WorldWideScience

Sample records for bone cell populations

  1. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter;

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  2. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter;

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and...... prospective isolation of mouse bone marrow osteoprogenitors....... prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic...

  3. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  4. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas;

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous h......MSC population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high......-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. RESULTS: In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts...

  5. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    OpenAIRE

    Ryoichi Tashima; Satsuki Mikuriya; Daisuke Tomiyama; Miho Shiratori-Hayashi; Tomohiro Yamashita; Yuta Kohro; Hidetoshi Tozaki-Saitoh; Kazuhide Inoue; Makoto Tsuda

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controver...

  6. Modelling the anabolic response of bone using a cell population model

    OpenAIRE

    Buenzli, Pascal R.; Pivonka, Peter; Gardiner, Bruce S.; Smith, David W.

    2011-01-01

    To maintain bone mass during bone remodelling, coupling is required between bone resorption and bone formation. This coordination is achieved by a network of autocrine and paracrine signalling molecules between cells of the osteoclast lineage and cells of the osteoblastic lineage. Mathematical modelling of signalling between cells of both lineages can assist in the interpretation of experimental data, clarify signalling interactions and help develop a deeper understanding of complex bone dise...

  7. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury.

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  8. Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations.

    Science.gov (United States)

    Smith-Berdan, Stephanie; Schepers, Koen; Ly, Alan; Passegué, Emmanuelle; Forsberg, E Camilla

    2012-02-15

    The bone marrow (BM) niche is essential for lifelong hematopoietic stem cell (HSC) maintenance, proliferation and differentiation. Several BM cell types, including osteoblast lineage cells (OBC), mesenchymal stem cells (MSC) and endothelial cells (EC) have been implicated in supporting HSC location and function, but the relative importance of these cell types and their secreted ligands remain controversial. We recently found that the cell surface receptors Robo4 and CXCR4 cooperate to localize HSC to BM niches. We hypothesized that Slit2, a putative ligand for Robo4, cooperates with the CXCR4 ligand SDF1 to direct HSC to specific BM niche sites. Here, we have isolated OBC, MSC and EC by flow cytometry and determined their frequency within the bone marrow and the relative mRNA levels of Slit2, SDF1 and Robo4. We found that expression of Slit2 and SDF1 were dynamically regulated in MSC and OBC-like populations following radiation, while Robo4 expression was restricted to EC. Radiation also significantly affected the cellularity and frequency of both the non-adherent and adherent cells within the BM stroma. These data support a physiological role for Slit2 in regulating the dynamic function of Robo-expressing cells within BM niches at steady state and following radiation.

  9. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas;

    2016-01-01

    significantly increased migration ability as demonstrated by bioluminescence imaging. Conclusion Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols...

  10. Hindlimb-unloading suppresses B cell population in the bone marrow and peripheral circulation associated with OPN expression in circulating blood cells.

    Science.gov (United States)

    Ezura, Yoichi; Nagata, Junji; Nagao, Masashi; Hemmi, Hiroaki; Hayata, Tadayoshi; Rittling, Susan; Denhardt, David T; Noda, Masaki

    2015-01-01

    Rodent hindlimb unloading (HU) by tail-suspension is a model to investigate disuse-induced bone loss in vivo. Previously, we have shown that osteopontin (OPN, also known as Spp1) is required for unloading-induced bone loss. However, how unloading affects OPN expression in the body is not fully understood. Here, we examined OPN expression in peripheral blood of mice subjected to HU. Real-time RT-PCR analysis indicated that OPN expression is increased in circulating peripheral blood cells. This HU-induced increase in OPN mRNA expression was specific in circulating peripheral blood cells, as OPN was not increased in the blood cells in bone marrow. HU-induced enhancement in OPN expression in peripheral blood cells was associated with an increase in the fraction of monocyte/macrophage lineage cells in the peripheral blood. In contrast, HU decreased the fraction size of B-lymphocytes in the peripheral blood. We further examined if B-lymphogenesis is affected in the mice deficient for osteopontin subjected to HU. In bone marrow, HU decreased the population of the B-lymphocyte lineage cells significantly, whereas it did not alter the population of monocyte/macrophage lineage cells. HU also increased the cells in T-lymphocyte lineage in bone marrow. Interestingly, these changes were observed similarly both in OPN-deficient and wild-type mice. These results indicate for the first time that HU increases OPN expression in circulating cells and suppresses bone marrow B-lymphogenesis.

  11. Restoration of prostaglandin releasing macrophage populations in lethally irradiated mice with spleen cells from bone marrow-depleted donors

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y.; Volkman, A. (East Carolina Univ. School of Medicine, Greenville, NC (USA))

    1991-04-01

    Previous studies in mice severely depleted of bone marrow cells by 89Sr showed persistent monocytopenia and impaired expression of prostaglandin E2-releasing splenic macrophages (PGSM) despite the occurrence in the spleen of more than 10-fold increases in pluripotential stem cells and M phi colony-forming cells. To determine whether the observed deficits were due to a lack of precursors of blood monocytes and PGSM in the spleens of 89Sr-treated mice, radiation chimeras were established by i.v. infusion of 2 x 10(6) spleen cells from 89Sr donor CBA/J or semisyngeneic B6CB F1 hybrid mice into lethally gamma-irradiated CBA/J recipients. Blood monocyte levels were greater than normal by day 14 and PGSM induced by Corynebacterium parvum were demonstrated by day 28. These restored M phi populations expressed the donor haplotype detected in vitro with haplotype-specific monoclonal anti-H-2K plus complement. 89Sr treatment of the chimeras resulted in profound depletion of monocytes and PGSM. The data indicate that the spleen of the 89Sr-treated mouse, which is an ineffective source of circulating monocytes and PGSM, contains cells which can generate both of these populations following infusion into lethally irradiated recipients. Since the bone marrow of such recipients was capable of being repopulated, the aggregate observations suggest that functional bone marrow is obligatory for the generation of blood monocytes and PGSM populations.

  12. Robert Feulgen Prize Lecture. Grenzgänger: adult bone marrow cells populate the brain.

    Science.gov (United States)

    Priller, Josef

    2003-08-01

    While the brain has traditionally been considered a rather secluded site, recent studies suggest that adult bone marrow (BM)-derived stem cells can generate glia and neurons in rodents and humans. Macrophages and microglia are the first to appear in the murine brain after transplantation of genetically marked BM cells. Within weeks after transplantation, some authors have found astrocytes and cells expressing neuronal antigens. We detected cerebellar Purkinje neurons and interneurons, such as basket cells, expressing the green fluorescent protein (GFP) 10-15 months after transplantation of GFP-labeled BM cells. The results push the boundaries of our classic view of lineage restriction. PMID:12898276

  13. Robert Feulgen Prize Lecture. Grenzgänger: adult bone marrow cells populate the brain.

    Science.gov (United States)

    Priller, Josef

    2003-08-01

    While the brain has traditionally been considered a rather secluded site, recent studies suggest that adult bone marrow (BM)-derived stem cells can generate glia and neurons in rodents and humans. Macrophages and microglia are the first to appear in the murine brain after transplantation of genetically marked BM cells. Within weeks after transplantation, some authors have found astrocytes and cells expressing neuronal antigens. We detected cerebellar Purkinje neurons and interneurons, such as basket cells, expressing the green fluorescent protein (GFP) 10-15 months after transplantation of GFP-labeled BM cells. The results push the boundaries of our classic view of lineage restriction.

  14. Nuclear pockets and clefts in the lymphoid cell population of bone marrow and blood of children with acute lymphoblastic leukemia.

    OpenAIRE

    Schuurmans Stekhoven, J. H.; Holland, R.

    1986-01-01

    Ultrastructural investigation of the nuclei of the lymphoid cell population of bone marrow and blood of children with acute lymphoblastic leukemia regularly shows the presence of two types of nuclear pockets and nuclear clefts. The incidences of these nuclear features decrease significantly during cytostatic therapy. The pockets consist of either a cytoplasmic segment enclosed by a nuclear heterochromatin bridge or a nuclear segment enclosed by an intranuclear cleft. One type of nuclear cleft...

  15. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    International Nuclear Information System (INIS)

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the “quiescent” and “proliferative” niches in which hematopoietic stem cells and progenitors reside.

  16. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Balduino, Alex, E-mail: balduino@uva.edu.br [School of Dentistry, Veiga de Almeida University, Rio de Janeiro, RJ (Brazil); Mello-Coelho, Valeria [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H. [Department of Periodontics, Prevention and Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI (United States); Weeraratna, Ashani T.; Becker, Kevin G. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Mello, Wallace de [Instituto Oswaldo Cruz, Rio de Janeiro, RJ (Brazil); Taub, Dennis D. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Borojevic, Radovan [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  17. Molecular characterisation of stromal populations derived from human embryonic stem cells: Similarities to immortalised bone marrow derived stromal stem cells

    Directory of Open Access Journals (Sweden)

    Linda Harkness

    2015-12-01

    Full Text Available Human bone marrow-derived stromal (skeletal stem cells (BM-hMSC are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT. Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited ≥2-fold change (FC in hESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial–mesenchymal transition (EMT were highly enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. hESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols.

  18. Dissecting the Role of Bone Marrow Stromal Cells on Bone Metastases

    OpenAIRE

    Denise Buenrostro; Serk In Park; Julie A. Sterling

    2014-01-01

    Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Addit...

  19. Bone marrow (stem cell) donation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing ... stem cells from a donor's blood. Types of Bone Marrow Donation There are two types of bone ...

  20. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone

    OpenAIRE

    1988-01-01

    RCJ 3.1, a clonally derived cell population isolated from 21-d fetal rat calvaria, expresses the osteoblast-associated characteristics of polygonal morphology, a cAMP response to parathyroid hormone, synthesis of predominantly type I collagen, and the presence of 1,25- dihydroxyvitamin D3-regulated alkaline phosphatase activity. When cultured in the presence of ascorbic acid, sodium beta- glycerophosphate, and the synthetic glucocorticoid dexamethasone, this clone differentiated in a time-dep...

  1. Rosiglitazone promotes development of a novel adipocyte population from bone marrow–derived circulating progenitor cells

    OpenAIRE

    Crossno, Joseph T.; Majka, Susan M.; Grazia, Todd; Gill, Ronald G.; Klemm, Dwight J.

    2006-01-01

    Obesity and weight gain are characterized by increased adipose tissue mass due to an increase in the size of individual adipocytes and the generation of new adipocytes. New adipocytes are believed to arise from resident adipose tissue preadipocytes and mesenchymal progenitor cells. However, it is possible that progenitor cells from other tissues, in particular BM, could also contribute to development of new adipocytes in adipose tissue. We tested this hypothesis by transplanting whole BM cell...

  2. Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    James Wang

    Full Text Available Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs, and very-small embryonic-like stem cells (VSELs have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5. Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6-25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.

  3. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL cells are heterogeneous population lacking Oct-4A expression.

    Directory of Open Access Journals (Sweden)

    Krzysztof Szade

    Full Text Available Murine very small embryonic-like (VSEL cells, defined by the Lin(-Sca-1(+CD45(- phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-Sca(+CD45(- population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs or endothelial progenitor cells (EPCs. The study evidenced that murine Lin(-Sca-1(+CD45(- population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+KDR(-, c-Kit(-KDR(+, and c-Kit(-KDR(- subpopulations could be distinguished, while c-Kit(+KDR(+ events were very rare. The c-Kit(+KDR(- subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-KDR(+ cells. The c-Kit(-KDR(-FSC(low subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-Sca-1(+CD45(-FSC(low population, even by single-cell qRT-PCR. We also found that the Lin(-Sca-1(+CD45(-c-Kit(+ subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+c-Kit(+Lin(- (SKL CD34(-CD45(-CD105(+ cells, expressing particular HSC markers. Co-culture of Lin(-Sca-1(+CD45(-FSC(low with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-CD105(+ subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-Sca-1(+CD45(-FSC(low cells are

  4. Identifying A Molecular Phenotype for Bone Marrow Stromal Cells With In Vivo Bone Forming Capacity

    DEFF Research Database (Denmark)

    Larsen, Kenneth H; Frederiksen, Casper M; Burns, Jorge S;

    2009-01-01

    Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone forming capacity is not known. Thus, we employed DNA microarrays...... comparing two human bone marrow stromal cell (hBMSC) populations: one is capable of in vivo heterotopic bone formation (hBMSC-TERT(+Bone)) and the other is not (hBMSC-TERT(-Bone)). Compared to hBMSC-TERT(-Bone), the hBMSC-TERT(+Bone) cells had an increased over-representation of extracellular matrix genes...... (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT(-Bone) cells expressed a larger number of immune-response related genes (26% versus 8%). In order to test for the predictive...

  5. The PPARgamma-selective ligand BRL-49653 differentially regulates the fate choices of rat calvaria versus rat bone marrow stromal cell populations

    Directory of Open Access Journals (Sweden)

    Yoshiko Yuji

    2008-07-01

    Full Text Available Abstract Background Osteoblasts and adipocytes are derived from a common mesenchymal progenitor and an inverse relationship between expression of the two lineages is seen with certain experimental manipulations and in certain diseases, i.e., osteoporosis, but the cellular pathway(s and developmental stages underlying the inverse relationship is still under active investigation. To determine which precursor mesenchymal cell types can differentiate into adipocytes, we compared the effects of BRL-49653 (BRL, a selective ligand for peroxisome proliferators-activated receptor (PPARγ, a master transcription factor of adipogenesis, on osteo/adipogeneis in two different osteoblast culture models: the rat bone marrow (RBM versus the fetal rat calvaria (RC cell system. Results BRL increased the number of adipocytes and corresponding marker expression, such as lipoprotein lipase, fatty acid-binding protein (aP2, and adipsin, in both culture models, but affected osteoblastogenesis only in RBM cultures, where a reciprocal decrease in bone nodule formation and osteoblast markers, e.g., osteopontin, alkaline phosphatase (ALP, bone sialoprotein, and osteocalcin was seen, and not in RC cell cultures. Even though adipocytes were histologically undetectable in RC cultures not treated with BRL, RC cells expressed PPAR and CCAAT/enhancer binding protein (C/EBP mRNAs throughout osteoblast development and their expression was increased by BRL. Some single cell-derived BRL-treated osteogenic RC colonies were stained not only with ALP/von Kossa but also with oil red O and co-expressed the mature adipocyte marker adipsin and the mature osteoblast marker OCN, as well as PPAR and C/EBP mRNAs. Conclusion The data show that there are clear differences in the capacity of BRL to alter the fate choices of precursor cells in stromal (RBM versus calvarial (RC cell populations and that recruitment of adipocytes can occur from multiple precursor cell pools (committed preadipocyte

  6. Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells.

    Science.gov (United States)

    Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan

    2016-08-01

    Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix. PMID:27155840

  7. Regulation of Hematopoietic Stem Cells by Bone Marrow Stromal Cells

    OpenAIRE

    Anthony, Bryan; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here we review the complex and diverse stromal cell populations that reside ...

  8. Bone microdamage and cell apoptosis

    Directory of Open Access Journals (Sweden)

    Noble B.

    2003-12-01

    Full Text Available Accumulation of microdamage in bone leads to the reduced strength of our skeleton. In health, bone adapts to the prevailing mechanical needs of the organism and is also capable of self-repair, sensing, removing and replacing damaged or mechanically insufficient volumes of bone. In disease and old age these characteristics are reduced. In order to undertake both of the processes of functional adaptation and repair the bone resorbing and forming cells must be very accurately targeted to areas of physiological need. The mechanism by which cells are precisely targeted to areas requiring repair is both clinically relevant and poorly understood. The osteocyte has been assumed to play a role in sensing damage and signaling for its removal, due largely to its abundance throughout the mineralized bone matrix. However, until recently there has been little evidence that osteocyte function is modified in the vicinity of the microdamage. Here I outline the possibility that the targeted removal of bone containing microcracks might involve signals derived from the apoptotic death of the osteocyte. I shall discuss data that support or refute this view and will consider the possible molecular mechanisms by which controlled cell death might contribute to the signals for repair in the light of work involving cells in bone and other tissue systems.

  9. Mechanism of protection from graft-vs-host disease in murine mixed allogeneic chimeras. I. Development of a null cell population suppressive of cell-mediated lympholysis responses and derived from the syngeneic bone marrow component

    International Nuclear Information System (INIS)

    Splenocyte populations from whole body-irradiated recipients of mixed T cell-depleted (TCD) syngeneic and allogeneic (complete H-2 disparity) bone marrow, or of TCD syngeneic marrow alone, contain cells with the ability to suppress the generation of cell-mediated lympholysis responses in vitro. This activity, which is present by 8 days after bone marrow transplantation and persists for several weeks, has been analyzed for possible veto-like or other specificity. Although reproducible patterns of suppression were observed, depending both on host strain and on the genetic combination of the response examined, the overall suppression in vitro most closely resembles that which has been ascribed to natural suppressor cells in other systems. The suppression appears to be mediated by a non-T cell, non-B cell, nonadherent, asialo GM1-negative population. Cold target inhibition and CTL activity of chimeric cells have been ruled out as factors contributing to the observed suppression. Significantly, in mixed chimeras, suppression was found to be mediated exclusively by cells which were syngeneic to the recipient in both recipient strains tested. The rapid development of this suppressive activity may explain the resistance to graft-vs-host disease conferred on whole body-irradiated mice by the addition of TCD syngeneic marrow to an allogeneic graft-vs-host disease-producing inoculum

  10. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A;

    2011-01-01

    This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...... cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed....

  11. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling.

    Science.gov (United States)

    Hambli, Ridha

    2014-01-01

    Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone

  12. Stem cell-based bone repair

    OpenAIRE

    Fei, Yurong; Xu, Ren-He; Hurley, Marja M.

    2012-01-01

    To accelerate bone repair, one strategy is to deliver the cells that make bone. The current review focuses on stem cell-based bone repair. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can self-renew unlimitedly and differentiate into the bone forming cells – osteoblasts. Scientists have been actively investigating culture conditions to stably and efficiently induce differentiation of these stem cells into osteoblasts. However, ESCs have the issues of ethnics, immune ...

  13. Cancer Cell Colonisation in the Bone Microenvironment

    Science.gov (United States)

    Kan, Casina; Vargas, Geoffrey; Le Pape, François; Clézardin, Philippe

    2016-01-01

    Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow. PMID:27782035

  14. Effects of T cell depletion in radiation bone marrow chimeras. I. Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD

    International Nuclear Information System (INIS)

    The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation

  15. Radioprotection of bone marrow stem cell subsets by interleukin-1 and kit-ligand : Implications for CFU-S as the responsible target cell population

    NARCIS (Netherlands)

    van Os, Ronald; Lamont, G; Witsell, A; Mauch, PM

    1997-01-01

    Various cytokines have been reported to have radioprotective effects on the bone marrow. Of these, c-kit-ligand (KL) and interleukin-1 (IL-1) have the most dramatic effect when given prior to total body irradiation (TBI). Given simultaneously, KL and IL-1 demonstrated a strong effect on increasing t

  16. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  17. Automated Determination of Bone Age in a Modern Chinese Population

    OpenAIRE

    Zhang, Shao-yan; Liu, Gang; Ma, Chen-Guo; Han, Yi-San; Shen, Xun-Zhang; XU, RUI-LONG; Thodberg, Hans Henrik

    2013-01-01

    Rationale and Objective. Large studies have previously been performed to set up a Chinese bone age reference, but it has been difficult to compare the maturation of Chinese children with populations elsewhere due to the potential variability between raters in different parts of the world. We re-analysed the radiographs from a large study of normal Chinese children using an automated bone age rating method to establish a Chinese bone age reference, and to compare the tempo of maturation in the...

  18. Renal Cell Carcinoma Metastasized to Pagetic Bone.

    Science.gov (United States)

    Ramirez, Ashley; Liu, Bo; Rop, Baiywo; Edison, Michelle; Valente, Michael; Burt, Jeremy

    2016-01-01

    Paget's disease of the bone, historically known as osteitis deformans, is an uncommon disease typically affecting individuals of European descent. Patients with Paget's disease of the bone are at increased risk for primary bone neoplasms, particularly osteosarcoma. Many cases of metastatic disease to pagetic bone have been reported. However, renal cell carcinoma metastasized to pagetic bone is extremely rare. A 94-year-old male presented to the emergency department complaining of abdominal pain. A computed tomography scan of the abdomen demonstrated a large mass in the right kidney compatible with renal cell carcinoma. The patient was also noted to have Paget's disease of the pelvic bones and sacrum. Within the pagetic bone of the sacrum, there was an enhancing mass compatible with renal cell carcinoma. A subsequent biopsy of the renal lesion confirmed renal cell carcinoma. Paget's disease of the bone places the patient at an increased risk for bone neoplasms. The most commonly reported sites for malignant transformation are the femur, pelvis, and humerus. In cases of malignant transformation, osteosarcoma is the most common diagnosis. Breast, lung, and prostate carcinomas are the most common to metastasize to pagetic bone. Renal cell carcinoma associated with Paget's disease of the bone is very rare, with only one prior reported case. Malignancy in Paget's disease of the bone is uncommon with metastatic disease to pagetic bone being extremely rare. We report a patient diagnosed with concomitant renal cell carcinoma and metastatic disease within Paget's disease of the sacrum. Further research is needed to assess the true incidence of renal cell carcinoma associated with pagetic bone.

  19. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Directory of Open Access Journals (Sweden)

    Verônica Fernandes Vianna

    2013-01-01

    Full Text Available Bone marrow stromal cells (BMSCs are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells and those that did not adhere by three days but did by six days (L-cells. Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics.

  20. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    Science.gov (United States)

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  1. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  2. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  3. Remyelination of the Spinal Cord Following Intravenous Delivery of Bone Marrow Cells

    OpenAIRE

    Akiyama, Yukinori; Radtke, Christine; HONMOU, OSAMU; Kocsis, Jeffery D.

    2002-01-01

    Bone marrow contains a population of pluripotent cells that can differentiate into a variety of cell lineages, including neural cells. When injected directly into the demyelinated spinal cord they can elicit remyelination. Recent work has shown that following systemic delivery of bone marrow cells functional improvement occurs in contusive spinal cord injury and stroke models in rat. We report here that secondary to intravenous introduction of an acutely isolated bone marrow cell fraction (mo...

  4. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    OpenAIRE

    Verônica Fernandes Vianna; Danielle Cabral Bonfim; Amanda dos Santos Cavalcanti; Marco Cury Fernandes; Suzana Assad Kahn; Priscila Ladeira Casado; Inayá Correa Lima; Murray, Samuel S.; Elsa J. Brochmann Murray; Maria Eugenia Leite Duarte

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we...

  5. The population model of bone remodelling employed the optimal control.

    Science.gov (United States)

    Moroz, Adam

    2012-11-01

    Several models have been developed in recent years which apply population dynamics methods to describe the mechanisms of bone remodelling. This study incorporates the population kinetics model of bone turnover (including the osteocyte loop regulation) with the optimal control technique. Model simulations have been performed with a wide range of rate parameters using the Monte Carlo method. The regression method has also been used to investigate the interdependence of the location of equilibrium and the characteristics of the equilibrium/relaxation time on the rate parameters employed. The dynamic optimal control outlook for the regulation of bone remodelling processes, in the context of the osteocyte-control population model, has been discussed. Optimisation criteria have been formulated from the perspective of the energetic and metabolic losses in the tissue, with respect to the performance of the bone multicellular unit.

  6. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Daley, J;

    1987-01-01

    of T4 and T8 antigens and at the same time expression of the thymocyte-associated T6 antigens. Thus, given the fact that 10-20% of T cell acute lymphoblastic leukemia (T-ALLs) are CALLA+, we have been able to identify a human prethymic T lymphocyte population that might be the normal counterpart of...

  7. Bone Metastasis from Renal Cell Carcinoma

    Science.gov (United States)

    Chen, Szu-Chia; Kuo, Po-Lin

    2016-01-01

    About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastasis that are often osteolytic and cause substantial morbidity, such as pain, pathologic fracture, spinal cord compression and hypercalcemia. The presence of bone metastasis in RCC is also associated with poor prognosis. Bone-targeted treatment using bisphosphonate and denosumab can reduce skeletal complications in RCC, but does not cure the disease or improve survival. Elucidating the molecular mechanisms of tumor-induced changes in the bone microenvironment is needed to develop effective treatment. The “vicious cycle” hypothesis has been used to describe how tumor cells interact with the bone microenvironment to drive bone destruction and tumor growth. Tumor cells secrete factors like parathyroid hormone-related peptide, transforming growth factor-β and vascular endothelial growth factor, which stimulate osteoblasts and increase the production of the receptor activator of nuclear factor κB ligand (RANKL). In turn, the overexpression of RANKL leads to increased osteoclast formation, activation and survival, thereby enhancing bone resorption. This review presents a general survey on bone metastasis in RCC by natural history, interaction among the immune system, bone and tumor, molecular mechanisms, bone turnover markers, therapies and healthcare burden. PMID:27338367

  8. Automated Determination of Bone Age in a Modern Chinese Population

    International Nuclear Information System (INIS)

    Rationale and Objective. Large studies have previously been performed to set up a Chinese bone age reference, but it has been difficult to compare the maturation of Chinese children with populations elsewhere due to the potential variability between raters in different parts of the world. We re-analysed the radiographs from a large study of normal Chinese children using an automated bone age rating method to establish a Chinese bone age reference, and to compare the tempo of maturation in the Chinese with other populations. Materials and Methods. X-rays from 2883 boys and 3143 girls aged 2–20 years from five Chinese cities, taken in 2005, were evaluated using the BoneXpert automated method. Results. Chinese children reached full maturity at the same age as previously studied Asian children from Los Angeles, but 0.6 years earlier than Caucasian children in Los Angeles. The Greulich-Pyle bone age method was adapted to the Chinese population creating a new bone age scale BX-China05. The standard deviation between BX-China05 and chronologic age was 1.01 years in boys aged 8–14, and 1.08 years in girls aged 7–12. Conclusion. By eliminating rater variability, the automated method provides a reliable and efficient standard for bone age determination in China

  9. Bone marrow-derived stem cells and respiratory disease.

    Science.gov (United States)

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  10. Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration

    OpenAIRE

    Colnot, Céline

    2008-01-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results...

  11. Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells

    NARCIS (Netherlands)

    Mendes, SC; Tibbe, JM; Veenhof, M; Both, S; Oner, FC; van Blitterswijk, CA; de Bruijn, Joost D.

    2004-01-01

    The use of cell therapies in bone reconstruction has been the subject of extensive research. It is known that human bone marrow stromal cell (HBMSC) cultures contain a population of progenitor cells capable of differentiation towards the osteogenic lineage. In the present study, the correlation betw

  12. Adiponectin and peak bone mass in men: a cross-sectional, population-based study

    DEFF Research Database (Denmark)

    Frost, M; Abrahamsen, B; Nielsen, T L;

    2010-01-01

    Adiponectin, a protein classically known to be secreted by adipocytes, is also secreted by bone-forming cells. Results of previous studies have been contradictory as to whether serum adiponectin and bone mineral density (BMD) are associated. The aim of this study was to investigate a possible...... association between serum adiponectin and BMD in young, healthy men at a time of peak bone mass. BMD in the femoral neck, total hip, and lumbar spine were measured in this population-based cross-sectional study of 700 men aged 20-29 years participating in the Odense Androgen Study. Magnetic resonance imaging...... of femoral cortical thickness and bone marrow size was performed in a subsample of 363 participants. The associations between serum adiponectin and various bone measures were investigated by means of regression analyses with adjustment for potential confounding variables. An inverse association was...

  13. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  14. Partitioning of bone marrow into stem cell regulatory domains.

    OpenAIRE

    Maloney, M A; Lamela, R A; Banda, M J; Patt, H M

    1982-01-01

    To examine the hypothesis that bone marrow consists of discrete stem cell regulatory volumes or domains, we studied spleen colony-forming unit (CFU-S) population growth kinetics in unirradiated WBB6F1-W/Wv mice receiving various doses of +/+ bone marrow cells. Assay of femoral marrow CFU-S content in the eight recipient dose groups revealed a family of growth curves having an initial dose-independent exponential phase and a subsequent dose-dependent deceleration phase. CFU-S content at the gr...

  15. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    Science.gov (United States)

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  16. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    OpenAIRE

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can res...

  17. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    OpenAIRE

    Le Thua Trung Hau; Duc Phu Bui; Nguyen Duy Thang; Pham Dang Nhat; Le Quy Bao; Nguyen Phan Huy; Tran Ngoc Vu; Le Phuoc Quang; Boeckx willy Denis; Mey Albert De

    2015-01-01

    Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone a...

  18. Cross-talk between Bone Marrow and Tissue Injury : Novel Regenerative Therapy for Severely Damaged Tissues by Mobilizing Bone Marrow Mesenchymal Stem Cells in Vivo

    OpenAIRE

    Tamai, Katsuto; Kaneda, Yasufumi

    2013-01-01

    group box 1 (HMGB1), which mobilizes a sub-population of non-hematopoietic cells from bone marrow into the circulation to repair skin and restore Col 7 expression. These bone marrow-derived epithelial stem/progenitor cells are derived from a lineage-negative, platelet-derived growth factor alpha-positive mesenchymal stem cell pool in bone marrow, which represents less than 0.3% of the total bone marrow cell population. In addition, systemic administration of HMGB1 to wounded wild-type mice le...

  19. Osteogenic potential of bone-lining cells in the adult skeleton

    International Nuclear Information System (INIS)

    Radiation-induced osteogenic sarcomas are believed to arise from proliferating osteogenic precursor cells. The identity and location of these cells in the adult skeleton is not well understood. In order to determine reliable cell dose estimates, it is important to determine the osteogenic pathway in the adult skeleton. Bone-lining cells (BLCs) cover inactive endosteal surfaces in the adult skeleton of long-lived animals. BLCs are flat elongated cells which are directly apposed to the bone surface. They have cell processes extending into canaliculi and have gap junctions at some contacts with other bone-lining cells. The morphology of the bone-lining cell and its proximity to the bone surface can only be resolved at the ultrastructural level. These cells are a distinct morphologic phenotype but have been referred to by a variety of names including resting osteoblasts, surface osteocytes, and flattened mesenchymal cells. The BLC, as a distinct phenotype, should not be confused with the more descriptive term cells lining the bone surface of bone lining cells, sometimes used to include any cell near the bone. The purpose of the study was to determine what role, if any, the bone-lining cells have in the osteogenic process. Do these cells proliferate and contribute to the population of osteoblasts?

  20. Dental pulp stem cells and bone regeneration.

    Directory of Open Access Journals (Sweden)

    Amalia KAPAROU

    2015-04-01

    Full Text Available SUMMARY: Dental pulp, a soft tissue of mesenchymal origin, contains stem cells derived from cranial neural crest cells. Dental pulp stem cells (DPSCs reside into special anatomic locations of dental pulp, the so called “niches”. Stem cell niches are located predominately, but not exclusively, in the perivascular regions of the pulpal cavity. DPSCs exhibit clonogenic and high proliferative activity and are capable of differentiating into several cell types. The main function of these cells is the production of tertiary/reparative dentine following trauma or caries of dental crown. Previous studies have shown that DPSCs can differentiate into osteoblast-like cells that secrete abundant extracellular matrix and can build a woven bone in vitro. Moreover, DPSCs are capable of forming a complete and well-vascularised lamellar bone after grafting ectopically into immunocompromised rats. The in vivo transplantation of DPSCs into critical-sized bone defects in animal models has been shown to promote and/or accelerate bone regeneration. These results are clearly encouraging and stress the need of further research for the potential clinical use of DPSCs in bone tissue engineering.

  1. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  2. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice

    OpenAIRE

    Mukherjee, Siddhartha; Raje, Noopur; Schoonmaker, Jesse A.; Liu, Julie C.; Hideshima, Teru; Wein, Marc N.; Jones, Dallas C; Vallet, Sonia; Bouxsein, Mary L.; Pozzi, Samantha; Chhetri, Shweta; Seo, Y. David; Aronson, Joshua P.; Patel, Chirayu; Fulciniti, Mariateresa

    2008-01-01

    Drug targeting of adult stem cells has been proposed as a strategy for regenerative medicine, but very few drugs are known to target stem cell populations in vivo. Mesenchymal stem/progenitor cells (MSCs) are a multipotent population of cells that can differentiate into muscle, bone, fat, and other cell types in context-specific manners. Bortezomib (Bzb) is a clinically available proteasome inhibitor used in the treatment of multiple myeloma. Here, we show that Bzb induces MSCs to preferentia...

  3. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  4. Clinical application of mesenchymal stem cells for aseptic bone necrosis

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2008-11-01

    Full Text Available Since 2007, we had started clinical trial using mesenchymal stem cell (MSCs for the treatment of aseptic bone necrosis as a first clinical trial permitted by Japanese Health, Labour and Welfare Ministry.Aseptic bone necrosis of the femoral head commonly occurs in patients with two to four decades, causing severe musculoskeletal disability. Although its diagnosis is easy with X-ray and MRI, there has been no gold standard invented for treatment of this disease. MSCs represent a stem cell population in adult tissues that can be isolated and expanded in culture, and differentiate into cells with different nature. Combination with β-tri-calcium phosphate and vascularized bone graft, we succeeded to treat bone necrosis of the femoral head.Regenerative medicine using stem cells is hopeful and shed a light on intractable disease. To become widespread, Basic, Translational, Application, and Developmental study is needed.? From an experience of cell therapy using MSCs, we started to research induced pluripotent stem cell (iPS for clinical application.

  5. Clonal Characterization of Bone Marrow Derived Stem Cells and Their Application for Bone Regeneration

    OpenAIRE

    Xiao, Yin; Mareddy, Shobha; Crawford, Ross

    2010-01-01

    Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolat...

  6. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Henk-Jan Prins

    2014-03-01

    Full Text Available One of the applications of bone marrow stromal cells (BMSCs that are produced by ex vivo expansion is for use in in vivo bone tissue engineering. Cultured stromal cells are a mixture of cells at different stages of commitment and expansion capability, leading to a heterogeneous cell population that each time can differ in the potential to form in vivo bone. A parameter that predicts for in vivo bone forming capacity is thus far lacking. We employed single colony-derived BMSC cultures to identify such predictive parameters. Using limiting dilution, we have produced sixteen single CFU-F derived BMSC cultures from human bone marrow and found that only five of these formed bone in vivo. The single colony-derived BMSC strains were tested for proliferation, osteogenic-, adipogenic- and chondrogenic differentiation capacity and the expression of a variety of associated markers. The only robust predictors of in vivo bone forming capacity were the induction of alkaline phosphatase, (ALP mRNA levels and ALP activity during in vitro osteogenic differentiation. The predictive value of in vitro ALP induction was confirmed by analyzing “bulk-cultured” BMSCs from various bone marrow biopsies. Our findings show that in BMSCs, the additional increase in ALP levels over basal levels during in vitro osteogenic differentiation is predictive of in vivo performance.

  7. Effect of bone marrow mesenchymal stem cells on the proliferation of bone marrow CD34~+ cells in vitro

    Institute of Scientific and Technical Information of China (English)

    王荣

    2013-01-01

    Objective To investigate the effect on the marrow CD34+ cells by bone marrow mesenchymal stem cells(BMMSC),VarioMACS was used to sort bone marrow CD34+ cells,and then the purity of CD34+ cell was tested by FCM. Marrow mononuclear cells from abortion fetal bone marrow were isolated,and BMMSC were

  8. Neovascular niche for human myeloma cells in immunodeficient mouse bone.

    Directory of Open Access Journals (Sweden)

    Hirono Iriuchishima

    Full Text Available The interaction with bone marrow (BM plays a crucial role in pathophysiological features of multiple myeloma (MM, including cell proliferation, chemoresistance, and bone lesion progression. To characterize the MM-BM interactions, we utilized an in vivo experimental model for human MM in which a GFP-expressing human MM cell line is transplanted into NOG mice (the NOG-hMM model. Transplanted MM cells preferentially engrafted at the metaphyseal region of the BM endosteum and formed a complex with osteoblasts and osteoclasts. A subpopulation of MM cells expressed VE-cadherin after transplantation and formed endothelial-like structures in the BM. CD138(+ myeloma cells in the BM were reduced by p53-dependent apoptosis following administration of the nitrogen mustard derivative bendamustine to mice in the NOG-hMM model. Bendamustine maintained the osteoblast lining on the bone surface and protected extracellular matrix structures. Furthermore, bendamustine suppressed the growth of osteoclasts and mesenchymal cells in the NOG-hMM model. Since VE-cadherin(+ MM cells were chemoresistant, hypoxic, and HIF-2α-positive compared to the VE-cadherin(- population, VE-cadherin induction might depend on the oxygenation status. The NOG-hMM model described here is a useful system to analyze the dynamics of MM pathophysiology, interactions of MM cells with other cellular compartments, and the utility of novel anti-MM therapies.

  9. Karyotype of cryopreserved bone marrow cells

    Directory of Open Access Journals (Sweden)

    M.L.L.F. Chauffaille

    2003-07-01

    Full Text Available The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis. Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05. Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05. GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.

  10. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  11. The influence of bone surface availability in bone remodelling - A mathematical model including coupled geometrical and biomechanical regulations of bone cells

    OpenAIRE

    Pivonka, Peter; Buenzli, Pascal R.; Scheiner, Stefan; Hellmich, Christian; Dunstan, Colin R.

    2012-01-01

    Bone is a biomaterial undergoing continuous renewal. The renewal process is known as bone remodelling and is operated by bone-resorbing cells (osteoclasts) and bone-forming cells (osteoblasts). Both biochemical and biomechanical regulatory mechanisms have been identified in the interaction between osteoclasts and osteoblasts. Here we focus on an additional and poorly understood potential regulatory mechanism of bone cells, that involves the morphology of the microstructure of bone. Bone cells...

  12. A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects.

    Science.gov (United States)

    Kleinhans, Claudia; Mohan, Ramkumar Ramani; Vacun, Gabriele; Schwarz, Thomas; Haller, Barbara; Sun, Yang; Kahlig, Alexander; Kluger, Petra; Finne-Wistrand, Anna; Walles, Heike; Hansmann, Jan

    2015-09-01

    Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.

  13. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  14. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Science.gov (United States)

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies. PMID:27579159

  15. Early reversal cells in adult human bone remodeling

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Delaisse, Jean-Marie; Hinge, Maja;

    2016-01-01

    . Earlier preclinical studies indicate that reversal cells degrade the organic matrix left behind by the osteoclasts and that this degradation is crucial for the initiation of the subsequent bone formation. To our knowledge, this study is the first addressing these catabolic activities in adult human bone...... demonstrates that reversal cells colonizing bone surfaces right after resorption are osteoblast-lineage cells, and extends to adult human bone remodeling their role in rendering eroded surfaces osteogenic....

  16. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    Science.gov (United States)

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  17. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow

    OpenAIRE

    Sabine Wislet-Gendebien; Christophe Poulet; Virginie Neirinckx; Benoit Hennuy; Swingland, James T.; Emerence Laudet; Lukas Sommer; Olga Shakova; Vincent Bours; Bernard Rogister

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the ...

  18. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    Directory of Open Access Journals (Sweden)

    Le Thua Trung Hau

    2015-12-01

    Full Text Available Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone allograft as compared to an autologous bone graft in the treatment of bone nonunion. Bone marrow aspiration concentrate (BMAC was previously produced from bone marrow aspirate via a density gradient centrifugation. Autologous cancellous bone was harvested in 9 patients and applied to the nonunion site. In 18 patients of the clinical trial group after the debridement, the bone gaps were filled with a composite of BMAC and allograft cancellous bone chips (BMAC-ACB. Bone consolidation was obtained in 88.9 %, and the mean interval between the cell transplantation and union was 4.6 +/- 1.5 months in the autograft group. Bone union rate was 94.4 % in group of composite BMAC-ACB implantation. The time to union in BMAC-ACB grafting group was 3.3 +/- 0.90 months, and led to faster healing when compared to the autograft. A mean concentration of autologous progenitor cells was found to be 2.43 +/- 1.03 (x106 CD34+ cells/ml, and a mean viability of CD34+ cells was 97.97 +/- 1.47 (%. This study shows that the implantation of BMAC has presented the efficacy for treatment of nonunion and may contribute an available alternative to autologous cancellous bone graft. But large clinical application of BM-MSCs requires a more appropriate and profound scientific investigations. [Biomed Res Ther 2015; 2(12.000: 409-417

  19. Recent advances in bone regeneration using adult stem cells.

    Science.gov (United States)

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-04-26

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34(+) blood progenitors) for bone regeneration.

  20. Fluoride inhibits the response of bone cells to mechanical loading

    NARCIS (Netherlands)

    H.M.E. Willems; E.G.H.M. van den Heuvel; S. Castelein; J. Keverling Buisman; A.L.J.J. Bronckers; A.D. Bakker; J. Klein-Nulend

    2011-01-01

    The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The mechano-respon

  1. Application of human amniotic mesenchymal cells as an allogeneic transplantation cell source in bone regenerative therapy

    International Nuclear Information System (INIS)

    Autogenous mesenchymal stem cells (MSCs) have therapeutic applications in bone regenerative therapy due to their pluripotency. However, the ability of MSCs to proliferate and differentiate varies between donors. Furthermore, alternative sources of MSCs are required for patients with contraindications to autogenous cell therapy. The aim of this study was to evaluate the potential of mesenchymal cells from the human amniotic membrane (HAM) as a source of cells for allogeneic transplantation in bone regenerative therapy. Cells that retained a proliferative capacity of more than 50 population doubling level were distinguished from other HAM cells as HAMα cells and induced to osteogenic status—their in vivo osteogenesis was subsequently investigated in rats. It was found that HAMα cells were spindle shaped and were positive for MSC markers and negative for hematopoietic stem cell markers. Alkaline phosphatase activity and calcium deposition increased with osteogenic status of HAMα cells. The expression of osteocalcin mRNA was increased in HAMα cells cultured on calcium phosphate scaffolds. Moreover, xenografted HAMα cells remained viable and produced extracellular matrix for several weeks. Thus, this study suggests that human amniotic mesenchymal cells possess osteogenic differentiation potential and could be applied to allogeneic transplantation in bone regenerative therapy. - Highlights: ► Human amniotic mesenchymal cells include cells (HAMα cells) that have the properties of MSCs. ► HAMα cells have excellent osteogenic differentiation potential. ► Osteogenic differentiation ability of HAMα was amplified by calcium phosphate scaffolds. ► HAMα cells can be applicable to allogeneic cell transplantation in bone regenerative therapy.

  2. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  3. Isolation and Colony Formation of Murine Bone and Bone Marrow Cells.

    Science.gov (United States)

    McHaffie, Sophie; Chau, You-Ying

    2016-01-01

    Adult homeostasis is dependent on normal Wt1 expression. Loss of Wt1 expression in adult mice causes rapid loss of the mesenchymal tissues, fat and bone, amongst other phenotypes. Bone and bone marrow mesenchymal stromal cells can be studied by cell isolation and expansion. The stemness of these cells can then be characterized by carrying out a colony-forming unit-fibroblast assay and observing clonogenic capabilities. PMID:27417960

  4. COMPARISON OF HUMAN ADIPOSE-DERIVED STEM CELLS AND BONE MARROW-DERIVED STEM CELLS IN A MYOCARDIAL INFARCTION MODEL

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus;

    2012-01-01

    grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were......Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...

  5. Langerhans Cell Histiocytosis of the Temporal Bone.

    Science.gov (United States)

    Ginat, Daniel Thomas; Johnson, Daniel N; Cipriani, Nicole A

    2016-06-01

    Langerhans cell histiocytosis involving the temporal bone region is uncommon and can resemble malignant neoplasms on imaging due to high cellularity. Although recognizing the presence of sharp margins with beveled-edges can be helpful, tissue sampling is often necessary for confirming the diagnosis. Cytology classically demonstrates kidney-bean shaped nuclei within the Langerhans cells and immunohistochemical staining is positive for S-100, peanut agglutinin (PNA), MHC class II, CD1a, and Langerin (CD 207). These features are exemplified in this sine qua non radiology-pathology correlation article. PMID:25903273

  6. Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Elham Zomorodian

    2012-01-01

    Full Text Available While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs, adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs, as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.

  7. Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro

    DEFF Research Database (Denmark)

    Ebert, Regina; Ulmer, Matthias; Zeck, Sabine;

    2006-01-01

    Bone marrow stromal cells (BMSCs) and other cell populations derived from mesenchymal precursors are developed for cell-based therapeutic strategies and undergo cellular stress during ex vivo procedures. Reactive oxygen species (ROS) of cellular and environmental origin are involved in redox...... and transplantation procedures....

  8. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    Science.gov (United States)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  9. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  10. Langerhans cell histiocytosis of bone: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    George, J.C. [Indiana Univ., Indianapolis, IN (United States). Dept. of Radiology; Buckwalter, K.A. [Indiana Univ., Indianapolis, IN (United States). Dept. of Radiology; Cohen, M.D. [Indiana Univ., Indianapolis, IN (United States). Dept. of Radiology; Edwards, M.K. [Indiana Univ., Indianapolis, IN (United States). Dept. of Radiology; Smith, R.R. [Indiana Univ., Indianapolis, IN (United States). Dept. of Radiology

    1994-03-01

    Magnetic resonance (MR) images of 12 pathologically proven lesions of Langerhans cell histiocytosis (LCH) of bone were reviewed retrospectively. MR identified all lesions, three of which were not identified on plain radiographs. In all cases, MR showed greater abnormality than did plain radiographs. With one exception, all lesions were hypointense on T1-weighted images and hyperintense on T2-weighted images. The lesions and associated soft tissue abnormalities were very conspicuous on short TI inversion sequences and T1-weighted post-contrast images. Follow-up MR studies in two patients after chemotherapy showed decreased size and enhancement of lesions compared with baseline studies. (orig.)

  11. Langerhans cell histiocytosis of bone: MR imaging.

    Science.gov (United States)

    George, J C; Buckwalter, K A; Cohen, M D; Edwards, M K; Smith, R R

    1994-01-01

    Magnetic resonance (MR) images of 12 pathologically proven lesions of Langerhans cell histiocytosis (LCH) of bone were reviewed retrospectively. MR identified all lesions, three of which were not identified on plain radiographs. In all cases, MR showed greater abnormality than did plain radiographs. With one exception, all lesions were hypointense on T1-weighted images and hyperintense on T2-weighted images. The lesions and associated soft tissue abnormalities were very conspicuous on short TI inversion sequences and T1-weighted post-contrast images. Follow-up MR studies in two patients after chemotherapy showed decreased size and enhancement of lesions compared with baseline studies.

  12. Langerhans cell histiocytosis of bone: MR imaging

    International Nuclear Information System (INIS)

    Magnetic resonance (MR) images of 12 pathologically proven lesions of Langerhans cell histiocytosis (LCH) of bone were reviewed retrospectively. MR identified all lesions, three of which were not identified on plain radiographs. In all cases, MR showed greater abnormality than did plain radiographs. With one exception, all lesions were hypointense on T1-weighted images and hyperintense on T2-weighted images. The lesions and associated soft tissue abnormalities were very conspicuous on short TI inversion sequences and T1-weighted post-contrast images. Follow-up MR studies in two patients after chemotherapy showed decreased size and enhancement of lesions compared with baseline studies. (orig.)

  13. Bone marrow stromal cell: mediated neuroprotection for spinal cord repair

    OpenAIRE

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic factors, enabling neuroprotection/tissue sparing in a rat model of spinal cord injury. In this model system, bone marrow stromal cell-mediated tissue sparing leads to motor and sensory function impr...

  14. X-radiation induced double-strand DNA breaks in rat bone marrow cells

    International Nuclear Information System (INIS)

    The method of sedimentation in a neutral sucrose gradient was used to study y doublestranded dna in a total population of rat bone marrow cells. As a resul of cell lysis in neutral conditions the fragments of double-stranded dna were fo ormed having the molecular mass of (3+-0.3)x109D. A study was made of the dynamics of accumulation of dna double-strand breaks after irradiation of a cell l suspension. It was shown that the yield of double-strand breaks and ratio between single- and double-strand breaks in bone marrow cells were similar to th hose of cultured L5178Y cells

  15. Preliminary report of cells at risk at the bone surface in trabecular bone

    International Nuclear Information System (INIS)

    This is a report of some early work on the cells at risk portion of the dynamic microanatomical dosimetry program of the Bone Group. The cells lining the trabecular bone of thoracic vertebral bodies from beagles aged 568, 2942, 4117, 4277, 4629, and 4801 days were characterized. Histologic and sampling experience gained in this attempt indicates that further improvements are needed

  16. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells.

    Science.gov (United States)

    Weber, L; Langer, M; Tavella, S; Ruggiu, A; Peyrin, F

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite(©)), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions. PMID:27054380

  17. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells

    Science.gov (United States)

    Weber, L.; Langer, M.; Tavella, S.; Ruggiu, A.; Peyrin, F.

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite©), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions.

  18. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  19. From Adult Bone Marrow Cells to Other Cell Lineages:Transdifferentiation or Cells Fusion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recent studies have demonstrated that intravenous transplantation or local injection of bone marrow cells can induce unexpected changes of their fate. The results of these experiments showed that after transplantation or injecton, some of tissue specific somatic cells such as hepatocytes, skeleton, cardiac muscle cells and brain cells expressed the donor cell-specific genes, such as Y chromosome. There are two hypotheses that can explain this phenomenon. One is bone marrow stem cell transdifferentiation and the other is spontaneous cell fusion.

  20. Giant cell reparative granuloma of the occipital bone

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Briz, A.; Ricoy, J.R.; Martinez-Tello, F.J. [Department of Anatomical Pathology, Hospital Universitario ' ' 12 de Octubre' ' , Madrid (Spain); Lobato, R.D. [Department of Neurosurgery, Hospital Universitario ' ' 12 de Octubre' ' , Madrid (Spain); Ramos, A.; Millan, J.M. [Department of Radiology, Hospital Universitario ' ' 12 de Octubre' ' , Madrid (Spain); Hospital Universitario 12 de Octubre, Departamento de Anatomia Patologica, Avda. de Andalucia s/n, Madrid 28041 (Spain)

    2003-03-01

    Giant cell reparative granuloma (GCRG) is a non-neoplastic fibrous lesion with unevenly distributed multinucleated giant cells, areas of osseous metaplasia and hemorrhage. The small bones of the hands and feet are the most common sites, followed by the vertebral bodies and craniofacial bones. In the craniofacial bones GCRG has been reported in the temporal bone, in the frontal bone and paranasal sinus. However, to the best of our knowledge no case has been reported in the occipital bone. We report on the imaging findings and pathological features of a GCRG of the occipital bone and discuss the differential diagnosis of this entity in this particular location, especially with giant cell tumor because of the therapeutic and prognostic implications. (orig.)

  1. CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow.

    Directory of Open Access Journals (Sweden)

    Junjie Yang

    Full Text Available BACKGROUND: Endothelial progenitor cells (EPCs were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: CD34(+ cells, c-Kit(+/Sca-1(+/Lin(- (KSL cells, c-Kit(+/Lin(- (KL cells and Sca-1(+/Lin(- (SL cells were isolated from mouse bone marrow mononuclear cells (BMMNCs using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34(+ cells showed the lowest EPC colony forming activity, CD34(+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34(+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34(+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34(+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. CONCLUSION: These findings suggest that mouse CD34(+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.

  2. INCIDENCE OF INTERPARIETAL (INCA BONES IN THE POPULATION OF ASSAM

    Directory of Open Access Journals (Sweden)

    Bijoy Kumar

    2015-07-01

    Full Text Available The occipital bone forms the region of the back of the head. It consists of three parts - the squamous part, the basilar part and the two condylar parts on either side of the foramen magnum. The squamous part of the occipital bone consists of two parts – the upper interparietal and the lower supraoccipital part. Usually the interparietal part fuses with the supraoccipital part but sometimes it may remain separated by a suture. Then it is called interparietal bone or Inca bone. AIM & OBJECTIVES: The aim of the present study is to find out the incidence of interparietal or Inca bones in this part of north east India as data regarding its incidence rate and number of fragments of Inca bones from Assam is still underreported. MATERIALS & METHOD: In the present study, a total of 126 dry adult skulls were examined to know the incidence of Inca bones. All the specimens were procured from various departments in Assam Medical College, Dibrugarh, Assam. They were first examined for presence or absence of Inca bones and then for number of fragments. RESULTS & OBSERVATIO NS: The incidence of Inca bone was found to be 1.58%. One skull presented with a single triangular Inca bone while another skull presented with two fragments of Inca bones. CONCLUSIONS: The knowledge regarding interparietal bones and that it may present with many fragments is certainly very useful for neurosurgeons, radiologists and anthropologists

  3. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss

    DEFF Research Database (Denmark)

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-01-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging...

  4. Differentiation potentials of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Rodionova, Natalia; Katkova, Olena

    Adaptive remodeling processes in the skeleton bones occur in the close topographical interconnection with blood capillaries followed by perivascular cells. Radioautographic studies with 3Н- thymidine (Kimmel D.B., Fee W.S., 1980; Rodionova N.V., 1989, 2006) has shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic ones. Using electron microscopy and cytochemistry we studied perivsacular cells in metaphysis of the rats femoral bones under conditions of modeling microgravity (28 days duration) and in femoral bonеs metaphyses of rats flown on board of the space laboratory (Spacelab - 2) It was revealed that population of the perivascular cells is not homogeneous in adaptive zones of the remodeling in both control and test groups (lowering support loading). This population comprises adjacent to endothelium little differentiated forms and isolated cells with differentiation features (specific volume of rough endoplasmic reticulum in cytoplasm is increased). Majority of the perivascular cells in the control group reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In little differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of animals under microgravitaty reaction to the alkaline phosphatase is registered not for all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. There is also visible trend of individual alkaline phosphatase containing perivascular cells amounts decrease (i.e. osteogenic cells-precursors). Under microgravity some little differentiated perivascular cells reveal destruction signs. Found decrease trend of the alkaline phosphatase containing cells (i.e. osteogenic cells) number in

  5. Bone Mass Density in Normal Iranian Population - Shariati Hospital (1996

    Directory of Open Access Journals (Sweden)

    M Pajoohi

    2002-09-01

    Full Text Available Introduction: The bone mass density (BMD may vary in different countries due to different genetic and environmental factors. This study was performed to determine the BMD of the normal population in Iran. Methods and Materials: Subjects were selected randomly from different works and social classes in Tehran (from the lowest to the highest. For each decade and sexes, 20 normal subjects were selected (140 men and 140 women. BMD was measured with a Hologic 1000 plus machine by dual energy x-ray absorptiometry (DEXA method for the lumber spine (L1, L2, L3, L4, L1-L4 and the femoral neck (neck, trochanter, intertrochanter, ward, total. Data were treated by polynomial approximation (3 rd degree. The obtained curves were compared with the standard Hologic curves for Caucasians. Results: In female the peak bone mass (PBM was 1.019 g/cm² for the lumbar spine and 0.832 for the femoral neck. In male the peak bone mass (PBM was 0.987 g/cm² for the lumbar spine and 0.907 for the femoral neck. The BMD of both lumbar spine and femoral neck were lower than the Hologic standards. For the lumbar spine the mean difference was 6.5 percent (2 to 21 percent, CI=1 for women and 13.8 percent (2 to 36 percent, CI=1.45 for men. In femoral neck the mean difference was 5.4 percent (2 to 16 percent, CI=0.96 for women and 4.6 percent (1 to 14 percent, CI=0.96 for men. Conclusion: The BMD of the lumbar spine and the femoral neck was lower in Iranian compared to the Hologic standards for Caucasians. This was seen in all age groups and in both sexes. It was less pronounced for the PBM in spine was lower in men than woman. The lower BMD of the spine in men was also seen in a cohort of patients with different diseases (inflammatory and non-inflammatory.

  6. Cell interactions in bone tissue engineering

    OpenAIRE

    Pirraco, Rogério; Marques, A. P.; Reis, R. L.

    2010-01-01

    Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and...

  7. Cell interactions in bone tissue engineering

    OpenAIRE

    Pirraco, R. P.; Marques, A. P.; Reis, R. L.

    2009-01-01

    Abstract Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and...

  8. Homing of bone marrow lymphoid cells

    International Nuclear Information System (INIS)

    DNA labeling, bone marrow fractionation, and radioautography were used to follow the fate of transfused, newly formed marrow lymphocytes in irradiated hosts. After infusing donor Hartley guinea pigs with 3H-thymidine for 3 to 5 days, high concentrations of labeled small lymphocytes and large lymphoid cells were separated from marrow by sedimentation in sucrose-serum gradients and injected into lethally x-irradiated syngeneic recipients. Most labeled small lymphocytes and large lymphoid cells rapidly left the circulation. They appeared to be mainly in the marrow and spleen, increasing in incidence from 1 to 3 days, but declining in mean grain count. Labeled cells were scattered throughout the recipient marrow; in the spleen they localized initially in the red pulp, and subsequently in peripheral areas of white pulp, often in clusters. Labeled small lymphocytes showed a delayed migration into the mesenteric lymph node, mainly in the superficial cortex and medulla; they also appeared in small numbers in Peyer's patches, but rarely in the thymus or thoracic duct lymph. It is concluded that a rapid selective homing of newly formed marrow lymphoid cells occurs in both the marrow and certain areas of the spleen of irradiated hosts, followed by a continuing proliferation of large lymphoid cells and production of small lymphocytes. The results are discussed with respect to the life history of marrow lymphocytes and the use of adoptive immune assays of marrow cells to characterize B lymphocyte maturation

  9. Immunohistochemical Characteristics of Bone Forming Cells in Pleomorphic Adenoma

    Directory of Open Access Journals (Sweden)

    Keisuke Nakano, Takehiro Watanabe, Takako Shimizu, Toshiyuki Kawakami

    2007-01-01

    Full Text Available Histopathological and immunohistochemical examinations were carried out in a case of pleomorphic adenoma with bone formation, occurring in the chin of a 34-year-old Japanese man. Examination results showed the modified neoplastic myoepithelial cells reacted positively to S-100 protein. The S-100-positive modified neoplastic myoepithelial cells were proliferated in the closely related area of the bone tissue. Furthermore, positive reaction was detected in the bone forming cells: osteoblasts and osteocytes. These cells also reacted positively to Runx2 as a marker of bone forming cells. These results suggest that the origin of the bone forming cells in this case of pleomorphic adenoma was modified neoplastic myoepithelial cells.

  10. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization

    DEFF Research Database (Denmark)

    Tormin, Ariane; Li, Ou; Brune, Jan Claas;

    2011-01-01

    Nonhematopoietic bone marrow mesenchymal stem cells (BM-MSCs) are of central importance for bone marrow stroma and the hematopoietic environment. However, the exact phenotype and anatomical distribution of specified MSC populations in the marrow are unknown. We characterized the phenotype...... phenotype and genotype, gave rise to typical cultured stromal cells, and formed bone and hematopoietic stroma in vivo. Interestingly, CD146 was up-regulated in normoxia and down-regulated in hypoxia. This was correlated with in situ localization differences, with CD146 coexpressing reticular cells located...... in perivascular regions, whereas bone-lining MSCs expressed CD271 alone. In both regions, CD34⁺ hematopoietic stem/progenitor cells were located in close proximity to MSCs. These novel findings show that the expression of CD146 differentiates between perivascular versus endosteal localization of non...

  11. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    OpenAIRE

    Hu Y; Tan HB; Wang XM; Rong H; Cui HP; Cui H

    2013-01-01

    Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC) transplantation i...

  12. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold.

    Science.gov (United States)

    Wang, Xing; Xing, Helin; Zhang, Guilan; Wu, Xia; Zou, Xuan; Feng, Lin; Wang, Dongsheng; Li, Meng; Zhao, Jing; Du, Jianwei; Lv, Yan; E, Lingling; Liu, Hongchen

    2016-01-01

    Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.

  13. Bone Cell Autophagy Is Regulated by Environmental Factors

    OpenAIRE

    Zahm, Adam M.; Bohensky, Jolene; Adams, Christopher S.; Shapiro, Irving M.; Srinivas, Vickram

    2011-01-01

    The goal of this investigation was to ascertain whether bone cells undergo autophagy and to determine if this process is regulated by environmental factors. We showed that osteocytes in both murine and human cortical bone display a punctuate distribution of microtubule-associated protein light chain 3, indicative of autophagy. In addition, we noted a basal level of autophagy in preosteocyte-like murine long bone-derived osteocytic (MLO)-A5 cells. Autophagy was upregulated following nutrient d...

  14. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    OpenAIRE

    Dirk Henrich; René Verboket; Alexander Schaible; Kerstin Kontradowitz; Elsie Oppermann; Brune, Jan C; Christoph Nau; Simon Meier; Halvard Bonig; Ingo Marzi; Caroline Seebach

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or ...

  15. Bone marrow-derived pancreatic stellate cells in rats.

    Science.gov (United States)

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  16. Temporal bone squamous cell carcinoma - Penang experience.

    Science.gov (United States)

    Ng, S Y; Pua, K C; Zahirrudin, Z

    2015-12-01

    Temporal bone squamous cell carcinoma (TBSCC) is rare and poses difficulties in diagnosing, staging and management. We describe a case series with six patients who were diagnosed TBSCC, from January 2009 to June 2014, with median age of 62 years old. All patients presented with blood-stain discharge and external auditory canal mass, showing that these findings should highly alert the diagnosis of TBSCC. Three patients staged T3 and another three with T4 disease. High-resolution CT (HRCT) temporal findings were noted to be different from intraoperative findings and therefore we conclude that MRI should be done to look for middle ear involvement or other soft tissue invasion for more accurate staging. Lateral temporal bone resection (LTBR) and parotidectomy was done for four patients with or without neck dissection. Patients with positive margin, perineural invasion or parotid and glenoid involvement carry poorer prognosis and postoperative radiotherapy may improve the survival rate. One patient had successful tumor resection via piecemeal removal approach in contrast with the recommended en bloc resection shows that with negative margin achieved, piecemeal removal approach can be a good option for patients with T2-3 disease. In general, T4 tumor has dismal outcome regardless of surgery or radiotherapy given.

  17. Stem cell targets and dosimetry for radiation-induced leukaemia and bone cancer

    International Nuclear Information System (INIS)

    The ICRP are proposing changes to the assumed targets for the induction of bone cancer and leukaemias as described by Harrison et al in an accompanying article. This study of radiation targets in the skeleton finds that the endosteum of the long bone medullary cavities is not an important target, especially in the adult, as it supports a very low stem cell population associated with high adiposity, whereas the periosteum has a strong mesenchymal stem cell population throughout lifetime. Quiescent stem cells are found to be preferentially located close to the trabecular bone surface in the osteoblastic niche, whereas progenitors of stem cells prefer to reside in perivascular niches. Evidence is given in support of the suggestion that the absence of excess bone-cancer in atomic bomb survivors may be related to the extremely low prevalence of Paget's disease in Japan. The hypoxic conditions of the endosteum adjacent to quiescent bone surfaces provide a radioprotective stem cell microenvironment by a factor of 2-3 fold, whereas greater radiosensitivity is prevalent in the young and individuals with benign diseases of bone. Increasing the volume of the bone cancer target from a 10 μm thick endosteum to a 50 μm peripheral marrow layer will result in an approximately three-fold decline in the mean dose from alpha-emitters in bone. These new observations are shown to go some way in explaining the low incidences for leukaemia and especially bone cancer in radium dial painters, Thorotrast patients and Mayak nuclear workers. (author)

  18. Stem cell targets and dosimetry for radiation-induced leukaemia and bone cancer

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, R.B., E-mail: richardr@aecl.ca

    2007-07-01

    The ICRP are proposing changes to the assumed targets for the induction of bone cancer and leukaemias as described by Harrison et al in an accompanying article. This study of radiation targets in the skeleton finds that the endosteum of the long bone medullary cavities is not an important target, especially in the adult, as it supports a very low stem cell population associated with high adiposity, whereas the periosteum has a strong mesenchymal stem cell population throughout lifetime. Quiescent stem cells are found to be preferentially located close to the trabecular bone surface in the osteoblastic niche, whereas progenitors of stem cells prefer to reside in perivascular niches. Evidence is given in support of the suggestion that the absence of excess bone-cancer in atomic bomb survivors may be related to the extremely low prevalence of Paget's disease in Japan. The hypoxic conditions of the endosteum adjacent to quiescent bone surfaces provide a radioprotective stem cell microenvironment by a factor of 2-3 fold, whereas greater radiosensitivity is prevalent in the young and individuals with benign diseases of bone. Increasing the volume of the bone cancer target from a 10 {mu}m thick endosteum to a 50 {mu}m peripheral marrow layer will result in an approximately three-fold decline in the mean dose from alpha-emitters in bone. These new observations are shown to go some way in explaining the low incidences for leukaemia and especially bone cancer in radium dial painters, Thorotrast patients and Mayak nuclear workers. (author)

  19. Remyelination of the Rat Spinal Cord by Transplantation of Identified Bone Marrow Stromal Cells

    OpenAIRE

    Akiyama, Yukinori; Radtke, Christine; Kocsis, Jeffery D.

    2002-01-01

    Bone marrow contains a population of stem-like cells that can differentiate into neurons or glia. Stromal cells from green fluorescent protein (GFP)-expressing mice were isolated by initial separation on a density gradient and then cultured as adherent cells on plastic that proliferated in culture to confluency with a typical flattened elongative morphology. The large majority of the isolated stromal cells were GFP expressing and immunopositive for collagen type I, fibronectin, and CD44. Tran...

  20. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  1. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  2. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?★

    OpenAIRE

    Li, Yi; Hua, Xuming; Hua, Fang; Mao, Wenwei; Wan, Liang; Li, Shiting

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohist...

  3. Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences.

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Alix, Philippe; Leprince, Pierre; Glejzer, Aneta; Poulet, Christophe; Hennuy, Benoit; Sommer, Lukas; Shakhova, Olga; Rogister, Bernard

    2012-08-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases. PMID:22349262

  4. Stem cell technology for bone regeneration: current status and potential applications

    Directory of Open Access Journals (Sweden)

    Asatrian G

    2015-02-01

    Full Text Available Greg Asatrian,1 Dalton Pham,1,2 Winters R Hardy,3 Aaron W James,1–3 Bruno Peault3,4 1Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, 2Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, 3UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA; 4Medical Research Council Centre for Regenerative Medicine, Edinburgh, Scotland, UK Abstract: Continued improvements in the understanding and application of mesenchymal stem cells (MSC have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.Keywords: mesenchymal stem cell, pericyte, bone tissue engineering, MSC, ASC, DMSC

  5. Bone marrow processing for transplantation using Cobe Spectra cell separator.

    Science.gov (United States)

    Veljković, Dobrila; Nonković, Olivera Šerbić; Radonjić, Zorica; Kuzmanović, Miloš; Zečević, Zeljko

    2013-06-01

    Concentration of bone marrow aspirates is an important prerequisite prior to infusion of ABO incompatible allogeneic marrow and prior to cryopreservation and storage of autologous marrow. In this paper we present our experience in processing 15 harvested bone marrow for ABO incompatible allogeneic and autologous bone marrow (BM) transplantation using Cobe Spectra® cell separator. BM processing resulted in the median recovery of 91.5% CD34+ cells, erythrocyte depletion of 91% and volume reduction of 81%. BM processing using cell separator is safe and effective technique providing high rate of erythrocyte depletion and volume reduction, and acceptable recovery of the CD34+ cells.

  6. Bone marrow cells differentiation into organ cells using stem cell therapy.

    Science.gov (United States)

    Yang, Y-J; Li, X-L; Xue, Y; Zhang, C-X; Wang, Y; Hu, X; Dai, Q

    2016-07-01

    Bone marrow cells (BMC) are progenitors of bone, cartilage, skeletal tissue, the hematopoiesis-supporting stroma and adipocyte cells. BMCs have the potential to differentiate into neural cells, cardiac myocytes, liver hepatocytes, chondrocytes, renal, corneal, blood, and myogenic cells. The bone marrow cell cultures from stromal and mesenchymal cells are called multipotent adult progenitor cells (MAPCs). MAPCs can differentiate into mesenchymal cells, visceral mesoderm, neuroectoderm and endoderm in vitro. It has been shown that the stem cells derived from bone marrow cells (BMCs) can regenerate cardiac myocytes after myocardial infarction (MI). Adult bone marrow mesenchymal stem cells have the ability to regenerate neural cells. Neural stem/progenitor cells (NS/PC) are ideal for treating central nervous system (CNS) diseases, such as Alzheimer's, Parkinson's and Huntington disease. However, there are important ethical issues about the therapeutic use of stem cells. Neurons, cardiac myocytes, hepatocytes, renal cells, blood cells, chondrocytes and adipocytes regeneration from BMCs are very important in disease control. It is known that limbal epithelial stem cells in the cornea can repair the eye sight and remove symptoms of blindness. Stem cell therapy (SCT) is progressing well in animal models, but the use of SCT in human remains to be explored further.

  7. Bioengineered periosteal progenitor cell sheets to enhance tendon-bone healing in a bone tunnel

    Directory of Open Access Journals (Sweden)

    Chih-Hsiang Chang

    2012-12-01

    Full Text Available Background: Tendon-bone tunnel healing is crucial for long term success in anterior cruciate liga­ment (ACL reconstruction. The periosteum contains osteochondral progenitor cells that can differenti­ate into osteoblasts and chondroblasts during tendon-bone healing. We developed a scaf­fold-free method using polymerized fibrin-coated dishes to make functional periosteal progenitor cell (PPC sheets. Bioengineered PPC sheets for enhancing tendon-bone healing were evaluated in an extra-articular bone tunnel model in rabbit. Methods: PPC derived from rabbit tibia periosteum, cultivated on polymerized fi­brin-coated dishes and harvested as PPC sheet. A confocal microscopy assay was used to evaluate the morphology of PPC sheets. PPC sheets as a periosteum to wrap around hamstring tendon grafts were pulled into a 3-mm diameter bone tunnel of tibia, and compared with a tendon graft without PPC sheets treatment. Rabbits were sacrificed at 4 and 8 weeks postoperatively for biochemical as­say and histological assay to demonstrate the enhancement of PPC sheets in tendon-bone healing. Results: PPC spread deposit on fibrin on the dish surface with continuous monolayer PPC was ob­served. Histological staining revealed that PPC sheets enhance collagen and glycosaminoglycans deposi­tion with fibrocartilage formation in the tendon-bone junction at 4 weeks. Collagen fiber with fibrocartilage formation at tendon-bone junction was also found at 8 weeks. Matured fibrocartilage and dense collagen fiber were formed at the tendon-bone interface at 8 weeks by Masson trichrome and Safranin-O staining Conclusions: Periosteal progenitor cell monolayer maintains the differentiated capacity and osteochon­dral potential in order to promote fibrocartilage formation in tendon-bone junction. Bioengi­neered PPC sheets can offer a new feasible therapeutic strategy of a novel approach to en­hance tendon-bone junction healing.

  8. Intensive care outcomes in bone marrow transplant recipients: a population-based cohort analysis

    OpenAIRE

    Scales, Damon C.; Thiruchelvam, Deva; Kiss, Alexander; Sibbald, William J; Donald A Redelmeier

    2008-01-01

    Introduction Intensive care unit (ICU) admission for bone marrow transplant recipients immediately following transplantation is an ominous event, yet the survival of these patients with subsequent ICU admissions is unknown. Our objective was to determine the long-term outcome of bone marrow transplant recipients admitted to an ICU during subsequent hospitalizations. Methods We conducted a population-based cohort analysis of all adult bone marrow transplant recipients who received subsequent I...

  9. Stem and progenitor cells: advancing bone tissue engineering.

    Science.gov (United States)

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  10. Prostate cancer cells metastasize to the hematopoietic stem cell niche in bone

    Institute of Scientific and Technical Information of China (English)

    Evan T Keller

    2011-01-01

    @@ The majority of men with advanced prostate cancer develop bone metastases as opposed to metastases at other sites.1 It has been unclear why prostate cancer selectively metastasizes to and proliferates in bone.Recently, Shiozawa et al.Delineated a mechanism that may account for the establishment of prostate cancer in bone.2 Specifically, they identified that prostate cancer cells compete with hematopoietic stem cells (HSC) for the osteoblast in the HSC niche of the bone.Defining the mechanisms through which prostate cancer cells establish themselves in bone is critical towards developing effective therapeutic strategies to prevent or target bone metastases.

  11. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    OpenAIRE

    Zoleikha Golipoor; Fereshteh Mehraein; Fariba Zafari; Akram Alizadeh; Shima Ababzadeh; Maryam Baazm

    2016-01-01

    Objective: Bone marrow (BM) is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL) stem cells has been found in the BM. These cells express several developmental markers of pluripotent stem cells and can be mobilized into peripheral blood (PB) in response to tissue injury. In this study we ...

  12. The role of bone marrow-derived cells during the bone healing process in the GFP mouse bone marrow transplantation model.

    Science.gov (United States)

    Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi

    2013-03-01

    Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.

  13. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells

    OpenAIRE

    Schaniel, Christoph; Sirabella, Dario; Qiu, Jiajing; Niu, Xiaohong; Lemischka, Ihor R.; Moore, Kateri A.

    2011-01-01

    The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow a...

  14. Image findings and bone metabolic markers of bone involvement by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kameta, Ayako; Tsuchimochi, Makoto; Harada, Mikiko; Katada, Tsutomu; Sasaki, Yoshihiko; Hayama, Kazuhide [Nippon Dental Univ. (Japan). School of Dentistry at Niigata

    2000-01-01

    Recently it has been reported that the circulating pyridinoline cross-linked carboxyl-terminal telopeptide of type I collagen (ICTP) and carboxyl-terminal propeptide of type I procollagen (PICP) are useful markers for detecting metastasis of malignancies to bone. Since ICTP and PICP are related to collagen metabolism, respectively breaking down and synthesizing type I collagen, elevated blood concentrations of these markers may reflect direct jaw bone destruction by oral cancer. The purpose of this study was to clarify the relationship between serum ICTP and PICP levels and bone invasion associated with oral cancer. Bone invasion was evaluated in 41 patients with oral squamous cell carcinoma (SCC) by panoramic radiography and {sup 99m}Tc-methylene diphosphonate (MDP) scintigraphy. We also assayed serum levels of parathyroid hormone-related protein (PTHrP) and compared them with concentrations of bone metabolic markers and imaging findings. There was no significant relationship between serum ICTP and PICP levels and bone invasion. However, in three of the five cases that showed remarkably high serum ICTP levels, {sup 99m}Tc-MDP uptake in the lesion was intensely increased. This suggests that serum ICTP levels may be elevated when bone metabolic changes caused by cancer involving the bone are extensive. We could find no significant correlation among serum levels of ICTP, PICP, and PTHrP. ICTP and PICP do not appear to be good indicators of direct bone invasion by oral SCC in early stages. (author)

  15. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded allograft

    Directory of Open Access Journals (Sweden)

    J O Eniwumide

    2007-08-01

    Full Text Available Improvements to current therapeutic strategies are needed for the treatment of skeletal defects. Bone tissue engineering offers potential advantages to these strategies. In this study, ectopic bone formation in a range of scaffolds was assessed. Vital autograft and devitalised allograft served as controls and the experimental groups comprised autologous bone marrow derived stem cell seeded allograft, biphasic calcium phosphate (BCP and tricalcium phosphate (TCP, respectively. All implants were implanted in the back muscle of adult Dutch milk goats for 12 weeks. Micro-computed tomography (µCT analysis and histomorphometry was performed to evaluate and quantify ectopic bone formation. In good agreement, both µCT and histomorphometric analysis demonstrated a significant increase in bone formation by cell-seeded calcium phosphate scaffolds as compared to the autograft, allograft and cell-seeded allograft implants. An extensive resorption of the autograft, allograft and cell-seeded allograft implants was observed by histology and confirmed by histomorphometry. Cell-seeded TCP implants also showed distinct signs of degradation with histomorphometry and µCT, while the degradation of the cell-seeded BCP implants was negligible. These results indicate that cell-seeded calcium phosphate scaffolds are superior to autograft, allograft or cell-seeded allograft in terms of bone formation at ectopic implantation sites. In addition, the usefulness of µCT for the efficient and non-destructive analysis of mineralised bone and calcium phosphate scaffold was demonstrated.

  16. Role of plasmacytoid dendritic cells in breast cancer bone dissemination

    OpenAIRE

    Sawant, Anandi; Ponnazhagan, Selvarangan

    2013-01-01

    Elevated levels of plasmacytoid dendritic cells (pDC) have been observed as breast cancer disseminates to the bone. The selective depletion of pDC in mice led to a total abrogation of bone metastasis as well as to an increase in TH1 antitumor response, suggesting that pDC may be considered as a potential therapeutic target for metastatic breast cancer.

  17. Multiple melanocortin receptors are expressed in bone cells

    Science.gov (United States)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  18. 1,25-Dihydroxyvitamin D3 stimulates the production of insulin-like growth factor-binding proteins-2, -3 and -4 in human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Flyvbjerg, Allan; Eriksen, E F;

    2001-01-01

    1,25-Dihydroxyvitamin D3 (calcitriol) inhibits proliferation and stimulates differentiation of multiple cell types, including osteoblasts. Human (h) bone marrow stromal cells (MSCs) are a homogenous non-hematopoietic population of cells present in the bone marrow and exhibit a less differentiated...

  19. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    Science.gov (United States)

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  20. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?

    Institute of Scientific and Technical Information of China (English)

    Yi Li; Xuming Hua; Fang Hua; Wenwei Mao; Liang Wan; Shiting Li

    2013-01-01

    Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohistological staining and reverse transcription-PCR detection showed that transplanted bone marrow cells and bone marrow regenerative cells could migrate and survive in the ischemic regions, such as the cortical and striatal infarction zone. These cells promote vascular endothelial cell growth factor mRNA expression in the ischemic marginal zone surrounding the ischemic penumbra of the cortical and striatal infarction zone, and have great advantages in promoting the recovery of neurological function, reducing infarct size and promoting angiogenesis. Bone marrow regenerative cells exhibited stronger neuroprotective effects than bone marrow cells. Our experimental findings indicate that bone marrow regenerative cells are preferable over bone marrow cells for cell therapy for neural regeneration after cerebral ischemia. Their neuroprotective effect is largely due to their ability to induce the secretion of factors that promote vascular regeneration, such as vascular endothelial growth factor.

  1. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    Science.gov (United States)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  2. Characterization of host lymphoid cells in antibody-facilitated bone marrow chimeras

    International Nuclear Information System (INIS)

    The authors have produced stable murine antibody-facilitated (AF) chimeras by the simultaneous injection of P1 bone marrow cells and anti-P2 monoclonal antibody into normal (unirradiated) adult (P1 X P2)F1 recipients. These AF chimeras are healthy, long-lived, and exhibit no overt signs of graft-versus-host disease. They are immunocompetent and tolerant of host, P2-encoded alloantigens. Donor cell engraftment and takeover, monitored by glucosephosphate isomerase isozyme patterns, is usually complete (greater than 95%) in the peripheral blood, bone marrow, and hemopoietic stem cell compartments of long-term (greater than 3 months posttransplantation) AF chimeras. The authors report here, however, that splenic, lymph node, and thymic leukocytes of AF chimeras represent donor/host chimeric populations. Spleen cell populations of AF chimeras exhibit substantial chimera-to-chimera variation in the preponderant residual host cell type(s) present. Interpretations of the implications of these findings are discussed

  3. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    Directory of Open Access Journals (Sweden)

    Armando Vilchis-Ordoñez

    2015-01-01

    Full Text Available B-cell acute lymphoblastic leukemia (B-ALL is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.

  4. The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model

    OpenAIRE

    Fernandes, Marco Bernardo C; Guimarães, João Antônio Matheus; Casado, Priscila Ladeira; Cavalcanti, Amanda dos Santos; Gonçalves, Natalia N; Carlos E. Ambrósio; Rodrigues, Fernando; Pinto, Ana Carolina F; Miglino, Maria Angélica; Duarte, Maria Eugênia L.

    2014-01-01

    Background The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the ...

  5. A case of Primary Bone Anaplastic Large Cell Lymphoma

    Science.gov (United States)

    Kim, Kyung Hyun; Jung, Yun Hwa; Han, Chi Wha; Woo, In Sook; Son, Jong ho

    2016-01-01

    Patient: Female, 52 Final Diagnosis: Primary bone anaplastic large cell lymphoma Symptoms: Bone pain Medication: — Clinical Procedure: — Specialty: Oncology Objective: Unusual clinical course Background: Anaplastic large cell lymphoma (ALCL) is a relatively rare subtype of non-Hodgkin’s lymphoma (NHL). Like other types of NHL, ALCL primarily involves the nodal area, and sometimes it can involve several extra-nodal sites such as skin, soft tissue, and lungs. However, extensive bone involvement in cases of ALCL is very rare whether it is primary or secondary. Without nodular involvement, ALCL can be misdiagnosed as bone tumor or metastatic carcinoma such as lung, breast, or prostate cancer, which frequently spread to bone. Case Report: A 52-year-old woman with generalized pain and 2 months of fever of unknown origin presented to our institution. After extensive evaluation, only multiple osteolytic bone lesions with periosteal soft tissue reaction were identified. Repeated core needle biopsy revealed only inflammatory cells with histiocytic reactions. After pathologic and chromosomal analysis of sufficient tissue, which was acquired from incisional biopsy, primary bone ALCL was confirmed. Conclusions: Clinicians should keep in mind that ALCL can present with extensive bone involvement without nodal involvement. PMID:27729639

  6. Bone Penetration of Amoxicillin and Clavulanic Acid Evaluated by Population Pharmacokinetics and Monte Carlo Simulation▿

    Science.gov (United States)

    Landersdorfer, Cornelia B.; Kinzig, Martina; Bulitta, Jürgen B.; Hennig, Friedrich F.; Holzgrabe, Ulrike; Sörgel, Fritz; Gusinde, Johannes

    2009-01-01

    Amoxicillin (amoxicilline)-clavulanic acid has promising activity against pathogens that cause bone infections. We present the first evaluation of the bone penetration of a beta-lactam by population pharmacokinetics and pharmacodynamic profiling via Monte Carlo simulations. Twenty uninfected patients undergoing total hip replacement received a single intravenous infusion of 2,000 mg/200 mg amoxicillin-clavulanic acid before surgery. Blood and bone specimens were collected. Bone samples were pulverized under liquid nitrogen with a cryogenic mill, including an internal standard. The drug concentrations in serum and total bone were analyzed by liquid chromatography-tandem mass spectrometry. We used NONMEM and S-ADAPT for population pharmacokinetic analysis and a target time of the non-protein-bound drug concentration above the MIC for ≥50% of the dosing interval for near-maximal bactericidal activity in serum. The median of the ratio of the area under the curve (AUC) for bone/AUC for serum was 20% (10th to 90th percentile for between-subject variability [variability], 16 to 25%) in cortical bone and 18% (variability, 11 to 29%) in cancellous bone for amoxicillin and 15% (variability, 11 to 21%) in cortical bone and 10% (variability, 5.1 to 21%) in cancellous bone for clavulanic acid. Analysis in S-ADAPT yielded similar results. The equilibration half-lives between serum and bone were 12 min for amoxicillin and 14 min for clavulanic acid. For a 30-min infusion of 2,000 mg/200 mg amoxicillin-clavulanic acid every 4 h, amoxicillin achieved robust (≥90%) probabilities of target attainment (PTAs) for MICs of ≤12 mg/liter in serum and 2 to 3 mg/liter in bone and population PTAs above 95% against methicillin-susceptible Staphylococcus aureus in bone and serum. The AUC of amoxicillin-clavulanic acid was 5 to 10 times lower in bone than in serum, and amoxicillin-clavulanic acid achieved a rapid equilibrium and favorable population PTAs against pathogens commonly

  7. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  8. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic.

  9. Autologous bone marrow stromal cells are promising candidates for cell therapy approaches to treat bone degeneration in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Angélique Lebouvier

    2015-11-01

    SCD-ON patients have a higher frequency of BMSCs that retain their bone regeneration potential. Our findings suggest that BMSCs isolated from SCD-ON patients can be used clinically in cell therapy approaches. This work provides important preclinical data that is necessary for the clinical application of expanded BMSCs in advanced therapies and medical products.

  10. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  11. Double-layered cell transfer technology for bone regeneration.

    Science.gov (United States)

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-09-14

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called "cell transfer technology", enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration.

  12. TGFβ and Hypoxia Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Institute of Scientific and Technical Information of China (English)

    Lauren K. DUNN; Pierrick G.J. FOURNIE; Khalid S. MOHAMMAD; C. Ryan MCKENNA; Holly W. DAVIS; Maria NIEWOLNA; Xianghong PENG; John M. CHIRGWIN; Theresa A.GUISE

    2009-01-01

    @@ Breast cancers frequently metastasize to bone, a site of hypoxia and high concentrations of active TGFβ. Skeletal metastases involve interactions between tumor and bone cells driven by locally secreted proteins, many of which are increased by hypoxia and TGFβ.

  13. Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Haruki Sekiguchi

    Full Text Available Numerous endothelial progenitor cell (EPC-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT cells and floating (FL cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL but not fast attached (AT BMMNCs in culture are EPC-rich population in mouse.

  14. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  15. Comparisons of Mouse Mesenchymal Stem Cells in Primary Adherent Culture of Compact Bone Fragments and Whole Bone Marrow

    OpenAIRE

    Yiting Cai; Tianshu Liu; Fang Fang; Chengliang Xiong; Shiliang Shen

    2015-01-01

    The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment cult...

  16. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    Science.gov (United States)

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly. PMID:25682158

  17. SPONTANEOUS TRANSFORMATION OF CULTURED PORCINE BONE MARROW STROMAL CELLS

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Li, Haisheng;

    INTRODUCTION Recently, the possibility that tumors originate from cancer stem cells (CSCs) has been proposed. Stem cells and CSCs share certain features such as self-renewal and differentiation potential. The aim of this study was to evaluate whether bone marrow stromal cells (BMSC) after long-te...

  18. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma

    Directory of Open Access Journals (Sweden)

    Hu Y

    2013-10-01

    Full Text Available Ying Hu,1,2 Hai Bo Tan,1 Xin Mei Wang,3 Hua Rong,1 Hong Ping Cui,1 Hao Cui2 Departments of Ophthalmology, 1Shanghai East Hospital of Tongji University, Shanghai, 2First Affiliated Hospital, 3Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China Abstract: Glaucoma is a common eye disease in the aged population and has severe consequences. The present study examined the therapeutic effects of bone marrow mesenchymal stem cell (BMSC transplantation in preventing loss of visual function in aged rats with glaucoma caused by laser-induced ocular hypertension. We found that BMSCs promoted survival of retinal ganglion cells in the transplanted eye as compared with the control eye. Further, in swimming tests guided by visual cues, the rats with a BMSC transplant performed significantly better. We believe that BMSC transplantation therapy is effective in treating aged rats with glaucoma. Keywords: glaucoma, stem cell, transplantation, cell therapy, aging

  19. Index of CD34+ Cells and Mononuclear Cells in the Bone Marrow of Spinal Cord Injury Patients of Different Age Groups: A Comparative Analysis

    OpenAIRE

    Vidyasagar Devaprasad Dedeepiya; Yegneswara Yellury Rao; Gosalakkal A. Jayakrishnan; Parthiban, Jutty K. B. C.; Subramani Baskar; Sadananda Rao Manjunath; Rajappa Senthilkumar; Abraham, Samuel J. K.

    2012-01-01

    Introduction. Recent evidence of safety and efficacy of Bone Marrow Mononuclear Cells (BMMNC) in spinal cord injury makes the Bone Marrow (BM) CD34+ percentage and the BMMNC count gain significance. The indices of BM that change with body mass index and aging in general population have been reported but seldom in Spinal Cord Injury (SCI) victims, whose parameters of relevance differ from general population. Herein, we report the indices of BMMNC in SCI victims. Materials and Methods. BMMNCs o...

  20. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  1. Make no bones about it: cells could soon be reprogrammed to grow replacement bones?

    Science.gov (United States)

    de Peppo, Giuseppe Maria; Marolt, Darja

    2014-01-01

    Recent developments in nuclear reprogramming allow the generation of patient-matched stem cells with broad potential for applications in cell therapies, disease modeling and drug discovery. An increasing body of work is reporting the derivation of lineage-specific progenitors from human-induced pluripotent stem cells (hiPSCs), which could in the near future be used to engineer personalized tissue substitutes, including those for reconstructive therapies of bone. Although the potential clinical impact of such technology is not arguable, significant challenges remain to be addressed before hiPSC-derived progenitors can be employed to engineer bone substitutes of clinical relevance. The most important challenge is indeed the construction of personalized multicellular bone substitutes for the treatment of complex skeletal defects that integrate fast, are immune tolerated and display biofunctionality and long-term safety. As recent studies suggest, the merging of iPSC technology with advanced biomaterials and bioreactor technologies offers a way to generate bone substitutes in a controllable, automated manner with potential to meet the needs for scale-up and requirements for translation into clinical practice. It is only via the use of state-of-the-art cell culture technologies, process automation under GMP-compliant conditions, application of appropriate engineering strategies and compliance with regulatory policies that personalized lab-made bone grafts can start being used to treat human patients. PMID:24053578

  2. Bone Morphogenetic Protein 4 Mediates Human Embryonic Germ Cell Derivation

    OpenAIRE

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; John D Gearhart; Kerr, Candace L.

    2010-01-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recom...

  3. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J;

    2004-01-01

    an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8...... able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24...

  4. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  5. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    OpenAIRE

    Muschler, George F.; Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2003-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal f...

  6. Deletion of FGFR3 in Osteoclast Lineage Cells Results in Increased Bone Mass in Mice by Inhibiting Osteoclastic Bone Resorption.

    Science.gov (United States)

    Su, Nan; Li, Xiaogang; Tang, Yubin; Yang, Jing; Wen, Xuan; Guo, Jingyuan; Tang, Junzhou; Du, Xiaolan; Chen, Lin

    2016-09-01

    Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled-hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts derived from wild-type and Fgfr3-deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3-deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3-deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research.

  7. Comparison of bone lead in pre-Hispanic, 18th century and modern population of Tenerife.

    Science.gov (United States)

    Arnay-De-La-Rosa, M; Gonzalez-Reimers, E; Velasco-Vazquez, J; Galindo-Martin, L; Delgado-Ureta, E; Santolaria-Fernandez, F; Barros-Lopez, N

    1998-01-19

    The present study has been performed in order to determine concentrations of lead in the bone of 14 individuals who were interred towards the beginning of the 18th century at the church 'La Concepción' (Santa Cruz de Tenerife) of 15 Pre-Hispanic individuals of Tenerife and a modern sample for Tenerife, composed of 25 individuals. We have observed higher bone lead values in the modern population than in the ancient one (P = 0.0022), although Pre-Hispanic individuals and those of the 18th century showed similar bone lead values.

  8. Comparisons of Mouse Mesenchymal Stem Cells in Primary Adherent Culture of Compact Bone Fragments and Whole Bone Marrow

    Directory of Open Access Journals (Sweden)

    Yiting Cai

    2015-01-01

    Full Text Available The purification of mouse bone marrow mesenchymal stem cells (BMSCs by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture.

  9. Translational Research: Palatal-derived Ecto-mesenchymal Stem Cells from Human Palate: A New Hope for Alveolar Bone and Cranio-Facial Bone Reconstruction.

    Science.gov (United States)

    Grimm, Wolf Dieter; Dannan, Aous; Giesenhagen, Bernd; Schau, Ingmar; Varga, Gabor; Vukovic, Mark Alexander; Sirak, Sergey Vladimirovich

    2014-05-01

    The management of facial defects has rapidly changed in the last decade. Functional and esthetic requirements have steadily increased along with the refinements of surgery. In the case of advanced atrophy or jaw defects, extensive horizontal and vertical bone augmentation is often unavoidable to enable patients to be fitted with implants. Loss of vertical alveolar bone height is the most common cause for a non primary stability of dental implants in adults. At present, there is no ideal therapeutic approach to cure loss of vertical alveolar bone height and achieve optimal pre-implantological bone regeneration before dental implant placement. Recently, it has been found that specific populations of stem cells and/or progenitor cells could be isolated from different dental resources, namely the dental follicle, the dental pulp and the periodontal ligament. Our research group has cultured palatal-derived stem cells (paldSCs) as dentospheres and further differentiated into various cells of the neuronal and osteogenic lineage, thereby demonstrating their stem cell state. In this publication will be shown whether paldSCs could be differentiated into the osteogenic lineage and, if so, whether these cells are able to regenerate alveolar bone tissue in vivo in an athymic rat model. Furthermore, using these data we have started a proof of principle clinical- and histological controlled study using stem cell-rich palatal tissues for improving the vertical alveolar bone augmentation in critical size defects. The initial results of the study demonstrate the feasibility of using stem cell-mediated tissue engineering to treat alveolar bone defects in humans.

  10. Wnt signaling control of bone cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Peter V N Bodine

    2008-01-01

    Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morphogenesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density , lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-1, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3p support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.

  11. STROMAS: A Series of Microgravity Experiments on Bone Forming Cells

    Science.gov (United States)

    Yi, Liu; Massimilano, Monticone; Federico, Tortelli; Matalija, Pujic; Alessandra, Ruggiu; Ranieri, Cancedda

    2008-06-01

    We developed a novel 3D in vitro culture system by seeding cells onto porous bioceramics, mimicking the physiological niche of bone turn-over and enhancing cellular differentiation respective to conventional 2D Petri Dish cultures. Having overcome several technological difficulties, in a series of STROMA spaceflight experiments 3D cultures of bone marrow derived mesenchymal stem cells (BMSC) and co-cultures of osteoblasts and osteoclast precursors were maintained and conserved in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation in microgravity. Unexpectedly, genes related to various processes of neural development were significantly upregulated in microgravity, raising the question on the lineage restriction in BMSC.

  12. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  13. Reducing bone cancer cell functions using selenium nanocomposites.

    Science.gov (United States)

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects. PMID:26454004

  14. Langerhans cell histiocytosis of the temporal bone in a child

    OpenAIRE

    Chakravarti, A; Rajeev Gupta; Sahni, J. K.

    2011-01-01

    Langerhans cell histiocytosis of temporal bone is a benign tumor like condition with variable clinical course. This rare clinical entity may mimic common ENT clinical condition like otitis media , mastoiditis and otitis externa . A high index of suspicion is required to reach to a diagnosis of langerhans cell histiocytosis to prevent delay in proper management of this disease.

  15. Round versus flat: Bone cell morphology, elasticity, and mechanosensing

    NARCIS (Netherlands)

    Bacabac, R.G.; Mizuno, D.; Schmidt, C.; Mackintosh, F.C.; Loon, van J.J.W.A.; Klein-Nulend, J.; Smit, T.H.

    2008-01-01

    There is increasing evidence that cell function and mechanical properties are closely related to morphology. However, most in vitro studies investigate flat adherent cells, which might not reflect physiological geometries in vivo. Osteocytes, the mechanosensors in bone, reside within ellipsoid conta

  16. Round versus flat: bone cell morphology, elasticity, and mechanosensing

    NARCIS (Netherlands)

    R.G. Bacabac; D. Mizuno; C.F. Schmidt; F.C. MacKintosh; J.J.W.A. van Loon; J. Klein Nulend; T.H. Smit

    2008-01-01

    There is increasing evidence that cell function and mechanical properties are closely related to morphology. However, most in vitro studies investigate flat adherent cells, which might not reflect physiological geometries in vivo. Osteocytes, the mechanosensors in bone, reside within ellipsoid conta

  17. Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation.

    Directory of Open Access Journals (Sweden)

    Barbara Barboni

    Full Text Available BACKGROUND: Evidence has been provided that a cell-based therapy combined with the use of bioactive materials may significantly improve bone regeneration prior to dental implant, although the identification of an ideal source of progenitor/stem cells remains to be determined. AIM: In the present research, the bone regenerative property of an emerging source of progenitor cells, the amniotic epithelial cells (AEC, loaded on a calcium-phosphate synthetic bone substitute, made by direct rapid prototyping (rPT technique, was evaluated in an animal study. MATERIAL AND METHODS: Two blocks of synthetic bone substitute (∼0.14 cm(3, alone or engineered with 1×10(6 ovine AEC (oAEC, were grafted bilaterally into maxillary sinuses of six adult sheep, an animal model chosen for its high translational value in dentistry. The sheep were then randomly divided into two groups and sacrificed at 45 and 90 days post implantation (p.i.. Tissue regeneration was evaluated in the sinus explants by micro-computer tomography (micro-CT, morphological, morphometric and biochemical analyses. RESULTS AND CONCLUSIONS: The obtained data suggest that scaffold integration and bone deposition are positively influenced by allotransplantated oAEC. Sinus explants derived from sheep grafted with oAEC engineered scaffolds displayed a reduced fibrotic reaction, a limited inflammatory response and an accelerated process of angiogenesis. In addition, the presence of oAEC significantly stimulated osteogenesis either by enhancing bone deposition or making more extent the foci of bone nucleation. Besides the modulatory role played by oAEC in the crucial events successfully guiding tissue regeneration (angiogenesis, vascular endothelial growth factor expression and inflammation, data provided herein show that oAEC were also able to directly participate in the process of bone deposition, as suggested by the presence of oAEC entrapped within the newly deposited osteoid matrix and by their

  18. Adiponectin and peak bone mass in men: a cross-sectional, population-based study

    DEFF Research Database (Denmark)

    Nielsen, Morten Frost; Abrahamsen, B; Nielsen, T L;

    2010-01-01

    Adiponectin, a protein classically known to be secreted by adipocytes, is also secreted by bone-forming cells. Results of previous studies have been contradictory as to whether serum adiponectin and bone mineral density (BMD) are associated. The aim of this study was to investigate a possible...... of femoral cortical thickness and bone marrow size was performed in a subsample of 363 participants. The associations between serum adiponectin and various bone measures were investigated by means of regression analyses with adjustment for potential confounding variables. An inverse association was...... found between serum adiponectin and total hip BMD and a direct between adiponectin and femoral bone marrow size (r = -0.092; P = 0.036 and r = 0.164; P = 0.003, respectively). Femoral muscle size may, at least in part, explain the association between adiponectin and total hip BMD. Serum adiponectin was...

  19. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    Science.gov (United States)

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  20. Bone Marrow Stem Cell as a Potential Treatment for Diabetes

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Diabetes mellitus (DM is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs and tissue stem cells (TSCs to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM.

  1. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  2. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  3. Lasting engraftment of histoincompatible bone marrow cells in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.C.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasng the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradiation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-h interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplotype-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  4. Lasting engraftment of histoincompatible bone marrow cells in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasing the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-hr interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplo-type-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  5. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    OpenAIRE

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of t...

  6. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    OpenAIRE

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed AbdolReza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was d...

  7. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne K.; Apeldoorn, van Aart A.; Jukes, Jojanneke M.; Englund, Mikael C.O.; Hyllner, Johan; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  8. Prospect of Stem Cells in Bone Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Azizeh-Mitra Yousefi

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.

  9. Bone marrow cells contribute to tissue regeneration in the intestine and skin.

    OpenAIRE

    Brittan, M

    2005-01-01

    Adult bone marrow contains progenitor cells that can extricate themselves from their bone marrow cavity niche, and engraft within foreign tissues, whereupon they produce specific differentiated adult lineages. Bone marrow engraftment is upregulated with increasing regenerative pressure, which has triggered speculation as to the therapeutic potential of bone marrow cells. In this thesis, I describe for the first time, that transplanted adult bone marrow cells engraft within the intestines of m...

  10. MAPK11 in breast cancer cells enhances osteoclastogenesis and bone resorption

    OpenAIRE

    He, Zhimin; He, Jin; Liu, Zhiqiang(Institute of High Energy Physics, Beijing, 100049, People's Republic of China); Xu, Jingda; Yi, Sofia F.; Liu, Huan; Yang, Jing

    2014-01-01

    Breast cancer cells frequently metastasize to bone and induce osteolytic bone destruction in patients. These metastases cause severe bone pain, high risk of fractures and hypercalcemia, and are essentially incurable and fatal. Recent studies show that breast cancer cells in bone activate osteoclastogenesis and bone resorption. However the underlying mechanism is poorly understood. This study shows that the p38 MAPK (p38) isoform MAPK11 (p38β) is expressed in breast cancer cells. By using spec...

  11. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer

    OpenAIRE

    Zhao, Ende; Wang, Lin; Dai, Jinlu; Kryczek, Ilona; Wei, Shuang; Vatan, Linda; Altuwaijri, Saleh; Sparwasser, Tim; Wang, Guobin; Evan T. Keller; Zou, Weiping

    2012-01-01

    Human prostate cancer frequently metastasizes to bone marrow. What defines the cellular and molecular predilection for prostate cancer to metastasize to bone marrow is not well understood. CD4+CD25+ regulatory T (Treg) cells contribute to self-tolerance and tumor immune pathology. We now show that functional Treg cells are increased in the bone marrow microenvironment in prostate cancer patients with bone metastasis, and that CXCR4/CXCL12 signaling pathway contributes to Treg cell bone marrow...

  12. Bone invading NSCLC cells produce IL-7: mice model and human histologic data

    International Nuclear Information System (INIS)

    Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies. We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison. At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant. We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process

  13. Bone invading NSCLC cells produce IL-7: mice model and human histologic data

    Directory of Open Access Journals (Sweden)

    Quarto Rodolfo

    2010-01-01

    Full Text Available Abstract Background Bone metastases are a common and dismal consequence of lung cancer that is a leading cause of death. The role of IL-7 in promoting bone metastases has been previously investigated in NSCLC, but many aspects remain to be disclosed. To further study IL-7 function in bone metastasis, we developed a human-in-mice model of bone aggression by NSCLC and analyzed human bone metastasis biopsies. Methods We used NOD/SCID mice implanted with human bone. After bone engraftment, two groups of mice were injected subcutaneously with A549, a human NSCLC cell line, either close or at the contralateral flank to the human bone implant, while a third control group did not receive cancer cells. Tumor and bone vitality and IL-7 expression were assessed in implanted bone, affected or not by A549. Serum IL-7 levels were evaluated by ELISA. IL-7 immunohistochemistry was performed on 10 human bone NSCLC metastasis biopsies for comparison. Results At 12 weeks after bone implant, we observed osteogenic activity and neovascularization, confirming bone vitality. Tumor aggressive cells implanted close to human bone invaded the bone tissue. The bone-aggressive cancer cells were positive for IL-7 staining both in the mice model and in human biopsies. Higher IL-7 serum levels were found in mice injected with A549 cells close to the bone implant compared to mice injected with A549 cells in the flank opposite to the bone implant. Conclusions We demonstrated that bone-invading cells express and produce IL-7, which is known to promote osteoclast activation and osteolytic lesions. Tumor-bone interaction increases IL-7 production, with an increase in IL-7 serum levels. The presented mice model of bone invasion by contiguous tumor is suitable to study bone-tumor cell interaction. IL-7 plays a role in the first steps of metastatic process.

  14. Endochondral bone tissue engineering using embryonic stem cells

    OpenAIRE

    Jukes, Jojanneke M.; Both, Sanne Karijn; Leusink, Anouk; Sterk, Lotus M. Th.; Blitterswijk, van, W.J.; Boer, de, J.W.

    2008-01-01

    Embryonic stem cells can provide an unlimited supply of pluripotent cells for tissue engineering applications. Bone tissue engineering by directly differentiating ES cells (ESCs) into osteoblasts has been unsuccessful so far. Therefore, we investigated an alternative approach, based on the process of endochondral ossification. A cartilage matrix was formed in vitro by mouse ESCs seeded on a scaffold. When these cartilage tissue-engineered constructs (CTECs) were implanted s.c., the cartilage ...

  15. Stem-cells used in treatment of periodontal bone defects

    International Nuclear Information System (INIS)

    The aggressive periodontitis might to provoke the tooth loss, of its function and to affect the patient's aesthetics. The techniques used for the lost bone regeneration, not always are successful and in occasions are very expensive. For years it is working in tissues regeneration by stem-cells implantation. Periodontium could be a potential for this task. This is a study of a female patient aged 26 with an apparent health status and aggressive periodontitis backgrounds treated from 10 years ago, seen in our service due to dental mobility producing mastication nuisances. At clinical examination we noted systemic chronic inflammation of gums, grade II and III dental mobility in incisives and molars teeth, 4-8 mm systemic periodontal sacs and furcation lesions in inferior molars. At radiographs advanced bone losses and a decrease of systemic bone density are noted. After written consent and the initial preparation, we carried out a periodontal flap in the 35 and 37 teeth zone, where the stem-cells concentrate was placed, in bone defects of superior molars (16-17) and previous radicular scraping and isolation, treatment consisted in stem-cells perfusion without flap. There were not postoperative side effects. At 7 days there was a normal coloration, at three months on noted at radiograph a bone neoformation, and at six months gum remained healthy, with a decrease of dental mobility in segment treated and in the evolutionary radiograph it was evidenced the formation and increase of density

  16. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90+cells in mononuclear cells from CD34-/CD45-peripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34+cells in peripheral blood stem cells with a low expression of molecules CD117-and DR-suggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  17. Characterization of Bone Marrow Mononuclear Cells on Biomaterials for Bone Tissue Engineering In Vitro

    Directory of Open Access Journals (Sweden)

    Dirk Henrich

    2015-01-01

    Full Text Available Bone marrow mononuclear cells (BMCs are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma, demineralized bone matrix (DBM, and bovine cancellous bone (BS were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo.

  18. [Distribution of compact bone mesenchymal stem cells in lung tissue and bone marrow of mouse].

    Science.gov (United States)

    Wang, Rui-Ping; Wu, Ren-Na; Guo, Yu-Qing; Zhang, Bin; Chen, Hu

    2014-02-01

    This study was aimed to investigate the distribution of compact bone mesenchymal stem cells(MSC) marked with lentiviral plasmid pGC FU-RFP-LV in lung tissue and bone marrow of mouse. The MSC were infected by lentivirus with infection efficiency 78%, the infected MSC were injected into BALB/c mice via tail veins in concentration of 1×10(6) /mouse. The mice were randomly divided into 4 group according to 4 time points as 1, 2, 5 and 7 days. The lung tissue and bone marrow were taken and made of frozen sections and smears respectively in order to observed the distributions of MSC. The results indicated that the lentiviral infected MSC displayed phenotypes and biological characteristics which conformed to MSC by immunophenotyping analysis and induction differentiation detection. After the MSC were infected with optimal viral titer MOI = 50, the cell growth no significantly changed; the fluorescent microscopy revealed that the distributions of MSC in bone marrow on day 1, 2, 5 and 7 were 0.50 ± 0.20, 0.67 ± 0.23, 0.53 ± 0.14, 0.33 ± 0.16; those in lung tissue were 0.55 ± 0.15, 0.47 ± 0.13, 0.29 ± 0.13, 0.26 ± 0.08. It is concluded that the distribution of MSC in lung tissue reaches a peak on day 1, while distribution of MSC in bone marrow reaches a peak on day 2. The distribution of mouse MSC relates with RFP gene expression and implantation of MSC in lung tissue and bone marrow.

  19. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  20. Comparative study on seeding methods of human bone marrow stromal cells in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    齐欣; 刘建国; 常颖; 徐莘香

    2004-01-01

    Background In general the traditional static seeding method has its limitation while the dynamic seeding method reveals its advantages over traditional static method. We compared static and dynamic seeding method for human bone marrow stromal cells (hBMSCs) in bone tissue engineering.Methods DNA assay was used for detecting the maximal initial seeding concentration for static seeding. Dynamic and static seeding methods were compared, when scaffolds were loaded with hBMSCs at this maximal initial cell seeding concentration. Histology and scanning electron microscope (SEM) were examined to evaluate the distribution of cells inside the constructs. Markers encoding osteogenic genes were measured by fluorescent RT-PCR. The protocol for dynamic seeding of hBMSCs was also investigated.Results DNA assay showed that the static maximal initial seeding concentration was lower than that in dynamic seeding. Histology and SEM showed even distribution and spread of cells in the dynamically seeded constructs, while their statically seeded counterparts showed cell aggregation.Fluorescent RT-PCR again showed stronger osteogenic potential of dynamically seeded constructs.Conclusion dynamic seeding of hBMSCs is a promising technique in bone tissue engineering.

  1. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  2. Strategies for epidemiologic studies of lead in bone in occupationally exposed populations.

    OpenAIRE

    Landrigan, P J

    1991-01-01

    Lead exposure is widespread among industrial populations in the United States. X-ray fluorescence (XRF) analysis of the lead content of bone offers a promising approach to acquisition of individualized data on chronic lead absorption in occupationally exposed populations. Dosimetric data obtained by XRF will permit accurate definition of dose-response relationships for such chronic consequences of lead exposure as central and peripheral neurologic impairment, renal disease. hypertension, and ...

  3. Hyperinsulinemia and bone mineral density in an elderly population : The Rotterdam study

    NARCIS (Netherlands)

    Stolk, RP; VanDaele, PLA; Pols, HAP; Burger, H; Hofman, A; Birkenhager, JC; Lamberts, SWJ; Grobbee, DE

    1996-01-01

    We studied the association between insulin and glucose levels and bone mineral density (BMD) in a population based study of 5931 elderly men and women, Serum insulin was measured 2 h after a nonfasting oral glucose load in subjects not using antidiabetes medication, BMD was measured by dual-energy X

  4. Comparison of mesenchymal stem cells from human placenta and bone marrow

    Institute of Scientific and Technical Information of China (English)

    张毅; 李长东; 江小霞; 李荷莲; 唐佩弦; 毛宁

    2004-01-01

    Background Nowadays bone marrow represents the main source of mesenchymal stem cells (MSCs). We identified a new population of MSCs derived from human placenta and compared its biological characterization with bone marrow derived MSCs.Methods Mononucleated cells (MNC) were isolated from the human placenta tissue perfusate by density gradient fractionation. Individual colonies were selected and cultured in tissue dishes. At the same time, human bone marrow derived MSCs were identified. Culture-expanded cells were characterized by immune phenotyping and cultured under conditions promoting differetiation to osteoblasts or adipocytes. The hematopoietic cytokines were assayed using reverse transcriptase polymerase chain reaction (RT-PCR). Results Human placental MSCs exhibited fibroblastoid morphology. Flow cytometric analyses showed that the placental MSC were CD29, CD44, CD73, CD105, CD166, HLA-ABC positive; but were negative for CD34, CD45, and HLA-DR. Functionally, they could be induced into adipocytes or osteocytes. Moreover, several hematopoietic cytokine mRNA was found in placenta-derived MSCs by RT-PCR analysis, including IL-6, M-CSF, Flt3-ligand and SCF. These results were consistent with the properties of bone marrow derived MSCs.Conclusion These observations implicate the postpartum human placenta as an important and novel source of multipotent stem cells that could potentially be used for investigating mesenchymal differentiation and regulation of hematopoiesis.

  5. Osteobiol (r) enhances osteogenic differentiation in bone marrow derived stem cells

    OpenAIRE

    D. Lauritano; Carinci, F.; Zollino, I; A. Hassanipour; Saggese, V; A. Palmieri; Girardi, A; Cura, F; A. Piras; Zamboni, P.; Brunelli, G

    2012-01-01

    OsteoBiol (R) (OsteoBiol, Tecnoss Dental, Turin, Italy) a cortical collagenated porcine bone is largely employed in oral implant techniques for bone regeneration thanks to its biocompatibility and osteoconductivity To study the mechanism by which cortical porcine bone promotes osteoblast differentiation and bone regeneration, changes in expression level of bone related genes were investigated by real time RT-PCR, in bone marrow derived stem cells and human osteoblasts cultivated with OsteoBio...

  6. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    Science.gov (United States)

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  7. Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells.

    Science.gov (United States)

    Godfrey, K J; Mathew, B; Bulman, J C; Shah, O; Clement, S; Gallicano, G I

    2012-01-01

    Type 1 diabetes mellitus--characterized by the permanent destruction of insulin-secreting β-cells--is responsive to cell-based treatments that replace lost β-cell populations. The current gold standard of pancreas transplantation provides only temporary independence from exogenous insulin and is fraught with complications, including increased mortality. Stem cells offer a number of theoretical advantages over current therapies. Our review will focus on the development of treatments involving tissue stem cells from bone marrow, liver and pancreatic cells, as well as the potential use of embryonic and induced pluripotent stem cells for Type 1 diabetes therapy. While the body of research involving stem cells is at once promising and inconsistent, bone marrow-derived mesenchymal stem cell transplantation seems to offer the most compelling evidence of efficacy. These cells have been demonstrated to increase endogenous insulin production, while partially mitigating the autoimmune destruction of newly formed β-cells. However, recently successful experiments involving induced pluripotent stem cells could quickly move them into the foreground of therapeutic research. We address the limitations encountered by present research and look toward the future of stem cell treatments for Type 1 diabetes.

  8. In vitro evaluation of isolation possibility of stem cells from intra oral soft tissue and comparison of them with bone mar-row stem cells

    Directory of Open Access Journals (Sweden)

    P. Torkzaban

    2012-01-01

    Full Text Available Objective: Stem cells are of great interest for regenerating disturbed tissues and organs. These cells are commonly isolated from the bone marrow, but there has been interest in other tissues in the recent years. In this study, we evaluated the possibility of isolation of stem cells from oral connective tissue and investigated their characteristics.Materials and Methods: In this experimental study, sampling from the bone marrow and oral connective tissue of a beagle dog was performed under general anesthesia. Bone marrow stem cell isolation was performed according to the established protocols. The samples obtained from oral soft tissue were broken to small pieces and after adding collagenase I, the samples were incubated for 45 minutes in 37°C. Other processes were similar to the processes which were carried out on bone marrow cells. Then cell properties were compared to evaluate if the cells from the connective tissue were stem cells.Results: The cells from the bone marrow and connective tissue had the same morphology. The result of colony forming unit assay was relatively similar. Population doubling time was similar too. In addition, both cell groups differentiated to osteoblasts in osteogenic media.Conclusion: The cells isolated from the oral connective tissue had the characteristics of stem cells, including fibroblastoid morphology, self renewal properties, high proliferation rate and differentiation potential.

  9. Neural Ganglioside GD2+ Cells Define a Subpopulation of Mesenchymal Stem Cells in Adult Murine Bone Marrow

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-09-01

    Full Text Available Background/Aims: Due to the lack of specific markers, the isolation of pure mesenchymal stem cells (MSCs from murine bone marrow remains an unsolved problem. The present study explored whether the neural ganglioside GD2 could serve as a single surface marker to uniquely distinguish murine bone marrow MSCs (mBM-MSCs from other marrow elements. Methods: Immunocytochemistry and flow cytometry, in combination with quantitative RT-PCR, were used to identify the expression of GD2 on culture-expanded mBM-MSCs. GD2+ and GD2- fractions from mBM-MSCs cultures were sorted by immunosorting. Flow cytometry was performed to further analyze the biomarkers of GD2-sorted and unsorted cells. Employing CFU-F assay and CCK-8 assay, we examined the clonogenic and proliferative capabilities of GD2-sorted and unsorted cells. Using oil red O and von Kossa staining assay, we also assessed the multi-lineage potential of GD2-sortedand unsorted cells. Results: We found that mBM-MSCs expressed a novel surface marker the neural ganglioside GD2. Importantly, mBM-MSCs were the only cells within bone marrow that expressed this marker. Further studies demonstrated that a homogenous population of MSCs could be obtained from bone marrow cultures in early passages by GD2 immunosorting. Compared to parental cells, GD2+-sorted cells not only possessed much higher clonogenic and proliferative capabilities but also had significantly stronger differentiation potential to adipocytes and osteoblasts. Furthermore, GD2+-sorted cells displayed enhanced expression of ES markers SSEA-1 and Nanog. Conclusion: Our observations provide the first demonstration that GD2 may serve as a maker for identification and purification of mBM-MSCs. Meanwhile, our study indicates that the cells selected by GD2 are a subpopulation of MSCs with features of primitive precursor cells.

  10. Tissue Engineering Bone Using Autologous Progenitor Cells in the Peritoneum

    OpenAIRE

    Jinhui Shen; Ashwin Nair; Ramesh Saxena; Cheng Cheng Zhang; Joseph Borrelli; Liping Tang

    2014-01-01

    Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs) in the periton...

  11. Bone turnover and metabolism in patients with early multiple sclerosis and prevalent bone mass deficit: a population-based case-control study.

    Directory of Open Access Journals (Sweden)

    Stine Marit Moen

    Full Text Available BACKGROUND: Low bone mass is prevalent in ambulatory multiple sclerosis (MS patients even shortly after clinical onset. The mechanism is not known, but could involve shared etiological risk factors between MS and low bone mass such as hypovitaminosis D operating before disease onset, or increased bone loss after disease onset. The aim of this study was to explore the mechanism of the low bone mass in early-stage MS patients. METHODOLOGY/PRINCIPAL FINDINGS: We performed a population-based case-control study comparing bone turnover (cross-linked N-terminal telopeptide of type 1 collagen; NTX, bone alkaline phosphatase; bALP, metabolism (25-hydroxy- and 1, 25-dihydroxyvitamin D, calcium, phosphate, and parathyroid hormone, and relevant lifestyle factors in 99 patients newly diagnosed with clinically isolated syndrome (CIS or MS, and in 159 age, sex, and ethnicity matched controls. After adjustment for possible confounders, there were no significant differences in NTX (mean 3.3; 95% CI -6.9, 13.5; p = 0.519, bALP (mean 1.6; 95% CI -0.2, 3.5; p = 0.081, or in any of the parameters related to bone metabolism in patients compared to controls. The markers of bone turnover and metabolism were not significantly correlated with bone mass density, or associated with the presence of osteoporosis or osteopenia within or between the patient and control groups. Intake of vitamin D and calcium, reported UV exposure, and physical activity did not differ significantly. CONCLUSIONS/SIGNIFICANCE: Bone turnover and metabolism did not differ significantly in CIS and MS patients with prevalent low bone mass compared to controls. These findings indicate that the bone deficit in patients newly diagnosed with MS and CIS is not caused by recent acceleration of bone loss, and are compatible with shared etiological factors between MS and low bone mass.

  12. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Han Sun

    2015-01-01

    Full Text Available Objective: The purpose of this study was to review the current status of calcium phosphate (CaP scaffolds combined with bone morphogenetic proteins (BMPs or mesenchymal stem cells (MSCs in the field of bone tissue engineering (BTE. Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.

  13. Calcium Phosphate Scaffolds Combined with Bone Morphogenetic Proteins or Mesenchymal Stem Cells in Bone Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Han Sun; Hui-Lin Yang

    2015-01-01

    Objective:The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE).Date Sources:Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014,with highly regarded older publications also included.The terms BTE,CaP,BMPs,and MSC were used for the literature search.Study Selection:Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved,reviewed,analyzed,and summarized.Results:An ideal BTE product contains three elements:Scaffold,growth factors,and stem cells.CaP-based scaffolds are popular because of their outstanding biocompatibility,bioactivity,and osteoconductivity.However,they lack stiffness and osteoinductivity.To solve this problem,composite scaffolds of CaP with BMPs have been developed.New bone formation by CaP/BMP composites can reach levels similar to those of autografts.CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness.In addition,a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft.Conclusions:Novel BTE products possess remarkable osteoconduction and osteoinduction capacities,and exhibit balanced degradation with osteogenesis.Further work should yield safe,viable,and efficient materials for the repair of bone lesions.

  14. CXCL12/Stromal-Cell-Derived Factor-1 Effectively Replaces Endothelial Progenitor Cells to Induce Vascularized Ectopic Bone

    NARCIS (Netherlands)

    Eman, Rhandy M; Hoorntje, Edgar T; Oner, F Cumhur; Kruyt, Moyo C; Dhert, Wouter J A; Alblas, Jacqueline

    2014-01-01

    Bone defect healing is highly dependent on the simultaneous stimulation of osteogenesis and vascularization. In bone regenerative strategies, combined seeding of multipotent stromal cells (MSCs) and endothelial progenitor cells (EPCs) proves their mutual stimulatory effects. Here, we investigated wh

  15. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    OpenAIRE

    Sabine Wislet-Gendebien; Emerence Laudet; Virginie Neirinckx; Bernard Rogister

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In th...

  16. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Lloret, Pedro, E-mail: pedroalvarez@geol.uniovi.es [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Departament of Geology, University of Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo (Spain); Rodríguez-Navarro, Alejandro B. [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Romanek, Christopher S. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY (United States); Ferrandis, Pablo [Department of Plant Production and Agricultural Technology, E.T.S. Ingenieros Agrónomos, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Martínez-Haro, Mónica [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); IMAR-Instituto do Mar, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra (Portugal); Mateo, Rafael [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure.

  17. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    Science.gov (United States)

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins.

  18. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Science.gov (United States)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  19. MR and CT findings of temporal bone langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Ig; Lee, Hee Jung; Kim, Heung Sik [Keimyung Univ. School of Medicine, Dongsan Medical Center, Taegu (Korea, Republic of)

    2001-11-01

    To describe the MRI and CT findings of temperal bone langerhans cell histiocytosis. The MRI (n=8) and CT (n=7) findings of nine lesions of temporal bone Langerhans cell histiocytosis in six children were retrospectively reviewed. Eight lesions were pathologically confirmed and one was clinically diagnosed. The findings were analyzed for bilaterality, location, lesion extent, signal intensity, the attenuation of soft tissue lesions seen at MRI or precontrast CT, enhancement pattern at MRI or CT, and the pattern of bony destruction at CT. Bilateral involvement was present in three of six patients (50%). Lesions were most frequently located in the mastoid (n=8, 89%), followed by the petrous ridge (n=6, 67%), and the squamous portion (n=3, 33%). Seven (78%) lesions extended to the ipsilateral cavernous sinus (n=3), sphenoid bone (n=3), orbit (n=2), or epidural space (n=2). The signals of the soft tissue lesions were isointense in five cases (63%) on T1-weighted images and hyperintense in six (75%) at MRI, and homogeneous in five (71%) at CT. All lesions demonstrated bony destruction without periosteal reaction and five (71%) showed ill-defined destruction, with crossing sutures. Familiarity with findings of predominant mastoid involvement, isointense or isodense soft tissue lesions seen on T1-weighted images or at precontrast CT, with relatively homogeneous enhancement at CT, and irregular bony destruction with crossing sutures may be helpful in narrowing the diagnosis of temporal bone langerhans cell histiocytosis.

  20. MR and CT findings of temporal bone langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    To describe the MRI and CT findings of temperal bone langerhans cell histiocytosis. The MRI (n=8) and CT (n=7) findings of nine lesions of temporal bone Langerhans cell histiocytosis in six children were retrospectively reviewed. Eight lesions were pathologically confirmed and one was clinically diagnosed. The findings were analyzed for bilaterality, location, lesion extent, signal intensity, the attenuation of soft tissue lesions seen at MRI or precontrast CT, enhancement pattern at MRI or CT, and the pattern of bony destruction at CT. Bilateral involvement was present in three of six patients (50%). Lesions were most frequently located in the mastoid (n=8, 89%), followed by the petrous ridge (n=6, 67%), and the squamous portion (n=3, 33%). Seven (78%) lesions extended to the ipsilateral cavernous sinus (n=3), sphenoid bone (n=3), orbit (n=2), or epidural space (n=2). The signals of the soft tissue lesions were isointense in five cases (63%) on T1-weighted images and hyperintense in six (75%) at MRI, and homogeneous in five (71%) at CT. All lesions demonstrated bony destruction without periosteal reaction and five (71%) showed ill-defined destruction, with crossing sutures. Familiarity with findings of predominant mastoid involvement, isointense or isodense soft tissue lesions seen on T1-weighted images or at precontrast CT, with relatively homogeneous enhancement at CT, and irregular bony destruction with crossing sutures may be helpful in narrowing the diagnosis of temporal bone langerhans cell histiocytosis

  1. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vascu

  2. Bone

    Science.gov (United States)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  3. Stability of RNA and DNA in Bone Marrow Cells, Demonstrated with Tritiated Cytidine and Thymidine

    International Nuclear Information System (INIS)

    DNA and RNA metabolism was studied using tritiated thymidine (H3Th), a specific precursor for DNA, and tritiated cytidine (H3C), a common precursor for both RNA and DNA. With H3C, differential incorporation into RNA, DNA or the soluble pool was determined autoradiographically in the single cell, and/or chemically for cell populations by means of differential extraction using appropriate treatment with perchloric acid. Initial turnover studies in the Hela cell with H3C indicated the precursor role of nuclear RNA for cytoplasmic RNA. Conservation and distribution of label in the RNA fraction was consistent with major macromolecular RNA stability, and continued incorporation of label into the DNA fraction was consistent with the presence of a late precursor for DNA. Similar findings were observed in the immature bone marrow cells of the rat studied over a period of several days after intravenous administration of H3C. The amount of tritium activity in the acid-soluble' RNA and DNA fractions was followed chemically and/or autoradiographically. The three curves were found to be parallel from the first day after injection and parallel to curves for tritium label in DNA following H3Th administration. The expected rate of fall off in label, calculated from kinetics of the rat bone marrow cell populations studied separately by H3Th and autoradiography, assuming no turnover of RNA or DNA and loss of label only by loss of marrow cells by division and maturation, was in agreement with the slopes obtained. The results indicate that, once synthesized, soluble and macromolecular RNA is retained by the bone marrow cell in a manner similar to DNA. Newly formed RNA and DNA are diluted in the cells only through cell division. (author)

  4. Radiographic skeletal survey and radionuclide bone scan in Langerhans cell histiocytosis of bone

    Energy Technology Data Exchange (ETDEWEB)

    Nieuwenhuyse, J.P. van [Department of Radiology and Medical Imaging, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Clapuyt, P. [Department of Radiology and Medical Imaging, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Malghem, J. [Department of Radiology and Medical Imaging, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Everarts, P. [Department of Radiology and Medical Imaging, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Melin, J. [Department of Nuclear Medicine, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Pauwels, S. [Department of Nuclear Medicine, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Brichard, B. [Department of Pediatric Hematology, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Ninane, J. [Department of Pediatric Hematology, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Vermylen, C. [Department of Pediatric Hematology, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium); Cornu, G. [Department of Pediatric Hematology, Cliniques Universitaires St-Luc, University of Louvain Medical School, Brussels (Belgium)

    1996-10-01

    Background. The lack of a consensus in the literature on the imaging strategy in Langerhans cell histiocytosis (LCH) bone lesions in childhood. Objective. To evaluate the relative value of radionuclide bone scan (RBS) and radiographic skeletal survey (RSS) in the detection of LCH bone lesions, both in the initial work-up of the disease and during the follow-up period. Materials and methods. Ten children with bone lesions evaluated by means of RSS and RBS in a retrospective study (1984-1993). Results. Fifty radiologically and/or scintigraphically abnormal foci were detected: 27 anomalies in the initial work-up (12 by both RSS and RBS, 8 by RSS only and 7 by RBS only) and 23 additional anomalies during follow-up (10 by both RSS and RBS, 10 by RSS only and 3 by RBS only). RSS+/RBS- lesions (n = 18) are more frequently encountered in the skull (P = 0.038), and more frequently lack radiologic signs of osteoblastic activity (P = 0.020), than RSS+/RBS+ lesions (n = 22). RSS-/RBS+ abnormalities (n = 10) were most frequently insignificant. Conclusion. In the initial work-up both RSS and RBS should be carried out, while in the follow-up only RSS should be performed. (orig.). With 2 figs., 4 tabs.

  5. Radiographic skeletal survey and radionuclide bone scan in Langerhans cell histiocytosis of bone

    International Nuclear Information System (INIS)

    Background. The lack of a consensus in the literature on the imaging strategy in Langerhans cell histiocytosis (LCH) bone lesions in childhood. Objective. To evaluate the relative value of radionuclide bone scan (RBS) and radiographic skeletal survey (RSS) in the detection of LCH bone lesions, both in the initial work-up of the disease and during the follow-up period. Materials and methods. Ten children with bone lesions evaluated by means of RSS and RBS in a retrospective study (1984-1993). Results. Fifty radiologically and/or scintigraphically abnormal foci were detected: 27 anomalies in the initial work-up (12 by both RSS and RBS, 8 by RSS only and 7 by RBS only) and 23 additional anomalies during follow-up (10 by both RSS and RBS, 10 by RSS only and 3 by RBS only). RSS+/RBS- lesions (n = 18) are more frequently encountered in the skull (P = 0.038), and more frequently lack radiologic signs of osteoblastic activity (P = 0.020), than RSS+/RBS+ lesions (n = 22). RSS-/RBS+ abnormalities (n = 10) were most frequently insignificant. Conclusion. In the initial work-up both RSS and RBS should be carried out, while in the follow-up only RSS should be performed. (orig.). With 2 figs., 4 tabs

  6. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia;

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  7. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Science.gov (United States)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  8. Prostate cancer cells preferentially home to osteoblast-rich areas in the early stages of bone metastasis: evidence from in vivo models.

    Science.gov (United States)

    Wang, Ning; Docherty, Freyja E; Brown, Hannah K; Reeves, Kimberley J; Fowles, Anne C M; Ottewell, Penelope D; Dear, T Neil; Holen, Ingunn; Croucher, Peter I; Eaton, Colby L

    2014-12-01

    It has been suggested that metastasis-initiating cells gain a foothold in bone by homing to a metastastatic microenvironment (or "niche"). Whereas the precise nature of this niche remains to be established, it is likely to contain bone cell populations including osteoblasts and osteoclasts. In the mouse tibia, the distribution of osteoblasts on endocortical bone surfaces is non-uniform, and we hypothesize that studying co-localization of individual tumor cells with resident cell populations will reveal the identity of critical cellular components of the niche. In this study, we have mapped the distribution of three human prostate cancer cell lines (PC3-NW1, LN-CaP, and C4 2B4) colonizing the tibiae of athymic mice following intracardiac injection and evaluated their interaction with potential metastatic niches. Prostate cancer cells labeled with the fluorescent cell membrane dye (Vybrant DiD) were found by two-photon microscopy to be engrafted in the tibiae in close proximity (∼40 µm) to bone surfaces and 70% more cancer cells were detected in the lateral compared to the medial endocortical bone regions. This was associated with a 5-fold higher number of osteoblasts and 7-fold higher bone formation rate on the lateral endocortical bone surface compared to the medial side. By disrupting cellular interactions mediated by the chemokine (C-X-C motif) receptor 4 (CXCR4)/chemokine ligand 12 (CXCL12) axis with the CXCR4 inhibitor AMD3100, the preferential homing pattern of prostate cancer cells to osteoblast-rich bone surfaces was disrupted. In this study, we map the location of prostate cancer cells that home to endocortical regions in bone and our data demonstrate that homing of prostate cancer cells is associated with the presence and activity of osteoblast lineage cells, and suggest that therapies targeting osteoblast niches should be considered to prevent development of incurable prostate cancer bone metastases.

  9. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.

    Science.gov (United States)

    Montjovent, Marc-Olivier; Mark, Silke; Mathieu, Laurence; Scaletta, Corinne; Scherberich, Arnaud; Delabarde, Claire; Zambelli, Pierre-Yves; Bourban, Pierre-Etienne; Applegate, Lee Ann; Pioletti, Dominique P

    2008-03-01

    Fetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(l-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt.% beta-tricalcium phosphate (TCP). Bone regeneration was assessed by radiography and histology after implantation of PLA/TCP scaffolds alone, seeded with primary fetal bone cells, or coated with demineralized bone matrix. Craniotomy critical size defects and drill defects in the femoral condyle in rats were employed. In the cranial defects, polymer degradation and cortical bone regeneration were studied up to 12 months postoperatively. Complete bone ingrowth was observed after implantation of PLA/TCP constructs seeded with human fetal bone cells. Further tests were conducted in the trabecular neighborhood of femoral condyles, where scaffolds seeded with fetal bone cells also promoted bone repair. We present here a promising approach for bone tissue engineering using human primary fetal bone cells in combination with porous PLA/TCP structures. Fetal bone cells could be selected regarding osteogenic and immune-related properties, along with their rapid growth, ease of cell banking and associated safety. PMID:18178142

  10. Sesamol attenuates genotoxicity in bone marrow cells of whole-body γ-irradiated mice.

    Science.gov (United States)

    Kumar, Arun; Selvan, Tamizh G; Tripathi, Akanchha M; Choudhary, Sandeep; Khan, Shahanshah; Adhikari, Jawahar S; Chaudhury, Nabo K

    2015-09-01

    Ionising radiation causes free radical-mediated damage in cellular DNA. This damage is manifested as chromosomal aberrations and micronuclei (MN) in proliferating cells. Sesamol, present in sesame seeds, has the potential to scavenge free radicals; therefore, it can reduce radiation-induced cytogenetic damage in cells. The aim of this study was to investigate the radioprotective potential of sesamol in bone marrow cells of mice and related haematopoietic system against radiation-induced genotoxicity. A comparative study with melatonin was designed for assessing the radioprotective potential of sesamol. C57BL/6 mice were administered intraperitoneally with either sesamol or melatonin (10 and 20mg/kg body weight) 30 min prior to 2-Gy whole-body irradiation (WBI) and sacrificed after 24h. Total chromosomal aberrations (TCA), MN and cell cycle analyses were performed using bone marrow cells. The comet assay was performed on bone marrow cells, splenocytes and lymphocytes. Blood was drawn to study haematological parameters. Prophylactic doses of sesamol (10 and 20mg/kg) in irradiated mice reduced TCA and micronucleated polychromatic erythrocyte frequency in bone marrow cells by 57% and 50%, respectively, in comparison with radiation-only groups. Sesamol-reduced radiation-induced apoptosis and facilitated cell proliferation. In the comet assay, sesamol (20mg/kg) treatment reduced radiation-induced comets (% DNA in tail) compared with radiation only (P < 0.05). Sesamol also increased granulocyte populations in peripheral blood similar to melatonin. Overall, the radioprotective efficacy of sesamol was found to be similar to that of melatonin. Sesamol treatment also showed recovery of relative spleen weight at 24h of WBI. The results strongly suggest the radioprotective efficacy of sesamol in the haematopoietic system of mice. PMID:25863274

  11. Differentiation of rat bone marrow stem cells in liver after partial hepatectomy

    Institute of Scientific and Technical Information of China (English)

    Yu-Tao Zhan; Yu Wang; Lai Wei; Bin Liu; Hong-Song Chen; Xu Cong; Ran Fei

    2006-01-01

    AIM: To investigate the differentiation of rat bone marrow stem cells in liver after partial hepatectomy.METHODS: Bone marrow cells were collected from the tibia of rat with partial hepatectomy, the medial and left hepatic lobes were excised. The bone marrow stem cells (Thy+CD3-CD45RA- cells) were enriched from the bone marrow cells by depleting red cells and fluorescence-activated cell sorting. The sorted bone marrow stem cells were labeled by PKH26-GL in vitro and autotransplanted by portal vein injection. After 2wk, the transplanted bone marrow stem cells in liver were examined by the immunohistochemistry of albumin (hepatocyte-specific marker).RESULTS: The bone marrow stem cells (Thy+CD3-CD45RA- cells) accounted for 2.8% of bone marrow cells without red cells. The labeling rate of 10μM PKH26-GL on sorted bone marrow stem cells was about 95%.There were sporadic PKH26-GL-labeled cells among hepatocytes in liver tissue section, and some of the cells expressed albumin.CONCLUSION: Rat bone marrow stem cells can differentiate into hepatocytes in regenerative environment and may participate in liver regeneration after partial hepatectomy.

  12. Usage of polymer brushes as substrates of bone cells

    Institute of Scientific and Technical Information of China (English)

    Sabine A.LETSCHE; Annina M.STEINBACH; Manuela PLUNTKE; Othmar MARTI; Anita IGNATIUS; Dirk VOLKMER

    2009-01-01

    Implant methcal research and hssue eagmeer-ing both target the design of novel biomaterials for the improvement of human health and clinical applications. In order to develop improved surface coatings for hard tissue (bone)replacement materials and implant devices,we are developing micropartemed coatings consisting of polymer brushes. These are used as organic templates for the mineralization of calcium phosphate in oraer to improve adhesion of bone cells. First we give a shortaccount of the current state-of-the-art in this particular field of blomaterial development,while in the second part the preliminary results of cell culture experiments are presented,in which the biocompatibility of polymer brushes are tested on human mesenchvmal stem cells.

  13. Tumor-derived Jagged1 Promotes Osteolytic Bone Metastasis of Breast Cancer by Engaging Notch Signaling in Bone Cells

    OpenAIRE

    Sethi, Nilay; Dai, Xudong; Winter, Christopher G.; Kang, Yibin

    2011-01-01

    Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway’s contribution to metastasis remains unknown. Here we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cyto...

  14. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun [Department of Ophthalmology, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Liu Guangpeng [Key Laboratory of Tissue Engineering, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhang Peng [Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science (China); Hou Hongliang; Tang Tingting, E-mail: drfanxianqun@126.com [Department of Orthopedics, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China)

    2011-02-15

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  15. The Experimental Study of Constructing Tissue Engineered Bone by Compounding Zinc-sintered Bovine Cancellous Bone with Marrow Stromal Cells

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qi-xin; HAO Jie; GUO Xiao-dong; LIU Su-nan; Wu Yong-chao; YAN Yu-hua

    2004-01-01

    To study the osteogenic ability of tissue-engineered bone constructed by compounding zinc-sin-tered bovine cancellous bone with rabbit marrow stromal cells ( MSCs ) in vivo, the zinc- sintered bovine cancellousbone of beta-tricalcium phosphate (TCP) type was prepared by sintering the fresh calf cancellous bone twice andthen loading it with zinc-ion. The rabbit MSCs were cultured, induced and seeded onto the zinc- sintered bovine can-cellous bones. The tissue-engineered bones were then implanted into the rabbits' bock muscles. The newly formedbone tissues were observed by histological methods and the areas of new osseous tissues were measured at the end ofthe 4 th and 8 th week. The zinc-sintered bovine cancellous bones alone were implanted on the other side as control.The osteogenic activity of MSCs was identified by alkaline phosphatase (ALP) staining and calcification nod chi-nalizarin staining. At the end of 4th week, a small amount of new bone tissues was observed. At the end of 8thweek, there were many newly formed bone mature tissues. Moreover, the area of the latter was significantly largerthan that of the former( P<0.01), while in the control group there was no new bone formation. The tissue-engi-neered bone, which was constructed by combining zinc-sintered bovine cancellous bone with MSCs, has satisfactoryosteogenic capabilities in vivo.

  16. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  17. Apoptotic bone marrow CD34+ cells in cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    Shuang-Suo Dang; Wen-Jun Wang; Ning Gao; Shun-Da Wang; Mei Li; La-Yang Liu; Ming-Zhun Sun; Tao Dong

    2011-01-01

    AIM: To access the frequency and level of apoptotic CD34+ cells isolated from the marrow fluid of patients with post-hepatitis cirrhosis.METHODS: The frequency of bone marrow CD34+ cells and apoptotic bone marrow CD34+ cells in 31 in-patients with post-hepatitis cirrhosis (cirrhosis group), and 15 out-patients without liver or blood disorders (control group) was calculated by flow cytometry. Pa-rameters were collected to evaluate liver functions of patients in cirrhosis group.RESULTS: The percentage of normal bone marrow CD34+ cells was 6.30% ± 2.48% and 1.87% ± 0.53% (t = 3.906, P < 0.01) while that of apoptotic marrow CD34+ cells was 15.00% ± 15.81% and 5.73% ± 1.57% (t = 2.367, P < 0.05) in cirrhosis and control groups, re-spectively. The percentage of apoptotic marrow CD34+ cells was 6.25% ± 3.30% and 20.92 ± 18.5% (t = 2.409, P < 0.05) in Child-Pugh A and Child-Pugh B + C cirrhotic patients, respectively. The percentage of late apoptotic marrow CD34+ cells was positively correlated with the total bilirubin and aspartate aminotransferase serum levels in patients with cirrhosis.CONCLUSION: The status of CD34+ marrow cells in cirrhotic patients may suggest that the ability of he-matopoietic progenitor cells to transform into mature blood cells is impaired.

  18. Persistence of the irradiated host component in thymocyte populations from bone marrow radiation chimeras infected with lymphocytic choriomeningitis virus

    International Nuclear Information System (INIS)

    The thymus of chimeras made using T cell-depleted donor bone marrow from Thy1.1+ mice and 950 rad Thy 1.2+ recipients is dominated initially by cells expressing the Thy 1.2+ phenotype of the irradiated host. The thymocyte population recovered at 2 weeks after reconstitution comprises 80% Thy 1.2+ cells (host), the remainder being Thy 1.1+ (donor). This situation is normally reversed within a further week, with the host Ty 1.2+ (donor). This situation is normally reversed within a further week, with the host Thy 1.2+ thymocytes being present at a frequency of less than 5% from Week 4. Infection with lymphocytic choriomeningitis virus (LCMV) at 1 week after reconstitution with bone marrow causes a profound and persistent drop in the total number of thymocytes. The decline is equivalent for all categories of donor-derived thymocytes defined by two-color flow microfluorometric analysis for CD4 and CD8. However, there is a partial compensation by the retention of cells originating from the Thy 1.2+ host, which constitute 30-40% of the total thymocyte pool as late as 8 weeks after administration of bone marrow in the LCMV-infected chimeras. These radiation-resistant precursors give rise to CD4-8-, CD4-8+, CD4+8-, and CD4+8+ thymocytes, with the latter category being present at increased frequency. The potential skewing of the mature T cell repertoire as a consequence of persistent virus infection is discussed

  19. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  20. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Directory of Open Access Journals (Sweden)

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  1. Supernatant of Bone Marrow Mesenchymal Stromal Cells Induces Peripheral Blood Mononuclear Cells Possessing Mesenchymal Features

    OpenAIRE

    Hu, Gang; Xu, Jun-jun; Deng, Zhi-Hong; Feng, Jie; Jin, Yan

    2011-01-01

    Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs) were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmM...

  2. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    Science.gov (United States)

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline. PMID:27108136

  3. [Immunoregulatory role of mesenchymal stem cells in bone reparation processes].

    Science.gov (United States)

    Zubov, D O

    2008-01-01

    Bone marrow contains mesenchymal stem cells (MSC) including osteoblast progenitor cells. When culturedunder conditions promoting an osteoblastic phenotype,MSC proliferate to form colonies that produce alkaline phosphatase and, subsequently, a mature osteoblastic phenotype. Transplantation of cultured autologous MSC to patients with non-healing bone fractures gives a good result leading to complete bone fracture consolidation. The aim of the study is to determine a quantitative production of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha by cultured uncommitted and committed osteogenic MSC. The results showed that the cytokine profile consisting of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha is secreted by cultured MSC. The secretion of IL-1beta and IL-2 by cultured MSC together with hyper production of IL-6 (up to 276.5 pg/ml, pactivators of bone resorption, inflammation and some immunological reactions in the process of altered osteoreparation. PMID:18756772

  4. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Li-ye; ZHENG Jia-kun; WANG Chao-yang; LI Wen-yu

    2005-01-01

    Objective: To investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells. Methods: Bone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry. Conclusions: Bone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.

  5. Impact of the Maturation of Human Primary Bone-Forming Cells on Their Behavior in Acute or Persistent Staphylococcus aureus Infection Models.

    Science.gov (United States)

    Josse, Jérôme; Guillaume, Christine; Bour, Camille; Lemaire, Flora; Mongaret, Céline; Draux, Florence; Velard, Frédéric; Gangloff, Sophie C

    2016-01-01

    Staphylococcus aureus is one of the most frequently involved pathogens in bacterial infections such as skin abscess, pneumonia, endocarditis, osteomyelitis, and implant-associated infection. As for bone homeostasis, it is partly altered during infections by S. aureus by the induction of various responses from osteoblasts, which are the bone-forming cells responsible for extracellular matrix synthesis and its mineralization. Nevertheless, bone-forming cells are a heterogeneous population with different stages of maturation and the impact of the latter on their responses toward bacteria remains unclear. We describe the impact of S. aureus on two populations of human primary bone-forming cells (HPBCs) which have distinct maturation characteristics in both acute and persistent models of interaction. Cell maturation did not influence the internalization and survival of S. aureus inside bone-forming cells or the cell death related to the infection. By studying the expression of chemokines, cytokines, and osteoclastogenic regulators by HPBCs, we observed different profiles of chemokine expression according to the degree of cell maturation. However, there was no statistical difference in the amounts of proteins released by both populations in the presence of S. aureus compared to the non-infected counterparts. Our findings show that cell maturation does not impact the behavior of HPBCs infected with S. aureus and suggest that the role of bone-forming cells may not be pivotal for the inflammatory response in osteomyelitis. PMID:27446812

  6. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    Full Text Available Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC as mixed populations of cells including mesenchymal (MSC and neural crest stem cells (NCSC. Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application.

  7. In vivo tumorigenesis was observed after injection of in vitro expanded neural crest stem cells isolated from adult bone marrow.

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Poulet, Christophe; Neirinckx, Virginie; Hennuy, Benoit; Swingland, James T; Laudet, Emerence; Sommer, Lukas; Shakova, Olga; Bours, Vincent; Rogister, Bernard

    2012-01-01

    Bone marrow stromal cells are adult multipotent cells that represent an attractive tool in cellular therapy strategies. Several studies have reported that in vitro passaging of mesenchymal stem cells alters the functional and biological properties of those cells, leading to the accumulation of genetic aberrations. Recent studies described bone marrow stromal cells (BMSC) as mixed populations of cells including mesenchymal (MSC) and neural crest stem cells (NCSC). Here, we report the transformation of NCSC into tumorigenic cells, after in vitro long-term passaging. Indeed, the characterization of 6 neural crest-derived clones revealed the presence of one tumorigenic clone. Transcriptomic analyses of this clone highlighted, among others, numerous cell cycle checkpoint modifications and chromosome 11q down-regulation (suggesting a deletion of chromosome 11q) compared with the other clones. Moreover, unsupervised analysis such as a dendrogram generated after agglomerative hierarchical clustering comparing several transcriptomic data showed important similarities between the tumorigenic neural crest-derived clone and mammary tumor cell lines. Altogether, it appeared that NCSC isolated from adult bone marrow represents a potential danger for cellular therapy, and consequently, we recommend that phenotypic, functional and genetic assays should be performed on bone marrow mesenchymal and neural crest stem cells before in vivo use, to demonstrate whether their biological properties, after ex vivo expansion, remain suitable for clinical application. PMID:23071568

  8. Principles of bone marrow processing and progenitor cell/mononuclear cell concentrate collection in a continuous flow blood cell separation system.

    Science.gov (United States)

    Hester, J P; Rondón, G; Huh, Y O; Lauppe, M J; Champlin, R E; Deisseroth, A B

    1995-08-01

    The application of continuous flow apheresis technology to processing bone marrow for collection of the mononuclear progenitor cell population appears to follow the same principles as collection of mononuclear cells from peripheral blood. Unlike peripheral blood, however, where mobilization of cells from extravascular sites during the procedures contributes significantly to the final cell yield, the entire quantity of progenitor cells available for recovery from marrow is present in the original marrow when it is pooled. The process then becomes one of attempting optimal recovery of the cells of interest while excluding contaminating erythrocytes and cells of the myeloid series. This study reports the development of a protocol for recovery of MNC, CD33+, CD34+, and CD34+/DR- cells from harvested marrow for autologous and allogeneic transplants using a continuous flow blood cell separator, the variables influencing the recovery of the cells of interest and the clinical response to infusion of the processed cells.

  9. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    LI Jing-hui; LIU Da-yong; ZHANG Fang-ming; WANG Fan; ZHANG Wen-kui; ZHANG Zhen-ting

    2011-01-01

    Background The seed cell is a core problem in bone tissue engineering research.Recent research indicates that human dental pulp stem cells (hDPSCs) can differentiate into osteoblasts in vitro,which suggests that they may become a new kind of seed cells for bone tissue engineering.The aim of this study was to evaluate the osteogenic differentiation of hDPSCs in vitro and bone-like tissue formation when transplanted with three-dimensional gelatin scaffolds in vivo,and hDPSCs may become appropriate seed cells for bone tissue engineering.Methods We have utilized enzymatic digestion to obtain hDPSCs from dental pulp tissue extracted during orthodontic treatment.After culturing and expansion to three passages,the cells were seeded in 6-well plates or on three-dimensional gelatin scaffolds and cultured in osteogenic medium.After 14 days in culture,the three-dimensional gelatin scaffolds were implanted subcutaneously in nude mice for 4 weeks.In 6-well plate culture,osteogenesis was assessed by alkaline phosphatase staining,Von Kossa staining,and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the osteogenesis-specific genes type I collagen (COL l),bone sialoprotein (BSP),osteocalcin (OCN),RUNX2,and osterix (OSX).In three-dimensional gelatin scaffold culture,X-rays,hematoxylin/eosin staining,and immunohistochemical staining were used to examine bone formation.Results In vitro studies revealed that hDPSCs do possess osteogenic differentiation potential.In vivo studies revealed that hDPSCs seeded on gelatin scaffolds can form bone structures in heterotopic sites of nude mice.Conclusions These findings suggested that hDPSCs may be valuable as seed cells for bone tissue engineering.As a special stem cell source,hDPSCs may blaze a new path for bone tissue engineering.

  10. ICTP in Bone Metastases of Lung Cancer

    OpenAIRE

    Franjević, Ana; Pavićević, Radomir; Bubanović, Gordana

    2011-01-01

    Bone metastases often appear in advanced stages of lung cancer. They are the result of modulation of bone metabolism by tumor cells that migrated into bone microenvironment and degraded bone organic matrix. Measurement of C-terminal telopeptide of type I collagen (ICTP) in the serum of subjects with lung cancer with and without bone metastases and healthy population is the way to explore bone resorption. In 343 subjects included in this research ICTP level was significantly higher...

  11. Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices

    Science.gov (United States)

    Fisher, James N.; Peretti, Giuseppe M.; Scotti, Celeste

    2016-01-01

    Currently, autologous bone grafting represents the clinical gold standard in orthopaedic surgery. In certain cases, however, alternative techniques are required. The clinical utility of stem and stromal cells has been demonstrated for the repair and regeneration of craniomaxillofacial and long bone defects although clinical adoption of bone tissue engineering protocols has been very limited. Initial tissue engineering studies focused on the bone marrow as a source of cells for bone regeneration, and while a number of promising results continue to emerge, limitations to this technique have prompted the exploration of alternative cell sources, including adipose and muscle tissue. In this review paper we discuss the advantages and disadvantages of cell sources with a focus on adipose tissue and the bone marrow. Additionally, we highlight the relatively recent paradigm of developmental engineering, which promotes the recapitulation of naturally occurring developmental processes to allow the implant to optimally respond to endogenous cues. Finally we examine efforts to apply lessons from studies into different cell sources and developmental approaches to stimulate bone growth by use of decellularised hypertrophic cartilage templates. PMID:26997959

  12. Autologous bone marrow stem cells--properties and advantages.

    Science.gov (United States)

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  13. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  14. Plasma cell gingivitis with severe alveolar bone loss.

    Science.gov (United States)

    Kumar, Vivek; Tripathi, Amitandra Kumar; Saimbi, Charanjit Singh; Sinha, Jolly

    2015-01-16

    Plasma cell gingivitis is a rare benign condition of the gingiva characterised by sharply demarcated erythaematous and oedematous gingiva often extending up to the muco gingival junction. It is considered a hypersensitive reaction. It presents clinically as a diffuse, erythaematous and papillary lesion of the gingiva, which frequently bleeds, with minimal trauma. This paper presents a case of a 42-year-old man who was diagnosed with plasma cell gingivitis, based on the presence of plasma cells in histological sections, and severe alveolar bone loss at the affected site, which was managed by surgical intervention.

  15. Potential therapeutic role of cisplatinum in autologous bone marrow transplantation: in vitro eradication of neuroblastoma cells from bone marrow.

    OpenAIRE

    Bettan-Renaud, L.; De Vathaire, F.; Bénard, J.; Morardet, N.; Pauzie, N.; Bayet, S.; Hartmann, O; Parmentier, C.

    1989-01-01

    Cisplatinum may prove to be a valuable agent for the elimination of diseased cells in the bone marrow of patients with neuroblastoma. In this study, we measured the efficacy of cisplatinum on human neuroblastoma cell lines and on normal human bone marrow progenitors, GM-CFC and CFU-F. Data indicate that the therapeutic index of cisplatinum is high. We set up an experimental model consisting of a mixture of human bone marrow and human neuroblastoma cells in order to confirm these preliminary r...

  16. PDGFBB promotes PDGFR{alpha}-positive cell migration into artificial bone in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeyuki [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Iwasaki, Ryotaro; Kawana, Hiromasa [Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Miyauchi, Yoshiteru [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Integrated Bone Metabolism and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hoshi, Hiroko; Miyamoto, Hiroya; Mori, Tomoaki [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kanagawa, Hiroya [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Katsuyama, Eri; Fujie, Atsuhiro [Center for Human Metabolomic Systems Biology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hao, Wu [Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582 (Japan); and others

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We examined effects of PDGFBB in PDGFR{alpha} positive cell migration in artificial bones. Black-Right-Pointing-Pointer PDGFBB was not expressed in osteoblastic cells but was expressed in peripheral blood cells. Black-Right-Pointing-Pointer PDGFBB promoted PDGFR{alpha} positive cell migration into artificial bones but not osteoblast proliferation. Black-Right-Pointing-Pointer PDGFBB did not inhibit osteoblastogenesis. -- Abstract: Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor {alpha} (PDGFR{alpha})-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGF{beta}) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.

  17. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    Science.gov (United States)

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues.

  18. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  19. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available BACKGROUND: Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome. METHODOLOGY/PRINCIPAL FINDINGS: Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated. CONCLUSION/SIGNIFICANCE: Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of

  20. Changes in functional activity of bone tissue cells under space flight conditions.

    Science.gov (United States)

    Rodionova, Natalia; Nesterenko, Olga; Kabitskaya, Olga

    The space flight conditions affect considerably the state of bone tissue, leading to the development of osteoporosis and osteopenia. Many aspects of reactions of bone tissue cells still remain unclear until now. With the use of electron microscopy we studied the samples gathered from the femoral bonеs metaphyses of rats flown on board the space laboratory (Spacelab - 2) during 2 weeks and samples from tibial bones of mice C57 Black ( Bion М-1). It was established, that under microgravity conditions there occur remodelling processes in a spongy bone related with a deficit of support load. In this work the main attention is focused on studying the ultrastructure of osteogenetic cells and osteoclasts. The degree of differentiation and functional state are evaluated according to the degree of development of organelles for specific biosynthesis: rough endoplasmic reticulum (RER), Golgy complex (GC), as well as the state of mitochondria and cell nucleus. As compared with a synchronous control, the population of osteogenetic cells from zones of bone reconstruction shows a decrease in the number of functionally active forms. We can judge of this from the reduction of a specific volume of RER, GC, mitochondria in osteoblasts. RER loses architectonics typical for osteoblasts and, as against the control, is represented by short narrow canaliculi distributed throughout the cytoplasm; some canals disintegrate. GC is slightly pronounced, mitochondria become smaller in size and acquire an optically dark matrix. These phenomena are supposed to be associated with the desorganization of microtubules and microfilaments in the cells under microgravity conditions. The population of osteogenetic cells shows a decrease in the number of differentiating osteoblasts and an increase in the number of little-differentiated stromal cells. In the population of osteoblasts, degrading and apoptotic cells are sometimes encountered. Such zones show a numerical increase of monocytic cells and

  1. Bone marrow stem cells contribute to alcohol liver fibrosis in humans.

    Science.gov (United States)

    Dalakas, Evangelos; Newsome, Philip N; Boyle, Shelagh; Brown, Rachael; Pryde, Anne; McCall, Shonna; Hayes, Peter C; Bickmore, Wendy A; Harrison, David J; Plevris, John N

    2010-09-01

    Bone marrow-derived stem cell (BMSC) contribution to liver repair varies considerably and recent evidence suggests these cells may contribute to liver fibrosis. We investigated the mobilization and hepatic recruitment of bone marrow (BM) stem cells in patients with alcohol liver injury and their contribution to parenchymal/non-parenchymal liver cell lineages. Liver biopsies from alcoholic hepatitis (AH) patients and male patients, who received a female liver transplant and developed AH, were analyzed for BM stem cell content by fluorescence in situ hybridization and immunostaining. Y chromosome analysis was performed, along with co-staining for hepatocyte, biliary, myofibroblast, and Ki-67 markers. Blood CD34(+) levels were quantified in AH patients by flow cytometry. AH patients had increased CD34(+) cell counts in liver tissue (1.834% +/- 0.605%; P < 0.05) and in blood (0.195% +/- 0.063%; P < 0.05) as compared with matched controls (0.299% + 0.208% and 0.067% +/- 0.01%). A proportion of hepatic myofibroblasts were BM-derived (7.9%-26.8%) as deemed by the co-localization of Y chromosome/alpha-smooth muscle actin (alpha-SMA) staining. In the cross-sex liver grafts with AH, 5.025% of the myofibroblasts were co-staining for CD34, suggesting that a population of CD34(+) cells were contributing to the hepatic myofibroblast population. There was no evidence of BM contribution to hepatocyte or biliary cell differentiation, nor evidence of increased hepatocyte regeneration. Alcohol liver injury mobilizes CD34(+) stem cells into the circulation and recruits them into the liver. These BMSCs contribute to the hepatic myofibroblast population but not to parenchymal lineages and do not promote hepatocyte repair.

  2. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro.

    OpenAIRE

    van der Pluijm, G.; Vloedgraven, H; van Beek, E; van der Wee-Pals, L; Löwik, C; Papapoulos, S

    1996-01-01

    Bisphosphonates are used with increasing frequency in the management of skeletal complications in patients with breast cancer. In this paper, we have investigated whether bisphosphonates, besides their known beneficial effects on tumor-associated osteoclastic resorption, are capable of inhibiting breast cancer cell adhesion to bone matrix. For that we used two in vitro models for bone matrix (cortical bone slices and cryostat sections of trabecular bone from neonatal mouse tails). Four bone m...

  3. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking.

    Science.gov (United States)

    Ratajczak, M Z

    2015-04-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  4. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    Science.gov (United States)

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  5. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  6. EXPRESSION OF ALKALINE PHOSPHATASE DURING OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS

    Directory of Open Access Journals (Sweden)

    AKBARI M

    2001-01-01

    Full Text Available Introduction: Bone marrow contains a population of stem cells capable of differentiating to osteoblast and forming the bone nodule by dexamethasone. Material and Methods: The stromal cells of bone marrow obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for 7 days and subcultured for 18 days. The cells were cultured in either DMEM medium containing 15% fetal calf serum and antibiotics as the controls or the above medium supplemented with osteogenic supplements (OS: include 10 mM Na-beta glycerophosphate (Na-betaGp, 10 nM dexamethasone (Dex and 50 g/ml ascordic acid (AsA as the examined cultures. After 6, 12 and 18 days of grow up in subculture, the cultures were examined for mineralization and alkaline phosphatase (Apase expression. Results: Mesenchymal stem cells (MSCs in examined cultures underwent a dramatic change in cellular morphology and a significat increase in Apase activity by day 12. The deposition of a calcified matrix on the surface of the culture flasks became evident between days 12 and 18. Conclusion: The addition of osteogenic supplements (OS to MSCs cultures induced Apase expression that contributes to cellular differentiation and mineralization of extracellular matrix.

  7. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  8. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone

    NARCIS (Netherlands)

    Illing, Anett; Liu, Peng; Ostermay, Susanne; Schilling, Arndt; de Haan, Gerald; Krust, Andree; Amling, Michael; Chambon, Pierre; Schinke, Thorsten; Tuckermann, Jan P.

    2012-01-01

    Hematopoietic stem and progenitor cells reside in vascular and endosteal niches in the bone marrow. Factors affecting bone remodeling were reported to influence numbers and mobilization of hematopoietic stem cells. We therefore analyzed the effects of estradiol acting anabolic on bone integrity. Her

  9. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  10. Bone marrow dosimetry via microCT imaging and stem cell spatial mapping

    Science.gov (United States)

    Kielar, Kayla N.

    In order to make predictions of radiation dose in patients undergoing targeted radionuclide therapy of cancer, an accurate model of skeletal tissues is necessary. Concerning these tissues, the dose-limiting factor in these therapies is the toxicity of the hematopoietically active bone marrow. In addition to acute effects, one must be concerned as well with long-term stochastic effects such as radiation-induced leukemia. Particular cells of interest for both toxicity and cancer risk are the hematopoietic stem cells (HSC), found within the active marrow regions of the skeleton. At present, cellular-level dosimetry models are complex, and thus we cannot model individual stem cells in an anatomic model of the patient. As a result, one reverts to looking at larger tissue regions where these cell populations may reside. To provide a more accurate marrow dose assessment, the skeletal dosimetry model must also be patient-specific. That is, it should be designed to match as closely as possible to the patient undergoing treatment. Absorbed dose estimates then can be tailored based on the skeletal size and trabecular microstructure of an individual for an accurate prediction of marrow toxicity. Thus, not only is it important to accurately model the target tissues of interest in a normal patient, it is important to do so for differing levels of marrow health. A skeletal dosimetry model for the adult female was provided for better predictions of marrow toxicity in patients undergoing radionuclide therapy. This work is the first fully established gender specific model for these applications, and supersedes previous models in scalability of the skeleton and radiation transport methods. Furthermore, the applicability of using bone marrow biopsies was deemed sufficient in prediction of bone marrow health, specifically for the hematopoietic stem cell population. The location and concentration of the HSC in bone marrow was found to follow a spatial gradient from the bone trabeculae

  11. Bone marrow cells produce nerve growth factor and promote angiogenesis around transplanted islets

    Institute of Scientific and Technical Information of China (English)

    Naoaki; Sakata; Nathaniel; K; Chan; John; Chrisler; Andre; Obenaus; Eba; Hathout

    2010-01-01

    AIM:To clarify the mechanism by which bone marrow cells promote angiogenesis around transplanted islets.METHODS: Streptozotocin induced diabetic BALB/ c mice were transplanted syngeneically under the kidney capsule with the following: (1) 200 islets (islet group: n=12), (2) 1-5×106 bone marrow cells (bone marrow group: n=11), (3) 200 islets and 1-5×106 bone marrow cells (islet + bone marrow group: n= 13), or (4) no cells (sham group:n=5). All mice were evaluated for blood glucose, serum insulin, serum nerve...

  12. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    Science.gov (United States)

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  13. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M;

    2012-01-01

    Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been....../tricalcium phosphate, in immune deficient mice. In conclusion, MEF contain a population of stem cells that behave in ex vivo and in vivo assays, similar but not identical, to BMSC. Due to their enhanced cell growth, they may represent a good alternative for BMSC in studying molecular mechanisms of stem cell commitment...... reported. Utilizing standard in vitro and in vivo assays we performed a side-by-side comparison of MEF and BMSC to determine their ability to differentiate into mesoderm-type cells. BMSC were isolated from 8-10 weeks old mouse bone marrow by plastic adherence. MEF were established by trypsin/EDTA digestion...

  14. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    Directory of Open Access Journals (Sweden)

    Morteza Abouzaripour

    2016-02-01

    Full Text Available Objective: Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone marrow have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1 positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods: This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS followed by characterization with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR, immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results: The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4 detected by immunocytochemistry and C-X-C chemokine receptor type 4 (CXCR4 and stem cell antigen-1 (SCA-1 detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors, Ngn3 (endocrine progenitor marker, Insulin1 and Insulin2 (pancreaticβ-cell markers. Additionally, our results demonstrate expression of PDX1 and GLUT2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion: Our study clearly demonstrates the potential of SSEA-1

  15. Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model

    Institute of Scientific and Technical Information of China (English)

    Thomas M. Bodenstine; Benjamin H. Beck; Xuemei Cao; Leah M. Cook; Aimen Ismai; J. Kent Powers; Andrea M. Mastro; Danny R. Welch

    2011-01-01

    The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cancer cells induce apoptosis in osteoblasts, which further exacerbates bone loss. However, in early stages, breast cancer cells induce osteoblasts to secrete inflammatory cytokines purported to drive tumor progression. To more thoroughly evaluate the role of osteoblasts in early stages of breast cancer metastasis to the bones, we used green fluorescent protein-labeled human breast cancer cell lines MDA-MB-231 and MDA-MB-435, which both induce osteolysis after intra-femoral injection in athymic mice, and the murine pre-osteoblastic cell line MC3T3-E1 to modulate osteoblast populations at the sites of breast cancer metastasis. Breast cancer cells were injected directly into the femur with or without equal numbers of MC3T3-E1 cells. Tumors grew significantly larger when co-injected with breast cancer cells and MC3T3-E1 cells than injected with breast cancer cells alone. Osteolysis was induced in both groups, indicating that MC3T3-E1 cells did not block the ability of breast cancer cells to cause bone destruction. MC3T3-E1 cells promoted tumor growth out of the bone into the extraosseous stroma. These data suggest that breast cancer cells and osteoblasts communicate during early stages of bone metastasis and promote tumor growth.

  16. Craniosynostosis-Associated Fgfr2C342Y Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-01-01

    Full Text Available We recently reported that cranial bones of craniosynostotic mice are diminished in density when compared to those of wild type mice, and that cranial bone cells isolated from the mutant mice exhibit inhibited late stage osteoblast differentiation. To provide further support for the idea that craniosynostosis-associated Fgfr mutations lead to cell autonomous defects in osteoblast differentiation and mineralized tissue formation, here we tested bone marrow stromal cells isolated from mice for their ability to differentiate into osteoblasts. Additionally, to determine if the low bone mass phenotype of Crouzon syndrome includes the appendicular skeleton, long bones were assessed by micro CT. cells showed increased osteoblastic gene expression during early osteoblastic differentiation but decreased expression of alkaline phosphatase mRNA and enzyme activity, and decreased mineralization during later stages of differentiation, when cultured under 2D in vitro conditions. Cells isolated from mice also formed less bone when allowed to differentiate in a 3D matrix in vivo. Cortical bone parameters were diminished in long bones of mice. These results demonstrate that marrow stromal cells of mice have an autonomous defect in osteoblast differentiation and bone mineralization, and that the mutation influences both the axial and appendicular skeletons.

  17. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice

    Institute of Scientific and Technical Information of China (English)

    汤亭亭; 徐小良; 戴尅戎; 郁朝锋; 岳冰; 楼觉人

    2005-01-01

    Objective: To evaluate the osteogenic potential of bone morphogenetic protein (BMP)-2 gene transfected goat bone marrow-derived mesenchymal stem cells (MSCs). Methods: Goat bone marrow- derived MSCs were transfected by Adv-human bone morphogenetic protein (hBMP)-2 gene(Group 1), Adv-beta gal transfected MSCs (Group 2)and uninfected MSCs(Group 3). Western blot analysis, alkaline phosphatase staining, Von Kossa staining and transmission electron microscopy were adopted to determine the phenotype of MSCs. Then the cells were injected into thigh muscles of the nude mice. Radiographical and histological evaluations were performed at different intervals. Results: Only Adv-hBMP-2 transfected MSCs produced hBMP-2. These cells were positive for alkaline phosphatase staining at the 12th day and were positive for Von Kossa staining at the 16th day after gene transfer. Electron microscopic observation showed that there were more rough endoplasmic reticulum, mitochondria and lysosomes in Adv-hBMP-2 transfected MSCs compared to MSCs of other two groups. At the 3rd and 6th weeks after cell injection, ectopic bones were observed in muscles of nude mice of Group 1. Only fibrous tissue or a little bone was found in other two groups. Conclusions: BMP-2 gene transfected MSCs can differentiate into osteoblasts in vitro and induce bone formation in vivo.

  18. Evaluation of Posterolateral Lumbar Fusion in Sheep Using Mineral Scaffolds Seeded with Cultured Bone Marrow Cells

    OpenAIRE

    Cuenca-López, María D.; Andrades, José A.; Santiago Gómez; Plácido Zamora-Navas; Enrique Guerado; Nuria Rubio; Jerónimo Blanco; José Becerra

    2014-01-01

    The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts...

  19. Relationship between tea drinking and bone mineral density in Bushehr population

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri

    2011-09-01

    Full Text Available Background: Tea consumption is common throughout the world, especially in Iran and it was known as the most common beverages. Several studies evaluated negative effect of coffee and relationship between its caffeine content with bone density. But relationship between tea drinking and bone mineral density is less observed. Considering high amount of tea consumption and prevalence of osteoporosis in Iran, it is important to investigate this relationship.Materials and Method: Population study includes 1125 subjects (aged 20- 72 years randomly selected by cluster sampling in Bushehr, who participated in general project of prevention and treatment of osteoporosis. The participants were categorized based on degree of tea consumption: high tea drinkers (more than 4 cups of tea per day and low tea drinkers (equal or less than 4 cups of tea per day.Results: In high tea drinkers, mean score for bone density was significantly higher in neck and total femur. But this difference in isolated groups (according to sex, age and both of them was not seen.Conclusion: The result of this study indicates on a direct relationship between tea drinking and increasing of bone mineral density. Moreover, it shows the prevalence of osteoporosis is lower in people who have a regular daily habit of tea consumption

  20. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  1. Interval scanning photomicrography of microbial cell populations.

    Science.gov (United States)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  2. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in (Review)

    OpenAIRE

    Ehninger, A; Trumpp, A

    2011-01-01

    Stem cell niches are defined as the cellular and molecular microenvironments that regulate stem cell function together with stem cell autonomous mechanisms. This includes control of the balance between quiescence, self-renewal, and differentiation, as well as the engagement of specific programs in response to stress. In mammals, the best understood niche is that harboring bone marrow hematopoietic stem cells (HSCs). Recent studies have expanded the number of cell types contributing to the HSC...

  3. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    OpenAIRE

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S. B.

    2006-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating diff...

  4. Bone-conduction hearing aids in an elderly population: complications and quality of life assessment.

    Science.gov (United States)

    Carr, Simon D; Moraleda, Javier; Baldwin, Alice; Ray, Jaydip

    2016-03-01

    To determine whether an elderly population with hearing impairment can be adequately rehabilitated with a bone-conduction hearing aid and whether the putative relationship between the elderly and an increased complication rate is justified. The study design was a retrospective case note review with a postal and telephone questionnaire, which was carried out in a tertiary centre. All patients aged 60 or over underwent implantation with a bone-conduction aid between 2009 and 2013 for conductive, SSD or mixed hearing loss. Outcome measures were complication rates and quality of life assessment using the Glasgow Benefit Inventory. The influence of patient and surgical factors on the complication rate was assessed. Fifty-one patients were implanted. Mean age was 67 years (range 60-89 years). The mean benefit, satisfaction and global GBI scores were 70 % (range 0-100 %), 70 % (0-100 %) and 82 % (83-100 %), respectively. The residual disability was 18 % (0-25 %). The adverse skin reaction rate was 16 % and the fixture loss rate was 2 %. There was a demonstrable increase in the complication rate with the dermatome (45 %; 5 patients) compared to the Sheffield 'S' (13 %; 2 patients) or linear incision techniques (29 %; 7 patients). The bone-conduction hearing aids are ideal method of hearing rehabilitation in the elderly for all forms of hearing loss. It provides significant benefit with no increased complication rate, which is imperative if social isolation is to be avoided and cognition preserved in this growing elderly population. PMID:25736468

  5. Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes.

    Directory of Open Access Journals (Sweden)

    Wojciech Wojakowski

    2005-12-01

    Full Text Available Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC. These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD. There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens, as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear

  6. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis

    Science.gov (United States)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings. PMID:27708616

  7. Cigarette Smoking Is Associated with a Lower Concentration of CD105+ Bone Marrow Progenitor Cells

    Science.gov (United States)

    Beyth, Shaul; Mosheiff, Rami; Safran, Ori; Daskal, Anat; Liebergall, Meir

    2015-01-01

    Cigarette smoking is associated with musculoskeletal degenerative disorders, delayed fracture healing, and nonunion. Bone marrow progenitor cells (BMPCs), known to express CD105, are important in local trophic and immunomodulatory activity and central to musculoskeletal healing/regeneration. We hypothesized that smoking is associated with lower levels of BMPC. Iliac bone marrow samples were collected from individuals aged 18–65 years during the first steps of pelvic surgery, under IRB approval with informed consent. Patients with active infectious or neoplastic disease, a history of cytotoxic or radiation therapy, primary or secondary metabolic bone disease, or bone marrow dysfunction were excluded. Separation process purity and the number of BMPCs recovered were assessed with FACS. BMPC populations in self-reported smokers and nonsmokers were compared using the two-tailed t-test. 13 smokers and 13 nonsmokers of comparable age and gender were included. The average concentration of BMPCs was 3.52 × 105/mL ± 2.45 × 105/mL for nonsmokers versus 1.31 × 105/mL ± 1.61 × 105/mL for smokers (t = 3.2,  P = 0.004). This suggests that cigarette smoking is linked to a significant decrease in the concentration of BMPCs, which may contribute to the reduced regenerative capacity of smokers, with implications for musculoskeletal maintenance and repair. PMID:26346476

  8. Cigarette Smoking Is Associated with a Lower Concentration of CD105+ Bone Marrow Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Shaul Beyth

    2015-01-01

    Full Text Available Cigarette smoking is associated with musculoskeletal degenerative disorders, delayed fracture healing, and nonunion. Bone marrow progenitor cells (BMPCs, known to express CD105, are important in local trophic and immunomodulatory activity and central to musculoskeletal healing/regeneration. We hypothesized that smoking is associated with lower levels of BMPC. Iliac bone marrow samples were collected from individuals aged 18–65 years during the first steps of pelvic surgery, under IRB approval with informed consent. Patients with active infectious or neoplastic disease, a history of cytotoxic or radiation therapy, primary or secondary metabolic bone disease, or bone marrow dysfunction were excluded. Separation process purity and the number of BMPCs recovered were assessed with FACS. BMPC populations in self-reported smokers and nonsmokers were compared using the two-tailed t-test. 13 smokers and 13 nonsmokers of comparable age and gender were included. The average concentration of BMPCs was 3.52 × 105/mL ± 2.45 × 105/mL for nonsmokers versus 1.31 × 105/mL ± 1.61 × 105/mL for smokers (t= 3.2, P=0.004. This suggests that cigarette smoking is linked to a significant decrease in the concentration of BMPCs, which may contribute to the reduced regenerative capacity of smokers, with implications for musculoskeletal maintenance and repair.

  9. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  10. Studies on apoptosis in bone tumor cells induced by 153Sm

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-Peng; XIAO Dong; HAN Xiao-Feng

    2004-01-01

    The apoptosis in human bone tumor cells induced by internal irradiation with 153Sm was studied. The morphological changes in bone tumor cells were observed by electronic and fluorescent microscopy, as well as DNA agarose gel eletrophoresis. DNA chain fragmentation, microautoradiographic tracing and the inhibition rate of proliferation in bone tumor cells exposed to 153Sm with different duration time were examined. It was demonstrated that the bone tumor cells exposed to 153Sm displayed nuclear fragmentation, pyknosis, margination of condensed chromatin, and formation of membrane bounded apoptotic bodies, whereas the percentage of DNA chain fragmentation of bone tumor cells increases in direct proportion to the duration of irradiation with 153Sm, as well as DNA ladder formation in apoptotic cells. Also a marked inhibition effect of proliferation in bone tumor cells after exposure with 153Sm was observed.

  11. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien

    2012-01-01

    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  12. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    Science.gov (United States)

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  13. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.

    Science.gov (United States)

    Kitami, Megumi; Kaku, Masaru; Rocabado, Juan Marcelo Rosales; Ida, Takako; Akiba, Nami; Uoshima, Katsumi

    2016-09-01

    Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc.

  14. Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells

    OpenAIRE

    Xiaoying Zhou; Barsky, Lora W.; Adams, Gregor B

    2013-01-01

    Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow suppor...

  15. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

    Science.gov (United States)

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D; Wang, Ping; Reynolds, Mark A; Zhao, Liang; Xu, Hockin H K

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  16. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells

    OpenAIRE

    Jing Yuan; Jian-xiong Yu

    2016-01-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and...

  17. The effect of mixed infusion of bone marrow cells and bone marrow stromal cells on hematopoietic reconstitution in lethally irradiated mice

    International Nuclear Information System (INIS)

    To observe the effect of mixed infusion of bone marrow and bone marrow stromal cells on hematopoietic reconstitution in lethally irradiated mice, Balb/c mice irradiated lethally received 1 x 107 syngeneic bone marrow cells and 2 x 105 syngeneic bone marrow stromal cells via the intravenous route. As compared with the simple BMT group, the WBC and the BPC in peripheral blood in mixed infusion group recover more quickly on day 14 after BMT and BMSCT. The numbers of CFU-GM, BFU-E, CFU-E, CFU-S in mixed infusion group are higher than that of the simple BMT group on day 15 and day 20 after BMT and BMSCT. Conclusion: Primary cultured bone marrow stromal cells not only is transplantable , but also can accelerate hematopoietic reconstitution

  18. Mast Cell-activated Bone Marrow Mesenchymal Stromal Cells Regulate Proliferation and Lineage Commitment of CD34+ Progenitor cells

    Directory of Open Access Journals (Sweden)

    Zoulfia eAllakhverdi

    2013-12-01

    Full Text Available Background: Shortly after allergen exposure, the number of bone marrow and circulating CD34+ progenitors increases. We aim to analyze the possible mechanism whereby the allergic reaction stimulates bone marrow to release these effector cells in increased numbers. We hypothesize that mast cells may play a predominant role in this process. Objective: To examine the effect of IgE-activated mast cells on bone marrow mesenchymal stromal cells which regulate proliferation and differentiation of CD34+ progenitors. Methods: Primary mast cells were derived from CD34+ precursors and activated with IgE/anti-IgE. Bone marrow mesenchymal stromal cells were co-cultured with CD34+ progenitor cells and stimulated with IL1/TNF or IgE/anti-IgE activated mast cells in Transwell system. Results: Bone marrow mesenchymal stromal cells produce low level of TSLP under steady state conditions, which is markedly increased by stimulation with proinflammatory cytokines IL-1 and TNF or IgE-activated mast cells. The latter also triggers BM-MSCs production of G-CSF, and GM-CSF while inhibiting SDF-1. Mast cell-activated mesenchymal stromal cells stimulate CD34+ cells to proliferate and to regulate their expression of early allergy-associated genes. Conclusion and Clinical Relevance: This in vitro study indicates that IgE-activated mast cells trigger bone marrow mesenchymal stromal cells to release TSLP and hematopoietic growth factors and to regulate the proliferation and lineage commitment of CD34+ precursor cells. The data predict that the effective inhibition of mast cells should impair mobilization and accumulation of allergic effector cells and thereby reduce the severity of allergic diseases.

  19. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  20. Systemic mesenchymal stem cell administration enhances bone formation in fracture repair but not load-induced bone formation

    Directory of Open Access Journals (Sweden)

    AE Rapp

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSC were shown to support bone regeneration, when they were locally transplanted into poorly healing fractures. The benefit of systemic MSC transplantation is currently less evident. There is consensus that systemically applied MSC are recruited to the site of injury, but it is debated whether they actually support bone formation. Furthermore, the question arises as to whether circulating MSC are recruited only in case of injury or whether they also participate in mechanically induced bone formation. To answer these questions we injected green fluorescent protein (GFP-labelled MSC into C57BL/6J mice, which were subjected either to a femur osteotomy or to non-invasive mechanical ulna loading to induce bone formation. We detected GFP-labelled MSC in the early (day 10 and late fracture callus (day 21 by immunohistochemistry. Stromal cell-derived factor 1 (SDF-1 or CXCL-12, a key chemokine for stem cell attraction, was strongly expressed by virtually all cells near the osteotomy – indicating that SDF-1 may mediate cell migration to the site of injury. We found no differences in SDF-1 expression between the groups. Micro-computed tomography (µCT revealed significantly more bone in the callus of the MSC treated mice compared to untreated controls. The bending stiffness of callus was not significantly altered after MSC-application. In contrast, we failed to detect GFP-labelled MSC in the ulna after non-invasive mechanical loading. Histomorphometry and µCT revealed a significant load-induced increase in bone formation; however, no further increase was found after MSC administration. Concluding, our results suggest that systemically administered MSC are recruited and support bone formation only in case of injury but not in mechanically induced bone formation.

  1. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population.

    Science.gov (United States)

    Calvo, Mona S; Uribarri, Jaime

    2013-07-01

    This review explores the potential adverse impact of the increasing phosphorus content in the American diet on renal, cardiovascular, and bone health of the general population. Increasingly, studies show that phosphorus intakes in excess of the nutrient needs of a healthy population may significantly disrupt the hormonal regulation of phosphate, calcium, and vitamin D, which contributes to disordered mineral metabolism, vascular calcification, impaired kidney function, and bone loss. Moreover, large epidemiologic studies suggest that mild elevations of serum phosphate within the normal range are associated with cardiovascular disease (CVD) risk in healthy populations without evidence of kidney disease. However, few studies linked high dietary phosphorus intake to mild changes in serum phosphate because of the nature of the study design and inaccuracies in the nutrient composition databases. Although phosphorus is an essential nutrient, in excess it could be linked to tissue damage by a variety of mechanisms involved in the endocrine regulation of extracellular phosphate, specifically the secretion and action of fibroblast growth factor 23 and parathyroid hormone. Disordered regulation of these hormones by high dietary phosphorus may be key factors contributing to renal failure, CVD, and osteoporosis. Although systematically underestimated in national surveys, phosphorus intake seemingly continues to increase as a result of the growing consumption of highly processed foods, especially restaurant meals, fast foods, and convenience foods. The increased cumulative use of ingredients containing phosphorus in food processing merits further study given what is now being shown about the potential toxicity of phosphorus intake when it exceeds nutrient needs. PMID:23719553

  2. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration.

    OpenAIRE

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Tateya, Ichiro; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi

    2014-01-01

    [Objectives/Hypothesis]Vocal fold scarring presents therapeutic challenges. Recently, cell therapy with mesenchymal stromal cells has become a promising approach. The aim of this study was to compare the therapeutic potential of adipose-derived stem cells (ASC) with bone marrow-derived stem cells (BMSC) for vocal fold regeneration. [Study Design]Prospective animal experiments with controls. [Methods]The vocal folds of Sprague-Dawley rats were unilaterally injured. Two months after injury, rat...

  3. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    OpenAIRE

    Ayatollahi, M.; Geramizadeh, B; Zakerinia, M; M Ramzi; Yaghobi, R.; Hadadi, P.; Rezvani, A. R.; Aghdai, M.; N Azarpira; Karimi, H.

    2012-01-01

    Background: The ability of mesenchymal stem cells (MSCs) to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering. Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential. Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells we...

  4. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  5. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  6. Identification of cells in primate bone marrow resembling the hemopoietic stem cell in the mouse

    NARCIS (Netherlands)

    Dicke, K.A.; Noord, M.J. van; Maat, B.

    1973-01-01

    The colony forming unit culture (CFU C) in the thin layer agar colony technique is considered to be representative for hemopoietic stem cells (HSC), according to studies in mouse and monkey bone marrow. Using this in vitro assay as a guide, stem cell concentrates were prepared from monkey and human

  7. Vanadate impedes adipogenesis in mesenchymal stem cells derived from different depots within bone.

    Directory of Open Access Journals (Sweden)

    Frans Alexander Jacobs

    2016-08-01

    Full Text Available Glucocorticoid induced osteoporosis (GIO is associated with an increase in bone marrow adiposity which skews the differentiation of mesenchymal stem cell (MSC progenitors away from osteoblastogenesis and towards adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs and from the proximal end of the femur (pfMSCs. By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the haematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 µM added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 µM alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur, and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  8. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone.

    Science.gov (United States)

    Jacobs, Frans Alexander; Sadie-Van Gijsen, Hanél; van de Vyver, Mari; Ferris, William Frank

    2016-01-01

    Glucocorticoid-induced osteoporosis (GIO) is associated with an increase in bone marrow adiposity, which skews the differentiation of mesenchymal stem cell (MSC) progenitors away from osteoblastogenesis and toward adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs) and from the proximal end of the femur (pfMSCs). By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the hematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively) demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM) after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 μM) added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin) in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 μM) alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  9. Multicentric Giant Cell Tumor of Bone: Synchronous and Metachronous Presentation

    Directory of Open Access Journals (Sweden)

    Reiner Wirbel

    2013-01-01

    Full Text Available A 27-year-old man treated 2.5 years ago for synchronous multicentric giant cell tumor of bone located at the right proximal humerus and the right 5th finger presented now with complaints of pain in his right hip and wrist of two-month duration. Radiology and magnetic resonance revealed multicentric giant cell tumor lesions of the right proximal femur, the left ileum, the right distal radius, and the left distal tibia. The patient has an eighteen-year history of a healed osteosarcoma of the right tibia that was treated with chemotherapy, resection, and allograft reconstruction. A literature review establishes this as the first reported case of a patient with synchronous and metachronous multicentric giant cell tumor who also has a history of osteosarcoma.

  10. Bilateral orbital bone infarction in sickle-cell disease.

    Science.gov (United States)

    Ghafouri, Roya H; Lee, Irene; Freitag, Suzanne K; Pira, Tony N

    2011-01-01

    This is a case of a 2-year-old boy with sickle cell disease who presented with bilateral eyelid swelling, limited extraocular motility, and lateral subperiosteal fluid collection associated with bilateral lateral orbital wall infarctions on MRI. The patient was managed medically with intravenous fluids, analgesics, broad-spectrum antibiotics, systemic steroids, and clinically improved. Patients with sickle cell disease are susceptible to infarction of the orbital bones during vaso-occlusive crises. Orbital wall infarction can lead to acute proptosis and restricted extraocular motility. Orbital wall infarction should be considered in sickle cell patients with orbital diseases so that appropriate treatment can be instituted promptly to prevent the serious sequelae of orbital compression syndrome. PMID:20577135

  11. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy......, immunohistochemistry and western blot analysis detected autophagy in vitro and in GIOP model rats (in vivo). With the addition of the autophagy inhibitor 3methyladenine, the proliferative ability of BMSCs was further reduced, while the number of apoptotic BMSCs was significantly increased. The data suggests...

  12. Bone marrow processing on the Haemonetics V50 cell separator.

    Science.gov (United States)

    Anderson, N A; Cornish, J M; Godwin, V; Gunstone, M J; Oakhill, A; Pamphilon, D H

    1990-01-01

    We have processed 27 bone marrow (BM) harvests using the Haemonetics V50 cell separator with a paediatric plasmapheresis set and programmed for lymphocyte collection. The mean starting volume of 843 mL was processed in 6-8 cycles to a buffy coat (BC) with a mean volume of 230 mL. The mean starting mononuclear cell (MNC) count was 1.22 x 10 8/kg recipient weight, and recovery was 92%. Clonogenic potential of the BC was assessed using CFU-GM assays and recovery was measured after cryopreservation or purging. On 4 occasions where major ABO incompatibility existed between donor and recipient, both BM and BC were consecutively diluted in compatible blood and processed twice. This achieved a calculated reduction in donor erythrocytes of 98%. The procedure was efficient and yielded a BC fraction suitable for cryopreservation and purging. Adequate stem-cells were retained as verified by CFU-GM assays and documentation of stable engraftment.

  13. Optimal therapy for adults with Langerhans cell histiocytosis bone lesions.

    Directory of Open Access Journals (Sweden)

    Maria A Cantu

    Full Text Available BACKGROUND: There is little data on treatment of Langerhans cell histiocytosis (LCH in adults. Available data is on small numbers of patients with short follow-up times and no comparison of results from different treatment regimens. We analyzed the responses of adult LCH patients with bone lesions to three primary chemotherapy treatments to define the optimal one. METHODS AND FINDINGS: Fifty-eight adult patients with bone lesions, either as a solitary site or as a component of multisystem disease, were analyzed for disease location and response to surgery, curettage, steroids, radiation, vinblastine/prednisone, 2-Chlorodeoxyadenosine (2-CdA, or cytosine arabinoside (ARA-C. The mean age of patients was 32 years, with equal gender distribution. Twenty-nine patients had 1 lesion; 16, 2 lesions; 5, 3 lesions; and 8 had 4 or more. Most bone lesions were in the skull, spine, or jaw. Chemotherapy, surgery, curettage, or radiation, but not steroids alone, achieved improvement or resolution of lesions in a majority of patients. Comparison of the three chemotherapy regimens revealed 84% of patients treated with vinblastine/prednisone either did not respond or relapsed within a year, whereas 59% of patients treated with 2-CdA and 21% treated with ARA-C failed. Toxicity was worse with the vinblastine/prednisone group as 75% had grade 3-4 neuropathy. Grade 3-4 cytopenias occurred in 37% of the 2-CdA -treated patients and 20% of the ARA-C-treated patients. The major limitation of this study is it is retrospective and not a clinical trial. CONCLUSIONS: ARA-C is an effective and minimally toxic treatment for LCH bone lesions in adults. In contrast, vinblastine/prednisone results in poor overall responses and excessive toxicity.

  14. Markers for Characterization of Bone Marrow Multipotential Stromal Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Boxall

    2012-01-01

    Full Text Available Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs, in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native bone marrow (BM MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1 may have the strongest translational value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.

  15. Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature

    OpenAIRE

    D′Amico, L; Patanè, S; Grange, C.; Bussolati, B; Isella, C.; Fontani, L; Godio, L; Cilli, M; D′Amelio, P; Isaia, G; Medico, E; Ferracini, R; Roato, I

    2013-01-01

    Background: Bone metastases represent a common and severe complication in breast cancer, and the involvement of cancer stem cells (CSCs) in the promotion of bone metastasis is currently under discussion. Here, we used a human-in-mice model to study bone metastasis formation due to primary breast CSCs-like colonisation. Methods: Primary CD44+CD24− breast CSCs-like were transduced by a luciferase-lentiviral vector and injected through subcutaneous and intracardiac (IC) routes in non-obese/sever...

  16. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  17. A Structured Population Model of Cell Differentiation

    CERN Document Server

    Doumic, Marie; Perthame, Benoit; Zubelli, Jorge P

    2010-01-01

    We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of transport type. Specifically, it consists of a structured population equation with a nonlinear feedback loop. This models the signaling process due to cytokines, which regulate the differentiation and proliferation process. We compare the continuous model to its discrete counterpart, a multi-compartmental model of a discrete collection of cell subpopulations recently proposed by Marciniak-Czochra et al. in 2009 to investigate the dynamics of the hematopoietic system. We obtain uniform bounds for the solutions, characterize steady state solutions, and analyze their linearized stability. We show how persistence or extinction might occur according to values of parameters that characterize the stem cells self-renewal. We also perform numerical simulations and discuss the q...

  18. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy

    OpenAIRE

    Guang Yang; Qingli Cheng; Sheng Liu; Jiahui Zhao

    2015-01-01

    The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in v...

  19. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    OpenAIRE

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labe...

  20. Targeting population heterogeneity for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Carlqvist, Magnus; Helmark, S.;

    , substrates, and pH are typically observed in many industrial scale fermentation processes. Consequently, the microbial cells experience rapid changes in environmental conditions as they circulate throughout the reactor, which might pose stress on the cells and affect their metabolism and consequently affect......To achieve an efficient production process, it is essential to optimize both the strain and the cultivation conditions. Traditionally, a microbial population has been considered homogeneous in optimization studies of fermentation processes. However, research has shown that a typical microbial...... population in a fermentor is heterogeneous. There are indications that such heterogeneity may be both beneficial (facilitates quick adaptation to new conditions) and harmful (reduces yields and productivities) for the robustness of the fermentation process. Significant gradients of e.g. dissolved oxygen...

  1. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering

    OpenAIRE

    Montjovent, Marc-Olivier; Mark, Silke; Mathieu, Laurence; Scaletta, Corinne; Scherberich, Arnaud; Delabarde, Claire; Zambelli, Pierre-Yves; Bourban, Pierre-Etienne; Applegate, Lee Ann; Pioletti, Dominique P.

    2008-01-01

    Fetal bone cells were shown to have an interesting potential for therapeutic use in bone tissue engineering due to their rapid growth rate and their ability to differentiate into mature osteoblasts in vitro. We describe hereafter their capability to promote bone repair in vivo when combined with porous scaffolds based on poly(L-lactic acid) (PLA) obtained by supercritical gas foaming and reinforced with 5 wt% β-tricalcium phosphate (TCP). Bone regeneration was assessed by radiogra...

  2. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair.

    Science.gov (United States)

    Deng, Yuan; Zhou, Huifang; Yan, Chenxi; Wang, Yefei; Xiao, Caiwen; Gu, Ping; Fan, Xianqun

    2014-07-01

    Osteogenic induction with either growth factors or genetic modification has limitations due to the short half-life and cost of the former, or safety concerns regarding the latter. The objective of this study was to employ a microcapsulation technique to separate genetically modified and nonmodified bone marrow stromal cells (BMSCs) to establish a cost-effective and biosafe osteogenic induction methodology with functional evaluation in vitro and in vivo in a canine model. Autologous BMSCs were isolated and transduced with adenoviral vectors containing either BMP-2 or vascular endothelial growth factor (VEGF) or were dual transduced followed by encapsulation in alginate microcapsules using an electrostatic bead generator. After cocultured with encapsulated cells, normal autologous BMSCs were analyzed for osteogenic differentiation and seeded onto tricalcium phosphate (TCP) scaffolds for in vivo implantation to repair orbital wall bone defects (12 mm in diameter) in a canine model. In vitro assays showed that the expression of the transduced genes was significantly upregulated, with significantly more transduced proteins released from the transduced cells compared with control cells. Importantly, examination of the BMSCs induced by soluble factors released from the encapsulated cells revealed a significant upregulation of expression of osteogenic markers Runx2, BSP, OPN, and OCN in dual-transduction or induction groups. In addition, dual transduction and induction resulted in the highest increase of alkaline phosphatase activity and mineralization compared with other experimental groups. In vivo assays using CT, micro-CT, and histology further supported the qPCR and western blot findings. In conclusion, encapsulation of genetically modified BMSCs was able to release a sufficient amount of BMP-2 and VEGF, which effectively induced osteogenic differentiation of normal-cultured BMSCs and demonstrated bone repair of the orbital wall defect after implantation with

  3. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    NARCIS (Netherlands)

    S. James (Sally); J. Fox (James); F. Afsari (Farinaz); J. Lee (Jennifer); S. Clough (Sally); C. Knight (Charlotte); J. Ashmore (James); P. Ashton (Peter); O. Preham (Olivier); M.J. Hoogduijn (Martin); R.D.A.R. Ponzoni (Raquel De Almeida Rocha); Y. Hancock; M. Coles (Mark); P.G. Genever (Paul)

    2015-01-01

    textabstractBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis

  4. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  5. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Science.gov (United States)

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  6. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model.

    Science.gov (United States)

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-26

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα(+) Sca-1(+) BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3(+) CD25(+) Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model.

  7. Low/Negative Expression of PDGFR-α Identifies the Candidate Primary Mesenchymal Stromal Cells in Adult Human Bone Marrow

    DEFF Research Database (Denmark)

    Li, Hongzhe; Ghazanfari, Roshanak; Zacharaki, Dimitra;

    2014-01-01

    Human bone marrow (BM) contains a rare population of nonhematopoietic mesenchymal stromal cells (MSCs), which are of central importance for the hematopoietic microenvironment. However, the precise phenotypic definition of these cells in adult BM has not yet been reported. In this study, we show...... that low/negative expression of CD140a (PDGFR-α) on lin(-)/CD45(-)/CD271(+) BM cells identified a cell population with very high MSC activity, measured as fibroblastic colony-forming unit frequency and typical in vitro and in vivo stroma formation and differentiation capacities. Furthermore, these cells...... exhibited high levels of genes associated with mesenchymal lineages and HSC supportive function. Moreover, lin(-)/CD45(-)/CD271(+)/CD140a(low/-) cells effectively mediated the ex vivo expansion of transplantable CD34(+) hematopoietic stem cells. Taken together, these data indicate that CD140a is a key...

  8. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  9. Mechanobiological regulation of bone remodeling -- Theoretical development of a coupled systems biology-micromechanical approach

    OpenAIRE

    Scheiner, Stefan; Pivonka, Peter; Hellmich, Christian; Smith, David W.

    2012-01-01

    Bone remodeling involves the coordinated removal of bone by osteoclasts and addition of bone by osteoblasts, a process that is modulated by the prevailing mechanical environment. In this paper a fully coupled model of bone remodeling is developed, based on coupling a bone cell population model with a micromechanical homogenization scheme of bone stiffness. While the former model considers biochemical regulatory mechanisms between bone cells such as the RANK-RANKL-OPG pathway and action of TGF...

  10. Endometrial regenerative cells: a novel stem cell population.

    Science.gov (United States)

    Meng, Xiaolong; Ichim, Thomas E; Zhong, Jie; Rogers, Andrea; Yin, Zhenglian; Jackson, James; Wang, Hao; Ge, Wei; Bogin, Vladimir; Chan, Kyle W; Thébaud, Bernard; Riordan, Neil H

    2007-01-01

    Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC) were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10-100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources. PMID:18005405

  11. Endometrial regenerative cells: A novel stem cell population

    Directory of Open Access Journals (Sweden)

    Ge Wei

    2007-11-01

    Full Text Available Abstract Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10–100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources.

  12. [Long-term subculture and biological characterization of the murine bone marrow endothelial cell line].

    Science.gov (United States)

    Huang, Chang; Zhu, Wen-Biao; Zhu, Hai-Ling; Wang, Bao-He; Wang, Qi-Ru

    2007-12-01

    The murine bone marrow endothelial cell line (mBMEC) has been maintained by means of subculture and cryopreservation for over 10 years since it was established in our laboratory. This study was aimed to newly identify biological characteristics of this cell line for further study. The cultured mBMEC cells were observed by inverted microscopy and transmission electron microscopy (TEM). PECAM-1 (CD31) and von Willebrand factor (vWF) were detected by immunofluorescent staining. The phagocytotic activity of the cells in culture was tested by using fluorescent acetylated low-density lipoprotein (Dil-Ac-LDL). The cell growth kinetics analysis and karyotype analysis were performed. The results showed that the adherent cells were mostly elliptical, rounded and spindle-shaped, and some of them connected to each other to form cord- and network-like arrangements in mBMEC cultures at subconfluence. The adherent cells grew up to confluence as a cobblestone-like monolayer. Several ultrastructural features of the endothelial cells could be observed in TEM sections of the cultured cells. More than 94% of mBMEC cells were positive for either CD31 or vWF. The phagocytotic ingestion of Dil-Ac-LDL occurred in 98.5% of cells. In normal culture conditions, the cells grew with a mean population doubling time of 54.6 hours and the maximal mitotic index was 38 per thousand in the rapid growth period. The colony yields were 4.33% to 7.40% depending on the plating density of cells. Karyotypes of all the cells were aneuploidy with a greater percentage of hyperdiploid. It is concluded that mBMEC cells retain the fundamental properties of endothelial cells, but the growth kinetics and biological behaviors are slightly different from those in the early days after the establishment of this cell line.

  13. Ex vivo expansion of Primate CD34+ Cells isolated from Bone Marrow and Human Bone Marrow Mononuclear Cells using a Novel Scaffold

    Directory of Open Access Journals (Sweden)

    Devaprasad D

    2009-01-01

    Full Text Available Bone marrow derived CD34+ cells have been in clinical application in patients with haematological malignancies. One of the major problems with this treatment is the non-availability of matched donors or the necessity of multiple transfusions depending upon the pathology. Recently evidences have been accumulating to prove the safety and efficacy of autologous CD34+ cells in diseases such as myocardial dysfunction, peripheral vascular diseases and neurological certain conditions. However there are only a few reports in the literature on ex vivo expansion of the bone marrow derived CD34+ cells. We have in two different studies proven that isolated CD34+ cells from baboon bone marrow and non-isolated BMMNCs from human bone marrow could be expanded with increase in percentage of CD34+ cells using a novel scaffold.

  14. Multifocal Langerhans cell histiocytosis of bone: Indications for radiotherapy

    International Nuclear Information System (INIS)

    Langerhans cell histiocytosis is a non-malignant proliferative disease of unknown etiology that can affect one or more organs. This is a rare disease, 1 to 2/100, 000, affecting mainly children with a male predominance. The osseous lesions are the most frequent (60 to 90%). There is however no consensus treatment for the management of these sites. We report the cases of two patients successfully treated with radiotherapy after primary chemotherapy, at doses of 15 Gy in ten sessions of 1.5 Gy for one patient and 18 Gy in ten fractions of 1.8 Gy for the other. Single or multifocal bone Langerhans cell histiocytosis without visceral involvement is a benign, self-limiting affection in most cases. Some bone lesions could be treated by radiotherapy alone. But the high variability of doses currently given in the literature does not allow determining the lowest effective dose limiting the risk of secondary neoplasia or impaired growth in children, in whom lower doses of 6 to 8 Gy are recommended. The decision of radiotherapy must be weighed against the risk of the disease. Caution should be the rule in this non-malignant tumour pathology. (authors)

  15. Bone marrow transplant

    Science.gov (United States)

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  16. Effects of spaceflight on rat peripheral blood leukocytes and bone marrow progenitor cells

    Science.gov (United States)

    Ichiki, A. T.; Gibson, L. A.; Jago, T. L.; Strickland, K. M.; Johnson, D. L.; Lange, R. D.; Allebban, Z.

    1996-01-01

    The white blood cell (WBC) elements and the bone marrow myeloid progenitor cell populations were analyzed to ascertain adaptation to micro-gravity and subsequent readaptation to 1 G in rats flown on the 14-day Spacelab Life Sciences-2 (SLS-2) mission. Bone marrow cells were harvested from one group of rats killed inflight (FD13) and blood was drawn from three other groups at various times. The WBC level was normal on FD14 with the exception of neutrophilia. On FD13, numbers of colony-forming units-granulocyte (CFU-G), CFU-GM, and CFU-M from flight animals were decreased compared with ground controls when incubated with recombinant rat interleukin-3 (rrIL-3) alone or in combination with recombinant human erythropoietin (rhEpo). On recovery (R + 0), flight rats had decreased numbers of total leukocytes and absolute numbers of lymphocytes and monocytes with elevated neutrophils compared with control rats. They had lower numbers of CD4, CD8, CD2, CD3, and B cells in the peripheral blood but no differences in spleen lymphocytes.

  17. Aplication of authenticity criteria in mitochondrial studies on archaic bone remains from a prehispanic Muisca population

    Directory of Open Access Journals (Sweden)

    Mónica Díaz

    2011-01-01

    Full Text Available Introduction: Ancient DNA (aDNAstudies can support hypotheses regarding ancient populations; molecular studies can analyze the local population’s genetic composition, minimizing biases introduced by later migrations, demographic expansions, mutations, and bottleneck effects. These analyses must be performed with special care because of the low DNA concentrations and contamination risk; therefore, it is necessary to establish protocols to guarantee the reproducibility and veracity of results. Objective: The present study aims to establish a protocol to obtain ancient DNA from 16 pre-Columbian bone samples found in an excavation performed in the area «Candelaria La Nueva» in Bogota, Colombia, dated in the period «Muisca Tardio». Methods: Four founder mitochondrial DNA Amerindian haplotypes were analyzed by high resolution restriction enzyme analyses, obtaining fragments between 121 and 186 base pairs (bp. Different analyses were performed following a strict control of authenticity criteria regarding laboratory conditions, including: positive and negative controls, reproducibility of results, and verification of particular characteristics present in ancient DNA. Results: Results obtained from the bone samples showed the exclusive presence of haplogroup A in the population studied. This data support the statement of the archaeologists of a single biological population in space and time. The distribution of this haplogroup in a 100% frequency supports the hypothesis of Chibcha genetic affiliation. Conclusion: The present study is a contribution to the study of genetic diversity in archaic American populations, allowing the integration of geographic and historic data with genetic characterization techniques associated with linguistic, ethnographic, and glottochronology patterns. Following the protocol proposed in the present study allows fulfilling authenticity criteria for ancient samples with the available techniques.

  18. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases.

    Science.gov (United States)

    Kan, I; Melamed, E; Offen, D

    2007-01-01

    Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.

  19. Characterization and localization of side population cells in the lens

    OpenAIRE

    Oka, Mikako; Toyoda, Chizuko; Kaneko, Yuka; Nakazawa, Yosuke; Aizu-Yokota, Eriko; Takehana, Makoto

    2010-01-01

    Purpose Side population (SP) cells were isolated and the possibility whether lens epithelial cells contain stem cells was investigated. Methods Mouse lens epithelial cells were stained by Hoechst 33342 and then sorted by fluorescence-activated cell sorting (FACS). The expression of stem cell markers in sorted SP cells and the main population of epithelial cells were analyzed by quantitative real-time PCR. Localization of SP cells in the mouse lens was studied by fluorescence microscopy. Resul...

  20. Perinatal stem cells: A promising cell resource for tissueengineering of craniofacial bone

    Institute of Scientific and Technical Information of China (English)

    Jia-Wen Si; Xu-Dong Wang; Steve GF Shen

    2015-01-01

    In facing the mounting clinical challenge and suboptimaltechniques of craniofacial bone defects resulting fromvarious conditions, such as congenital malformations,osteomyelitis, trauma and tumor resection, the ongoingresearch of regenerative medicine using stem cells andconcurrent advancement in biotechnology have shiftedthe focus from surgical reconstruction to a novel stemcell-based tissue engineering strategy for customizedand functional craniofacial bone regeneration. Given theunique ontogenetical and cell biological properties ofperinatal stem cells, emerging evidence has suggestedthese extraembryonic tissue-derived stem cells to be apromising cell source for extensive use in regenerativemedicine and tissue engineering. In this review, wesummarize the current achievements and obstaclesin stem cell-based craniofacial bone regeneration andsubsequently we address the characteristics of varioustypes of perinatal stem cells and their novel applicationin tissue engineering of craniofacial bone. We proposethe promising feasibility and scope of perinatal stemcell-based craniofacial bone tissue engineering for futureclinical application.

  1. Autologous bone marrow cell therapy for peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Botti C

    2012-09-01

    Full Text Available C Botti, C Maione, A Coppola, V Sica, G CobellisDepartment of General Pathology, Second University of Naples, Naples, ItalyAbstract: Inadequate blood supply to tissues caused by obstruction of arterioles and/or capillaries results in ischemic injuries – these injuries can range from mild (eg, leg ischemia to severe conditions (eg, myocardial infarction, stroke. Surgical and/or endovascular procedures provide cutting-edge treatment for patients with vascular disorders; however, a high percentage of patients are currently not treatable, owing to high operative risk or unfavorable vascular involvement. Therapeutic angiogenesis has recently emerged as a promising new therapy, promoting the formation of new blood vessels by the introduction of bone marrow–derived stem and progenitor cells. These cells participate in the development of new blood vessels, the enlargement of existing blood vessels, and sprouting new capillaries from existing blood vessels, providing evidence of the therapeutic utility of these cells in ischemic tissues. In this review, the authors describe peripheral arterial disease, an ischemic condition affecting the lower extremities, summarizing different aspects of vascular regeneration and discussing which and how stem cells restore the blood flow. The authors also present an overview of encouraging results from early-phase clinical trials using stem cells to treat peripheral arterial disease. The authors believe that additional research initiatives should be undertaken to better identify the nature of stem cells and that an intensive cooperation between laboratory and clinical investigators is needed to optimize the design of cell therapy trials and to maximize their scientific rigor. Only this will allow the results of these investigations to develop best clinical practices. Additionally, although a number of stem cell therapies exist, many treatments are performed outside international and national regulations and many

  2. β-Cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells

    OpenAIRE

    Anna Milanesi; Jang-Won Lee; Zhenhua Li; Stefano Da Sacco; Valentina Villani; Vanessa Cervantes; Laura Perin; Yu, John S.

    2012-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have been shown to ameliorate diabetes in animal models. The mechanism, however, remains largely unknown. An unanswered question is whether BMSCs are able to differentiate into β-cells in vivo, or whether BMSCs are able to mediate recovery and/or regeneration of endogenous β-cells. Here we examined these questions by testing the ability of hBMSCs genetically modified to transiently express vascular endothelial growth factor (VEGF) or pancreatic-duode...

  3. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  4. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Science.gov (United States)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal; Foldager, Casper Bindzus; Lysdahl, Helle; Kraft, David Christian Evar; Chen, Muwan; Baas, Jorgen; Le, Dang Quang Svend; Bünger, Cody Eric

    2016-01-01

    Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) – hyaluronic acid – tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT-PCL scaffolds; and (3) autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV) were assessed with micro-computed tomography (μCT) and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering. PMID:27163105

  5. Bone marrow concentrate for autologous transplantation in minipigs. Characterization and osteogenic potential of mesenchymal stem cells.

    Science.gov (United States)

    Herten, M; Grassmann, J P; Sager, M; Benga, L; Fischer, J C; Jäger, M; Betsch, M; Wild, M; Hakimi, M; Jungbluth, P

    2013-01-01

    Autologous bone marrow plays an increasing role in the treatment of bone, cartilage and tendon healing disorders. Cell-based therapies display promising results in the support of local regeneration, especially therapies using intra-operative one-step treatments with autologous progenitor cells. In the present study, bone marrow-derived cells were concentrated in a point-of-care device and investigated for their mesenchymal stem cell (MSC) characteristics and their osteogenic potential. Bone marrow was harvested from the iliac crest of 16 minipigs. The mononucleated cells (MNC) were concentrated by gradient density centrifugation, cultivated, characterized by flow cytometry and stimulated into osteoblasts, adipocytes, and chondrocytes. Cell differentiation was investigated by histological and immunohistological staining of relevant lineage markers. The proliferation capacity was determined via colony forming units of fibroblast and of osteogenic alkaline-phosphatase-positive-cells. The MNC could be enriched 3.5-fold in nucleated cell concentrate in comparison to bone marrow. Flow cytometry analysis revealed a positive signal for the MSC markers. Cells could be differentiated into the three lines confirming the MSC character. The cellular osteogenic potential correlated significantly with the percentage of newly formed bone in vivo in a porcine metaphyseal long-bone defect model. This study demonstrates that bone marrow concentrate from minipigs display cells with MSC character and their osteogenic differentiation potential can be used for osseous defect repair in autologous transplantations.

  6. Expression of human bone-related proteins in the hematopoietic microenvironment.

    OpenAIRE

    Long, M W; Williams, J.L.; Mann, K G

    1990-01-01

    Given the intimate relationship between bone and bone marrow, we hypothesized that the human bone marrow may function as a source (or reservoir) of bone-forming progenitor cells. We observed a population of cells within the bone marrow which produce bone-specific or bone-related proteins. The production of these proteins was developmentally regulated in human long-term bone marrow cell cultures; the bone protein-producing cells (BPPC) are observed under serum-free, short-term culture conditio...

  7. Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice.

    Science.gov (United States)

    Fujita, Ryo; Tamai, Katsuto; Aikawa, Eriko; Nimura, Keisuke; Ishino, Saki; Kikuchi, Yasushi; Kaneda, Yasufumi

    2015-03-01

    The physiological role of "endogenous" bone marrow (BM) mesenchymal stromal cells (MSCs) in tissue regeneration is poorly understood. Here, we show the significant contribution of unique endogenous BM-MSC populations to muscle regeneration in Duchenne muscular dystrophy (DMD) mice (mdx). Transplantation of BM cells (BMCs) from 10-week-old mdx into 3-4-week-old mdx mice increased inflammation and fibrosis and reduced muscle function compared with mdx mice that received BMCs from 10-week-old wild-type mice, suggesting that the alteration of BMC populations in mdx mice affects the progression of muscle pathology. Two distinct MSC populations in BM, that is, hematopoietic lineage (Lin)(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) cells, were significantly reduced in 10-week-old mdx mice in disease progression. The results of a whole-transcriptome analysis indicated that these two MSC populations have distinct gene expression profiles, indicating that the Lin(-) /ckit(-) /CD106(+) /CD44(+) and Lin(-) /ckit(-) /CD106(+) /CD44(-) MSC populations are proliferative- and dormant-state populations in BM, respectively. BM-derived Lin(-) /CD106(+) /CD44(+) MSCs abundantly migrated to damaged muscles and highly expressed tumor necrosis factor-alpha-stimulated gene/protein-6 (TSG-6), an anti-inflammatory protein, in damaged muscles. We also demonstrated that TSG-6 stimulated myoblast proliferation. The injection of Lin(-) /ckit(-) /CD106(+) /CD44(+) MSCs into the muscle of mdx mice successfully ameliorated muscle dysfunction by decreasing inflammation and enhancing muscle regeneration through TSG-6-mediated activities. Thus, we propose a novel function of the unique endogenous BM-MSC population, which countered muscle pathology progression in a DMD model.

  8. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Mina W. Morcos

    2015-01-01

    Full Text Available Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed.

  9. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  10. The Response of Human Mesenchymal Stem Cells to Osteogenic Signals and its Impact on Bone Tissue Engineering

    NARCIS (Netherlands)

    Siddappa, Ramakrishnaiah; Fernandes, Hugo; Liu, Jun; Blitterswijk, van Clemens; Boer, de Jan

    2007-01-01

    Bone tissue engineering using human mesenchymal stem cells (hMSCs) is a multidisciplinary field that aims to treat patients with trauma, spinal fusion and large bone defects. Cell-based bone tissue engineering encompasses the isolation of multipotent hMSCs from the bone marrow of the patient, in vit

  11. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  12. Argyrophilic nucleolar organiser region (AgNOR) staining in normal bone marrow cells.

    OpenAIRE

    Nikicicz, E P; Norback, D. H.

    1990-01-01

    Fifteen normal bone marrow aspirates were stained with the agyrophilic nucleolar organiser region (AgNOR) method. The results of the specific staining AgNORs as well as nuclear and cytoplasmic staining were analysed. A system was devised to characterise precisely the AgNORs present in the nuclei of bone marrow cells. Particular types of bone marrow cells had a characteristic AgNOR and non-AgNOR staining pattern. The bone marrow cells were identified easily and reliably with AgNOR staining and...

  13. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation.

    Science.gov (United States)

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; Gearhart, John D; Kerr, Candace L

    2011-02-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recombinant human BMP4 could influence EGC derivation and/or human PGC survival. We found that the addition of recombinant BMP4 increased the number of human PGCs after 1 week of culture in a dose-responsive manner. The efficiency of EGC derivation and maintenance in culture was also enhanced by the presence of recombinant BMP4 based on alkaline phosphatase and OCT4 staining. In addition, an antagonist of the BMP4 pathway, Noggin, decreased PGC proliferation and led to an increase in cystic embryoid body formation. Quantitative real-time (qRT)-polymerase chain reaction analyses and immunostaining confirmed that the constituents of the BMP4 pathway were upregulated in EGCs versus PGCs. Downstream activators of the BMP4 pathway such as ID1 and phosphorylated SMADs 1 and 5 were also expressed, suggesting a role of this growth factor in EGC pluripotency. PMID:20486775

  14. A Distinct Subpopulation of Bone Marrow Mesenchymal Stem Cells, Muse Cells, Directly Commit to the Replacement of Liver Components.

    Science.gov (United States)

    Katagiri, H; Kushida, Y; Nojima, M; Kuroda, Y; Wakao, S; Ishida, K; Endo, F; Kume, K; Takahara, T; Nitta, H; Tsuda, H; Dezawa, M; Nishizuka, S S

    2016-02-01

    Genotyping graft livers by short tandem repeats after human living-donor liver transplantation (n = 20) revealed the presence of recipient or chimeric genotype cases in hepatocytes (6 of 17, 35.3%), sinusoidal cells (18 of 18, 100%), cholangiocytes (15 of 17, 88.2%) and cells in the periportal areas (7 of 8, 87.5%), suggesting extrahepatic cell involvement in liver regeneration. Regarding extrahepatic origin, bone marrow mesenchymal stem cells (BM-MSCs) have been suggested to contribute to liver regeneration but compose a heterogeneous population. We focused on a more specific subpopulation (1-2% of BM-MSCs), called multilineage-differentiating stress-enduring (Muse) cells, for their ability to differentiate into liver-lineage cells and repair tissue. We generated a physical partial hepatectomy model in immunodeficient mice and injected green fluorescent protein (GFP)-labeled human BM-MSC Muse cells intravenously (n = 20). Immunohistochemistry, fluorescence in situ hybridization and species-specific polymerase chain reaction revealed that they integrated into regenerating areas and expressed liver progenitor markers during the early phase and then differentiated spontaneously into major liver components, including hepatocytes (≈74.3% of GFP-positive integrated Muse cells), cholangiocytes (≈17.7%), sinusoidal endothelial cells (≈2.0%), and Kupffer cells (≈6.0%). In contrast, the remaining cells in the BM-MSCs were not detected in the liver for up to 4 weeks. These results suggest that Muse cells are the predominant population of BM-MSCs that are capable of replacing major liver components during liver regeneration. PMID:26663569

  15. Bone Marrow-Derived Stem Cell Transplantation for the Treatment of Insulin-Dependent Diabetes

    OpenAIRE

    Fotino, Carmen; Ricordi, Camillo; Lauriola, Vincenzo; Alejandro, Rodolfo; Pileggi, Antonello

    2010-01-01

    The bone marrow is an invaluable source of adult pluripotent stem cells, as it gives rise to hematopoietic stem cells, endothelial progenitor cells, and mesenchymal cells, amongst others. The use of bone marrow-derived stem cell (BMC) transplantation (BMT) may be of assistance in achieving tissue repair and regeneration, as well as in modulating immune responses in the context of autoimmunity and transplantation. Ongoing clinical trials are evaluating the effects of BMC to preserve functiona...

  16. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  17. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    Science.gov (United States)

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size.

  18. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    Science.gov (United States)

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size. PMID:27643583

  19. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes

    Directory of Open Access Journals (Sweden)

    R d’Aquino

    2009-11-01

    Full Text Available In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs and a collagen sponge scaffold for oro-maxillo-facial (OMF bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.

  20. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  1. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  2. Cytokines inducing bone marrow SCA+ cells migration into pancreatic islet and conversion into insulin-positive cells in vivo.

    Directory of Open Access Journals (Sweden)

    LuGuang Luo

    Full Text Available We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP positive bone marrow donors. Sorted lineages of Mac-1(+, Mac-1(-, Sca(+, Sca(-, Sca(-/Mac-1(+ and Sca(+/Mac-1(- from GFP positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C promoter GFP (uGFP, with strong signal C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight weeks, migration of GFP positive donor' bone marrow to the recipient's pancreatic islets was evaluated as the percentage of positive GFP islets/total islets. The results show that the most effective migration comes from the Sca(+/Mac(- lineage and these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.

  3. ROLE OF MACROPHAGES IN REGULATION OF HEMATOPOIETIC STEM CELL MIGRATION IN BONE MARROW PERIPHERAL BLOOD SYSTEM

    Directory of Open Access Journals (Sweden)

    B. G. Yushkov

    2010-01-01

    Full Text Available Mechanisms by which HSCs mobilize into damaged organs are currently under scrutiny.Macrophage role in these processes is investigated. In this study, we performed a flow cytometry analysis ofCD117+CD38+ and CD117+CD90low HSCs quantity in murine peripheral blood and bone marrow after liverand kidney injury under stimulation of phagocyte mononuclear system by injection of tamerit. This study havedemonstrated increased levels of CD117+CD38+ HSCs in bone marrow after partial hepatectomy, along withtheir migration to peripheral blood in response to tamerit injection. We also demonstrated that peripheralblood CD117+CD38+ HSCs levels were elevated after kidney injury. After partial hepatectomy, nochangesof CD117+CD90low HSCs quantity in investigated tissues were detected. We observed increased number ofCD117+CD90low HSCs in murine blood following kidney injury. Thus, we observed different influence ofmacrophage stimulation on the quantity of CD117+CD38+ and CD117+CD90low cells. These data suggestthat HSCs mobilization from the bone marrow to peripheral blood depends, at least in part, on phagocytemononuclear system, and that macrophage stimulation is important for proliferation and migration of variousHSCs populations following liver and kidney injury.

  4. Adiponectin Promotes Human Jaw Bone Marrow Stem Cell Osteogenesis.

    Science.gov (United States)

    Pu, Y; Wu, H; Lu, S; Hu, H; Li, D; Wu, Y; Tang, Z

    2016-07-01

    Human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) are multipotent progenitor cells with osteogenic differentiation potential. The relationship between adiponectin (APN) and the metabolism of h-JBMMSCs has not been fully elucidated, and the underlying mechanism remains unclear. The aim of the study was to investigate the effect and mechanism of APN on h-JBMMSC metabolism. h-JBMMSCs were obtained from the primary culture of human jaw bones and treated with or without APN (1 µg/mL). Osteogenesis-related gene expression was evaluated by real-time polymerase chain reaction (PCR), alkaline phosphatase (ALP) activity assay, and enzyme-linked immunosorbent assay (ELISA). To further investigate the signaling pathway, mechanistic studies were performed using Western blotting, immunofluorescence, lentiviral transduction, and SB202190 (a specific p38 inhibitor). Alizarin Red staining showed that APN promoted h-JBMMSC osteogenesis. Real-time PCR, ALP assay, and ELISA showed that ALP, osteocalcin (OCN), osteopontin, and integrin-binding sialoprotein were up-regulated in APN-treated cells compared to untreated controls. Immunofluorescence revealed that adaptor protein containing a pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL1) translocated from the nucleus to the cytoplasm with APN treatment. Additionally, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) increased over time with APN treatment. Moreover, knockdown of APPL1 or p38 MAPK inhibition blocked the expression of APN-induced calcification-related genes including ALP, Runt-related transcription factor 2 (RUNX2), and OCN. Furthermore, Alizarin Red staining of calcium nodes was not increased by the knockdown of APPL1 or p38 inhibition. Our data suggest that this regulation is mediated through the APPL1-p38 MAPK signaling pathway. These findings collectively provide evidence that APN induces the osteogenesis of h-JBMMSCs through APPL1-mediated p38 MAPK activation

  5. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases.

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W; Efstathiou, Eleni; Li Ning Tapia, Elsa M; Tapia, Elsa M Li-Ning; Zurita, Amado J; Aparicio, Ana; Ravoori, Murali K; Vazquez, Elba S; Robinson, Dan R; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M; Logothetis, Christopher J; Navone, Nora M

    2014-09-01

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors.

  6. Treatment of severe post-traumatic bone defects with autologous stem cells loaded on allogeneic scaffolds.

    Science.gov (United States)

    Vulcano, Ettore; Murena, Luigi; Cherubino, Paolo; Falvo, Daniele A; Rossi, Antonio; Baj, Andreina; Toniolo, Antonio

    2012-12-01

    Mesenchymal stem cells may differentiate into angiogenic and osteoprogenitor cells. The effectiveness of autologous pluripotent mesenchymal cells for treating bone defects has not been investigated in humans. We present a case series to evaluate the rationale of using nucleated cells from autologous bone marrow aspirates in the treatment of severe bone defects that failed to respond to traditional treatments. Ten adult patients (mean age, 49.6-years-old) with severe bone defects were included in this study. Lower limb bone defects were >or=5 cm3 in size, and upper limb defects .or=2 cm3. Before surgery, patients were tested for antibodies to common pathogens. Treatment consisted of bone allogeneic scaffold enriched with bone marrow nucleated cells harvested from the iliac crest and concentrated using an FDA-approved device. Postsurgery clinical and radiographic follow-up was performed at 1, 3, 6, and 12 months. To assess viability, morphology, and immunophenotype, bone marrow nucleated cells were cultured in vitro, tested for sterility, and assayed for the possible replication of adventitious (contaminating) viruses. In 9 of 10 patients, both clinical and radiographic healing of the bone defect along with bone graft integration were observed (mean time, 5.6 months); one patient failed to respond. No post-operative complications were observed. Bone marrow nucleated cells were enriched 4.49-fold by a single concentration step, and these enriched cells were free of microbial contamination. The immunophenotype of adherent cells was compatible with that of mesenchymal stem cells. We detected the replication of Epstein-Barr virus in 2/10 bone marrow cell cultures tested. Hepatitis B virus, cytomegalovirus, parvovirus B19, and endogenous retrovirus HERV-K replication were not detected. Overall, 470 to 1,150 million nucleated cells were grafted into each patient. This case series, with a mean follow-up of almost 2 years, demonstrates that an allogeneic bone scaffold

  7. Endometrial regenerative cells: A novel stem cell population

    OpenAIRE

    Ge Wei; Wang Hao; Jackson James; Yin Zhenglian; Rogers Andrea; Zhong Jie; Ichim Thomas E; Meng Xiaolong; Bogin Vladimir; Chan Kyle W; Thébaud Bernard; Riordan Neil H

    2007-01-01

    Abstract Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. P...

  8. Perfusion Method for Intra-bone Marrow Collection and Stem Cell Transplantation: A Critical Review.

    Science.gov (United States)

    Korrapati, Narasimhulu; Nanganuru, Harikrishna Yadav

    2014-03-19

    A bone marrow transplant is a procedure to replace damaged or destroyed bone marrow with healthy bone marrow stem cells. Bone marrow is the soft, fatty tissue inside our bones. Bone marrow transplantation (BMT) is a powerful strategy for the treatment of leukemia, aplastic anemia, congenital immunodeficiency and autoimmune diseases. In humans, bone marrow cells (BMCs) have usually been collected by multiple bone marrow aspirations from the iliac crest. We have established a new "perfusion" method for collecting BMCs with minimal contamination with the peripheral blood using the long bones of cynomolgus monkeys. This method has proven to be a simple and safe method for harvesting BMCs and reduces the risk of acute graft versus host disease in allogeneic BMT. Intra-bone marrow-BMT (IBM-BMT) provides distinct advantages because it recruits donor-derived hematopoietic stem cells and mesenchymal stem cells. IBM-BMT has been shown to currently be the best strategy for allogeneic BMT. Here we review the perfusion method (for harvesting BMCs) and IBM-BMT (for their transplantation) and show that this combination will become a powerful new clinical strategy for allogeneic BMT.

  9. Langerhans' Cell Histiocytosis (Histiocytosis X) of the Temporal Bone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives Langerhans' Cell histiocytosis (LCH) is a rare disease, which remains poorly understood and whose cellular origin remains unknown. To increase understanding of temporal bone LCH, it is necessary to study recent advances in the diagnosis and treatment of this disease. Methods The long term(5 to 30 years) results of 21 temporal bone LCH cases treated between 1973 and 2003 were reviewed. Surgery, radiotherapy,pharmacologic therapy or a combination of these treatments were employed in these cases. Results Eighteen patients were cured (18/21, 85%). Six patients developed residual diabetes insipidus (DI) and dwarfism (28%).Three patients died (14%). Conclusions The Alessi classification system for LCH based on the extent of disease accurately predicts prognosis and is a useful guide in selecting treatment methodologies. X-ray, computed tomography and magnetic resonance imaging have proved useful in defining the extent of osseous and soft tissue diseases. Diagnosis of LCH is based on clinical presentations, radiographic findings and histopathological results.Surgery and radiotherapy are the main treatment modalities. Pharmacologic therapy should be used in patients with aggressive, disseminate, and refractory lesions. LCH has a predilection for children and prognosis depends on age and extent of vital organ involvement.

  10. A novel metric for bone marrow cells chromosome pairing.

    Science.gov (United States)

    Khmelinskii, Artem; Ventura, Rodrigo; Sanches, João

    2010-06-01

    Karyotyping is a set of procedures, in the scope of the cytogenetics, that produces a visual representation of the 46 chromosomes observed during the metaphase step of the cellular division, called mitosis, paired and arranged in decreasing order of size. Automatic pairing of bone marrow cells is a difficult task because these chromosomes appear distorted, overlapped, and their images are usually blurred with undefined edges and low level of detail. In this paper, a new metric is proposed to compare this type of chromosome images toward the design of an automatic pairing algorithm for leukemia diagnostic purposes. Besides the features used in the traditional karyotyping procedures, a new feature, based on mutual information , is proposed to increase the discriminate power of the G-banding pattern dissimilarity between chromosomes and improve the performance of the classifier. The pairing algorithm is formulated as a combinatorial optimization problem where the distances between homologous chromosomes are minimized and the distances between nonhomologous ones are maximized. The optimization task is solved by using an integer programming approach. A new bone marrow chromosome dataset--Lisbon-K1 (LK1) chromosome dataset with 9200 chromosomes---was build for this study. These chromosomes have much lower quality than the classic Copenhagen, Edinburgh, and Philadelphia datasets, and its classification and pairing is therefore more difficult. Experiments using real images from the LK(1) and Grisan et al. datasets based on a leave-one-out cross-validation strategy are performed to test and validate the pairing algorithm. PMID:20172790

  11. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    OpenAIRE

    Zhang, Jian; Lazarenko, Oxana P.; Blackburn, Michael L.; Badger, Thomas M.; Ronis, Martin J. J.; Chen, Jin-Ran

    2012-01-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16...

  12. Histological Regression of Giant Cell Tumor of Bone Following RANK Ligand Inhibition

    Directory of Open Access Journals (Sweden)

    Martin F. Dietrich MD, PhD

    2014-11-01

    Full Text Available Lung metastases are a rare complication of giant cell tumors of bone. We herein describe an interesting case of histological regression and size reduction of lung metastases originating from a primary giant cell tumor of bone in response to the RANK ligand inhibitor denosumab.

  13. Histological Regression of Giant Cell Tumor of Bone Following RANK Ligand Inhibition.

    Science.gov (United States)

    Dietrich, Martin F; Cavuoti, Dominick; Landay, Michael; Arriaga, Yull E

    2014-01-01

    Lung metastases are a rare complication of giant cell tumors of bone. We herein describe an interesting case of histological regression and size reduction of lung metastases originating from a primary giant cell tumor of bone in response to the RANK ligand inhibitor denosumab. PMID:26425630

  14. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  15. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity

    OpenAIRE

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E.; Franquesa, Marcella; Engela, Anja U; Korevaar, Sander S; Roelofs, Helene; Genever, Paul G; IJzermans, Jan NM; Betjes, Michiel GH; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J.

    2013-01-01

    Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral ...

  16. Haploidentical bone marrow transplantation without T-cell depletion.

    Science.gov (United States)

    Chang, Ying-Jun; Huang, Xiao-Jun

    2012-12-01

    Approaches for haploidentical bone marrow transplantation (BMT) without T-cell depletion have been designed using new transplant strategies, including anti-thymocyte globulin (ATG) preparative regimens, granulocyte colony-stimulating factor-primed grafts, post-transplantation rapamycin, or high-dose cyclophosphamide (Cy) in combination with other immunosuppressive agents for graft-versus-host disease (GVHD) prophylaxis. These strategies ensured fast hematologic engraftment across the human leukocyte antigen (HLA) barrier with an acceptable incidence of GVHD. Long-term follow-up results from different transplant centers suggest that unmanipulated transplantation may provide an alternative strategy in the haploidentical setting without requiring the technical expertise and cost of ex vivo T-cell depletion. This review discusses immune reconstitution and factors associated with clinical outcomes following unmanipulated haploidentical hematopoietic stem cell transplantation (HSCT), and compares outcomes between unmanipulated haploidentical transplant versus HLA-matched sibling donor (MSD) transplantation, HLA-matched unrelated donor (MUD) transplantation, or unrelated double umbilical cord blood (dUCB) transplantation. Advantages and disadvantages of unmanipulated haploidentical HSCT and strategies to improve outcome after haploidentical BMT without ex vivo T-cell depletion are discussed. PMID:23206842

  17. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  18. Absent or rare human immunodeficiency virus infection of bone marrow stem/progenitor cells in vivo.

    OpenAIRE

    Davis, B. R.; Schwartz, D H; Marx, J C; Johnson, C.E.; Berry, J. M.; Lyding, J; Merigan, T C; Zander, A

    1991-01-01

    An important question in human immunodeficiency virus (HIV) pathogenesis is whether HIV-infected bone marrow CD34+ stem/progenitor cells serve as a significant reservoir of virus in HIV-infected individuals. Our data indicate that infection of bone marrow stem/progenitor cells with HIV occurs rarely, if ever, in vivo. In the present study, CD34+ cells were immunomagnetically purified from the bone marrow of HIV-seropositive individuals, and purified cells or colony-forming cells of the granul...

  19. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  20. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  1. Biological Characteristics of Foam Cell Formation in Smooth Muscle Cells Derived from Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Pengke Yan, Chenglai Xia, Caiwen Duan, Shihuang Li, Zhengrong Mei

    2011-01-01

    Full Text Available Bone marrow mesenchymal stem cells (BMSC can differentiate into diverse cell types, including adipogenic, osteogenic, chondrogenic and myogenic lineages. There are lots of BMSC accumulated in atherosclerosis vessels and differentiate into VSMC. However, it is unclear whether VSMC originated from BMSC (BMSC-SMC could remodel the vessel in new tunica intima or promote the pathogenesis of atherosclerosis. In this study, BMSC were differentiated into VSMC in response to the transforming growth factor β (TGF-β and shown to express a number of VSMC markers, such as α-smooth muscle actin (α-SMA and smooth muscle myosin heavy chain1 (SM-MHC1. BMSC-SMC became foam cells after treatment with 80 mg/L ox-LDL for 72 hours. Ox-LDL could upregulate scavenger receptor class A (SR-A but downregulate the ATP-binding cassette transporter A1 (ABCA1 and caveolin-1 protein expression, suggesting that modulating relative protein activity contributes to smooth muscle foam cell formation in BMSC-SMC. Furthermore, we found that BMSC-SMC have some biological characteristics that are similar to VSMC, such as the ability of proliferation and secretion of extracellular matrix, but, at the same time, retain some biological characteristics of BMSC, such as a high level of migration. These results suggest that BMSC-SMC could be induced to foam cells and be involved in the development of atherosclerosis.

  2. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  3. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  4. Editorial: T cell memory, bone marrow, and aging: the good news

    OpenAIRE

    Effros, Rita B

    2012-01-01

    Discussion on the accumulating evidence that bone marrow in old age is not simply the place where immune cells are generated but the where certain memory cells selectively return to provide a set of distinct immune functions during old age.

  5. Human Dental Pulp-Derived Cells Produce Bone-Like Tissue and Exhibit Bone Cell-Like Responsiveness to Mechanical Loading

    DEFF Research Database (Denmark)

    Kraft, David Christian Evar; Melsen, Birte; Bindslev, Dorthe Arenholt

    2010-01-01

    architecture to the prevailing mechanical load and should be able to conduct bone cell-specific functions, such as bone remodeling. In vitro investigation of the responsiveness of different cell types to mechanical loading is so far a relative new research field. The aim of this study was to establish...... and characterize cell lines from human 3rd molar dental pulp tissue to determine whether human dental pulp-derived cells (DPCs) are osteogenic and responsive to mechanical loading by pulsating fluid flow (PFF) in vitro. Methods: Human DPCs used for this study were characterized by measuring proliferation......Recent studies have shown that dental pulp cells possess stem cell like potential and thus may be potential candidates for tissue engineering purposes particularly in the oro-facial region. Successful tissue engineering ideally requires that newly formed bone adapts its mass, shape, and trabecular...

  6. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  7. Engineered bone from bone marrow stromal cells: a structural study by an advanced x-ray microdiffraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Cedola, A [Istituto di Fotonica e Nanotecnologie-CNR, V Cineto Romano 42, 00156 Rome (Italy); Medical Physics Specialisation School, University of Milan (Italy); Mastrogiacomo, M [Dipartimento di Oncologia, Biologia e Genetica, Universita' di Genova, Istituto Nazionale per la Ricerca sul Cancro-Genova, Largo R. Benzi 10, 16132 Genova (Italy); Burghammer, M [ESRF, BP 220, F-38043 Grenoble Cedex (France); Komlev, V [INFM, Department of Sciences Applied to Complex Systems, Polytechnic University of Marche, Via Ranieri 65, I60131 Ancona (Italy); Institute for Physical Chemistry of Ceramics, Russian Academy of Science, Ozernaya 48, 119361 Moscow (Russian Federation); Giannoni, P [Biorigen Srl, Via Peschiera 16, 16122 Genova (Italy); Favia, A [Dipartimento di Anatomia Umana e Istologia, Universita degli Studi di Bari, P.le Giulio Cesare Policlinico, 70122 Bari (Italy); Cancedda, R [Dipartimento di Oncologia, Biologia e Genetica, Universita' di Genova, Istituto Nazionale per la Ricerca sul Cancro-Genova, Largo R. Benzi 10, 16132 Genova (Italy); Rustichelli, F [INFM, Department of Sciences Applied to Complex Systems, Polytechnic University of Marche, Via Ranieri 65, I60131 Ancona (Italy); Lagomarsino, S [Istituto di Fotonica e Nanotecnologie-CNR, V Cineto Romano 42, 00156 Rome (Italy); Medical Physics Specialisation School, University of Milan (Italy)

    2006-03-21

    The mechanism of mineralized matrix deposition was studied in a tissue engineering approach in which bone tissue is formed when porous ceramic constructs are loaded with bone marrow stromal cells and implanted in vivo. We investigated the local interaction between the mineral crystals of the engineered bone and the biomaterial by means of microdiffraction, using a set-up based on an x-ray waveguide. We demonstrated that the newly formed bone is well organized inside the scaffold pore, following the growth model of natural bone. Combining wide angle (WAXS) and small angle (SAXS) x-ray scattering with high spatial resolution, we were able to determine the orientation of the crystallographic c-axis inside the bone crystals, and the orientation of the mineral crystals and collagen micro-fibrils with respect to the scaffold. In this work we analysed six samples and for each of them two pores were studied in detail. Similar results were obtained in all cases but we report here only the most significant sample. (note)

  8. Development of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Wilairat Leeanansaksiri

    2013-01-01

    Full Text Available The aim of this study was to investigate physical and biological properties of collagen (COL and demineralized bone powder (DBP scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75–125 µm, 125–250 µm, and 250–500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells, osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250–500 mm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250–500 mm particle size could be considered a potential bone tissue engineering implant.

  9. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Ma, Dongyang [Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, BinHe 333 South Road, Lanzhou 730052 (China); Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Chen, Fulin, E-mail: chenfl@nwu.edu.cn [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China)

    2013-04-19

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.

  10. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype.

    NARCIS (Netherlands)

    Holtorf, H.L.; Jansen, J.A.; Mikos, A.G.

    2005-01-01

    Titanium fiber mesh scaffolds have been shown to be a suitable material for culture of primary marrow stromal cells in an effort to create tissue engineered constructs for bone tissue replacement. In native bone tissue, these cells are known to attach to extracellular matrix molecules via integrin r

  11. Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    XIANG Ying; ZHENG Qiang; JIA Bing-bing; HUANG Guo-ping; Xu Yu-lin; WANG Jin-fu; PAN Zhi-jun

    2007-01-01

    This study is aimed at investigating the potentials of ex vivo expansion and pluri-differentiation of cryopreservation of adult human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes, adipocytes and neurocytes. Cryopreserved hMSCs were resuscitated and cultured for 15 passages, and then induced into chondrocytes, adipocytes and neurocytes with corresponding induction medium. The induced cells were observed for morphological properties and detected for expressions of type II collagen, triglyceride or neuron-specific enolase and nestin. The result showed that the resuscitated cells could differentiate into chondrocytes after exposure to transforming growth factor β1 (TGF-β1), insulin-like growth factor I (IGF-I) and vitamin C (Vc), and uniformly changed morphologically from a spindle-like fibroblastic appearance to a polygonal shape in three weeks. The induced cells were heterochromatic to safranin O and expressed cartilage matrix-procollagenal (II) mRNA. The resuscitated cells cultured in induction medium consisting of dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin and IGF-I showed adipogenesis, and lipid vacuoles accumulation was detectable after 21 d. The resuscitated hMSCs were also induced into neurocytes and expressed nestin and neuron specific endolase (NSE) that were special surface markers associated with neural cells at different stage. This study suggested that the resuscitated hMSCs should be still a population of pluripotential cells and that it could be used for establishing an abundant hMSC reservoir for further experiment and treatment of various clinical diseases.

  12. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells.

    Science.gov (United States)

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2013-06-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16/p21 in bone. Feeding a diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only prior to puberty [postnatal day 21 (PND21) to PND34] prevents OVX-induced effects on expression of these molecules at PND68. In order to provide more evidence and gain a better understanding on the association between bone collagen matrix and resident bone cell fate, in vitro studies on the cellular senescence pathway using primary calvarial cells and three cell lines (ST2 cells, OB6, and MLO-Y4) were conducted. We found that senescence was inhibited by collagen in a dose-response manner. Treatment of cells with serum from OVX rats accelerated osteoblastic cell senescence pathways, but serum from BB-fed OVX rats had no effect. In the presence of low collagen or treatment with OVX rat serum, ST2 cells exhibited higher potential to differentiate into adipocytes. Finally, we demonstrated that bone cell senescence is associated with decreased Sirt1 expression and activated p53, p16, and p21. These results suggest that (1) a significant prevention of OVX-induced bone cell senescence from adult rats can occur after only 14 days consumption of a BB-containing diet immediately prior to puberty, and (2) the molecular mechanisms underlying this effect involves, at least in part, prevention of collagen degradation. PMID:22555620

  13. HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow

    Institute of Scientific and Technical Information of China (English)

    Mong-Liang; Chen; Kuan-Der; Lee; Huei-Chun; Huang; Yue-Lin; Tsai; Yi-Chieh; Wu; Tzer-Min; Kuo; Cheng-Po; Hu; Chungming; Chang

    2010-01-01

    AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like...

  14. Expansion of polyclonal B-cell precursors in bone marrow from children treated for acute lymphoblastic leukemia.

    Science.gov (United States)

    Duval, M; Fenneteau, O; Cave, H; Gobillot, C; Rohrlich, P; Guidal, C; Lescoeur, B; Legac, S; Schlegel, N; Sterkers, G; Vilmer, E

    1997-06-01

    In a series of 12 patients (mean age: 3 years at diagnosis) receiving chemotherapy for acute lymphoblastic leukemia, bone marrow examinations performed during hematopoietic recovery following treatment-induced agranulocytosis or completion of maintenance treatment showed at least 15% of non malignant immature cells which were sometimes hardly distinguishable from leukemic cells. No comparable data was observed in patients treated with G-CSF. The cytological features of these cells as well as their immunophenotyping were defined. Results showed that the majority of cells expressed HLA-DR, CD19, CD10 and cytoplasmic IgM but not the CD34 markers. This predominant and homogeneous pre-B cell population which likely represents the expansion of a minor population detectable in normal bone marrow is phenotypically indistinguishable from leukemic cells. The pattern of IgH gene rearrangements studied by PCR amplification of the CDRIII region showed that these cells were polyclonal. Except in one patient, minimal residual disease was not detected using probes specific for IgH or TCR gene rearrangement of the malignant clone. In children during the hematopoietic recovery after chemotherapy, immature marrow cells in great numbers, even with an highly homogeneous immunophenotype identical to the malignant clone's, are not sufficient for the diagnosis of relapse.

  15. Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Arca, Turkan; Genever, Paul [Department of Biology, University of York, York, YO10 5DD (United Kingdom); Proffitt, Joanne, E-mail: paul.genever@york.ac.uk [TSL Centre of Biologics, Covidien, Allerton Bywater, Castleford, WF10 2DB (United Kingdom)

    2011-04-15

    Bone matrix (BM) is an acellular crosslinked porcine-derived cancellous bone graft, and therefore may provide advantages over other synthetic and naturally derived materials for use in orthopaedic surgery. Here, we analysed the potential of BM to support the growth and differentiation of primary human multipotent stromal cells/mesenchymal stem cells (MSCs) in order to predict in vivo bone regeneration events. Imaging with laser scanning confocal microscopy and scanning electron microscopy showed that 1 day after static seeding, a dense population of viable MSCs could be achieved on scaffolds suggesting they could be used for in vivo delivery of cells to the implant site. Long-term growth analysis by confocal imaging and histology demonstrated that BM was permissive to the growth and the 3D population of primary MSCs and an enhanced green fluorescent protein expressing osteosarcoma cell line, eGFP.MG63s, over several days in culture. Measurement of alkaline phosphatase (ALP) activities and mRNA expression levels of osteogenic markers (Runx-2, ALP, collagen type I, osteonectin, osteocalcin and osteopontin) indicated that BM supported osteogenesis of MSCs when supplemented with osteogenic stimulants. Upregulation of some of these osteogenic markers on BM, but not on tissue culture plastic, under non-osteogenic conditions suggested that BM also had osteoinductive capacities.

  16. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    Science.gov (United States)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    Within experiments on rats simulating microgravity by base load remove from back limbs (duration of the experiment 1,5 months) on marrow stromal cells cultures (ex vivo, in vitro) comprising osteogenic cells-predecessors, extracted from femurs, studied their peculiarities of the colony formation ablity, the cell structure, some cytological and ultra-structural characteristics and differentiation direction. It was found that that under microgravity conditions there is a decline of the stromal cells colony formation intensity, decrease of the colonies size and cells mitotic activity that indicates decrease of their growth potential. Both in control and in experiment the colonies were presented by population of low-differentiated cells, differentiated cells and mature cells. The comparative cytological and morphometric analysis have shown that the studied stromal cells in colonies have the smaller sizes, more elongated shape, and higher nucleocytoplasmic ratio. Cells composition in the experiment colonies is reliably different by the ratio of the low-differentiating to being differentiated cells; a ratio of low-differentiated to already differentiated cells; ratio of differentiated cells to total number of all cells. In comparison with control group, amount of the cells passed trough a differentiation stage and mature cells in colonies is decreased by 3 to 4 times. Among the differentiated stromal cells in colonies increasing amount of adipocytes was revealed. The analysis of electron microscope microphotographs showed that in osteogenic cells differentiated under microgravity conditions, there is a reduction of the specific volume of a granular endoplasmic reticulum, Golgi's complex and quantity of nuclei reduction that indicates depression of the specific biosyntheses process intensity in cells. The increase of lysosomes and myelinic structures quantity is linked to organelles partial reduction. Consolidation of mitochondrias is an evidence of the cells’ energy

  17. Characterization of mesenchymal stem cells with in vivo bone forming capacity: "Bone building blocks"

    NARCIS (Netherlands)

    Prins, H.

    2011-01-01

    This thesis describes the investigation of the characteristics of cultured MSC with a special focus on the MSCs with in vivo bone forming capacity. The most relevant contributions of the work described in this thesis to the field of regenerative medicine, and bone tissue engineering research field i

  18. Biocompatibility Studies on Fibrin Glue Cultured with Bone Marrow Mesenchymal Stem Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    方煌; 彭松林; 陈安民; 黎逢峰; 任凯; 胡宁

    2004-01-01

    Summary: By culturing bone marrow mesenchymal stem cells of rabbits with fibrin glue in vitro,the biocompatibility of fibrin glue was investigated to study whether this material can be used as scaffolds in bone tissue engineering. After 2-months old New Zealand rabbits had been anesthetized, about 4-6 ml of bone marrow were aspirated from rabbit femoral trochanter. The monocytes suspension was aspirated after bone marrow was centrifuged with lymphocyte separating medium and cultured primarily. Then the cells were divided into two groups: one was cultured with complete medium and the other with induced medium. The cells of the two groups were collected and inoculated to the culture plate containing fibrin glue. In the control group, cells were inoculated without fibrin glue. The implanted cells and materials were observed at different stages under a phase-contrast microscope and scanning electron microscope. MTT and alkaline phosphatase (ALP) were measured. Bone marrow mesenchymal stem cells grew on the surface of fibrin glue and adhered to it gradually. Cells light absorption value (A value) and the ALP content showed no significant difference. Fibrin glue had no inhibitory effect on cell morphology, growth, proliferation and differentiation. It has good biocompatibility and can be used as scaffold materials for bone marrow mesenchymal stem cells in bone tissue engineering.

  19. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  20. Multivariate analysis of the sexual dimorphism of the hip bone in a modern human population and in early hominids.

    Science.gov (United States)

    Arsuaga, J L; Carretero, J M

    1994-02-01

    A large sample of hip bones of known sex coming from one modern population is studied morphologically and by multivariate analysis to investigate sexual dimorphism patterns. A principal component analysis of raw data shows that a large amount of the hip bone sexual dimorphism is accounted for by size differences, but that sex-linked shape variation is also very conspicuous and cannot be considered an allometric consequence of differences in body size between the sexes. The PCA of transformed ("shape") variables indicates that the female hip bones are different in those traits associated with a relatively larger pelvic inlet (longer pubic bones, a greater degree of curvature of the iliopectineal line, and more posterior position of the auricular surface), as well as a broader sciatic notch. The analysis of nonmetric traits also shows marked sexual dimorphism in the position of the sacroiliac joint in the iliac bone, in the shape of the sciatic notch, in pubic morphology, and in the presence of the pre-auricular sulcus in females. When the australopithecine AL 288-1 and Sts 14 hip bones are included in the multivariate analysis, they appear as "ultra-females." In particular these early hominids exhibit extraordinarily long pubic bones and iliopectineal lines, which cannot be explained by allometry. PMID:8147439

  1. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    Institute of Scientific and Technical Information of China (English)

    Bruno; C; Huber; Ulrich; Grabmaier; Stefan; Brunner

    2014-01-01

    Parathyroid hormone(PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.

  2. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration.

    Science.gov (United States)

    Huber, Bruno C; Grabmaier, Ulrich; Brunner, Stefan

    2014-11-26

    Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders. PMID:25426261

  3. Static magnetic fields aggravate the effects of ionizing radiation on cell cycle progression in bone marrow stem cells.

    Science.gov (United States)

    Sarvestani, Amir Sabet; Abdolmaleki, Parviz; Mowla, Seyed Javad; Ghanati, Faezeh; Heshmati, Emran; Tavasoli, Zeinab; Jahromi, Azadeh Manoochehri

    2010-02-01

    In order to evaluate the influence of static magnetic fields (SMF) on the progression of cell cycle as a monitor of presumptive genotoxicity of these fields, the effects of a 15 mT SMF on cell cycle progression in rat bone marrow stem cells (BMSC) were examined. The cells were divided into two groups. One group encountered SMF alone for 5h continuously but the other group exposed with X ray before treatment with SMF. The population of cells did not show any significant difference in the first group but the second group that was exposed with acute radiation before encountering SMF showed a significant increase in the number of cells in G(2)/M phase. So SMF has intensified the effects of X ray, where SMF alone, did not had any detectable influence on cell cycle. These findings suggest that magnetic fields (MF) play their role by increasing the effects of genotoxic agents and because of the greater concentration of free radicals in the presence of radical pair producers, this effect is better detectable. PMID:19926297

  4. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    Science.gov (United States)

    Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina

    2016-01-01

    Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003

  5. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Erika Evangelina Coronado-Cerda

    2016-01-01

    Full Text Available Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE or IMMUNEPOTENT CRP® (ICRP is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM, cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients.

  6. The Impact of Simulated and Real Microgravity on Bone Cells and Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claudia Ulbrich

    2014-01-01

    machine (RPM, the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS, formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.

  7. Langerhans cell histiocytosis of long bones: MR imaging and complete follow up study

    Directory of Open Access Journals (Sweden)

    Mohammad A Hashmi

    2012-01-01

    Full Text Available Langerhans cell histiocytosis (LCH is a relatively rare disease affecting the reticuloendothelial system in the pediatric age group. It can affect bones, lung, liver, spleen, lymph nodes and skin. MR imaging is particularly informative in diagnosis and management of bone LCH. In this report, we present the initial and 23 months post-treatment MR images of a femoral LCH lesion in a 12-year-old child to describe the role of MRI in bone LCH.

  8. High prevalence of side population in human cancer cell lines

    OpenAIRE

    Boesch, Maximilian; Zeimet, Alain G; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther; Sopper, Sieghart; Wolf, Dominik

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems.

  9. Preliminary Study on Biological Properties of Adult Human Bone Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    WU Tao; BAI Hai; WANG Jingchang; SHI Jingyun; WANG Cunbang; LU Jihong; OU Jianfeng; WANG Qian

    2006-01-01

    Objective: To establish a method of culture and expansion of adult human bone marrow-derived MSCs in vitro and to explore their biological properties. Methods: Mononuclear cells were obtained from 5 mL adult human bone marrow by density gradient centrifugation with Percoll solution. Adult human MSCs were cultured in Dulbecco's Modified Eagle's Medium with low glucose (LG-DMEM) containing 10% fetal calf serum at a density of 2× 105 cell/cm2. The morphocytology was observed under phase-contrast microscope. The cell growth was measured by MTT method. The flow cytometer was performed to examine the expression of cell surface molecules and cell cycle. The ultrastructure of MSCs was observed under transmission electron microscope. The immunomodulatory functions of MSCs were measured by MTT method. The effects of MSCs on the growth of K562 cells and the dynamic change of HA, Ⅳ-C, LN concentration in the culture supernatant of MSCs was also observed. Results: The MSCs harvested in this study were homogenous population and exhibited a spindle-shaped fibroblastic morphology. The cell growth curve showed that MSCs had a strong ability of proliferation. The cells were positive for CD44,while negative for hematopoietic cell surface marker such as CD3, CD4, CD7, CD13, CD14, CD15, CD19,CD22, CD33, CD34, CD45 and HLA-DR, which was closely related to graft versus host disease. Above 90% cells of MSCs were found at G0/G1 phase. The ultrastructure of MSCs indicated that there were plenty of cytoplasmic organelles. Allogeneic peripheral blood lymphocytes proliferation was suppressed by MSCs and the inhibition ratio was 60.68% (P<0.01). The suppressive effect was also existed in the culture supernatant of MSCs and the inhibition ratio was 9.00% (P<0.05). When lymphocytes were stimulated by PHA, the suppression effects of the culture supernatant were even stronger and the inhibition ratio was 20.91%(P<0.01). Compared with the cell growth curve of the K562 cells alone, the K562

  10. Osteoclast cytomorphometry demonstrates an abnormal population in B cell malignancies but not in multiple myeloma.

    Science.gov (United States)

    Chappard, D; Rossi, J F; Bataille, R; Alexandre, C

    1991-01-01

    Increased bone resorption in the vicinity of myeloma cells is mediated by local stimulating factors. Other malignancies of the B cell lineage are also able to produce resorbing factors responsible for increased bone resorption. We have studied three groups of subjects: 10 patients with overt multiple myeloma, 10 patients with a B cell malignancy, and 10 healthy human subjects as controls. Patients were studied at the time of diagnosis and had a transiliac bone biopsy. Osteoclasts were evident on histological sections by their acid phosphatase activity. A software was developed on an automatic image analyzer (Leitz TAS+) for measuring the maximal Feret's diameter (Oc.Le) of each osteoclast (corresponding to the osteoclast length). The histogram of Oc.Le frequency distribution was supplied in each group. In myeloma patients, the Oc.Le frequency distribution was similar to that in normal subjects and showed the histogram to be asymetric with a positive skew (maximum peak at 20-25 microns). With a graphical analysis, this distribution was shown to follow a lognormal distribution corresponding to a homogeneous osteoclast population. In other B cell malignancies, Oc.Le displayed a bimodal distribution with a peak at 20-25 microns and a lower peak at 10-15 microns. The graphical analysis showed that small (mononucleated?) osteoclasts are present in B cell malignancies with normal osteoclasts. This might reflect the secretion of different soluble factors by malignant cells of the B lymphocyte lineage. PMID:1706639

  11. [Therapeutic potential of bone marrow stem cells in cerebral infarction].

    Science.gov (United States)

    Sánchez-Cruz, Gilberto; Milián-Rodríguez, Lismary

    2015-05-16

    Introduccion. Las celulas madre constituyen una alternativa terapeutica que se encuentra en fase de experimentacion para el infarto cerebral. Objetivo. Mostrar la evidencia cientifica existente sobre el potencial terapeutico de las celulas madre de la medula osea en esta enfermedad. Desarrollo. El infarto cerebral representa el 80% de las enfermedades cerebrovasculares. La trombolisis constituye la unica terapia aprobada, pero, por su estrecha ventana terapeutica, solo se aplica a un bajo porcentaje de los pacientes. De manera alternativa, los tratamientos neurorrestauradores, como el de celulas madre, pueden aplicarse en periodos mas prolongados. Por esta razon se efectuo una busqueda bibliografica en PubMed con el empleo de las palabras clave 'stem cells', 'bone marrow derived mononuclear cells' y 'stroke'. Se encontraron evidencias de seguridad y eficacia de dichas celulas en diferentes momentos evolutivos del infarto cerebral. Se identificaron estudios que en clinica y preclinica las recolectaron por puncion medular y en sangre periferica, y las trasplantaron directamente en el area infartada o por via intravascular. El efecto terapeutico se relaciona con sus propiedades de plasticidad celular y liberacion de factores troficos. Conclusiones. El concentrado de celulas mononucleares autologas, obtenido en sangre periferica o por puncion de la medula osea, y trasplantado por via intravenosa, es una factible opcion metodologica que permitira rapidamente incrementar el numero de ensayos clinicos en diferentes etapas evolutivas del infarto cerebral. Esta terapia muestra seguridad y eficacia; sin embargo, deben ampliarse las evidencias que avalen su generalizacion en humanos.

  12. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  13. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  14. Population-based reference values for bone mineral density in young men

    DEFF Research Database (Denmark)

    Høiberg, M; Nielsen, Torben Leo; Wraae, K;

    2007-01-01

    SUMMARY: Population-based reference values for peak bone mass density in Danish men. BMD of total hip (1.078 +/- 0,14 g/cm2) differed significantly from values from National Health and Nutrition Examination Survey III and of total lumbar spine ((1.073 +/- 0.125 g/cm2) differed significantly from...... in the Odense Androgen Study (OAS). RESULTS: Peak BMD was attained within the third decade. Obesity (BMI > 30 kg/m2) was associated with higher BMD. Abuse of anabolic steroids as well as chronic illness was associated with lower BMD. Our population-based reference values for BMD of the total hip (1.078 +/- 0.......14 g/cm2) differed significantly from published values from National Health and Nutrition Examination Survey III for non-Hispanic white men, while BMD of total lumbar spine (1.073 +/- 0.125 g/cm2) differed significantly from Hologic reference values. CONCLUSIONS: Locally derived reference values...

  15. Selective Retention of Bone Marrow-Derived Cells to Enhance Spinal Fusion

    OpenAIRE

    Muschler, George F.; Matsukura, Yoichi; Nitto, Hironori; Boehm, Cynthia A.; Valdevit, Antonio D.; Kambic, Helen E.; Davros, William J.; Easley, Kirk A.; Powell, Kimerly A.

    2005-01-01

    Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal ...

  16. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    OpenAIRE

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was...

  17. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!

    OpenAIRE

    Borlongan, CV

    2011-01-01

    Mobilizing bone cells to the head, astutely referred to as ‘bonehead’ therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies imp...

  18. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche

    OpenAIRE

    Méndez-Ferrer, Simón; Michurina, Tatyana V.; Ferraro, Francesca; Amin R Mazloom; MacArthur, Ben D; Lira, Sergio A.; Scadden, David T.; Ma’ayan, Avi; Enikolopov, Grigori N.; Frenette, Paul S.

    2010-01-01

    The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial tr...

  19. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  20. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers.

    Science.gov (United States)

    Muralidharan, Sujatha; Sasi, Sharath P; Zuriaga, Maria A; Hirschi, Karen K; Porada, Christopher D; Coleman, Matthew A; Walsh, Kenneth X; Yan, Xinhua; Goukassian, David A

    2015-01-01

    Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM), the site in the body where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long-term damage to hematopoietic cells in the BM niche. We report here that low-dose (1)H- and (56)Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after exposure. Both (1)H- and (56)Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate that low doses of (1)H- and (56)Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders, and these findings warrant further mechanistic studies into the effects of low-dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency. PMID:26528440

  1. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation.

    Science.gov (United States)

    Attar-Schneider, Oshrat; Zismanov, Victoria; Dabbah, Mahmoud; Tartakover-Matalon, Shelly; Drucker, Liat; Lishner, Michael

    2016-09-01

    Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc. PMID:26293751

  2. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers

    Directory of Open Access Journals (Sweden)

    Sujatha eMuralidharan

    2015-10-01

    Full Text Available Exposure of individuals to ionizing radiation (IR, as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM, the site in the body where hematopoietic stem cell (HSC self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low dose IR, including irradiation by high-charge and high-energy particles (HZE. Low dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long term damage to hematopoietic cells in the BM niche. We report here that low dose 1H- and 56Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively cell numbers in mouse BM over a period of up to 10 months after exposure. Both 1H- and 56Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog and Oct-4 in Late-MPPs 2 and 10 months post-IR exposure. We postulate that low doses of 1H- and 56Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype; IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders and these findings warrant further mechanistic studies into the effects of low dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency.

  3. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yun Huang; Mingnan Lu; Weitao Guo; Rong Zeng; Bin Wang; Huaibo Wang

    2013-01-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.

  4. Endothelial cells influence the osteogenic potential of bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Arvidson Kristina

    2009-11-01

    Full Text Available Abstract Background Improved understanding of the interactions between bone cells and endothelial cells involved in osteogenesis should aid the development of new strategies for bone tissue engineering. The aim of the present study was to determine whether direct communication between bone marrow stromal cells (MSC and human umbilical vein endothelial cells (EC could influence the osteogenic potential of MSC in osteogenic factor-free medium. Methods After adding EC to MSC in a direct-contact system, cell viability and morphology were investigated with the WST assay and immnostaining. The effects on osteogenic differentiation of adding EC to MSC was systematically tested by the using Superarray assay and results were confirmed with real-time PCR. Results Five days after the addition of EC to MSC in a ratio of 1:5 (EC/MSC significant increases in cell proliferation and cellular bridges between the two cell types were detected, as well as increased mRNA expression of alkaline phosphatase (ALP. This effect was greater than that seen with addition of osteogenic factors such as dexamethasone, ascorbic acid and β-glycerophosphate to the culture medium. The expression of transcription factor Runx2 was enhanced in MSC incubated with osteogenic stimulatory medium, but was not influenced by induction with EC. The expression of Collagen type I was not influenced by EC but the cells grown in the osteogenic factor-free medium exhibited higher expression than those cultured with osteogenic stimulatory medium. Conclusion These results show that co-culturing of EC and MSC for 5 days influences osteogenic differentiation of MSC, an effect that might be independent of Runx2, and enhances the production of ALP by MSC.

  5. Effect of Sodium Arsenite on Rat Bone Marrow Mesenchymal Stem Cells: Cells Viability and Morphological Study

    Directory of Open Access Journals (Sweden)

    M.H. Abnosi

    2010-07-01

    Full Text Available Introduction & Objective: Sodium arsenite as an environmental pollutant being found in the air, water, and earth crust threats the human beings' health. The aim of this study was to investigate the effect of sodium arsenite on viability and morphology of mesenchymal stem cells in rat bone marrow.Materials & Methods: In this exprimental study the cells were extracted in DMEM containing 15% FBS and Pen/Strep until the 3rd passage then treated with 0, 0.1, 0.5, 2.5, 12.5 and 20 µM of sodium arsenite for 12, 24, 36 and 48 hrs. Viability of the cells was carried out with trypan blue and MTT staining, then 0.1 µM and 36 hrs treatment was selected for further investigations. Morphology of the cells was studied using fluorescent dye (Hochest, propidium iodide and acridine orange as well as protein profile of the cells were studied using SDS-PAGE. Data was analyzed using one and two way ANOVA.Results: Based on the two way ANOVA, cumulative effect of treatment time and used dosage caused highly significant reduction (p<0.001 in viability of rat bone marrow mesenchymal stem cells. One way ANOVA indicated that the viability of the cells reduced significantly (p<0.05 from 0.1 µM of sodium arsenite on wards in all the treatment time. Morphological changes including condensation and deformation of the nuclei, membrane disruption, and shrinkage of cytoplasm were also observed. Conclusion: Sodium arsenite toxicity caused morphological and protein profile changes as well as dose and time dependent reduction in viability of rat bone marrow mesenchymal stem cells.

  6. Cardiac differentiation and electrophysiology characteristics of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-wu; AI Shi-yi; L(U) An-lin; HOU Jing; HUANG Wei; LI Yao; HOU Zhao-lei; HOU Hong; DA Jing; YANG Na

    2012-01-01

    Objective To review the progress of cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells.Data sources The databases of PubMed,Springer Link,Science Direct and CNKI were retrieved for papers published from January 2000 to January 2012 with the key words of “bone marrow mesenchymal stem cells,cardiac or heart,electrophysiology or electrophysiological characteristics”.Study selection The articles concerned cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells were collected.After excluding papers that study purposes are not coincident with this review or contents duplicated,56 papers were internalized at last.Results For the treatment of myocardial infarction and myocardiac disease,the therapeutic effects of transplantation of bone marrow mesenchymal stem cells which have the ability to develop into functional myocardial cells by lots of methods have been proved by many researches.But the arrhythmogenic effect on ventricles affer transplantation of bone marrow mesenchymal stem cells derived myocardial cells is still controversial in animal models.Certainly,the low differentiation efficiency and heterogeneous development of electricial function could be the most important risk for proarrhythmia.Conclusion Many studies of cardiac differentiation of bone marrow mesenchymal stem cells have paid attention to improve the cardiac differentiation rate,and the electrophysiology characteristics of the differentiated cells should be concerned for the risk for proarrhythmia as well.

  7. Large-scale gene expression profiling data of bone marrow stromal cells from osteoarthritic donors.

    Science.gov (United States)

    Stiehler, Maik; Rauh, Juliane; Bünger, Cody; Jacobi, Angela; Vater, Corina; Schildberg, Theresa; Liebers, Cornelia; Günther, Klaus-Peter; Bretschneider, Henriette

    2016-09-01

    This data article contains data related to the research article entitled, "in vitro characterization of bone marrow stromal cells from osteoarthritic donors" [1]. Osteoarthritis (OA) represents the main indication for total joint arthroplasty and is one of the most frequent degenerative joint disorders. However, the exact etiology of OA remains unknown. Bone marrow stromal cells (BMSCs) can be easily isolated from bone marrow aspirates and provide an excellent source of progenitor cells. The data shows the identification of pivotal genes and pathways involved in osteoarthritis by comparing gene expression patterns of BMSCs from osteoarthritic versus healthy donors using an array-based approach.

  8. 2012478 Biological characteristics of bone marrow mesenchymal stem cells and JAK2 mutation in myeloproliferative neoplasms

    Institute of Scientific and Technical Information of China (English)

    田竑

    2012-01-01

    Objective To study the biological characteristics of bone marrow mesenchymal stem cells(BMSCs) and detect JAK2 mutation in BMSCs from myeloproliferative neoplasms(MPN) patients. Methods JAK2 V617F mutation and exon 12 mutation in 70 MPN patients’ blood or bone marrow samples were detected.

  9. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2

    DEFF Research Database (Denmark)

    Zou, Xuenong; Li, Haisheng; Chen, Li;

    2004-01-01

    In the interest of optimizing osteogenesis in in vitro, the present study sought to determine how porcine bone marrow stromal cell (BMSc) would respond to different concentrations of hyaluronan (HY) and its different combinations with dexamethasone (Dex) and recombinant human bone morphogenic pro...

  10. The role of bone scintigraphy in Langerhans' cell histiocytosis; a case report

    International Nuclear Information System (INIS)

    We present one case of bone-Langerhans cell histiocytosis in a three-year-old male child presenting osseous lesions in the skull and the femur, which are very frequent localizations in histiocytosis. Bone scintigraphy is useful for both initial staging and follow-up associated with other imaging modalities. (authors)

  11. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy.

    Directory of Open Access Journals (Sweden)

    Guang Yang

    Full Text Available The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01, 1.23-fold (p < 0.01, and 2.13-fold (p < 0.001, respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01 in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.

  12. B cell-autonomous somatic mutation deficit following bone marrow transplant

    NARCIS (Netherlands)

    Glas, A.M.

    2000-01-01

    The bone marrow is the major haematopoietic organ and is critically involved in the production of all formed blood elements in postnatal life. The bone marrow contains rapidly dividing cells and therefore is sensitive to DNA damaging agents. In certain types of cancers where a high dose of radiation

  13. Three-Dimensional Cancer-Bone Metastasis Model Using Ex-Vivo Co-Cultures of Live Calvarial Bones and Cancer Cells

    OpenAIRE

    Curtin, Paul; Youm, Helen; Salih, Erdjan

    2011-01-01

    One of the major limitations of studying cancer-bone metastasis has been the lack of an appropriate ex-vivo model which can be used under defined conditions that simulates closely the in vivo live bone microenvironment in response to cancer-bone interactions. We have developed and utilized a three-dimensional (3D) cancer-bone metastasis model using free floating live mouse calvarial bone organs in the presence of cancer cells in a roller-tube system. In such co-cultures under hypoxia and a sp...

  14. Identification of molecular markers related to human alveolar bone cells and pathway analysis in diabetic patients.

    Science.gov (United States)

    Sun, X; Ren, Q H; Bai, L; Feng, Q

    2015-10-28

    Alveolar bone osteoblasts are widely used in dental and related research. They are easily affected by systemic diseases such as diabetes. However, the mechanism of diabetes-induced alveolar bone absorption remains unclear. This study systematically explored the changes in human alveolar bone cell-related gene expression and biological pathways, which may facilitate the investigation of its mechanism. Alveolar bone osteoblasts isolated from 5 male diabetics and 5 male healthy adults were cultured. Total RNA was extracted from these cells and subjected to gene microarray analysis. Differentially expressed genes were screened, and a gene interaction network was constructed. An enrichment pathway analysis was simultaneously performed on differentially expressed genes to identify the biological pathways associated with changes in the alveolar bone cells of diabetic humans. In total, we identified 147 mRNAs that were differentially expressed in diabetic alveolar bone cells (than in the normal cells; 91 upregulated and 36 downregulated mRNAs). The constructed co-expression network showed 3 pairs of significantly-expressed genes. High-enrichment pathway analysis identified 8 pathways that were affected by changes in gene expression; three of the significant pathways were related to metabolism (inositol phosphate metabolism, propanoate metabolism, and pyruvate metabolism). Here, we identified a few potential genes and biological pathways for the diagnosis and treatment of alveolar bone cells in diabetic patients.

  15. Osteogenic Potential of Multipotent Adult Progenitor Cells for Calvaria Bone Regeneration

    Science.gov (United States)

    Lee, Dong Joon; Park, Yonsil; Hu, Wei-Shou; Ko, Ching-Chang

    2016-01-01

    Osteogenic cells derived from rat multipotent adult progenitor cells (rMAPCs) were investigated for their potential use in bone regeneration. rMAPCs are adult stem cells derived from bone marrow that have a high proliferation capacity and the differentiation potential to multiple lineages. They may also offer immunomodulatory properties favorable for applications for regenerative medicine. rMAPCs were cultivated as single cells or as 3D aggregates in osteogenic media for up to 38 days, and their differentiation to bone lineage was then assessed by immunostaining of osteocalcin and collagen type I and by mineralization assays. The capability of rMAPCs in facilitating bone regeneration was evaluated in vivo by the direct implantation of multipotent adult progenitor cell (MAPC) aggregates in rat calvarial defects. Bone regeneration was examined radiographically, histologically, and histomorphometrically. Results showed that rMAPCs successfully differentiated into osteogenic lineage by demonstrating mineralized extracellular matrix formation in vitro and induced new bone formation by the effect of rMAPC aggregates in vivo. These outcomes confirm that rMAPCs have a good osteogenic potential and provide insights into rMAPCs as a novel adult stem cell source for bone regeneration. PMID:27239552

  16. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice.

    Science.gov (United States)

    Filip, Stanislav; Mokrý, Jaroslav; Vávrová, Jiřina; Sinkorová, Zuzana; Mičuda, Stanislav; Sponer, Pavel; Filipová, Alžběta; Hrebíková, Hana; Dayanithi, Govindan

    2014-05-01

    Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.

  17. Local transplantation of ex vivo expanded bone marrow-derived CD34-positive cells accelerates fracture healing.

    Science.gov (United States)

    Kawakami, Yohei; Ii, Masaaki; Alev, Cantas; Kawamoto, Atsuhiko; Matsumoto, Tomoyuki; Kuroda, Ryosuke; Shoji, Taro; Fukui, Tomoaki; Masuda, Haruchika; Akimaru, Hiroshi; Mifune, Yutaka; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Kurosaka, Masahiro; Asahara, Takayuki

    2012-01-01

    Transplantation of bone marrow (BM) CD34(+) cells, an endothelial/hematopoietic progenitor-enriched cell population, has shown therapeutic efficiency in the treatment of ischemic diseases enhancing neovascularization. However, the number of CD34(+) cells obtained from bone marrow is not sufficient for routine clinical application. To overcome this issue, we developed a more efficient and clinically applicable CD34(+) cell expansion method. Seven-day ex vivo expansion culture of BM CD34(+) cells with a cocktail of five growth factors containing VEGF, SCF, IL-6, Flt-3 ligand, and TPO resulted in reproducible more than 20-fold increase in cell number. The favorable effect of the local transplantation of culture expanded (cEx)-BM CD34(+) cells on rat unhealing fractures was equivalent or higher than that of nonexpanded (fresh) BM CD34(+) cells exhibiting sufficient therapeutic outcome with frequent vasculogenic/osteogenic differentiation of transplanted cEx-BM CD34(+) cells and fresh BM CD34(+) cells as well as intrinsic enhancement of angiogenesis/osteogenesis at the treated fracture sites. Specifically, cEx-BM CD34(+) cell treatment demonstrated the best blood flow recovery at fracture sites compared with the nonexpanded BM CD34(+) cells. In vitro, cEx-BM CD34(+) cells showed higher colony/tube-forming capacity than nonexpanded BM CD34(+) cells. Both cells demonstrated differentiation potential into osteoblasts. Since fresh BM CD34(+) cells can be easily collected from fracture sites at the time of primary operation and stored for future use, autologous cEx-BM CD34(+) cell transplantation would be not only a simple but also a promising therapeutic strategy for unhealing fractures in the field of orthopedic trauma surgery.

  18. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Jian-xiong Yu

    2016-01-01

    Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stron-ger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we ifrst isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by lfow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells signiifcantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more signiifcant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.

  19. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    DEFF Research Database (Denmark)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal;

    2016-01-01

    INTRODUCTION: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs) was compared with that of dental pulp-derived stromal cells (DPSCs) in vitro and in a pig calvaria critical-size bone defect model. METHODS: BMSCs and DPSCs were extracted from the tibia bone mar...

  20. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    OpenAIRE

    Dequan Li; Cong Wang; Chuang Chi; Yuanyuan Wang; Jing Zhao; Jun Fang; Jingye Pan

    2016-01-01

    Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA) to assess the a...

  1. Crosstalk between Metastatic Cancer Cells and Bone Microenvironments

    Institute of Scientific and Technical Information of China (English)

    Toshiyuki YONEDA

    2009-01-01

    @@ Bone is one of the most preferential target sites for cancers such as breast, prostate and lung cancers to metastasize. Although the mechanism under-lying this organ preference still needs to be elucidated, observations that specific inhibitors of osteoclasts such as bisphosphonates inhibit bone metastases suggest a critical role of osteoclasts.

  2. Transfer of experimental allergic encephalomyelitis to bone marrow chimeras. Endothelial cells are not a restricting element

    International Nuclear Information System (INIS)

    The adoptive transfer of clinical and histopathologic signs of experimental allergic encephalomyelitis (EAE) requires MHC compatibility between cell donor and cell recipient. The results of adoptive transfer studies using F1 to parent bone marrow chimeras as recipients of parental-derived BP-sensitive spleen cells indicate that this restriction is not expressed at the level of the endothelial cell but is confined to the cells of bone marrow derivation. Furthermore, these results indicate that the development of EAE is not dependent on the activity of MHC-restricted cytotoxic cells

  3. Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by {sup 99m}Tc-MDP bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shunfang [Department of Nuclear Medicine, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China)], E-mail: yzyg@sh163.net; Dong Qianggang [Laboratory of Mol-diagnosis, Shanghai Cancer Institute of Shanghai Jiaotong University, Shanghai 200032 (China); Yao Ming [Laboratory of Pathology, Shanghai Cancer Institute of Shanghai Jiaotong University, Shanghai 200032 (China); Shi Meiping [Department of Pathology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Ye Jianding [Department of Radiology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Zhao Langxiang [Department of Pathology, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Su Jianzhong; Gu Weiyong [Shanghai Thoracic Tumor Institute, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Xie Wenhui [Department of Nuclear Medicine, Shanghai Chest Hospital of Shanghai Jiaotong University, Shanghai 200030 (China); Wang Kankan; Du Yanzhi [State Key Laboratory of Medical Genomics, Ruijin Hospital of Shanghai Jiaotong University, Shanghai 200025 (China); Li Yao [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China); Huang Yan [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433 (China)], E-mail: huangyan@fudan.edu.cn

    2009-04-15

    Background: Bone metastasis is one of the most common clinical phenomena of late stage lung cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal and cell model. This study aims to establish human lung adenocarcinoma cell line with highly bone metastases potency with {sup 99m}Tc-MDP bone scintigraphy. Methods: The human lung adenocarcinoma cancer cells SPC-A-1 were injected into the left cardiac ventricle of NIH-Beige-Nude-XID (NIH-BNX) immunodeficient mice. The metastatic lesions of tumor-bearing mice were imaged with {sup 99m}Tc-MDP bone scintigraphy on a Siemens multi-single photon emission computed tomography. Pinhole images were acquired on a GZ-B conventional gamma camera with a self-designed pinhole collimator. The mice with bone metastasis were sacrificed under deep anesthesia, and the lesions were resected. Bone metastatic cancer cells in the resected lesions were subjected for culture and then reinoculated into the NIH-BNX mice through left cardiac ventricle. The process was repeated for eight cycles to obtain a novel cell subline SPC-A-1BM. Real-time polymerase chain reaction (PCR) was used to compare the gene expression differences in the parental and SPC-A-1BM cells. Results: The bone metastasis sites were successfully revealed by bone scintigraphy. The established bone metastasis cell line SPC-A-1BM had a high potential to metastasize in bone, including mandible, humerus, thoracic vertebra, lumbar, femur, patella, ilium and cartilage rib. The expression level of vascular endothelial growth factor gene family, Bcl-2 and cell adhesion-related genes ECM1, ESM1, AF1Q, SERPINE2 and FN1 were examined. Gene expression difference was found between parental and bone-seeking metastasis cell SPC-A-1BM, which indicates SPC-A-1BM has metastatic capacity vs. its parental cells. Conclusion: SPC-A-1BM is a bone-seeking metastasis human lung adenocarcinoma cell line. Bone scintigraphy may be used as

  4. Contributions to the genetic and mean bone-marrow doses of the Australian population from radiological procedures

    International Nuclear Information System (INIS)

    The results of a national survey of radiological procedures used for diagnosis and therapy in medicine, dentistry and chiropracty are reviewed. Statistical data for the distribution and frequency of various procedures in Australian hospitals and practices are summarised, together with their associated radiation doses. Annual genetically significant and mean bone-marrow doses to the Australian population arising from these procedures are derived for the survey year of 1970. Values of 176 microgray and 651 microgray for the annual (per capita) genetic and mean bone-marrow doses respectively are reported. These compare closely with corresponding estimates in other countries with similar medical practices to those in Australia

  5. Associations between serum 25-hydroxyvitamin D and bone turnover markers in a population based sample of German children

    OpenAIRE

    Thiering, E.; Brüske, I.; Kratzsch, J.; Hofbauer, L C; Berdel, D; von Berg, A.; Lehmann, I.; Hoffmann, B.; Bauer, C. P.; Koletzko, S.; Heinrich, J.

    2015-01-01

    Severe vitamin D deficiency is known to cause rickets, however epidemiological studies and RCTs did not reveal conclusive associations for other parameters of bone health. In our study, we aimed to investigate the association between serum levels of 25(OH) vitamin D and bone turnover markers in a population-based sample of children. 25(OH)D, calcium (Ca), osteocalcin (OC), and β-Crosslaps (β-CTx) were measured in 2798 ten-year-old children from the German birth cohorts GINIplus and LISAplus. ...

  6. Targeting of αv-Integrins in Stem/Progenitor Cells and Supportive Microenvironment Impairs Bone Metastasis in Human Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Geertje van der Horst

    2011-06-01

    Full Text Available Acquisition of an invasive phenotype by cancer cells is a requirement for bone metastasis. Transformed epithelial cells can switch to a motile, mesenchymal phenotype by epithelial-mesenchymal transition (EMT. Recently, it has been shown that EMT is functionally linked to prostate cancer stem cells, which are not only critically involved in prostate cancer maintenance but also in bone metastasis. We showed that treatment with the non-peptide αv-integrin antagonist GLPG0187 dose-dependently increased the E-cadherin/vimentin ratio, rendering the cells a more epithelial, sessile phenotype. In addition, GLPG0187 dose-dependently diminished the size of the aldehyde dehydrogenase high subpopulation of prostate cancer cells, suggesting that αv-integrin plays an important role in maintaining the prostate cancer stem/progenitor pool. Our data show that GLPG0187 is a potent inhibitor of osteoclastic bone resorption and angiogenesis in vitro and in vivo. Real-time bioluminescent imaging in preclinical models of prostate cancer demonstrated that blocking αv-integrins by GLPG0187 markedly reduced their metastatic tumor growth according to preventive and curative protocols. Bone tumor burden was significantly lower in the preventive protocol. In addition, the number of bone metastases/mouse was significantly inhibited. In the curative protocol, the progression of bone metastases and the formation of new bone metastases during the treatment period was significantly inhibited. In conclusion, we demonstrate that targeting of integrins by GLPG0187 can inhibit the de novo formation and progression of bone metastases in prostate cancer by antitumor (including inhibition of EMT and the size of the prostate cancer stem cell population, antiresorptive, and antiangiogenic mechanisms.

  7. The Effect of Deproteinized Bovine Bone Mineral on Saos-2 Cell Proliferation

    Science.gov (United States)

    Khojasteh, Arash; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Eslami, Mohammad; Motahhary, Pourya; Morad, Golnaz; Shidfar, Shireen

    2013-01-01

    Introduction Deproteinized bovine bone mineral (Bio-Oss) is a xenogenic bone substitute, widely used in maxillofacial bone regeneration. The aim of this in vitro study was to investigate its influence on the growth behavior of human osteosarcoma cell line, Saos-2 culture, and compare it with the physiologic dose of Dexamethasone, an inductive factor for osteoblasts. Materials and Methods Human osteosarcoma cells, Saos-2, were cultured on Bio-Oss and their growth rate was compared to Saos-2 cultures treated with Dexamethasone 10-7 M in contrast to cells cultivated in PBS, in the control group. Assessment of proliferation was performed after 24, 36, and 48 hours by counting cells using trypan blue exclusion method. Alkaline phosphatase was measured spectrophotometrically at 405 nm with paranitrophenol buffer. Results After 48 hours, the number of Saos-2 cells increased significantly when subcultured with Bio-Oss. Bio-Oss was more effective on the enhancement of proliferation of Saos-2 cells when compared to the physiologic dose of Dexamethasone (P<0.05). Alkaline phosphatase activity increased in cells grown on Bio-Oss and dexamethasone 10-7 M in contrast to cells cultivated in PBS control group. The greatest level of activity was observed in the group containing Bio-Oss after 48 hour. Conclusion The significant increase of cell proliferation and alkaline phosphatase activity in cells cultured on Bio-Oss, compared to Dexamethasone-treated cells, suggests the important role of this bone substitute in promoting bone regeneration. PMID:23922573

  8. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    Science.gov (United States)

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs.

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  10. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  11. Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Pei-xun Zhang; Xiao-rui Jiang; Lei Wang; Fang-min Chen; Lin Xu; Fei Huang

    2015-01-01

    Preliminary animal experiments have conifrmed that sensory nerve ifbers promote osteoblast differentiation, but motor nerve ifbers have no promotion effect. Whether sensory neurons pro-mote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons (sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green lfuorescent protein 3 weeks after osteo-genic differentiationin vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the prolifera-tion of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by lfuorescence microscopy. The levels of mRNAs for osteogenic differentiation-re-lated factors (including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our ifndings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which pro-vides a theoretical basis forin vitro experiments aimed at constructing tissue-engineered bone.

  12. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Directory of Open Access Journals (Sweden)

    Stolzing Alexandra

    2011-08-01

    Full Text Available Abstract Background Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L, astrocyte-conditioned medium (ACM and GM-CSF on the differentiation to microglia-like cells. Methods We assessed in vitro-derived microglia differentiation by marker expression (CD11b/CD45, F4/80, but also for the first time for functional performance (phagocytosis, oxidative burst and in situ migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices. Results The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation. Conclusion We conclude that in vitro-derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.

  13. Vascularized bone tissue formation induced by fiber-reinforced scaffolds cultured with osteoblasts and endothelial cells.

    Science.gov (United States)

    Liu, Xinhui; Zhang, Guoping; Hou, Chuanyong; Wang, Hua; Yang, Yelin; Guan, Guoping; Dong, Wei; Gao, Hongyang; Feng, Qingling

    2013-01-01

    The repair of the damaged bone tissue caused by damage or bone disease was still a problem. Current strategies including the use of autografts and allografts have the disadvantages, namely, diseases transmission, tissue availability and donor morbidity. Bone tissue engineering has been developed and regarded as a new way of regenerating bone tissues to repair or substitute damaged or diseased ones. The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system, the vascularization. In this paper, a new-typed hydroxyapatite/collagen composite scaffold which was reinforced by chitosan fibers and cultured with osteoblasts and endothelial cells was fabricated. General observation, histological observation, detection of the degree of vascularization, and X-ray examination had been done to learn the effect of vascularized bone repair materials on the regeneration of bone. The results show that new vessel and bone formed using implant cultured with osteoblasts and endothelial cells. Nanofiber-reinforced scaffold cultured with osteoblasts and endothelial cells can induce vascularized bone tissue formation. PMID:24369019

  14. Vascularized Bone Tissue Formation Induced by Fiber-Reinforced Scaffolds Cultured with Osteoblasts and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xinhui Liu

    2013-01-01

    Full Text Available The repair of the damaged bone tissue caused by damage or bone disease was still a problem. Current strategies including the use of autografts and allografts have the disadvantages, namely, diseases transmission, tissue availability and donor morbidity. Bone tissue engineering has been developed and regarded as a new way of regenerating bone tissues to repair or substitute damaged or diseased ones. The main limitation in engineering in vitro tissues is the lack of a sufficient blood vessel system, the vascularization. In this paper, a new-typed hydroxyapatite/collagen composite scaffold which was reinforced by chitosan fibers and cultured with osteoblasts and endothelial cells was fabricated. General observation, histological observation, detection of the degree of vascularization, and X-ray examination had been done to learn the effect of vascularized bone repair materials on the regeneration of bone. The results show that new vessel and bone formed using implant cultured with osteoblasts and endothelial cells. Nanofiber-reinforced scaffold cultured with osteoblasts and endothelial cells can induce vascularized bone tissue formation.

  15. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Science.gov (United States)

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  16. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    Directory of Open Access Journals (Sweden)

    Paola Bendinelli

    2016-05-01

    Full Text Available Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine, and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients.

  17. ENRICHMENT AND CHARACTERIZATION OF THYMUS-REPOPULATING CELLS IN STROMA-DEPENDENT CULTURES OF RAT BONE-MARROW

    NARCIS (Netherlands)

    PRAKAPAS, Z; DENOYELLE, M; DARGEMONT, C; KROESE, FGM; THIERY, JP; DEUGNIER, MA

    1993-01-01

    The bone marrow precursor cells seeding the thymus have been difficult to investigate using fresh bone marrow and in vivo thymus reconstitution assays. We have therefore designed a short-term bone marrow culture system allowing the study of thymus-repopulating cells in the marrow microenvironment. L

  18. Bone marrow cells from allogeneic bone marrow chimeras inhibit the generation of cytotoxic lymphocyte responses against both donor and recipient cells

    International Nuclear Information System (INIS)

    When added to a mixed lymphocyte culture, bone marrow cells suppress the generation of CTL activity against H-2 Ag shared by the BM cells and the stimulator cells. These cells have been referred to as veto cells and are thought to play a role in maintaining self-tolerance. We analyzed the H-2 specificity of the suppression expressed by the veto cells from H-2 incompatible bone marrow chimeras, because lymphocytes of such chimeras had been shown to be tolerant to both donor and recipient Ag when tested by CTL responses. We found that the bone marrow cells of such chimeras which were featured by non-T and non-B cell characteristics inhibited the generation of CTL directed against either donor or recipient Ag, but not against third-party Ag. These observations suggest that in allogeneic chimeras the veto or veto-like cells alter the inhibitory specificity exhibited in the recipient microenvironment and indicate that these cells are directly involved in the induction and maintenance of self-tolerance

  19. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts

    Institute of Scientific and Technical Information of China (English)

    Youxin Song; Zhujun Wang; Zhixue Wang; Hong Zhang; Xiaohui Li; Bin Chen

    2012-01-01

    Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.

  20. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  1. Relationship between Tea drinking and Bone Mineral Density in Iranian population

    Directory of Open Access Journals (Sweden)

    A Hossein-nezhad

    2007-08-01

    Full Text Available Background: Tea is the most commonly consumed beverage by Iranian adults after water, and while previous studies have examined the negative effects of coffee-based caffeine on Bone Mineral Density (BMD, the relationship between the consumption of tea and BMD has not been clearly explored. The aim of this study was to investigate the relationship between habitual tea drinking and BMD in the adult Iranian population. Methods: BMD was measured at the lumbar spine and hip, in 830 men and women living in Tehran, all aged between 20 and 76 yr old. The degree of tea consumption was assessed by questionnaire, and subjects were categorized as either tea drinkers (more than 5 cups of tea per day or non–tea drinkers (equal or less than 5 cups of tea per day. Results: After adjusting for age and body mass index, it was found that female tea drinkers had a small (4.2%, but significantly higher BMD in the hip (P= 0.01. Conclusions: This may suggest a potentially positive effect for habitual tea drinking on the BMD of those women with an inadequate consumption of calcium and vitamin D.

  2. Ectopic bone formation in bone marrow stem cell seeded calcium phosphate scaffolds as compared to autograft and (cell seeded) allograft

    NARCIS (Netherlands)

    Eniwumide, J.O.; Yuan, H.; Cartmell, S.H.; Meijer, G.J.; Bruijn, J.D. de

    2007-01-01

    Improvements to current therapeutic strategies are needed for the treatment of skeletal defects. Bone tissue engineering offers potential advantages to these strategies. In this study, ectopic bone formation in a range of scaffolds was assessed. Vital autograft and devitalised allograft served as co

  3. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  4. Human Fallopian Tube Mesenchymal Stromal Cells Enhance Bone Regeneration in a Xenotransplanted Model

    OpenAIRE

    Jazedje, Tatiana; Bueno, Daniela F; Almada, Bruno V. P.; Caetano, Heloisa; Czeresnia, Carlos E.; Perin, Paulo M.; Halpern, Silvio; Maluf, Mariangela; Evangelista, Lucila P.; Nisenbaum, Marcelo G.; Martins, Marília T.; Passos-Bueno, Maria R.; Zatz, Mayana

    2011-01-01

    We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they presen...

  5. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche

    Directory of Open Access Journals (Sweden)

    Zach S. Templeton

    2015-12-01

    Full Text Available BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014 and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006 and IL-1β (P = .001 in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.

  6. In vitro incorporation studies of 99mTc-alendronate sodium at different bone cell lines

    International Nuclear Information System (INIS)

    Bisphosphonates can be labeled with Technetium-99m (99mTc) and are used for bone imaging because of their good localization in the skeleton and rapid clearance from soft tissues. Over the last decades bone scintigraphy has been used extensively in the evaluation of oncological patients to provide information about the sites of bone lesions, their prognosis and the effectiveness of therapy by showing the sequential changes in tracer uptake. Since the lesion visualization and lesion/bone ratio are important utilities for a bone scanning radiopharmaceutic; in this study incorporation of 99mTc labeled alendronate sodium (99mTc-ALD) was evaluated in U2OS (human bone osteosarcoma) and NCI-H209 (human bone carcinoma) cell lines. ALD was directly labeled by 99mTc, radiochemical purity and stability of the complex were analyzed by radioactive thin layer chromatography and radioactive high performance liquid chromatography studies. For cell incorporation study, NCI-H209 and U2OS cell lines were used with standard cell culture methods. The six well plates were used for all experiments and the integrity of each cell monolayer was checked by measuring its transepithelial electrical resistance (TEER) with an epithelial voltammeter. Results confirmed that ALD was successfully radiolabeled with 99mTc. 99mTc-ALD incorporated with NCI-H209 and U2OS cells. The uptake percentages of 99mTc-ALD in NCI-H209 and U2OS cell lines were found significantly different. Since 99mTc-ALD highly uptake in cancer cell line, the results demonstrated that radiolabeled ALD may be a promising agent for bone cancer diagnosis. (author)

  7. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells. PMID:25405207

  8. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    Energy Technology Data Exchange (ETDEWEB)

    Oue, Erika [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Lee, Ji-Won; Sakamoto, Kei [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Iimura, Tadahiro [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan); Aoki, Kazuhiro [Section of Pharmacology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Kayamori, Kou [Section of Diagnostic Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Department of Pathology, Ome Municipal General Hospital, Ome, Tokyo (Japan); Michi, Yasuyuki; Yamashiro, Masashi; Harada, Kiyoshi; Amagasa, Teruo [Section of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Section of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (Japan); Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Oral cancer cells synthesize CXCL2. Black-Right-Pointing-Pointer CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. Black-Right-Pointing-Pointer CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. Black-Right-Pointing-Pointer We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cell lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first

  9. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction

    International Nuclear Information System (INIS)

    Highlights: ► Oral cancer cells synthesize CXCL2. ► CXCL2 synthesized by oral cancer is involved in osteoclastogenesis. ► CXCL2-neutralizing antibody inhibited osteoclastogenesis induced by oral cancer cells. ► We first report the role of CXCL2 in cancer-associated bone destruction. -- Abstract: To explore the mechanism of bone destruction associated with oral cancer, we identified factors that stimulate osteoclastic bone resorption in oral squamous cell carcinoma. Two clonal cell lines, HSC3-C13 and HSC3-C17, were isolated from the maternal oral cancer cell line, HSC3. The conditioned medium from HSC3-C13 cells showed the highest induction of Rankl expression in the mouse stromal cell lines ST2 and UAMS-32 as compared to that in maternal HSC3 cells and HSC3-C17 cells, which showed similar activity. The conditioned medium from HSC3-C13 cells significantly increased the number of osteoclasts in a co-culture with mouse bone marrow cells and UAMS-32 cells. Xenograft tumors generated from these clonal cell lines into the periosteal region of the parietal bone in athymic mice showed that HSC3-C13 cells caused extensive bone destruction and a significant increase in osteoclast numbers as compared to HSC3-C17 cells. Gene expression was compared between HSC3-C13 and HSC3-C17 cells by using microarray analysis, which showed that CXCL2 gene was highly expressed in HSC3-C13 cells as compared to HSC3-C17 cells. Immunohistochemical staining revealed the localization of CXCL2 in human oral squamous cell carcinomas. The increase in osteoclast numbers induced by the HSC3-C13-conditioned medium was dose-dependently inhibited by addition of anti-human CXCL2-neutralizing antibody in a co-culture system. Recombinant CXCL2 increased the expression of Rankl in UAMS-32 cells. These results indicate that CXCL2 is involved in bone destruction induced by oral cancer. This is the first report showing the role of CXCL2 in cancer-associated bone destruction.

  10. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  11. In vivo cell kinetics of the bone marrow transplantation using dual colored transgenic rat system

    Science.gov (United States)

    Kai, Kotaro; Teraoka, Satoshi; Adachi, Yasushi; Ikehara, Susumu; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Because bone marrow is an adequate site for bone marrow stem cells, intra-bone marrow - bone marrow transplantation (IBM-BMT) is an efficient strategy for bone marrow transplantation (BMT). However, the fate of the transplanted cells remains unclear. Herein, we established a dual-colored transgenic rat system utilizing green fluorescent protein (GFP) and a luciferase (luc) marker. We then utilized this system to investigate the in vivo kinetics of transplanted bone marrow cells (BMCs) after authentic intravenous (IV)-BMT or IBM-BMT. The in vivo fate of the transplanted cells was tracked using an in vivo luminescent imaging technique; alterations in peripheral blood chimerism were also followed using flow cytometry. IBM-BMT and IV-BMT were performed using syngeneic and allogeneic rat combinations. While no difference in the proliferation pattern was observed between the two treatment groups at 7 days after BMT, different distribution patterns were clearly observed during the early phase. In the IBM-BMT-treated rats, the transplanted BMCs were engrafted immediately at the site of the injected bone marrow and expanded more rapidly than in the IV-BMT-treated rats during this phase. Graft-versus-host disease was also visualized. Our bio-imaging system using dual-colored transgenic rats is a powerful tool for performing quantitative and morphological assessments in vivo.

  12. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats

    Directory of Open Access Journals (Sweden)

    Priyank Ashok Shenoy

    2016-08-01

    Full Text Available The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.

  13. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bais, Manish V.; Shabin, Zabrina M.; Young, Megan; Einhorn, Thomas A. [Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, MA 02118 (United States); Kotton, Darrell N. [Pulmonary Center, Boston University School of Medicine, Boston, MA 02118 (United States); Gerstnefeld, Louis C., E-mail: lgersten@bu.edu [Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Boston University School of Medicine, Boston, MA 02118 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Nanog is related to marrow stromal stem cell maintenance. Black-Right-Pointing-Pointer Increasing Nanog expression is seen during post natal surgical bone repair. Black-Right-Pointing-Pointer Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express {approx}50 Multiplication-Sign the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at {approx}80 Multiplication-Sign the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a {approx}3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a {approx}50% decrease was seen in the expression of terminal osteogenic gene expression and a {approx}50% loss in trabecular bone mass. This

  14. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    International Nuclear Information System (INIS)

    Highlights: ► Nanog is related to marrow stromal stem cell maintenance. ► Increasing Nanog expression is seen during post natal surgical bone repair. ► Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express ∼50× the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at ∼80× the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a ∼3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a ∼50% decrease was seen in the expression of terminal osteogenic gene expression and a ∼50% loss in trabecular bone mass. This loss of bone mass was accompanied by an increased ∼2- to 5-fold adipogenic gene expression and observed increase of fat cells in the

  15. Bone marrow hypoplasia and intestinal crypt cell necrosis associated with fenbendazole administration in five painted storks.

    Science.gov (United States)

    Weber, Martha A; Terrell, Scott P; Neiffer, Donald L; Miller, Michele A; Mangold, Barbara J

    2002-08-01

    Five painted storks were treated with fenbendazole for 5 days for internal parasitism. Four birds died following treatment. Profound heteropenia was a consistent finding in all samples evaluated; additionally, the 1 surviving bird had progressive anemia. Consistent necropsy findings in the 4 birds that died were small intestinal crypt cell necrosis and severe bone marrow depletion and necrosis. Fenbendazole has been associated with bone marrow hypoplasia and enteric damage in mammals and other species of birds. The dosages of fenbendazole used in birds are often substantially higher than those recommended for mammals, which may contribute to bone marrow hypoplasia and intestinal crypt cell necrosis associated with fenbendazole administration in birds.

  16. Ultrastructural changes of bone marrow cells exposed for xenogenous cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Shaymardanova L.R.

    2010-01-01

    Full Text Available Due to the scientifical investigations xenogenous cerebrospinal fluid was considered as possible substance for theproduction of powerful adaptogen of biological origin. One of the representative research in these field demonstrates morphologicaland functional changes of bone marrow as the central hemopoetic and immune organ. The article shows the ultramicroscopicchanges of bone marrow cells after the xenogenous cerebrospinal fluid exposure in Vistar rats of differentage. It was revealed the activation of synthetic processes in bone marrow cells of the first three age groups and exhaustion ofactivating mechanisms in the fourth age group, that was manifested in swelling and destruction of mytochondria, vacuolisationof cytoplasm, invagination of caryolemma.

  17. Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells.

    Directory of Open Access Journals (Sweden)

    Yukiya Komada

    Full Text Available Mesenchymal cells arise from the neural crest (NC or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled and mesoderm-derived (Mesp1-labeled cells contribute to the development of dental, thymic, and bone marrow (BM mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet-derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ.

  18. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells☆

    OpenAIRE

    Tang, Yue; Cui, Yongchun; Luo, Fuliang; Liu, Xiaopeng; Wang, XiaoJuan; Wu, Aili; Zhao, Junwei; Tian, Zhong; Wu, Like

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and do...

  19. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential.

    Science.gov (United States)

    Pipino, Caterina; Pandolfi, Assunta

    2015-05-26

    In orthopedics, tissue engineering approach using stem cells is a valid line of treatment for patients with bone defects. In this context, mesenchymal stromal cells of various origins have been extensively studied and continue to be a matter of debate. Although mesenchymal stromal cells from bone marrow are already clinically applied, recent evidence suggests that one may use mesenchymal stromal cells from extra-embryonic tissues, such as amniotic fluid, as an innovative and advantageous resource for bone regeneration. The use of cells from amniotic fluid does not raise ethical problems and provides a sufficient number of cells without invasive procedures. Furthermore, they do not develop into teratomas when transplanted, a consequence observed with pluripotent stem cells. In addition, their multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties make them ideal candidates for bone regenerative medicine. We here present an overview of the features of amniotic fluid mesenchymal stromal cells and their potential in the osteogenic differentiation process. We have examined the papers actually available on this regard, with particular interest in the strategies applied to improve in vitro osteogenesis. Importantly, a detailed understanding of the behavior of amniotic fluid mesenchymal stromal cells and their osteogenic ability is desirable considering a feasible application in bone regenerative medicine.

  20. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  1. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  2. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    Science.gov (United States)

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals.

  3. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    Science.gov (United States)

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals. PMID:25445328

  4. GIANT CELL-RICH LESIONS OF BONE AND JOINTS: A ONE YEAR PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Sri Nithisa H

    2016-07-01

    Full Text Available BACKGROUND Giant cell-rich lesions constitute a group of biologically and morphologically diverse bone and joint tumours. The common feature is presence of numerous multinucleated osteoclast-like giant cells. However, they differ from each other by in terms of clinical and radiographic features and in many cases by their distinct morphological features. METHODS All the bone and joint specimens with giant cell-rich lesions received in the period of one year were studied along with clinical and radiological data available. Gross and microscopic findings were noted. RESULTS In a period of one year, 10 cases of giant cell-rich lesions of bone and joints have been studied, which were and correlated with clinical and radiological findings. Five were lesions from bone and two were from joints, which are chondroblastoma, chondromyxoid fibroma, osteoclastoma, aneurysmal bone cyst, pigmented villonodular synovitis, giant cell lesion of tendon sheath, and tendinous xanthoma. CONCLUSION In the present study, variety of giant cell lesions of bone and joints are studied. Of which, the mean age in young patients being 20 years and in elderly patients being 50 years. The common site being lower end of femur.