydrolyzable tannins, including two commercial tannins' extracts (chestnut and valonea), two pure ellagitannins (vescalagin and castalagin), and six synthetic gallotannins (di-galloyl-ethylene glycol (DGE), tri-galloyl-glycerol, tetra-galloyl-meso-erythritol, penta-galloyl-adonitol, penta-galloyl-glucose, and hexa-galloyl-ducitol). The collagen sample without polyphenol treatment and the sample treated with DGE showed a single sharp peak in their DSC thermogram with a full peak width at half height (fwhh) of 3-4 degrees C. The samples treated with other tannins all showed multiple peak DSC profiles with the fwhh of each peak at about 3-4 degrees C. These multiple peak profiles imply that in these polyphenol-treated samples, there is a distribution of collagen molecules having different hydrothermal stability. The results have demonstrated that DSC offers an objective method to detect the stability heterogeneity of collagen matrixes in the solid state, providing a useful tool for the leather industry to evaluate the uniformity of leather tanning. PMID:14582955

  3. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.

    Science.gov (United States)

    Luo, Qing; Nakade, Rugved; Dong, Xuanliang; Rong, Qiguo; Wang, Xiaodu

    2011-10-01

    The interactions between mineral and collagen phases in the ultrastructural level play an important role in determining the mechanical properties of bone tissue. Three types of mineral-collagen interaction (i.e., ionic interactions, hydrogen/van der Waals bonds, and van der Waals/viscous shear in opening/sliding mode, respectively) have been simulated in this study, using cohesive zone-modeling techniques. Considering the inhomogeneity of bone, a probabilistic failure analysis approach has been also employed to account for the effect of mineral-collagen interfacial behavior on microdamage accumulation in lamellar bone tissues. The results of this study suggested that different interfacial behaviors cause different types of microdamage accumulation. The ionic interactions between the mineral and collagen phases lead to the formation of linear microcracks, while the van der Waals/viscous shear interactions may facilitate the formation of diffuse damage. In the case of hydrogen/van der Waals bonds, a transitional behavior of microdamage accumulation in bone was observed. The findings of this study may help in understanding the mechanisms of mineral-collagen interactions and its effects on the failure mechanism of bone. PMID:21783104

  4. Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Xiangchen Qiao

    2015-08-01

    Full Text Available Poly-dl-lactic acid (PDLLA was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 °C; 5% CO2 in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC for five weeks. Scanning electron microscopy (SEM, confocal laser scanning microscopy (CLSM, Fourier transform infra-red spectroscopy (FTIR and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory wet stabilities in a humid environment, although chemical crosslinking was essential to ensure long term material cell culture. Scaffolds of PDLLA/collagen at a 60:40 weight ratio provided the greatest stability over a five-week culture period. The PDLLA/collagen scaffolds promoted greater cell proliferation and osteogenic differentiation compared to HMBSCs seeded on the corresponding PDLLA/gelatine scaffolds, suggesting that any electrospinning-induced collagen denaturation did not affect material biofunctionality within 5 weeks in vitro.

  5. Analysis of forward and backward Second Harmonic Generation images to probe the nanoscale structure of collagen within bone and cartilage.

    Science.gov (United States)

    Houle, Marie-Andrée; Couture, Charles-André; Bancelin, Stéphane; Van der Kolk, Jarno; Auger, Etienne; Brown, Cameron; Popov, Konstantin; Ramunno, Lora; Légaré, François

    2015-11-01

    Collagen ultrastructure plays a central role in the function of a wide range of connective tissues. Studying collagen structure at the microscopic scale is therefore of considerable interest to understand the mechanisms of tissue pathologies. Here, we use second harmonic generation microscopy to characterize collagen structure within bone and articular cartilage in human knees. We analyze the intensity dependence on polarization and discuss the differences between Forward and Backward images in both tissues. Focusing on articular cartilage, we observe an increase in Forward/Backward ratio from the cartilage surface to the bone. Coupling these results to numerical simulations reveals the evolution of collagen fibril diameter and spatial organization as a function of depth within cartilage. PMID:26349534

  6. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  7. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection

    OpenAIRE

    Miri, Amir K.; Muja, Naser; Kamranpour, Neysan O.; Lepry, William C.; Aldo R. Boccaccini; Clarke, Susan A.; Nazhat, Showan N.

    2016-01-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 coll...

  8. Intraskeletal isotopic compositions (δ(13) C, δ(15) N) of bone collagen: nonpathological and pathological variation.

    Science.gov (United States)

    Olsen, Karyn C; White, Christine D; Longstaffe, Fred J; von Heyking, Kristin; McGlynn, George; Grupe, Gisela; Rühli, Frank J

    2014-04-01

    Paleodiet research traditionally interprets differences in collagen isotopic compositions (δ(13) C, δ(15) N) as indicators of dietary distinction even though physiological processes likely play some role in creating variation. This research investigates the degree to which bone collagen δ(13) C and δ(15) N values normally vary within the skeleton and examines the influence of several diseases common to ancient populations on these isotopic compositions. The samples derive from two medieval German cemeteries and one Swiss reference collection and include examples of metabolic disease (rickets/osteomalacia), degenerative joint disease (osteoarthritis), trauma (fracture), infection (osteomyelitis), and inflammation (periostitis). A separate subset of visibly nonpathological skeletal elements from the German collections established normal intraindividual variation. For each disease type, tests compared bone lesion samples to those near and distant to the lesions sites. Results show that normal (nonpathological) skeletons exhibit limited intraskeletal variation in carbon- and nitrogen-isotope ratios, suggesting that sampling of distinct elements is appropriate for paleodiet studies. In contrast, individuals with osteomyelitis, healed fractures, and osteoarthritis exhibit significant intraskeletal differences in isotope values, depending on whether one is comparing lesions to near or to distant sites. Skeletons with periostitis result in significant intraskeletal differences in nitrogen isotope values only, while those with rickets/osteomalacia do not exhibit significant intraskeletal differences. Based on these results, we suggest that paleodiet researchers avoid sampling collagen at or close to lesion sites because the isotope values may be reflecting both altered metabolic processes and differences in diet relative to others in the population. PMID:24374993

  9. REGENERATION OF ARTICULAR CARTILAGE UNDER THE IMPLANTATION OF BONE MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev

    2015-07-01

    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  10. Studies on three matrix molecules in bone and dentin

    OpenAIRE

    Petersson, Ulrika

    2003-01-01

    The biomineralization of bone and dentin is a complex and dynamic process, involving the formation of an organic framework in which mineral crystals are deposited. The noncollagenous proteins (NCPs) of the organic phase play a central role in the extracellular matrix (ECM) organization and mineralization regulation. To facilitate the understanding of the mechanisms of biomineralization, it is crucial to expand our knowledge regarding the functions of the NCPs in this process...

  11. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    International Nuclear Information System (INIS)

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants - Highlights: • Demineralized bone matrix (DBM) was gamma-irradiated for sterilization. • Irradiated DBM had higher alkaline phosphatase and osteocalcin production. • It was reasoned the more released bone morphogenetic proteins by irradiation. • This result supports the application of radiation sterilization for bone implants

  12. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    Science.gov (United States)

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  13. Effect of local hemostatics on bone induction in rats: a comparative study of bone wax, fibrin-collagen paste, and bioerodible polyorthoester with and without gentamicin

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G;

    1992-01-01

    evaluated by light microscopy and 85Sr uptake analyses. Non-absorbable bone wax of 88% beeswax and absorbable bovine fibrin-collagen paste both significantly inhibited osteoinduction, whereas a bioerodible polyorthoester drug delivery system with or without 4% gentamicin did not. Bone wax was not absorbed...... and induced a chronic foreign body reaction. Fibrin-collagen paste induced less inflammation with numerous monocytes and macrophages with engulfed material. Bioerodible polyorthoester caused a very moderate tissue reaction and was mostly resorbed at week 4....

  14. 3D collagen type I matrix inhibits the antimigratory effect of doxorubicin

    Directory of Open Access Journals (Sweden)

    Millerot-Serrurot Emilie

    2010-08-01

    Full Text Available Abstract Background The cell microenvironment, especially extracellular matrix proteins, plays an important role in tumor cell response to chemotherapeutic drugs. The present study was designed to investigate whether this microenvironment can influence the antimigratory effect of an anthracycline drug, doxorubicin, when tumor cells are grown in a matrix of type I collagen, a three-dimensional (3D context which simulates a natural microenvironment. Methods To this purpose, we studied the migratory parameters, the integrin expression, and the activation state of focal adhesion kinase (FAK and GTPase RhoA involved in the formation of focal adhesions and cell movement. These parameters were evaluated at non toxic concentrations which did not affect HT1080 cell proliferation. Results We show that while doxorubicin decreased cell migration properties by 70% in conventional two-dimensional (2D culture, this effect was completely abolished in a 3D one. Regarding the impact of doxorubicin on the focal adhesion complexes, unlike in 2D systems, the data indicated that the drug neither affected β1 integrin expression nor the state of phosphorylation of FAK and RhoA. Conclusion This study suggests the lack of antiinvasive effect of doxorubicin in a 3D environment which is generally considered to better mimic the phenotypic behaviour of cells in vivo. Consistent with the previously shown resistance to the cytotoxic effect in a 3D context, our results highlight the importance of the matrix configuration on the tumor cell response to antiinvasive drugs.

  15. Bone collagen stable carbon and nitrogen isotope variability in modern South Australian mammals: A baseline for palaeoecological inferences.

    Energy Technology Data Exchange (ETDEWEB)

    Pate, F.D.; Anson, T.J.; Noble, A.H. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). Department of Archaeology; Schoeninger, M.J. [Wisconsin Univ., Madison, WI (United States). Department of Anthropology

    1997-12-31

    Cortical bone samples were collected from a range of modern mammals at four field sites along a 1225 km north-south transect from temperate coastal to arid interior South Australia in order to address variability in stable carbon and nitrogen isotope composition. Collection sites were located along the eastern border of the state and included Mount Gambier, Karte, Plumbago and Innamincka. Mean annual rainfall along the transect ranges from 700-800 mm at Mount Gambier to 150-200 mm at Innamincka. Bone collagen carbon and nitrogen isotope values become more positive toward the arid north in relation to increasing quantities of C-4 plants and decreasing amounts of rainfall. respectively. In addition, carnivores and herbivores can be differentiated by stable nitrogen isotope values. On average, carnivore bone collagen is approximately 6 per mil more positive than that of rabbits at Mount Gambier but only 2.6 - 3.4 per mil more positive at the three arid collection sites. In general, the large eutherian herbivores have mean bone collagen {delta}15N values that are 1.4 - 2.3 per mil more positive than those of the marsupial herbivores. Eutherian and marsupial bone collagen {delta}15N differences only disappear at the most arid collection site, Innamincka.

  16. Bone collagen stable carbon and nitrogen isotope variability in modern South Australian mammals: A baseline for palaeoecological inferences

    International Nuclear Information System (INIS)

    Cortical bone samples were collected from a range of modern mammals at four field sites along a 1225 km north-south transect from temperate coastal to arid interior South Australia in order to address variability in stable carbon and nitrogen isotope composition. Collection sites were located along the eastern border of the state and included Mount Gambier, Karte, Plumbago and Innamincka. Mean annual rainfall along the transect ranges from 700-800 mm at Mount Gambier to 150-200 mm at Innamincka. Bone collagen carbon and nitrogen isotope values become more positive toward the arid north in relation to increasing quantities of C-4 plants and decreasing amounts of rainfall. respectively. In addition, carnivores and herbivores can be differentiated by stable nitrogen isotope values. On average, carnivore bone collagen is approximately 6 per mil more positive than that of rabbits at Mount Gambier but only 2.6 - 3.4 per mil more positive at the three arid collection sites. In general, the large eutherian herbivores have mean bone collagen δ15N values that are 1.4 - 2.3 per mil more positive than those of the marsupial herbivores. Eutherian and marsupial bone collagen δ15N differences only disappear at the most arid collection site, Innamincka

  17. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  18. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  19. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Melander, Maria C; Hald, Andreas;

    2016-01-01

    In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen...... capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our...

  20. Physicomechanical properties of the extracellular matrix of a demineralized bone

    Science.gov (United States)

    Kirilova, I. A.; Sharkeev, Yu. P.; Nikolaev, S. V.; Podorozhnaya, V. T.; Uvarkin, P. V.; Ratushnyak, A. S.; Chebodaeva, V. V.

    2016-08-01

    The article describes the results of a study of physicomechanical properties of a demineralized bone matrix of human cancellous and compact bones. A demineralized cancellous bone was shown to have the best characteristics of a porous system for colonization of matrices by cells. The ultimate stress and elasticity modulus of samples of demineralized femoral heads isolated in primary hip replacement was demonstrated to vary in wide ranges. The elasticity modulus ranged from 50 to 250 MPa, and the tensile strength varied from 1.1 to 5.5 MPa. Microhardness measurements by the recovered indentation method were not possible because of the viscoelastic properties of a bone material. To study the piezoelectric properties of samples, a measuring system was developed that comprised a measuring chamber with contact electrodes, a system for controlled sample loading, an amplifier-converter unit, and signal recording and processing software. The measurement results were used to determine the dependence of the signal amplitude on the dynamic deformation characteristics. The findings are discussed in terms of the relationship between the mechanical and electrical properties and the structure of the organic bone component.

  1. Irradiation-sterilization of rat bone matrix gelatin

    International Nuclear Information System (INIS)

    Bone matrix gelatin induces bone formation in muscle, and when implanted orthotopically it improves bone repair. Co-60 sterilization of bone gelatin impairs the protein-bound induction mechanisms. Gelatin samples nonirradiated or irradiated by 25 or 50 kGy were implanted into a pouch in the abdominal wall of Sprague-Dawley rats, as well as into a 7-mm calvarial defect. Evaluation was done by histologic studies, histomorphometry of orthotopic implants, and determination of alkaline phosphatase in ectopic implants. Gelatin irradiated with 50 kGy was absorbed in the muscle bed without evidence of any specific host reaction Irradiation of 25 kGy led to histologically confirmed ectopic bone formation, but the wet weight of the explants was only half that of the nonirradiated control samples. Alkaline phosphatase activity was equal in both of these groups. With orthotopic implantation, neither a histologic nor a morphometric effect was seen with 25 kGy. Loss of osteoinduction with 25-kGy irradiation is apparently masked by osteoconductive mechanisms with orthotopic implantation. (author)

  2. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis

    Science.gov (United States)

    Brown, Samantha; Higham, Thomas; Slon, Viviane; Pääbo, Svante; Meyer, Matthias; Douka, Katerina; Brock, Fiona; Comeskey, Daniel; Procopio, Noemi; Shunkov, Michael; Derevianko, Anatoly; Buckley, Michael

    2016-03-01

    DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the site of Denisova Cave, Russia, in order to facilitate the discovery of human remains. As a result of our analysis a single hominin bone (Denisova 11) was identified, supported through in-depth peptide sequencing analysis, and found to carry mitochondrial DNA of the Neandertal type. Subsequent radiocarbon dating revealed the bone to be >50,000 years old. Here we demonstrate the huge potential collagen fingerprinting has for identifying hominin remains in highly fragmentary archaeological assemblages, improving the resources available for wider studies into human evolution.

  3. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway.

    Science.gov (United States)

    Li, Na; Zhang, Min; Drummen, Gregor P C; Zhao, Yu; Tan, Yin Fen; Luo, Su; Qu, Xiao Bo

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic. PMID:27066099

  4. The Study of Barrier Function of Collagen Membrane “Osteoplast” in Healing Bone Defects in an Experiment

    Directory of Open Access Journals (Sweden)

    Ivanov S.Y.

    2011-09-01

    Full Text Available The aim of the work is to study barrier properties of collagen membrane “Osteoplast” (“Vitaform”, Russia in closing critical bone defect in an experiment. Materials and Methods. The experiments have been carried out on 20 rabbits of “chinchilla” breed. Results. “Osteoplast”, a membrane made on the basis of bone collagen, is reabsorbed and serves as a safe barrier for fibroblasts migration into bone defect area. Its application enables to protect the defect area from fibrous tissue penetrating and initiate bone regeneration. Osseous tissue beneath a membrane goes few differentiation stages, has classical structure including all structural elements (osteons, lacunes, blood vessels that provides its perfect strength characteristics.

  5. Efficacy of guided bone regeneration using composite bone graft and resorbable collagen membrane in Seibert's Class I ridge defects: radiological evaluation.

    Science.gov (United States)

    Saravanan, Pushparajan; Ramakrishnan, T; Ambalavanan, N; Emmadi, Pamela; John, Thomas Libby

    2013-08-01

    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients. PMID:23964779

  6. Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression

    Directory of Open Access Journals (Sweden)

    Rui Liang

    2015-07-01

    Conclusion: Our data showed that the ECM-SIS hydrogel not only supported the growth of ACLFs, but also promoted their proliferation and matrix production relative to a pure collagen hydrogel. As such, ECM-SIS hydrogel has potential therapeutic value to facilitate ACL healing at the early stage after injury.

  7. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis

    OpenAIRE

    Samantha Brown; Thomas Higham; Viviane Slon; Svante Pääbo; Matthias Meyer; Katerina Douka; Fiona Brock; Daniel Comeskey; Noemi Procopio; Michael Shunkov; Anatoly Derevianko; Michael Buckley

    2016-01-01

    DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the s...

  8. Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite

    OpenAIRE

    Phipps, Matthew C.; Clem, William C.; Catledge, Shane A.; Xu, Yuanyuan; Hennessy, Kristin M.; Thomas, Vinoy; Jablonsky, Michael J.; Chowdhury, Shafiul; Stanishevsky, Andrei V; Vohra, Yogesh K.; Susan L Bellis

    2011-01-01

    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold form...

  9. Poly (lactide-co-glycolide) nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    OpenAIRE

    Reza Tavakoli-Darestani; Gholamhossein Kazemian; Mohammad Emami; Amin Kamrani-Rad

    2013-01-01

    Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide) nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide) (PLGA) nanofibrous scaffolds, fabricated via electrospinni...

  10. Effect of Extracellular Matrix Membrane on Bone Formation in a Rabbit Tibial Defect Model

    Science.gov (United States)

    Kim, Sungtae; Kim, Se Won; Lee, Jong Ho

    2016-01-01

    Absorbable extracellular matrix (ECM) membrane has recently been used as a barrier membrane (BM) in guided tissue regeneration (GTR) and guided bone regeneration (GBR). Absorbable BMs are mostly based on collagen, which is more biocompatible than synthetic materials. However, implanted absorbable BMs can be rapidly degraded by enzymes in vivo. In a previous study, to delay degradation time, collagen fibers were treated with cross-linking agents. These compounds prevented the enzymatic degradation of BMs. However, cross-linked BMs can exhibit delayed tissue integration. In addition, the remaining cross-linker could induce inflammation. Here, we attempted to overcome these problems using a natural ECM membrane. The membrane consisted of freshly harvested porcine pericardium that was stripped from cells and immunoreagents by a cleaning process. Acellular porcine pericardium (APP) showed a bilayer structure with a smooth upper surface and a significantly coarser bottom layer. APP is an ECM with a thin layer (0.18–0.35 mm) but with excellent mechanical properties. Tensile strength of APP was 14.15 ± 2.24 MPa. In in vivo experiments, APP was transplanted into rabbit tibia. The biocompatible material was retained for up to 3 months without the need for cross-linking. Therefore, we conclude that APP could support osteogenesis as a BM for up to 3 months. PMID:27047963

  11. Radiation-induced myosin IIA expression stimulates collagen type I matrix reorganization

    International Nuclear Information System (INIS)

    Background and purpose: Extracellular matrix (ECM) reorganization critically contributes to breast cancer (BC) progression and radiotherapy response. We investigated the molecular background and functional consequences of collagen type I (col-I) reorganization by irradiated breast cancer cells (BCC). Materials and methods: Radiation-induced (RI) col-I reorganization was evaluated for MCF-7/6, MCF-7/AZ, T47D and SK-BR-3 BCC. Phase-contrast microscopy and a stressed matrix contraction assay were used for visualization and quantification of col-I reorganization. Cell–matrix interactions were assessed by the inhibition of β1 integrin (neutralizing antibody ‘P5D2’) or focal adhesion kinase (FAK; GSK22560098 small molecule kinase inhibitor). The role of the actomyosin cytoskeleton was explored by western blotting analysis of myosin II expression and activity; and by gene silencing of myosin IIA and pharmacological inhibition of the actomyosin system (blebbistatin, cytochalasin D). BCC death was evaluated by propidium iodide staining. Results: We observed a radiation dose-dependent increase of col-I reorganization by BCC. β1 Integrin/FAK-mediated cell–matrix interactions are essential for RI col-I reorganization. Irradiated BCC are characterized by increased myosin IIA expression and myosin IIA-dependent col-I reorganization. Moreover, RI col-I reorganization by BCC is associated with decreased BCC death, as suggested by pharmacological targeting of the β1 integrin/FAK/myosin IIA pathway. Conclusions: Our data indicate the role of myosin IIA in col-I reorganization by irradiated BCC and reciprocal BCC death

  12. Calcium phosphate fibers coated with collagen: In vivo evaluation of the effects on bone repair.

    Science.gov (United States)

    Ueno, Fabio Roberto; Kido, Hueliton Wilian; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Magri, Angela Maria Paiva; Fernandes, Kelly Rosseti; da Silva, Antonio Carlos; Braga, Francisco José Correa; Renno, Ana Claudia Muniz

    2016-08-12

    The aim of this study was to assess the characteristics of the CaP/Col composites, in powder and fiber form, via scanning electron microscopy (SEM), pH and calcium release evaluation after immersion in SBF and to evaluate the performance of these materials on the bone repair process in a tibial bone defect model. For this, four different formulations (CaP powder - CaPp, CaP powder with collagen - CaPp/Col, CaP fibers - CaPf and CaP fibers with collagen - CaPf/Col) were developed. SEM images indicated that both material forms were successfully coated with collagen and that CaPp and CaPf presented HCA precursor crystals on their surface. Although presenting different forms, FTIR analysis indicated that CaPp and CaPf maintained the characteristic peaks for this class of material. Additionally, the calcium assay study demonstrated a higher Ca uptake for CaPp compared to CaPf for up to 5 days. Furthermore, pH measurements revealed that the collagen coating prevented the acidification of the medium, leading to higher pH values for CaPp/Col and CaPf/Col. The histological analysis showed that CaPf/Col demonstrated a higher amount of newly formed bone in the region of the defect and a reduced presence of material. In summary, the results indicated that the fibrous CaP enriched with the organic part (collagen) glassy scaffold presented good degradability and bone-forming properties and also supported Runx2 and RANKL expression. These results show that the present CaP/Col fibrous composite may be used as a bone graft for inducing bone repair. PMID:27567780

  13. Functionalization of a Collagen-Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration.

    Science.gov (United States)

    Quinlan, Elaine; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; López-Noriega, Adolfo

    2015-12-01

    Defects within bones caused by trauma and other pathological complications may often require the use of a range of therapeutics to facilitate tissue regeneration. A number of approaches have been widely utilized for the delivery of such therapeutics via physical encapsulation or chemical immobilization suggesting significant promise in the healing of bone defects. The study focuses on the chemical immobilization of osteostatin, a pentapeptide of the parathyroid hormone (PTHrP107-111), within a collagen-hydroxyapatite scaffold. The chemical attachment method via crosslinking supports as little as 4% release of the peptide from the scaffolds after 21 d whereas non-crosslinking leads to 100% of the peptide being released by as early as 4 d. In vitro characterization demonstrates that this cross-linking method of immobilization supports a pro-osteogenic effect on osteoblasts. Most importantly, when implanted in a critical-sized calvarial defect within a rat, these scaffolds promote significantly greater new bone volume and area compared to nonfunctionalized scaffolds (**p < 0.01) and an empty defect control (***p < 0.001). Collectively, this study suggests that such an approach of chemical immobilization offers greater spatiotemporal control over growth factors and can significantly modulate tissue regeneration. Such a system may be adopted for a range of different proteins and thus offers the potential for the treatment of various complex pathologies that require localized mediation of drug delivery. PMID:26414944

  14. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    International Nuclear Information System (INIS)

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon–Hydrogen–Nitrogen analyzer for measuring C and N before 14C dating.

  15. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Cuif, J.-P. [UMR IDES 8148, Universite Paris XI-Orsay, 91405 Orsay cedex (France); Pichon, L. [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Vaubaillon, S. [CEA, INSTN, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Dambricourt Malasse, A. [Departement de Prehistoire, Museum national d' Histoire naturelle, UMR 7194 - CNRS, Institut de Paleontologie Humaine, 1, rue Rene Panhard, 75013 Paris (France); Abel, R.L. [The Natural History Museum, London (United Kingdom)

    2012-02-15

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by {sup 14}C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before {sup 14}C dating.

  16. Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    produced from human tissue were included (IsoTis OrthoBiologics, Inc. USA). Both materials are commercially available. Titanium alloy implants (Biomet Inc.) of 10 mm in length and 10 mm in diameter were inserted bilaterally into the femoral condyles of 8 skeletally mature sheep. Thus four implants with a......Best Poster 5Demineralized bone matrix and human cancellous bone enhance fixation of titanium implants AuthorsBabiker , H.; Ding M.; Overgaard S.InstitutionOrthopaedic Research Laboratory, Department of Orthopaedic Surgery, Odense University Hospital, Clinical Institute, University of Southern......- and autograf as they have the capability of inducing new bone and improving implant fixation through enhancing bone ingrowth. The purpose of this study was to investigate the effect of DBM alone or with CB on the fixation of porous-coated titanium implants.Material and MethodsDBM100 (pure DBM) and CB...

  17. Efficacy of Mucograft vs Conventional Resorbable Collagen Membranes in Guided Bone Regeneration Around Standardized Calvarial Defects in Rats: A Histologic and Biomechanical Assessment.

    Science.gov (United States)

    Ramalingam, Sundar; Babay, Nadir; Al-Rasheed, Abdulaziz; Nooh, Nasser; Naghshbandi, Jafar; Aldahmash, Abdullah; Atteya, Muhammad; Al-Hezaimi, Khalid

    2016-01-01

    Guided bone regeneration (GBR) using a porcine-derived collagen matrix (Mucograft [MG], Geistlich) has not yet been reported. The aim of this histologic and biomechanical study was to compare the efficacy of MG versus resorbable collagen membranes (RCMs) in facilitating GBR around standardized rat calvarial defects. Forty female Wistar albino rats with a mean age and weight of 6 to 9 weeks and 250 to 300 g, respectively, were used. With the rats under general anesthesia, the skin over the calvaria was exposed using a full-thickness flap. A 4.6-mm-diameter standardized calvarial defect was created in the left parietal bone. For treatment, the rats were randomly divided into four groups (n = 10 per group): (1) MG group: the defect was covered with MG; (2) RCM group: the defect was covered with an RCM; (3) MG + bone group: the defect was filled with bone graft particles and covered by MG; and (4) RCM + bone group: the defect was filled with bone graft particles and covered by an RCM. Primary closure was achieved using interrupted resorbable sutures. The animals were sacrificed at 8 weeks after the surgical procedures. Qualitative histologic analysis and biomechanical assessment to identify hardness and elastic modulus of newly formed bone (NFB) were performed. Collected data were statistically analyzed using one-way analysis of variance. Histologic findings revealed NFB with fibrous connective tissue in all groups. The quantity of NFB was highest in the RCM + bone group. Statistically significant differences in the hardness (F = 567.69, dfN = 3, dfD = 36, P RCM + bone group had the highest mean ± standard deviation (SD) hardness of NFB (531.4 ± 24.9 MPa), the RCM group had the highest mean ± SD elastic modulus of NFB (18.63 ± 1.89 GPa). The present study demonstrated that RCMs are better than MG at enhancing new bone formation in standardized rat calvarial defects when used along with mineralized particulate graft material. PMID:27031638

  18. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering

    DEFF Research Database (Denmark)

    Chen, Muwan; Le, Dang Quang Svend; Baatrup, Anette;

    2011-01-01

    MSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically in...

  19. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Science.gov (United States)

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications. PMID:27274235

  20. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  1. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration.

    Science.gov (United States)

    Huh, Jung-Bo; Yang, June-Jip; Choi, Kyung-Hee; Bae, Ji Hyeon; Lee, Jeong-Yeol; Kim, Sung-Eun; Shin, Sang-Wan

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration. PMID:26184187

  2. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling.

    Science.gov (United States)

    Carpio, Lomeli R; Bradley, Elizabeth W; McGee-Lawrence, Meghan E; Weivoda, Megan M; Poston, Daniel D; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L; van Wijnen, Andre J; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)-expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)-JAK-STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID:27507649

  3. Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone.

    Science.gov (United States)

    Xu, Hongmin; Hu, Furong; Sado, Yoshikazu; Ninomiya, Yoshifumi; Borza, Dorin-Bogdan; Ungvari, Zoltan; Lagamma, Edmund F; Csiszar, Anna; Nedergaard, Maiken; Ballabh, Praveen

    2008-05-15

    Germinal matrix is selectively vulnerable to hemorrhage in premature infants, and use of prenatal betamethasone is associated with a lower occurrence of germinal matrix hemorrhage. Because the major components of extracellular matrix of the cerebral vasculature-laminin, fibronectin, collagen IV, and perlecan-provide structural stability to blood vessels, we examined whether the expression of these molecules was decreased in the germinal matrix and affected by betamethasone. In both human fetuses and premature infants, fibronectin was significantly lower in the germinal matrix than in the cortical mantle or white matter anlagen. Conversely, laminin alpha1 gene expression was greater in the human germinal matrix compared with the cortical mantle or white matter. Expression of alpha1- and alpha2(IV) collagen chains increased with advancing gestational age. Low-dose prenatal betamethasone treatment enhanced fibronectin level by 1.5-2-fold whereas a high dose reduced fibronectin expression by 2-fold in rabbit pups. Because fibronectin provides structural stability to the blood vessels, its reduced expression in the germinal matrix may contribute to the fragility of germinal matrix vasculature and the propensity to hemorrhage in premature neonates. PMID:18214989

  4. In vitro enhancement of collagen matrix formation and crosslinking for applications in tissue engineering: a preliminary study.

    Science.gov (United States)

    Lareu, Ricky R; Arsianti, Irma; Subramhanya, Harve Karthik; Yanxian, Peng; Raghunath, Michael

    2007-02-01

    The construction of stable engineered tissue depends on the formation of a functional connective tissue produced by cells locally. A major component of connective tissue is collagen. Its deposition into a stable matrix depends on the enzymatic extracellular conversion of procollagen to collagen. This step is very slow in vitro and we hypothesized that this is due to a lack of crowdedness and insufficient excluded volume effect (EVE) in culture media. We used neutral (670 kDa) and negatively charged dextran sulfate (DxS, 500 kDa) to create EVE in cell cultures and to enhance in vitro matrix formation by accelerating procollagen conversion. Biochemical analyses in 2 human fibroblast lines revealed mostly unprocessed procollagen in uncrowded culture medium, whereas in the presence of DxS, procollagen conversion occurred and most of the collagen was associated with the cell layer. Immunocytochemistry confirmed DxS-related collagen deposition that colocalized with fibronectin. The large neutral dextran showed, in identical concentration ranges, no effects that correlated well with its smaller hydrodynamic radius as determined by dynamic light scattering. This predicted a 10 times bigger crowding power of DxS and benchmarks it as a potentially promising crowding agent facilitating the formation of extracellular matrix in vitro. PMID:17518571

  5. Collagen type V enhances matrix contraction by human periodontal ligament fibroblasts seeded in three-dimensional collagen gels.

    NARCIS (Netherlands)

    Berendsen, A.D.; Bronckers, A.L.; Smit, T.H.; Walboomers, X.F.; Everts, V.

    2006-01-01

    Extracellular matrix components play an important role in modulating cellular activity. To study such capacities of the matrix, fibroblasts are frequently cultured in a three-dimensional gel and contraction is assessed as a measure of cellular activity. Since a connective tissue contains several typ

  6. Effect of cefazolin loaded bone matrix gelatin on repairing large segmental bone defects and preventing infection

    Institute of Scientific and Technical Information of China (English)

    游洪波; 陈安民

    2004-01-01

    Objective: To explore the possibility of repairing long segmental bone defects and preventing infection with cefazolin loaded bone matrix gelatin (C-BMG). Methods: C-BMG was made from putting cefazolin into BMG by vacuum absorption and lyophilization techniques. The sustaining period of effective drug concentration in vitro and in vivo was detected. The time of inhibiting bacteria, and the drug concentration in local tissues ( bone and muscle) and plasma after implantation of C-BMG were examined by high performance liquid chromatography.Results: The effective inhibition time to staphylococcus aureus of C-BMG was 22 days in vitro; while 14 days in vivo. The cefazolin concentration in local tissues was higher in early stage, and later it kept a stable and low drug release. C-BMG showed an excellent ability to repair segmental long bone defects.Conclusions: C-BMG can gradually release cefazolin with effective drug concentration and has excellent ability to repair segmental bone defects. It can be used to repair segmental long bone defects and prevent infection after operation.

  7. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    Science.gov (United States)

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin. PMID:26999801

  8. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    Full Text Available In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%. Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  9. Relationship among bone mineral density, collagen composition, and biomechanical properties of callus in the healing of osteoporotic fracture

    Institute of Scientific and Technical Information of China (English)

    SHEN Bin; MU Jian-xiong; PEI Fu-xing

    2007-01-01

    Objective: To study the change and relationship among bone mineral density (BMD), collagen composition and biomechanical properties of the callus in the healing process of osteoporotic fracture.Methods: The osteoporotic rat model and fracture model were established through bilateral ovariectomy(OVX) and osteotomy of the middle shaft of the right hind tibiae, respectively. Ninety female SD rats were randomly divided into OVX group and sham group. With the samples of blood and callus, roentgenoraphic and histological observation were performed for the assessment of the healing progress of the fracture, and the serum concentration of TRAP-5b, proportion of type Ⅰ collagen,BMD and biomechanical properties of the callus were measured.Results: The OVX group experienced a significant delay of fracture healing. The mean serum concentration of TRAP-5b of rats in the OVX group was much higher than that in the sham group after the operation (P < 0.05), but the difference at the same time point after fracture was smaller than that before fracture (P < 0.05 ). The BMD of the callus in both groups reached the peak value at the 6 th week after fracture while the proportion of the type Ⅰ collagen and the biomechanical strength reached the peak at the 8th week.Conclusions: The deficiency of estrogen after the ovariectomy could induce the up-regulation of the osteoclasts activities, whereas the potency of further activation after fracture was depressed. Although the synthesis of collagen together with its mineralization determines the biomechanical properties of new bone, the accumulation of collagen could be assessed as an index in the prediction of biomechanical strength of bones independent of the bone mineral deposition.

  10. Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration.

    Science.gov (United States)

    Greene, Carol Ann; Green, Colin R; Dickinson, Michelle E; Johnson, Virginia; Sherwin, Trevor

    2016-09-10

    The stroma, the middle layer of the cornea, is a connective tissue making up most of the corneal thickness. The stromal extracellular matrix (ECM) consists of highly organised lamellae which are made up of tightly packed fibrils primarily composed of collagens type I and V. This layer is interspersed with keratocytes, mesenchymal cells of neural crest origin. We have previously shown that adult corneal keratocytes exhibit phenotypic plasticity and can be induced into a neuronal phenotype. In the current study we evaluated the potential of keratocytes to produce collagen type II via phenotypic reprogramming with exogenous chondrogenic factors. The cornea presents a challenge to tissue engineers owing to its high level of organisation and the phenotypic instability of keratocytes. Traditional approaches based on a scar model do not support the engineering of functional stromal tissue. Type II collagen is not found in the adult cornea but is reported to be expressed during corneal development, raising the possibility of using such an approach to regenerate the corneal ECM. Keratocytes in culture and within intact normal and diseased tissue were induced to produce collagen type II upon treatment with transforming growth factor Beta3 (TGFβ3) and dexamethasone. In vivo treatment of rat corneas also resulted in collagen type II deposition and a threefold increase in corneal hardness and elasticity. Furthermore, the treatment of corneas and subsequent deposition of collagen type II did not cause opacity, fibrosis or scarring. The induction of keratocytes with specific exogenous factors and resulting deposition of type II collagen in the stroma can potentially be controlled by withdrawal of the factors. This might be a promising new approach for in vivo corneal regeneration strategies aimed at increasing corneal integrity in diseases associated with weakened ectatic corneal tissue such as keratoconus. PMID:27539660

  11. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    Directory of Open Access Journals (Sweden)

    Cho Hwan

    2012-07-01

    Full Text Available Abstract Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1 years (range, 3–19 years. The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15–36 months. Results Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3–12 months. Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. Conclusions A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  12. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    International Nuclear Information System (INIS)

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor

  13. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    Science.gov (United States)

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. PMID:27219851

  14. The collagen microfibril model, a tool for biomaterials scientists

    Science.gov (United States)

    Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...

  15. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts

    OpenAIRE

    Sarah R Amend; Uluckan, Ozge; Hurchla, Michelle; Leib, Daniel; Novack, Deborah Veis; Silva, Matthew; Frazier, William; Weilbaecher, Katherine N.

    2015-01-01

    Thrombospondin-1 (TSP1), an endogenous antiangiogenic, is a widely expressed secreted ligand with roles in migration, adhesion and proliferation and is a target for new therapeutics. While TSP1 is present in the bone matrix and several TSP1 receptors play roles in bone biology, the role of TSP1 in bone remodeling has not been fully elucidated. Bone turnover is characterized by coordinated activity of bone-forming osteoblasts (OB) and bone-resorbing osteoclasts (OC). TSP1−/− mice had increased...

  16. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes

    Directory of Open Access Journals (Sweden)

    R d’Aquino

    2009-11-01

    Full Text Available In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs and a collagen sponge scaffold for oro-maxillo-facial (OMF bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.

  17. Specifically decreased collagen biosynthesis in scurvy dissociated from an effect on proline hydroxylation and correlated with body weight loss. In vitro studies in guinea pig calvarial bones.

    OpenAIRE

    Chojkier, M.; Spanheimer, R.; Peterkofsky, B

    1983-01-01

    The question whether ascorbate regulates collagen production solely through its direct role in proline hydroxylation was investigated. Proteins in calvarial bones from control and scorbutic weanling guinea pigs were labeled in short-term cultures with radioactive proline. Proteins were digested with purified bacterial collagenase to distinguish between effects on collagen polypeptide production and hydroxyproline formation. There was a preferential decrease in the absolute rate of collagen bi...

  18. Carnivore specific bone bioapatite and collagen carbon isotope fractionations: Case studies of modern and fossil grey wolf populations

    Science.gov (United States)

    Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.

    2006-12-01

    Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter

  19. D-Glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery.

    Science.gov (United States)

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H

    2014-05-01

    Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. PMID:24657927

  20. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model

    International Nuclear Information System (INIS)

    The reconstruction of segmental bone defects remains an urgent problem in the orthopaedic field, and bone morphogenetic protein-2 (BMP-2) is known for its potent osteoinductive properties in bone regeneration. In this study, chitosan microspheres (CMs) were prepared and combined with absorbable collagen sponge to maintain controlled-release recombinant human bone morphogenetic protein-2 (rhBMP-2). The rhBMP-2-loaded composite scaffolds were implanted into 15 mm radius defects of rabbits and the bone-repair ability was evaluated systematically. CMs were spherical in shape and had a polyporous surface, according to SEM images. The complex scaffold exhibited an ideal releasing profile in vitro. The micro-computed tomographic analysis revealed that the rhBMP-2-loaded composite scaffold not only bridged the defects as early as 4 weeks, but also healed the defects and presented recanalization of the bone-marrow cavity at 12 weeks. These results were confirmed by x-ray. When compared with other control groups, the composite scaffold group remarkably enhanced new bone formation and mechanical properties, as evidenced by bone mineral content evaluation, histological observations and biomechanical testing. Moreover, the biocompatibility and appropriate degradation of the composite scaffold could be obtained. All of these results clearly demonstrated that the composite scaffold is a promising carrier of BMP-2 for the treatment of segmental bone defects. (paper)

  1. Lysyl oxidases in idiopathic pulmonary fibrosis: A key participant in collagen I matrix remodelling

    NARCIS (Netherlands)

    Tjin, Gavin; Mahar, Annabelle; Kable, Eleanor; Burgess, Janette

    2015-01-01

    Introduction: The fibrotic element in Idiopathic Pulmonary Fibrosis (IPF) is a key feature and is associated with Usual Interstitial Pneumonia (UIP) pattern. Fibrillar collagen I (COL1) has second harmonic generation (SHG) properties, with signals both in the forward (F) (organized collagen) & backw

  2. A composite SWNT-collagen matrix: characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix

    Science.gov (United States)

    Tosun, Z.; McFetridge, P. S.

    2010-12-01

    Unique in their structure and function, single-walled carbon nanotubes (SWNTs) have received significant attention due to their potential to create unique conductive materials. For neural applications, these conductive materials hold promise as they may enhance regenerative processes. However, like other nano-scaled biomaterials it is important to have a comprehensive understanding how these materials interact with cell systems and how the biological system responds to their presence. These investigations aim to further our understanding of SWNT-cell interactions by assessing the effect SWNT/collagen hydrogels have on PC12 neuronal-like cells seeded within and (independently) on top of the composite material. Two types of collagen hydrogels were prepared: (1) SWNTs dispersed directly within the collagen (SWNT/COL) and (2) albumin-coated SWNTs prepared using the surfactant 'sodium cholate' to improve dispersion (AL-SWNT/COL) and collagen alone serving as a control (COL). SWNT dispersion was significantly improved when using surfactant-assisted dispersion. The enhanced dispersion resulted in a stiffer, more conductive material with an increased collagen fiber diameter. Short-term cell interactions with PC12 cells and SWNT composites have shown a stimulatory effect on cell proliferation relative to plain collagen controls. In parallel to these results, p53 gene displayed normal expression levels, which indicates the absence of nanoparticle-induced DNA damage. In summary, these mechanically tunable SWNT-collagen scaffolds show the potential for enhanced electrical activity and have shown positive in vitro biocompatibility results offering further evidence that SWNT-based materials have an important role in promoting neuronal regeneration.

  3. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review.

    NARCIS (Netherlands)

    Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A.

    2008-01-01

    Collagen barrier membranes are frequently used in both guided tissue regeneration (GTR) and guided bone regeneration (GBR). Collagen used for these devices is available from different species and is often processed to alter the properties of the final product. This is necessary because unprocessed c

  4. Multiple myeloma: Changes in serum C-terminal telopeptide of collagen type I and bone-specific alkaline phosphatase can be used in daily practice to detect imminent osteolysis

    DEFF Research Database (Denmark)

    Lund, Thomas; Abildgaard, Niels; Andersen, Thomas L;

    2010-01-01

    of collagen type-I (CTX-I), C-terminal crosslinked telopeptide of type-I collagen generated by MMPs (ICTP), N-terminal crosslinked telopeptide of type-I collagen (NTX-I), and the bone formation marker bone-specific alkaline phosphatase (bALP) monthly for two years. Retrospectively, we identified 40...

  5. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    OpenAIRE

    Wang Y; Van Manh H; Wang H; Zhong X; Zhang X; Li C

    2016-01-01

    Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is ...

  6. Xenogeneic collagen matrix for periodontal plastic surgery procedures: a systematic review and meta-analysis.

    Science.gov (United States)

    Atieh, M A; Alsabeeha, N; Tawse-Smith, A; Payne, A G T

    2016-08-01

    Several clinical trials describe the effectiveness of xenogeneic collagen matrix (XCM) as an alternative option to surgical mucogingival procedures for the treatment of marginal tissue recession and augmentation of insufficient zones of keratinized tissue (KT). The aim of this systematic review and meta-analysis was to evaluate the clinical and patient-centred outcomes of XCM compared to other mucogingival procedures. Applying guidelines of the Preferred Reporting Items for Systematic Reviews and Meta analyses statement, randomized controlled trials were searched for in electronic databases and complemented by hand searching. The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool and data were analysed using statistical software. A total of 645 studies were identified, of which, six trials were included with 487 mucogingival defects in 170 participants. Overall meta-analysis showed that connective tissue graft (CTG) in conjunction with the coronally advanced flap (CAF) had a significantly higher percentage of complete/mean root coverage and mean recession reduction than XCM. Insufficient evidence was found to determine any significant differences in width of KT between XCM and CTG. The XCM had a significantly higher mean root coverage, recession reduction and gain in KT compared to CAF alone. No significant differences in patient's aesthetic satisfaction were found between XCM and CTG, except for postoperative morbidity in favour of XCM. Operating time was significantly reduced with the use of XCM compared with CTG but not with CAF alone. There is no evidence to demonstrate the effectiveness of XCM in achieving greater root coverage, recession reduction and gain in KT compared to CTG plus CAF. Superior short-term results in treating root coverage compared with CAF alone are possible. There is limited evidence that XCM may improve aesthetic satisfaction, reduce postoperative morbidity and shorten the operating time. Further long

  7. Paleoecological and climatic implications of stable isotope results from late Pleistocene bone collagen, Ziegeleigrube Coenen, Germany

    Science.gov (United States)

    Wißing, Christoph; Matzerath, Simon; Turner, Elaine; Bocherens, Hervé

    2015-07-01

    Climatic and ecological conditions during Marine Oxygen Isotope Stage (MIS) 3 are complex and the impact of cold spells on the ecosystems in Central Europe still needs to be investigated thoroughly. Ziegeleigrube Coenen (ZC) is a late Pleistocene MIS 3 locality in the Lower Rhine Embayment of Germany, radiocarbon-dated to > 34 14C ka BP. The site yielded a broad spectrum of mammal species. We investigated the carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) isotope signatures of bone collagen, since these are valuable tools in characterizing ecological niches, environmental conditions and aspects of climate and mobility. By comparison with pre- and post-Last Glacial Maximum (LGM) sites in Central Europe we show that ZC belongs in a cold event of MIS 3 and was climatically more similar to post-LGM sites than to pre-LGM sites. However, the trophic structure resembled that of typical pre-LGM sites in Belgium. This cold event in MIS 3 changed the bottom of the foodweb, but do not seem to have had a direct impact on the occurrence of the mammalian species and their ecological distribution. Apparently the (mega-) faunal community could adapt also to harsher environmental conditions during MIS 3.

  8. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  9. Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment

    Directory of Open Access Journals (Sweden)

    Oana Craciunescu

    2014-01-01

    Full Text Available Smart drug delivery systems with controllable properties play an important role in targeted therapy and tissue regeneration. The aim of our study was the preparation and in vitro evaluation of a collagen (Col matrix embedding a liposomal formulation of chondroitin sulfate (L-CS for the treatment of inflammatory disorders. Structural studies using Oil Red O specific staining for lipids and scanning electron microscopy showed an alveolar network of nanosized Col fibrils decorated with deposits of L-CS at both periphery and inner of the matrix. The porosity and density of Col-L-CS matrix were similar to those of Col matrix, while its mean pore size and biodegradability had significantly higher and lower values (P<0.05, respectively. In vitro cytotoxicity assays showed that the matrix system induced high cell viability and stimulated cell metabolism in L929 fibroblast cell culture. Light and electron micrographs of the cell-matrix construct showed that cells clustered into the porous structure at 72 h of cultivation. In vitro diffusion test indicated that the quantity of released CS was significantly lower (P<0.05 after embedment of L-CS within Col matrix. All these results indicated that the biocompatible and biodegradable Col-L-CS matrix might be a promising delivery system for local treatment of inflamed site.

  10. Biological Safety of Fish (Tilapia) Collagen

    OpenAIRE

    Yamamoto, Kohei; Igawa, Kazunari; Sugimoto, Kouji; Yoshizawa, Yuu; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing...

  11. Biological Safety of Fish (Tilapia) Collagen

    OpenAIRE

    山本, 耕平

    2015-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing...

  12. Bone marrow-derived matrix metalloproteinase-9 is associated with fibrous adhesion formation after murine flexor tendon injury.

    Directory of Open Access Journals (Sweden)

    Alayna E Loiselle

    Full Text Available The pathogenesis of adhesions following primary tendon repair is poorly understood, but is thought to involve dysregulation of matrix metalloproteinases (Mmps. We have previously demonstrated that Mmp9 gene expression is increased during the inflammatory phase following murine flexor digitorum (FDL tendon repair in association with increased adhesions. To further investigate the role of Mmp9, the cellular, molecular, and biomechanical features of healing were examined in WT and Mmp9(-/- mice using the FDL tendon repair model. Adhesions persisted in WT, but were reduced in Mmp9(-/- mice by 21 days without any decrease in strength. Deletion of Mmp9 resulted in accelerated expression of neo-tendon associated genes, Gdf5 and Smad8, and delayed expression of collagen I and collagen III. Furthermore, WT bone marrow cells (GFP(+ migrated specifically to the tendon repair site. Transplanting myeloablated Mmp9(-/- mice with WT marrow cells resulted in greater adhesions than observed in Mmp9(-/- mice and similar to those seen in WT mice. These studies show that Mmp9 is primarily derived from bone marrow cells that migrate to the repair site, and mediates adhesion formation in injured tendons. Mmp9 is a potential target to limit adhesion formation in tendon healing.

  13. Demineralized Bone Matrix, as a Graft Enhancer of Auto-Local Bone in Posterior Lumbar Interbody Fusion

    OpenAIRE

    Ahn, Dong Ki; Moon, Sang Ho; Kim, Tae Woo; Boo, Kyung Hwan; Hong, Sung Won

    2014-01-01

    Study Design A case controlled study with prospective data collection. Purpose To evaluate the early influence and the final consequence of demineralized bone matrix (DBM) on auto-local bone as a graft enhancer in posterior lumbar interbody fusion (PLIF). Overview of Literature DBM is known as an osteoinductive material; however, it has not been clearly recognized to enhance auto-local bone with a small amount. Methods Patients who had a PLIF were allocated into two groups. Group I (70 cases)...

  14. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Casey K; Liao, Susan; Lareu, Ricky R; Raghunath, Michael [Division of Bioengineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Li, Bojun; Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Larrick, James W, E-mail: doschanc@nus.edu.s [Panorama Research Institute, 2462 Wyandotte Street, Mountain View, CA 94043 (United States)

    2009-06-15

    A bioabsorbable nanofibrous scaffold was developed for early adhesion of mesenchymal stem cells (MSCs). Collagen nanofibers with diameters of 430 +- 170 nm were fabricated by electrospinning. Over 45% of the MSC population adhered to this collagen nanofiber after 30 min at room temperature. Remarkably, collagen-coated P(LLA-CL) electrospun nanofibers were almost as efficient as collagen nanofibers whereas collagen cast film did not enhance early capture when it was applied on cover slips. The adhesive efficiency could be further increased to over 20% at 20 min and over 55% at 30 min when collagen nanofibers were grafted with monoclonal antibodies recognizing CD29 or CD49a. These data demonstrate that the early adhesive behavior is highly dependent on both the surface texture and the surface chemistry of the substrate. These findings have potential applications for early capture of MSCs in an ex vivo setting under time constraints such as in a surgical setting.

  15. Promotion of Hepatic Differentiation of Bone Marrow Mesenchymal Stem Cells on Decellularized Cell-Deposited Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Hongliang He

    2013-01-01

    Full Text Available Interactions between stem cells and extracellular matrix (ECM are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS, bone marrow mesenchymal stem cells (BM-MSCs cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.

  16. Infection by Toxoplasma gondii Induces Amoeboid-Like Migration of Dendritic Cells in a Three-Dimensional Collagen Matrix.

    Directory of Open Access Journals (Sweden)

    Sachie Kanatani

    Full Text Available Toxoplasma gondii, an obligate intracellular parasite of humans and other warm-blooded vertebrates, invades a variety of cell types in the organism, including immune cells. Notably, dendritic cells (DCs infected by T. gondii acquire a hypermigratory phenotype that potentiates parasite dissemination by a 'Trojan horse' type of mechanism in mice. Previous studies have demonstrated that, shortly after parasite invasion, infected DCs exhibit hypermotility in 2-dimensional confinements in vitro and enhanced transmigration in transwell systems. However, interstitial migration in vivo involves interactions with the extracellular matrix in a 3-dimensional (3D space. We have developed a collagen matrix-based assay in a 96-well plate format that allows quantitative locomotion analyses of infected DCs in a 3D confinement over time. We report that active invasion of DCs by T. gondii tachyzoites induces enhanced migration of infected DCs in the collagen matrix. Parasites of genotype II induced superior DC migratory distances than type I parasites. Moreover, Toxoplasma-induced hypermigration of DCs was further potentiated in the presence of the CCR7 chemotactic cue CCL19. Blocking antibodies to integrins (CD11a, CD11b, CD18, CD29, CD49b insignificantly affected migration of infected DCs in the 3D matrix, contrasting with their inhibitory effects on adhesion in 2D assays. Morphological analyses of infected DCs in the matrix were consistent with the acquisition of an amoeboid-like migratory phenotype. Altogether, the present data show that the Toxoplasma-induced hypermigratory phenotype in a 3D matrix is consistent with integrin-independent amoeboid DC migration with maintained responsiveness to chemotactic and chemokinetic cues. The data support the hypothesis that induction of amoeboid hypermigration and chemotaxis/chemokinesis in infected DCs potentiates the dissemination of T. gondii.

  17. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mun-Hwan Lee

    2015-03-01

    Full Text Available In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP scaffolds. Surface characterization using a scanning electron microscope (SEM and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell proliferation and ALP activity on the modified BCP scaffolds. The modified microporous surfaces showed low contact angles and large surface areas, which enhanced cell spreading and proliferation. Coating of the BCP scaffolds with type I collagen led to enhanced cell-material interactions and improved MG63 functions, such as spreading, proliferation, and differentiation. The micropore/collagen-coated scaffold showed the highest rate of cell response. These results indicate that a combination of micropores and collagen enhances cellular function on bioengineered bone allograft tissue.

  18. Matrix Extracellular Phosphoglycoprotein (MEPE) Is a New Bone Renal Hormone and Vascularization Modulator

    OpenAIRE

    David, Valentin; Martin, Aline; Hedge, Anne-Marie; Rowe, Peter S N

    2009-01-01

    Increased matrix extracellular phosphoglycoprotein (MEPE) expression occurs in several phosphate and bone-mineral metabolic disorders. To resolve whether MEPE plays a role, we created a murine model overexpressing MEPE protein (MEPE tgn) in bone. MEPE tgn mice displayed a growth and mineralization defect with altered bone-renal vascularization that persisted to adulthood. The growth mineralization defect was due to a decrease in bone remodeling, and MEPE tgn mice were resistant to diet-induce...

  19. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    International Nuclear Information System (INIS)

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis

  20. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats

    NARCIS (Netherlands)

    Zecha, P. J.; Schortinghuis, J.; van der Wal, J. E.; Nagursky, H.; van den Broek, K. C.; Sauerbier, S.; Vissink, A.; Raghoebar, G. M.

    2011-01-01

    This study assessed the mechanical characteristics, biocompatibility and osteoconductive properties of an equine hydroxyapatite collagen (eHAC) bone block when applied as a bone substitute for lateral augmentation of rat mandible. 96 rats underwent lateral augmentation of the mandible, using two sub

  1. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Bank, Ruud A; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2009-08-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added. PMID:19231972

  2. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  3. ICTP in Bone Metastases of Lung Cancer

    OpenAIRE

    Franjević, Ana; Pavićević, Radomir; Bubanović, Gordana

    2011-01-01

    Bone metastases often appear in advanced stages of lung cancer. They are the result of modulation of bone metabolism by tumor cells that migrated into bone microenvironment and degraded bone organic matrix. Measurement of C-terminal telopeptide of type I collagen (ICTP) in the serum of subjects with lung cancer with and without bone metastases and healthy population is the way to explore bone resorption. In 343 subjects included in this research ICTP level was significantly higher...

  4. Bone Quality: The Mechanical Effects of Microarchitecture and Matrix Properties

    OpenAIRE

    Day, Judd

    2005-01-01

    textabstractIn this body of work we have examined some of the current concepts pertaining to the relation between bone mass, bone quality and the mechanical properties of bone. In our first series of studies we used a model of human osteoarthritis to investigate the implications of changes in the effective tissue modulus. Having established that the material properties of the trabecular bone were altered in the earliest stages of osteoarthritis, we then investigated a possible cause, namely th...

  5. Autoradiographic study of the effect of 1,25-dihydroxyvitamin D3 on bone matrix synthesis in vitamin D replete rats

    International Nuclear Information System (INIS)

    An autoradiographic technique using pulse labels of [3H]proline was developed to assess the early effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone matrix synthesis in vitamin D replete rats. Rats, 7 days old, were given 0.25, 2.5, or 25 ng of 1,25(OH)2D3 or vehicle alone subcutaneously on days 1, 3, and 5 of the experiment. Rats received a subcutaneous injection of 100 μCi [3H]proline on days 2 and 6 and were killed on day 7. Calvaria and tibia were processed for autoradiography, and morphometric methods were developed to measure the rate and amount of bone matrix formed during the experimental period. When compared to control values, the amount and rate of formation of new bone matrix were both significantly decreased in rats receiving 25 ng of 1,25(OH)2D3 and slightly, but not significantly, decreased in rats receiving 2.5 ng. We conclude that administration of pharmacologic doses of 1,25(OH)2D3 to vitamin D replete rat pups impairs the formation of collagenous bone matrix. (orig.)

  6. Matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) in mature human odontoblasts and pulp tissue:the regulation of expressions of fibrillar collagens, MMPs and TIMPs by growth factors, transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2)

    OpenAIRE

    Palosaari, H. (Heidi)

    2003-01-01

    Abstract Dentin formation in physiological and pathological conditions has been widely studied, but the events and regulation are still not completely understood. Odontoblasts, terminally differentiated post-mitotic cells located in a single cell layer around pulp tissue, synthesize and mineralize dentin organic matrix. Growth factors, such as TGF-β1 and BMP-2, have been implicated in the regulation of the responses of odontoblasts and pulp tissue to external irritation. Matrix metalloprot...

  7. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  8. Albumin synthesis and bone collagen formation in human immunodeficiency virus-positive subjects: differential effects of growth hormone administration.

    Science.gov (United States)

    McNurlan, M A; Garlick, P J; Frost, R A; Decristofaro, K A; Lang, C H; Steigbigel, R T; Fuhrer, J; Gelato, M

    1998-09-01

    Loss of lean tissue often accompanies human immunodeficiency virus (HIV) infection. Exogenous human recombinant GH (hrGH) has been shown to be beneficial in reversing this wasting. However, catabolic effects of hrGH on muscle protein metabolism have also been reported. Therefore, the responsiveness of other GH-sensitive tissues, including bone formation and albumin synthesis, has been examined. Anabolic activity in bone, from serum levels of carboxy-terminal propeptide of type I collagen, was stimulated by 2 weeks of hrGH in controls (56 +/- 15%, P = 0.002), patients with asymptomatic HIV (24 +/- 10%, not significant), patients with AIDS (47 +/- 7%, P 10% weight loss (21 +/- 12%, P = 0.02). Albumin synthesis, determined from the incorporation of L-[2H5]phenylalanine, was increased in response to hrGH in controls (23 +/- 7%, P < 0.05), HIV+ subjects (39 +/- 16%, P < 0.05), and patients with AIDS (25 +/- 7%, P < 0.01). Patients with AIDS and weight loss, however, did not increase albumin synthesis (-0.6 +/- 12%) in response to hrGH. The results indicate variable anabolic responses to hrGH. Bone collagen synthesis remained sensitive to hrGH, whereas, the anabolic action of hrGH on the synthesis of albumin diminished with severity of disease. However unlike muscle protein synthesis, albumin synthesis was not depressed below basal levels by hrGH. PMID:9745402

  9. Collagenases and gelatinases in bone healing. The focus on mandibular fractures

    OpenAIRE

    Kurzepa Jacek; Baran Marcin; Watroba Slawomir; Barud Malgorzata; Babula Daniel

    2014-01-01

    Due to high amount of collagen fibres in the structure of bone, the enzymes capable of collagen digestion play a key role in bone remodelling. Matrix metalloproteinases (MMPs), prevailing extracellular endopeptideses, can digest extracellularly located proteins, e.g. collagen, proteoglycans, elastin or fibronectin. Among MMPs, collagenases (MMP-1, MMP-8 and MMP-13) and gelatinases (MMP-2 and MMP-9) can cleave collagen particles to forms that are able to undergo further steps of catabolism int...

  10. Fibrillar collagen I matrix remodelling in idiopathic pulmonary fibrosis: Are lysyl oxidases responsible?

    NARCIS (Netherlands)

    Tjin, G.; Jegathees, T.; Mahar, A.; Kable, E.P.W.; Burgess, J.K.

    2015-01-01

    Rationale: The development of fibrosis in Idiopathic Pulmonary Fibrosis (IPF) is a key feature and challenge in the treatment of the disease. The mechanisms of collagen I (COL1) reorganisation in the development of fibrosis, which may alter the stiffness of the tissue, are not well understood. Fibri

  11. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells

    OpenAIRE

    Seo, Hyun-Ju; Cho, Young-Eun; Kim, Taewan; Shin, Hong-In; Kwun, In-Sook

    2010-01-01

    Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentra...

  12. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Matthew C Phipps

    Full Text Available The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs. In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL, collagen I, and hydroxyapatite (HA nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA. The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL, 100% collagen I (col, and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA. Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.

  13. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects.

    Science.gov (United States)

    Qi, Xin; Huang, Yinjun; Han, Dan; Zhang, Jieyuan; Cao, Jiaqing; Jin, Xiangyun; Huang, Jinghuan; Li, Xiaolin; Wang, Ting

    2016-04-01

    We previously demonstrated that three-dimensional (3D) hydroxyapatite (HAP)-collagen (COL)-coated poly(ε-caprolactone) (PCL) scaffolds (HAP-COL-PCL) possess appropriate nano-structures, surface roughness, and nutrients, providing a favorable environment for osteogenesis. However, the effect of using 3D HAP-COL-PCL scaffolds incorporating BMSCs for the repair of bone defects in rats has been not evaluated. 3D PCL scaffolds coated with HAP, collagen or HAP/COL and incorporating BMSCs were implanted into calvarial defects. At 12 weeks after surgery, the rats were sacrificed and crania were harvested to assess the bone defect repair using microcomputed tomography (micro-CT), histology, immunohistochemistry and sequential fluorescent labeling analysis. 3D micro-CT reconstructed images and quantitative analysis showed that HAP-COL-PCL groups possessed better bone-forming capacity than HAP-PCL groups or COL-PCL groups. Fluorescent labeling analysis revealed the percentage of tetracycline labeling, alizarin red labeling, and calcein labeling in HAP-COL-PCL groups were all greater than in the other two groups (P rats. PMID:26964015

  14. The Methoxyflavonoid Isosakuranetin Suppresses UV-B-Induced Matrix Metalloproteinase-1 Expression and Collagen Degradation Relevant for Skin Photoaging.

    Science.gov (United States)

    Jung, Hana; Lee, Eunjoo H; Lee, Tae Hoon; Cho, Man-Ho

    2016-01-01

    Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation. PMID:27598131

  15. Designation of a Novel DKK1 Multiepitope DNA Vaccine and Inhibition of Bone Loss in Collagen-Induced Arthritic Mice

    Science.gov (United States)

    Zhang, Xiaoqing; Liu, Sibo; Li, Shentao; Du, Yuxuan; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2015-01-01

    Dickkopf-1 (DKK1), a secretory inhibitor of canonical Wnt signaling, plays a critical role in certain bone loss diseases. Studies have shown that serum levels of DKK1 are significantly higher in rheumatoid arthritis (RA) patients and are correlated with the severity of the disease, which indicates the possibility that bone erosion in RA may be inhibited by neutralizing the biological activity of DKK1. In this study, we selected a panel of twelve peptides using the software DNASTAR 7.1 and screened high affinity and immunogenicity epitopes in vitro and in vivo assays. Furthermore, we optimized four B cell epitopes to design a novel DKK1 multiepitope DNA vaccine and evaluated its bone protective effects in collagen-induced arthritis (CIA), a mouse model of RA. High level expression of the designed vaccine was measured in supernatant of COS7 cells. In addition, intramuscular immunization of BALB/c mice with this vaccine was also highly expressed and sufficient to induce the production of long-term IgG, which neutralized natural DKK1 in vivo. Importantly, this vaccine significantly attenuated bone erosion in CIA mice compared with positive control mice. These results provide evidence for the development of a DNA vaccine targeted against DKK1 to attenuate bone erosion. PMID:26075259

  16. Characterization of collagen fibers by means of texture analysis of second harmonic generation images using orientation-dependent gray level co-occurrence matrix method

    Science.gov (United States)

    Hu, Wenyan; Li, Hui; Wang, Chunyou; Gou, Shanmiao; Fu, Ling

    2012-02-01

    Collagen is the most prominent protein in the human body, making up 30% of the total protein content. Quantitative studies have shown structural differences between collagen fibers of the normal and diseased tissues, due to the remodeling of the extracellular matrix during the pathological process. The dominant orientation, which is an important characteristic of collagen fibers, has not been taken into consideration for quantitative collagen analysis. Based on the conventional gray level co-occurrence matrix (GLCM) method, the authors proposed the orientation-dependent GLCM (OD-GLCM) method by estimating the dominant orientation of collagen fibers. The authors validated the utility of the OD-GLCM method on second harmonic generation (SHG) microscopic images of tendons from rats with different ages. Compared with conventional GLCM method, the authors' method has not only improved the discrimination between different tissues but also provided additional texture information of the orderliness of collagen fibers and the fiber size. The OD-GLCM method was further applied to the differentiation of the preliminary SHG images of normal and cancerous human pancreatic tissues. The combination of SHG microscopy and the OD-GLCM method might be helpful for the evaluation of diseases marked with abnormal collagen morphology.

  17. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.

    Science.gov (United States)

    Zhu, Wei; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-01-01

    Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use. PMID:26472048

  18. Bone Regeneration Mediated by Biomimetic Mineralization of a Nanofiber Matrix

    OpenAIRE

    Mata, Alvaro; Geng, Yanbiao; Henrikson, Karl; Aparicio, Conrado; Stock, Stuart; Satcher, Robert L.; Stupp, Samuel I.

    2010-01-01

    Rapid bone regeneration within a three-dimensional defect without the use of bone grafts, exogenous growth factors, or cells remains a major challenge. We report here on the use of self-assembling peptide nanostructured gels to promote bone regeneration that have the capacity to mineralize in biomimetic fashion. The main molecular design was the use of phosphoserine residues in the sequence of a peptide amphiphile known to nucleate hydroxyapatite crystals on the surfaces of nanofibers. We tes...

  19. Extracellular matrix-mimetic adhesive biomaterials for bone repair

    OpenAIRE

    Shekaran, Asha; Andrés J. García

    2010-01-01

    Limited osseointegration of current orthopaedic biomaterials contributes to the failure of implants such as arthroplasties, bone screws and bone grafts, which present a large socioeconomic cost within the United States. These implant failures underscore the need for biomimetic approaches that modulate host cell-implant material responses to enhance implant osseointegration and bone formation. Bioinspired strategies have included functionalizing implants with ECM proteins or ECM-derived peptid...

  20. Biochemical Characterization of Major Bone-Matrix Proteins Using Nanoscale-Size Bone Samples and Proteomics Methodology*

    OpenAIRE

    Grażyna E Sroga; Karim, Lamya; Colón, Wilfredo; Vashishth, Deepak

    2011-01-01

    There is growing evidence supporting the need for a broad scale investigation of the proteins and protein modifications in the organic matrix of bone and the use of these measures to predict fragility fractures. However, limitations in sample availability and high heterogeneity of bone tissue cause unique experimental and/or diagnostic problems. We addressed these by an innovative combination of laser capture microscopy with our newly developed liquid chromatography separation methods, follow...

  1. Exercise Alters Mineral and Matrix Composition in the Absence of Adding New Bone

    OpenAIRE

    Kohn, David H.; Sahar, Nadder D.; Wallace, Joseph M.; Golcuk, Kurtulus; Morris, Michael D.

    2008-01-01

    The mechanical properties of bone are dictated by its amount, distribution and ‘quality’. The composition of the mineral and matrix phases is integral to defining ‘bone quality’. Exercise can potentially increase resistance to fracture, yet the effects of exercise on skeletal fragility, and how alterations in fragility are modulated by the amount, distribution and composition of bone, are unknown. In this investigation, the effects of exercise on the size, composition, mechanical properties a...

  2. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  3. Identification of a novel matrix protein contained in a protein aggregate associated with collagen in fish otoliths.

    Science.gov (United States)

    Tohse, Hidekazu; Takagi, Yasuaki; Nagasawa, Hiromichi

    2008-05-01

    In the biomineralization processes, proteins are thought to control the polymorphism and morphology of the crystals by forming complexes of structural and mineral-associated proteins. To identify such proteins, we have searched for proteins that may form high-molecular-weight (HMW) aggregates in the matrix of fish otoliths that have aragonite and vaterite as their crystal polymorphs. By screening a cDNA library of the trout inner ear using an antiserum raised against whole otolith matrix, a novel protein, named otolith matrix macromolecule-64 (OMM-64), was identified. The protein was found to have a molecular mass of 64 kDa, and to contain two tandem repeats and a Glu-rich region. The structure of the protein and that of its DNA are similar to those of starmaker, a protein involved in the polymorphism control in the zebrafish otoliths [Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C & Nicolson T (2003) Science302, 282-286]. (45)Ca overlay analysis revealed that the Glu-rich region has calcium-binding activity. Combined analysis by western blotting and deglycosylation suggested that OMM-64 is present in an HMW aggregate with heparan sulfate chains. Histological observations revealed that OMM-64 is expressed specifically in otolith matrix-producing cells and deposited onto the otolith. Moreover, the HMW aggregate binds to the inner ear-specific short-chain collagen otolin-1, and the resulting complex forms ring-like structures in the otolith matrix. Overall, OMM-64, by forming a calcium-binding aggregate that binds to otolin-1 and forming matrix protein architectures, may be involved in the control of crystal morphology during otolith biomineralization. PMID:18410381

  4. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  5. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: paleodietary implications from intra-individual comparisons

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S O; Lynnerup, Niels;

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context by...

  6. Gray-Level Co-occurrence Matrix Bone Fracture Detection

    Directory of Open Access Journals (Sweden)

    Hum Y. Chai

    2011-01-01

    Full Text Available Problem statement: Currently doctors in orthopedic wards inspect the bone x-ray images according to their experience and knowledge in bone fracture analysis. Manual examination of x-rays has multitude drawbacks. The process is time-consuming and subjective. Approach: Since detection of fractures is an important orthopedics and radiologic problem and therefore a Computer Aided Detection(CAD system should be developed to improve the scenario. In this study, a fracture detection CAD based on GLCM recognition could improve the current manual inspection of x-ray images system. The GLCM for fracture and non-fracture bone is computed and analysis is made. Features of Homogeneity, contrast, energy, correlation are calculated to classify the fractured bone. Results: 30 images of femur fractures have been tested, the result shows that the CAD system can differentiate the x-ray bone into fractured and nonfractured femur. The accuracy obtained from the system is 86.67. Conclusion: The CAD system is proved to be effective in classifying the digital radiograph of bone fracture. However the accuracy rate is not perfect, the performance of this system can be further improved using multiple features of GLCM and future works can be done on classifying the bone into different degree of fracture specifically.

  7. Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies

    OpenAIRE

    Yu, X.F.; Han, Z. C.

    2006-01-01

    Turnover balance of extracellular matrix (ECM) is a prerequisite for the structural and functional homeostasis of bone marrow (BM) microenvironment. The role of ECM in physiologic hematopoiesis and its pathologic change in hematopoietic malignancies are very important and under extensive investigation. Accumulating evidence suggests that matrix metalloproteinases (MMPs), a family of zinc-dependent proteinases, take an active part in the physiological and pa...

  8. Hybrid Membranes of PLLA/Collagen for Bone Tissue Engineering: A Comparative Study of Scaffold Production Techniques for Optimal Mechanical Properties and Osteoinduction Ability

    Directory of Open Access Journals (Sweden)

    Flávia Gonçalves

    2015-01-01

    Full Text Available Synthetic and natural polymer association is a promising tool in tissue engineering. The aim of this study was to compare five methodologies for producing hybrid scaffolds for cell culture using poly-l-lactide (PLLA and collagen: functionalization of PLLA electrospun by (1 dialkylamine and collagen immobilization with glutaraldehyde and by (2 hydrolysis and collagen immobilization with carbodiimide chemistry; (3 co-electrospinning of PLLA/chloroform and collagen/hexafluoropropanol (HFP solutions; (4 co-electrospinning of PLLA/chloroform and collagen/acetic acid solutions and (5 electrospinning of a co-solution of PLLA and collagen using HFP. These materials were evaluated based on their morphology, mechanical properties, ability to induce cell proliferation and alkaline phosphatase activity upon submission of mesenchymal stem cells to basal or osteoblastic differentiation medium (ODM. Methods (1 and (2 resulted in a decrease in mechanical properties, whereas methods (3, (4 and (5 resulted in materials of higher tensile strength and osteogenic differentiation. Materials yielded by methods (2, (3 and (5 promoted osteoinduction even in the absence of ODM. The results indicate that the scaffold based on the PLLA/collagen blend exhibited optimal mechanical properties and the highest capacity for osteodifferentiation and was the best choice for collagen incorporation into PLLA in bone repair applications.

  9. Vibrational spectroscopy in biomedical science: bone

    Science.gov (United States)

    Gamsjäger, Sonja; Zoehrer, R.; Roschger, P.; Fratzl, P.; Klaushofer, K.; Mendelsohn, R.; Paschalis, E. P.

    2009-02-01

    Fourier transform infrared imaging (FTIR) and Raman Microspectroscopy are powerful tools for characterizing the distribution of different chemical moieties in heterogeneous materials. FTIR and Raman measurements have been adapted to assess the maturity of the mineral and the quality of the organic component (collagen and non-collagenous proteins) of the mineralized tissue in bone. Unique to the FTIRI analysis is the capability to provide the spatial distribution of two of the major collagen cross-links (pyridinoline, and dehydro-dihydroxylysinonorleucine) and through the study of normal and diseased bone, relate them to bone strength. These FTIR parameters have been validated based on analysis of model compounds. It is widely accepted that bone strength is determined by bone mass and bone quality. The latter is a multifactorial term encompassing the material and structural properties of bone, and one important aspect of the bone material properties is the organic matrix. The bone material properties can be defined by parameters of mineral and collagen, as determined by FTIR and Raman analysis. Considerably less attention has been directed at collagen, although there are several publications in the literature reporting altered collagen properties associated with fragile bone, in both animals and humans. Since bone is a heterogeneous tissue due to the remodeling process, microscopic areas may be carefully selected based on quantitative Backscattered Electron Imaging or histological staining, thus ensuring comparison of areas with similar metabolic activity and mineral content. In conclusion, FTIRI and Raman vibrational spectroscopy are proving to be powerful tools in bone-related medical research.

  10. Measurement of matrix metalloproteinase 9-mediated Collagen type III degradation fragment as a marker of skin fibrosis

    Directory of Open Access Journals (Sweden)

    Larsen Lise

    2011-03-01

    Full Text Available Abstract Background The current study utilized a Bleomycin-induced model of skin fibrosis to investigate the neo-epitope CO3-610 (KNGETGPQGP, a fragment of collagen III released during matrix metalloproteinase-9 (MMP9 degradation of the protein, we have previously described as a novel biomarker for liver fibrosis. The aim was to investigate CO3-610 levels in another well characterised model of fibrosis, to better describe the biomarker in relation to additional fibrotic pathologies. Methods Skin fibrosis was induced by daily injections of Bleomycin to a total of 52 female C3 H mice, while control mice (n = 28 were treated with phosphate buffered saline (PBS, for 2, 4, 6 or 8 weeks. Skin fibrosis was evaluated using Visiopharm software on Sirius-red stained skin sections. Urine ELISA assays and creatinine corrections were performed to measure CO3-610 levels. Results CO3-610 levels were significantly higher in Bleomycin-treated vs. PBS-treated mice at each time point of termination. The mean increases were: 59.2%, P Conclusion Increased levels in mouse urine of the MMP-9 mediated collagen III degradation fragment CO3-610 were correlated with skin fibrosis progression, suggesting that CO3-610 may be a potential positive biomarker to study the pathogenesis of skin fibrosis in mice.

  11. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    Science.gov (United States)

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-01-01

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis. PMID:26131645

  12. Osteogenic ability of bone marrow stem cells intraoperatively enriched by a novel matrix

    OpenAIRE

    Ye, Qing; Chen, Kaining; HUANG, WU; HE, YUNSONG; NONG, MINGSHAN; LI, CHUNXIANG; LIANG, TIANSEN

    2014-01-01

    Poly-L-lysine (PLL) is commonly used as an adhibiting agent due to its good viscosity, and demineralized bone matrix (DBM) is a common enriched matrix for selective cell retention technology. Therefore, the aim of this study was to use PLL to coat the surface and interspaces of DBM to form a novel type of enriched matrix [DBM coated with PLL (PLL-DBM)], in order to effectively improve the enrichment effects of bone marrow stem cells and enhance their osteogenic ability. Electron microscope sc...

  13. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size.

    Directory of Open Access Journals (Sweden)

    Takamitsu Koga

    Full Text Available This study aimed to examine the influence of particle size and extent of demineralization of dentin matrix on bone regeneration.Extracted human teeth were pulverized and divided into 3 groups according to particle size; 200, 500, and 1000 μm. Each group was divided into 3 groups depending on the extent of demineralization; undemineralized dentin (UDD, partially demineralized dentin matrix (PDDM, and completely demineralized dentin matrix (CDDM. The dentin sample was implanted into rat calvarial bone defects. After 4 and 8 weeks, the bone regeneration was evaluated with micro-CT images, histomorphometric and immunohistochemical analyses. Osteoblasts were cultured on UDD and DDM to evaluate the cell attachment using electron microscope.Micro-CT images and histological observation revealed that CDDM had largely resorbed but UDD had not, and both of them induced little bone formation, whereas all particle sizes of PDDM induced more new bone, especially the 1000 μm. Electron microscopic observation showed osteoblasts attached to DDM but not to UDD.PDDM with larger particle size induced prominent bone regeneration, probably because PDDM possessed a suitable surface for cell attachment. There might be an exquisite balance between its resorption and bone formation on it. PDDM could be considered as a potential bone substitute.

  14. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    Science.gov (United States)

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. PMID:23851162

  15. A preliminary carbon and nitrogen isotopic investigation of bone collagen from skeletal remains recovered from a Pre-Columbian burial site, Matanzas Province, Cuba

    International Nuclear Information System (INIS)

    Highlights: ► Collagen isotope (carbon and nitrogen) based reconstruction of paleodiets. ► Human remains recovered from Canimar Abajo, Matanzas Province, Cuba. ► Individuals consumed marine resource diets supplemented with terrestrial plants. ► Trophic level and isotope shifts for breastfed and weaned infant/juveniles (I/J). ► I/J evidence of weaning through distinct δ15N enrichments and δ13C depletions. - Abstract: This preliminary study investigates the diet of a population of humans (n = 28) recovered from a shell-matrix site of Canimar Abajo on the Canimar River, Matanzas Province, Cuba. The site is characterized by two cemetery levels separated by a layer of occupation/ritual/midden activity that lasted 1.5 ka. Stable C (δ13C) and N (δ15N) isotope analysis of human bone collagen samples obtained from individuals (7 infant/juveniles, and 21 adults) from both cemetery levels was conducted in order to reconstruct the diet of these two populations, investigate the relative importance of marine vs. terrestrial resources, and reveal any sex- and age-related distinctions in their food sources. Initial indications suggest that individuals from both cemetery levels consumed diets that were marine resource intensive but also supplemented with varied additions of terrestrial (mostly plant) resources. This supplementation is particularly evident in the later cemetery population. Though there are no significant differences in diet according to sex, there is a trophic level and terrestrial-based shift for breastfed and weaning infant/juveniles. The infant/juveniles showed evidence of being weaned through distinct δ15N enrichments and δ13C depletions over adult females

  16. The Three-Dimensional Collagen Scaffold Improves the Stemness of Rat Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Sufang Han; Yannan Zhao; Zhifeng Xiao; Jin Han; Bing Chen; Lei Chen; Jianwu Dai

    2012-01-01

    Mesenchymal stem cells (MSCs) show the great promise for the treatment of a variety of diseases because of their self-renewal and multipotential abilities.MSCs are generally cultured on two-dimensional (2D) substrate in vitro.There are indications that they may simultaneously lose their stemness and multipotentiality as the result of prolonged 2D culture.In this study,we used three-dimensional (3D) collagen scaffolds as rat MSCs carrier and compared the properties of MSCs on 3D collagen scaffolds with monolayer cultured MSCs.The results demonstrated that collagen scaffolds were suitable for rat MSCs adherence and proliferation.More importantly,compared to MSCs under 2D culture,3D MSCs significantly maintained higher expression levels of stemness genes (Oct4,Sox2,Rex-1 and Nanog),yielded high frequencies of colony-forming units-fibroblastic (CFU-F) and showed enhanced osteogenic and adipogenic differentiation efficiency upon induction.Thus,3D collagen scaffolds may be beneficial for expanding rat MSCs while maintaining the stem cell properties in vitro.

  17. Matrix-Bound VEGF Mimetic Peptides: Design and Endothelial Cell Activation in Collagen Scaffolds

    OpenAIRE

    Chan, Tania R.; Stahl, Patrick J.; Yu, S. Michael

    2011-01-01

    Long term survival and success of artificial tissue constructs depend greatly on vascularization. Endothelial cell (EC) differentiation and vasculature formation are dependent on spatio-temporal cues in the extracellular matrix that dynamically interact with cells, a process difficult to reproduce in artificial systems. Here we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF) and can be used to encode spatially controlled angiogenic signa...

  18. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds. PMID:27376895

  19. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  20. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia.

    Science.gov (United States)

    Oest, Megan E; Gong, Bo; Esmonde-White, Karen; Mann, Kenneth A; Zimmerman, Nicholas D; Damron, Timothy A; Morris, Michael D

    2016-05-01

    As part of our ongoing efforts to understand underlying mechanisms contributing to radiation-associated bone fragility and to identify possible treatments, we evaluated the longitudinal effects of parathyroid hormone (PTH) treatment on bone quality in a murine model of limited field irradiation. We hypothesized PTH would mitigate radiation-induced changes in the chemical composition and structure of bone, as measured by microscope-based Raman spectroscopy. We further hypothesized that collagen crosslinking would be especially responsive to PTH treatment. Raman spectroscopy was performed on retrieved tibiae (6-7/group/time point) to quantify metrics associated with bone quality, including: mineral-to-matrix ratio, carbonate-to-phosphate ratio, mineral crystallinity, collagen crosslink (trivalent:divalent) ratio, and the mineral and matrix depolarization ratios. Irradiation disrupted the molecular structure and orientation of bone collagen, as evidenced by a higher collagen crosslink ratio and lower matrix depolarization ratio (vs. non-irradiated control bones), persisting until 12weeks post-irradiation. Radiation transiently affected the mineral phase, as evidenced by increased mineral crystallinity and mineral-to-matrix ratio at 4weeks compared to controls. Radiation decreased bone mineral depolarization ratios through 12weeks, indicating increased mineral alignment. PTH treatment partially attenuated radiation-induced increases in collagen crosslink ratio, but did not restore collagen or mineral alignment. These post-radiation matrix changes are consistent with our previous studies of radiation damage to bone, and suggest that the initial radiation damage to bone matrix has extensive effects on the quality of tissue deposited thereafter. In addition to maintaining bone quality, preventing initial radiation damage to the bone matrix (i.e. crosslink ratio, matrix orientation) may be critical to preventing late-onset fragility fractures. PMID:26960578

  1. Collagens VI and XII form complexes mediating osteoblast interactions during osteogenesis.

    Science.gov (United States)

    Izu, Yayoi; Ezura, Yoichi; Koch, Manuel; Birk, David E; Noda, Masaki

    2016-06-01

    Bone formation is precisely regulated by cell-cell communication in osteoblasts. We have previously demonstrated that genetic deletion of Col6a1 or Col12a1 impairs osteoblast connections and/or communication in mice, resulting in bone mass reduction and bone fragility. Mutations of the genes encoding collagen VI cause Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM), which have overlapping phenotypes involving connective tissue and muscle. Recent studies have identified COL12A1 gene mutations in patients with UCMD- and BM-like disorders harboring no COL6 mutations, indicating the shared functions of these collagens in connective tissue homeostasis. The purpose of this investigation has been to test the hypothesis that collagens VI and XII have coordinate regulatory role(s) during bone formation. We analyzed the localization of collagens VI and XII relative to primary osteoblasts during osteogenesis. Immunofluorescence analysis demonstrated that collagens VI and XII colocalized in matrix bridges between adjacent cells during periods when osteoblasts were establishing cell-cell connections. Quantification of cells harboring collagen bridges demonstrated that matrix bridges were composed of collagens VI and XII but not collagen I. Interestingly, matrix bridge formation was impaired in osteoblasts deficient in either Col6a1 or Col12a1, suggesting that both collagens were indispensable for matrix bridge formation. These data demonstrate, for the first time, a functional relationship between collagens VI and XII during osteogenesis and indicate that a complex containing collagens VI and XII is essential for the formation of a communicating cellular network during bone formation. PMID:26753503

  2. Bone-Forming Capabilities of a Newly Developed NanoHA Composite Alloplast Infused with Collagen: A Pilot Study in the Sheep Mandible

    Directory of Open Access Journals (Sweden)

    Charles Marin

    2013-01-01

    Full Text Available Lateral or vertical bone augmentation has always been a challenge, since the site is exposed to constant pressure from the soft tissue, and blood supply only exists from the donor site. Although, for such clinical cases, onlay grafting with autogenous bone is commonly selected, the invasiveness of the secondary surgical site and the relatively fast resorption rate have been reported as a drawback, which motivated the investigation of alternative approaches. This study evaluated the bone-forming capability of a novel nanoHA alloplast infused with collagen graft material made from biodegradable polylactic acid/polyglycolic acid versus a control graft material with the same synthesized alloplast without the nanoHA component and collagen infiltration. The status of newly formed bone and the resorption of the graft material were evaluated at 6 weeks in vivo histologically and three dimensionally by means of 3D microcomputed tomography. The histologic observation showed that newly formed bone ingrowth and internal resorption of the block were observed for the experimental blocks, whereas for the control blocks less bone ingrowth occurred along with lower resorption rate of the block material. The three-dimensional observation indicated that the experimental block maintained the external geometry, but at the same time successfully altered the graft material into bone. It is suggested that the combination of numerous factors contributed to the bone ingrowth and the novel development could be an alternative bone grafting choice.

  3. First-line treatment with bortezomib rapidly stimulates both osteoblast activity and bone matrix deposition in patients with multiple myeloma, and stimulates osteoblast proliferation and differentiation in vitro

    DEFF Research Database (Denmark)

    Lund, Thomas; Søe, Kent; Abildgaard, Niels;

    2010-01-01

    studied in vitro. RESULTS: Treatment with bortezomib caused a significant increase in bone-specific alkaline phosphatase and pro-collagen type I N-terminal propeptide, a novel bone formation marker. The addition of a glucocorticoid resulted in a transient decrease in collagen deposition. In vitro...

  4. Fetal Bovine Collagen Matrix in the Treatment of a Full Thickness Burn Wound: A Case Report With Long-Term Follow-Up

    OpenAIRE

    Amy L. Strong; Bennett, Danielle K.; Spreen, Elizabeth B.; Adhvaryu, Dhaval V.; Littleton, Jeffrey C.; Mencer, Ernest J.

    2016-01-01

    The treatment of full thickness skin wounds commonly associated with large burns continues to represent a challenging clinical entity. The current treatment for large TBSA burns is split thickness autologous skin grafting; however, this treatment often results in poor textural durability, hypertrophic scarring, and fibrotic contractures. In this case report, we describe our experience and long-term follow-up results after the application of fetal bovine collagen (FBC) matrix (PriMatrix, TEI B...

  5. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo

    Czech Academy of Sciences Publication Activity Database

    Prosecká, Eva; Rampichová, Michala; Litvinec, Andrej; Tonar, Z.; Králíčková, M.; Vojtová, L.; Kochová, P.; Plencner, Martin; Buzgo, Matej; Míčková, Andrea; Jančář, J.; Amler, Evžen

    2015-01-01

    Roč. 103, č. 2 (2015), s. 671-682. ISSN 1549-3296 Institutional support: RVO:68378041 Keywords : bone regeneration * mesenchymal stem cells * collagen/hydroxyapatite scaffold Subject RIV: FP - Other Medical Disciplines Impact factor: 3.369, year: 2014

  6. Biological Evaluation (In Vitro and In Vivo) of Bilayered Collagenous Coated (Nano Electrospun and Solid Wall) Chitosan Membrane for Periodontal Guided Bone Regeneration.

    Science.gov (United States)

    Lotfi, Ghogha; Shokrgozar, Mohammad Ali; Mofid, Rasoul; Abbas, Fatemeh Mashhadi; Ghanavati, Farzin; Baghban, Alireza Akbarzadeh; Yavari, Seyedeh Kimia; Pajoumshariati, Seyedramin

    2016-07-01

    The application of barrier membranes in guided bone regeneration (GBR) has become a commonly used surgical technique in periodontal research. The objectives of this study were to evaluate the in vitro biocompatibility and osteogenic differentiation of mesenchymal stem cells (MSCs) on two different collagenous coatings (nano electrospun fibrous vs. solid wall) of bilayered collagen/chitosan membrane and their histological evaluation on bone regeneration in rabbit calvarial defects. It was found that chitosan-nano electrospun collagen (CNC) membranes had higher proliferation/metabolic activity compared to the chitosan-collagen (CC) and pristine chitosan membranes. The qRT-PCR analysis demonstrated the CNC membranes induced significant expression of osteogenic genes (Osteocalcin, RUNX2 and Col-α1) in MSCs. Moreover, higher calcium content and alkaline phosphatase activity of MSCs were observed compared to the other groups. Histologic and histomorphometric evaluations were performed on the uncovered (negative control) as well as covered calvarial defects of ten adult white rabbits with different membranes (CNC, CC, BioGide (BG, positive control)) at 1 and 2 months after surgery. More bone formation was detected in the defects covered with CNC and BG membranes than those covered by CC and the negative control. No inflammation and residual biomaterial particles were observed on the membrane surface or in the surrounding tissues in the surgical areas. These results suggest that bilayer CNC membrane can have the potential for use as a GBR membrane material facilitating bone formation. PMID:26586588

  7. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    Science.gov (United States)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  8. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  9. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  10. Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus).

    Science.gov (United States)

    Bocherens, Hervé; Grandal-d'Anglade, Aurora; Hobson, Keith A

    2014-01-01

    Stable isotope analyses provide one of the few means to evaluate diet of extinct taxa. However, interpreting isotope data from bone collagen of extinct animals based on isotopic patterns in different tissues of modern animal proxies is precarious. For example, three corrections are needed before making comparisons of recent hair and ancient bone collagen: calibration of carbon-13 variations in atmospheric CO2, different isotopic discrimination between diet-hair keratin and diet-bone collagen, and time averaging of bone collagen versus short-term record in hair keratin. Recently, Robu et al. [Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can J Zool. 2013;91:227-234] published an article comparing extant carbon (δ(13)C) and nitrogen (δ(15)N) stable isotopic data of European cave bear bone collagen with those of Yellowstone Park grizzly bear hair in order to test the prevailing assumption of a largely vegetarian diet among cave bears. The authors concluded that cave bears were carnivores. This work is unfortunately unfounded as the authors failed to consider the necessary corrections listed above. When these corrections are applied to the Romanian cave bears, these individuals can be then interpreted without involving consumption of high trophic-level food, and environmental changes are probably the reason for the unusual isotopic composition of these cave bears in comparison with other European cave bears, rather than a change of diet. We caution researchers to pay careful attention to these factors when interpreting feeding ecology of extinct fauna using stable isotope techniques. PMID:24588112

  11. Ca2+ channel blockers modulate metabolism of collagens within the extracellular matrix.

    OpenAIRE

    Roth, M; Eickelberg, O.; Kohler, E.; Erne, P; Block, L H

    1996-01-01

    The extracellular matrix (ECM) is an intricate network composed of an array of macromolecules capable of regulating the functional responsiveness of cells. Its composition greatly varies among different types of tissue, and dysregulation of its metabolism may contribute to vascular remodeling during the pathogenesis of various diseases, including atherosclerosis. In view of their antiatherosclerotic effects, the role of Ca2+ channel blockers in the metabolism of ECM was examined. Nanomolar co...

  12. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  13. Proof of direct radiogenic destruction of collagen in vitro

    International Nuclear Information System (INIS)

    Background: Fibroses of vessels and soft tissue are side effects of radiotherapy. The authors assumed that there was an immediate direct radiogenic damage of collagen of bone, periosteum and skin. Material and Methods: 15 porcine jaws samples (group 1) were exposed to a total dose of 60 Gy (cobalt-60, 2 Gy/day, five fractions/week). 15 jaws samples were stored accordingly (group 2, no irradiation, control). Collagen fragments of bone, periosteum and skin samples of groups 1 and 2 were isolated by ultrafiltration. Collagen types were characterized by SDS-PAGE measurement of the mature collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) by high-performance liquid chromatography (HPLC) and analysis of hydroxyproline (Hyp) was used to determine the ratio of the amount of collagen fragments from irradiated as opposed to nonirradiated samples. Results: The concentrations of HP, LP and Hyp in ultrafiltrates of probes of irradiated bone, periosteum and skin were markedly increased (average factors for bone: 3.69, 1.84, and 3.40, respectively; average factors for periosteum: 1.55, 1.41, and 1.77, respectively; average factors for skin: 1.55, 1.60, and 2.23, respectively) as compared to nonirradiated probes. SDS-PAGE did show collagen types I and V in nonirradiated bone, I and III in nonirradiated skin, and I in nonirradiated periosteum samples. In irradiated samples, smeared bands illustrated fragmentation of the collagen molecule. Conclusion: The increased concentrations of HP, LP and Hyp in ultrafiltrates indicated increased concentrations of split collagen. Direct and instant radiogenic damage of (extracellular matrix of) bone, periosteum and skin tissue collagen could be demonstrated. (orig.)

  14. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow Mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    A Sittichokechaiwut

    2010-07-01

    Full Text Available Dexamethasone (Dex is used widely to induce differentiation in human mesenchymal stem cells (hMSCs; however, using a pharmaceutical agent to stimulate hMSC differentiation is not the best choice for engineered tissue transplantation due to potential side-effects. The goal of the present study was to investigate the effects of dynamic compressive loading on differentiation and mineralized matrix production of hMSCs in 3D polyurethane scaffolds, using a loading regimen previously shown to stimulate mineralised matrix production of mature bone cells (MLO-A5. hMSCs were seeded in polyurethane scaffolds and cultured in standard culture media with or without Dex. Cell-seeded scaffolds were compressed at 5% global strain for 2 h on day 9 and then every 5 days in a media-filled sterile chamber. Samples were tested for mRNA expression of alkaline phosphatase (ALP, osteopontin (OPN, collagen type 1 (col 1 and runt-related transcription factor-2 (RUNX-212 h after the first loading, cell viability by MTS assay and alkaline phosphatase activity at day 12 of culture and cell viability, collagen content by Sirius red and calcium content by alizarin red at day 24 of culture. Neither Dex nor loading had significant effects on cell viability. Collagen content was significantly higher (p<0.01 in the loaded group compared with the non-loaded group in all conditions. There was no difference in ALP activity or the amount of collagen and calcium produced between the non-loaded group supplemented with Dex and the loaded group without Dex. We conclude that dynamic loading has the ability to stimulate osteogenic differentiation of hMSC in the absence of glucocorticoids.

  15. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats.

    Science.gov (United States)

    Alt, Volker; Cheung, Wing Hoi; Chow, Simon K H; Thormann, Ulrich; Cheung, Edmond N M; Lips, Katrin S; Schnettler, Reinhard; Leung, Kwok-Sui

    2016-06-01

    The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no

  16. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Lin, Kai-Feng; He, Shu; Song, Yue; Wang, Chun-Mei; Gao, Yi; Li, Jun-Qin; Tang, Peng; Wang, Zheng; Bi, Long; Pei, Guo-Xian

    2016-03-23

    Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties. PMID:26930140

  17. Utility of tricalcium phosphate and osteogenic matrix cellsheet constructs for bone defect reconstruction

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    AIM To determine the effects of transplanting osteogenicmatrix cell sheets and beta-tricalcium phosphate(TCP) constructs on bone formation in bone defects.METHODS: Osteogenic matrix cell sheets were preparedfrom bone marrow stromal cells (BMSCs), anda porous TCP ceramic was used as a scaffold. Threeexperimental groups were prepared, comprised of TCPscaffolds (1) seeded with BMSCs; (2) wrapped withosteogenic matrix cell sheets; or (3) both. Constructswere implanted into a femoral defect model in rats andbone growth was evaluated by radiography, histology,biochemistry, and mechanical testing after 8 wk.RESULTS: In bone defects, constructs implanted withcell sheets showed callus formation with segmental or continuous bone formation at 8 wk, in contrast toTCP seeded with BMSCs, which resulted in bone nonunion.Wrapping TCP constructs with osteogenic matrixcell sheets increased their osteogenic potential andresulting bone formation, compared with conventionalbone tissue engineering TCP scaffolds seeded withBMSCs. The compressive stiffness (mean ± SD) valueswere 225.0 ± 95.7, 30.0 ± 11.5, and 26.3 ± 10.6MPa for BMSC/TCP/Sheet constructs with continuousbone formation, BMSC/TCP/Sheet constructs withsegmental bone formation, and BMSC/TCP constructs,respectively. The compressive stiffness of BMSC/TCP/Sheet constructs with continuous bone formation wassignificantly higher than those with segmental boneformation and BMSC/TCP constructs.CONCLUSION: This technique is an improvementover current methods, such as TCP substitution, andis useful for hard tissue reconstruction and inducingearlier bone union in defects.

  18. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone.

    Science.gov (United States)

    Chappard, D; Bizot, P; Mabilleau, G; Hubert, L

    2016-06-01

    Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy). PMID:26762722

  19. The action of demineralized bovine bone matrix on bone neoformation in rats submitted to experimental alcoholism

    Directory of Open Access Journals (Sweden)

    R.L. Buchaim

    2013-06-01

    Full Text Available The objective of this study was to evaluate whether demineralized bovine bone (Gen-ox® alters bone neoformation in rats submitted to alcoholism. Forty male rats were separated into two groups of 20 rats and distributed as follows: Group E1, which received 25% ethanol and a surgical cavity filled only by a blood clot, and Group E2, which received 25% ethanol and a surgical cavity filled with Gen-ox®. The animals were euthanized at 10, 20, 40 and 60 days after surgery and necropsy was performed. The histomorphological and histometric analyses of the area of connective tissue and bone neoformation showed that the reorganization of the bone marrow and full repair of the surgical cavity in Group E1 occurred more quickly than in Group E2. It was also noted that in the final period the animals in Group E2 showed areas of connective tissue and thick bone trabeculae around the particles of the implant. It can be concluded that the use of Gen-ox® delayed the process of bone repair in alcoholic rats, although it can be used as filling material because it shows osteoconductive activity, as evidenced by bone tissue formation around the graft particles.

  20. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic

    International Nuclear Information System (INIS)

    This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.

  1. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram; Barbeck, Mike; Kirkpatrick, C James [REPAIR-Lab, Institute of Pathology, Johannes Gutenberg University, Mainz (Germany); Schlee, Markus [Bayreuther Strasse 39, D-91301, Forchheim (Germany); Webber, Matthew J [Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States); Willershausen, Ines [Institute for Dental Material Sciences and Technology, University Medical Center of the Johannes Gutenberg University, Mainz (Germany); Balic, Ela; Goerlach, Christoph [Geistlich Pharma AG, Wolhusen (Switzerland); Stupp, Samuel I [Department of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208 (United States); Sader, Robert A, E-mail: ghanaati@uni-mainz.de [Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt Am Main (Germany)

    2011-02-15

    This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.

  2. Stable carbon isotope variability of bone collagen and hair within a modern population of red kangaroos (Macropus rufus) in south western Queensland: some implications for palaeoecological research

    Energy Technology Data Exchange (ETDEWEB)

    Witt, G.B. [Queensland Univ., St. Lucia, QLD (Australia)

    1997-12-31

    Full text: Before any palaeo-reconstruction work can be attempted using stable isotope analysis of macropod remains it will be necessary to determine the nature of natural variability within contemporary populations. This research indicates that {delta}{sup 13}C of bone collagen is strongly related to age. Furthermore, bone collagen {delta}{sup 13}C not at equilibrium with dietary {delta}{sup 13}C, as indicated by analysis of hair, until animals are several years old. These preliminary data suggest that in younger macropods most carbon in bone collagen has been derived via the mother`s milk which may have undergone fractionation. These findings have significant implications for any palaeoecological research using bone or tooth. Teeth of macropods erupt from the rear of the jaw and move forward in molar progression. Since the rate of eruption is variable, and many of the forward molars are well formed while the joey is still at the pouch, teeth formed early in the life of a macropod may be isotopically distinct from those that develop later. This hypothesis is currently under investigation.

  3. Effect of macrophage and matrix metalloproteinase-9 on proliferation of pulmonary fibroblast and synthesis of collagen IV

    International Nuclear Information System (INIS)

    Objective: To explore pathogenetic mechanism in initiation of radiation-induced pulmonary fibrosis. Methods: Alveolar macrophages in Wistar rats irradiated by 60Co γ-ray were collected by alveolar lavage; condition medium was prepared for stimulating human lung fibroblast (HLF) proliferation; HLF proliferation activity was determined by MTT method; collagen IV (Col IV) in HLF was determined by Western blot; the activity of matrix metalloproteinase-9 (MMP-9) was determined by zymography. Results: HLF proliferation activity was significantly increased after stimulation of condition medium, and the increase was most evident within 48-72 hs. Col IV synthesis in HLF was increased and reached a peak at 12 h after stimulation and then began to decrease. MMP-9 activity began to increase at 12 h and reached a peak at 48 h and then decreased after 72 h. Conclusions: Cobalt-60 gamma ray irradiation of 20 Gy can stimulate secretion of some cytokines in alveolar macrophage to promote pulmonary interstitial fibroblast proliferation and synthesis of Col IV . Col IV can stimulate MMP-9 increase; MMP-9 can degrade excess Col IV. Such changes are involved in remodeling process of early pulmonary injury. (authors)

  4. A Randomized Comparative Study of Two Techniques to Optimize the Root Coverage Using a Porcine Collagen Matrix.

    Science.gov (United States)

    Reino, Danilo Maeda; Maia, Luciana Prado; Fernandes, Patrícia Garani; Souza, Sergio Luis Scombatti de; Taba Junior, Mario; Palioto, Daniela Bazan; Grisi, Marcio Fermandes de Moraes; Jr, Arthur Belém Novaes

    2015-10-01

    The aim of this randomized controlled clinical study was to compare the extended flap technique (EFT) with the coronally advanced flap technique (CAF) using a porcine collagen matrix (PCM) for root coverage. Twenty patients with two bilateral gingival recessions, Miller class I or II on non-molar teeth were treated with CAF+PCM (control group) or EFT+PCM (test group). Clinical measurements of probing pocket depth (PPD), clinical attachment level (CAL), recession height (RH), keratinized tissue height (KTH), keratinized mucosa thickness (KMT) were determined at baseline, 3 and 6 months post-surgery. At 6 months, the mean root coverage for test group was 81.89%, and for control group it was 62.80% (p<0.01). The change of recession depth from baseline was statistically significant between test and control groups, with an mean of 2.21 mm gained at the control sites and 2.84 mm gained at the test sites (p=0.02). There were no statistically significant differences for KTH, PPD or CAL comparing the two therapies. The extended flap technique presented better root coverage than the coronally advanced flap technique when PCM was used. PMID:26647926

  5. Impact of intense pulse light irradiation on BALB/c mouse skin-in vivo study on collagens, matrix metalloproteinases and vascular endothelial growth factor.

    Science.gov (United States)

    Luo, Dan; Cao, Yan; Wu, Di; Xu, Yang; Chen, Bin; Xue, Zhuyun

    2009-01-01

    Our aim was to investigate the effects of intense pulsed light (IPL) on collagen expression in BALB/c mouse skin and confirm its relative molecular mechanisms. The dorsal skin of BALB/c mice was irradiated by IPL. Before treatment and from 1 day to 8 weeks (1 day, 3 days, 5 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks and 8 weeks) after treatment, the irradiated skin specimens were examined. The histology showed dermis thickening, accompanied with increased collagen and better organization. After IPL irradiation from 2 W up to 8 W, the staining of collagen types I and III in the IPL-treated groups was stronger than in the sham groups (P IPL irradiation were time-dependent. The mRNA expression levels of matrix metalloproteinase (MMP)-1 and MMP-2 decreased progressively after IPL irradiation at 2 W up to 8 W (P IPL was also time-dependent. However, the mRNA expression of vascular endothelial growth factor (VEGF) had shown no obvious change by the end of the experiment (P > 0.05). Taking these factors together, we can conclude that IPL irradiation can not only enhance new collagen production, but also decrease collagen degradation in photo-rejuvenation mechanisms in mouse skin. PMID:18084809

  6. Artesunate modulates expression of matrix metalloproteinases and their inhibitors as well as collagen-IV to attenuate pulmonary fibrosis in rats.

    Science.gov (United States)

    Wang, Y; Huang, G; Mo, B; Wang, C

    2016-01-01

    The aim of this study was to determine the effect of artesunate on extracellular matrix (ECM) accumulation and the expression of collagen-IV, matrix metalloproteinase (MMP), and tissue inhibitor of matrix metalloproteinase (TIMP) to understand the pharmacological role of artesunate in pulmonary fibrosis. Eighty Sprague-Dawley rats were randomly assigned to four groups that were administered saline alone, bleomycin (BLM) alone, BLM + artesunate, or artesunate alone for 28 days. Lung tissues from 10 rats in each group were used to obtain lung fibroblast (LF) primary cells, and the rest were used to analyze protein expression. The mRNA expression of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 in lung fibroblasts was detected by real-time quantitative reverse transcriptase polymerase chain reaction. The protein levels of collagen-IV, MMP-2, MMP-9, TIMP-1, and TIMP-2 protein in lung tissues were analyzed by western blotting. Artesunate treatment alleviated alveolitis and pulmonary fibrosis induced by bleomycin in rats, as indicated by a decreased lung coefficient and improvement of lung tissue morphology. Artesunate treatment also led to decreased collagen-IV protein levels, which might be a result of its downregulated expression and increased MMP-2 and MMP-9 protein and mRNA levels. Increased TIMP-1 and TIMP- 2 protein and mRNA levels were detected after artesunate treatment in lung tissues and primary lung fibroblast cells and may contribute to enhanced activity of MMP-2 and -9. These findings suggested that artesunate attenuates alveolitis and pulmonary fibrosis by regulating expression of collagen-IV, TIMP-1 and 2, as well as MMP-2 and -9, to reduce ECM accumulation. PMID:27323108

  7. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    Science.gov (United States)

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (µCT) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a two-fold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The µCT analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites. PMID:27162749

  8. Tamibarotene-loaded citric acid-crosslinked alkali-treated collagen matrix as a coating material for a drug-eluting stent

    Directory of Open Access Journals (Sweden)

    Motoki Inoue, Mariko Takayanagi, Katsuhito Fujiu, Ichiro Manabe, Ryozo Nagai and Tetsushi Taguchi

    2012-01-01

    Full Text Available Tamibarotene-loaded biodegradable matrices with antithrombogenic and drug-releasing properties were prepared in a crosslinking reaction between amino groups of alkali-treated collagen (AlCol and active ester groups of trisuccinimidyl citrate. The resulting matrices were characterized by their residual amino group concentrations, swelling ratios and thermal, antithrombogenic and drug-releasing properties. It was clarified that the addition of tamibarotene does not inhibit matrix formation. After immersion in water, the swelling ratio of a matrix became lower than that prior to immersion. Thermal analysis indicated that AlCol interacted with tamibarotene. The addition of tamibarotene to the matrix did not influence the antithrombogenic property of the resulting matrix. A matrix with a high crosslinking density had a prolonged tamibarotene elution time. These results demonstrate that tamibarotene-loaded matrices have great potential as a coating material for drug-eluting stents.

  9. The collagen microfibil model as a tool for leather scientists

    Science.gov (United States)

    Collagen, a structural protein of the extracellular matrix, gives strength and form to the skin, tendons, bones, cornea and teeth of mammals. The discovery by early humans that the skin of an animal, slaughtered for meat, could be preserved by exposing it to smoke or rubbing with fat, led to the pr...

  10. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  11. Magnetically Responsive Bone Marrow Mesenchymal Stem Cell-Derived Smooth Muscle Cells Maintain Their Benefits to Augmenting Elastic Matrix Neoassembly.

    Science.gov (United States)

    Swaminathan, Ganesh; Sivaraman, Balakrishnan; Moore, Lee; Zborowski, Maciej; Ramamurthi, Anand

    2016-04-01

    Abdominal aortic aneurysms (AAA) represent abnormal aortal expansions that result from chronic proteolytic breakdown of elastin and collagen fibers by matrix metalloproteases. Poor elastogenesis by adult vascular smooth muscle cells (SMCs) limits regenerative repair of elastic fibers, critical for AAA growth arrest. Toward overcoming these limitations, we recently demonstrated significant elastogenesis by bone marrow mesenchymal stem cell-derived SMCs (BM-SMCs) and their proelastogenesis and antiproteolytic effects on rat aneurysmal SMCs (EaRASMCs). We currently investigate the effects of super paramagnetic iron oxide nanoparticle (SPION) labeling of BM-SMCs, necessary to magnetically guide them to the AAA wall, on their functional benefits. Our results indicate that SPION-labeling is noncytotoxic and does not adversely impact the phenotype and elastogenesis by BM-SMCs. In addition, SPION-BM-SMCs showed no changes in the ability of the BM-SMCs to stimulate elastin regeneration and attenuate proteolytic activity by EaRASMCs. Together, our results are promising toward the utility of SPIONs for magnetic targeting of BM-SMCs for in situ AAA regenerative repair. PMID:26830683

  12. Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

    DEFF Research Database (Denmark)

    Galli, Giorgio Giacomo; Honnens de Lichtenberg, Kristian; Carrara, Matteo;

    2012-01-01

    PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly e...... transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix....

  13. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo

    OpenAIRE

    Schofer, Markus D.; Tünnermann, Lisa; Kaiser, Hendric; Roessler, Philip P; Theisen, Christina; Heverhagen, Johannes T.; Hering, Jacqueline; Voelker, Maximilian; Agarwal, Seema; Efe, Turgay; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R. J.

    2012-01-01

    The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differenti...

  14. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep.

    Science.gov (United States)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-03-01

    Allogenic bone graft has been considered the gold standard in connection with bone graft material in revision joint arthroplasty. However, the lack of osteogenic potential and the risk of disease transmission are clinical challenges. The use of osteoinductive materials, such as demineralized bone matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10 mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft (gold standard), respectively. A standardized surgical procedure was used. At sacrifice 6 weeks after implantation, both distal femurs were harvested. The implant fixation was evaluated by mechanical push-out testing to test shear mechanical properties between implant and the host bone and by histomorphometry. Non-parametric tests were applied; p strengths among the DBM/CB, DBM/allograft and allograft groups were not statistically different. The strength of the DBM group was 0.01 MPa, which was statistical significantly lower than the other three groups (p < 0.05). Histomorphometry results showed that the bone ongrowth in the DBM group was statistically significantly lower than the other three groups, while the volume fraction of new bone showed no significant difference among

  15. Ridge preservation with acellular dermal matrix and anorganic bone matrix cell-binding peptide P-15 after tooth extraction in humans. A histologic and morphometric study

    OpenAIRE

    Arthur B. Novaes Jr.; Patricia Garani Fernandes; Flávia Adelino Suaid; Marcio Fernando de Moraes Grisi; Sergio Luis Scombatti de Souza; Mario Taba Jr.; Daniela Bazan Palioto; Valdir Antonio Muglia

    2012-01-01

    Aim: The aim of this study was to analyze by histomorphometric parameters the use of acellular dermal matrix (ADM) with or without anorganic bovine bone matrix (ABM) / synthetic cell-binding peptide P-15 in the formation of bone in human alveoli. Materials and methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15) or the control group (ADM only). Histomorphometric measurements and histological a...

  16. Acceleration of bone formation during fracture healing by poly(pro-hyp-gly)10 and basic fibroblast growth factor containing polycystic kidney disease and collagen-binding domains from Clostridium histolyticum collagenase.

    Science.gov (United States)

    Sekiguchi, Hiroyuki; Uchida, Kentaro; Inoue, Gen; Matsushita, Osamu; Saito, Wataru; Aikawa, Jun; Tanaka, Keisuke; Fujimaki, Hisako; Miyagi, Masayuki; Takaso, Masashi

    2016-06-01

    Growth factor delivered in combination with animal-derived collagen materials has been used to accelerate bone fracture healing in human patients. However, the introduction of bovine proteins into humans carries the risk of zoonotic and immunologic complications. Here, we developed a collagen-like polypeptide-based bone formation system consisting of poly(Pro-Hyp-Gly)10 , which mimics the triple helical conformation of collagen, and basic fibroblast growth factor (bFGF) fused to the polycystic kidney disease (PKD) domain and collagen-binding domain (CBD) of Clostridium histolyticum collagenase. Circular dichroism spectral analysis showed that when pepsin-soluble bovine type I collagen was treated at 50°C, a positive signal corresponding to the collagen triple helix at 220 nm was not detected. In contrast, poly(Pro-Hyp-Gly)10 retained the 220-nm positive peak, even when treated at 80°C. The combination of the collagen binding-bFGF fusion protein (bFGF-PKD-CBD) with poly(Pro-Hyp-Gly)10 induced greater bone formation compared to bFGF alone in mice bone fracture models. Taken together, these properties suggest that the bFGF-PKD-CBD/poly(Pro-Hyp-Gly)10 composite is a promising material for bone repair in the clinical setting. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1372-1378, 2016. PMID:26833780

  17. Bone neoformation in defects treated with fibrin platelet rich membrane versus collagen membrane: a histomorphometric study in rabbit’s femurs.

    Directory of Open Access Journals (Sweden)

    Edwin Jonathan Meza

    2015-02-01

    Full Text Available The aim of the present research was to compare the bone neoformation in bone defects treated with platelet rich fibrin (PRF and collagen membrane (CM, after 3 and 5 weeks for which two bone defects were created of 4 mm width and 6 mm depth in the left femur distal diaphysis of New Zeland rabbits (n = 12. The subjects were randomly allocated in 2 groups. One of the defects was covered with a platelet rich fibrin membrane (Centrifuged resorbable Autologous blood biopolymer without biochemical modification or collagen membrane (gold standard – Neo Mem. The second defect was left uncovered (NC. The rabbits were sacrified after 3 and 5 weeks (3 rabbits per period. The femur was completely removed and they were processed histomophometrically. The bone neoformation analysis was performed through a differential points counting. The data was statistically analyzed (ANOVA, Tukey. The histomorphometric results showed that bone neoformation of the defects treated with PRF after 3 weeks was equivalent to the neoformation of the CM (p

  18. Multiscale imaging of bone microdamage.

    Science.gov (United States)

    Poundarik, Atharva A; Vashishth, Deepak

    2015-04-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone's propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities, such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  19. Carbon and nitrogen stable isotopes of well-preserved Middle Pleistocene bone collagen from Schöningen (Germany) and their paleoecological implications.

    Science.gov (United States)

    Kuitems, Margot; van der Plicht, Johannes; Drucker, Dorothée G; Van Kolfschoten, Thijs; Palstra, Sanne W L; Bocherens, Hervé

    2015-12-01

    Carbon and nitrogen stable isotopes in bone collagen can provide valuable information about the diet and habitat of mammal species. However, bone collagen degrades in normal circumstances very rapidly, and isotope analyses are therefore usually restricted to fossil material with a Late Pleistocene or Holocene age. The Middle Pleistocene site of Schöningen, dated to around 300,000 years ago, yielded bones and teeth with an exceptionally good state of collagen preservation. This allowed us to measure reliable biogenic carbon and nitrogen stable isotope ratios for different herbivorous taxa from the families Elephantidae, Rhinocerotidae, Equidae, Cervidae, and Bovidae. The results provide insights regarding the paleoenvironmental setting in which Middle Pleistocene hominins operated. The vegetation consumed by the herbivores from the famous spear horizon originates from open environments. During the climatic Reinsdorf Interglacial optimum, the landscape seems to have been relatively open as well, but certainly included parts that were forested. The results also indicate some niche partitioning; different herbivore species used different plant resources. For instance, the horses seem to have been predominantly browsers, while the straight-tusked elephants were feeding chiefly on grass. PMID:25824673

  20. Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

    OpenAIRE

    Um, In-Woong; Hwang, Suk-Hyun; Kim, Young-Kyun; Kim, Moon-Young; Jun, Sang-Ho; Ryu, Jae-Jun; Jang, Hyon-Seok

    2016-01-01

    Objectives The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM...

  1. Breakdown of cell-collagen networks through collagen remodeling

    OpenAIRE

    Iordan, Andreea; Duperray, Alain; Gérard, Anaïs; Grichine, Alexei; Verdier, Claude

    2010-01-01

    International audience Collagen model tissues are analyzed, which consist of cells embedded in a collagen matrix at different concentrations (of cells and collagen). Rheological properties are measured and complementary confocal microscopy analyses are carried out. An important feature is observed, corresponding to the breakdown of the collagen network (i.e. decrease in network elasticity) for high collagen concentrations, due to the presence of cells. Thanks to confocal microscopy, we sho...

  2. Efficacy of Mucograft vs Conventional Resorbable Collagen Membranes in Guided Bone Regeneration Around Standardized Calvarial Defects in Rats: An In Vivo Microcomputed Tomographic Analysis.

    Science.gov (United States)

    Babay, Nadir; Ramalingam, Sundar; Basudan, Amani; Nooh, Nasser; AlKindi, Mohammed; Al-Rasheed, Abdulaziz; Al-Hezaimi, Khalid

    2016-01-01

    The aim of this in vivo microcomputed tomographic (μCT) study was to compare the efficacy of Mucograft (MG) vs resorbable collagen membranes (RCMs) in facilitating guided bone regeneration (GBR) around standardized calvarial defects in rats. Forty female Wistar albino rats with a mean age and weight of 6 to 9 weeks and 250 to 300 g, respectively, were used. With the rats under general anesthesia, the skin over the calvaria was exposed using a full-thickness flap. A standardized calvarial defect with a 4.6-mm diameter was created in the left parietal bone. For treatment, the rats were randomly divided into four groups (n = 10 per group): (1) defects covered with MG (MG group); (2) defects covered with an RCM (RCM group); (3) defects filled with xenograft bone particles and covered by MG (MG + bone group); and (4) defects filled with xenograft bone particles and covered by an RCM (RCM + bone group). Primary closure was achieved using interrupted resorbable sutures. The animals underwent high-resolution, three-dimensional μCT scans at baseline and at 2, 4, 6, and 8 weeks after the surgical procedures. Data regarding volume and bone mineral density (BMD) of newly formed bone (NFB) and bone particles revealed an increase in the volume of NFB in all the groups from baseline to 8 weeks. The MG group had the lowest volume of NFB (mean ± standard deviation [SD], 1.32 ± 0.22 mm(3)). No significant differences in mean ± SD values for volume of NFB were observed between the RCM (3.50 ± 0.24 mm(3)) and MG + bone (3.87 ± 0.36 mm(3)) groups, but their values were significantly lower than that of the RCM + bone group (2.95 ± 0.15 mm(3), F = 131.91, dfN = 2, dfD = 27, P RCM group having the highest mean ± SD BMD of NFB (0.42 ± 0.05 g/mm(3)). Significant differences in the bone particle volume between the RCM + bone and MG + bone groups (F = 91.04, dfN = 1, dfD = 18, P RCM + bone group displaying greater reduction in both volume (36.8%) and BMD (19.7%) of bone particles

  3. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  4. A comparison of commercially available demineralized bone matrix for spinal fusion

    OpenAIRE

    Wang, Jeffrey C.; Alanay, A; Mark, Davies; Kanim, Linda E. A.; Campbell, Pat A; Dawson, Edgar G.; Lieberman, Jay R.

    2007-01-01

    In an effort to augment the available grafting material as well as to increase spinal fusion rates, the utilization of a demineralized bone matrix (DBM) as a graft extender or replacement is common. There are several commercially available DBM substances available for use in spinal surgery, each with different amounts of DBM containing osteoinductive proteins. Each product may have different osteoinductivity potential due to different methods of preparation, storage, and donor specifications....

  5. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    Science.gov (United States)

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  6. The Effect of Interferon-γ and Zoledronate Treatment on Alpha-Tricalcium Phosphate/Collagen Sponge-Mediated Bone-Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Peiqi Li

    2015-10-01

    Full Text Available Inflammatory responses are frequently associated with the expression of inflammatory cytokines and severe osteoclastogenesis, which significantly affect the efficacy of biomaterials. Recent findings have suggested that interferon (IFN-γ and zoledronate (Zol are effective inhibitors of osteoclastogenesis. However, little is known regarding the utility of IFN-γ and Zol in bone tissue engineering. In this study, we generated rat models by generating critically sized defects in calvarias implanted with an alpha-tricalcium phosphate/collagen sponge (α-TCP/CS. At four weeks post-implantation, the rats were divided into IFN-γ, Zol, and control (no treatment groups. Compared with the control group, the IFN-γ and Zol groups showed remarkable attenuation of severe osteoclastogenesis, leading to a significant enhancement in bone mass. Histomorphometric data and mRNA expression patterns in IFN-γ and Zol-injected rats reflected high bone-turnover with increased bone formation, a reduction in osteoclast numbers, and tumor necrosis factor-α expression. Our results demonstrated that the administration of IFN-γ and Zol enhanced bone regeneration of α-TCP/CS implants by enhancing bone formation, while hampering excess bone resorption.

  7. Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise.

    Science.gov (United States)

    Mohan, Subburaman; Wergedal, Jon E; Das, Subhashri; Kesavan, Chandrasekhar

    2015-02-01

    In this study, we evaluated the role of the microRNA (miR)17-92 cluster in osteoblast lineage cells using a Cre-loxP approach in which Cre expression is driven by the entire regulatory region of the type I collagen α2 gene. Conditional knockout (cKO) mice showed a 13-34% reduction in total body bone mineral content and area with little or no change in bone mineral density (BMD) by DXA at 2, 4, and 8 wk in both sexes. Micro-CT analyses of the femur revealed an 8% reduction in length and 25-27% reduction in total volume at the diaphyseal and metaphyseal sites. Neither cortical nor trabecular volumetric BMD was different in the cKO mice. Bone strength (maximum load) was reduced by 10% with no change in bone toughness. Quantitative histomorphometric analyses revealed a 28% reduction in the periosteal bone formation rate and in the mineral apposition rate but with no change in the resorbing surface. Expression levels of periostin, Elk3, Runx2 genes that are targeted by miRs from the cluster were decreased by 25-30% in the bones of cKO mice. To determine the contribution of the miR17-92 cluster to the mechanical strain effect on periosteal bone formation, we subjected cKO and control mice to 2 wk of mechanical loading by four-point bending. We found that the periosteal bone response to mechanical strain was significantly reduced in the cKO mice. We conclude that the miR17-92 cluster expressed in type I collagen-producing cells is a key regulator of periosteal bone formation in mice. PMID:25492928

  8. The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Directory of Open Access Journals (Sweden)

    Anak A. S. S. K. Dharmapatni

    2015-01-01

    Full Text Available Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP, on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA in mice. Methods. Four groups of mice (n=6 per group were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day, CAIA treated with low dose Embelin (30 mg/kg/day, and CAIA treated with high dose Embelin (50 mg/kg/day. Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP staining, and serum carboxy-terminal collagen crosslinks (CTX-1 ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores (P<0.05 and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 (P<0.05 and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss.

  9. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model

    Directory of Open Access Journals (Sweden)

    Veidal Sanne Skovgård

    2012-12-01

    Full Text Available Abstract Background Accumulation of extracellular matrix (ECM and increased matrix metalloproteinase (MMP activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M, known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control or treated with IBMX (phosphodiesterase inhibitor. Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p 4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.

  10. Matrix Metalloproteinase 2 (MMP-2) Plays a Critical Role in the Softening of Common Carp Muscle during Chilled Storage by Degradation of Type I and V Collagens.

    Science.gov (United States)

    Xu, Chao; Wang, Cheng; Cai, Qiu-Feng; Zhang, Qian; Weng, Ling; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2015-12-30

    Matrix metalloproteinases (MMPs) are proposed to play important roles in the degradation of collagens, thus causing the post-mortem softening of fish muscle, although the specific mechanism remains largely unresolved. Previously, we reported the existence of gelatinase-like proteinases in common carp (Cyprinus carpio) muscle. The primary structures of these proteinases, however, have never been investigated. In the present study, two MMPs with molecular masses of 66 and 65 kDa were purified to homogeneity from common carp muscle by ammonium sulfate fractionation and a series of column chromatographies. Matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) analysis indicated that they are completely identical to MMP-2 from common carp. During chilled storage of common carp at 4 °C, the enzymatic activity of MMP-2 increased to 212% in 12 h while the texture profile increased over the first 2 h and gradually decreased. On the other hand, type V collagen was purified to homogeneity and a specific polyclonal antibody against this protein was prepared. Both type I and V collagens were effectively hydrolyzed by MMP-2 at 30 °C and even at 4 °C. Furthermore, injection of metalloproteinase proteinase inhibitor EDTA into the blood vessel of live common carp suppressed post-mortem tenderization significantly. All of these results confirmed that MMP-2 is a major proteinase responsible for the degradation of collagens, resulting in the softening of fish muscle during chilled storage. PMID:26653826

  11. Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise

    OpenAIRE

    Mohan, Subburaman; Wergedal, Jon E.; Das, Subhashri; Kesavan, Chandrasekhar

    2014-01-01

    In this study, we evaluated the role of the microRNA (miR)17-92 cluster in osteoblast lineage cells using a Cre-loxP approach in which Cre expression is driven by the entire regulatory region of the type I collagen α2 gene. Conditional knockout (cKO) mice showed a 13–34% reduction in total body bone mineral content and area with little or no change in bone mineral density (BMD) by DXA at 2, 4, and 8 wk in both sexes. Micro-CT analyses of the femur revealed an 8% reduction in length and 25–27%...

  12. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  13. Role of Matrix Vesicles in Biomineralization

    OpenAIRE

    Golub, Ellis E.

    2009-01-01

    Matrix vesicles have been implicated in the mineralization of calcified cartilage, bone and dentin for more than 40 years. During this period, their exact role, if any in the nucleation of hydroxyapatite mineral, and its subsequent association with the collagen fibrils in the organic matrix has been debated and remains controversial. Several hypotheses have been recently introduced to explain in greater detail how matrix vesicles function in biomineralization. This review will summarize recen...

  14. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  15. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology.

    Directory of Open Access Journals (Sweden)

    Russell Garman

    Full Text Available A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9 and normal age-matched control (n = 18 mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17% and connectivity density (33%, and significantly smaller trabecular spacing (-6% and structural model index (-11%. These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism.

  16. Bone density of defects treated with lyophilized amniotic membrane versus collagen membrane: a tomographic and histomorfogenic study in rabbit´s femur

    Directory of Open Access Journals (Sweden)

    Liz Katty Ríos

    2014-09-01

    Full Text Available ABSTRACT The aim of this study was to compare the bone density of bone defects treated with lyophilizated amniotic membrane (LAM and collagen Membrane (CM, at 3 and 5 weeks. Two bone defects of 4 mm in diameter and 6 mm deep were created in left distal femoral diaphysis of New Zealand rabbits (n = 12. The animals were randomly divided into 2 groups. One of the defects was covered with lyophilized amniotic membrane (Rosa Chambergo Tissue Bank/National Institute of Child Health-IPEN, Lima, Peru or collagen Membrane (Dentium Co, Seoul, Korea. The second was left uncovered (NC. The rabbits were killed after 3 and 5 weeks (3 rabbits/period. The results showed a high bone density and repair of the defect by new bone. The tomographic study revealed that the bone density of the defects treated with LAM at 3 weeks was equivalent to the density obtained with CM and higher density compared with NC (p 0.05. The results show that lyophilizated amniotic membrane provides bone density equal or higher to the collagen membrane. RESUMEN El propósito de este estudio fue comparar la densidad ósea (DO de defectos óseos tratados con membrana amniótica liofilizada (MAL y membrana de colágeno (MC, a las 3 y 5 semanas. Se crearon dos defectos óseos, de 4 mm de diámetro y 6 mm de profundidad, en la diáfisis femoral distal izquierda de conejos Nueva Zelanda (n=12. Los animales fueron divididos aleatoriamente en 2 grupos. Uno de los defectos fue cubierto con membrana amniótica liofilizada (Banco de tejidos Rosa Chambergo/INSN-IPEN, Lima, Perú o membrana de colágeno (Dentium Co, Seoul, Korea. El segundo se dejó sin cubrir (NC. Los conejos fueron sacrificados después de 3 y 5 semanas (3 conejos/periodo. Los resultados mostraron una alta DO y reparación del defecto por hueso neoformado. El estudio tomográfico reveló que la DO de los defectos tratados con MAL a las 3 semanas fue comparable a la densidad obtenida con MC y mayor comparado con la densidad de NC (p

  17. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    OpenAIRE

    Dong Joon Lee; Ricardo Padilla; He Zhang; Wei-Shou Hu; Ching-Chang Ko

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using ...

  18. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect.

    Science.gov (United States)

    Olejnik, Cécile; Falgayrac, Guillaume; During, Alexandrine; Cortet, Bernard; Penel, Guillaume

    2016-08-01

    Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, Porganization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing. PMID:27168397

  19. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation.

    Science.gov (United States)

    Ren, Xiaoyan; Tu, Victor; Bischoff, David; Weisgerber, Daniel W; Lewis, Michael S; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2016-05-01

    Current strategies for skeletal regeneration often require co-delivery of scaffold technologies, growth factors, and cellular material. However, isolation and expansion of stem cells can be time consuming, costly, and requires an additional procedure for harvest. Further, the introduction of supraphysiologic doses of growth factors may result in untoward clinical side effects, warranting pursuit of alternative methods for stimulating osteogenesis. In this work, we describe a nanoparticulate mineralized collagen glycosaminoglycan scaffold that induces healing of critical-sized rabbit cranial defects without addition of expanded stem cells or exogenous growth factors. We demonstrate that the mechanism of osteogenic induction corresponds to an increase in canonical BMP receptor signalling secondary to autogenous production of BMP-2 and -9 early and BMP-4 later during differentiation. Thus, nanoparticulate mineralized collagen glycosaminoglycan scaffolds may provide a novel growth factor-free and ex vivo progenitor cell culture-free implantable method for bone regeneration. PMID:26950166

  20. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    Science.gov (United States)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  1. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  2. Location of 64K collagen producer chondrocytes in developing chicken embryo tibiae

    International Nuclear Information System (INIS)

    The synthesis of a new low-molecular-weight collagen by cultured chicken embryo chondrocytes has been recently demonstrated. In this paper the authors report results on the location of chondrocytes synthesizing this new collagen (64K collagen) in the developing chicken embryo. The 64K collagen is synthesized in very large amounts by cells concentrated at the diaphysis of 9-day-old and at the epiphysis of 17-day-old embryo tibiae. These regions are characterized by a remodeling of the cartilage matrix leading to the replacement of the cartilage with bone tissue; therefore, this collagen appears to be a marker of a specific developmental stage of chondrocytes. The origin of cells competent for the synthesis of the 64K collagen is also discussed

  3. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents.

    Science.gov (United States)

    Eagle, M J; Rooney, P; Kearney, J N

    2015-09-01

    Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model

  4. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    Science.gov (United States)

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects. PMID:23375953

  5. Dynamic nanomechanics of individual bone marrow stromal cells and cell-matrix composites during chondrogenic differentiation.

    Science.gov (United States)

    Lee, BoBae; Han, Lin; Frank, Eliot H; Grodzinsky, Alan J; Ortiz, Christine

    2015-01-01

    Dynamic nanomechanical properties of bovine bone marrow stromal cells (BMSCs) and their newly synthesized cartilage-like matrices were studied at nanometer scale deformation amplitudes. The increase in their dynamic modulus, |E(*)| (e.g., 2.4±0.4 kPa at 1 Hz to 9.7±0.2 kPa at 316 Hz at day 21, mean±SEM), and phase angle, δ, (e.g., 15±2° at 1 Hz to 74±1° at 316 Hz at day 21) with increasing frequency were attributed to the fluid flow induced poroelasticity, governed by both the newly synthesized matrix and the intracellular structures. The absence of culture duration dependence suggested that chondrogenesis of BMSCs had not yet resulted in the formation of a well-organized matrix with a hierarchical structure similar to cartilage. BMSC-matrix composites demonstrated different poro-viscoelastic frequency-dependent mechanical behavior and energy dissipation compared to chondrocyte-matrix composites due to differences in matrix molecular constituents, structure and cell properties. This study provides important insights into the design of optimal protocols for tissue-engineered cartilage products using chondrocytes and BMSCs. PMID:25468666

  6. Extracellular matrix-inspired growth factor delivery systems for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Mikaël M. [Osaka Univ. (Japan). Immunology Frontier Research Center; Briquez, Priscilla S. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Maruyama, Kenta [Osaka Univ. (Japan). Immunology Frontier Research Center; Hubbell, Jeffrey A. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering; Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-04-17

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatio-temporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  7. Analyses of stable isotopes in camelids collagen bones from Tulan Ravine, Atacama Puna, early formative period (CA 3,1000-2,400BP)

    International Nuclear Information System (INIS)

    This paper presents the results of isotope analysis (δ13C y δ15N) conducted on bone collagen found in Lama guanicoe and Lama glama remains from Tulan-85 and Tulan-54 archaeological sites. Both sites have been dated to the Early Formative Period (ca. 3,100-2,400 ap) and are located southeast of the Atacama Puna basin. Faunal samples were selected using anatomical and morphometric criteria. The results indicate divergences in the diets of both species, reflecting vegetation variation in the Tulan Quebrada caused by altitude differences and linked to hunting and herding areas

  8. Approach to the human diet of the punic population of Can Marines (Ibiza. C an N stable isotope analysis on bone collagen

    Directory of Open Access Journals (Sweden)

    Domingo Carlos Salazar García

    2012-09-01

    Full Text Available We report here on the results of carbon and nitrogen stable isotope analysis on bone collagen of humans from the Punic site of Can Marines (V-IVth BC from the island of Ibiza (Spain. To date, there are few isotopic studies for this period from the Mediterranean. This article reports new isotopic data from a Western Mediterranean Punic rural settlement. The results show a terrestrial based diet with no isotopic evidence of marine or freshwater protein input, and suggest the presence of C4 resources in it.

  9. Platelet-derived growth factor type BB and collagen matrix for soft tissue reconstruction after muco-epidermoid carcinoma removal: A possible therapeutic option

    Directory of Open Access Journals (Sweden)

    Marco Cicciù

    2015-01-01

    Full Text Available Muco-epidermoid carcinoma (MEC is a rare malignant tumor occurring in major and minor salivary glands. The described case shows a patient undergoing tumor resection without neck dissection. A quick diagnosis performed through clinical investigation and incisional biopsy revealed the nature of the tumor. A porcine collagen matrix was applied after the surgery in order to improve soft tissue healing. The matrix was saturated with platelet-derived growth factor type BB in order to favorite healing process and then fixed on the palate with a dental support device. Follow-up visit performed at first, second, and third weeks highlighted a quick healing of oral mucosa. Here reported is a case of a 34-year-old man who developed a muco-epidermoid oral carcinoma localized in the left upper jaw palatal side. The clinical, radiographic, and histopathologic findings, plus differential diagnoses of the case and reconstructive treatment options are also presented.

  10. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing

    OpenAIRE

    Schrier, Jay A.; Fink, Betsy F.; Rodgers, Janet B.; Vasconez, Henry C; DeLuca, Patrick P.

    2001-01-01

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not...

  11. A matrix lie group approach to statistical shape analysis of bones.

    Science.gov (United States)

    Hefny, Mohamed S; Rudan, John F; Ellis, Randy E

    2014-01-01

    Statistical shape models using a principal-component analysis are inadequate for studying shapes that are in non-linear manifolds. Principal tangent components use a matrix Lie group that maps a non-linear manifold to a corresponding linear tangent space. Computations that are performed on the tangent space of the manifold use linear statistics to analyze non-linear shape spaces. The method was tested on bone surface from proximal femurs. Using only three components, the new model recovered 94% of the medical dataset, whereas a conventional method that used linear principal components needed 24 components to achieve the same reconstruction accuracy. PMID:24732500

  12. Demineralized Bone Matrix Add-On for Acceleration of Bone Healing in Atypical Subtrochanteric Femoral Fracture: A Consecutive Case-Control Study

    OpenAIRE

    Noratep Kulachote; Paphon Sa-ngasoongsong; Norachart Sirisreetreerux; Pongsthorn Chanplakorn; Praman Fuangfa; Chanyut Suphachatwong; Wiwat Wajanavisit

    2016-01-01

    Background. Delayed union and nonunion are common complications in atypical femoral fractures (AFFs) despite having good fracture fixation. Demineralized bone matrix (DBM) is a successfully proven method for enhancing fracture healing of the long bone fracture and nonunion and should be used in AFFs. This study aimed to compare the outcome after subtrochanteric AFFs (ST-AFFs) fixation with and without DBM. Materials and Methods. A prospective study was conducted on 9 ST-AFFs patients using DB...

  13. Osseous healing with a composite of allograft and demineralized bone matrix: adverse effects of smoking.

    Science.gov (United States)

    Ziran, Bruce H; Hendi, Pooneh; Smith, Wade R; Westerheide, Kenneth; Agudelo, Juan F

    2007-04-01

    We report on our use of a composite graft of lyophilized cancellous allogenic chips and demineralized bone matrix (DBM; Grafton; Osteotech, Eatontown, NJ) to manage traumatic osseous defects and nonunions. Data were prospectively collected from all patients who received this composite bone graft between 1996 and 2000. Only acute fractures with bone loss resulting in a uncontained defect and atrophic non-unions were included in the present study. Demographic data and complications related to composite use, tobacco use, and other comorbidities that could affect healing were evaluated. One hundred seven patients (112 bone graft sites) were followed up for a mean of 32 months (range, 12-60 months). Graft sites included the forearm, femur and tibia. Of the 112 patients, there were 56 smokers (25 non-unions and 31 fractures) and 56 non-smokers (28 fractures and 28 non-unions). Healing occured in 38/56 smokers compared with 49/56 non-smokers. In failed cases, smoking was characteristic in 7/9 non-unions and 11/16 fractures. There were 26 acute uncontained injuries, 29 acute contained defects, and 67 nonunions. Grafting sites were radius/ulna (13 cases), humerus (17), femur (31), and tibia/fibula (51). Significant comorbidities were diabetes mellitus (4 cases), fungal osteomyelitis (1), and pulmonary alveolar proteinosis (1). Eight (73%) of the 11 patients with graft failure had a significant smoking history. This composite graft is an option for managing osseous defects and nonunions traditionally treated with autologous bone grafting but should be used with caution when treating patients who are smokers. PMID:17515188

  14. SH3BP2 gain-of-function mutation exacerbates inflammation and bone loss in a murine collagen-induced arthritis model.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Mukai

    Full Text Available OBJECTIVE: SH3BP2 is a signaling adapter protein which regulates immune and skeletal systems. Gain-of-function mutations in SH3BP2 cause cherubism, characterized by jawbone destruction. This study was aimed to examine the role of SH3BP2 in inflammatory bone loss using a collagen-induced arthritis (CIA model. METHODS: CIA was induced in wild-type (Sh3bp2(+/+ and heterozygous P416R SH3BP2 cherubism mutant knock-in (Sh3bp2(KI/+ mice, an SH3BP2 gain-of-function model. Severity of the arthritis was determined by assessing the paw swelling and histological analyses of the joints. Micro-CT analysis was used to determine the levels of bone loss. Inflammation and osteoclastogenesis in the joints were evaluated by quantitating the gene expression of inflammatory cytokines and osteoclast markers. Furthermore, involvement of the T- and B-cell responses was determined by draining lymph node cell culture and measurement of the serum anti-mouse type II collagen antibody levels, respectively. Finally, roles of the SH3BP2 mutation in macrophage activation and osteoclastogenesis were determined by evaluating the TNF-α production levels and osteoclast formation in bone marrow-derived M-CSF-dependent macrophage (BMM cultures. RESULTS: Sh3bp2(KI/+ mice exhibited more severe inflammation and bone loss, accompanying an increased number of osteoclasts. The mRNA levels for TNF-α and osteoclast marker genes were higher in the joints of Sh3bp2(KI/+ mice. Lymph node cell culture showed that lymphocyte proliferation and IFN-γ and IL-17 production were comparable between Sh3bp2(+/+ and Sh3bp2(KI/+ cells. Serum anti-type II collagen antibody levels were comparable between Sh3bp2(+/+ and Sh3bp2(KI/+ mice. In vitro experiments showed that TNF-α production in Sh3bp2(KI/+ BMMs is elevated compared with Sh3bp2(+/+ BMMs and that RANKL-induced osteoclastogenesis is enhanced in Sh3bp2(KI/+ BMMs associated with increased NFATc1 nuclear localization. CONCLUSION: Gain-of-function of

  15. Effects of Time of Initial Exposure to MSV Sarcoma on Bone Induction by Dentine Matrix Implants and on Orthotopic Femora

    Directory of Open Access Journals (Sweden)

    Aniela Brodzikowska

    2010-09-01

    Full Text Available HCl-demineralized murine lower incisors were implanted intramuscularly into syngeneic BALB/c mice to induce heterotopic osteogenesis. Implants were exposed at the early, preosteogenic stage (4, or at the later, osteogenic stage (12 to the Moloney sarcoma virus (MSV, which within 3–4 days results in a sarcoma. The yield of bone induction was determined by weight of dry bone mass following NaOH hydrolysis of soft tissues. To verify the effect of this sarcoma on orthotopic local femoral bone, the dry mass of the tumor-exposed femora was measured and compared with the weight of MSV-unexposed contralateral controls. MSV-sarcoma or cells involved with their spontaneous rejection have a stimulatory effect on the periosteal membrane of the tumor-adjacent femoral bones, increasing their dry mass on average by 18%. No stimulatory effect on heterotopic bone induction was observed when the MSV sarcoma grew during the early, preosteogenic stage (4 onward, but when the tooth matrix had been exposed to such tumor at the already bone-forming stage, (12 onward, the yield of bone induction was enhanced. Thus, it is postulated that lesions induced by MSV during the early, preosteogenic stage inhibit recruitment of osteoprogenitor cells or degrade Bone Morphogenetic Proteins (BMPs released by matrix resorbing inflammatory cells, whereas when acting on already existing bone they have a stimulatory effect.

  16. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    Directory of Open Access Journals (Sweden)

    Debora B. Petropolis

    2014-04-01

    Full Text Available Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D environment mainly composed of Collagen I (COL I. This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.

  17. In vivo performance of combinations of autograft, demineralized bone matrix, and tricalcium phosphate in a rabbit femoral defect model

    International Nuclear Information System (INIS)

    Large bone defects may be treated with autologous or allogeneic bone preparations. Each treatment has advantages and disadvantages; therefore, a clinically viable option for treating large (e.g., gap) bone defects may be a combination of the two. In the present study, bone repair was determined with combinations of autografts, allografts, and synthetic bone grafts using an established rabbit femoral defect model. Bilateral unicortical femoral defects were surgically prepared and treated with combinatorial bone grafts according to one of seven treatment groups. Recipient sites were retrieved at six weeks. Cellular/tissue responses and new bone formation were assessed by histology and histomorphometry. Histological analysis images indicated neither evidence of inflammatory, immune responses, tissue necrosis, nor osteolysis. Data suggested co-integration of implanted agents with host and newly formed bone. Finally, the histomorphometric data suggested that the tricalcium phosphate-based synthetic bone graft substitute allowed new bone formation that was similar to the allograft (i.e., demineralized bone matrix, DBM). (paper)

  18. Influence of mineral phase in mineralization of a biocomposite containing chitosan, demineralized bone matrix and bone ash—in vitro study

    Indian Academy of Sciences (India)

    Krithiga Gunasekaran; Santhosh Kumar Baskar; Divya Sapphire Mohan; Thotapalli P Sastry

    2014-05-01

    A resorbable composite which acts as a active barrier in guided bone regeneration was fabricated using chitosan, demineralized bone matrix and bone ash. Its potential to form bone like apatite in simulated body fluid was assessed in this study. The mechanical strength of these composites was correlated with bone ash ratios and composites with better tensile strength were studied for their acellular bioactivity by incubating in simulated body fluid for 21 days. Composites without bone ash did not show acellular bioactivity which was confirmed by thermogravimetric analysis. In case of biocomposites with bone ash, there was an increase in residual weight indicating the mineralization of the composite. The composite containing bone ash has shown the peaks related to phosphate vibrations in its Fourier-transform infrared spectrum. Scanning micrographs revealed formation of apatite like crystals on its surface. Ca/P ratio was found to be 1.7 which is nearer to that of natural bone. Thus, prepared composites can be used as resorbable biocomposite in maxillofacial and oral defects.

  19. Enhanced physicochemical properties of collagen by using EDC/NHS-crosslinking

    Indian Academy of Sciences (India)

    Chunrong Yang

    2012-10-01

    Collagen-based scaffolds are appealing products for the repair of cartilage defects using tissue engineering strategies. The present study investigated the collagen scaffolds with and without 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/-hydroxysuccinimide (NHS)-crosslinking. Crosslinking density, matrix morphology, swelling ratio shrinkage temperature and resistance against collagenase digestion were determined to evaluate the physicochemical properties of the collagen matrices with and without crosslinking. The results conformed that the porous structure of collagen was largely preserved and adjusted by crosslinking treatment. Furthermore, crosslinked collagen samples showed significantly reduced swelling ratio and increased resistance against thermal treatment and enzymatic degradation compared to non-crosslinked samples. An in vitro evaluation of MC3T3-E1 cells seeded onto the crosslinked and non-crosslinked collagen matrix indicated that crosslinked collagen was nontoxic and improved cell proliferation. Through this work, it was shown that an osteoconductive collagen matrix with optimized properties used as bioactive and bioresorbable scaffolds in bone tissue engineering could be fabricated through the EDC/NHS-crosslinking method.

  20. Clinical comparison of guided tissue regeneration, with collagen membrane and bone graft, versus connective tissue graft in the treatment of gingival recessions

    Directory of Open Access Journals (Sweden)

    Haghighati F

    2006-06-01

    Full Text Available Background and Aim: Increasing patient demands for esthetic, put the root coverage procedures in particular attention. Periodontal regeneration with GTR based root coverage methods is the most common treatment used. The purpose of this study was to compare guided tissue regeneration (GTR with collagen membrane and a bone graft, with sub-epithelial connective tissue graft (SCTG, in treatment of gingival recession. Materials and Methods: In this randomized clinical trial study, eleven healthy patients with no systemic diseases who had miller’s class I or II recession defects (gingival recession  2mm were treated with SCTG or GTR using a collagen membrane and a bone graft. Clinical measurements were obtained at baseline and 6 months after surgery. These clinical measurements included recession depth (RD, recession width (RW, probing depth (PD, and clinical attachment level (CAL. Data were analyzed using independent t test with p<0.05 as the limit of significance. Results: Both treatment methods resulted in a statistically significant reduction of recession depth (SCTG=2.3mm, GTR=2.1mm; P<0.0001. CAL gain after 6 months was also improved in both groups (SCG= 2.5mm, GTR=2.1mm, compared to baseline (P<0.0001. No statistical differences were observed in RD, RW, CAL between test and control groups. Root coverage was similar in both methods (SCTG= 74.2%, GTR= 62.6%, P=0.87. Conclusion: Based on the results of this study, the two techniques are clinically comparable. Therefore the use of collagen membrane and a bovine derived xenograft may alleviate the need for connective tissue graft.

  1. Ridge preservation with acellular dermal matrix and anorganic bone matrix cell-binding peptide P-15 after tooth extraction in humans. A histologic and morphometric study

    Directory of Open Access Journals (Sweden)

    Arthur B. Novaes Jr

    2012-06-01

    Full Text Available Aim: The aim of this study was to analyze by histomorphometric parameters the use of acellular dermal matrix (ADM with or without anorganic bovine bone matrix (ABM / synthetic cell-binding peptide P-15 in the formation of bone in human alveoli. Materials and methods: Eighteen patients in need of extraction of maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus ABM/P-15 or the control group (ADM only. Histomorphometric measurements and histological analysis were recorded about 6 months after ridge preservation procedures in ten patients. The amount of newly formed bone, the most recently formed bone, fibrous tissue plus marrow spaces and remaining graft particles were measured and analyzed. Results: At 6 months, the new bone area parameter and the percentage of fibrous tissue plus marrow space areas showed higher values to the control group, and statistically significant differences when compared with the test group (p=0.03. Conclusion: The ADM acted as a membrane. The association of ABM/P-15 with ADM resulted in new bone formation within the alveoli, but the results were not considered relevant when used in this indication.

  2. Bone Regeneration Using Hydroxyapatite Sponge Scaffolds with In Vivo Deposited Extracellular Matrix.

    Science.gov (United States)

    Ventura, Reiza Dolendo; Padalhin, Andrew Reyes; Min, Young-Ki; Lee, Byong-Taek

    2015-11-01

    There is currently an increased interest in studying the extracellular matrix (ECM) and its potential applications for tissue engineering and regenerative medicine. The ECM plays an important role by providing adhesive substrates to cells during migration, morphogenesis, differentiation, and homeostasis by signaling biochemical and biomechanical cues to cells. In this study, the ECM was incorporated into hydroxyapatite by implanting sponge replica scaffolds in subcutaneous pockets in rats, and the implants were tested for bone regeneration potential. The resulting scaffolds were characterized using scanning electron microscopy, confocal microscopy, DNA and RNA quantification, tissue staining, energy dispersive X-ray spectroscopy analysis, compressive strength testing, porosity, and pore size distribution analysis using bare scaffolds as a control reference. Biocompatibility was assessed using MC3T3-E1 preosteoblast cells and in vivo studies were carried out by implanting decellularized scaffolds in 11 mm radial defects in New Zealand rabbits for 4 and 8 weeks to determine the effect of the in vivo deposited ECM. Material characterization indicated that a 2-week decellularized scaffold was the best among the samples, with an evenly distributed ECM visible on hematoxylin and eosin-stained tissue sections, a compressive strength of 2.53 ± 0.68 MPa, a porosity of 58.08 ± 3.32% and a pore size distribution range of 10-150 μm. In vivo results showed no severe inflammation, with increased cell infiltration followed by dense matrix deposition after 4 weeks and new bone formation at 8 weeks. The results indicate that incorporation of an in vivo deposited ECM into ceramic scaffolds can potentially improve bone regeneration. PMID:26228909

  3. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

    Science.gov (United States)

    Mencía Castaño, Irene; Curtin, Caroline M.; Duffy, Garry P.; O’Brien, Fergal J.

    2016-06-01

    Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.

  4. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    Science.gov (United States)

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway. PMID:19763044

  5. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    Science.gov (United States)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  6. Collagen biosynthesis.

    OpenAIRE

    Last, J A; Reiser, K M

    1984-01-01

    Collagen is the major structural protein of the lung. At least five genetically distinct collagen types have been identified in lung tissue. However, the precise role of collagen in nonrespiratory lung function is not well understood, in part because of the difficulties inherent in studying lung collagen, regardless of the type of assay used. A major problem is the insolubility of lung collagen; generally less than 20% of total lung collagen can be solubilized as intact chains, even with hars...

  7. The Great Irish Famine: Identifying Starvation in the Tissues of Victims Using Stable Isotope Analysis of Bone and Incremental Dentine Collagen

    Science.gov (United States)

    Montgomery, Janet

    2016-01-01

    The major components of human diet both past and present may be estimated by measuring the carbon and nitrogen isotope ratios (δ13C and δ15N) of the collagenous proteins in bone and tooth dentine. However, the results from these two tissues differ substantially: bone collagen records a multi-year average whilst primary dentine records and retains time-bound isotope ratios deriving from the period of tooth development. Recent studies harnessing a sub-annual temporal sampling resolution have shed new light on the individual dietary histories of our ancestors by identifying unexpected radical short-term dietary changes, the duration of breastfeeding and migration where dietary change occurs, and by raising questions regarding factors other than diet that may impact on δ13C and δ15N values. Here we show that the dentine δ13C and δ15N profiles of workhouse inmates dating from the Great Irish Famine of the 19th century not only record the expected dietary change from C3 potatoes to C4 maize, but when used together they also document prolonged nutritional and other physiological stress resulting from insufficient sustenance. In the adults, the influence of the maize-based diet is seen in the δ13C difference between dentine (formed in childhood) and rib (representing an average from the last few years of life). The demonstrated effects of stress on the δ13C and δ15N values will have an impact on the interpretations of diet in past populations even in slow-turnover tissues such as compact bone. This technique also has applicability in the investigation of modern children subject to nutritional distress where hair and nails are unavailable or do not record an adequate period of time. PMID:27508412

  8. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    OpenAIRE

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem ...

  9. An Investigation of Coral Based Bioactive Composite Bone in a Critical-sized Cranial Defects

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionNatural coral is a porous three-dimensional biocompatible material with osteo-conductivity~([1]). Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a member of TGF-β family possessing strong osteoinductive properties~([2]). Collagen has been demonstrated efficacy in sustained releasing growth factor due to gradually absorption of collagen matrix~([3]). And bone marrow derived mesenchymal stem cells (BMSCs) have been chosen as seed cells owing to the capacity of differentiating into o...

  10. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some re-spects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group, followed by the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the poly-lactic glycolic acid conduit+bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve ifbers, and a completely degraded and resorbed conduit, in the polylac-tic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is ben-eifcial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the

  11. Heterotopic Ossification around the Knee after Internal Fixation of a Complex Tibial Plateau Fracture Combined with the Use of Demineralized Bone Matrix (DBM: A Case Report

    Directory of Open Access Journals (Sweden)

    1.\tSjoerd P.F.T. Nota

    2014-10-01

    Full Text Available Demineralized bone matrix has been successfully commercialized as an alternative bone graft material that not only can function as filler but also as an osteoinductive graft. Numerous studies have confirmed its beneficial use in clinical practice. Heterotopic ossification after internal fixation combined with the use of demineralized bone matrix has not been widely reported. In this paper we describe a 39 year old male who sustained a complex articular fracture that developed clinically significant heterotopic ossification after internal fixation with added demineralized bone matrix. Although we cannot be sure that there is a cause-and-effect relation between demineralized bone matrix and the excessive heterotopic ossification seen in our patient, it seems that some caution in using demineralised bone matrix in similar cases is warranted. Also, given the known inter- and intraproduct variability, the risks and benefits of these products should be carefully weighed.

  12. Collagen and gelatin.

    Science.gov (United States)

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications. PMID:25884286

  13. The Effect of Gradations in Mineral Content, Matrix Alignment, and Applied Strain on Human Mesenchymal Stem Cell Morphology within Collagen Biomaterials.

    Science.gov (United States)

    Mozdzen, Laura C; Thorpe, Stephen D; Screen, Hazel R C; Harley, Brendan A C

    2016-07-01

    The tendon-bone junction is a unique, mechanically dynamic, structurally graded anatomical zone, which transmits tensile loads between tendon and bone. Current surgical repair techniques rely on mechanical fixation and can result in high re-failure rates. A new class of collagen biomaterial that contains discrete mineralized and structurally aligned regions linked by a continuous interface to mimic the graded osteotendinous insertion has been recently described. Here the combined influence of graded biomaterial environment and increasing levels of applied strain (0%-20%) on mesenchymal stem cell (MSC) orientation and alignment have been reported. In osteotendinous scaffolds, which contain opposing gradients of mineral content and structural alignment characteristic of the native osteotendinous interface, MSC nuclear, and actin alignment is initially dictated by the local pore architecture, while applied tensile strain enhances cell alignment in the direction of strain. Comparatively, in layered scaffolds that do not contain any structural alignment cues, MSCs are randomly oriented in the unstrained condition, then become oriented in a direction perpendicular to applied strain. These findings provide an initial understanding of how scaffold architecture can provide significant, potentially competitive, feedback influencing MSC orientation under applied strain, and form the basis for future tissue engineering efforts to regenerate the osteotendinous enthesis. PMID:27245787

  14. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2013-01-01

    Allogenic bone graft has been considered the gold standard in connection with bone graft material in revision joint arthroplasty. However, the lack of osteogenic potential and the risk of disease transmission are clinical challenges. The use of osteoinductive materials, such as demineralized bone...

  15. Bone Markers

    Science.gov (United States)

    ... bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker for bone resorption. It is ... resorption include: N-telopeptide (N-terminal telopeptide of type 1 collagen (NTx)) – a peptide fragment from the amino terminal ...

  16. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management

    OpenAIRE

    V. Remya; Naveen Kumar; Sharma, A. K.; Mathew, Dayamon D.; Mamta Negi; S.K. Maiti; Sameer Shrivastava; S. Sonal; KURADE, N.P.

    2014-01-01

    Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care. Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc) seeded extracellular matrix [ECM]) was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim ...

  17. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats.

    Science.gov (United States)

    Ramalingam, Sundar; Al-Rasheed, Abdulaziz; ArRejaie, Aws; Nooh, Nasser; Al-Kindi, Mohammed; Al-Hezaimi, Khalid

    2016-05-01

    Guided bone regeneration (GBR) procedures using graft materials have been used for reconstruction of osseous defects. The aim of the present in vivo micro-computed tomographic (µCT) and histologic study was to assess in real time the bone regeneration at GBR sites in standardized experimental calvarial defects (diameter 3.3 mm) using β-tricalcium phosphate (β-TCP) with and without collagen membrane (CM). A single full-thickness calvarial defect was created on the left parietal bone in young female Wistar albino rats (n = 30) weighing approximately 300 g and aged about 6 weeks. The animals were randomly divided into three groups for treatment, based on calvarial defect filling material: (1) control group (n = 10); (2) β-TCP + CM group (n = 10); (3) β-TCP group (n = 10). Real-time in vivo µCT analyses were performed immediately after surgery and at 2, 4, 6 and 10 weeks to determine the volume and mineral density of the newly formed bone (BVNFB, MDNFB) and remaining β-TCP particles (VRBP, MDRBP). The animals were killed at 10 weeks and calvarial specimens were evaluated histologically. In the control group, MDNFB increased significantly at 6 weeks (0.32 ± 0.002 g/mm(3), P < 0.01) compared to that at baseline. In β-TCP + CM group, BVNFB (1.10 ± 0.12 mm(3), P < 0.01) and MDNFB (0.13 ± 0.02 g/mm(3), P < 0.01) significantly increased at the 4th week than baseline. In the β-TCP group, BVNFB (1.13 ± 0.12 mm(3), P < 0.01) and MDNFB (0.14 ± 0.01 g/mm(3), P < 0.01) significantly increased at 6 weeks compared to that at baseline. Significant reduction in VRBP was neither seen in the β-TCP + CM group nor in the β-TCP group. While in the β-TCP + CM group MDRBP was reduced significantly at 6 weeks (0.44 ± 0.9 g/mm(3), P < 0.01) from baseline (0.98 ± 0.03 g/mm(3)), similar significant reduction in MDRBP from baseline (0.92 ± 0.07 g/mm(3)) was seen only at 10 weeks (0.45 ± 0.06 g/mm(3), P < 0

  18. Histological analysis of cells and matrix mineralization of new bone tissue induced in rabbit femur bones by Mg-Zr based biodegradable implants.

    Science.gov (United States)

    Ragamouni, Sravanthi; Kumar, Jerald Mahesh; Mushahary, Dolly; Nemani, Harishankar; Pande, Gopal

    2013-09-01

    The biological efficacy of bone inducing implant materials in situ can be assessed effectively by performing histological analysis. We studied the peri-implant bone regeneration around two types of biodegradable magnesium-zirconium alloys, Mg-5Zr and Mg-Zr-2Sr, using histological, histochemical and immunohistochemical methods in the femur of New Zealand White strain rabbits. Our study includes three animal groups: (a) Mg-5Zr, (b) Mg-Zr-2Sr and (c) control. In each group three animals were used and in groups 'a' and 'b' the respective alloys were implanted in cavities made at the distal ends of the femur; control animals were left without implants to observe natural bone healing. Qualitative assessment of the cellularity and matrix mineralization events of the newly formed bone tissue was done at three months after implantation by histological methods in methyl methacrylate embedded tissue without decalcifying the bone. Quantitative mineral content and density of the new bone (NB) were evaluated by the statistical analysis of dual energy X-ray absorptiometry (DXA) data obtained from three animals in each experimental group. Based on our analysis we conclude that Mg-Zr-2Sr alloy showed better osseointegration of the newly formed bone with the implant surface. Our methodology of studying peri-implant osteoinduction of degradable implants using low temperature methyl methacrylate embedding resin can be useful as a general method for determining the bio-efficacy of implant materials. PMID:23628266

  19. The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth

    OpenAIRE

    Coulson-Thomas, Yvette M.; Coulson-Thomas, Vivien J.; Norton, Andrew L.; Gesteira, Tarsis F.; Cavalheiro, Renan P.; Meneghetti, Maria Cecília Z.; Martins, João R.; Ronald A. Dixon; Helena B. Nader

    2015-01-01

    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable informatio...

  20. Using bone marrow matrix to analyze meprobamate for forensic toxicological purposes.

    Science.gov (United States)

    Bévalot, F; Gustin, M P; Cartiser, N; Gaillard, Y; Le Meur, C; Fanton, L; Guitton, J; Malicier, D

    2013-09-01

    Bone marrow (BM) analysis is of forensic interest for postmortem toxicological investigations where blood samples are unavailable or unusable. Due to the lack of studies, it remains difficult to interpret concentrations of xenobiotics measured in this matrix. Based on a statistical approach published previously to interpret meprobamate concentrations in bile and vitreous humor, we propose here a diagnostic test for interpretation of BM meprobamate concentrations from analysis of 99 sets of autopsy data. The mean age was 48 years (range 18-80 years, one unknown) for males and 50 years (range 19-80 years, one unknown) for females, with a male/female ratio at 0.768. A BM concentration threshold of 11.3 μg/g was found to be statistically equivalent to that of a blood meprobamate concentration threshold of 50 μg/ml in distinguishing overdose from therapeutic use. The intrinsic qualities of this diagnostic test were good with sensitivity of 0.82 and specificity of 0.92. Compared to previous tests published with the same objective on vitreous humor and bile, this study shows that BM is a useful alternative matrix to reveal meprobamate overdose when blood, vitreous humor, and bile are not available or unusable. PMID:23400420

  1. Real-Time Assessment of Guided Bone Regeneration in Standardized Calvarial Defects Using a Combination of Bone Graft and Platelet-Derived Growth Factor With and Without Collagen Membrane: An In Vivo Microcomputed Tomographic and Histologic Experiment in Rats.

    Science.gov (United States)

    Alrasheed, Abdulaziz; Al-Ahmari, Fatemah; Ramalingam, Sundar; Nooh, Nasser; Wang, Cun-Yu; Al-Hezaimi, Khalid

    2016-01-01

    The aim of the present in vivo microcomputed tomography (μCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial defects using recombinant human platelet-derived growth factor (rhPDGF) with and without resorbable collagen membrane (RCM). A total of 50 female Wistar albino rats with a mean age of 7.5 months and mean weight of 275 g were used. The calvarium was exposed following midsagittal scalp incision and flap reflection. A full-thickness standardized calvarial defect (4.6 mm diameter) was created. Study animals were randomly divided into five groups based on biomaterials used for GBR within the defect: (1) no treatment (negative control), (2) bone graft alone (BG), (3) bone graft covered by RCM (BG + RCM), (4) bone graft soaked in rhPDGF (BG + rhPDGF), and (5) bone graft soaked in rhPDGF and covered with RCM (BG + rhPDGF + RCM). In vivo μCT for determination of newly formed bone volume (NFBV) and mineral density (NFBMD) and remnant bone particles volume (RBPV) and mineral density (RBPMD) was done at baseline and at 2, 4, 6, and 8 weeks postoperatively. Eight weeks following surgery, the animals were sacrificed and harvested calvarial specimens were subjected to histologic and biomechanical analysis. There was an increase in NFBV and NFBMD associated with a corresponding decrease in RBPV and RBPMD in all the study groups. Two-way analysis of variance revealed significant differences in the measured values within and between the groups across the timelines examined during the study period (P RCM, and BG + rhPDGF + RCM groups, the NFBMD was similar in all the groups except negative control. The greatest decreases in RBPV and RBPMD were observed in the BG + rhPDGF + RCM group in comparison to the other groups. Similarly, BG + rhPDGF + RCM groups had hardness and elastic modulus similar to that of natural bone. The in vivo μCT results were validated by the qualitative histologic findings. In real

  2. Effect of enamel matrix derivative and parathyroid hormone on bone formation in standardized osseous defects: an experimental study in minipigs

    DEFF Research Database (Denmark)

    Jensen, Simon S; Chen, B; Bornstein, Michael M; Bosshardt, Dieter D; Buser, Daniel

    2011-01-01

    Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole or...

  3. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    Directory of Open Access Journals (Sweden)

    Dong Joon Lee

    2014-01-01

    Full Text Available Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS. Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD. Twelve Sprague-Dawley rats were randomized to four groups: control (defect only, decellularized bone matrix (DECBM, and HGCS with and without multipotent adult progenitor cells (MAPCs. DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration.

  4. Biological assessment of a calcium silicate incorporated hydroxyapatite-gelatin nanocomposite: a comparison to decellularized bone matrix.

    Science.gov (United States)

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration. PMID:25054149

  5. The comparative effectiveness of demineralized bone matrix, beta-tricalcium phosphate, and bovine-derived anorganic bone matrix on inflammation and bone formation using a paired calvarial defect model in rats

    Directory of Open Access Journals (Sweden)

    Khoshzaban A

    2011-09-01

    Full Text Available Ahad Khoshzaban1,2,3, Shahram Mehrzad1, Vida Tavakoli2, Saeed Heidari Keshel2, Gholam Reza Behrouzi2, Maryam Bashtar2 1Iranian Tissue Bank Research and Preparation Center, Imam Khomeini Hospital Complex, 2Stem Cells Preparation Unit, Eye Research Center, Farabi Hospital, Tehran University of Medical Science, 3Dental Bio Material Department, Tehran University of Medical Science, Faculty of Dentistry, Tehran, Iran Background: In this study, the effectiveness of Iranian Tissue Bank–produced demineralized bone matrix (ITB-DBM, beta-tricalcium phosphate (ßTCP, and Bio-Oss® (Geistlich Pharma AG, Wolhusen, Switzerland were evaluated and compared with double controls. The main goal was to measure the amount of new bone formation in the center of defects created in rat calvaria. Another goal was to compare the controls and evaluate the effects of each treatment material on their adjacent untreated (control defects. Methods: In this study, 40 male Wistar rats were selected and divided into four groups, In each group, there were ten rats with two defects in their calvarias; one of them is considered as control and the other one was treated with ITB-DBM (group 1, BIO-OSS (group2, and ßTCP (group 3, respectively. But in group 4, both defects were considered as control. The amount of inflammation and new bone formation were evaluated at 4 and 10 weeks. In the first group, one defect was filled with ITB-DBM; in the second group, one defect was filled with Bio-Oss; in the third group, one defect was filled with ßTCP; and in the fourth group, both defects were left unfilled. Zeiss microscope (Carl Zeiss AG, Oberkochen, Germany and Image Tool® (version 3.0; University of Texas Health Science Center at San Antonio, San Antonio, TX software were used for evaluation. SPSS Statistics (IBM Corp, Somers, NY was used for statistical analysis. Results: Maximum bone formation at 4 and 10 weeks were observed in the ITB-DBM group (46.960% ± 4.366%, 94.970% ± 0

  6. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.

    Science.gov (United States)

    Fritsch, Andreas; Hellmich, Christian

    2007-02-21

    Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs. PMID:17074362

  7. Bone indentation recovery time correlates with bond reforming time

    Science.gov (United States)

    Thompson, James B.; Kindt, Johannes H.; Drake, Barney; Hansma, Helen G.; Morse, Daniel E.; Hansma, Paul K.

    2001-12-01

    Despite centuries of work, dating back to Galileo, the molecular basis of bone's toughness and strength remains largely a mystery. A great deal is known about bone microsctructure and the microcracks that are precursors to its fracture, but little is known about the basic mechanism for dissipating the energy of an impact to keep the bone from fracturing. Bone is a nanocomposite of hydroxyapatite crystals and an organic matrix. Because rigid crystals such as the hydroxyapatite crystals cannot dissipate much energy, the organic matrix, which is mainly collagen, must be involved. A reduction in the number of collagen cross links has been associated with reduced bone strength and collagen is molecularly elongated (`pulled') when bovine tendon is strained. Using an atomic force microscope, a molecular mechanistic origin for the remarkable toughness of another biocomposite material, abalone nacre, has been found. Here we report that bone, like abalone nacre, contains polymers with `sacrificial bonds' that both protect the polymer backbone and dissipate energy. The time needed for these sacrificial bonds to reform after pulling correlates with the time needed for bone to recover its toughness as measured by atomic force microscope indentation testing. We suggest that the sacrificial bonds found within or between collagen molecules may be partially responsible for the toughness of bone.

  8. PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES

    OpenAIRE

    Abraham, Leah C.; Dice, J. Fred; Lee, Kyongbum; Kaplan, David L.

    2007-01-01

    The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...

  9. Allograft of microencapsulated ovarian cells affects bone collagen metabolism in ovariectomized mice%卵巢细胞微囊移植对去卵巢小鼠的骨胶原代谢的影响

    Institute of Scientific and Technical Information of China (English)

    郭晓霞; 周金玲; 许晴; 史小林

    2011-01-01

    BACKGROUND: Gonad hormones are essential for the maintenance of skeletal integrity. The in vitro cultured ovarian cells can secrete estradiol and progesterone. Alginic acid-polylysine-alginic acid microcapsule provides a barrier between the graft and the recipient, thus promoting the survival of heterotransplants.OBJECTIVE: To explore the survival and secretion functions of allografted microencapsulated ovarian cells in ovariectomized mice and their effect on bone collagen metabolism after ovariectomy (OVX).METHODS: Ovarian cells separated from female Kunming mice (6 weeks old) were cultured and microencapsulated with alginic acid-polylysine-alginic acid. A total of 24 female Kunming mice (8 weeks old) were randomly divided into three groups (n=8):normal group: OVX was not performed; OVX group: OVX was performed; transplantation group: microencapsulated ovarian cells were transplanted into abdominal cavity after OVX. Estradiol and/or progesterone levels of the medium of microencapsulated ovarian cells and mice serum were determined by radioimmunoassay. Ⅰ type collagen fibers in the bone matrix were showed by Van Gieson staining. The concentrations of hydroxyproline, Ca, and P were measured in the left femurs of mice.RESULTS AND CONCLUSION: The concentrations of estradiol and progesterone in the culture medium were not significantly different between the cultured ovarian cells and microencapsulated ovarian cells. The serum estradiol concentration at 90 days after transplantation had no significant difference compared with that of normal group, whereas the serum estradiol concentration of the OVX group was significantly lower than that of the normal group. In the transplantation group, the distribution of collagen fibers was similar to that of the normal group determined by Van Gieson staining. In comparison to the normal group, the OVX group had less, thinner trabecular matrix, and fewer collagen fibers, more free trabecular terminals, and a thinner uncalcified

  10. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management

    Directory of Open Access Journals (Sweden)

    V. Remya

    2014-11-01

    Full Text Available Aim: Extensive or irreversible damage to the skin often requires additional skin substitutes for reconstruction. Biomaterials have become critical components in the development of effective new medical therapies for wound care. Materials and Methods: In the present study, a cell matrix construct (bone marrow-derived cells (BMdc seeded extracellular matrix [ECM] was used as a biological substitute for the repair of full-thickness skin wound. ECM was developed by decellularizing fish swim bladder (FSB. Goat bone marrow-derived cells (G-BMdc were seeded over this decellularized matrix. Efficacy of this cell matrix construct in wound repair was tested by implanting it over 20 mm2 × 20 mm2 size fullthickness skin wound created over the dorsum of rat. The study was conducted in 16 clinically healthy adult rats of either sex. The animals were randomly divided into 2 equal groups of 8 animals each. In Group I, animal’s wounds were repaired with a cellular FSB matrix. In Group II, wounds were repaired with G-BMdc seeded a cellular FSB matrix. Immune response and efficacy of healing were analyzed. Results: Quality of healing and immuno tolerance to the biological substitute was significantly better in Group II than Group I. Conclusion: Seeding with BMdc increases the wound healing potency and modulates the immune response to a significantly negligible level. The BMdc seeded acellular FSB matrix was found to be a novel biomaterial for wound management.

  11. Fetal Bovine Collagen Matrix in the Treatment of a Full Thickness Burn Wound: A Case Report With Long-Term Follow-Up

    Science.gov (United States)

    Strong, Amy L.; Bennett, Danielle K.; Spreen, Elizabeth B.; Adhvaryu, Dhaval V.; Littleton, Jeffrey C.

    2016-01-01

    The treatment of full thickness skin wounds commonly associated with large burns continues to represent a challenging clinical entity. The current treatment for large TBSA burns is split thickness autologous skin grafting; however, this treatment often results in poor textural durability, hypertrophic scarring, and fibrotic contractures. In this case report, we describe our experience and long-term follow-up results after the application of fetal bovine collagen (FBC) matrix (PriMatrix, TEI Biosciences, Boston, MA) to burn wounds clinically assessed as full thickness that healed without the need for subsequent skin grafting. The patient presented with 25% TBSA burns and was debrided and covered with FBC on postburn day 7. By postoperative day 12, the patient had large areas of reepithelialization distributed throughout the wound bed. By postoperative day 26, the patient had significantly more areas of wound closure and was discharged. Reepithelialization and repigmentation continued, and long-term follow-up after 26 months demonstrated complete reepithelialization and nearly complete repigmentation, without the appearance of contractures or hypertrophic scarring. This case report highlights the use of FBC as a scaffold capable of dermal regeneration and spontaneous reepithelialization with an excellent long-term functional and cosmetic outcome. PMID:25494213

  12. Type IV collagen

    International Nuclear Information System (INIS)

    Type IV collagen is a highly specialized form of collagen found only in basement membranes. It is one of the major components of all basement membranes together with the glycoproteins laminin, nidogen, entactin, and heparan sulfate proteoglycan. Basement membranes are ubiquitous, thin, sheetlike structures found frequently under epithelial and endothelial cell linings but also surrounding many cell types such as muscle, nerve, and fat. They function as a selective filtration barrier for macromolecules, for example, in the kidney, blood--brain barrier, and placenta, but also separate extracellular matrix from epithelial or endothelial cell layers as in gut, skin, cornea, lung, and blood vessels. Indications that basement membranes contained a collagen came from X-ray studies of intact basement membranes as early as 1951. Later, hydroxyproline and then hydroxylysine were detected in amino acid compositions of whole basement membranes. Because of the insolubility of basement membrane components, attempts were made to solubilize the collagen using Pronase, a method that had proved useful for type I collagen. The material that was isolated and characterized was clearly different from the other interstitial collagens known at that time, i.e., α1(I), α1(II), and α1(III). Basement membrane collagen was therefore designated type IV collagen

  13. Integrin {beta}1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Seiichiro [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Haga, Hisashi, E-mail: haga@sci.hokudai.ac.jp [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Yasuda, Motoaki [Department of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, N13-W7, Kita-ku, Sapporo 060-8586 (Japan); Mizutani, Takeomi; Kawabata, Kazushige [Transdisciplinary Life Science Course, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810 (Japan); Shirato, Hiroki [Department of Radiology, Hokkaido University Graduate School of Medicine, N15-W7, Kita-ku, Sapporo 060-8638 (Japan); Nishioka, Takeshi [Department of Biomedical Sciences and Engineering, Faculty of Health Sciences, Hokkaido University, N12-W5, Kita-ku, Sapporo 060-0812 (Japan)

    2010-06-04

    Radiotherapy is one of the effective therapies used for treating various malignant tumors. However, the emergence of tolerant cells after irradiation remains problematic due to their high metastatic ability, sometimes indicative of poor prognosis. In this study, we showed that subcloned human lung adenocarcinoma cells (A549P-3) that are irradiation-tolerant indicate high invasive activity in vitro, and exhibit an integrin {beta}1 activity-dependent migratory pattern. In collagen gel overlay assay, majority of the A549P-3 cells displayed round morphology and low migration activity, whereas a considerable number of A549P-3IR cells surviving irradiation displayed a spindle morphology and high migration rate. Blocking integrin {beta}1 activity reduced the migration rate of A549P-3IR cells and altered the cell morphology allowing them to assume a round shape. These results suggest that the A549P-3 cells surviving irradiation acquire a highly invasive integrin {beta}1-dependent phenotype, and integrin {beta}1 might be a potentially effective therapeutic target in combination with radiotherapy.

  14. Collagen and Collagen-derived Fragments Are Chemotactic for Tumor Cells

    OpenAIRE

    Mundy, Gregory R; Demartino, Sandra; Rowe, David W.

    1981-01-01

    Organs that are rich in collagen such as liver, lungs, and bone are frequently sites of tumor cell metastasis. In this study, we have found that cultured tumor cells of human and rat origin migrated unidirectionally in response to collagen in vitro. Synthetic di- and tri-peptides that contained amino acid sequences found frequently in the collagen helix caused similar effects. These results are consistent with the hypothesis that collagen or collagen fragments released during connective tissu...

  15. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide).

    Science.gov (United States)

    E, Ling-Ling; Xu, Wen-Huan; Feng, Lin; Liu, Yi; Cai, Dong-Qing; Wen, Ning; Zheng, Wen-Jie

    2016-06-01

    This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3‑month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham‑operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERβ in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17β-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERβ. When the constructs were implanted

  16. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation.

    Science.gov (United States)

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A; van Weeren, Rene; Helminen, Heikki J; Jurvelin, Jukka S; Saarakkala, Simo

    2010-01-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation. PMID:21198207

  17. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation

    Science.gov (United States)

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo

    2010-11-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.

  18. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    Science.gov (United States)

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  19. Biological Safety of Fish (Tilapia Collagen

    Directory of Open Access Journals (Sweden)

    Kohei Yamamoto

    2014-01-01

    Full Text Available Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing site-specific cellular regulation. This study was conducted to confirm the safety of fish (tilapia atelocollagen for use in clinical application. We performed in vitro and in vivo biological studies of medical materials to investigate the safety of fish collagen. The extract of fish collagen gel was examined to clarify its sterility. All present sterility tests concerning bacteria and viruses (including endotoxin yielded negative results, and all evaluations of cell toxicity, sensitization, chromosomal aberrations, intracutaneous reactions, acute systemic toxicity, pyrogenic reactions, and hemolysis were negative according to the criteria of the ISO and the http://dx.doi.org/10.13039/501100003478 Ministry of Health, Labour and Welfare. The present study demonstrated that atelocollagen prepared from tilapia is a promising biomaterial for use as a scaffold in regenerative medicine.

  20. Biological safety of fish (tilapia) collagen.

    Science.gov (United States)

    Yamamoto, Kohei; Igawa, Kazunari; Sugimoto, Kouji; Yoshizawa, Yuu; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing site-specific cellular regulation. This study was conducted to confirm the safety of fish (tilapia) atelocollagen for use in clinical application. We performed in vitro and in vivo biological studies of medical materials to investigate the safety of fish collagen. The extract of fish collagen gel was examined to clarify its sterility. All present sterility tests concerning bacteria and viruses (including endotoxin) yielded negative results, and all evaluations of cell toxicity, sensitization, chromosomal aberrations, intracutaneous reactions, acute systemic toxicity, pyrogenic reactions, and hemolysis were negative according to the criteria of the ISO and the Ministry of Health, Labour and Welfare of Japan. The present study demonstrated that atelocollagen prepared from tilapia is a promising biomaterial for use as a scaffold in regenerative medicine. PMID:24809058

  1. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers.

    Science.gov (United States)

    Yamada, Masahiro; Kato, Eiji; Yamamoto, Akiko; Sakurai, Kaoru

    2016-02-01

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  2. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    Science.gov (United States)

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development. PMID:25773047

  3. 偏振光显微观察不同胶原纤维在骨折愈合过程中的动态变化%Examination of dynamic changes of different-type collagens in bone fracture healing with a polarized light microscopy

    Institute of Scientific and Technical Information of China (English)

    李章华; 廖文; 张玉富; 赵强; 王常勇

    2005-01-01

    BACKGROUND:Sirius red is a strong acid anionic dye. Being not-easyto-fade and specific, sirius red becomes the best dye for collagen staining.Collagen is a major component of extracellular matrix and has some specific physiological functions. Through synthesis and reconstruction of collagen, bone fracture repair will be accomplished.OBJECTIVE: Picric acid-Sirius red stained slides were observed under a polarized light microscopy for evaluation the dynamic changes in the ratio of different collagen types and their distributions in bone fracture healing.DESIGN: It was a controlled observation.SETTING: It was conducted in the Department of Orthopedics, Renmin Hospital, Wuhan University; Department of Traumatic Orthopaedics, Tianjin Hospital; Department of Traumatic Orthopaedics, Jishuitan Hospital,Medical Department, Peking University; Tissue Engineering Center of Institute of Basic Medical Sciences, Academy of Military Medical Sciences of Chinese PLAMATERIALS: It was conducted at Tissue Engineering Center of Institute of Basic Medical Sciences, Academy of Military Medical Sciences of Chinese PLA from March 2002 to September 2003. Three healthy adult Chinese sheep, male and in weight from 25 to 35 g, were selected.METHODS: All the animals were anesthesized and sterilized; a transverse osteotomy of the trunk of metatarsus was performed; and the end of fracture was fixed with a six-hole Medoff sliding plate. At the post-operative month 1, 3 and 6, samples were taken from bone fractures. After decalcification with EDTA, they were stained with Picric acid-sirius red, and the types and distribution of collagens were observed under a polarized light microscopy.MAIN OUTCOME MEASURES: Types and distributions of collagens in bone lesion in different period of bone healing were investigated.RESULTS: Three sheep used in this study entered the statistical analysis.①Morphological features of various collagens under a polarized light microscopy postoperatively: Type Ⅰ collagen

  4. Combined Effects of Mechanical Strain and Hydroxyapatite/Collagen Composite on Osteogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising source for bone repair and regeneration. Recent lines of evidence have shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that hydroxyapatite/collagen (HA/Col composite also played an important role in the osteogenic differentiation of MSCs. The aim of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone marrow derived MSCs (rBMSCs in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription polymerase chain reaction (RT-PCR, alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts, which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

  5. Collagen macromolecular drug delivery systems

    International Nuclear Information System (INIS)

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t1/2 and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and 14C-inulin release rates were evaluated subcutaneously in rats

  6. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Magnusson, Peter; Krogsgaard, Michael;

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotease...... regulated by cyclooxygenase-2 (COX-2)-mediated pathways, and glucose uptake is regulated by specific pathways in tendons that differ from those in skeletal muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as to some degree of net collagen synthesis...

  7. Eight-year results of site retention of anorganic bovine bone and anorganic bovine matrix.

    Science.gov (United States)

    Degidi, Marco; Perrotti, Vittoria; Piattelli, Adriano; Iezzi, Giovanna

    2013-12-01

    The long-term fate of some biomaterials is still unknown, and the reports present in the literature are not conclusive as to whether these biomaterials are resorbed over time or not. Different reports can be found with regard to the resorption behavior of anorganic bovine bone (ABB). The aim of the present study was to provide a comparative histological and histomorphometrical evaluation, in the same patient, of 2 specimens retrieved from a sinus augmented with ABB and with anorganic bovine matrix added to a cell-binding peptide (PepGen P-15), respectively, after a healing period of 6 months and after 8 years of implant loading, to evaluate the resorption of both biomaterials. A unilateral sinus augmentation procedure with ABB (50%) and with PepGen P-15 (50%) was performed in a 54-year-old male patient. Two titanium dental implants with a sandblasted and acid-etched surface were inserted after 6 months. During this procedure, 2 tissue cores were retrieved from the sinus with a trephine, before implant insertion. After an additional 6 months, a fixed prosthetic restoration was fabricated. One of these implants, after a loading period of 8 years, fractured in the coronal portion and was removed. Both specimens, one retrieved after a 6-month healing period and the other after an 8-year loading period, were treated to obtain thin ground sections. In the 6-month specimen, the histomorphometry showed that the percentage of newly formed bone was 27.2% ± 3.6%, marrow spaces 35.6% ± 2.3%, residual ABB particles 25.1% ± 1.2%, and residual PepGen P-15 particles 12.1% ± 2.2%. In the 8-year specimen, the histomorphometry showed that the percentage of newly formed bone was 51.4% ± 4.8%, marrow spaces 40% ± 7.1%, residual ABB particles 6.2% ± 0.7%, and residual PepGen P-15 particles 2.4% ± 0.5%. Both biomaterials underwent significant resorption over the course of this study. PMID:22103882

  8. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    Science.gov (United States)

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function. PMID:27131598

  9. Healing of Large Segmental Bone Defect after Implantation of Autogenous Cancellous Bone Graft in Comparison to Hydroxyapatite and 0.5% Collagen Scaffold Combined with Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Nečas, A.; Proks, P.; Urbanová, L.; Srnec, R.; Stehlík, L.; Crha, M.; Raušer, P.; Plánka, L.; Janovec, J.; Dvořák, M.; Amler, Evžen; Vojtová, L.; Jančář, J.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 607-612. ISSN 0001-7213 R&D Projects: GA MŠk 2B06130 Institutional support: RVO:68378041 Keywords : fracture fixation * bone healing * comminuted fracture Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.534, year: 2010

  10. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)–bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Stem cells have become an important component of tissue regeneration, as they are able to differentiate into various cell types if guided appropriately. It is well known that cellular differentiation is greatly influenced by the surrounding microenvironment. We have developed a composite scaffold system using a collagen matrix derived from porcine bladder submucosa matrix (BSM) and poly(lactide-co-glycolide) (PLGA). In this study, we investigated whether a composite scaffold composed of naturally derived matrix combined with synthetic polymers would provide a microenvironment to facilitate the induction of osteogenic differentiation. We first showed that human amniotic fluid-derived stem cells (hAFSCs) adhered to the composite scaffolds and proliferated over time. We also showed that the composite scaffolds facilitated the differentiation of hAFSCs into an osteogenic lineage. The expression of osteogenic genes, including RUNX2, osteopontin (OPN) and osteocalcin (OCN) was upregulated in cells cultured on the composite scaffolds incubated in the osteogenic medium compared with ones without. Increased alkaline phosphatase (ALP) activity and calcium content indicates that hAFSCs seeded on 3D porous BSM–PLGA composite scaffolds resulted in higher mineralization rates as the duration of induction increased. This was also evidenced by the mineralized matrix within the scaffolds. The composite scaffold system provides a proper microenvironment that can facilitate osteogenic differentiation of AFSCs. This scaffold system may be a good candidate material for bone tissue engineering. (paper)

  11. Epidermal growth factor promotes a mesenchymal over an amoeboid motility of MDA-MB-231 cells embedded within a 3D collagen matrix

    Science.gov (United States)

    Geum, Dongil T.; Kim, Beum Jun; Chang, Audrey E.; Hall, Matthew S.; Wu, Mingming

    2016-01-01

    The receptor of epidermal growth factor (EGFR) critically regulates tumor cell invasion and is a potent therapeutic target for treatment of many types of cancers, including carcinomas and glioblastomas. It is known that EGF regulates cell motility when tumor cells are embedded within a 3D biomatrix. However, roles of EGF in modulating tumor cell motility phenotype are largely unknown. In this article, we report that EGF promotes a mesenchymal over an amoeboid motility phenotype using a malignant breast tumor cell line, MDA-MB-231, embedded within a 3D collagen matrix. Amoeboid cells are rounded in shape, while mesenchymal cells are elongated, and their migrations are governed by a distinctly different set of biomolecules. Using single cell tracking analysis, we also show that EGF promotes cell dissemination through a significant increase in cell persistence along with a moderate increase of speed. The increase of persistence is correlated with the increase of the percentage of the mesenchymal cells within the population. Our work reveals a novel role of microenvironmental cue, EGF, in modulating heterogeneity and plasticity of tumor cell motility phenotype. In addition, it suggests a potential visual cue for diagnosing invasive states of breast cancer cells. This work can be easily extended beyond breast cancer cells.

  12. Human Bone-Forming Chondrocytes Cultured in the Hydrodynamic Focusing Bioreactor Retain Matrix Proteins: Similarities to Spaceflight Results

    Science.gov (United States)

    Duke, P. J.; Hecht, J.; Montufar-Solis, D.

    2006-01-01

    Fracture healing, crucial to a successful Mars mission, involves formation of a cartilaginous fracture callus which differentiates, mineralizes, ossifies and remodels via the endochondral process. Studies of spaceflown and tailsuspended rats found that, without loading, fracture callus formation and cartilage differentiation within the callus were minimal. We found delayed differentiation of chondrocytes within the rat growth plate on Cosmos 1887, 2044, and Spacelab 3. In the current study, differentiation of human bone-forming chondrocytes cultured in the hydrodynamic focusing bioreactor (HFB) was assessed. Human costochondral chondrocytes in suspension were aggregated overnight, then cultured in the HFB for 25 days. Collagen Type II, aggrecan and unsulfated chondroitin were found extracellularly and chondroitin sulfates 4 and 6 within the cell. Lack of secretion was also found in pancreatic cells of spaceflown rats, and in our SL3 studies. The HFB can be used to study cartilage differentiation in simulated microgravity.

  13. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives

    Directory of Open Access Journals (Sweden)

    Chanjuan Dong

    2016-02-01

    Full Text Available Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin will be further provided. The prospects and challenges about their future research and application will also be pointed out.

  14. Collagen based polyurethanes—A review of recent advances and perspective.

    Science.gov (United States)

    Zuber, Mohammad; Zia, Fatima; Zia, Khalid Mahmood; Tabasum, Shazia; Salman, Mahwish; Sultan, Neelam

    2015-09-01

    Collagen is mostly found in fibrous tissues such as tendons, ligaments and skin. Collagen makes up approximately 30% of the proteins within the body. These are tough and strong structures found all over the body: in bones, tendons and ligaments. Collagen being the most abundant protein provides tensile strength via cell matrix interactions to tissue architecture. Biomimetic materials of collagen origin gained wide spread acceptance in clinical applications. Vitamin C deficiency causes scurvy a serious and painful disease in which defective collagen prevents the formation of strong connective tissue, gums deteriorate and bleed, with loss of teeth; skin discolors, and wounds do not heal. Effective collagens prevent the manifestation of such disorders. Polyurethanes on the other hand are frequently used for various applications as they offered in wide-ranging of compositions, properties and complex structures. Collagen/PU bio-composites have potential array for biomedical applications. Considering versatile properties of the elongated fibrils and wide industrial and biomedical applications including biocompatibility of polyurethane, this review shed a light on collagen based polyurethane materials with their potential applications especially focusing the bio-medical field. PMID:26144910

  15. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model.

    Science.gov (United States)

    Mertz, E L; Makareeva, E; Mirigian, L S; Koon, K Y; Perosky, J E; Kozloff, K M; Leikin, S

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  16. Purification of a tartrate-resistant acid phosphatase (TrACP) from bovine cortical bone matrix

    International Nuclear Information System (INIS)

    It has been previously demonstrated that a partially purified bovine skeletal TrACP showed protein phosphatase (P'ase) activity that was specific for phosphotyrosyl (Ptyr) proteins. They have now purified TrACP activity from bovine cortical bone matrix to apparent homogeneity. The purification procedures included CM-Sepharose ion-exchange, cellulose phosphate affinity, sephacryl S-300 gel filtration and phenyl sepharose affinity chromatographies. Overall yield was > 25% and purification was approximately 2000-fold with a specific activity of 8.15 umol pNPP hydrolyzed/min/mg protein at 370C. The purified enzyme was judged to be homogeneous based on: (i) appearance as a single protein band on SDS-PAGE (silver staining technique) and (ii) distribution analysis of radioiodinated purified TrACP after SDS-PAGE revealing one band of radioactivity at the same positions as the TrACP protein band. M.W. of TrACP was 34,600 as assessed by gel filtration and 32,500 by SDS-PAGE, suggesting that bovine skeletal TrACP exists as active monomer. Analysis of the purified TrACP by isoelectric focusing showed at least 9 bands of enzyme activities with pIs between 4 and 5, indicating micro-heterogenecity. Substrate specificity analyses revealed that the purified TrACP also hydrolyzed nucleotide tri- and di-phosphates, but not monophosphates or other low M.W. phosphoryl esters, and was also capable of hydrolyzing phosphotyrosine (Tyr(P)) and Ptyr proteins with little activity toward other phosphoamino acids or phosphoseryl proteins. Optimal pH was 5.5 for TrACP activity, 6.0 for Tyr(P) P'ase activity and 7.0 for Ptyr protein P'ase activity. Results of these studies represent the first purification of a skeletal TrACP to apparent homogeneity

  17. Pulp revascularization using platelet rich plasma autologous or in conjunction with a collagen matrix as a therapeutic possibility for teeth with an open apex necrotic pulp and / or periapical pathology.

    OpenAIRE

    Camargo Guevara, Paula Alejandra; Sossa Rojas, Henry

    2014-01-01

    Objective: Describe the use of the Autologous Platelet-Rich Plasma or in combination with a collagen matrix as a potential revascularization therapy in teeth with open apices, necrotic pulp and/or periapical lesion. Methods: A thematic literature searchwas conducted from 2007 to 2013 using electronic means,  databases and journals with high impact on endodontic. Results: Regenerative endodontic is a biological based procedure  designed to replace structures that have been damaged, diseased or...

  18. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix

    OpenAIRE

    Tapp, Hazel; Deepe, Ray; Ingram, Jane A; Kuremsky, Marshall; Hanley, Edward N; Gruber, Helen E.

    2008-01-01

    Introduction Adult mesenchymal stem cell therapy has a potential application in the biological treatment of disc degeneration. Our objectives were: to direct adipose-derived mesenchymal stem cells (AD-MSC) from the sand rat to produce a proteoglycan and collagen type I extracellular matrix (ECM) rich in known ECM components of the annulus fibrosis of disc; and to stimulate proteoglycan production by co-culture of human annulus cells with AD-MSC. Methods AD-MSC were isolated and characterised ...

  19. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold

    OpenAIRE

    Bornes, Troy D.; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B.

    2016-01-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seedin...

  20. Sc65-Null Mice Provide Evidence for a Novel Endoplasmic Reticulum Complex Regulating Collagen Lysyl Hydroxylation

    Science.gov (United States)

    Weis, MaryAnn; Rai, Jyoti; Hudson, David M.; Dimori, Milena; Zimmerman, Sarah M.; Hogue, William R.; Swain, Frances L.; Burdine, Marie S.; Mackintosh, Samuel G.; Tackett, Alan J.; Suva, Larry J.; Eyre, David R.

    2016-01-01

    Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. PMID:27119146

  1. Elucidation of the Potential Roles of Matrix Metalloproteinases in Skeletal Biology

    OpenAIRE

    Krane, Stephen Martin

    2002-01-01

    Irreversible destruction of joint structures is a major feature of osteoarthritis and rheumatoid arthritis. Fibrillar collagens in bone, cartilage and other soft tissues are critical for optimal joint form and function. Several approaches can be used to ascertain the role of collagenases, matrix metalloproteinases, in proteolysis of joint collagens in arthritis. These approaches include identifying spontaneous genetic disorders of the enzymes and substrates in humans and animals, as well as e...

  2. Histological Features and Biocompatibility of Bone and Soft Tissue Substitutes in the Atrophic Alveolar Ridge Reconstruction

    OpenAIRE

    Carlo Maiorana; Mario Beretta; Davide Rancitelli; Giovanni Battista Grossi; Marco Cicciù; Alan Scott Herford

    2016-01-01

    The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix a...

  3. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-β and Runx2 in bone is required for hearing

    OpenAIRE

    Chang, Jolie L; Brauer, Delia S.; Johnson, Jacob; Chen, Carol G.; Akil, Omar; Balooch, Guive; Humphrey, Mary Beth; Chin, Emily N.; Porter, Alexandra E.; Butcher, Kristin; Ritchie, Robert O.; Schneider, Richard A; Lalwani, Anil; Derynck, Rik; Marshall, Grayson W.

    2010-01-01

    By investigating the role of bone quality in hearing, this study provides evidence that signaling pathways and lineage-specific transcription factors cooperate to define the tissue-specific and functionally essential material properties of the extracellular matrix.

  4. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    Directory of Open Access Journals (Sweden)

    Ali Mota

    2014-03-01

    Full Text Available Objective: We introduce an RGD (Arg-Gly-Asp-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electron microscopy (SEM and fourier transform infrared spectroscopy (FTIR. We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs. In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and 4',6-diamidino-2-phenylindole (DAPI staining, and the results compared with tissue culture plate, as the control. Results: FTIR results showed that the peptide successfully immobilized on the scaffold. MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.

  5. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    OpenAIRE

    Muschler, George F.; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal f...

  6. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved by this...... intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  7. Experimental Study of Diffusion Coefficients of Water through the Collagen: Apatite Porosity in Human Trabecular Bone Tissue

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2014-01-01

    Full Text Available We firstly measured the swelling of single trabeculae from human femur heads during water imbibition. Since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axes (length L, width W, and thickness T of plate-like trabeculae. For this aim, we developed a 3D analytical model of the water uptake by the sample that was performed according to Fickian transport mechanism. The results were then utilized to predict the swelling over time along the three sample directions (L, W, T and the apparent diffusion coefficients DT, DW, and DL.

  8. Imaging Mass Spectrometry by Matrix-Assisted Laser Desorption/Ionization and Stress-Strain Measurements in Iontophoresis Transepithelial Corneal Collagen Cross-Linking

    Directory of Open Access Journals (Sweden)

    Paolo Vinciguerra

    2014-01-01

    Full Text Available Purpose. To compare biomechanical effect, riboflavin penetration and distribution in transepithelial corneal collagen cross-linking with iontophoresis (I-CXL, with standard cross linking (S-CXL and current transepithelial protocol (TE-CXL. Materials and Methods. The study was divided into two different sections, considering, respectively, rabbit and human cadaver corneas. In both sections corneas were divided according to imbibition protocols and irradiation power. Imaging mass spectrometry by matrix-assisted laser desorption/ionization (MALDI-IMS and stress-strain measurements were used. Forty-eight rabbit and twelve human cadaver corneas were evaluated. Results. MALDI-IMS showed a deep riboflavin penetration throughout the corneal layers with I-CXL, with a roughly lower concentration in the deepest layers when compared to S-CXL, whereas with TE-CXL penetration was considerably less. In rabbits, there was a significant increase (by 71.9% and P=0.05 in corneal rigidity after I-CXL, when compared to controls. In humans, corneal rigidity increase was not significantly different among the subgroups. Conclusions. In rabbits, I-CXL induced a significant increase in corneal stiffness as well as better riboflavin penetration when compared to controls and TE-CXL but not to S-CXL. Stress-strain in human corneas did not show significant differences among techniques, possibly because of the small sample size of groups. In conclusion, I-CXL could be a valid alternative to S-CXL for riboflavin delivery in CXL, preserving the epithelium.

  9. Expression of bone morphogenic protein 2/4, transforming growth factor-β1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated bone-experimental model of osteonecrosis

    International Nuclear Information System (INIS)

    Purpose: For the surgical treatment of osteoradionecrosis after multimodal therapy of head-and-neck cancers, free vascular bone grafts are used to reconstruct osseous structures in the previously irradiated graft bed. Reduced, or even absent osseous healing in the transition area between the vascular graft and the irradiated graft bed represents a clinical problem. Inflammatory changes and fibrosis lead to delayed healing, triggered by bone morphogentic protein 2/4 (BMP2/4) and transforming growth factor (TGF)-β1. Given the well-known fibrosis-inducing activity of TGF-β1, an osteoinductive effect has been reported for BMP2/4. However, the influence of irradiation (RT) on this cytokine expression remains elusive. Therefore, the aim of the present in vivo study was to analyze the expression of BMP2/4, TGF-β1, collagen I, and osteocalcin in the transition area between the bone graft and the graft bed after RT. Methods and materials: Twenty Wistar rats (male, weight 300-500 g) were used in this study. A free vascular tibia graft was removed in all rats and maintained pedicled in the groin region. Ten rats underwent RT with 5 x 10 Gy to the right tibia, the remainder served as controls. After 4 weeks, the previously removed tibia grafts were regrafted into the irradiated (Group 1) and nonirradiated (Group 2) graft beds. The interval between RT and grafting was 4 weeks. After a 4-week osseous healing period, the bone grafts were removed, and the transition area between the nonirradiated graft and the irradiated osseous graft bed was examined histomorphometrically (National Institutes of Health imaging program) and immunohistochemically (avidin-biotin-peroxidase complex) for the expression of BMP2/4, TGF-β1, collagen I, and osteocalcin. Results: Absent or incomplete osseous healing of the graft was found in 9 of 10 rats after RT with 50 Gy and in 1 of 10 of the rats with nonirradiated osseous grafts. Histomorphometrically, the proportion of osseous healing in the

  10. Collagen in organ development

    Science.gov (United States)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  11. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  12. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    OpenAIRE

    Mun-Hwan Lee; Changkook You; Kyo-Han Kim

    2015-01-01

    In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP) scaffolds. Surface characterization using a scanning electron microscope (SEM) and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell p...

  13. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H;

    2015-01-01

    absence or presence of the nonselective MMP inhibitor GM6001 for 8 days. The basal culture conditions promoted type I collagen catabolism that was accelerated by TNF-α (p<0.005) and accomplished by MMPs (p<0.005). Levels of the collagenases MMP-8 and MMP-13 were insignificant and neither MMP-2 nor MMP-14...... activator MMP-3. Type I collagen degradation correlated with MMP-3 tissue levels (rs=0.68, p<0.05) and was attenuated with selective MMP-3 inhibitor. Type I collagen formation was down-regulated in cultured compared with native skin explants but was not reduced further by TNF-α. TNF-α had no significant...... effect on epidermal apoptosis. Our data indicate that TNF-α augments collagenolytic activity of MMP-1, possibly through up-regulation of MMP-3 leading to gradual loss of type I collagen in human skin....

  14. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes.

    Science.gov (United States)

    Gellynck, K; Shah, R; Deng, D; Parkar, M; Liu, W; Knowles, J C; Buxton, P

    2013-01-01

    Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell's ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton's role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs) (D1 ORL UVA), osteoblastic cells (MC3T3-E1) and post-osteoblast/pre-osteocyte-like cells (MLO-A5) were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a 'pseudo-periosteum' in the regeneration of bone defects. PMID:23813054

  15. Cell cytoskeletal changes effected by static compressive stress lead to changes in the contractile properties of tissue regenerative collagen membranes

    Directory of Open Access Journals (Sweden)

    K Gellynck

    2013-06-01

    Full Text Available Static compressive stress can influence the matrix, which subsequently affects cell behaviour and the cell’s ability to further transform the matrix. This study aimed to assess response to static compressive stress at different stages of osteoblast differentiation and assess the cell cytoskeleton’s role as a conduit of matrix-derived stimuli. Mouse bone marrow mesenchymal stem cells (MSCs (D1 ORL UVA, osteoblastic cells (MC3T3-E1 and post-osteoblast/pre-osteocyte-like cells (MLO-A5 were seeded in hydrated and compressed collagen gels. Contraction was quantified macroscopically, and cell morphology, survival, differentiation and mineralisation assessed using confocal microscopy, alamarBlue® assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR and histological stains, respectively. Confocal microscopy demonstrated cell shape changes and favourable microfilament organisation with static compressive stress of the collagen matrix; furthermore, cell survival was greater compared to the hydrated gels. The stage of osteoblast differentiation determined the degree of matrix contraction, with MSCs demonstrating the greatest amount. Introduction of microfilament disrupting inhibitors confirmed that pre-stress and tensegrity forces were under the influence of gel density, and there was increased survival and differentiation of the cells within the compressed collagen compared to the hydrated collagen. There was also relative stiffening and differentiation with time of the compressed cell-seeded collagen, allowing for greater manipulation. In conclusion, the combined collagen chemistry and increased density of the microenvironment can promote upregulation of osteogenic genes and mineralisation; MSCs can facilitate matrix contraction to form an engineered membrane with the potential to serve as a ‘pseudo-periosteum’ in the regeneration of bone defects.

  16. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer.

    OpenAIRE

    Bellahcène, A.; Castronovo, V.

    1995-01-01

    Microcalcifications are a common phenomenon associated with breast cancer and are often the only mammographic sign of a malignant breast disease. Although microcalcifications are not restricted to breast cancer and can be also associated with benign lesions, it is noteworthy that they are composed exclusively of hydroxyapatite in breast carcinoma. Hydroxyapatite is the bone-associated phosphocalcic crystal the deposition of which in bone tissue requires the coordinated expression of several m...

  17. Socket Preservation Therapy with Acellular Dermal Matrix and Mineralized Bone Allograft After Tooth Extraction in Humans: A Clinical and Histomorphometric Study.

    Science.gov (United States)

    Fernandes, Patricia Garani; Muglia, Valdir Antonio; Reino, Danilo Maeda; Maia, Luciana Prado; de Moraes Grisi, Marcio Fernando; de Souza, Sergio Luís; Taba, Mario; Palioto, Daniela Bazan; de Almeida, Adriana G; Novaes, Arthur Belém

    2016-01-01

    The aim of this study was to analyze through clinical and histomorphometric parameters the use of acellular dermal matrix (ADM) with or without mineralized bone allograft (AB) on bone formation in human alveoli after a 6- to 8-month healing period. A total of 19 patients in need of extraction of the maxillary anterior teeth were selected and randomly assigned to the test group (ADM plus AB) or to the control group (ADM only). Clinical and histomorphometric measurements and histologic analysis were recorded 6 to 8 months after ridge preservation procedures. Clinical parameters and amount of mineralized and nonmineralized tissue were measured and analyzed. In the clinical measurements, the test group showed reduced bone loss in the buccopalatal dimension after 6 to 8 months (intragroup analysis P acellular dermal matrix in association with mineralized bone allograft reduced alveolar bone loss in the anterior maxillae both in height and width after a follow-up period of 6 to 8 months. PMID:26901306

  18. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study

    OpenAIRE

    Jia Tang; Takashi Saito

    2015-01-01

    Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exp...

  19. The Effect of Bioceramic Composite Extracellular Matrixes Used to Repair Bone Deficiency on Relevant Blood Biochemical Indices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    At the base of experimental animal model construction of bone defect in New Zealand rabbit, the promoting repair effect of bioactive ceramics on bone defect as well as its machanism was studied through testing body mineral elements, enzymes related to bone morphogenetic proteins and some biochemical indexes. Refering to some documents, materials of TCP, CHA and HA were combined and TCP/BMP/ TCP-β1 and CHA/BMP/ TCP-β1, HA/BMP/ TCP-β1 composite materials were made. All kinds of them were implanted into the radial defect site of rabbit, respectively. The chosen blood indexes (Ca, P, ALP, GGT, AST, ALT, TPA, BUN and Cr) were tested by colorimetry, speed rate and bromocresol green testing methods. No abnormal effects were found in any animal after operation. Serum concentrations of Ca, P and ALP were increased with the length of time in all groups of the three kinds of composite material, mixed material and pure materials. The increases in composite material groups were more significant ( P <0.05). Comparison of the three kinds of material showed TCP > CHA > HA. There was a tendency of increased TPA and decreased BUN with the length of time. There was no significant difference between the composite material groups and pure material group (P >0.05). The three kinds of bioactive ceramics composed of extracellular matrix could increase the serum concentrations of Ca and P and activity of ALP after being implanted into defect bone and showed some repairing capacity. This provided a new area of machanism study of bone defect repair by biomaterials.

  20. Bone Microenvironment Modulates Expression and Activity of Cathepsin B in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Izabela Podgorski

    2005-03-01

    Full Text Available Prostate cancers metastasize to bone leading to osteolysis. Here we assessed proteolysis of DOcollagen I (a bone matrix protein and, for comparison, DO-collagen IV, by living human prostate carcinoma cells in vitro. Both collagens were degraded, this degradation was reduced by inhibitors of matrix metallo, serine, cysteine proteases. Because secretion of the cysteine protease cathepsin B is increased in human breast fibroblasts grown on collagen I gels, we analyzed cathepsin B levels and secretion in prostate cells grown on collagen I gels. Levels and secretion were increased only in DU145 cells-cells that expressed the highest baseline levels of cathepsin B. Secretion of cathepsin B was also elevated in DU145 cells grown in vitro on human bone fragments. We further investigated the effect of the bone microenvironment on cathepsin B expression and activity in vivo in a SCID-human model of prostate bone metastasis. High levels of cathepsin B protein and activity were found in DU145, PC3, LNCaP bone tumors, although the PC3 and LNCaP cells had exhibited low cathepsin B expression in vitro. Our results suggest that tumor-stromal interactions in the context of the bone microenvironment can modulate the expression of the cysteine protease cathepsin B.

  1. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold.

    Science.gov (United States)

    Bornes, Troy D; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B

    2016-03-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 × 10(6) cells/cm(3). Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing an expansion medium, and seeded within collagen I scaffolds at densities of 50, 10, 5, 1, and 0.5 × 10(6) BMSCs/cm(3). For 3D isolation and expansion, aspirates containing known quantities of mononucleated cells (bone marrow-derived mononucleated cells [BMNCs]) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 × 10(6) BMNCs/cm(3) and cultured in the expansion medium for an equivalent duration to 2D expansion. Constructs were differentiated in vitro in the chondrogenic medium for 21 days and assessed with reverse-transcription quantitative polymerase chain reaction, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two-dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II messenger RNA (mRNA) relative to predifferentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5-10 × 10(6) BMSCs/cm(3). Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5-10 × 10(6) BMSCs/cm(3) based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/deoxyribonucleic acid (DNA). For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II m

  2. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Bhattacharya, Debasis; Maiti, T K; Kundu, S C

    2016-02-01

    The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4% fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk-poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering. PMID:26174955

  3. Demineralized Bone Matrix Add-On for Acceleration of Bone Healing in Atypical Subtrochanteric Femoral Fracture: A Consecutive Case-Control Study

    Science.gov (United States)

    Kulachote, Noratep; Sirisreetreerux, Norachart; Chanplakorn, Pongsthorn; Fuangfa, Praman; Suphachatwong, Chanyut; Wajanavisit, Wiwat

    2016-01-01

    Background. Delayed union and nonunion are common complications in atypical femoral fractures (AFFs) despite having good fracture fixation. Demineralized bone matrix (DBM) is a successfully proven method for enhancing fracture healing of the long bone fracture and nonunion and should be used in AFFs. This study aimed to compare the outcome after subtrochanteric AFFs (ST-AFFs) fixation with and without DBM. Materials and Methods. A prospective study was conducted on 9 ST-AFFs patients using DBM (DBM group) during 2013-2014 and compared with a retrospective consecutive case series of ST-AFFs patients treated without DBM (2010–2012) (NDBM group, 9 patients). All patients were treated with the same standard guideline and followed up until fractures completely united. Postoperative outcomes were then compared. Results. DBM group showed a significant shorter healing time than NDBM group (28.1 ± 14.4 versus 57.9 ± 36.8 weeks, p = 0.04). Delayed union was found in 4 patients (44%) in DBM group compared with 7 patients (78%) in NDBM group (p > 0.05). No statistical difference of nonunion was demonstrated between both groups (DBM = 1 and NDBM = 2, p > 0.05). Neither postoperative infection nor severe local tissue reaction was found. Conclusions. DBM is safe and effective for accelerating the fracture healing in ST-AFFx and possibly reduces nonunion after fracture fixation. Trial registration number is TCTR20151021001. PMID:27022610

  4. A multicentre randomized controlled clinical trial on the treatment of intrabony defects with enamel matrix derivatives/synthetic bone graft or enamel matrix derivatives alone?Results after 12 months

    OpenAIRE

    Meyle, Joerg; Hoffmann, Thomas; Topoll, Heinz; Heinz, Bernd; Al-Machot, Eli; Jervøe-Storm, Pia-Merete; Jepsen, Søren; Eickholz, Peter; Meiss, Christian

    2011-01-01

    Abstract Objectives: Comparison of clinical and radiographic outcomes of a combination of enamel matrix derivatives (EMD) and a synthetic bone graft (SBG) with EMD alone in wide and deep 1- and 2- wall intrabony defects 12 months after treatment. Method: In 73 patients with chronic periodontitis and one intrabony lesion, defects were randomly assigned to EMD/SBG (test) or EMD (control). Bone sounding, attachment levels, probing pocket depths, bleeding on probing and recessions w...

  5. Synthesis and characterization of a nanostructured matrix hydroxyapatite ceramic bone reconstruction

    International Nuclear Information System (INIS)

    The nanostructured ceramics have been shown promise as biomaterials for bone reconstruction. Among calcium phosphates, hydroxyapatite Ca/P ratio = 1.67 mol stands out because of its crystallographic similarity with the mineral bone phase and biocompatibility. This work was based on synthesis and characterization of a nanostructured hydroxyapatite for use in reconstituting bone tissue. The synthesis method for obtaining the bioceramic powder occurred at process of dissolution/precipitation, involving CaO solid/liquid and phosphoric acid required for forming the composition of Ca/P = 1.67 mole. The material recovered from the synthesis was calcined at 900 ° C/2h, providing the hydroxyapatite powder nanometer. This was subjected to mechanical fragmentation process in mill attritor, providing a hydroxyapatite with modified surface morphology. The results presented relate to morphological characterization studies (SEM), mineralogical (XRD), chemical (FTIR) and particle size distribution, using the laser particle size analysis method. Such results showed the formation of hydroxyapatite phase and morphology satisfactory for use in reconstituting bone tissue

  6. Histologic and histomorphometric evaluation of osteogenesis induced by octacalcium phosphate (OCP combined with bone matrix gelatin (BMG in rat skull defects

    Directory of Open Access Journals (Sweden)

    Sargolzaei F.

    2005-05-01

    Full Text Available Statement of Problem: Several methods are used to enhance bone repair and new bone formation, and bone matrix gelatin (BMG is recently introduced. Purpose: The purpose of this histologic and histomorphometric study was to assess the osteogenic potential and the quantity of new trabecular bone formation after implantation of OCP and BMG alone and in combination into the cranial defects in rat. Materials and Methods: In this experimental study, 100 young male Sprague Dawley rats (5-6 weeks age and 120-150gr weight were divided into four groups randomly. A full thickness standard trephine defect 5mm in diameter was made in the rat’s parietal bone, and 5mg of OCP, BMG alone and in combination were implanted into the defects. No OCP and BMG particles were implanted in control group which was otherwise treated identically. On the 5th, 7th, 14th, 21st and 56th days after implantation, the rats were killed and bone samples collected. After processing the samples by routine histological procedures, 5µm thick sections of bone were cut and stained with Haematoxyline & Eosin (H&E and Alcian Blue and studied histologically and histomorphometrically using light microscope and eyepiece graticule. The amount of newly formed bone was quantitatively measured by the use of histomorphometric methods. Data were analyzed with SAS statistical package using ANOVA and Duncan tests. Results: In the experimental groups, the new bone formation was initiated from the margin of defects during 5-14 days after implantation. During 14-21 days after implantation, bone marrow cavities and bone marrow tissues in newly formed bone were seen. By the end of the study, the newly formed bone increased and was relatively matured and almost all of the implanted materials were absorbed. In control group, at the end of the study, a few clusters of new bone were seen near to the defect margins and host bone. The histomorphometric analysis indicated statistical significant differences in

  7. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  8. Silicon Matrix Calcium Phosphate as a Bone Substitute: Early Clinical and Radiological Results in a Prospective Study With 12-Month Follow-up

    OpenAIRE

    Pimenta, Luiz; Pesántez, Carlos Fernando Arias; Oliveira, Leonardo

    2008-01-01

    Introduction Autograft has been the “gold standard” for orthopedic bone grafting applications, but with some clinical challenges. Here we present the rationale and clinical outcomes supporting the use of a bone substitute material that consists of a mixture of two calcium phosphates (HA and ß-TCP), which are integrated into a silicon xerogel matrix, promoting nanocrystalline apatite layers on the surface of the material following implantation into a physiological environment. Methods Twenty-f...

  9. Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues

    OpenAIRE

    J.V. Araújo; Martins, Albino; Leonor, I. B.; Pinho, Elisabete D.; Reis, R.L.; Neves, N. M.

    2008-01-01

    The aim of this work was to develop novel electrospun nanofiber meshes coated with a biomimetic calcium phosphate (BCP) layer that mimics the extracellular microenvironment found in the human bone structure. Poly(!-caprolactone) (PCL) was selected because of its well-known medical applications, its biodegradability, biocompatibility and its susceptibility to partial hydrolysis by a straightforward alkaline treatment. The deposition of a calcium phosphate layer, similar to the i...

  10. [Regulation of bone homeostasis by glucose].

    Science.gov (United States)

    Fukasawa, Kazuya; Hinoi, Eiichi

    2016-08-01

    Synthesis of type Ⅰ collagen, a major component of the bone matrix, precedes the expression of Runt-related transcription factor 2(Runx2), a master regulator in osteoblast differentiation. Thus, a direct link between osteoblast differentiation and bone formation is seemingly absent, and how these are maintained in a coordinated matter remains unclear. It was recently demonstrated that osteoblasts depend on glucose, which glucose transporter type 1(GLUT1)takes up as an energy source, and it was found that glucose uptake promotes osteoblast differentiation and bone formation via AMP-activated protein kinase. It was also shown that Runx2 upregulates GLUT1 expression, and this Runx2-GLUT1 feedforward regulation integrates and coordinates osteoblast differentiation and bone formation throughout life. These previous findings revealed that the energy metabolism balance in osteoblasts integrates the differentiation and function of osteoblasts, and re-emphasized the importance of crosstalk between bone and sugar metabolism. PMID:27461500

  11. Avaliação das metaloproteinases de matriz -2 e -9 em gatos com desmineralização óssea secundária à tirotoxicose induzida Evaluation of matrix metalloproteinases -2 and -9 in cats under bone demineralization secondary to induced thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    F.S. Costa

    2008-10-01

    Full Text Available Observou-se significativo aumento de atividade das formas ativas das metaloproteinases -2 e -9 em gatos com tirotoxicose induzida e desmineralização óssea. As formas pró e intermediária da metaloproteinase -2 elevaram-se com 14 dias de administração hormonal, porém, posteriormente, houve uma tendência de queda. Observou-se correlação negativa entre a forma ativa das metaloproteinases de matriz -2 e -9 e a densidade mineral óssea da extremidade distal do rádio. Os resultados sugerem aumento da degradação da matriz colágena secundária com a elevação dos hormônios tiroidianos.Significant increase of activity of active forms of matrix metalloproteinases -2 and -9 in cats under induced thyrotoxicosis and bone demineralization was observed. Pro and intermediated forms of matrix metalloproteinases -2 and -9 increased at 14 days of hormonal treatment, followed by decrease tendency. A negative correlation between active forms of matrix metalloproteinases -2 and -9 and bone mineral density of radius distal extremity was also observed. The results suggest an increase of collagen matrix degradation secondary to high levels of thyroid hormones.

  12. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P.R.O. (IIT)

    2008-06-24

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or 'collagenolysis.' The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's 'interaction domain,' which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  13. Collagen fibril formation during development

    International Nuclear Information System (INIS)

    Studies with embryonic skin and bone suggested that the aminopropeptide (AP) and carboxylpropeptide (CP) of type I pro-callagen (pro-col) play a role in fibril formation. Chick leg metatarsal tendons were studied by electron microscopy. AP and CP of type I pro-col were purified from chick leg tendons; antibodies developed in rabbits and purity tested by radioimmunoassays. Antibodies were used for immunofluorescence microscopy (IFM) and immunoblotting (IB). The peritendineum, consisting of thin 20-30 nm fibrils, revealed the AP of type I and type III procol. In the tendon area, collagen fibrils were arranged within small compartments and were of uniform diameter at 10d, 14d and 18d. However, beyond 21d, there was confluency of the compartments and a wide range of fibril diameters. IFM revealed fine streaks of collagen, staining with the AP of type I throughout the tendon. The CP was mainly intracellular with only a small amount present in the extracellular space. IB revealed procollagen, pN-collagen (AP+collagen) and pC-collagen, (CP+collagen) at all stages of development. Ratios of pN/pC collagen, determined by spectrophotometric scanning of autoradiographs, correlated well with the distribution of fibril diameter. This study suggests the hypothesis that AP initiates fibrillogenesis while CP may regulate additional fibril growth

  14. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study.

    Science.gov (United States)

    Tang, Jia; Saito, Takashi

    2015-01-01

    Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals) for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area. PMID:26491653

  15. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study

    Directory of Open Access Journals (Sweden)

    Jia Tang

    2015-01-01

    Full Text Available Type I collagen (COL-1 is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area.

  16. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix

    International Nuclear Information System (INIS)

    In this work, we report the synthesis of bone-like hydroxyapatite (HAp) nanorods in wheat starch matrix via a biomimetic process. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Scanning and transmission electron microscopy (SEM and TEM) were used to determine the size, shape and morphology of nano-HAp. The results indicate that, the shape and morphology of nHAp is influenced by the presence of starch as a template agent and rod-like nHAp similar to the inorganic component in the human body is obtained at room temperature. In vitro bioactivity of the synthesized HAp nanocomposites was finally verified by comparison of the HAp's structures and morphology before and after immersion in simulated body fluid (SBF) solution for 3, 7, and 14 days.

  17. Improving interfacial adhesion with epoxy matrix using hybridized carbon nanofibers containing calcium phosphate nanoparticles for bone repairing.

    Science.gov (United States)

    Gao, Xukang; Lan, Jinle; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-04-01

    Hybridized carbon nanofibers containing calcium phosphate nanoparticles (CNF/CaP) were investigated as osteocompatible nanofillers for epoxy resin. The CNF/CaP was produced by electrospinning mixture solution of polyacrylonitrile and CaP precursor sol-gel, followed by preoxidation and carbonization. The continuous and long CNF/CaP was ultrasonically chopped, mixed into epoxy resin and thermo-cured. Compared to pure CNFs with similar ultrasonication treatment, the shortened CNF/CaP reinforced composites demonstrated significant enhancement in flexural properties of epoxy composites, benefiting from the improved interfacial adhesion between CNF/CaP and resin matrix. The resulting composites also displayed good biocompatibility and sustained calcium ion release, which categorized them as promising materials for bone repairing. PMID:26838838

  18. Effect of anti-inflammatory agents on the integration of autogenous bone graft and bovine bone devitalized matrix in rats Efeito de antiinflamatórios na integração de enxerto ósseo autógeno e de matriz óssea bovina desvitalizada em ratos

    Directory of Open Access Journals (Sweden)

    Roberto Antoniolli da Silva

    2008-04-01

    Full Text Available PURPOSE: To study the repair of bone defect filled with autograft or bovine bone devitalized matrix in rats under anti-inflammatory action. METHODS: Two hundred and forty Wistar rats were distributed to two groups of 120 animals each. A 2mm-diameter defect was created in the femoral diaphysis. Animals of Group I had the bone defect filled with autograft and those of Group II, with bovine bone devitalized matrix. Animals of each group were redistributed to four subgroups according to the intramuscular administration of anti-inflammatory drug or saline solution: A - diclofenac sodium; B - dexamethasone; C - meloxicam; D - saline solution. Evaluation periods were 7, 14 and 30 days. Histological evaluation consisted of quantifying the inflammatory process, the bone neoformation, the collagen formation and the presence of macrophages. RESULTS: Animals of Group I did not show significant difference considering inflammatory reaction. Significant and progressive increase of bone neoformation was observed in both groups. The animals that received meloxicam and autograft showed less collagen formation at 14 and 30 days. The number of macrophages was higher in Group II than in Group I. The animals treated with dexamethasone and saline solution did not show statistically significant difference. CONCLUSIONS: Diclofenac sodium and meloxicam delayed bone graft repair and dexamethasone did not interfere in it.OBJETIVO: Estudar o reparo do defeito ósseo preenchido com enxerto ósseo autógeno ou matriz óssea bovina desvitalizada sob ação de antiinflamatórios em ratos. MÉTODOS: 240 ratos Wistar, distribuídos em dois grupos de 120 animais. Confeccionou-se defeito de 2 mm de diâmetro na diáfise femoral. Os animais do Grupo I tiveram o defeito ósseo preenchido com enxerto ósseo autógeno e os do Grupo II com matriz óssea bovina desvitalizada. Cada grupo foi redistribuído em quatro subgrupos segundo a administração intramuscular de antiinflamatório ou

  19. Combined effects of porous hydroxyapatite and demineralized bone matrix on bone induction: in vitro and in vivo study using a nude rat model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hyup; Lee, Kyung-Mee; Baek, Hae-Ri; Jang, Soo-Jeong; Lee, Ji-Ho [Department of Orthopedic Surgery, Seoul National University School of Medicine, SMG-SNU Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Ryu, Hyun-Seung, E-mail: spinelee@snu.ac.kr [Research and Development Center, CGBio Inc., Seong-Nam 462-120 (Korea, Republic of)

    2011-02-15

    Hydroxyapatite (HA) is an osteoconductive material used as a bone graft extender and demineralized bone matrix (DBM) has been used as a source of osteoinductive factors. A combination of DBM and HA is expected to create a composite with both osteoconductive and osteoinductive properties. This study examined the effect of a combination of DBM and HA on osteogenesis both in vitro and in vivo using an athymic nude rat abdominal muscle pouch model, and evaluated the possibility of HA as a carrier of DBM. Alkaline phosphatase (ALP) staining, ALP assay and measurements of the mRNA expression of ALP and Runx2 by RT-PCR were performed by transplanting human mesenchymal stem cells onto a plate. Five athymic nude rats each were assigned to one of two experimental groups (DBM/HA putty and only HA, i.e. 15 pouches per group). The muscle pouches were filled with DBM/HA putty or only HA. Radiographs were obtained at weeks 4 and 8, postoperatively. The animals were sacrificed at week 8 postoperatively and high resolution microCT was used to confirm the newly formed mineralized tissue. Each pouch was fixed, embedded, sectioned and processed for hematoxylin and eosin staining. The ALP value of the DBM/HA putty was higher than those of HA and control (p < 0.05, each). The expression of ALP mRNA appeared higher on the DBM/HA putty than on HA and control. MicroCT and histology examinations of the DBM/HA putty demonstrated the presence of newly generated mineralized tissues but there was no mineralized tissue in the HA cases. In conclusion, the DBM/HA putty indicated osteoblastic differentiation in vitro and showed ectopic mineralized tissue formation in the rat abdominal pouch model. These findings indicate that the DBM/HA putty can retain its oteoinductivity and HA can be used as a carrier of DBM.

  20. A statistical model to allow the phasing out of the animal testing of demineralised bone matrix products.

    Science.gov (United States)

    Murray, Samuel S; Brochmann, Elsa J; Harker, Judith O; King, Edward; Lollis, Ryan J; Khaliq, Sameer A

    2007-08-01

    Demineralised bone matrix (DBM) products are complex mixtures of proteins known to influence bone growth, turnover, and repair. They are used extensively in orthopaedic surgery, and are bioassayed