WorldWideScience

Sample records for bone body composition

  1. Influence of orlistat on bone turnover and body composition

    DEFF Research Database (Denmark)

    Gotfredsen, A; Westergren Hendel, H; Andersen, T

    2001-01-01

    of bone mineral and body composition included total bone mineral content (TBMC), total bone mineral density (TBMD), lumbar spine BMC and BMD, forearm BMC and BMD, fat mass (FM), fat free-mass (FFM), percentage fat mass (FM%) as well as a DXA estimate of the body weight. Body composition (FM, FFM and FM....../creatinine and Ca/creatinine (fU-OHpr/creat, fUCa/creat). RESULTS: There were no significant differences between OLS and placebo groups as to any of the body composition variables (FFM, FM, FM%) at baseline or after 1 y treatment. Weight loss was of 11.2+/-7.5 kg in the OLS group and 8.1+/-7.5 kg in the placebo...... group (NS). The changes in FM and FM% were significant in both groups determined by DXA as well as by TBK, but the group differences between these changes were not significant. The composition of the weight loss was approximately 80% fat in both groups. FFM only changed significantly by DXA in the OLS...

  2. Progress in photon absorptiometric determination of bone mineral and body composition

    International Nuclear Information System (INIS)

    Mazess, R.B.; Witt, R.M.; Peppler, W.W.; Hanson, J.A.

    1976-01-01

    Single-photon absorptiometry, with low energy radionuclides, has become widely accepted for measurement of bone mineral content in vivo. Dual-photon absorptiometry is a newer approach which overcomes previous limitations and allows measurement of total body and spinal bone mineral with high accuracy and precision (2 percent error). Dual-photon absorptiometry also permits measurement of the lean-fat composition of soft-tissue and the monitoring of shifts in body composition and/or fluid balance

  3. The relationships of irisin with bone mineral density and body composition in PCOS patients.

    Science.gov (United States)

    Gao, Shanshan; Cheng, Yan; Zhao, Lingling; Chen, Yuxin; Liu, Yu

    2016-05-01

    Our study aims to assay the irisin level and investigate the relationships of irisin level with body mass index (BMI), body composition and bone metabolism in the polycystic ovary syndrome (PCOS) and control women. Fifty two PCOS and 39 control women were recruited. Serum sex hormone, fasting insulin and C-peptide were tested. Fasting serum irisin and adiponectin were measured with enzyme-linked immunosorbent assay. Body composition and bone mineral density were assayed by dual energy X-ray absorptiometry. Polycystic ovary syndrome women showed different body compositions compared with controls. Serum irisin level of PCOS did not show significant difference compared with controls although it was decreased. The level of adiponectin in PCOS patients was significantly reduced. BMI had no correlation with irisin level. It indicated a positive correlation between serum irisin levels and bone mineral density in the control group and a negative correlation in the PCOS group after BMI and age adjusted. Furthermore, total lean mass has a significant effect on irisin concentration in the PCOS group. There are no correlations between adiponection and body compositions and bone mineral density in both groups. The abnormal body composition in PCOS may contribute to the circulation irisin. The crosstalk of irisin in different organs was found and may be related to disease development in PCOS. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Bone mineral density and body composition in adolescents with failure to thrive

    Directory of Open Access Journals (Sweden)

    Thiago Sacchetto de Andrade

    2010-06-01

    Full Text Available Objective: To evaluate bone mineral mass in adolescents with failure to thrive in relation to body composition. Methods: A case-control study involving 126 adolescents (15 to 19 years, in final puberty maturation being 76 eutrophic and 50 with failure to thrive (genetic or constitutional delay of growth, of matching ages, gender and pubertal maturation. The weight, height and calculated Z score for height/age and body mass index; bone mineral content, bone mineral density and adjusted bone mineral density were established for total body, lower back and femur; total fat-free mass and height-adjusted fat-free mass index, total fat mass and height-adjusted. The statistical analyses were performed using the Student’s t-test (weight, height and body composition; Mann-Whitney test (bone mass and multiple linear regression (bone mass determinants. Results: weight, height and height/age Z-score were significantly higher among eutrophic subjects. Both groups did not show statistically significant differences for fat mass, percentage of fat mass, total fat mass height adjusted and fat-free mass index height sadjusted. However, total free fat maass was smaller for the failure to thrive group. Conclusions: There was no statistically significant difference for bone mass measurements among adolescents with failure to thrive; however, the factors that determine bone mass formation should be better studied due to the positive correlation with free fat mass detected in these individuals.

  5. Body composition and bone mineral density measurements by using a multi-energy method

    International Nuclear Information System (INIS)

    Herve, L.

    2003-01-01

    Dual-energy X-ray absorptiometry is a major technique to evaluate bone mineral density, thus allowing diagnosis of bone decalcification ( osteoporosis). Recently, this method has proved useful to quantify body composition (fat ratio). However, these measurements suffer from artefacts which can lead to diagnosis errors in a number of cases. This work has aimed to improve both the reproducibility and the accuracy of bone mineral density and body composition measurements. To this avail, the acquisition conditions were optimised in order to ameliorate the results reproducibility and we have proposed a new method to correct inaccuracies in the determination of bone mineral density. Experimental validations yield encouraging results on both synthetic phantoms and biological samples. (author)

  6. Proandrogenic and Antiandrogenic Progestins in Transgender Youth: Differential Effects on Body Composition and Bone Metabolism.

    Science.gov (United States)

    Tack, Lloyd J W; Craen, Margarita; Lapauw, Bruno; Goemaere, Stefan; Toye, Kaatje; Kaufman, Jean-Marc; Vandewalle, Sara; T'Sjoen, Guy; Zmierczak, Hans-Georg; Cools, Martine

    2018-06-01

    Progestins can be used to attenuate endogenous hormonal effects in late-pubertal transgender (trans) adolescents (Tanner stage B4/5 and G4/5). Currently, no data are available on the effects of progestins on the development of bone mass or body composition in trans youth. To study prospectively the evolution of body composition and bone mass in late-pubertal trans adolescents using the proandrogenic or antiandrogenic progestins lynestrenol (L) and cyproterone acetate (CA), respectively. Forty-four trans boys (Tanner B4/5) and 21 trans girls (Tanner G4/5) were treated with L or CA for 11.6 (4 to 40) and 10.6 (5 to 31) months, respectively. Anthropometry, grip strength, body composition, and bone mass, size, and density were determined by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography before the start of progestin and before addition of cross-sex hormones. Using L, lean mass [+3.2 kg (8.6%)] and grip strength [+3 kg (10.6%)] significantly increased, which coincided with a more masculine body shape in trans boys. Trans girls showed loss of lean mass [-2.2 kg (4.7%)], gain of fat mass [+1.5 kg (9.4%)], and decreased grip strength Z scores. CA limited normal bone expansion and impeded pubertal bone mass accrual, mostly at the lumbar spine [Z score: -0.765 to -1.145 (P = 0.002)]. L did not affect physiological bone development. Proandrogenic and antiandrogenic progestins induce body composition changes in line with the desired appearance within 1 year of treatment. Bone health, especially at the lumbar spine, is of concern in trans girls, as bone mass accrual is severely affected by androgen suppressive therapy.

  7. Bone density and body composition in chronic renal failure: effects of growth hormone treatment

    NARCIS (Netherlands)

    van der Sluis, I. M.; Boot, A. M.; Nauta, J.; Hop, W. C.; de Jong, M. C.; Lilien, M. R.; Groothoff, J. W.; van Wijk, A. E.; Pols, H. A.; Hokken-Koelega, A. C.; de Muinck Keizer-Schrama, S. M.

    2000-01-01

    Metabolic bone disease and growth retardation are common complications of chronic renal failure (CRF). We evaluated bone mineral density (BMD), bone metabolism, body composition and growth in children with CRF, and the effect of growth hormone treatment (GHRx) on these variables. Thirty-three

  8. Body Composition, Muscular Strength and Bone Status among Undernourished Children in Malaysia

    International Nuclear Information System (INIS)

    Chong, Kar Hau; Poh, Bee Koon

    2014-01-01

    Full text: Despite significant advances in social and economic development, undernutrition remains a devastating public health problem that affects millions of children across the globe, particularly in developing nations. It is important to understand how changes in nutritional status affect physical health and function, so that undernutrition-related alterations can be identified and interpreted correctly. This paper aimed to determine the impact of undernutrition in children through the assessment of three nutrition-related indicators: body composition, muscular strength and bone status. This study is part of the Nutrition Survey of Malaysian Children, which is part of the four-country South East Asian Nutrition Surveys (SEANUTS). A total of 208 school children (102 boys, 106 girls) in the age range of 7 to 10 years were included in this analysis, of which 104 were underweight (WAZ<-2SD) and 104 were normal-weight group (-2SD≤WAZ≤+2SD), individually-matched for sex, age, and ethnicity. Anthropometric measurements included weight and height; and body composition was measured by bioelectrical impedance analysis. Muscular strength of both hands was assessed independently by hand-held dynamometer. Bone status was evaluated using a radial quantitative ultrasound system at one-third distal radius of the non-dominant hand. Anthropometric measurements and bone status were not significantly different between the sexes. Boys had significantly higher muscular strength and lean mass (p<0.05), but lower fat mass when compared to the girls (p<0.01). In both sexes, the undernourished group presented significantly lower anthropometric and body composition measurements and muscular strength than their normal-weight counterparts (p<0.001). However, no significant differences were observed for bone status between the two weight groups in boys (p = 0.09) and girls (p = 0.98). These findings imply that undernutrition can have profound negative impact on body composition as well

  9. Bone Mineral Density and Body Composition in Adolescents with Childhood-Onset Growth Hormone Deficiency

    NARCIS (Netherlands)

    Boot, Annemieke M.; van der Sluis, Inge M.; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    2009-01-01

    Background/Aims: The aim of the present study was to evaluate bone mineral density (BMD) and body composition of patients with childhood-onset growth hormone (GH) deficiency (GHD) treated with GH during the transition period. Methods: BMD and body composition, measured by dual-energy X-ray

  10. Changes in fitness are associated with changes in body composition and bone health in children after cancer.

    Science.gov (United States)

    Dubnov-Raz, Gal; Azar, Meital; Reuveny, Ronen; Katz, Uriel; Weintraub, Michael; Constantini, Naama W

    2015-10-01

    This study examined the effects of physical activity on the fitness, body composition and mental health of children after cancer or bone marrow transplantation. We focused on 22 children aged from seven to 14 years who had received chemotherapy and/or bone marrow transplantation in our medical centre. Ten children took part in a six-month exercise programme, and 12 children who did not exercise formed the control group. At baseline and at the end of the trial, we measured aerobic fitness, body composition, bone density and assessed the child's mood and quality of life. We pooled all participants together post hoc to compare changes in fitness with the various study outcomes. We found no differences between groups in changes in fitness, body composition or mental health indices. Significant correlations were found between changes in aerobic fitness and changes in lean body mass (r = 0.74, p = 0.002), bone mineral content (r = 0.57, p = 0.026) and femoral neck bone mineral density (r = 0.59, p = 0.027) in all participants. Group-based exercise training did not improve aerobic fitness in children after cancer or bone marrow transplantation. However, changes in fitness throughout the study period were associated with changes in body composition and bone health in all participants. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  11. Influence of bone porcelain scraps on the physical characteristics and phase composition of a hard porcelain body

    Energy Technology Data Exchange (ETDEWEB)

    Nodeh, A.A.

    2017-07-01

    Hard porcelain is constituted in the alkali oxides-alumina-silica ternary system, and produced by a mixture of clay-feldspar and silica. The most important properties of this porcelain are high mechanical strength, translucency and whiteness. These properties depend on quality of raw material, firing temperature and soaking time. In bone porcelain bone ash was added to body composition up to 50wt.%. Generally hard porcelain and bone porcelain scrap cannot be reused in body composition. Whereas using these scrap could help natural resources. In this research using bon porcelain scraps in hard porcelain body have been investigated. Results show, this substitution decrease firing temperature, linear expansion and increase glass, probability of deformation and total shrinkage. Using 6wt.% bone porcelain scraps to hard porcelain body composition besides improving some properties, increases 1340°C firing mechanical strength two times and helps natural resources. (Author)

  12. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    Science.gov (United States)

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (Pmyostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  13. Veganism, bone mineral density, and body composition: a study in Buddhist nuns.

    Science.gov (United States)

    Ho-Pham, L T; Nguyen, P L T; Le, T T T; Doan, T A T; Tran, N T; Le, T A; Nguyen, T V

    2009-12-01

    This cross-sectional study showed that, although vegans had lower dietary calcium and protein intakes than omnivores, veganism did not have adverse effect on bone mineral density and did not alter body composition. Whether a lifelong vegetarian diet has any negative effect on bone health is a contentious issue. We undertook this study to examine the association between lifelong vegetarian diet and bone mineral density and body composition in a group of postmenopausal women. One hundred and five Mahayana Buddhist nuns and 105 omnivorous women (average age = 62, range = 50-85) were randomly sampled from monasteries in Ho Chi Minh City and invited to participate in the study. By religious rule, the nuns do not eat meat or seafood (i.e., vegans). Bone mineral density (BMD) at the lumbar spine (LS), femoral neck (FN), and whole body (WB) was measured by DXA (Hologic QDR 4500). Lean mass, fat mass, and percent fat mass were also obtained from the DXA whole body scan. Dietary calcium and protein intakes were estimated from a validated food frequency questionnaire. There was no significant difference between vegans and omnivores in LSBMD (0.74 +/- 0.14 vs. 0.77 +/- 0.14 g/cm(2); mean +/- SD; P = 0.18), FNBMD (0.62 +/- 0.11 vs. 0.63 +/- 0.11 g/cm(2); P = 0.35), WBBMD (0.88 +/- 0.11 vs. 0.90 +/- 0.12 g/cm(2); P = 0.31), lean mass (32 +/- 5 vs. 33 +/- 4 kg; P = 0.47), and fat mass (19 +/- 5 vs. 19 +/- 5 kg; P = 0.77) either before or after adjusting for age. The prevalence of osteoporosis (T scores < or = -2.5) at the femoral neck in vegans and omnivores was 17.1% and 14.3% (P = 0.57), respectively. The median intake of dietary calcium was lower in vegans compared to omnivores (330 +/- 205 vs. 682 +/- 417 mg/day, P < 0.001); however, there was no significant correlation between dietary calcium and BMD. Further analysis suggested that whole body BMD, but not lumbar spine or femoral neck BMD, was positively correlated with the ratio of animal protein to vegetable protein. These

  14. Whole body dual X-ray absorptiometry for bone mineral density and body composition using a flat panel detector

    International Nuclear Information System (INIS)

    Dinten, J.M.; Robert-Coutant, C.; Gonon, G.; Bordy, T.

    2003-01-01

    Whole-body dual-energy X-ray absorptiometry (DXA) systems are used for the determination of bone mineral density (BMD) but also for body composition estimates (lean mass and fat mass). The calculation is based on the difference in attenuation of body tissues for a low-energy of about 50 KeV and a high-energy of about 80-100 KeV. The measurement of dual-energy projections allows first to compute to the body composition in the non-bone area, and then to extrapolate the fat / lean ratio of soft tissue into the bone area in order to compute the BMD. Since detectors have limited area, a whole body examination requires a scan of the patient and a reconstruction process in order to build up a large field image from smaller radiographs. This reconstruction process must keep the quantitative value of the radiographs, and avoid any distortion which could be a consequence of the conic acquisition geometry. The cone angle is low (6 at maximum) and the large overlap between radiographs helps to reconstruct an image equivalent with a parallel-beam geometry. Scatter is corrected from the radiographs before reconstruction, as described in a previous paper ('Dual-energy X-rays absorptiometry using a 2D digital radiography detector. Application to bone densitometry', SPIE Medical Imaging 2001, Medical Physics). We have developed an original reconstruction method dedicated to whole-body examinations which will be described. Thanks to the quasi-radiologic quality of the detector, reconstructed images are of very good quality and this makes the measurement of BMD and fat / lean masses easier. (author)

  15. Dosage of estradiol, bone and body composition in Turner syndrome: a 5-year randomized controlled clinical trial

    DEFF Research Database (Denmark)

    Cleemann, Line; Holm, Kirsten; Kobbernagel, Hanne

    2017-01-01

    OBJECTIVE: Reduced bone mineral density (BMD) is seen in Turner syndrome (TS) with an increased risk of fractures, and body composition is characterized by increased body fat and decreased lean body mass. To evaluate the effect of two different doses of oral 17ß-estradiol in young TS women on bone...

  16. Accuracy of dual photon absorptiometry for assessment of bone mineral and body composition

    International Nuclear Information System (INIS)

    Aoki, Manabu; Iwamura, Akira; Goto, Eisuke; Mori, Yutaka; Kawakami, Kenji; Soshi, Shigeru

    1991-01-01

    Accuracy of bone mineral measurement by the dual photon absorptiometry (DPA) was studied in comparison to ashed bone mineral (ash) on the lumbar spine of 23 cada vars. There was a high correlation (r=0.896) between the value of DPA and ash weight. Bone mineral content in the radius by the single photon absorptiometry (SPA) did not correlate to bone mineral density (BMD) by DPA in the patients with hemodialysis. SPA may be less useful to assess BMD of the whole body. Fat mass and lean mass measured by DPA were well correlated to the value obtained by the electrical impedance method. Precision in measurement of fat mass and lean mass was also confirmed by the electrical impedance method. These results suggest that DPA has a high precision for measurements of the bone mineral and the body composition. (author)

  17. Analysis of the relationships between edentulism, periodontal health, body composition, and bone mineral density in elderly women

    Directory of Open Access Journals (Sweden)

    Ignasiak Z

    2016-03-01

    Full Text Available Zofia Ignasiak,1 Malgorzata Radwan-Oczko,2 Krystyna Rozek-Piechura,3 Marta Cholewa,4 Anna Skrzek,5 Tomasz Ignasiak,6 Teresa Slawinska1 1Department of Biostructure, University School of Physical Education, Wroclaw, Poland; 2Department of Periodontology, Wroclaw Medical University, Wroclaw, Poland; 3Department of Physiotherapy and Occupation Therapy in Internal Diseases, University School of Physical Education, Wroclaw, Poland; 4DENTARAMA Dentistry Center, Walbrzych, Poland; 5Department of Physiotherapy and Ocupation Therapy in Motor-System Dysfunction, University School of Physical Education, Wroclaw, Poland; 6Karkonosze State Higher School in Jelenia Gora, Jelenia Gora, Poland Objective: The relationship between bone mineral density (BMD and tooth loss in conjunction with periodontal disease is not clear. The suggested effects include alteration in bone remodeling rates as well as the multifaceted etiology of edentulism. There is also a question if other body-related variables besides BMD, such as body composition, may be associated with tooth number and general periodontal health. The aim of this study was to evaluate if tooth number and marginal periodontal status are associated with body composition and BMD in a sample of elderly women. Materials and methods: The study involved 91 postmenopausal women. Data included basic anthropometric characteristics, body composition via bioelectrical impedance analysis, and BMD analysis at the distal end of the radial bone of the nondominant arm via peripheral dual-energy X-ray absorptiometry. A dental examination was performed to assess tooth number, periodontal pocket depth (PD, and gingival bleeding. Results: In nonosteoporotic women, a significant positive correlation was found between BMD and lean body mass, total body water, and muscle mass. The indicators of bone metabolism correlated negatively with PD. Such relationships did not appear in osteoporotic women. In both groups, basic anthropometric

  18. Body composition and reproductive function exert unique influences on indices of bone health in exercising women.

    Science.gov (United States)

    Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane

    2013-09-01

    Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p < 0.001); however, femoral neck CSA and CSMI were not different between groups. E1G cycle mean and age of menarche were the strongest predictors of lumbar spine aBMD and BMAD, together explaining 25.5% and 22.7% of the variance, respectively. Lean mass was the strongest predictor of total hip and femoral neck aBMD as well as femoral neck CSMI and CSA, explaining 8.5-34.8% of the variance. Upon consideration of several potential osteogenic stimuli, reproductive function appears to play

  19. Reproducibility of DXA measurements of bone mineral density and body composition in children

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Cheryl M.; Roza, Melissa A.; Webber, Colin E. [Hamilton Health Sciences, Department of Nuclear Medicine, Hamilton, ON (Canada); Barr, Ronald D. [McMaster Children' s Hospital, Hamilton, ON (Canada)

    2009-02-15

    The technique of X-ray-based dual photon absorptiometry (DXA) is frequently used in children for the detection of changes in bone mass or body composition. Such changes can only be considered real if the uncertainties arising from the measurement technique are exceeded. Our objectives were twofold: (1) to determine the reproducibility of bone mineral density (BMD) measurements in children at the spine and the hip and from the whole body, as well as of whole-body measurements of mineral mass, lean body mass and fat mass in children; and (2) to estimate, from the measured precision, the time interval that needs to elapse before a statistically significant change in a DXA variable can be detected. The reproducibility of techniques for the measurement of BMD and body composition using DXA was measured in 15 young children (9 girls and 6 boys) and 17 older children (9 girls and 8 boys). Reproducibility was derived from the standard deviation of three repeated measurements of spine BMD, total hip BMD, whole-body BMD (WBBMD), whole-body bone mineral content (WBBMC), lean mass and fat mass. Technique precision was better than 0.01 g cm{sup -2} for spine BMD and for WBBMD. Hip BMD measurements were slightly less precise, particularly in younger children (0.013 g cm{sup -2}). For body composition variables, technique precision was 13 g for WBBMC, 201 g for lean body mass and 172 g for fat mass in younger children. Technique precision for older children was 18 g, 251 g and 189 g for the corresponding variables. Predictions showed that the absence of a normal increase in WBBMC in a small-for-age girl could be established after 12 months. For spine BMD, a significant increase should be observable after 6 months for boys over the age of 11 years. For younger boys, more than 12 months has to elapse before anticipated changes can be detected with confidence. The time intervals required to elapse before decisions can be made concerning the significance of observed differences

  20. Reproducibility of DXA measurements of bone mineral density and body composition in children

    International Nuclear Information System (INIS)

    Leonard, Cheryl M.; Roza, Melissa A.; Webber, Colin E.; Barr, Ronald D.

    2009-01-01

    The technique of X-ray-based dual photon absorptiometry (DXA) is frequently used in children for the detection of changes in bone mass or body composition. Such changes can only be considered real if the uncertainties arising from the measurement technique are exceeded. Our objectives were twofold: (1) to determine the reproducibility of bone mineral density (BMD) measurements in children at the spine and the hip and from the whole body, as well as of whole-body measurements of mineral mass, lean body mass and fat mass in children; and (2) to estimate, from the measured precision, the time interval that needs to elapse before a statistically significant change in a DXA variable can be detected. The reproducibility of techniques for the measurement of BMD and body composition using DXA was measured in 15 young children (9 girls and 6 boys) and 17 older children (9 girls and 8 boys). Reproducibility was derived from the standard deviation of three repeated measurements of spine BMD, total hip BMD, whole-body BMD (WBBMD), whole-body bone mineral content (WBBMC), lean mass and fat mass. Technique precision was better than 0.01 g cm -2 for spine BMD and for WBBMD. Hip BMD measurements were slightly less precise, particularly in younger children (0.013 g cm -2 ). For body composition variables, technique precision was 13 g for WBBMC, 201 g for lean body mass and 172 g for fat mass in younger children. Technique precision for older children was 18 g, 251 g and 189 g for the corresponding variables. Predictions showed that the absence of a normal increase in WBBMC in a small-for-age girl could be established after 12 months. For spine BMD, a significant increase should be observable after 6 months for boys over the age of 11 years. For younger boys, more than 12 months has to elapse before anticipated changes can be detected with confidence. The time intervals required to elapse before decisions can be made concerning the significance of observed differences between

  1. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanxuan; Zheng Yudong; Huang Xiaoshan; Xi Tingfei; Han Dongfei [School of Materials Science and Engineering, Beijing University of Science and Technology, Beijing 100083 (China); Lin Xiaodan [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Song Wenhui, E-mail: zhengyudong@mater.ustb.edu.c, E-mail: wenhui.song@brunel.ac.u [Wolfson Center for Materials Processing, School of Engineering and Design, Brunel University, West London, UB8 3PH (United Kingdom)

    2010-04-15

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  2. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  3. Bone mineral density, bone metabolism and body composition of children with chronic renal failure, with and without growth hormone treatment

    NARCIS (Netherlands)

    Boot, A. M.; Nauta, J.; de Jong, M. C.; Groothoff, J. W.; Lilien, M. R.; van Wijk, J. A.; Kist-van Holthe, J. E.; Hokken-Koelega, A. C.; Pols, H. A.; de Muinck Keizer-Schrama, S. M.

    1998-01-01

    OBJECTIVE: Osteopenia has been reported in adult patients with chronic renal failure (CRF). Only a few studies have been performed in children. The objective of this study was to evaluate bone mineral density (BMD), bone turnover, body composition in children with CRF and to study the effect of GH

  4. Bone mineral density and body composition before and during treatment with gonadotropin-releasing hormone agonist in children with central precocious and early puberty

    NARCIS (Netherlands)

    A.M. Boot (Annemieke); S.M.P.F. de Muinck Keizer-Schrama (Sabine); H.A.P. Pols (Huib); E.P. Krenning (Eric); S.L.S. Drop (Stenvert)

    1998-01-01

    textabstractMajor changes in bone mineral density (BMD) and body composition occur during puberty. In the present longitudinal study, we evaluated BMD and calculated volumetric BMD [bone mineral apparent density (BMAD)], bone metabolism, and body composition of children

  5. The risk of eating disorders and bone health in young adults: the mediating role of body composition and fitness.

    Science.gov (United States)

    Garrido-Miguel, Miriam; Torres-Costoso, Ana; Martínez-Andrés, María; Notario-Pacheco, Blanca; Díez-Fernández, Ana; Álvarez-Bueno, Celia; García-Prieto, Jorge Cañete; Martínez-Vizcaíno, Vicente

    2017-11-13

    To analyze the independent relationship between the risk of eating disorders and bone health and to examine whether this relationship is mediated by body composition and cardiorespiratory fitness (CRF). In this cross-sectional study, bone-related variables, lean mass, fat mass (by DXA), risk of eating disorders (SCOFF questionnaire), height, weight, waist circumference and CRF were measured in 487 university students aged 18-30 years from the University of Castilla-La Mancha, Spain. ANCOVA models were estimated to test mean differences in bone mass categorized by body composition, CRF or risk of eating disorders. Subsequently, linear regression models were fitted according to Baron and Kenny's procedures for mediation analysis. The marginal estimated mean ± SE values of total body bone mineral density for the categories "no risk of eating disorders" and "risk of eating disorders" were 1.239 ± 0.126 eating disorders and bone health in young adults. Body composition and CRF mediate the association between the risk of eating disorders and bone health. These findings highlight the importance of maintaining a healthy weight and good CRF for the prevention of the development of eating disorders and for the maintenance of good bone health in young adults. Level V, cross-sectional descriptive study.

  6. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    Science.gov (United States)

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p Rugby players were heavier than controls, with greater lean mass and BMD (p rugby players (p rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.

  7. Status of bone mineral content and body composition in boys engaged in intensive physical activity

    Directory of Open Access Journals (Sweden)

    Madić Dejan

    2010-01-01

    Full Text Available Background/Aim. It is well known that physical activity has an anabolic effect on bone tissue. But there is a lack of information about the effect of intensive physical activity in childhood, particularly at the prepubertal stage. To examine the influence of training on body composition and bone mineral density we have studied a group of prepubertal soccer players as well as a group of inactive prepubertal boys at the starting phase of their peak bone mass acquisition. Methods. A total of 62 healthy prepubertal boys took part in this study. They were divided into two groups. The first one consisted of 32 soccer players (aged 10.7 ± 0.5 years, who had been playing football for at least 1 year (10-15 h per week. The second group a control group 30 boys (aged 11.2 ± 0.7 years doing 1.5 h per week physical activity at school. Body composition was assessed by a Body Fat Analyzer 'BES 200 Z'. Bone mineral density measurements of the left and the right calcaneus were done by using ultrasound densitometer 'Sahara' (Hologic, Inc., MA, USA. Results. There were significant differences between soccer players and the control group in fat mass (p = 0.01. Besides, a significant difference was determined between the group of athletes and the control group in bone mineral density of both calcaneal bones (p = 0.01. Conclusion. The results of this study confirm the significant effects of physical activity on reducing body mass and increasing bone density. Considering that football training can be very easily implemented in the broader population of children and young people, which does not apply to many other sports, it should be used more in the prevention of obesity and osteoporosis.

  8. Effect of growth hormone therapy and puberty on bone and body composition in children with idiopathic short stature and growth hormone deficiency.

    Science.gov (United States)

    Högler, Wolfgang; Briody, Julie; Moore, Bin; Lu, Pei Wen; Cowell, Christopher T

    2005-11-01

    The state of bone health and the effect of growth hormone (GH) therapy on bone and body composition in children with idiopathic short stature (ISS) are largely unknown. A direct role of GH deficiency (GHD) on bone density is controversial. Using dual-energy X-ray absorptiometry, this study measured total body bone mineral content (TB BMC), body composition, and volumetric bone mineral density (vBMD) at the lumbar spine (LS) and femoral neck (FN) in 77 children (aged 3-17 years) with ISS (n = 57) and GHD (n = 20). Fifty-five children (GHD = 13) receiving GH were followed over 24 months including measurement of bone turnover. At diagnosis, size-corrected TB BMC SDS was greater (P bone relation, as assessed by the BMC/lean mass (LTM) ratio SDS was not different between groups. During GH therapy, prepubertal GHD children gained more height (1.58 [0.9] SDS) and LTM (0.87 [0.63] SDS) compared to prepubertal ISS children (0.75 [0.27] and 0.17 [0.25] SDS, respectively). Percent body fat decreased in GHD (-5.94% [4.29]) but not in ISS children. Total body BMC accrual was less than predicted in all groups accompanied by an increase in bone turnover. Puberty led to the greatest absolute, but not relative, increments in weight, LTM, BMI, bone mass, and LSvBMD. Our results show that children with ISS and GHD differ in their response to GH therapy in anthropometry, body composition, and bone measures. Despite low vBMD values at diagnosis in both prepubertal groups, size-corrected regional or TB bone data were generally within the normal range and did not increase during GH therapy in GHD or ISS children. Growth hormone had great effects on the growth plate and body composition with subsequent gains in height, LTM, bone turnover, and bone mass accrual, but no benefit for volumetric bone density over 2 years.

  9. BODY COMPOSITION AND BONE MINERAL DENSITY IN WOMEN WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    S. E. Myasoedova

    2016-01-01

    Full Text Available Objective: to establish specific features of body composition, skeletal muscle changes and bone mineral density (BMD in middle-aged and elderly female patients with rheumatoid arthritis (RA as compared to female subjects without RA.Materials and methods. The study included 86 female patients with RA aged 59.06 ± 7.52 years and 81 female subjects without RA aged 57.4 ± 5.3 years. Body composition and BMD in spine and femur was assessed using Lunar Prodidgy device (General Electric. Sarcopenia was defined as lean mass index (LMI of < 5.64 kg/m2 .Results. We have detected statistically significant decrease in fat, muscle and femoral BMD in female patients with RA as compared to their non-RA counterparts. Sarcopenia in the form of osteopenic sarcopenia and osteosarcopenia obesity was detected in 13.95 % RA patients vs 4.94 % non-RA subjects based on LMI findings. Both groups had high prevalence of osteopenia obesity.Conclusions. Assessment of the body composition by radiographic densitometry in female RA patients with osteopenia or osteoporosis may be used to detect sarcopenia and its phenotypes in order to inform prognosis and adjust the management plan.

  10. Bone mineral and body composition alterations in paediatric cystic fibrosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Reix, Philippe; Bellon, Gabriel [Hopital Femme Mere Enfant, Service de Pediatrie, Pneumologie, Allergologie, Mucoviscidose, Bron (France); Braillon, Pierre [Hospices Civils de Lyon, Service d' Imagerie Foetale et Pediatrique, Bron (France)

    2010-03-15

    With the increased life span of cystic fibrosis (CF) patients, CF-related bone diseases could have an increased prevalence and morbidity in this group. In children, previous retrospective and prospective studies have yielded conflicting results on bone mineralization. To monitor body composition and bone mineral status of children with CF. We reviewed the dual-energy X-ray absorptiometry (DXA) data of 161 children with CF (age 10 {+-} 4.8 years). Total body bone mineral content (BMCt), total lean tissue mass (LTMt) and total fat mass (FMt) were measured and compared to expected data calculated from ideal weight for height (Wi; e.g. BMCti, LTMti, FMti). The bt (BMCt/BMCti), lt (LTMt/LTMti) and ft (FMt/FMti) ratios were used as quantitative variables. Low bt ratio was found at all ages (mean bt ratio 0.94{+-}0.10; P<0.001), even in children <6 years of age. However, the children's BMCt was satisfactorily adapted to their weight. lt and ft ratios were not constant across age groups. Children <10 years had 8% reduction of their lt ratio, maintaining normal levels thereafter. The opposite trend was found for ft ratio. Poor clinical, nutritional status and vitamin A levels were correlated with bt and lt ratios. Our results indicate that children with CF could have early alterations in their bone status and that lt and ft ratios did not have constant values across ages. Interpreting DXA data using this approach is suitable in children with CF. (orig.)

  11. Bone mineral and body composition alterations in paediatric cystic fibrosis patients

    International Nuclear Information System (INIS)

    Reix, Philippe; Bellon, Gabriel; Braillon, Pierre

    2010-01-01

    With the increased life span of cystic fibrosis (CF) patients, CF-related bone diseases could have an increased prevalence and morbidity in this group. In children, previous retrospective and prospective studies have yielded conflicting results on bone mineralization. To monitor body composition and bone mineral status of children with CF. We reviewed the dual-energy X-ray absorptiometry (DXA) data of 161 children with CF (age 10 ± 4.8 years). Total body bone mineral content (BMCt), total lean tissue mass (LTMt) and total fat mass (FMt) were measured and compared to expected data calculated from ideal weight for height (Wi; e.g. BMCti, LTMti, FMti). The bt (BMCt/BMCti), lt (LTMt/LTMti) and ft (FMt/FMti) ratios were used as quantitative variables. Low bt ratio was found at all ages (mean bt ratio 0.94±0.10; P<0.001), even in children <6 years of age. However, the children's BMCt was satisfactorily adapted to their weight. lt and ft ratios were not constant across age groups. Children <10 years had 8% reduction of their lt ratio, maintaining normal levels thereafter. The opposite trend was found for ft ratio. Poor clinical, nutritional status and vitamin A levels were correlated with bt and lt ratios. Our results indicate that children with CF could have early alterations in their bone status and that lt and ft ratios did not have constant values across ages. Interpreting DXA data using this approach is suitable in children with CF. (orig.)

  12. The relation between 25-hydroxyvitamin D with peak bone mineral density and body composition in healthy young adults.

    Science.gov (United States)

    Boot, Annemieke M; Krenning, Eric P; de Muinck Keizer-Schrama, Sabine M P F

    2011-01-01

    The associations between peak bone mineral density (BMD) and body composition with 25 hydroxyvitamin D (25OHD) levels in healthy young adults were evaluated. The number of participants was 464; 347 women and 117 men. The mean age was 24.3 years (range 17-31 years). BMD of the lumbar spine, total body and femoral neck (FN) and body composition were measured by dual energy X-ray absorptiometry. Volumetric BMD, bone mineral apparent density (BMAD), of the lumbar spine and FN was calculated. In females, 25OHD level was positively associated with FN BMD and BMAD (both ppercentage body fat (pbody BMD and lean body mass (p=0.03 and p=0.01). 25OHD level is a determinant of peak BMD in both sexes. Vitamin D status was associated with body fat in females and with lean body mass in males.

  13. The impact of LRP5 polymorphism (rs556442) on calcium homeostasis, bone mineral density, and body composition in Iranian children.

    Science.gov (United States)

    Ashouri, Elham; Meimandi, Elham Mahmoodi; Saki, Forough; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Bakhshayeshkaram, Marzieh

    2015-11-01

    Failure to achieve optimal bone mass in childhood is the primary cause of decreased adult bone mineral density (BMD) and increased bone fragility in later life. Activating and inactivating LRP5 gene mutations has been associated with extreme bone-related phenotypes. Our aim was to investigate the role of LRP5 polymorphism on BMD, mineral biochemical parameters, and body composition in Iranian children. This cross-sectional study was performed on 9-18 years old children (125 boys, 137 girls). The serum level of calcium, phosphorous, alkaline phosphatase, and vitamin D parameters were checked. The body composition and BMD variables were measured by the Hologic system DXA. The rs566442 (V1119V) coding polymorphism in exon 15 of LRP5 was performed using PCR-RFLP method. Linear regression analysis, with adjustment for age, gender, body size parameters, and pubertal status was used to determine the association between LRP5 polymorphism (rs556442) and bone and body composition parameters. The allele frequency of the rs566442 gene was 35.5 % A and 63.9 % G. Our study revealed that LRP5 (rs556442) has not any significant influence on serum calcium, phosphorus, 25OHvitD, and serum alkaline phosphatase (P > 0.05). Total lean mass was greater in GG genotype (P = 0.028). Total body less head area (P = 0.044), spine BMD (P = 0.04), and total femoral BMC (P = 0.049) were lower in AG heterozygote genotype. This study show LRP5 polymorphism may associate with body composition and BMD in Iranian children. However, further investigations should be done to evaluate the role of other polymorphism.

  14. Longitudinal follow-up of bone density and body composition in children with precocious or early puberty before, during and after cessation of GnRH agonist therapy

    NARCIS (Netherlands)

    I.M. van der Sluis (Inge); A.M. Boot (Annemieke); E.P. Krenning (Eric); S.L.S. Drop (Stenvert); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    2002-01-01

    textabstractWe studied bone mineral density (BMD), bone metabolism, and body composition in 47 children with central precocious puberty (n = 36) or early puberty (n = 11) before, during, and after cessation of GnRH agonist. Bone density and body composition were measured with dual

  15. Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons

    NARCIS (Netherlands)

    Jong, de N.; Chin A Paw, M.; Groot, de C.P.G.M.; Hiddink, G.J.; Staveren, van W.A.

    2000-01-01

    This study determined the effect of enriched foods and all-around physical exercise on bone and body composition in frail elderly persons. Methods. A 17-week randomized, controlled intervention trial, following a 2 x 2 factorial design—(1) enriched foods, (2) exercise, (3) both, or (4) neither— was

  16. Bone mineral density and body composition in Noonan's syndrome: effects of growth hormone treatment

    NARCIS (Netherlands)

    Noordam, C.; Span, J.; van Rijn, R. R.; Gomes-Jardin, E.; van Kuijk, C.; Otten, B. J.

    2002-01-01

    We assessed bone mineral density (BMD) and body composition in children with Noonan's syndrome (NS) before and during growth hormone (GH) treatment. Sixteen children (12 boys, 4 girls) with NS aged 5.8-14.2 (mean 10.0) years were studied for 2 years. Anthropometry, BMD measurements by radiographic

  17. Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency

    NARCIS (Netherlands)

    A.M. Boot (Annemieke); M.A. Engels (Melanie); G.J.M. Boerma (Geert); E.P. Krenning (Eric); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    1997-01-01

    textabstractAdults with childhood onset GH deficiency (GHD) have reduced bone mass, increased fat mass, and disorders of lipid metabolism. The aim of the present study was to evaluate bone mineral density (BMD), bone metabolism, body composition, and lipid metabolism in

  18. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season

    Science.gov (United States)

    Minett, M.M.; Binkley, T.B.; Weidauer, L.A.; Specker, B.L.

    2017-01-01

    Objectives: To assess body composition and bone changes pre- to post-season (pre-post) and post- to off-season (post-off) in female soccer athletes (SC). Methods: Outcomes were assessed using DXA and pQCT in 23 SC and 17 controls at three times throughout season. Results: SC, non-starters in particular, lost lean mass pre-post (-0.9±0.2 kg, pSoccer players lost lean mass over the competitive season that was not recovered during off-season. Bone size increased pre- to post-season. Female soccer athletes experience body composition and bone geometry changes that differ depending on the time of season and on athlete’s playing status. Evaluations of athletes at key times across the training season are necessary to understand changes that occur. PMID:28250243

  19. Relationship between body composition, body mass index and bone mineral density in a large population of normal, osteopenic and osteoporotic women.

    Science.gov (United States)

    Andreoli, A; Bazzocchi, A; Celi, M; Lauro, D; Sorge, R; Tarantino, U; Guglielmi, G

    2011-10-01

    The knowledge of factors modulating the behaviour of bone mass is crucial for preventing and treating osteoporotic disease; among these factors, body weight (BW) has been shown to be of primary importance in postmenopausal women. Nevertheless, the relative effects of body composition indices are still being debated. Our aim was to analyze the relationship between body mass index (BMI), fat and lean mass and bone mineral density (BMD) in a large population of women. Moreover, this study represents a first important report on reference standard values for body composition in Italian women. Between 2005 and 2008, weight and height of 6,249 Italian women (aged 30-80 years) were measured and BMI was calculated; furthermore BMD, bone mineral content, fat and lean mass were measured by dual-energy X-ray absorptiometry. Individuals were divided into five groups by decades (group 1, 30.0-39.9; group 2, 40.0-49.9; group 3, 50.0-59.9; group 4, 60.0-69.9; group 5, 70.0-79.9). Differences among decades for all variables were calculated using a one-way analysis of variance (ANOVA) and Bonferroni test by the SPSS programme. Mean BW was 66.8±12.1 kg, mean height 159.1±6.3 cm and mean BMI 26.4±4.7 kg/m(2). According to BW and BMI, there was an increase of obesity with age, especially in women older than 50 years (posteoporosis in the examined population was 43.0% and 16.7%, respectively. Our data show that obesity significantly decreased the risk for osteoporosis but did not decrease the risk for osteopenia. It is strongly recommended that a strong policy regarding prevention of osteopenia and osteoporosis be commenced. An overall examination of our results suggests that both fat and lean body mass can influence bone mass and that their relative effect on bone could be modulated by their absolute amount and ratio to total BW.

  20. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? – A prospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Poulton Alison

    2012-12-01

    Full Text Available Abstract Objective Children treated with stimulant medication for attention deficit hyperactivity disorder (ADHD often lose weight. It is important to understand the implications of this during growth. This prospective study was designed to quantify the changes in body composition and markers of bone metabolism on starting treatment. Methods 34 children (29 boys aged 4.7 to 9.1 years newly diagnosed with ADHD were treated with dexamphetamine or methylphenidate, titrating the dose to optimise the therapeutic response. Medication was continued for as long as clinically indicated. Body composition and bone density (dual-energy X-ray absorptiometry were measured at baseline, 6 months and 3 years; changes were analysed in Z-scores based on data from 241 healthy, local children. Markers of bone turnover were measured at baseline, 3 months and 3 years. Results Fat loss of 1.4±0.96kg (total fat 5.7±3.6 to 4.3±3.1kg, p Conclusions Stimulant medication was associated with early fat loss and reduced bone turnover. Lean tissue including bone increased more slowly over 3 years of continuous treatment than would be expected for growth in height. There was long-term improvement in the proportion of central fat for height. This study shows that relatively minor reductions in weight on stimulant medication can be associated with long-term changes in body composition. Further study is required to determine the effects of these changes on adult health.

  1. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    Science.gov (United States)

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  2. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2015-03-01

    Full Text Available Aim. To determine the relationship between bone mineral density (BMD and total body composition in postmenopausal women with type 2 diabetes. Materials and Methods. The study included 78 women, from 50 to 70 years of age (median 63 years. Twenty women had normal body mass index (BMI, 29 ones were overweight and 29 had obesity. The body composition and BMD was studied by dual-energy X-ray absorptiometry. Results. Women with normal BMD had higher BMI, total and truncal fat mass, as well lean mass as compared to women with osteoporosis and osteopenia (all p

  3. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years].

    Science.gov (United States)

    Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A

    2016-01-01

    Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  4. Bone composition measured by x-ray scattering

    International Nuclear Information System (INIS)

    Newton, M.; Hukins, D.W.L.

    1992-01-01

    Ten composite samples consisting of cortical bone and adipose tissue, in known proportions, were made. The intensity of monochromatic x-rays (energy 8 keV) scattered by these samples was determined as a function of the modulus of the scattering vector, K. The ratio of the heights of peaks at K values of around 134 and 22 nm -1 provided a measure of the ratio of adipose tissue to bone mineral in these samples. This method was then used to determine the ratio of adipose tissue to mineral in samples of trabecular bone from 16 vertebral bodies. The results were correlated with measurements of the bone composition determined by ashing (r = 0.66) and histomorphometry (r = 0.66). Furthermore, the ashing and histomorphometry results were correlated with each other (r = 0.68). The feasibility of using higher energy x-rays (35-80 keV) for obtaining the same information from bone within the body is briefly discussed. (author)

  5. Lifestyle guidelines for managing adverse effects on bone health and body composition in men treated with androgen deprivation therapy for prostate cancer: an update.

    Science.gov (United States)

    Owen, P J; Daly, R M; Livingston, P M; Fraser, S F

    2017-06-01

    Men treated with androgen deprivation therapy (ADT) for prostate cancer are prone to multiple treatment-induced adverse effects, particularly with regard to a deterioration in bone health and altered body composition including decreased lean tissue mass and increased fat mass. These alterations may partially explain the marked increased risk in osteoporosis, falls, fracture and cardiometabolic risk that has been observed in this population. A review was conducted that assessed standard clinical guidelines for the management of ADT-induced adverse effects on bone health and body composition in men with prostate cancer. Currently, standard clinical guidelines exist for the management of various bone and metabolic ADT-induced adverse effects in men with prostate cancer. However, an evaluation of the effectiveness of these guidelines into routine practice revealed that men continued to experience increased central adiposity, and, unless pharmacotherapy was instituted, accelerated bone loss and worsening glycaemia occurred. This review discusses the current guidelines and some of the limitations, and proposes new recommendations based on emerging evidence regarding the efficacy of lifestyle interventions, particularly with regard to exercise and nutritional factors, to manage ADT-related adverse effects on bone health and body composition in men with prostate cancer.

  6. The effect of exercise on body composition and bone mineral density in breast cancer survivors taking aromatase inhibitors.

    Science.gov (United States)

    Thomas, Gwendolyn A; Cartmel, Brenda; Harrigan, Maura; Fiellin, Martha; Capozza, Scott; Zhou, Yang; Ercolano, Elizabeth; Gross, Cary P; Hershman, Dawn; Ligibel, Jennifer; Schmitz, Kathryn; Li, Fang-Yong; Sanft, Tara; Irwin, Melinda L

    2017-02-01

    This study examined the effect of 12 months of aerobic and resistance exercise versus usual care on changes in body composition in postmenopausal breast cancer survivors taking aromatase inhibitors (AIs). The Hormones and Physical Exercise study enrolled 121 breast cancer survivors and randomized them to either supervised twice-weekly resistance exercise training and 150 min/wk of aerobic exercise (N = 61) or a usual care (N = 60) group. Dual-energy X-ray absorptiometry scans were conducted at baseline, 6 months, and 12 months to assess changes in body mass index, percent body fat, lean body mass, and bone mineral density. At 12 months, the exercise group relative to the usual care group had a significant increase in lean body mass (0.32 vs. -0.88 kg, P = 0.03), a decrease in percent body fat (-1.4% vs. 0.48%, P = 0.03), and a decrease in body mass index (-0.73 vs. 0.17 kg/m 2 , P = 0.03). Change in bone mineral density was not significantly different between groups at 12 months (0.001 vs. -0.006 g/cm 2 , P = 0.37). A combined resistance and aerobic exercise intervention improved body composition in breast cancer survivors taking AIs. Exercise interventions may help to mitigate the negative side effects of AIs and improve health outcomes in breast cancer survivors. © 2016 The Obesity Society.

  7. Maternal High Fat Feeding Does Not Have Long-Lasting Effects on Body Composition and Bone Health in Female and Male Wistar Rat Offspring at Young Adulthood

    Directory of Open Access Journals (Sweden)

    Paula M. Miotto

    2013-12-01

    Full Text Available High fat diets adversely affect body composition, bone mineral and strength, and alter bone fatty acid composition. It is unclear if maternal high fat (HF feeding permanently alters offspring body composition and bone health. Female rats were fed control (CON or HF diet for 10 weeks, bred, and continued their diets throughout pregnancy and lactation. Male and female offspring were studied at weaning and 3 months, following consumption of CON diet. At weaning, but not 3 months of age, male and female offspring from dams fed HF diet had lower lean mass and higher fat and bone mass, and higher femur bone mineral density (females only than offspring of dams fed CON diet. Male and female offspring femurs from dams fed HF diet had higher monounsaturates and lower n6 polyunsaturates at weaning than offspring from dams fed CON diet, where females from dams fed HF diet had higher saturates and lower n6 polyunsaturates at 3 months of age. There were no differences in strength of femurs or lumbar vertebrae at 3 months of age in either male or female offspring. In conclusion, maternal HF feeding did not permanently affect body composition and bone health at young adulthood in offspring.

  8. Measuring body composition in overweight individuals by dual energy x-ray absorptiometry

    International Nuclear Information System (INIS)

    Brownbill, Rhonda A; Ilich, Jasminka Z

    2005-01-01

    Dual energy x-ray absorptiometry (DXA) is widely used for body composition measurements in normal-weight and overweight/obese individuals. The limitations of bone densitometers have been frequently addressed. However, the possible errors in assessing body composition in overweight individuals due to incorrect positioning or limitations of DXA to accurately assess both bone mineral density and body composition in obese individuals have not received much attention and are the focus of this report. We discuss proper ways of measuring overweight individuals and point to some studies where that might not have been the case. It appears that currently, the most prudent approach to assess body composition of large individuals who cannot fit under the scanning area would be to estimate regional fat, namely the regions of thigh and/or abdomen. Additionally, using two-half body scans, although time consuming, may provide a relatively accurate measurement of total body fat, however, more studies using this technique are needed to validate it. Researchers using bone densitometers for body composition measurements need to have an understanding of its limitations in overweight individuals and address them appropriately when interpreting their results. Studies on accuracy and precision in measurements of both bone and soft tissue composition in overweight individuals using available densitometers are needed

  9. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    Science.gov (United States)

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  10. The effects of a 6-month resistance training and dried plum consumption intervention on strength, body composition, blood markers of bone turnover, and inflammation in breast cancer survivors.

    Science.gov (United States)

    Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B

    2014-06-01

    The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p body composition and biochemical markers of inflammation.

  11. Body composition and circulating estradiol are the main bone density predictors in healthy young and middle-aged men.

    Science.gov (United States)

    Bilha, S C; Branisteanu, D; Buzduga, C; Constantinescu, D; Cianga, P; Anisie, E; Covic, A; Ungureanu, M C

    2018-01-16

    Current fracture risk assessment options in men call for improved evaluation strategies. Recent research directed towards non-classic bone mass determinants have often yielded scarce and conflicting results. We aimed at investigating the impact of novel potential bone mass regulators together with classic determinants of bone status in healthy young and middle-aged men. Anthropometric measurements, all-site bone mineral density (BMD) and body composition parameters assessed by dual-energy X-ray absorptiometry and also serum concentrations of (1) the adipokines leptin and resistin, (2) vitamin D and parathormone (PTH), (3) sex hormone binding globulin (SHBG), total testosterone and estradiol (free testosterone was also calculated) and (4) C-terminal telopeptide of type I collagen (CTx) were obtained from 30 apparently healthy male volunteers aged 20-65 years enrolled in this cross-sectional study. Only lean mass (LM) and total estradiol independently predicted BMD in men in multiple regression analysis, together explaining 49% (p ≤ 0.001) of whole-body BMD variance. Hierarchical regression analysis with whole-body BMD as outcome variable demonstrated that the body mass index (BMI) beta coefficient became nonsignificant when LM was added to the model. Adipokines, fat parameters, testosterone (total and free), SHBG, PTH and vitamin D were not independently associated with BMD or CTx. The present study shows that LM and sex hormones-namely estradiol-are the main determinants of bone mass in young and middle-aged men. The effects of BMI upon BMD seem to be largely mediated by LM. Lifestyle interventions should focus on preserving LM in men for improved bone outcomes.

  12. EFFECTS OF SPORTS AND SCIENCE HIGH SCHOOL STUDENTS’ SPORTS ACTIVITY LEVELS ON BODY COMPOSITION AND BONE MINERAL DENSITY

    Directory of Open Access Journals (Sweden)

    Hasan Aykut AYSAN

    2015-08-01

    Full Text Available Purpose: In this study, effects of sports and science high school students’ sports activity levels on their body composition and bone development level were investigated. Material and Method: A total of 59 participants were voluntarily included in the study in which 29 people were the experimental group from Elazıg Kaya Karakaya Sports High School with a mean age of 17.10±1.25 (years and 30 people were the control group fr om Diyarbakır RekabetKurumu High School with a mean age of 17.70±1.67 (years . Sports activity of Sports High school students was found to include (in the first two years 384 hours, a total of 1088 hours in four years and sports activity of science high s chool students was found to include ( in the first 2 years 94, a total of 158 hours in four years. Those who had any disease that could have an effect on their bone mineral density and body compositions were not included in the study. Height and weight w ere measure with standardSecaStadiometre . Body Mass Index (BMI, Basal Metabolic Rate (BMR, Body Fat Percentage (BFP, Body Fat Mass (BFM, Fat - Free Body Mass (FBM, Total Body Water (TBW , which constitute body composition and are accepted as sub parame ters, were measured with Bioelectrical Impedance Analyser (BIA - Tanita BC 418 . Bone densitometry device (DEXA; Hologic Discovery 4500 QDR was used in the measurements of bone mineral density. SPSS 16.0 was used in the process of the raw data obtained and T - Test was applied for independent samples. Findings : HEIGHT, WEIGHT, BMI, BMR, %BFP, BFM, FBM, TBW measured mean values of the E xperimental group are 171.62±7.078 (cm, 58.88±8.679 (kg, 19.89±1.745 (kg/m², 3435.6 ± 2660.55 (kcal, 13.64±2.446 (%,8.100± 2.150 (kg, 50.81±7.165 (kg respectively. HEIGHT, WEIGHT, BMI, BMR, %BFP, BFM, FBM, TBW measured mean values of the Control group are 170.21±8.514 (cm, 59.77±9.749 (kg, 19.63±1.439 (kg/m², 2362.85 ± 2010.71 (kcal, 13.83±2.556 (%, 8.048±1.708 (kg, 5 0

  13. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study

    DEFF Research Database (Denmark)

    Liendgaard, Ulla Kristine Møller; við Streym, Susanna; Mosekilde, Leif

    2012-01-01

    In a controlled cohort study, bone mineral density (BMD) was measured in 153 women pre-pregnancy; during pregnancy; and 0.5, 4, 9, and 19 months postpartum. Seventy-five age-matched controls, without pregnancy plans, were followed in parallel. Pregnancy and breastfeeding cause a reversible bone...... in fat mass differed according to breastfeeding status with a slower decline in women who continued breastfeeding. Calcium and vitamin D intake was not associated with BMD changes. CONCLUSION: Pregnancy and breastfeeding cause a reversible bone loss. At 19 months postpartum, BMD has returned to pre-pregnancy...... loss, which, initially, is most pronounced at trabecular sites but also involves cortical sites during prolonged breastfeeding. INTRODUCTION: Conflicting results have been reported on effects of pregnancy and breastfeeding on BMD and body composition (BC). In a controlled cohort study, we elucidate...

  14. The relation between 25-hydroxyvitamin D with peak bone mineral density and body composition in healthy young adults

    NARCIS (Netherlands)

    Boot, Annemieke M.; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    Objective: The associations between peak bone mineral density (BMD) and body composition with 25 hydroxyvitamin D (25OHD) levels in healthy young adults were evaluated. Methods: The number of participants was 464; 347 women and 117 men. The mean age was 24.3 years (range 17-31 years). BMD of the

  15. Sequences of Regressions Distinguish Nonmechanical from Mechanical Associations between Metabolic Factors, Body Composition, and Bone in Healthy Postmenopausal Women.

    Science.gov (United States)

    Solis-Trapala, Ivonne; Schoenmakers, Inez; Goldberg, Gail R; Prentice, Ann; Ward, Kate A

    2016-03-09

    There is increasing recognition of complex interrelations between the endocrine functions of bone and fat tissues or organs. The objective was to describe nonmechanical and mechanical links between metabolic factors, body composition, and bone with the use of graphical Markov models. Seventy postmenopausal women with a mean ± SD age of 62.3 ± 3.7 y and body mass index (in kg/m 2 ) of 24.9 ± 3.8 were recruited. Bone outcomes were peripheral quantitative computed tomography measures of the distal and diaphyseal tibia, cross-sectional area (CSA), volumetric bone mineral density (vBMD), and cortical CSA. Biomarkers of osteoblast and adipocyte function were plasma concentrations of leptin, adiponectin, osteocalcin, undercarboxylated osteocalcin (UCOC), and phylloquinone. Body composition measurements were lean and percent fat mass, which were derived with the use of a 4-compartment model. Sequences of Regressions, a subclass of graphical Markov models, were used to describe the direct (nonmechanical) and indirect (mechanical) interrelations between metabolic factors and bone by simultaneously modeling multiple bone outcomes and their relation with biomarker outcomes with lean mass, percent fat mass, and height as intermediate explanatory variables. The graphical Markov models showed both direct and indirect associations linking plasma leptin and adiponectin concentrations with CSA and vBMD. At the distal tibia, lean mass, height, and adiponectin-UCOC interaction were directly explanatory of CSA (R 2 = 0.45); at the diaphysis, lean mass, percent fat mass, leptin, osteocalcin, and age-adiponectin interaction were directly explanatory of CSA (R 2 = 0.49). The regression models exploring direct associations for vBMD were much weaker, with R 2 = 0.15 and 0.18 at the distal and diaphyseal sites, respectively. Lean mass and UCOC were associated, and the global Markov property of the graph indicated that this association was explained by osteocalcin. This study, to our

  16. Characterization of college football athletes and basketball: Anthropometry and Body Composition

    Directory of Open Access Journals (Sweden)

    Jesús Gil Gómez

    2011-01-01

    Full Text Available Abstract Introduction and Objectives. Anthropometric study of university population, comprising men and women college athletes participating in the Championships of Spain's 2008 College basketball and football. The aim of this study is to describe the body composition of male and female college athletes in football and basketball specialtiesMethods. This is a cross-sectional study with direct anthropometric measurements. These have been obtained by following the rules and techniques recommended by the International Group of Cineantropometry.Results. The college athletes generally have a higher percentage of muscle weight and fat mass and bone weight lower percentage of male college athletes. The male basketball players have a higher percentage of fat mass and bone weight and lower percentage of muscle weight in football players.  mong women, we found that basketball players have a higher percentage of bone weight and lower percentage of fat mass and muscle mass than soccer players.Conclusions. The competitive level of body composition changes substantially, primarily among females. It is important to have data on body composition at the college level.Keywords: Body Composition, Fat Mass, Muscle Mass, Weight Bone, Anthropometry.

  17. Precision of high-resolution dual energy x-ray absorptiometry of bone mineral status and body composition in small animal models

    Directory of Open Access Journals (Sweden)

    Lochmüller E. M.

    2001-01-01

    Full Text Available The purpose of this study was to analyze the in situ precision (reproducibility of bone mineral and body composition measurements in mice of different body weights and rats, using a high-resolution DXA (dual energy X-ray absorptiometry scanner. We examined 48 NMRI mice weighing approximately 10 to 60 g, and 10 rats weighing approximately 140 g. Four repeated measurements were obtained on different days. In mice, the standard deviations of repeated measurements ranged from 2.5 to 242 mg for bone mineral content (BMC, from 0.16 to 3.74 g for fat, and from 0.40 to 4.21 g for lean mass. The coefficient of variation in percent (CV% for BMC/BMD (bone mineral density was highest in the 10 g mice (12.8% / 4.9% and lowest in the 40 g mice (3.5% /1.7%. In rats, it was 2.5 /1.2% in the lower extremity, 7.1/3.0 % in the spine, 5.7/2.0 % in the femur, and 3.6%/2.1% in the tibia. The CV% for fat and lean mass in mice was higher than for BMC. The study demonstrates good precision of bone mineral and moderate precision of body composition measure-ments in small animals, using a high-resolution DXA system. The technique can be used for testing the efficacy of drugs in small animal models, for muta-genesis screens, and for the phenotypic characterization of transgenic mice.

  18. Scaling of human body composition to stature: new insights into body mass index.

    Science.gov (United States)

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2007-07-01

    Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (Pshort and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.

  19. The relationship of total body composition with bone mineral density in postmenopausal women with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2015-03-01

    Full Text Available AimTo determine the relationship between bone mineral density (BMD and total body composition in postmenopausal women with type 2 diabetes.Materials and MethodsThe study included 78 women, from 50 to 70 years of age (median 63 years. Twenty women had normal body mass index (BMI, 29 ones were overweight and 29 had obesity. The body composition and BMD was studied by dual-energy X-ray absorptiometry.ResultsWomen with normal BMD had higher BMI, total and truncal fat mass, as well lean mass as compared to women with osteoporosis and osteopenia (all p <0.05. Patients with osteoporosis had a lower fat mass at the hips, compared with those with normal BMD. Total and truncal fat mass, as well as lean mass were positively correlated with BMD in the lumbar spine and proximal femur, femoral neck and radius. In multivariate regression analysis fat mass was an independent predictor for total BMD, after adjusting for age, BMI, duration of menopause, HbA1c, glomerular filtration rate and other total body composition parameters.ConclusionsIn postmenopausal type 2 diabetic women BMI and fat mass is associated positively with BMD.

  20. Comparison of the body compositions in obese and nonobese ...

    African Journals Online (AJOL)

    Total body water, visceral fat accumulation, body mass index, resting metabolic rate, fat‑free mass, bone mass, and muscle mass were significantly higher in obese when compared to those with nonobese (P < 0.001). Thirteen ... Keywords: Body composition, body fat distribution, body mass index, obesity, weight loss ...

  1. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems.

    Science.gov (United States)

    Shepherd, John A; Fan, Bo; Lu, Ying; Wu, Xiao P; Wacker, Wynn K; Ergun, David L; Levine, Michael A

    2012-10-01

    Dual-energy x-ray absorptiometry (DXA) is used to assess bone mineral density (BMD) and body composition, but measurements vary among instruments from different manufacturers. We sought to develop cross-calibration equations for whole-body bone density and composition derived using GE Healthcare Lunar and Hologic DXA systems. This multinational study recruited 199 adult and pediatric participants from a site in the US (n = 40, ages 6 through 16 years) and one in China (n = 159, ages 5 through 81 years). The mean age of the participants was 44.2 years. Each participant was scanned on both GE Healthcare Lunar and Hologic Discovery or Delphi DXA systems on the same day (US) or within 1 week (China) and all scans were centrally analyzed by a single technologist using GE Healthcare Lunar Encore version 14.0 and Hologic Apex version 3.0. Paired t-tests were used to test the results differences between the systems. Multiple regression and Deming regressions were used to derive the cross-conversion equations between the GE Healthcare Lunar and Hologic whole-body scans. Bone and soft tissue measures were highly correlated between the GE Healthcare Lunar and Hologic and systems, with r ranging from 0.96 percent fat [PFAT] to 0.98 (BMC). Significant differences were found between the two systems, with average absolute differences for PFAT, BMC, and BMD of 1.4%, 176.8 g and 0.013 g/cm(2) , respectively. After cross-calibration, no significant differences remained between GE Healthcare Lunar measured results and the results converted from Hologic. The equations we derived reduce differences between BMD and body composition as determined by GE Healthcare Lunar and Hologic systems and will facilitate combining study results in clinical or epidemiological studies. Copyright © 2012 American Society for Bone and Mineral Research.

  2. Relation between body composition and biochemical markers of bone turnover among early postmenopausal women

    DEFF Research Database (Denmark)

    Hla, M M; Davis, J W; Ross, P D

    2000-01-01

    , and whole body bone mineral content (BMC) with biochemical markers of bone formation (serum osteocalcin) and resorption (urinary type I collagen crosslinked N-telopeptides [NTX]). Per interquartile range (IQR) (the difference between 75th and 25th percentiles) increase in fat mass and whole body BMC...

  3. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults

    NARCIS (Netherlands)

    I.M. van der Sluis (Inge); M.A.J. de Ridder (Maria); A.M. Boot (Annemieke); E.P. Krenning (Eric); S.M.P.F. de Muinck Keizer-Schrama (Sabine)

    2002-01-01

    textabstractAIMS: To obtain normative data on bone mineral density and body composition measured with dual energy x ray absorptiometry (DXA) from early childhood to young adulthood. METHODS: Cross sectional results from 444 healthy white volunteers (4-20 years) in the Netherlands

  4. Scaling of human body composition to stature: new insights into body mass index 123

    Science.gov (United States)

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2009-01-01

    Background Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. Objective We examined the critical underlying assumptions of adiposity–body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). Design This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n = 411; organs = 76) and the other a larger DXA database (n = 1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Results Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of ≈2 (all P 2 (2.31–2.48), and the fraction of weight as bone mineral mass was significantly (P short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies. PMID:17616766

  5. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    Science.gov (United States)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  6. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    International Nuclear Information System (INIS)

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-01-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO 2 70 mol%, CaO 26 mol % and P 2 O 5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  7. Physical Activity, Physical Fitness, Body Composition, and Nutrition Are Associated with Bone Status in University Students.

    Science.gov (United States)

    Hervás, Gotzone; Ruiz-Litago, Fátima; Irazusta, Jon; Fernández-Atutxa, Ainhoa; Fraile-Bermúdez, Ana Belen; Zarrazquin, Idoia

    2018-01-10

    Understanding the modifiable factors that improve and maximize peak bone mass at an early age is necessary to design more effective intervention programs to prevent osteoporosis. To identify these modifiable factors, we analyzed the relationship of physical activity (PA), physical fitness, body composition, and dietary intake with bone stiffness index (SI), measured by quantitative ultrasonometry in young university students (18-21 years). Moderate-to-vigorous PA (MVPA) was the strongest predictor of SI (β = 0.184; p = 0.035). SI was most closely related with very vigorous PA in males (β = 0.288; p = 0.040) and with the number of steps/day in females (β = 0.319; p = 0.002). An association between thigh muscle and SI was consistent in both sexes (β = 0.328; p < 0.001). Additionally, extension maximal force was a bone SI predictor factor in females (β = 0.263; p = 0.016) independent of thigh muscle perimeter. Calcium intake was the only nutrition parameter that had a positive relationship with SI ( R = 0.217; p = 0.022). However, it was not included as a predictor for SI in our regression models. This study identifies predictors of bone status in each sex and indicates that muscle and bone interrelate with PA and fitness in young adults.

  8. Multivariate analysis of lifestyle, constitutive and body composition factors influencing bone health in community-dwelling older adults from Madeira, Portugal.

    Science.gov (United States)

    Gouveia, Élvio Rúbio; Blimkie, Cameron Joseph; Maia, José António; Lopes, Carla; Gouveia, Bruna Raquel; Freitas, Duarte Luís

    2014-01-01

    This study describes the association between habitual physical activity (PA), other lifestyle/constitutive factors, body composition, and bone health/strength in a large sample of older adults from Madeira, Portugal. This cross-sectional study included 401 males and 401 females aged 60-79 years old. Femoral strength index (FSI) and bone mineral density (BMD) of the whole body, lumbar spine (LS), femoral neck (FN), and total lean tissue mass (TLTM) and total fat mass (TFM) were determined by dual-energy X-ray absorptiometry-DXA. PA was assessed during face-to-face interviews using the Baecke questionnaire and for a sub-sample by Tritrac accelerometer. Demographic and health history information were obtained by telephone interview through questionnaire. The relationship between habitual PA variables and bone health/strength indicators (whole body BMD, FNBMD, LSBMD, and FSI) investigated using Pearson product-moment correlation coefficient was similar for females (0.098≤r≤0.189) and males (0.104≤r≤0.105). Results from standard multiple regression analysis indicated that the primary and most significant predictors for FNBMD in both sexes were age, TLTM, and TFM. For LSBMD, the most significant predictor was TFM in men and TFM, age, and TLTM in females. Our regression model explained 8.3-14.2% and 14.8-29.6% of the total variance in LSBMD and FNBMD for males and females, respectively. This study suggests that habitual PA is minimally but positively associated with BMD and FSI among older adult males and females and that body composition factors like TLTM and TFM are the strongest determinants of BMD and FSI in this population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition.

    Science.gov (United States)

    Burnham, Jon M; Shults, Justine; Semeao, Edisio; Foster, Bethany; Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B

    2004-12-01

    Whole body BMC was assessed in 104 children and young adults with CD and 233 healthy controls. CD was associated with significant deficits in BMC and lean mass, relative to height. Adjustment for lean mass eliminated the bone deficit in CD. Steroid exposure was associated with short stature but not bone deficits relative to height. Children with Crohn disease (CD) have multiple risk factors for impaired bone accrual. The confounding effects of poor growth and delayed maturation limit the interpretation of prior studies of bone health in CD. The objective of this study was to assess BMC relative to growth, body composition, and maturation in CD compared with controls. Whole body BMC and lean mass were assessed by DXA in 104 CD subjects and 233 healthy controls, 4-26 years of age. Multivariable linear regression models were developed to sequentially adjust for differences in skeletal size, pubertal maturation, and muscle mass. BMC-for-height z scores were derived to determine CD-specific covariates associated with bone deficits. Subjects with CD had significantly lower height z score, body mass index z score, and lean mass relative to height compared with controls (all p BMC in CD relative to controls was significantly reduced in males (0.86; 95% CI, 0.83, 0.94) and females (0.91; 95% CI, 0.85, 0.98) with CD. Adjustment for pubertal maturation did not alter the estimate; however, addition of lean mass to the model eliminated the bone deficit. Steroid exposure was associated with short stature but not bone deficits. This study shows the importance of considering differences in body size and composition when interpreting DXA data in children with chronic inflammatory conditions and shows an association between deficits in muscle mass and bone in pediatric CD.

  10. Increased bone mineral density in Aboriginal and Torres Strait Islander Australians: impact of body composition differences.

    Science.gov (United States)

    Maple-Brown, L J; Hughes, J; Piers, L S; Ward, L C; Meerkin, J; Eisman, J A; Center, J R; Pocock, N A; Jerums, G; O'Dea, K

    2012-07-01

    Bone mineral density (BMD) has been reported to be both higher and lower in Indigenous women from different populations. Body composition data have been reported for Indigenous Australians, but there are few published BMD data in this population. We assessed BMD in 161 Indigenous Australians, identified as Aboriginal (n=70), Torres Strait Islander (n=68) or both (n=23). BMD measurements were made on Norland-XR46 (n=107) and Hologic (n=90) dual-energy X-ray absorptiometry (DXA) machines. Norland BMD and body composition measurements in these individuals, and also in 36 Caucasian Australians, were converted to equivalent Hologic BMD (BMD(H)) and body composition measurements for comparison. Femoral neck (FN) and lumbar spine Z-scores were high in Indigenous participants (mean FN Z-score: Indigenous men +0.98, pAboriginal and/or Torres Strait Islander than Caucasian participants, after adjusting for age, gender, diabetes and height and remained higher in men after addition of lean mass to the model. We conclude that FN BMD is higher in Aboriginal and/or Torres Strait Islander Australians than Caucasian Australian reference ranges and these differences still remained significant in men after adjustment for lean mass. It remains to be seen whether these BMD differences translate to differences in fracture rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Assessment of the influence of body composition on bone mass in children and adolescents based on a functional analysis of the muscle-bone relationship.

    Science.gov (United States)

    Golec, Joanna; Chlebna-Sokół, Danuta

    2014-01-01

    The functional model of skeletal development considers the mechanical factor to be the most important skeletal modulant. The aim of the study was a functional analysis of the bone-muscle relationship in children with low and normal bone mass. The study involved 149 children with low and 99 children with normal bone mass (control group). All patients underwent a densitometry examination (DXA). Low bone mass was diagnosed if the Z-score was below values of Z-scores for all parameters in children with low bone mass as compared to the control group. Children with low bone mass had lower content of adipose and muscle tissue and a marked deficit of muscle tissue with regard to height (which according to mechanostat theory leads to lower muscle-generated strain on bones). This group of children had also lower TBBMC/LBM Z-scores, which indicates greater fracture susceptibility. 1. Functional analysis, which showed associations between bone and muscle tissues, can be useful for diagnosing and monitoring skeletal system disorders as well as making therapeutic decisions.2. The study emphasizes the role of proper nutrition and physical activities, which contribute to proper body composition, in the prevention of bone mineralization disorders in childhood and adolescence. 3. The study showed the inadequacy of the classic reference ranges used in interpreting DXA data in children and demonstrated the usefulness of continuous variables for that purpose.

  12. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women.

    Directory of Open Access Journals (Sweden)

    SoJung Kim

    Full Text Available The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ scores, body composition, and bone mineral density (BMD in healthy young college women.Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4 and proximal femur BMD (left side; total hip, femoral neck. The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm, weight (kg, fat free mass (FFM, kg, percent body fat (%, and body mass index (BMI. Participants were asked to record their 24-hour food intake in a questionnaire.There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014 and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007, while no significant relationships were found in cBPAQ (p > 0.05. When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024, while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015. Only FFM predicted 15% of the variance in L2-L4 (p = 0.004. There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025, but other dietary intakes variables were not significant (p > 0.05.BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in life.

  13. Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone.

    Science.gov (United States)

    Bechtold, Susanne; Ripperger, Peter; Dalla Pozza, Robert; Roth, Johannes; Häfner, Renate; Michels, Hartmut; Schwarz, Hans Peter

    2010-01-01

    GH has a positive impact on growth, bone, and muscle development. The objectives of this study were to demonstrate the effects of GH treatment on regional body composition and bone geometry at final height in patients with juvenile idiopathic arthritis (JIA). In this longitudinal study, parameters of bone mineral density and geometry as well as muscle and fat cross-sectional area (CSA) in the nondominant forearm were recorded using peripheral quantitative computed tomography at yearly intervals until final height in 12 patients (seven females) receiving GH treatment. Data at final height were compared with 13 patients (nine females) with JIA not treated with GH. Patients were treated with GH for a mean of 5.35 +/- 0.7 yr. Correcting for height, total bone CSA (+0.89 +/- 0.5 sd) and muscle CSA (+1.14 +/- 0.6 sd) increased significantly and normalized at final height. Compared with JIA patients without GH at final height, there was a significantly higher muscle CSA and a lower fat CSA in GH-treated patients. Additionally, in relation to total bone CSA, there was significantly more cortical and less marrow CSA in boys with GH treatment. During GH treatment, there was a significant increase and normalization of total bone and muscle CSA at final height. In accordance with an anabolic effect of GH, fat mass stabilized at the lower limit of healthy children. At final height, cortical and marrow CSA, relative to total bone CSA, were normalized in GH-treated patients.

  14. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment (Arabic Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The IAEA assists Member States in their efforts to develop effective evidence based interventions to combat malnutrition in all its forms using nuclear techniques. The unique characteristics of nuclear techniques in nutrition, in particular stable isotope techniques and dual energy X ray absorptiometry (DXA), make these methods highly suitable for development and evaluation of interventions to address the double burden of malnutrition, i.e. 'undernutrition' and 'overnutrition', globally. This publication provides information on the theoretical background and practical application of state of the art methodology for bone mineral density (BMD) measurements and body composition assessment by DXA. The IAEA has contributed to the development and transfer of technical expertise in the use of DXA in Member States through support to national and regional nutrition projects via the technical cooperation programme and coordinated research projects addressing priority areas in nutrition. This book will be an important part of the IAEA's efforts to transfer technology and to contribute to capacity building in this field. The publication was developed by an international group of experts and is intended for nutritionists, radiation technologists, researchers and health professionals using DXA for BMD measurements and body composition assessment.

  15. An Investigation Into the Differences in Bone Density and Body Composition Measurements Between 2 GE Lunar Densitometers and Their Comparison to a 4-Component Model.

    Science.gov (United States)

    Watson, Laura P E; Venables, Michelle C; Murgatroyd, Peter R

    We describe a study to assess the precision of the GE Lunar iDXA and the agreement between the iDXA and GE Lunar Prodigy densitometers for the measurement of regional- and total-body bone and body composition in normal to obese healthy adults. We compare the whole-body fat mass by dual-energy X-ray absorptiometry (DXA) to measurements by a 4-component (4-C) model. Sixty-nine participants, aged 37 ± 12 yr, with a body mass index of 26.2 ± 5.1 kg/cm 2 , were measured once on the Prodigy and twice on the iDXA. The 4-C model estimated fat mass from body mass, total body water by deuterium dilution, body volume by air displacement plethysmography, and bone mass by DXA. Agreements between measurements made on the 2 instruments and by the 4-C model were analyzed by Bland-Altman and linear regression analyses. Where appropriate, translational cross-calibration equations were derived. Differences between DXA software versions were investigated. iDXA precision was less than 2% of the measured value for all regional- and whole-body bone and body composition measurements with the exception of arm fat mass (2.28%). We found significant differences between iDXA and Prodigy (p Lunar instruments, Prodigy and iDXA measurement values. A divergence from the reference 4-C observations remains in FM estimations made by DXA even following the recent advances in technology. Further studies are particularly warranted in individuals with large FM contents. Copyright © 2017. Published by Elsevier Inc.

  16. Relationship between body mass, lean mass, fat mass, and limb bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton.

    Science.gov (United States)

    Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T

    2018-05-01

    Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  17. Body composition in children with juvenile idiopathic arthritis: effect ...

    African Journals Online (AJOL)

    Introduction: the aim of this study was to evaluate the relationship between macronutrient intake, body composition (lean body mass and fat mass) and bone mineral content in Moroccan children with juvenile idiopathic arthritis (JIA). Methods: a cross-sectional study, conducted between May 2010 and June 2011, covering ...

  18. Influence of Body Weight on Bone Mass, Architecture, and Turnover

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2016-01-01

    Weight-dependent loading of the skeleton plays an important role in establishing and maintaining bone mass and strength. This review focuses on mechanical signaling induced by body weight as an essential mechanism for maintaining bone health. In addition, the skeletal effects of deviation from normal weight are discussed. The magnitude of mechanical strain experienced by bone during normal activities is remarkably similar among vertebrates, regardless of size, supporting the existence of a conserved regulatory mechanism, or mechanostat, that senses mechanical strain. The mechanostat functions as an adaptive mechanism to optimize bone mass and architecture based on prevailing mechanical strain. Changes in weight, due to altered mass, weightlessness (spaceflight), and hypergravity (modeled by centrifugation), induce an adaptive skeletal response. However, the precise mechanisms governing the skeletal response are incompletely understood. Furthermore, establishing whether the adaptive response maintains the mechanical competence of the skeleton has proven difficult, necessitating development of surrogate measures of bone quality. The mechanostat is influenced by regulatory inputs to facilitate non-mechanical functions of the skeleton, such as mineral homeostasis, as well as hormones and energy/nutrient availability that support bone metabolism. While the skeleton is very capable of adapting to changes in weight, the mechanostat has limits. At the limits, extreme deviations from normal weight and body composition are associated with impaired optimization of bone strength to prevailing body size. PMID:27352896

  19. Developing bioactive composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  20. The effect of dairy intake on bone mass and body composition in early pubertal girls and boys: a randomized controlled trial.

    Science.gov (United States)

    Vogel, Kara A; Martin, Berdine R; McCabe, Linda D; Peacock, Munro; Warden, Stuart J; McCabe, George P; Weaver, Connie M

    2017-05-01

    Background: Calcium retention increases with increasing body mass index (BMI) on recommended calcium intakes. Dairy foods are an excellent source of essential nutrients that are needed to increase bone mineral content (BMC) and potentially decrease fracture. Objective: We compared children who were overweight with children who were healthy weight for the accrual of bone mass in response to an extra 3 servings dairy/d compared with usual intake. Design: Participants were 240 healthy boys and girls (64%), aged 8-15.9 y (mean ± SD age: 11.8 ± 1.5 y), who consumed low amounts of dairy (hip were observed between subjects who received the dairy intervention (achieved consumption of 1500 mg Ca/d) and subjects who did not (achieved 1000 mg Ca/d, which represented ∼2 cups milk or other dairy as part of the diet) with the exception of a tibial BMC gain, which was greater in the group who were given dairy ( P = 0.02). Body fat was not influenced by the diet assignment. Conclusions: Dairy food interventions generally had no effect on bone mineral acquisition or body composition either within or between weight groups. This study suggests that 2 cups milk or the dairy equivalent is adequate for normal bone gain between ages 8 and 16 y. This trial was registered at clinicaltrials.gov as NCT00635583. © 2017 American Society for Nutrition.

  1. Effects of chronic acceleration on body composition

    Science.gov (United States)

    Pitts, G. C.

    1982-01-01

    Studies of the centrifugation of adult rats showed an unexpected decrease in the mass of fat-free muscle and bone, in spite of the added load induced by centrifugation. It is suggested that the lower but constant fat-free body mass was probably regulated during centrifugation. Rats placed in weightless conditions for 18.5 days gave indirect but strong evidence that the muscle had increased in mass. Other changes in the rats placed in weightless conditions included a smaller fraction of skeletal mineral, a smaller fraction of water in the total fat-free body, and a net shift of fluid from skin to viscera. Adult rats centrifuged throughout the post-weaning growth period exhibited smaller masses of bone and central nervous system (probably attributable to slower growth of the total body), and a larger mass of skin than controls at 1 G. Efforts at simulating the effects of weightlessness or centrifugation on the body composition of rats by regimens at terrestrial gravity were inconclusive.

  2. Aged-Related Changes in Body Composition and Association between Body Composition with Bone Mass Density by Body Mass Index in Chinese Han Men over 50-year-old.

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    Full Text Available Aging, body composition, and body mass index (BMI are important factors in bone mineral density (BMD. Although several studies have investigated the various parameters and factors that differentially influence BMD, the results have been inconsistent. Thus, the primary goal of the present study was to further characterize the relationships of aging, body composition parameters, and BMI with BMD in Chinese Han males older than 50 years.The present study was a retrospective analysis of the body composition, BMI, and BMD of 358 Chinese male outpatients between 50 and 89 years of age that were recruited from our hospital between 2009 and 2011. Qualified subjects were stratified according to age and BMI as follows: 50-59 (n = 35, 60-69 (n = 123, 70-79 (n = 93, and 80-89 (n = 107 years of age and low weight (BMI: < 20 kg/m2; n = 21, medium weight (20 ≤ BMI < 24 kg/m2; n = 118, overweight (24 ≤ BMI < 28 kg/m2; n = 178, and obese (BMI ≥ 28 kg/m2; n = 41. Dual-energy X-ray absorptiometry (DEXA was used to assess bone mineral content (BMC, lean mass (LM, fat mass (FM, fat-free mass (FFM, lumbar spine (L1-L4 BMD, femoral neck BMD, and total hip BMD. Additionally, the FM index (FMI; FM/height2, LM index (LMI; LM/height2, FFM index (FFMI; [BMC+LM]/height2, percentage of BMC (%BMC; BMC/[BMC+FM+LM] × 100%, percentage of FM (%FM; FM/[BMC+FM+LM] × 100%, and percentage of LM (%LM; LM/(BMC+FM+LM × 100% were calculated. Osteopenia or osteoporosis was identified using the criteria and T-score of the World Health Organization.Although there were no significant differences in BMI among the age groups, there was a significant decline in height and weight according to age (p < 0.0001 and p = 0.0002, respectively. The LMI and FFMI also declined with age (both p < 0.0001 whereas the FMI exhibited a significant increase that peaked in the 80-89-years group (p = 0.0145. Although the absolute values of BMC and LM declined with age (p = 0.0031 and p < 0

  3. Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.

    Science.gov (United States)

    Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B

    2010-11-01

    Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution. © 2010 American Society for Bone and Mineral Research.

  4. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis.

    Science.gov (United States)

    Messina, Carmelo; Monaco, Cristian Giuseppe; Ulivieri, Fabio Massimo; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-08-01

    Due to the tight relationship between bone and soft tissues, there has been an increased interest in body composition assessment in patients with secondary osteoporosis as well as other pathological conditions. Dual-energy X-ray absorptiometry (DXA) is primarily devoted to the evaluation of bone mineral status, but continuous scientific advances of body composition software made DXA a rapid and easily available technique to assess body composition in terms of fat mass and lean mass. As a result, the International Society for Clinical Densitometry (ISCD) recently developed Official Positions regarding the use of this technique for body composition analysis. According to ISCD paper, indications are mainly limited to three conditions: HIV patients treated with antiretroviral agents associated with a risk of lipoatrophy; obese patients undergoing treatment for high weight loss; patients with sarcopenia or muscle weakness. Nevertheless, there are several other interesting clinical applications that were not included in the ISCD position paper, such as body composition assessment in patients undergoing organ transplantation, pulmonary disease as well as all those chronic condition that may lead to malnutrition. In conclusion, DXA body composition offers new diagnostic and research possibilities for a variety of diseases; due to its high reproducibility, DXA has also the potential to monitor body composition changes with pharmacological, nutritional or physic therapeutic interventions. ISCD addressed and recommended a list of clinical condition, but the crescent availability of DXA scans and software improvements may open the use of DXA to other indication in the next future. This article provides an overview of DXA body composition indications in the management of secondary osteoporosis and other clinical indications in adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Different Short-Term Mild Exercise Modalities Lead to Differential Effects on Body Composition in Healthy Prepubertal Male Rats

    Directory of Open Access Journals (Sweden)

    D. M. Sontam

    2015-01-01

    Full Text Available Physical activity has a vital role in regulating and improving bone strength. Responsiveness of bone mass to exercise is age dependent with the prepubertal period suggested to be the most effective stage for interventions. There is a paucity of data on the effects of exercise on bone architecture and body composition when studied within the prepubertal period. We examined the effect of two forms of low-impact exercise on prepubertal changes in body composition and bone architecture. Weanling male rats were assigned to control (CON, bipedal stance (BPS, or wheel exercise (WEX groups for 15 days until the onset of puberty. Distance travelled via WEX was recorded, food intake measured, and body composition quantified. Trabecular and cortical microarchitecture of the femur were determined by microcomputed tomography. WEX led to a higher lean mass and reduced fat mass compared to CON. WEX animals had greater femoral cortical cross-sectional thickness and closed porosity compared to CON. The different exercise modalities had no effect on body weight or food intake, but WEX significantly altered body composition and femoral microarchitecture. These data suggest that short-term mild voluntary exercise in normal prepubertal rats can alter body composition dependent upon the exercise modality.

  6. Vacuum-sintered body of a novel apatite for artificial bone

    Science.gov (United States)

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko

    2013-12-01

    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  7. Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA assists Member States in their efforts to develop effective evidence based interventions to combat malnutrition in all its forms using nuclear techniques. The unique characteristics of nuclear techniques in nutrition, in particular stable isotope techniques and dual energy X ray absorptiometry (DXA), make these methods highly suitable for development and evaluation of interventions to address the double burden of malnutrition, i.e. 'undernutrition' and 'overnutrition', globally. This publication provides information on the theoretical background and practical application of state of the art methodology for bone mineral density (BMD) measurements and body composition assessment by DXA. The IAEA has contributed to the development and transfer of technical expertise in the use of DXA in Member States through support to national and regional nutrition projects via the technical cooperation programme and coordinated research projects addressing priority areas in nutrition. This book will be an important part of the IAEA's efforts to transfer technology and to contribute to capacity building in this field

  8. Muscle fibre type composition and body composition in hammer throwers.

    Science.gov (United States)

    Terzis, Gerasimos; Spengos, Konstantinos; Kavouras, Stavros; Manta, Panagiota; Georgiadis, Giorgos

    2010-01-01

    Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p hammer throwers and 51 ± 8% in the control group (p Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm(2), p Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key pointsWell-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls.Increased lean body mass was closely related with hammer throwing performance.The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation.

  9. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    International Nuclear Information System (INIS)

    Killion, John A.; Kehoe, Sharon; Geever, Luke M.; Devine, Declan M.; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L.

    2013-01-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications. Highlights: • Young's modulus increases with the addition of bioactive glasses. • Hydrogel based composites formed an apatite layer in simulated body fluid. • Storage modulus increases with addition of bioactive glasses. • Compressive strength is dependent on molecular weight and bioactive glass loading

  10. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.

    Science.gov (United States)

    Lv, Yang; Li, Ailing; Zhou, Fang; Pan, Xiaoyu; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2015-06-03

    Percutaneous vertebroplasty (VP) and balloon kyphoplasty (BKP) are now widely used to treat patients who suffer painful vertebral compression fractures. In each of these treatments, a bone cement paste is injected into the fractured vertebral body/bodies, and the cement of choice is a poly(methyl methacrylate) (PMMA) bone cement. One drawback of this cement is the very high exothermic temperature, which, it has been suggested, causes thermal necrosis of surrounding tissue. In the present work, we prepared novel composite PMMA bone cement where microcapsules containing a phase change material (paraffin) (PCMc) were mixed with the powder of the cement. A PCM absorbs generated heat and, as such, its presence in the cement may lead to reduction in thermal necrosis. We determined a number of properties of the composite cement. Compared to the values for a control cement (a commercially available PMMA cement used in VP and BKP), each composite cement was found to have significantly lower maximum exothermic temperature, increased setting time, significantly lower compressive strength, significantly lower compressive modulus, comparable biocompatibility, and significantly smaller thermal necrosis zone. Composite cement containing 20% PCMc may be suitable for use in VP and BKP and thus deserves further evaluation.

  11. A Novel Injectable Magnesium/Calcium Sulfate Hemihydrate Composite Cement for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shanchuan Zhang

    2015-01-01

    Full Text Available Objective. A novel injectable magnesium/calcium sulfate hemihydrate (Mg/CSH composite with improved properties was reported here. Methods. Composition, setting time, injectability, compressive strength, and bioactivity in simulated body fluid (SBF of the Mg/CSH composite were evaluated. Furthermore, the cellular responses of canine bone marrow stromal cells (cBMSCs and bone formation capacity after the implantation of Mg/CSH in tibia defects of canine were investigated. Results. Mg/CSH possessed a prolonged setting time and markedly improved injectability and mechanical property p<0.05. Mg/CSH samples showed better degradability than CSH in SBF after 21 days of soaking p<0.05. Moreover, the degrees of cell attachment, proliferation, and capability of osteogenic differentiation on the Mg/CSH specimens were higher than those on CSH, without significant cytotoxicity and with the increased proliferation index, ALP activity, and expression levels of integrin β1 and Coll I in cBMSCs p<0.05. Mg/CSH enhanced the efficiency of new bone formation at the tibia defect area, including the significantly elevated bone mineral density, bone area fraction, and Coll I expression level p<0.05. Conclusions. The results implied that this new injectable bone scaffold exhibited promising prospects for bone repair and had a great potential in bone tissue engineering.

  12. Longitudinal Body Composition Changes in NCAA Division I College Football Players

    Science.gov (United States)

    Trexler, Eric T.; Smith-Ryan, Abbie E.; Mann, J. Bryan; Ivey, Pat A.; Hirsch, Katie R.; Mock, Meredith G.

    2016-01-01

    Many athletes seek to optimize body composition to fit the physical demands of their sport. American football requires a unique combination of size, speed, and power. The purpose of the current study was to evaluate longitudinal changes in body composition in Division I collegiate football players. For 57 players (Mean ± SD; Age=19.5 ± 0.9 yrs; Height=186.9 ± 5.7 cm; Weight=107.7 ± 19.1 kg), body composition was assessed via dual-energy x-ray absorptiometry in the off-season (March-Pre), end of off-season (May), mid-July (Pre-Season), and the following March (March-Post). Outcome variables included weight, body fat percentage (BF%), fat mass (FM), lean mass (LM), android (AND) and gynoid (GYN) fat, bone mineral content (BMC), and bone density (BMD). For a subset of athletes (n=13 out of 57), changes over a 4-year playing career were evaluated with measurements taken every March. Throughout a single year, favorable changes were observed for BF% (Δ=−1.3 ± 2.5%), LM (Δ=2.8 ± 2.8 kg), GYN (Δ=−1.5 ± 3.0%), BMC (Δ=0.06 ± 0.14 kg), and BMD (Δ=0.015 ± 0.027g·cm−2; all pfootball players at high levels of competition can achieve favorable changes in body composition, even late in the career, which may confer benefits for performance and injury prevention. PMID:28005635

  13. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity. Copyright © 2013 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  14. Associations between ethnicity, body composition, and bone mineral density in a Southeast Asian population.

    Science.gov (United States)

    Yang, P L S; Lu, Y; Khoo, C M; Leow, M K S; Khoo, E Y H; Teo, A; Lee, Y S; Das De, S; Chong, Y S; Gluckman, P D; Tai, E S; Venkataraman, K; Ng, C M A

    2013-11-01

    Chinese men in Singapore have a higher incidence of hip fractures than Malay and Indian men. We investigated whether there were corresponding ethnic differences in peak bone mineral density (BMD) in young men and whether differences in body composition influenced peak BMD. This was a cross-sectional study of healthy volunteers in a tertiary medical center. A total of 100 Chinese, 82 Malay, and 80 Indian men aged 21 to 40 years, with body mass index between 18 and 30 kg/m(2) underwent dual-energy x-ray absorptiometry to assess BMD, lean mass (LM) and fat mass (FM), and magnetic resonance imaging to quantify abdominal subcutaneous and visceral adipose tissue. Multiple linear regression models, with adjustment for age and height (as a proxy for skeletal size), were used. Malay and Indian men had significantly higher BMD than Chinese men at the lumbar spine (Malay: B, 0.06 ± 0.02, P = .001; Indian: B, 0.03 ± 0.02, P = .049), femoral neck (Malay: B 0.04 ± 0.02, P = .034; Indian: B, 0.04 ± 0.02, P = .041), hip (Malay: B, 0.05 ± 0.02, P = .016; Indian: B, 0.06 ± 0.02, P = .001), and ultradistal radius (Malay: B, 0.03 ± 0.01, P Malay men at the femoral neck and in Indian men at the ultradistal radius. LM was an important independent determinant of BMD at all sites, whereas FM, subcutaneous adipose tissue, and visceral adipose tissue were not significantly associated with BMD at any site. Lower peak BMD in Chinese men may partly explain the higher fracture incidence in this ethnic group. Further studies are needed to elucidate the reasons for these ethnic differences in bone accumulation.

  15. Whole-body MR imaging of bone marrow

    International Nuclear Information System (INIS)

    Schmidt, G.P.; Schoenberg, S.O.; Reiser, M.F.; Baur-Melnyk, A.

    2005-01-01

    In clinical routine, multimodality algorithms, including X-ray, computed tomography, scintigraphy and MRI, are used in case of suspected bone marrow malignancy. Skeletal scintigraphy is widely used to asses metastatic disease to the bone, CT is the technique of choice to assess criteria of osseous destruction and bone stability. MRI is the only imaging technique that allows direct visualization of bone marrow and its components with high spatial resolution. The combination of unenhanced T1-weighted-spin echo- and turbo-STIR-sequences have shown to be most useful for the detection of bone marrow abnormalities and are able to discriminate benign from malignant bone marrow changes. Originally, whole-body MRI bone marrow screening was performed in sequential scanning techniques of five body levels with time consuming coil rearrangement and repositioning of the patient. The introduction of a rolling platform mounted on top of a conventional MRI examination table facilitated whole-body MR imaging and, with the use of fast gradient echo, T1-weighted and STIR-imaging techniques, for the first time allowed whole-body imaging within less than one hour. With the development of parallel imaging techniques (PAT) in combination with global matrix coil concepts, acquisition time could be reduced substantially without compromises in spatial resolution, enabling the implementation of more complex and flexible examination protocols. Whole-body MRI represents a new alternative to the stepwise multimodality concept for the detection of metastatic disease, multiple myeloma and lymphoma of the bone with high diagnostic accuracy

  16. The modified amino sugarN-Butyryl Glucosaminefed toovariectomized ratspreservesbone mineralthroughincreased early mineralization,but does not affect body composition

    Directory of Open Access Journals (Sweden)

    Tassos Anastassiades

    2017-10-01

    Full Text Available Background: The toxicities of pharmaceuticals for chronic arthritis and osteoporosis should be of concern to consumers. This partially accounts for the popularity of consumption of the amino sugar glucosamine, in-spite of controversy about its efficacy. We chemically synthesized N-butyryl glucosamine (GlcNBu, which we discovered protected bone and cartilage in an inflammatory arthritis rat model when used as a feed supplement. GlcNBu can also be potentially synthesized biochemically, since we recently demonstrated that human acetyl-CoA: glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups of up to four carbons in length, i.e. the butyryl moiety. Oral GlcNBu had no detectable toxicity and also protected against bone loss in ovariectomized (OVX rats as a model for osteoporosis. However, we demonstrated this only for bones excised at 6 months. Thus, the current study aims to determine when bone mineralization is maximized during daily GlcNBu supplementation, in both OVΧ and Sham-OVX rats, in addition to the relationship of bone mineralization to body composition. Methods: Female Sprague-Dawley rats were randomized into 4 groups, containing 8 rats each. The groups consisted of OVX or Sham-OVX rats whose diets were supplemented with either 200 mg/kg/day of GlcNBu or an equimolar amount of glucose. We performed sequential bone density and body composition measurements, by dual-energy X-ray absorptiometry in the live, anesthetised rats, over a 6-month experimental period, starting at the age of 8 weeks. Results were analyzed by descriptive statistics and 2-way ANOVA. Results: The major increases in the mineral content and density of the spine and the femur in GlcNBu-supplemented rats occurred early, from the baseline to week 8. Ovariectomy resulted in a number of significant differences in body composition, while feeding GlcNBu had no significant effects on body composition. The significant effects of

  17. Longitudinal study of body composition in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Roop Singh

    2014-01-01

    Full Text Available Background: Bone mass loss and muscle atrophy are the frequent complications occurring after spinal cord injury (SCI. The potential risks involved with these changes in the body composition have implications for the health of the SCI individual. Thus, there is a need to quantitate and monitor body composition changes accurately in an individual with SCI. Very few longitudinal studies have been reported in the literature to assess body composition and most include relatively small number of patients. The present prospective study aimed to evaluate the body composition changes longitudinally by DEXA in patients with acute SCI. Materials and Methods: Ninety five patients with acute SCI with neurological deficits were evaluated for bone mineral content (BMC, body composition [lean body mass (LBM and fat mass] by dual-energy X-ray absorptiometry during the first year of SCI. Results: There was a significant decrease in BMC ( P < 0.05 and LBM ( P < 0.05 and increase in total body fat mass (TBFM and percentage fat at infra-lesional sites. The average decrease was 14.5% in BMC in lower extremities, 20.5% loss of LBM in legs and 15.1% loss of LBM in trunk, and increase of 0.2% in fat mass in legs and 17.3% increased fat in the lower limbs at 1 year. The tetraplegic patients had significant decrease in arm BMC ( P < 0.001, arm LBM ( P < 0.01 and fat percentage ( P < 0.01 compared to paraplegics. Patients with complete motor injury had higher values of TBFM and fat percentage, but comparable values of BMC and LBM to patients with incomplete motor injury. Conclusions: Our findings suggest that there is a marked decrease in BMC and LBM with increase in adiposity during the first year of SCI. Although these changes depend on the level and initial severity of lesions, they are also influenced by the neurological recovery after SCI.

  18. High-intensity intermittent "5-10-15" running reduces body fat, and increases lean body mass, bone mineral density, and performance in untrained subjects

    DEFF Research Database (Denmark)

    Ravnholt, Tanja Højegaard; Tybirk, Jonas; Jørgensen, Niklas Rye

    2018-01-01

    , and 5 s low-, moderate-, and high-speed running, respectively. Body fat mass was 4.3% lower (P bone mineral density was 1.1 and 0.9% higher (P bone turnover markers osteocalcin......The present study examined the effect of intense intermittent running with 5 s sprints on body composition, fitness level, and performance in untrained subjects aged 36-53 years. For 7 weeks, the subjects carried out 3 days a week 5-10-15 training consisting of 3-9 blocks of 4 repetitions of 15, 10...

  19. The influence of anthropometry and body composition on children's bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark.

    Science.gov (United States)

    Heidemann, Malene; Holst, René; Schou, Anders J; Klakk, Heidi; Husby, Steffen; Wedderkopp, Niels; Mølgaard, Christian

    2015-02-01

    Overweight, physical inactivity and sedentary behaviour have become increasing problems during the past decade. Increased sedentary behaviour may change the body composition (BC) by increasing the fat mass relative to the lean mass (LM). These changes may influence bone health to describe how anthropometry and BC predict the development of the bone accruement. The longitudinal study is a part of The CHAMPS study-DK. Children were DXA scanned at baseline and at 2-year follow-up. BC (LM, BF %) and BMC, BMD and BA were measured. The relationship between bone traits, anthropometry and BC was analysed by multilevel regression analyses. Of the invited children, 742/800 (93%) accepted to participate. Of these, 682/742 (92%) participated at follow-up. Mean (range) of age at baseline was 9.5 years (7.7-12.1). Height, BMI, LM and BF % predicted bone mineral accrual and bone size positively and independently. Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone accretion in both boys and girls.

  20. Body composition and bone mineral density in breast cancer survivors and non-cancer controls: A 12- to 15-month follow-up.

    Science.gov (United States)

    Artese, A L; Simonavice, E; Madzima, T A; Kim, J-S; Arjmandi, B H; Ilich, J Z; Panton, L B

    2018-03-01

    While prognosis for breast cancer in women has improved, adverse side effects of treatments may negatively affect body composition and bone mineral density (BMD). This study assessed body composition and BMD changes in breast cancer survivors (BCS) (n = 10, 57.9 ± 5.7 years) and age-matched women (non-cancer, n = 10, 56.5 ± 4.3 years) over a 12- to 15-month period via dual-energy X-ray absorptiometry. No differences were observed between groups at baseline except forearm BMD values were lower in BCS (BCS: 0.462 ± 0.070 g/cm 2 ; Control: 0.539 ± 0.052 g/cm 2 , p = .012). Body fat increased in both groups compared to baseline (BCS: 38.3-39.6 kg, p = .013; Control: 38.2-39.5 kg, p = .023) at the follow-up. Significant decreases in BMD at the lumbar spine, femoral neck, total femur and ulna were observed in both groups. Breast cancer survivors had a greater decrease in left femoral neck BMD. While BCS demonstrated lower baseline forearm BMD values and a greater decrease in left femoral neck BMD, both groups showed an increase in body fat and decrease in forearm BMD. These findings support the implementation of interventions to improve body composition and BMD in both BCS and women without cancer. © 2018 John Wiley & Sons Ltd.

  1. The association between body composition, 25(OH)D, and PTH and bone mineral density in black African and Asian Indian population groups.

    Science.gov (United States)

    George, Jaya A; Micklesfield, L K; Norris, S A; Crowther, N J

    2014-06-01

    There are few data on the contribution of body composition to bone mineral density (BMD) in non-Caucasian populations. We therefore studied the contribution of body composition, and possible confounding of 25-hydroxyvitamin D and PTH, to BMD at various skeletal sites in black African (BA) and Asian Indian (AI) subjects. This was a cross-sectional study in Johannesburg, South Africa. BMD, body fat, and lean mass were measured using dual x-ray absorptiometry and abdominal fat distribution by ultrasound in 714 healthy subjects, aged 18-65 years. Whole-body (subtotal), hip, femoral neck, and lumbar spine (lumbar) BMD were significantly higher in BA than AI subjects (P < .001 for all). Whole-body lean mass positively associated with BMD at all sites in both ethnic groups (P < .001 for all) and partially explained the higher BMD in BA females compared with AI females. Whole-body fat mass correlated positively with lumbar BMD in BA (P = .001) and inversely with subtotal BMD in AI subjects (P < .0001). Visceral adiposity correlated inversely with subtotal BMD in the BA (P = .037) and with lumbar BMD in the AI group (P = .005). No association was found between serum 25-hydroxyvitamin D and BMD. PTH was inversely associated with hip BMD in the BA group (P = .01) and with subtotal (P = .002), hip (P = .001), and femoral BMD (P < .0001) in the AI group. Significant differences in whole-body and site-specific BMD between the BA and AI groups were observed, with lean mass the major contributor to BMD at all sites in both groups. The contribution of other components of body composition differed by site and ethnic group.

  2. Relationship between Body Mass Composition, Bone Mineral Density, Skin Fibrosis and 25(OH Vitamin D Serum Levels in Systemic Sclerosis.

    Directory of Open Access Journals (Sweden)

    Addolorata Corrado

    Full Text Available A reduced bone mineral density (BMD is observed in several rheumatic autoimmune diseases, including Systemic Sclerosis (SSc; nevertheless, data concerning the possible determinants of bone loss in this disease are not fully investigated. The aim of this study is to evaluate the relationship between BMD, body mass composition, skin sclerosis and serum Vitamin D levels in two subsets of SSc patients. 64 post-menopausal SSc patients, classified as limited cutaneous (lcSSc or diffuse cutaneous (dcSSc SSc, were studied. As control, 35 healthy post-menopausal women were recruited. Clinical parameters were evaluated, including the extent of skin involvement. BMD at lumbar spine, hip, femoral neck and body mass composition were determined by dual-energy X-ray absorptiometry. Serum calcium, phosphorus, alkaline phosphatase, urine pyridinium cross-links, intact parathyroid hormone and 25-hydroxyvitamin D (25OHD were measured. BMD at spine, femoral neck and total hip was significantly lower in SSc patients compared to controls. In dcSSc subset, BMD at spine, femoral neck and total hip was significantly lower compared to lcSSc. No differences in both fat and lean mass were found in the three study groups even if patients with dcSSc showed a slightly lower total body mass compared to healthy controls. Total mineral content was significantly reduced in dSSc compared to both healthy subjects and lcSSc group. Hypovitaminosis D was observed both in healthy post-menopausal women and in SSc patients, but 25OHD levels were significantly lower in dcSSc compared to lcSSc and inversely correlated with the extent of skin thickness. These results support the hypothesis that the extent of skin involvement in SSc patients could be an important factor in determining low circulating levels of 25OHD, which in turn could play a significant role in the reduction of BMD and total mineral content.

  3. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  4. Changes in Physical Fitness, Bone Mineral Density and Body Composition During Inpatient Treatment of Underweight and Normal Weight Females with Longstanding Eating Disorders

    Directory of Open Access Journals (Sweden)

    Solfrid Bratland-Sanda

    2012-01-01

    Full Text Available The purpose of this study was to examine changes in aerobic fitness, muscular strength, bone mineral density (BMD and body composition during inpatient treatment of underweight and normal weight patients with longstanding eating disorders (ED. Twenty-nine underweight (BMI < 18.5, n = 7 and normal weight (BMI ≥ 18.5, n = 22 inpatients (mean (SD age: 31.0 (9.0 years, ED duration: 14.9 (8.8 years, duration of treatment: 16.6 (5.5 weeks completed this prospective naturalistic study. The treatment consisted of nutritional counseling, and 2 × 60 min weekly moderate intensive physical activity in addition to psychotherapy and milieu therapy. Underweight patients aimed to increase body weight with 0.5 kg/week until the weight gain goal was reached. Aerobic fitness, muscular strength, BMD and body composition were measured at admission and discharge. Results showed an increase in mean muscular strength, total body mass, fat mass, and body fat percentage, but not aerobic capacity, among both underweight and normal weight patients. Lumbar spine BMD increased among the underweight patients, no changes were observed in BMD among the normal weight patients. Three out of seven underweight patients were still underweight at discharge, and only three out of nine patients with excessive body fat (i.e., >33% managed to reduce body fat to normal values during treatment. These results calls for a more individualized treatment approach to achieve a more optimal body composition among both underweight and normal to overweight patients with longstanding ED.

  5. Zooplankton body composition

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2013-01-01

    groups body composition is size independent. Exceptions are protozoans, chaetognaths, and pteropods, where larger individuals become increasingly watery. I speculate about the dichotomy in body composition and argue that differences in feeding mechanisms and predator avoidance strategies favor either......I compiled literature on zooplankton body composition, from protozoans to gelatinous plankton, and report allometric relations and average body composition. Zooplankton segregate into gelatinous and non-gelatinous forms, with few intermediate taxa (chaetognaths, polychaetes, and pteropods). In most...... a watery or a condensed body form, and that in the intermediate taxa the moderately elevated water content is related to buoyancy control and ambush feeding...

  6. TREATMENT OF SUBCLINICAL HYPERTHYROIDISM: EFFECT ON BODY COMPOSITION.

    Science.gov (United States)

    Boj-Carceller, Diana; Sanz-París, Alejandro; Sánchez-Oriz, Enrique; García-Foncillas López, Rafael; Calmarza-Calmarza, Pilar; Blay-Cortes, Vicente; Abós-Olivares, Ma Dolores

    2015-11-01

    subclinical hyperthyroidism (SHT) is associated with harmful effects on cardiovascular system, bone metabolism and progression to clinical hyperthyroidism. Loss of weight is a common fact in patients with clinical hyperthyroidism and of particular relevance in elderly patients. to assess changes in body composition after radioiodine therapy for SHT due to toxic nodular goiter. prospective controlled cohort study. Patients with persistent SHT due to toxic nodular goiter were purposed to receive treatment with radioiodine (treatment group) or to delay treatment until the study was over (control group). All treated patients received 555 MBq of ¹³¹I. Body composition (lean mass, fat mass and bone mineral content) was determined by dual-energy X-ray absorptiometry (DEXA) at baseline and 12 months after. twenty-nine patients were studied (age 69.5 ± 11.5; 75.9% women; BMI 27.1 ± 5.7 kg/m²; serum thyrotropin (TSH) 0.20 ± 0.21 μUI/mL; serum free thyroxine (T4) 1.01 ± 0.19 ng/dL), 17 belonging to the treatment group and 12 to the control group. Study groups were comparable, although there was a trend for the treatment group to have more fat mass. No longitudinal changes in body composition were noted in either group, except for a trend to gain fat mass. However, when individuals with age > 65 years were selected, only patients who received radioiodine therapy showed a significant increase in body weight (from 64.1 ± 10.0 to 66.9 ± 9.2 kg), BMI (from 27.3 ± 4.8 to 28.7 ± 4.5 kg/m²), fat mass (from 26.1 ± 8.5 to 27.8 ± 7.9 kg), lean mass (from 36.3 ± 0.4 to 37.4 ± 0.4 kg) and skeletal muscle mass index (SMI) (from 6.0 ± 0.6 to 6.3 ± 0.6 kg/m²). treatment of SHT has impact on body composition in subjects older than 65 years. Weight gain reflects increases in fat and, more interestingly, in lean mass. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Effect of parathyroidectomy on bone growth and composition in the young rat

    Science.gov (United States)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  8. The usefulness of early whole body bone scintigraphy in the detection of bone metastasis from prostatic cancer

    International Nuclear Information System (INIS)

    Otsuka, Nobuaki; Fukunaga, Masao; Furukawa, Yohji; Tanaka, Hiroyoshi

    1994-01-01

    Early whole body bone scintigraphy was performed on 25 patients with prostatic cancer (15 cases with bone metastases and 10 cases without bone metastasis) to obtain anterior and posterior whole body images five minutes after administration of 99m Tc-hydroxymethylene diphosphonate(HMDP). The results were compared with the findings of routine bone scintigraphy after three hours, and the usefulness of the above method for the diagnosis of bone metastasis from prostatic cancer was evaluated. In cases in which increased activity was found in the upper and lower lumbar vertebrae by routine bone scintigraphy but no abnormality was seen by early whole body bone scintigraphy, senile degenerative bone changes such as spondylosis deformance were observed by bone radiography. In cases with multiple bone metastases, abnormal multiple accumulations were found by both early whole body bone scintigraphy and routine bone scintigraphy. In addition, in cases showing super bone scan, high accumulation in the skeletal system had already been detected by early whole body bone scintigraphy. When the courses before and after treatment in nine cases of multiple bone metastases were passaged from the results of early whole body bone scintigraphy and from changes in tumor markers (prostatic specific antigen, γ-semino protein and prostatic acid phosphatase), increased activity and the appearance of new hot spots as well as an increase in tumor markers were detected by early whole body scintigraphy in three of the four advanced cases, whereas decreased accumulations and a decrease in and normalization of tumor markers were observed in five improved cases. (author)

  9. The usefulness of early whole body bone scintigraphy in the detection of bone metastasis from prostatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Nobuaki; Fukunaga, Masao; Furukawa, Yohji; Tanaka, Hiroyoshi [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1994-06-01

    Early whole body bone scintigraphy was performed on 25 patients with prostatic cancer (15 cases with bone metastases and 10 cases without bone metastasis) to obtain anterior and posterior whole body images five minutes after administration of [sup 99m]Tc-hydroxymethylene diphosphonate(HMDP). The results were compared with the findings of routine bone scintigraphy after three hours, and the usefulness of the above method for the diagnosis of bone metastasis from prostatic cancer was evaluated. In cases in which increased activity was found in the upper and lower lumbar vertebrae by routine bone scintigraphy but no abnormality was seen by early whole body bone scintigraphy, senile degenerative bone changes such as spondylosis deformance were observed by bone radiography. In cases with multiple bone metastases, abnormal multiple accumulations were found by both early whole body bone scintigraphy and routine bone scintigraphy. In addition, in cases showing super bone scan, high accumulation in the skeletal system had already been detected by early whole body bone scintigraphy. When the courses before and after treatment in nine cases of multiple bone metastases were passaged from the results of early whole body bone scintigraphy and from changes in tumor markers (prostatic specific antigen, [gamma]-semino protein and prostatic acid phosphatase), increased activity and the appearance of new hot spots as well as an increase in tumor markers were detected by early whole body scintigraphy in three of the four advanced cases, whereas decreased accumulations and a decrease in and normalization of tumor markers were observed in five improved cases. (author).

  10. Detection of bone metastasis of prostate cancer. Comparison of whole-body MRI and bone scintigraphy

    International Nuclear Information System (INIS)

    Ketelsen, D.; Roethke, M.; Aschoff, P.; Lichy, M.P.; Claussen, C.D.; Schlemmer, H.P.; Merseburger, A.S.; Reimold, M.

    2008-01-01

    Purpose: prostate cancer continues to be the third leading cancer-related mortality of western men. Early diagnosis of bone metastasis is important for the therapy regime and for assessing the prognosis. The standard method is bone scintigraphy. Whole-body MRI proved to be more sensitive for early detection of skeletal metastasis. However, studies of homogenous tumor entities are not available. The aim of the study was to compare bone scintigraphy and whole-body MRI regarding the detection of bone metastasis of prostate cancer. Materials and methods: 14 patients with histologically confirmed prostate cancer and a bone scintigraphy as well as whole-body MRI within one month were included. The mean age was 68 years. Scintigraphy was performed using the planar whole-body technique (ventral and dorsal projections). Suspect areas were enlarged. Whole-body MRI was conducted using native T1w and STIR sequences in the coronary plane of the whole body, sagittal imaging of spine and breath-hold STIR and T1w-Flash-2D sequences of ribs and chest. Bone scintigraphy and whole-body MRI were evaluated retrospectively by experienced radiologists in a consensus reading on a lesion-based level. Results: whole-body MRI detected significantly more bone metastasis (p = 0.024). 96.4% of the demonstrated skeletal metastases in bone scintigraphy were founded in whole-body MRI while only 58.6% of the depicted metastases in MRI were able to be located in scintigraphy. There was no significant difference regarding bone metastasis greater than one centimeter (p = 0.082) in contrast to metastasis less than one centimeter (p = 0.035). Small osteoblastic metastases showed a considerably higher contrast in T1w sequences than in STIR imaging. Further advantages of whole-body MRI were additional information about extra-osseous tumor infiltration and their complications, for example stenosis of spinal canal or vertebral body fractures, found in 42.9% of patients. (orig.)

  11. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    Science.gov (United States)

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  12. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    Science.gov (United States)

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good BMD and BMC agreement, did not detect

  13. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

     Introduction: Replacement of extensive local bone loss especially in revision joint arthroplasties is a significant clinical challenge. Autogenous and allogenic cancellous bone grafts have been the gold standard in reconstructive orthopaedic surgery, but it is well known that there is morbidity...... associated with harvesting of autogenous bone graft and limitations in the quantity of bone available. Disadvantages of allograft include the risk of bacterial or viral contamination and non union as well as the potential risk of disease transmission. Alternative options are attractive and continue...... to be sought. Hydroxyapatite and collagen composites have the potential in mimicking and replacing skeletal bones. Aim: This study attempted to determine the effect of hydroxyapatite/collagen composites in the fixation of bone implants. The composites used in this study is produced by Institute of Science...

  14. Injury frequency and body composition of elite Romanian rugby players

    Directory of Open Access Journals (Sweden)

    Bogdan ALMĂJAN-GUȚĂ

    2017-03-01

    Full Text Available Background: The physical exertion in the game of rugby is intense and depends on the playing position. This study hypothesized that peculiarities of body composition are important and should be properly interpreted in order to improve fitness and particularly in order to reduce the risk of injuries. Purpose: The aim of the present paper is to highlight the importance of body composition evaluation and to underline the usefulness of the data thus obtained for both training individualization and sports injuries risk reduction. Material and Methods: Thirty seven senior male rugby players from the former Romanian national team were assessed on body composition using a segmental multi-frequency bio-impedance analyzer InBody 720 (The Body Composition Analyzer – South Korea. We compared the results from both the preseason and the regular season 2012 with the international norms for elite players and we categorized the data by playing positions. Results: We have analyzed the amount of lean mass on each limb (kg, body water content (l, percentage of body fat, bone mineral and protein content (kg. We observed that the number of injuries is directly correlated to high levels of body fat percentage, low lean mass, and edema scores. Conclusions: The risk of injury can be identified among elite rugby players not only by using fitness tests, but also by using a simple and objective test of body composition. These results show how important it is to monitor the level of body fat, lean muscle mass and muscular development in order to modify nutrition and food habits, individualize trainings and thus reduce the number of injuries.

  15. Association between body composition and pulmonary function in children and young people with cystic fibrosis.

    Science.gov (United States)

    Calella, Patrizia; Valerio, Giuliana; Thomas, Matt; McCabe, Helen; Taylor, Jake; Brodlie, Malcolm; Siervo, Mario

    2018-04-01

    Body mass index (BMI) has significant limitations when assessing nutritional status in pediatric patients with cystic fibrosis (CF). We evaluated whether measurements of lean body mass (LBM) and fat mass (FM) are more sensitive nutritional parameters by testing their association with pulmonary function in adolescent patients with CF. Sixty-nine male and female adolescents with CF were studied (age: 14.5 ± 2.3, BMI: 19.5 ± 2.3 kg/m 2 ). Dual-energy x-ray absorptiometry (DXA) was used to measure total and segmental (appendicular, truncal) body composition (FM, LBM bone mineral density, and content) as routine care to monitor bone health. Correlation and multiple regression analyses were performed to assess the association among body composition variables and forced expiratory volume in 1 s (FEV 1 ). We also evaluated the influence of the F508del mutation on body composition. FEV 1 was significantly associated with total (r = 0.68, P LBM, whereas it was not associated with total (r = 0.02, P = 0.89) and truncal (r = 0.04, P = 0.77) FM. BMI had a significant but weaker correlation with FEV 1 (r = 0.52, P LBM. LBM was the only significant predictor of FEV 1 in fully adjusted regression models. LBM is a significant predictor of pulmonary function in CF adolescent patients. DXA scanning performed as part of routine bone health monitoring in CF can provide important body composition data relevant to clinical interventions that optimize nutritional status. DXA reference data for LBM in non-adult populations are needed to enhance diagnostic assessment and monitor clinical progression of CF. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Moderate exercise during pregnancy in Wistar rats alters bone and body composition of the adult offspring in a sex-dependent manner.

    Directory of Open Access Journals (Sweden)

    Brielle V Rosa

    Full Text Available Exercise during pregnancy may have long-lasting effects on offspring health. Musculoskeletal growth and development, metabolism, and later-life disease risk can all be impacted by the maternal environment during pregnancy. The skeleton influences glucose handling through the actions of the bone-derived hormone osteocalcin. The purpose of this study was to test the effects of moderate maternal exercise during pregnancy on the bone and body composition of the offspring in adult life, and to investigate the role of osteocalcin in these effects. Groups of pregnant Wistar rats either performed bipedal standing exercise to obtain food/water throughout gestation but not lactation, or were fed conventionally. Litters were reduced to 8/dam and pups were raised to maturity under control conditions. Whole body dual-energy x-ray absorptiometry, and ex vivo peripheral quantitative computed tomography scans of the right tibia were performed. At study termination blood and tissue samples were collected. Serum concentrations of fully and undercarboxylated osteocalcin were measured, and the relative expression levels of osteocalcin, insulin receptor, Forkhead box transcription factor O1, and osteotesticular protein tyrosine phosphatase mRNA were quantified. Body mass did not differ between the offspring of exercised and control dams, but the male offspring of exercised dams had a greater % fat and lower % lean than controls (p=0.001 and p=0.0008, respectively. At the mid-tibial diaphysis, offspring of exercised dams had a lower volumetric bone mineral density than controls (p=0.01 and in the male offspring of exercised dams the bone: muscle relationship was fundamentally altered. Serum concentrations of undercarboxylated osteocalcin were significantly greater in the male offspring of exercised dams than in controls (p=0.02; however, the relative expression of the measured genes did not differ between groups. These results suggest that moderate exercise during

  17. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    International Nuclear Information System (INIS)

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-01-01

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm 3 . Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact specimens

  18. Peak bone mineral density, lean body mass and fractures

    NARCIS (Netherlands)

    Boot, Annemieke M.; de Ridder, Maria A. J.; van der Sluis, Inge M.; van Slobbe, Ingrid; Krenning, Eric P.; Keizer-Schrama, Sabine M. P. F. de Muinck

    Background: During childhood and adolescence, bone mass and lean body mass (LBM) increase till a plateau is reached. In this longitudinal and cross-sectional study, the age of reaching the plateau was evaluated for lumbar spine and total body bone mass measurements and lean body mass. The

  19. Composites structures for bone tissue reconstruction

    International Nuclear Information System (INIS)

    Neto, W.; Santos, João; Avérous, L.; Schlatter, G.; Bretas, Rosario

    2015-01-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth

  20. Composites structures for bone tissue reconstruction

    Science.gov (United States)

    Neto, W.; Santos, João.; Avérous, L.; Schlatter, G.; Bretas, Rosario.

    2015-05-01

    The search for new biomaterials in the bone reconstitution field is growing continuously as humane life expectation and bone fractures increase. For this purpose, composite materials with biodegradable polymers and hydroxyapatite (HA) have been used. A composite material formed by a film, nanofibers and HA has been made. Both, the films and the non-woven mats of nanofibers were formed by nanocomposites made of butylene adipate-co-terephthalate (PBAT) and HA. The techniques used to produce the films and nanofibers were spin coating and electrospinning, respectively. The composite production and morphology were evaluated. The composite showed an adequate morphology and fibers size to be used as scaffold for cell growth.

  1. The insulin like growth factor system in cirrhosis. Relation to changes in body composition following adrenoreceptor blockade

    DEFF Research Database (Denmark)

    Bonefeld, Karen; Hobolth, Lise; Juul, Anders

    2012-01-01

    OBJECTIVE: Circulating levels of IGF-I and IGFBP-3 are low in cirrhosis and are related to liver dysfunction. Metabolic disturbances include malnutrition with altered body composition and osteopenia. Since the effects of IGF-I may be associated to changes in body composition and bone mineral...... content (BMC) in cirrhotic patients, we investigated the relations between changes in the IGF-system and body composition and the effects of long-term alpha- and beta-blockade. DESIGN: The study was designed as a combined cross-sectional and prospective randomised controlled study of 62 patients...

  2. The clinical value of "9"9Tc"m-MDP whole body bone imaging in diagnosing bone metastasis of lung cancer

    International Nuclear Information System (INIS)

    Zhao Yigang; Gou Zhengxing

    2016-01-01

    Objective: To discuss the clinical value of whole body bone imaging on lung cancer bone metastases diagnosis, so as to evaluate the staging of lung cancer patients. Methods: A total of 113 cases of patients diagnosed with lung cancer received whole body imaging, alkaline phosphatase and blood calcium examination. Bone metastasis probability of lung cancer was assessed based on different pathological types. Accuracy rates of bone metastases was compared by whole body bone imaging and suspicious bone metastasis factors (Including one or several items in ostalgia, alkaline phosphatase rising and hypercalcemia). Results The occurrence rate of lung cancer bone metastasis is 36.7%, and the bone metastasis occurrence rate of adenocarcinoma of lung is higher than that of squamous cell lung carcinoma (P < 0.01). Whole body Imaging diagnose of lung cancer bone metastases had sensitivity (92.7%), specificity (83.2%) and accuracy (85.7%). Conclusion: "9"9Tc"m-MDP whole body imaging is a highly sensitive tool to review whole body bone. Lung cancer patients are recommended to receive routine whole body bone imaging. (authors)

  3. EFFECTS OF PHYSICAL ACTIVITY ON BODY COMPOSITION IN ADULT WOMEN

    Directory of Open Access Journals (Sweden)

    Klára NAGY

    2017-06-01

    Full Text Available Data published by the World Health Organization (WHO and the International Association for the Study of Obesity (IASO suggests that the number of obese people in Europe has tripled in the last 20 years and resulted in a prevalence of 130 million obese and 400 million people overweight (Sassi et al., 2009.Body composition is the relative percentage of fat and fat-free mass (bones, muscles, organs, water, blood of total body weight. After Wilmore, Buskirk, DiGirolamo and Lohman (1986 the optimal level for health of body fat is 16-25% (18-30% for women.The objective of our study was to assess body composition of adult women, identifying the effect of intervention program on body fat and lean mass, and uncover cases of obesity and overweight.The study involved 95 adult women from Fit4U Fitness Center in Oradea. Period of the study: February 2015 -June 2016. Anthropometric measurements were made: height, weight, circumference, subcutaneous folds. It was calculated the body mass index (BMI, body composition and optimal body weight (estimation based on the five skinfolds measures. The physical activity program consisted of Step -aerobics, Pilates and strength training in the gym, 3 times a week for 60-90 minutes, for 12 months.Results:mean body mass, BMI, BF%, real BF decreased significantly. Mean body fat percentage from 25,63% (± 6,53 decreased to 22,95% (± 5,56. In the studied group overweight and obesity is more frequent in the age group between 35-44 years, but it can be seen the prevalence in all age groups.Conclusions:the physical activity program had a beneficial effect on body composition -by reducing body fat.We found cases of overweight and obesity (21% of the study group.

  4. Muscle strength and regional lean body mass influence on mineral bone health in young male adults.

    Science.gov (United States)

    Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller

    2018-01-01

    The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, pBMC and BMD for LL (R2adj = 0.68, pBMC (R2adj = 0.47, pBMC (R2adj = 0.36, pBMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.

  5. Body Composition in Adult Patients with Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Marianna Vlychou

    2016-01-01

    Full Text Available Objective. To assess body composition in adult male and female patients with thalassemia major by dual-energy X-ray absorptiometry (DXA and to compare the findings with a group of healthy age-matched controls. Methods. Our study group included sixty-two patients (27 males, mean age 36 years, and 35 females, mean age 36.4 years and fifteen age-matched healthy controls. All patients had an established diagnosis of thalassemia major and followed a regular blood transfusion scheme since childhood and chelation treatment. Fat, lean, and bone mineral density (BMD were assessed with dual-energy X-ray absorptiometry. Ferritin levels and body mass index of all patients and controls were also recorded. Student t-test and Wilcoxon test were performed and statistical significance was set at p<0.05. Results. BMD and whole body lean mass are lower in both male and female adult patients compared with controls (p<0.01 in both groups, whereas whole body fat mass was found to have no statistically significant difference compared to controls. Regional trunk fat around the abdomen was found to be lower in male patients compared to controls (p=0.02. Conclusion. Severe bone loss and diminished lean mass are expected in adult male and female patients with thalassemia major. Fat changes seem to affect mainly male patients.

  6. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants.

    Science.gov (United States)

    Vallittu, Pekka K; Närhi, Timo O; Hupa, Leena

    2015-04-01

    Although metal implants have successfully been used for decades, devices made out of metals do not meet all clinical requirements, for example, metal objects may interfere with some new medical imaging systems, while their stiffness also differs from natural bone and may cause stress-shielding and over-loading of bone. Peer-review articles and other scientific literature were reviewed for providing up-dated information how fiber-reinforced composites and bioactive glass can be utilized in implantology. There has been a lot of development in the field of composite material research, which has focused to a large extent on biodegradable composites. However, it has become evident that biostable composites may also have several clinical benefits. Fiber reinforced composites containing bioactive glasses are relatively new types of biomaterials in the field of implantology. Biostable glass fibers are responsible for the load-bearing capacity of the implant, while the dissolution of the bioactive glass particles supports bone bonding and provides antimicrobial properties for the implant. These kinds of combination materials have been used clinically in cranioplasty implants and they have been investigated also as oral and orthopedic implants. The present knowledge suggests that by combining glass fiber-reinforced composite with particles of bioactive glass can be used in cranial implants and that the combination of materials may have potential use also as other types of bone replacing and repairing implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Electrospun composites of PHBV/pearl powder for bone repairing

    Directory of Open Access Journals (Sweden)

    Jingjing Bai

    2015-08-01

    Full Text Available Electrospun fiber has highly structural similarity with natural bone extracelluar matrix (ECM. Many researches about fabricating organic–inorganic composite materials have been carried out in order to mimic the natural composition of bone and enhance the biocompatibility of materials. In this work, pearl powder was added to the poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV and the composite nanofiber scaffold was prepared by electrospinning. Mineralization ability of the composite scaffolds can be evaluated by analyzing hydroxyapatite (HA formation on the surface of nanofiber scaffolds. The obtained composite nanofiber scaffolds showed an enhanced mineralization capacity due to incorporation of pearl powder. The HA formed amount of the composite scaffolds was raised as the increase of pearl powder in composite scaffolds. Therefore, the prepared PHBV/pearl composite nanofiber scaffolds would be a promising candidate as an osteoconductive composite material for bone repairing.

  9. Swimming training repercussion on metabolic and structural bone development; benefits of the incorporation of whole body vibration or pilometric training; the RENACIMIENTO project.

    Science.gov (United States)

    Gómez-Bruton, A; Gonzalez-Agüero, A; Casajus, J A; Vicente-Rodriguez, German

    2014-08-01

    Enviromental factors such as exercise participation and nutrition have often been linked to bone improvements. However, not all sports have the same effects, being non-osteogenic sports such as swimming defined as negative or neutral sports to practice regarding bone mass by some authors, similarly exercise-diet interaction in especific groups is still not clear. To present the methodology of the RENACIMENTO project that aims to evaluate body composition and more specifically bone mass by several techniques in adolescent swimmers and to observe the effects and perdurability of whole body vibration (WBV) and jumping intervention (JIN) on body composition and fitness on this population and explore posible diet interactions. Randomized controlled trial. 78 swimmers (12-17 y) and 26 sex- and age-matched controls will participate in this study. Dual energy X-ray, peripheral Quantitative Computed Tomography, Quantitative Ultrasound, Bioelectrical Impedance Analysis, and anthropometry measurements will be performed in order to evaluate body composition. Physical activity, nutrition, pubertal development and socio-economical status may act as confounders of body composition and therefore will also be registered. Several fitness factors regarding strength, endurance, performance and others will also be registered to evaluate differences with controls and act as confounders. A 7-month WBV therapy will be performed by 26 swimmers consisting of a training of 15 minutes 3 times per week. An 8 month JIM will also be performed by 26 swimmers 3 times per week. The remaining 26 swimmers will continue their normal swimming training. Four evaluations will be performed, the first one in order to describe differences between swimmers and controls. The second one to describe the effects of the interventions and the third and fourth evaluations to describe the perdurability of the effects of the WBV and JIN. The RENACIMIENTO project will allow to answer several questions regarding body

  10. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation...... of bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served...

  11. Body composition and bone mineral mass in normal and obese female population using dual X-ray absorptiometry

    International Nuclear Information System (INIS)

    Massardo, T.; Gonzalez, P.; Coll, C.; Rodriguez, J.L.; Solis, I.; Oviedo, S.

    2002-01-01

    It has been observed that a greater percentage of body fat is associated with augmented bone mineral mass. Objective: The goal of this work was to assess the relationship between bone mineral density (BMD in g/cm 2 ) and content (BMC in g) and soft tissue components, fat and lean mass (in g) in whole body of adult female population in Chile. Method: We studied 185 volunteers, asymptomatic, excluding those using estrogens, regular medication, tobacco (>10 cigarettes/day), excessive alcohol intake or with prior oophorectomy. They were separated in 111 pre and 74 post menopausal and according to body mass index (BMI) they were 37 women > 30 kg/m 2 and 148 2 . A Lunar Dual X-Ray absorptiometer was used to determine whole BMD and BMC. Results: Post menopausal women were older and smaller [p:0.0001], with higher body mass index [p:0.0007] and with lower BMD and BMC and higher fat mass than the pre menopausal group; In the whole group, women with BMI ≥ 30 (obese) were compared with normal weight observing no difference in BMD. The fat mass incremented significantly with age. Obese women > 50 years presented greater BMC than the non-obese. The percentage of fat corresponded to 48% in the obese group and to 39% in the non-obese [p<0.0001]. Conclusion: Fat mass somehow protect bone mineral loss in older normal population, probably associated to multifactorial causes including extra ovaric estrogen production. Postmenopausal women presented lower mineral content than premenopausal, as it was expected

  12. Bone induction by composite of bioerodible polyorthoester and demineralized bone matrix in rats

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Bang, G

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85Sr uptake....... The composite implant was technically easier to use than DBM alone....

  13. Bone induction by composite of bioerodible polyorthoester and deminiralized bone matrix in rats

    International Nuclear Information System (INIS)

    Pinholt, E.M.; Solheim, E.; Bang, G.; Sudmann, E.

    1991-01-01

    A composite of a local, sustained, drug-release system, Alzamer bioerodible polyorthoester, and demineralized bone-matrix (DBM) particles implanted in the abdominal muscle of 89 Wistar rats induced cartilage and bone formation at the same rate as DBM when evaluated histologically and by 85 Sr uptake. The composite implant was technically easier to use than DBM alone. (author)

  14. Maternal weight and body composition in the first trimester of pregnancy.

    LENUS (Irish Health Repository)

    Fattah, Chro

    2012-02-01

    OBJECTIVE: Previous studies on weight gain in pregnancy suggested that maternal weight on average increased by 0.5-2.0 kg in the first trimester of pregnancy. This study examined whether mean maternal weight or body composition changes in the first trimester of pregnancy. DESIGN: Prospective observational study. POPULATION: We studied 1,000 Caucasian women booking for antenatal care in the first trimester of pregnancy. SETTING: Large university teaching hospital. METHODS: Maternal height and weight were measured digitally in a standardized way and Body Mass Index (BMI) was calculated. Maternal body composition was measured using segmental multifrequency Bioelectrical Impedance Analysis (BIA). Sonographic examination confirmed the gestational age and a normal ongoing singleton pregnancy in all subjects. MAIN OUTCOME MEASURES: Maternal weight, maternal body composition. RESULTS: The mean BMI was 25.7 kg\\/m(2) and 19.0% of the women were in the obese category (> or =30.0 kg\\/m(2)). Cross-sectional analysis by gestational age showed that there was no change in mean maternal weight, BMI, total body water, fat mass, fat-free mass or bone mass before 14 weeks gestation. CONCLUSIONS: Contrary to previous reports, mean maternal weight and mean body composition values remain unchanged in the first trimester of pregnancy. This has implications for guidelines on maternal weight gain during pregnancy. We also recommend that calculation of BMI in pregnancy and gestational weight gain should be based on accurate early pregnancy measurements, and not on self-reported or prepregnancy measurements.

  15. Body composition of patients with Duchenne muscular dystrophy: the Greek experience.

    Science.gov (United States)

    Doulgeraki, Artemis E; Athanasopoulou, Helen I; Katsalouli, Marina S; Petrocheilou, Glykeria M; Paspati, Ioanna N; Monopolis, Ioannis K

    2016-12-01

    Greece ranks among the first countries suffering from the obesity epidemic globally. The aim of the study was to evaluate body composition in Greek patients with Duchenne muscular dystrophy (DMD). We hypothesized that able-bodied patients would not differ from controls, in terms of adiposity, based on clinical observations during everyday practice. Cross-sectional study of steroid-dependent DMD subjects, who underwent dual-energy X-ray absorptiometry and laboratory metabolic bone profile evaluation. Forty-two patients and thirty-one controls were studied. Overall, DMD subjects were shorter (height Z-score = -1.4, p = 0.01). Their bone mineral density (BMD) was low (lumbar spine BMD Z-score = -1.2, p period, due to the concurrent presence of obesity in the pediatric population. Thus, adolescents with this neuromuscular disorder should be targeted toward prompt lifestyle interventions.

  16. Loss of lean body mass affects low bone mineral density in patients with rheumatoid arthritis - results from the TOMORROW study.

    Science.gov (United States)

    Okano, Tadashi; Inui, Kentaro; Tada, Masahiro; Sugioka, Yuko; Mamoto, Kenji; Wakitani, Shigeyuki; Koike, Tatsuya; Nakamura, Hiroaki

    2017-11-01

    Osteoporosis is one of the complications for patients with rheumatoid arthritis (RA). Rheumatoid cachexia, the loss of lean body mass, is another. However, the relationship between decreased lean body mass and reduced bone mineral density (BMD) in patients with RA has not been well studied. This study included 413 participants, comprising 208 patients with RA and 205 age- and sex-matched healthy volunteers. Clinical data, BMD, bone metabolic markers (BMM) and body composition, such as lean body mass and percent fat, were collected. Risk factors for osteoporosis in patients with RA including the relationship BMD and body composition were analyzed. Patients with RA showed low BMD and high BMM compared with controls. Moreover, lean body mass was lower and percent fat was higher in patients with RA. Lean body mass correlated positively and percent fat negatively with BMD. Lean body mass was a positive and disease duration was a negative independent factor for BMD in multivariate statistical analysis. BMD and lean body mass were significantly lower in patients with RA compared to healthy controls. Lean body mass correlated positively with BMD and decreased lean body mass and disease duration affected low BMD in patients with RA. [UMIN Clinical Trials Registry, http://www.umin.ac.jp/ctr/ , UMIN000003876].

  17. In vivo bone regeneration using a novel porous bioactive composite

    Energy Technology Data Exchange (ETDEWEB)

    Xie En [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Hu Yunyu [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China)], E-mail: orth1@fmmn.edu.cn; Chen Xiaofeng [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Bai Xuedong; Li Dan [Department of Orthopaedics and Traumatology, Xijing Hospital, Fourth Military Medical University, Xi' an (China); Ren Li [College of Materials Science and Engineering, South China University of Technology University, Guangzhou (China); Zhang Ziru [Foreign Languages School, Northwest University Xi' an (China)

    2008-11-15

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  18. In vivo bone regeneration using a novel porous bioactive composite

    International Nuclear Information System (INIS)

    Xie En; Hu Yunyu; Chen Xiaofeng; Bai Xuedong; Li Dan; Ren Li; Zhang Ziru

    2008-01-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications

  19. Short Bowel Patients Treated for Two Years with Glucagon-Like Peptide 2: Effects on Intestinal Morphology and Absorption, Renal Function, Bone and Body Composition, and Muscle Function

    Directory of Open Access Journals (Sweden)

    P. B. Jeppesen

    2009-01-01

    Full Text Available Background and aims. In a short-term study, Glucagon-like peptide 2 (GLP-2 has been shown to improve intestinal absorption in short bowel syndrome (SBS patients. This study describes longitudinal changes in relation to GLP-2 treatment for two years. Methods. GLP-2, 400 micrograms, s.c.,TID, were offered, to eleven SBS patients keeping parenteral support constant. 72-hour nutritional balance studies were performed at baseline, weeks 13, 26, 52 during two years intermitted by an 8-week washout period. In addition, mucosal morphometrics, renal function (by creatinine clearance, body composition and bone mineral density (by DEXA, biochemical markers of bone turnover (by s-CTX and osteocalcin, PTH and vitamin D, and muscle function (NMR, lungfunction, exercise test were measured. Results. GLP-2 compliance was >93%. Three of eleven patients did not complete the study. In the remaining 8 patients, GLP-2 significantly reduced the fecal wet weight from approximately 3.0 to approximately 2.0 kg/day. This was accompanied by a decline in the oral wet weight intake, maintaining intestinal wet weight absorption and urinary weight constant. Renal function improved. No significant changes were demonstrated in energy intake or absorption, and GLP-2 did not significantly affect mucosal morphology, body composition, bone mineral density or muscle function. Conclusions. GLP-2 treatment reduces fecal weight by approximately 1000 g/d and enables SBS patients to maintain their intestinal fluid and electrolyte absorption at lower oral intakes. This was accompanied by a 28% improvement in creatinine clearance.

  20. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  1. Fitness, daily activity and body composition in children with newly diagnosed, untreated asthma

    DEFF Research Database (Denmark)

    Vahlkvist, S; Pedersen, S

    2009-01-01

    Background: Information about how the asthma disease affects the life style and health in children is sparse. Aim: To measure fitness, daily physical activity and body composition in children with newly diagnosed, untreated asthma and healthy controls, and to assess the association between...... the level of asthma control and these parameters. Methods: Daily physical activity measured using accelerometry, cardiovascular fitness and body composition (per cent fat, per cent lean tissue and bone mineral density) were measured in 57 children with newly diagnosed, untreated asthma and in 157 healthy...... fitness and daytime spent in intensive activity. Overweight children are physically less active than normal weight children....

  2. Long-term effects of growth hormone (GH) treatment on body composition and bone mineral density in short children born small-for-gestational-age : six-year follow-up of a randomized controlled GH trial

    NARCIS (Netherlands)

    Willemsen, Ruben H.; Arends, Nicolette J. T.; Waarde, Willie M. Bakker-van; Jansen, Maarten; van Mil, Edgar G. A. H.; Mulder, Jaap; Odink, Roelof J.; Reeser, Maarten; Rongen-Westerlaken, Ciska; Stokvis-Brantsma, Wilhelmina H.; Waelkens, Johan J. J.; Hokken-Koelega, Anita C. S.

    2007-01-01

    Context Alterations in the GH-IGF-I axis in short small-for-gestational-age (SGA) children might be associated with abnormalities in bone mineral density (BMD) and body composition. In addition, birth weight has been inversely associated with diabetes and cardiovascular disease in adult life. Data

  3. Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity).

    Science.gov (United States)

    Laron, Zvi; Ginsberg, Shira; Lilos, Pearl; Arbiv, Mira; Vaisman, Nahum

    2006-07-01

    To quantify body adiposity and its distribution in untreated adult patients with Laron syndrome (LS; primary GH insensitivity) caused by molecular defects of the GH receptor gene or postreceptor pathways and characterized by dwarfism, obesity, insulin resistance and hyperlipidaemia. Eleven LS patients (seven females and four males) aged 28-53 years were studied. Seven healthy males and six healthy females served as controls. Body composition of the total body trunk, upper and lower extremities was determined using dual-energy X-ray absorptiometry (DEXA). Statistical analysis using an analysis of variance (anova) and Mann-Whitney nonparametric methods was performed separately in males and females. Percentage body fat in the LS patients was much higher (P < 0.01) than that in the control population and the female LS patients were significantly more obese (59% total body fat) than the male patients (39% total body fat) (P < 0.002). It was also evident that in these types of patients with markedly increased body fat and decreased muscle and bone mass, body mass index (BMI) does not accurately reflect the body composition. Lifelong congenital IGF-I deficiency leads to extreme adiposity.

  4. The usefulness of measurement of whole body count in assessing bone marrow metastasis in cancer patients with increased periarticular bone uptake on follow-up bone scan: a comparison with bone marrow scan

    International Nuclear Information System (INIS)

    Jin, Seong Chan; Choi, Yun Young; Cho, Suk Shin

    2003-01-01

    Increased periarticular uptake could be associated with peripheral bone marrow expansion in cancer patients with axial bone marrow metastasis. We compared bone scan and bone marrow scan to investigate whether the increased whole body count in patients with increased periarticular uptake on bone scan is useful in the diagnosis of axial marrow metastasis, and evaluate the role of additional bone marrow scan in these cases. Twelve patients with malignant diseases who showed increased periarticular uptake on bone scan were included. Whole body count was measured on bone scan and it is considered to be increased when the count is more than twice of other patients. Bone marrow scan was taken within 3-7 days. Five hematologic malignancy, 3 stomach cancer, 2 breast cancer, 1 prostate cancer and 1 lung canner were included. All three patients with increased whole body count on bone scan showed axial marrow suppression and peripheral marrow expansion. Eight of 9 patients without increased whole body count showed axial marrow suppression and peripheral marrow expansion. One turned out to be blastic crisis of chronic myelogeneous leukemia, and seven showed normal axial marrow with peripheral marrow expansion in chronic anemia of malignancy. The last one without increased whole body count showed normal bone marrow scan finding. Increased whole body count on bone scan could be a clue to axial bone marrow metastasis in cancer patients with increased periarticular uptake, and bone marrow scan is a valuable method for differential diagnosis in these cases

  5. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential

    Science.gov (United States)

    Ordikhani, F.; Simchi, A.

    2014-10-01

    Composite coatings with bone-bioactivity and drug-eluting capacity are considered as promising materials for titanium bone implants. In this work, drug-eluting chitosan-bioactive glass coatings were fabricated by a single-step electrophoretic deposition technique. Drug-loading and -releasing capacity of the composite coatings were carried out using the vancomycin antibiotic. Uniform coatings with a thickness of ∼55 μm containing 23.7 wt% bioactive glass particles and various amounts of the antibiotic (380-630 μg/cm2) were produced. The coatings were bioactive in terms of apatite-forming ability in simulated body fluid and showed favorable cell adhesion and growth. In vitro biological tests also indicated that the composite coatings had better cellular affinity than pristine chitosan coatings. The in vitro elution kinetics of the composite coating revealed an initial burst release of around 40% of the drug within the first elution step of 1 h and following by a continuous eluting over 4 weeks, revealing long-term drug-delivering potential. Antibacterial tests using survival assay against Gram-positive Staphylococcus aureus bacteria determined the effect of vancomycin release on reduction of infection risk. Almost no bacteria were survived on the coatings prepared from the EPD suspension containing ≥0.5 g/l vancomycin. The developed chitosan-based composite coatings with bone bioactivity and long-term drug-delivery ability may be potentially useful for metallic implants to reduce infection risk.

  6. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    International Nuclear Information System (INIS)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-01-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO 2 –Na 2 O–CaO–P 2 O 5 –FeO–Fe 2 O 3 and contains magnetite (Fe 3 O 4 ) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests show hydroxyapatite precipitates

  7. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  8. The influence of anthropometry and body composition on children's bone health

    DEFF Research Database (Denmark)

    Heidemann, Malene; Holst, René; Schou, Anders J

    2015-01-01

    . Height and BMI are both positive predictors of bone accruement. LM is a more precise predictor of bone traits than BF % in both genders. The effects of height and BMI and LM on bone accruement are nearly identical in the two genders, while changes in BF % have different but positive effects on bone...

  9. Relationships between bone mineral density and new indices of body composition in young, sedentary men and women

    Directory of Open Access Journals (Sweden)

    Anna Kęska

    2018-03-01

    The use of IFM and ILM in the present study, allowed the observation that in young adults lean body mass was associated with BMD, regardless of gender, while fat mass is significant for bone mineral density only in women

  10. Body composition as a frailty marker for the elderly community

    Directory of Open Access Journals (Sweden)

    Falsarella GR

    2015-10-01

    Full Text Available Gláucia Regina Falsarella,1 Lívia Pimenta Renó Gasparotto,1 Caroline Coutinho Barcelos,2 Ibsen Bellini Coimbra,1,2 Maria Clara Moretto,1 Mauro Alexandre Pascoa,3 Talita C B Rezende Ferreira,1 Arlete Maria Valente Coimbra1,41Gerontology Program, Faculty of Medical Sciences, 2Department of Medical Clinics, Faculty of Medical Sciences, 3Department Biodynamics of Movement, Faculty of Physical Education, 4Family Health Program, Gerontology Program, Faculty of Medical Sciences, State University of Campinas (Unicamp, Campinas, São Paulo, BrazilBackground: Body composition (BC in the elderly has been associated with diseases and mortality; however, there is a shortage of data on frailty in the elderly.Objective: To investigate the association between BC and frailty, and identify BC profiles in nonfrail, prefrail, and frail elderly people.Methods: A cross-sectional study comprising 235 elderly (142 females and 93 males aged ≥65 years, from the city of Amparo, State of São Paulo, Brazil, was undertaken. Sociodemographic and cognitive features, comorbidities, medication, frailty, body mass index (BMI, muscle mass, fat mass, bone mass, and fat percent (% data were evaluated. Aiming to examine the relationship between BC and frailty, the Mann–Whitney and Kruskal–Wallis nonparametric tests were applied. The statistical significance level was P<0.05.Results: The nonfrail elderly showed greater muscle mass and greater bone mass compared with the prefrail and frail ones. The frail elderly had greater fat % than the nonfrail elderly. There was a positive association between grip strength and muscle mass with bone mass (P<0.001, and a negative association between grip strength and fat % (P<0.001. Gait speed was positively associated with fat mass (P=0.038 and fat % (P=0.002. The physical activity level was negatively associated with fat % (P=0.022. The weight loss criterion was positively related to muscle mass (P<0.001, bone mass (P=0.009, fat mass

  11. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    Science.gov (United States)

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  12. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    Science.gov (United States)

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  13. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Science.gov (United States)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  14. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    Institute of Scientific and Technical Information of China (English)

    Qin YANG; Yingying DU; Yifan WANG; Zhiying WANG; Jun MA; Jianglin WANG; Shengmin ZHANG

    2017-01-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites.Here we firstly synthesized a series of hybrid bone composites,silicon-hydroxyapatites/silk fibroin/collagen,based on a specific molecular assembled strategy.Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice.In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs),extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite.More interestingly,we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors.In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect.Consequently,our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system,but also paves a new way for constructing multi-functional composite materials in the future.

  15. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity.

    Science.gov (United States)

    Andres, Aline; Hull, Holly R; Shankar, Kartik; Casey, Patrick H; Cleves, Mario A; Badger, Thomas M

    2015-06-01

    The longitudinal trajectories of body composition of children born to mothers with normal weight, overweight, and obesity have not been evaluated using precise body composition methods. This study investigated the relationship between maternal prepregnancy BMI and offspring body composition trajectories during the first 6 years of life. Healthy infants (N = 325) were assessed longitudinally (at ages 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, and 6 years) using dual-energy X-ray absorptiometry. Mixed-effects regression for repeated measures was used to model each continuous outcome as a function of maternal BMI and covariates (race, gestational age, birth weight, and mode of infant feeding). Maternal obesity differentially impacted body fat, but not bone mineral content or density, of girls and boys. Boys born to mothers with obesity have higher body fat from ages 2-6 years compared to boys born to normal-weight and overweight mothers (P obesity was not different across groups during the first 6 years of life (P > 0.05). This clinical observational study demonstrates a sexual dimorphism in offspring body composition until age 6 years based on maternal BMI, with a greater effect of maternal adiposity seen in boys than in girls. © 2015 The Obesity Society.

  16. Hot Carcass Specific Gravity: Could Be Used Accurately for In-vivo Body Composition Determination

    International Nuclear Information System (INIS)

    Fekry, A.E.; Shebaita, M.K.

    1998-01-01

    Twelve mature male goats (Bucks) of Egyptian Baladi breed aged 4 years old and body weight of 30.5 kg were used to verify the validation of predicting equations by which carcass specific gravity and body weight can be used to estimate body composition. Live body weight, TOH-space, Blood and plasma volume were determined. Two weeks later, all bucks were slaughtered and each of empty body weight, hot carcass weight, hot carcass specific gravity, offals, along with separating carcass components (muscle, fat, bone) and chemical components (water, protein, fat, ash) of the whole body, empty body and carcass were determined. Step-wise regression analyses of the relationships among hot carcass specific gravity, body and carcass weight (as independent variables) and body composition parameters were performed. The validation of the obtained predicting equations was examined by calculating the intercept and the slope of the regression of the predicted parameter on the observed parameter. The valid equation should have an insignificant intercept from zero and insignificant slope from one. The data revealed that hot carcass specific gravity has not any valid equation to predict body and carcass composition. Live body weight can be used to predict empty body weight and red blood cells volume. Empty body weight has a valid equation to estimate empty body water. However, hot carcass weight can be used to estimate carcass water, muscle and edible portion

  17. Unique biochemical and mineral composition of whale ear bones.

    Science.gov (United States)

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  18. Nutritional assessment by isotope dilution analysis of body composition

    International Nuclear Information System (INIS)

    Szeluga, D.J.; Stuart, R.K.; Utermohlen, V.; Santos, G.W.

    1984-01-01

    The three components of body mass, body cell mass (BCM), extracellular fluid (ECF), and fat + extracellular solids (ECS: bone, tendon, etc) can be quantified using established isotope dilution techniques. With these techniques, total body water (TBW) and ECF are measured using 3H 2 O and 82 Bromine, respectively, as tracers. BCM is calculated from intracellular fluid (ICF) where ICF . TBW - ECF. Fat + ECS is estimated as: body weight - (BCM + ECF). TBW and ECF can be determined by either of two calculation methods, one requiring several timed plasma samples (extrapolation method) and one requiring a single plasma sample and a 4-h urine collection (urine-corrected method). The comparability of the two calculation methods was evaluated in 20 studies in 12 bone marrow transplant recipients. We found that for determination of TBW and ECF there was a very strong linear relationship (r2 greater than 0.98) between the calculation methods. Further comparisons (by t test, 2-sided) indicated that for the determination of ECF, the methods were not significantly (p greater than 0.90) different; however, TBW determined by the urine-corrected method was slightly (0.1 to 6%), but significantly (p less than 0.01) greater than that determined by the extrapolation method. Therefore, relative to the extrapolation method, the urine-corrected method ''over-estimates'' BCM and ''under-estimates'' fat + ECS since determination of these compartment sizes depends on measurement of TBW. We currently use serial isotope dilution studies to monitor the body composition changes of patients receiving therapeutic nutritional support

  19. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  20. Body composition and physical fitness in women with bulimia nervosa or binge‐eating disorder

    Science.gov (United States)

    Rosenvinge, Jan H.; Friborg, Oddgeir; Pettersen, Gunn; Stensrud, Trine; Hansen, Bjørge Herman; Underhaug, Karoline E.; Teinung, Elisabeth; Vrabel, KariAnne; Svendsen, Mette; Bratland‐Sanda, Solfrid; Sundgot‐Borgen, Jorunn

    2018-01-01

    Abstract Objective Knowledge about physical fitness in women with bulimia nervosa (BN) or binge‐eating disorder (BED) is sparse. Previous studies have measured physical activity largely through self‐report, and physical fitness variables are mainly restricted to body mass index (BMI) and bone mineral density. We expanded the current knowledge in these groups by including a wider range of physical fitness indicators and objective measures of physical activity, assessed the influence of a history of anorexia nervosa (AN), and evaluated predictive variables for physical fitness. Method Physical activity, blood pressure, cardiorespiratory fitness (CRF), muscle strength, body composition, and bone mineral density were measured in 156 women with BN or BED, with mean (SD) age 28.4 years (5.7) and BMI 25.3 (4.8) kg m−2. Results Level of physical activity was higher than normative levels, still <50% met the official physical activity recommendation. Fitness in women with BN were on an average comparable with recommendations or normative levels, while women with BED had lower CRF and higher BMI, VAT, and body fat percentage. We found 10–12% with masked obesity. A history of AN did not predict current physical fitness, still values for current body composition were lower when comparing those with history of AN to those with no such history. Discussion Overall, participants with BN or BED displayed adequate physical fitness; however, a high number had unfavorable CRF and body composition. This finding calls for inclusion of physical fitness in routine clinical examinations and guided physical activity and dietary recommendations in the treatment of BN and BED. PMID:29473191

  1. Body composition and physical fitness in women with bulimia nervosa or binge-eating disorder.

    Science.gov (United States)

    Mathisen, Therese Fostervold; Rosenvinge, Jan H; Friborg, Oddgeir; Pettersen, Gunn; Stensrud, Trine; Hansen, Bjørge Herman; Underhaug, Karoline E; Teinung, Elisabeth; Vrabel, KariAnne; Svendsen, Mette; Bratland-Sanda, Solfrid; Sundgot-Borgen, Jorunn

    2018-04-01

    Knowledge about physical fitness in women with bulimia nervosa (BN) or binge-eating disorder (BED) is sparse. Previous studies have measured physical activity largely through self-report, and physical fitness variables are mainly restricted to body mass index (BMI) and bone mineral density. We expanded the current knowledge in these groups by including a wider range of physical fitness indicators and objective measures of physical activity, assessed the influence of a history of anorexia nervosa (AN), and evaluated predictive variables for physical fitness. Physical activity, blood pressure, cardiorespiratory fitness (CRF), muscle strength, body composition, and bone mineral density were measured in 156 women with BN or BED, with mean (SD) age 28.4 years (5.7) and BMI 25.3 (4.8) kg m -2 . Level of physical activity was higher than normative levels, still <50% met the official physical activity recommendation. Fitness in women with BN were on an average comparable with recommendations or normative levels, while women with BED had lower CRF and higher BMI, VAT, and body fat percentage. We found 10-12% with masked obesity. A history of AN did not predict current physical fitness, still values for current body composition were lower when comparing those with history of AN to those with no such history. Overall, participants with BN or BED displayed adequate physical fitness; however, a high number had unfavorable CRF and body composition. This finding calls for inclusion of physical fitness in routine clinical examinations and guided physical activity and dietary recommendations in the treatment of BN and BED. © 2018 The Authors International Journal of Eating Disorders Published by Wiley Periodicals, Inc.

  2. Body composition and wages.

    Science.gov (United States)

    Wada, Roy; Tekin, Erdal

    2010-07-01

    This paper examines the relationship between body composition and wages in the United States. We develop measures of body composition--body fat (BF) and fat-free mass (FFM)--using data on bioelectrical impedance analysis (BIA) that are available in the National Health and Nutrition Examination Survey III and estimate wage models for respondents in the National Longitudinal Survey of Youth 1979. Previous research uses body size or BMI as measures of obesity despite a growing concern that they do not distinguish between body fat and fat-free body mass or adequately control for non-homogeneity inside the human body. Therefore, measures presented in this paper represent a useful alternative to BMI-based proxies of obesity. Our results indicate that BF is associated with decreased wages for both males and females among whites and blacks. We also present evidence suggesting that FFM is associated with increased wages. We show that these results are not the artifacts of unobserved heterogeneity. Finally, our findings are robust to numerous specification checks and to a large number of alternative BIA prediction equations from which the body composition measures are derived. 2010 Elsevier B.V. All rights reserved.

  3. Is fatty acid composition of human bone marrow significant to bone health?

    Science.gov (United States)

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Analysis of Dietary Intake and Body Composition of Female Athletes over a Competitive Season

    Directory of Open Access Journals (Sweden)

    Svetlana Nepocatych

    2017-09-01

    Full Text Available The purpose of the study was to examine dietary intake, body composition and bone mineral density changes at the beginning and end of a competitive season in female athletes of sports that have been less represented in the literature. NCAA Division I basketball (n=10 and softball (n=10 players mean age (20±1 years completed 3-day food records at the beginning and end of season. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry (DXA. Mean energy intake was significantly lower at the beginning compared to the end of the season (1925±466 vs. 2326±782 kcals/day; p=0.02. Lean, fat, and total body mass, and total and regional BMD were unaltered from the beginning to the end of season (p>0.05. Macronutrient consumption by percentage did not change across the season (p>0.05 with aggregate data equalling 3.5±1.3, 1.2±0.6, and 1.2±0.5 g/kg/day for carbohydrate, fat, and protein respectively. Carbohydrate and protein intakes were below the recommended levels. Low intake of fibre (17±6.3 g/day and high sodium (3700±1120 mg/day also raise concerns. Despite no major alterations in body composition or BMD many female athletes’ diets in the sports investigated while living on campus failed to meet recommended intake levels suggesting maximal athletic performance and health parameters may be stunted due to poor nutrient choices.

  5. Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy.

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G; Birch, Helen L; Gikas, Panagiotis D; Parker, Anthony W; Matousek, Pavel; Goodship, Allen E

    2014-01-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  6. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  7. Body/bone-marrow differential-temperature sensor

    Science.gov (United States)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  8. Total body irradiation as a form of preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Inoue, Toshihiko

    1987-01-01

    The history of total body irradiation and bone marrow transplantation is surprisingly old. Following the success of Thomas et al. in the 1970s, bone marrow transplantation appeared to be the sole curative treatment modality for high-risk leukemia. A supralethal dose of total body irradiation was widely accepted as a form of preparation for bone marrow transplantation. In this paper, I described the present status of bone marrow transplantation for leukemia patients in Japan based on the IVth national survey. Since interstitial pneumonitis was one of the most life threatening complications after bone marrow transplantation, I mentioned the dose, dose-rate and fraction of total body irradiation in more detail. In addition, I dealt with some problems of the total body irradiation, such as dose prescription, compensating contour as well as inhomogeneity, and shielding for the highrisk organs. (author) 82 refs

  9. Effect of Daily Exposure to an Isolated Soy Protein Supplement on Body Composition, Energy and Macronutrient Intake, Bone Formation Markers, and Lipid Profile in Children in Colombia.

    Science.gov (United States)

    Mejía, Wilson; Córdoba, Diana; Durán, Paola; Chacón, Yersson; Rosselli, Diego

    2018-01-16

    A soy protein-based supplement may optimize bone health, support physical growth, and stimulate bone formation. This study aimed to assess the effect of a daily soy protein supplement (SPS) on nutritional status, bone formation markers, lipid profile, and daily energy and macronutrient intake in children. One hundred seven participants (62 girls), ages 2 to 9, started the study and were randomly assigned to lunch fruit juice with (n = 57, intervention group) or without (n = 50, control group) addition of 45 g (230 Kcal) of a commercial SPS during 12 months; 84 children (51 girls, 33 boys) completed the study (45 and 39 intervention and control, respectively). Nutritional assessment included anthropometry and nutrient intakes; initial and final blood samples were taken; insulin-like growth factor-I (IGF-I), osteocalcin, bone specific alkaline phosphatase (BAP), insulin-like growth factor binding protein-3 (IGFBP-3), cholesterol, triglycerides, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were analyzed. Statistically significant changes (p < .05) in body mass index and weight for age Z scores were observed between groups while changes in body composition were not. Changes in energy, total protein, and carbohydrate intakes were significantly higher in the intervention group (p < .01). Calorie intake changes were statistically significant between groups (p < .001), and BAP decreased in both groups, with values within normal ranges. Osteocalcin, IGFBP-3, and lipid profile were not different between groups. IGF-I levels and IGF/IGFBP-3 ratio increased significantly in both groups. In conclusion, changes in macronutrient and energy intake and nutritional status in the intervention group compared to control group may ensure harmonious and adequate bone health and development.

  10. COLOSTRUM-COLLAGEN-HYDROXYAPATITE COMPOSITE, AN EXCELLENT CANDIDATE BIOMATERIAL FOR BONE REPAIR AND BONE INFECTION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Dio Nurdin Setiawan

    2014-05-01

    Full Text Available In the case ofbone fracture or defect after surgery, which is common in patients with bone cancer (osteosarcoma, it takes a long time for closure and it may cause an infection problem. The use ofcollagen-hydroxyapatite composite with a blend ofcolostrum as a scaffold is aimed to accelerate the process of osteoblast growth, inhibite the emergence of infections, and act as bone tissue repair material. The method used was the hydrogel formation process and freeze dry process to remove the solvent and to form pores. The composition of scaffold composite manufactured was 15% collagen, 75% hydroxyapatite and 10% colostrum. Combination ofscaffold collagen-hydroxyapatite-colostrum has quite reliable properties because SEM test showed that scaffold could bind to both and could bind to both and could form sufficient pores to provide enough place for bone cells (osteoblats to grow. The results of MTT assay revealed percentage of above 60%, which indicates that the material is not toxic. In conclusion, collagen-hydroxyapatite-colostrum combination is an excellent biomaterial candidate for bone repair and bone infection management.

  11. The association between calcium consumption and students body composition

    Directory of Open Access Journals (Sweden)

    Przemysław Zając

    2017-09-01

    Full Text Available Introduction: The consumption of calcium in the Polish population is insufficient, which may negatively influence the occurrence of osteoporosis, as well as cause overweight and obesity. Aim of the research : To analyse the relationship between calcium consumption and body composition of the participants of this study. Material and methods : The study was carried out on a sample group of 103 nursing students. The study group consisted of 91 (88.3% women and 12 (11.7% men, aged from 19 to 33 years. The participants of the study had their body composition analysed, the body mass index (BMI was calculated, and the authors carried out a survey involving the Dairy Products Frequency Questionnaire (ADOS-Ca as well as their own questionnaire to evaluate the socio-economic status of the subjects. Results : The students who had the lowest calcium consumption also had the lowest BMI (p = 0.0015 and the lowest amount of visceral fat (p = 0.0260. Individuals who consumed the lowest amount of calcium also had the lowest muscle mass (p = 0.007 and bone mass (p = 0.004. However, the authors did not notice a significant statistical difference between the level of calcium consumption and the percentage of adipose tissue (p = 0.5000 as well as body water percentage (p = 0.3200. Conclusions: The results of the research do not confirm the hypothesis that high calcium consumption is associated with a lower probability of the occurrence of excess body mass and adipose tissue.

  12. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    Science.gov (United States)

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between

  13. Nutritional assessment with body composition measurements

    International Nuclear Information System (INIS)

    Shizgal, H.M.

    1987-01-01

    The measurement of body composition by multiple isotope dilution provides an accurate and precise measure of both the nutritional state and the response to nutritional support. A multiple isotope dilution technique has been developed that permits measurement of the three major components of body composition: body fat, extracellular mass (ECM), and body cell mass (BCM). Normal body composition was defined by data obtained in 25 healthy volunteers. Malnutrition is characterized by a loss of BCM and an expansion of the ECM, and as a result the lean body mass is not significantly different from normal. The loss of body weight with malnutrition therefore often reflects the loss of body fat. The utility of body composition measurements was demonstrated by determining the effect of total parenteral nutrition on body composition to determine the relationship between caloric intake and the change in the BCM. A statistically significant relationship was developed which demonstrated that a caloric intake in the range of 30-40 cal/kg/day is required for maintenance. To restore a depleted or malnourished BCM requires a caloric intake in excess of that required for maintenance. The measurement of body composition by multiple isotope dilution is complex and time consuming, and requires specialized laboratory facilities and specially trained personnel. As a result, these measurements are not suited for routine patient management, but should rather be reserved for research purposes

  14. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  15. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    Science.gov (United States)

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  16. Anorexia Nervosa, Obesity and Bone Metabolism

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa and obesity are conditions at the extreme ends of the nutritional spectrum, associated with marked reductions versus increases respectively in body fat content. Both conditions are also associated with an increased risk for fractures. In anorexia nervosa, body composition and hormones secreted or regulated by body fat content are important determinants of low bone density, impaired bone structure and reduced bone strength. In addition, anorexia nervosa is characterized by increases in marrow adiposity and decreases in cold activated brown adipose tissue, both of which are related to low bone density. In obese individuals, greater visceral adiposity is associated with greater marrow fat, lower bone density and impaired bone structure. In this review, we discuss bone metabolism in anorexia nervosa and obesity in relation to adipose tissue distribution and hormones secreted or regulated by body fat content. PMID:24079076

  17. Canine body composition quantification using 3 tesla fat-water MRI.

    Science.gov (United States)

    Gifford, Aliya; Kullberg, Joel; Berglund, Johan; Malmberg, Filip; Coate, Katie C; Williams, Phillip E; Cherrington, Alan D; Avison, Malcolm J; Welch, E Brian

    2014-02-01

    To test the hypothesis that a whole-body fat-water MRI (FWMRI) protocol acquired at 3 Tesla combined with semi-automated image analysis techniques enables precise volume and mass quantification of adipose, lean, and bone tissue depots that agree with static scale mass and scale mass changes in the context of a longitudinal study of large-breed dogs placed on an obesogenic high-fat, high-fructose diet. Six healthy adult male dogs were scanned twice, at weeks 0 (baseline) and 4, of the dietary regiment. FWMRI-derived volumes of adipose tissue (total, visceral, and subcutaneous), lean tissue, and cortical bone were quantified using a semi-automated approach. Volumes were converted to masses using published tissue densities. FWMRI-derived total mass corresponds with scale mass with a concordance correlation coefficient of 0.931 (95% confidence interval = [0.813, 0.975]), and slope and intercept values of 1.12 and -2.23 kg, respectively. Visceral, subcutaneous and total adipose tissue masses increased significantly from weeks 0 to 4, while neither cortical bone nor lean tissue masses changed significantly. This is evidenced by a mean percent change of 70.2% for visceral, 67.0% for subcutaneous, and 67.1% for total adipose tissue. FWMRI can precisely quantify and map body composition with respect to adipose, lean, and bone tissue depots. The described approach provides a valuable tool to examine the role of distinct tissue depots in an established animal model of human metabolic disease. Copyright © 2013 Wiley Periodicals, Inc.

  18. Association Study of Polymorphisms in the SOST Gene Region and Parameters of Bone Strength and Body Composition in Both Young and Elderly Men: Data from the Odense Androgen Study

    DEFF Research Database (Denmark)

    Piters, Elke; de Freitas, Fenna; Nielsen, Torben Leo

    2011-01-01

    By means of different genetic association studies the SOST gene, encoding sclerostin, has repeatedly been suggested to regulate bone mineral density (BMD) and osteoporosis susceptibility. This study aimed at a further understanding of the importance of two previously studied single...... at several sites and additionally for body composition and hip geometric parameters. In a combined analysis of the young and the elderly OAS, no associations were found for SRP3 either with BMD or with hip geometry. Instead, we found that this polymorphism had a relatively large effect on weight (-1.149 kg...... effect of the minor allele (C). No age-specific effects were found for either of the two SNPs. In summary, we are the first to find interesting associations between SRP3 and body composition. For SRP9, we replicated a site-specific association with femoral neck BMD. In addition, we report a novel...

  19. Chemical Makeup of Microdamaged Bone Differs from Undamaged Bone

    International Nuclear Information System (INIS)

    Ruppel, M.; Burr, D.; Miller, L.

    2006-01-01

    Microdamage naturally occurs in bone tissue as a result of cyclic loading placed on the body from normal daily activities. While it is usually repaired through the bone turnover process, accumulation of microdamage may result in reduced bone quality and increased fracture risk. It is unclear whether certain areas of bone are more susceptible to microdamage than others due to compositional differences. This study examines whether areas of microdamaged bone are chemically different than undamaged areas of bone. Bone samples (L3 vertebrae) were harvested from 15 dogs. Samples were stained with basic fuchsin, embedded in poly-methylmethacrylate, and cut into 5-(micro)m-thick sections. Fuchsin staining was used to identify regions of microdamage, and synchrotron infrared microspectroscopic imaging was used to determine the local bone composition. Results showed that microdamaged areas of bone were chemically different than the surrounding undamaged areas. Specifically, the mineral stoichiometry was altered in microdamaged bone, where the carbonate/protein ratio and carbonate/phosphate ratio were significantly lower in areas of microdamage, and the acid phosphate content was higher. No differences were observed in tissue mineralization (phosphate/protein ratio) or crystallinity between the microdamaged and undamaged bone, indicating that the microdamaged regions of bone were not over-mineralized. The collagen cross-linking structure was also significantly different in microdamaged areas of bone, consistent with ruptured cross-links and reduced fracture resistance. All differences in composition had well-defined boundaries in the microcrack region, strongly suggesting that they occurred after microcrack formation. Even so, because microdamage results in an altered bone composition, an accumulation of microdamage might result in a long-term reduction in bone quality

  20. Children's bone health

    NARCIS (Netherlands)

    I.M. van der Sluis (Inge)

    2002-01-01

    textabstractThe thesis can be divided in two main parts. In the first part (Chapter 2 to 5) bone mineral density, bone metabolism and body composition in healthy children and young adults have been evaluated, while in the second part (Chapter 6 to 10) these issues were studied in children

  1. Comparison of atlas-based techniques for whole-body bone segmentation

    DEFF Research Database (Denmark)

    Arabi, Hossein; Zaidi, Habib

    2017-01-01

    out in terms of estimating bone extraction accuracy from whole-body MRI using standard metrics, such as Dice similarity (DSC) and relative volume difference (RVD) considering bony structures obtained from intensity thresholding of the reference CT images as the ground truth. Considering the Dice....../MRI. To this end, a variety of atlas-based segmentation strategies commonly used in medical image segmentation and pseudo-CT generation were implemented and evaluated in terms of whole-body bone segmentation accuracy. Bone segmentation was performed on 23 whole-body CT/MR image pairs via leave-one-out cross...... validation procedure. The evaluated segmentation techniques include: (i) intensity averaging (IA), (ii) majority voting (MV), (iii) global and (iv) local (voxel-wise) weighting atlas fusion frameworks implemented utilizing normalized mutual information (NMI), normalized cross-correlation (NCC) and mean...

  2. Onlay bone augmentation on mouse calvarial bone using a hydroxyapatite/collagen composite material with total blood or platelet-rich plasma.

    Science.gov (United States)

    Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo

    2016-01-01

    The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  4. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy x-ray absorptiometry in a population of normal Canadian children and adolescents

    International Nuclear Information System (INIS)

    Sala, A.; Webber, C.E.; Morrison, J.; Beaumont, L.F.; Barr, R.D.

    2007-01-01

    Measurements of body composition have evident value in evaluating growing children and adolescents, and dual-energy X-ray absorptiometry (DXA) is a tool that provides accurate measurements of whole-body bone mineral content (WBBMC), lean body mass (LBM), and fat mass (FM). To interpret such measurements in the context of ill health, normative values must be available. Such information could be expected to be regionally specific because of differences in ethnic, dietary, and physical activity determinants. In this study, DXA was performed with Hologic densitometers in normal girls (n = 91) and boys (n 88) between 3 and 18 years of age. The derivation of normal ranges is presented for boys and girls. The correlation of the sum of WBBMC, LBM, and FM with directly measured body weight was almost perfect (r > 0.997). As expected, FM and body mass index correlated strongly. The normal values for WBBMC, LBM, and FM from this study are compared with other Canadian data and with published normative data from Argentina and the Netherlands, all of which use different densitometers. The results of this study allow the calculation of z scores for each facet of body composition and facilitate the use of DXA to report routine evaluations of body composition in children and adolescents. (author)

  5. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica

    2012-01-01

    Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...... marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA...

  6. The Association of Fat and Lean Tissue With Whole Body and Spine Bone Mineral Density Is Modified by HIV Status and Sex in Children and Youth.

    Science.gov (United States)

    Jacobson, Denise L; Lindsey, Jane C; Coull, Brent A; Mulligan, Kathleen; Bhagwat, Priya; Aldrovandi, Grace M

    2018-01-01

    HIV-infected (HIV-pos) male children/youth showed lower bone mineral density at sexual maturity than HIV-uninfected (HIV-neg) females. It is not known whether complications of HIV disease, including abnormal body fat distribution, contribute to lower bone accrual in male HIV-pos adolescents. In a cross-sectional study, we evaluated the relationship between body composition (fat and lean mass) and bone mass in HIV-pos and HIV-neg children/youth and determined if it is modified by HIV status and sex. We used generalized estimating equations to simultaneously model the effect of fat/lean mass on multiple bone outcomes, including total body bone mineral density and bone mineral content and spine bone mineral density. We evaluated effect modification by HIV and sex. The analysis cohort consisted of 143 HIV-neg and 236 HIV-pos, of whom 55% were black non-Hispanic and 53% were male. Ages ranged from 7 to children/youth were at Tanner stage 1 and 20% at Tanner 5. Fat mass was more strongly positively correlated with bone mass in HIV-neg than HIV-pos children/youth and these relationships were more evident for total body bone than spine outcomes. Within HIV strata, fat mass and bone were more correlated in female than male children/youth. The relationship between lean mass and bone varied by sex, but not by HIV status. HIV disease diminishes the positive relationship of greater fat mass on bone mass in children/youth. Disruptions in body fat distribution, which are common in HIV disease, may have an impact on bone accretion during pubertal development.

  7. Increasing the number of unloading/reambulation cycles does not adversely impact body composition and lumbar bone mineral density but reduces tissue sensitivity

    Science.gov (United States)

    Gupta, Shikha; Manske, Sarah L.; Judex, Stefan

    2013-11-01

    A single exposure to hindlimb unloading leads to changes in body mass, body composition and bone, but the consequences of multiple exposures are not yet understood. Within a 18 week period, adult C57BL/6 male mice were exposed to 1 (1x-HLU), 2 (2x-HLU) or 3 (3x-HLU) cycles of 2 weeks of hindlimb unloading (HLU) followed by 4 weeks of reambulation (RA), or served as ambulatory age-matched controls. In vivo μCT longitudinally tracked changes in abdominal adipose and lean tissues, lumbar vertebral apparent volumetric bone mineral density (vBMD) and upper hindlimb muscle cross-sectional area before and after the final HLU and RA cycle. During the final HLU cycle, significant decreases in total adipose tissue and vertebral vBMD in the three experimental groups occurred such that there were no significant between-group differences at the beginning of the final RA cycle. However, the magnitude of the HLU induced losses diminished in mice undergoing their 2nd or 3rd HLU cycle. Irrespective of the number of HLU/RA cycles, total adipose tissue and vertebral vBMD recovered and were no different from age-matched controls after the final RA period. In contrast, upper hindlimb muscle cross-sectional area was significantly lower than controls in all unloaded groups after the final RA period. These results suggest that tissues in the abdominal region are more resilient to multiple bouts of unloading and more amenable to recovery during reambulation than the peripheral musculoskeletal system.

  8. THE RESULTS OF THE ANALYSIS OF THE STUDENTS’ BODY COMPOSITION BY BIOIMPEDANCE METHOD

    Directory of Open Access Journals (Sweden)

    Dmitry S. Blinov

    2016-06-01

    Full Text Available Introduction. Tissues of the human body can conduct electricity. Liquid medium (water, blood, the contents of hollow bodies, have a low impedance, i.e. good conductors, while denser tissue (muscle, nerves, etc. resistance is significantly higher. The biggest impedance have fat and bone tissues. The bioimpendancemetry – a method which allows to determine the composition of the human body by measuring electrical resistance (impedance of its tissues. Relevance. This technique is indispensable to dieticians and fitness trainers. In addition, the results of the study can provide invaluable assistance in the appointment of effective treatment physicians, gynecologists, orthopedists, and other specialists. The bioimpedance method helps to determine the risks of developing diabetes type 2, atherosclerosis, hypertension, diseases of the musculoskeletal system, disorders of the endocrine system, gall-stone disease and etc. Materials and Methods. In the list of parameters of body composition assessed by bioimpedance analysis method, included absolute and relative indicators. Depending on the method of measurement of the absolute rates were determined for the whole body. To absolute performance were: fat and skinny body mass index, active cell and skeletal muscle mass, total body water, cellular and extracellular fluid. Along with them were calculated relatively (normalized to body weight, lean mass, or other variables indicators of body composition. Results. In the result of the comparison of anthropometric and bioimpedance method found that growth performance, vital capacity, weight, waist circumference, circumfer¬ence of waist and hip, basal metabolism, body fat mass, normalized on growth, lean mass, percentage skeletal muscle mass in boys and girls with normal and excessive body weight had statistically significant differences. Discussion and Conclusions. In the present study physical development with consideration of body composition in students

  9. Determination of bone mineral density in the third lumbar vertebral body using photon absorptiometry techniques

    International Nuclear Information System (INIS)

    Swanpalmer, Janos; Kullenberg, Ragnar; Hansson, Tommy

    1998-01-01

    Dual-photon absorptiometry and triple-energy X-ray absorptiometry were used to investigate the total bone mineral content and density as well as the trabecular bone mineral density in the third lumbar vertebral body. Both anteroposterior (AP) and lateral (LAT) measurements were performed. By combining the two projections it was found that the mean trabecular bone mineral density for all 202 subjects included in the study was 52% (SD±20%) of the total bone mineral density in the third lumbar vertebral body. The mean trabecular bone mineral density as a fraction of the total vertebral body bone mineral density decreased as a function of age. The relative annual change in this fraction differed between males and females. It was also found that neither trabecular nor total bone mineral density differed significantly between male and female subjects aged 25-35 years, and bone mineral density (BMD), expressed in g/cm 3 , showed no correlation to subject height, body weight or body mass index (BMI). Male and female individuals showed different rates of change of trabecular bone mineral density with age

  10. Body composition: Where and when.

    Science.gov (United States)

    Mazzoccoli, Gianluigi

    2016-08-01

    The in vivo evaluation of body composition is essential in many clinical investigations, in order to accurately describe and monitor the nutritional status of a range of medical conditions and physiological processes, including sick and malnourished patients, pregnant women, breastfeeding women and the elderly, as well as in patients with cancer, osteoporosis and many other diseases. This research area is also important to the field of human nutrition and exercise physiology. Several research investigations have indicated the importance of measuring fat deposition in different body compartments, in order to gain a fuller understanding of the genetic factors that contribute to obesity, obesity-related disorders, such as dyslipidemia, and thereby to a fuller understanding of obesity associated cardio-metabolic disorders, with relevance to the relationship between body composition and energy expenditure. The spatial and temporal dimension, where and when, may influence the physiological relevance and the pathological implications of the fat composition of different body compartments, and, as such, is a new element to be considered when assessing body composition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Lima Filho, Jose de M. [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose W. [Escola Politecnica de Pernambuco (POLI). Universidade de Pernambuco (UPE), Recife, PE (Brazil); Lima, Vanildo J. de M., E-mail: vjr@ufpe.br [Departamento de Anatomia. Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lima, Lindeval F., E-mail: lindeval@dmat.ufrr.br [Departamento de Matematica (DMAT). Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Vasconcelos, Wagner E. de [Departamento de Energia Nuclear (DEN). Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-07-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  12. Bone dosimetry using synthetic images to represent trabecular bones of five regions of the human body

    International Nuclear Information System (INIS)

    Lima Filho, Jose de M.; Vieira, Jose W.; Lima, Vanildo J. de M.; Lima, Lindeval F.; Lima, Fernando R.A.; Vasconcelos, Wagner E. de

    2011-01-01

    One of the greatest challenges in numerical dosimetry of ionizing radiation is to estimate the absorbed dose by bone tissue in the human body. The bone tissues of greater radiosensitivity are the red bone marrow (RBM), that consist of the hematopoietic cells, located within the trabecular bones, and the bone surface cells (BSC), called osteogenic cells. The report 70 of the ICRP lists five spongiosa regions with their respective volume percent of trabecular bone: ribs (also contemplating the clavicles and sternum), spine, long bones, pelvis and skull (also contemplating mandible). The Grupo de Pesquisa em Dosimetria Numerica (GDN/CNPq) has been built exposure computational models (ECMs) based on voxel phantoms and EGSnrc Monte Carlo code. To estimate the energy deposited in the RBM and in the BSC of a phantom, the GDN/CNPq has used a method based on micro-CT images of the five trabecular regions mentioned above. These images were provided by other research institutes and were obtained from scan of bone samples of adult. Here is the greatest difficulty in reproducing this method: besides the need for bone images of real people with micrometer resolution, the distribution of bone marrow in the human body, according to ICRP 70, varies with age. This article presents some proposals of the GDN/CNPQ for replacing in the ECMs the micro-CT images by images synthesized by the computer, based on Monte Carlo sampling. (author)

  13. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    Science.gov (United States)

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.

  14. Body composition in Pan paniscus compared with Homo sapiens has implications for changes during human evolution.

    Science.gov (United States)

    Zihlman, Adrienne L; Bolter, Debra R

    2015-06-16

    The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.

  15. Comparison of body composition methods during weight loss in obese women using herbal formula.

    Science.gov (United States)

    Kim, Ho-Jun; Gallagher, Dympna; Song, Mi-Yeon

    2005-01-01

    Bioelectrical impedance analysis (BIA), a device that analyzes the current conduction differences between the fat and water components is widely used for reasons that include convenience of use, non-invasiveness, safety, and low cost. Dual energy X-ray absorptiometry (DXA) allows for the assessment of total body and regional lean and fat tissues and bone mineral content (BMC). The objective of this study was to compare body composition assessments by BIA and DXA before and after a 6-week herbal diet intervention program in 50 pre-menopausal women [mean +/- SD: age 30.58 +/- 6.15, body mass index (BMI) 31.72 +/- 3.78]. Waist-to-hip ratio (WHR) was measured by BIA and anthropometry. Lean body mass (LBM), body fat (BF), BMC and percent body fat (%BF) were measured by BIA and DXA. Highly significant correlations were observed between BIA and DXA measurements for LBM, BF, BMC and %BF (r = 0.73, 0.93, 0.53, 0.79, respectively) before the intervention. Differences between BIA and DXA measurements were observed in LBM, BF, %BF and BMC before intervention (p produce statistically comparable results in pre-menopausal Korean women and therefore should not be used interchangeably when measuring body composition.

  16. The Use of Injectable Chitosan/Nanohydroxyapatite/Collagen Composites with Bone Marrow Mesenchymal Stem Cells to Promote Ectopic Bone Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2013-01-01

    Full Text Available The aim of this study was to evaluate ectopic in vivo bone formation with or without rat bone mesenchymal stem cells (rBMSCs of an injectable Chitosan/Nanohydroxyapatite/Collagen (CS/nHAC composite. The CS/nHAC composites were injected subcutaneously into the backs of Wistar rats with freshly loaded rBMSCs at a density of 10×106 cells/mL, and the CS/nHAC composites without cells were used as negative controls. New bone formation, degradation of composites, and degree of calcification were evaluated by Computed Tomography (CT and three-dimensional (3D CT reconstruction. Histological evaluations were performed to further assess bone structure and extracellular matrix by HE and Masson staining. The inflammatory reactions related to osteogenesis were also investigated in the present study. In comparison with the CS/nHAC composites, this study revealed that CS/nHAC/rBMSCs composites showed relatively higher percentage of calcification, better establishment of ECM, and less degradation rate. Meanwhile, different extents of inflammatory reactions were also observed in the CS/nHAC and CS/nHAC/rBMSCs explants at 2 and 4 weeks after implantation. Altogether, CS/nHAC/rBMSCs composites are superior to CS/nHAC composites in ectopic bone formation. In conclusion, the rBMSCs-seeded CS/nHAC composites may be beneficial to enhancing ectopic bone formation in vivo.

  17. Bone fragments a body can make

    Energy Technology Data Exchange (ETDEWEB)

    Stout, S.D.; Ross, L.M. Jr. (Department of Anthropology, University of Missouri, Columbia (USA))

    1991-05-01

    Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, even though her body was never recovered.

  18. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant.

    Science.gov (United States)

    Petersen, Richard C

    2011-05-03

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P engineering potential.

  19. VDR haploinsufficiency impacts body composition and skeletal acquisition in a gender-specific manner.

    Science.gov (United States)

    de Paula, Francisco J A; Dick-de-Paula, Ingrid; Bornstein, Sheila; Rostama, Bahman; Le, Phuong; Lotinun, Sutada; Baron, Roland; Rosen, Clifford J

    2011-09-01

    The vitamin D receptor (VDR) is crucial for virtually all of vitamin D's actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but had a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity.

  20. Growth hormone deficiency in the transition period: body composition and gonad function.

    Science.gov (United States)

    Balercia, G; Giovannini, L; Paggi, F; Spaziani, M; Tahani, N; Boscaro, M; Lenzi, A; Radicioni, A

    2011-10-01

    Recombinant GH therapy is normally administered to GH-deficient children in order to achieve a satisfactory height - the main target during childhood and adolescence. However, the role of GH does not end once final height has been reached, but continues during the so-called transition period. In this phase of life, the body undergoes several changes, both physical and psychological, that culminate in adulthood. During this period, GH has a part in numerous metabolic functions. These include the lipid profile, where it increases HDL and reduces LDL, with the global effect of cardiovascular protection. It also has important effects on body composition (improved muscle strength and lean body mass and reduced body fat), the achievement of proper peak bone density, and gonad maturation. Retesting during the transition period, involving measurement of IGF-I plus a provocative test (insulin tolerance test or GHRH + arginine test), is thus necessary to establish any persistent GH deficiency requiring additional replacement therapy. The close cooperation of the medical professionals involved in the patient's transition from a pediatric to an adult endocrinologist is essential. The aim of this review is to point out the main aspects of GH treatment on body composition, metabolic and gonad functions in the transition period.

  1. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    Science.gov (United States)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  2. [Body composition and metabolic risk in small for gestational age children treated with growth hormone].

    Science.gov (United States)

    Aurensanz Clemente, Esther; Samper Villagrasa, Pilar; Ayerza Casas, Ariadna; Ruiz Frontera, Pablo; Moreno Aznar, Luis Alberto; Bueno Lozano, Gloria

    2016-09-16

    Small for gestational age (SGA) children are at increased risk of metabolic syndrome. Our objective is to evaluate changes in body composition produced by growth hormone (GH) treatment. A group of 28 SGA children without catch-up growth and undergoing treatment with GH was selected for evaluation. Over the course of 3 years from the beginning of the treatment with GH, the children's body composition variables (bone mineral density [BMD], fat and lean body mass proportion) were evaluated annually with dual-energy X-ray absorptiometry. A study of correlation between metabolic and body composition variables was also made. Treatment with GH produces a reduction in fat mass proportion in relation to lean body mass, decreasing from 25.94±6.09 to 22.88±5.38% (P=.034). In the abdominal regions we observe an increase in lean mass, from 1,356,91±426,71 to 2,570,96±814,36g (P=.000) and a tendency for visceral fat deposits to decrease. BMD in lumbar vertebrae improved from -1.55±0.68 to -0.90±0.79Z (P=.019). Treatment with GH produces changes in body composition, improving BMD and increasing the proportion of lean body mass with a reduction in fat mass. If these changes persisted into adulthood, they may cause a reduction in the metabolic and cardiovascular risk in this group of patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  3. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    Science.gov (United States)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  4. [Effect of Acupuncture Therapy on Body Compositions in Patients with Obesity].

    Science.gov (United States)

    Zhang, Hui-Min; Wu, Xue-Liang; Jiang, Chao; Shi, Rong-Xing

    2017-04-25

    To observe the clinical effectiveness of acupuncture intervention in weight reduction by modulating body compositions in obesity patients. A total of 71 obesity patients during weight-loss procedure were allocated to acupuncture+nutrition-consultation group ( n =40) and simple nutrition-consultation group ( n =31). The patients of the acupuncture +nutrition-consultation group were treated by acupuncture stimulation of Zhongwan (CV 12), Xiawan (CV 10), Tianshu (ST 25), Wailing (ST 26), Qihai (CV 6), Guanyuan (CV 4), etc. for 30 min, once every other day, 3 times per week, 12 times altogether, and also given with weekly nutrition consultation (including subjective query, objective measurement, analysis, program for nutrition support) at the same time. The patients of the simple nutrition-consultation group were treated by only weekly nutrition consultation for 4 weeks. Before and after the treatment, the patients' body weight, body mass index (BMI), fat mass, percentage of body fat, muscle mass, protein quality, water quality and bone mass were measured by using a composition analyzer. After 4 weeks' treatment, the body mass, BMI, fat mass and fat percentage in both acupuncture+nutrition-consultation and simple nutrition-consultation groups were significantly decreased ( P 0.05). The therapeutic effect of acupuncture+nutrition-consultation group was markedly superior to that of the simple nutrition-consultation group in increasing the improved degrees of body weight, BMI, fat mass and fat percentage ( P Acupuncture plus nutrition consultation is effective in reducing body mass, fat mass and percentage of body fat in obesity patients.

  5. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    International Nuclear Information System (INIS)

    Cai, Yurong; Yu, Juhong; Kundu, Subhas C.; Yao, Juming

    2016-01-01

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  6. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  7. Body composition of children with cancer.

    Science.gov (United States)

    Murphy, Alexia J; White, Melinda; Davies, Peter S W

    2010-07-01

    Nutritional status, as represented by body composition, is an important consideration in the treatment of pediatric cancer patients because it is linked to poor outcomes. Little is known about how a child's body composition responds to cancer and treatment. We aimed to compare the body composition of children undergoing treatment of cancer with that of healthy controls and to compare body composition between children with hematologic malignancies and children with solid tumors. This cross-sectional study measured height, weight, body cell mass, fat-free mass, and fat mass in 48 children undergoing treatment of cancer and blood-related disorders and in age-matched healthy controls. Patients with cancer had a significantly lower body cell mass index z score (body cell mass/height raised to the power of 2.5 for females and 3 for males) than did controls (P = 0.0001), and 45% of the patients with cancer were considered malnourished according to body cell mass. Subjects with cancer had a significantly higher percentage of body fat (P = 0.0001) and fat mass (P = 0.0001) than did controls; however, there was no significant difference in fat-free mass (P = 0.09). On the basis of percentage fat, 77% of subjects with cancer were considered obese. No difference in body composition was observed between cancer types. This study showed that children undergoing treatment of all types of cancer have a significantly lower body cell mass and a significantly higher fat mass than do healthy controls. Nutritional support is suggested for all children undergoing treatment of cancer.

  8. Whole body bone scintigraphy in osseous hydatosis: a case report

    Directory of Open Access Journals (Sweden)

    Ebrahimi Abdolali

    2007-09-01

    Full Text Available Abstract Hydatid disease is common in many parts of the world, and causes considerable health and economic loss. This disease may develop in almost any part of the body. Bone involvement is often asymptomatic, and its diagnosis is primarily based on radiographic findings. A whole body bone scan is able to show the extent and distribution of lesions. We describe an unusual case of multifocal skeletal hydatosis and also explain the clinical and diagnostic points. We hope to stimulate a high index of suspicion among clinicians to facilitate early diagnosis and to consider this disease as a differential diagnosis in cases of multiple abnormal activity in bone scintigraphy especially among people in endemic areas.

  9. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  10. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold

    Directory of Open Access Journals (Sweden)

    Chen XH

    2015-01-01

    nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation.Conclusion: The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone. Keywords: bone graft, boron, osteoporosis, osteoporotic defect, mesoporous bioactive graft, tissue engineering

  11. Differential effects of raloxifene and estrogen on body composition in growth hormone-replaced hypopituitary women.

    LENUS (Irish Health Repository)

    Birzniece, Vita

    2012-03-01

    GH deficiency causes reduction in muscle and bone mass and an increase in fat mass (FM), the changes reversed by GH replacement. The beneficial effects of GH on fat oxidation and protein anabolism are attenuated more markedly by raloxifene, a selective estrogen receptor modulator, compared with 17β-estradiol. Whether this translates to a long-term detrimental effect on body composition is unknown.

  12. Photoacoustic and ultrasound characterization of bone composition

    Science.gov (United States)

    Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas

    2015-02-01

    This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.

  13. Body composition variation following diaphragmatic breathing ...

    African Journals Online (AJOL)

    Body composition variation following diaphragmatic breathing. ... effect of commonly prescribed diaphragmatic breathing training on the body composition ... a non-exercising control (NE) group (n = 22) or diaphragmatic breathing (DB) group.

  14. Whole Body Computed Tomography with Advanced Imaging Techniques: A Research Tool for Measuring Body Composition in Dogs

    Directory of Open Access Journals (Sweden)

    Dharma Purushothaman

    2013-01-01

    Full Text Available The use of computed tomography (CT to evaluate obesity in canines is limited. Traditional CT image analysis is cumbersome and uses prediction equations that require manual calculations. In order to overcome this, our study investigated the use of advanced image analysis software programs to determine body composition in dogs with an application to canine obesity research. Beagles and greyhounds were chosen for their differences in morphology and propensity to obesity. Whole body CT scans with regular intervals were performed on six beagles and six greyhounds that were subjected to a 28-day weight-gain protocol. The CT images obtained at days 0 and 28 were analyzed using software programs OsiriX, ImageJ, and AutoCAT. The CT scanning technique was able to differentiate bone, lean, and fat tissue in dogs and proved sensitive enough to detect increases in both lean and fat during weight gain over a short period. A significant difference in lean : fat ratio was observed between the two breeds on both days 0 and 28 (P<0.01. Therefore, CT and advanced image analysis proved useful in the current study for the estimation of body composition in dogs and has the potential to be used in canine obesity research.

  15. Fructose in Breast Milk Is Positively Associated with Infant Body Composition at 6 Months of Age.

    Science.gov (United States)

    Goran, Michael I; Martin, Ashley A; Alderete, Tanya L; Fujiwara, Hideji; Fields, David A

    2017-02-16

    Dietary sugars have been shown to promote excess adiposity among children and adults; however, no study has examined fructose in human milk and its effects on body composition during infancy. Twenty-five mother-infant dyads attended clinical visits to the Oklahoma Health Sciences Center at 1 and 6 months of infant age. Infants were exclusively breastfed for 6 months and sugars in breast milk (i.e., fructose, glucose, lactose) were measured by Liquid chromatography-mass spectrometry (LC-MS/MS) and glucose oxidase. Infant body composition was assessed using dual-energy X-ray absorptiometry at 1 and 6 months. Multiple linear regression was used to examine associations between breast milk sugars and infant body composition at 6 months of age. Fructose, glucose, and lactose were present in breast milk and stable across visits (means = 6.7 μg/mL, 255.2 μg/mL, and 7.6 g/dL, respectively). Despite its very low concentration, fructose was the only sugar significantly associated with infant body composition. A 1-μg/mL higher breast milk fructose was associated with a 257 g higher body weight ( p = 0.02), 170 g higher lean mass ( p = 0.01), 131 g higher fat mass ( p = 0.05), and 5 g higher bone mineral content ( p = 0.03). In conclusion, fructose is detectable in human breast milk and is positively associated with all components of body composition at 6 months of age.

  16. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    Science.gov (United States)

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Impact of Body Weight and Body Composition on Ovarian Cancer Prognosis.

    Science.gov (United States)

    Purcell, Sarah A; Elliott, Sarah A; Kroenke, Candyce H; Sawyer, Michael B; Prado, Carla M

    2016-02-01

    Measures of body weight and anthropometrics such as body mass index (BMI) are commonly used to assess nutritional status in clinical conditions including cancer. Extensive research has evaluated associations between body weight and prognosis in ovarian cancer patients, yet little is known about the potential impact of body composition (fat mass (FM) and fat-free mass (FFM)) in these patients. Thus, the purpose of this publication was to review the literature (using PubMed and EMBASE) evaluating the impact of body weight and particularly body composition on surgical complications, morbidity, chemotherapy dosing and toxicity (as predictors of prognosis), and survival in ovarian cancer patients. Body weight is rarely associated with intra-operative complications, but obesity predicts higher rates of venous thromboembolism and wound complications post-operatively in ovarian cancer patients. Low levels of FM and FFM are superior predictors of length of hospital stay compared to measures of body weight alone, but the role of body composition on other surgical morbidities is unknown. Obesity complicates chemotherapy dosing due to altered pharmacokinetics, imprecise dosing strategies, and wide variability in FM and FFM. Measurement of body composition has the potential to reduce toxicity if the results are incorporated into chemotherapy dosing calculations. Some findings suggest that excess body weight adversely affects survival, while others find no such association. Limited studies indicate that FM is a better predictor of survival than body weight in ovarian cancer patients, but the direction of this relationship has not been determined. In conclusion, body composition as an indicator of nutritional status is a better prognostic tool than body weight or BMI alone in ovarian cancer patients.

  18. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2011-01-01

    Full Text Available Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P<10−4, and 19.3% to 77.7% at 0.1 mm, P<10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

  19. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2018-02-01

    Although bone is regenerative, its regeneration capacity is limited. For bone defects beyond a critical size, further intervention is required. As an attractive strategy, bone tissue engineering (bone TE) has been widely investigated to repair bone defects. However, the rapid and effective bone regeneration of large non-healing defects is still a great challenge. Multifunctional scaffolds having osteoinductivity and osteoconductivity are desirable to fasten functional bone tissue regeneration. In the present study, biomimetic composite scaffolds of collagen and biphasic calcium phosphate nanoparticles (BCP NPs) with a controlled release of dexamethasone (DEX) and the controlled pore structures were prepared for bone TE. DEX was introduced in the BCP NPs during preparation of the BCP NPs and hybridized with collagen scaffolds, which pore structures were controlled by using pre-prepared ice particulates as a porogen material. The composite scaffolds had well controlled and interconnected pore structures, high mechanical strength and a sustained release of DEX. The composite scaffolds showed good biocompatibility and promoted osteogenic differentiation of hMSCs when used for three-dimensional culture of human bone marrow-derived mesenchymal stem cells. Subcutaneous implantation of the composite scaffolds at the dorsa of athymic nude mice demonstrated that they facilitated the ectopic bone tissue regeneration. The results indicated the DEX-loaded BCP NPs/collagen composite scaffolds had high potential for bone TE. Scaffolds play a crucial role for regeneration of large bone defects. Biomimetic scaffolds having the same composition of natural bone and a controlled release of osteoinductive factors are desirable for promotion of bone regeneration. In this study, composite scaffolds of collagen and biphasic CaP nanoparticles (BCP NPs) with a controlled release nature of dexamethasone (DEX) were prepared and their porous structures were controlled by using ice particulates

  20. Clinical value of combined detection of serum tumor markers and whole body bone scan for diagnosis of bone metastases from breast cancer

    International Nuclear Information System (INIS)

    Gao Chao; Zhao Jing; Liu Desheng; Zhang Jingchuan; Ji Xuejing; Hou Xiancun

    2007-01-01

    Objective: To study the clinical value of serum tumor marker determination and whole body bone scan for diagnosis of bone metastases from breast cancer. Methods: Serum tumor markers (CA15-3, CEA, TSGF)were detected with GLIA and whole body bone scan were investigated by SPECT in 124 breast cancer patients. Results: In 124 patients, 38 patients were diagnosed as positive for bone metastases with whole body bone scan. The positive predicting values of CA15-3, CEA, TSGF were 76.78%, 80% and 82.14%, and the negative predicting values of CA15-3, GEA, TSGF were 82.41%, 86.74% and 84.29% respectively. The levels of CA15-3, CEA, TSGF in patients with bone metastases were significantly higher than those in patients without metastasis and the controls (P<0.01). Conclusion: Determination of levels of serum tumor markers CA15-3, CEA, TSGF is helpful for diagnosis of bone metastases from breast cancer. Combined detection of GA15-3, CEA, TSGF could increase the sensitivity and accuracy of diagnosing bone metastases. (authors)

  1. Short-term lower-body plyometric training improves whole body BMC, bone metabolic markers, and physical fitness in early pubertal male basketball players.

    Science.gov (United States)

    Zribi, Anis; Zouch, Mohamed; Chaari, Hamada; Bouajina, Elyes; Ben Nasr, Hela; Zaouali, Monia; Tabka, Zouhair

    2014-02-01

    The effects of a 9-week lower-body plyometric training program on bone mass, bone markers and physical fitness was examined in 51 early pubertal male basketball players divided randomly into a plyometric group (PG: 25 participants) and a control group (CG: 26 participants). Areal bone mineral density (aBMD), bone mineral content (BMC), and bone area (BA) in the whole body, L2-L4 vertebrae, and in total hip, serum levels of osteocalcin (Oc) and C-terminal telopeptide fragment of Type I collagen (CTx), jump, sprint and power abilities were assessed at baseline and 9 weeks. Group comparisons were done by independent student's t-test between means and analyses of (ANOVA) and covariance (ANCOVA), adjusting for baseline values. PG experienced a significant increase in Oc (p BMC and BA in any measured site, except in whole body BMC of the PG. A positive correlation was observed between percentage increase (Δ%) of physical fitness and those of (Oc) for the PG. In summary, biweekly sessions of lower body plyometric training program were successful for improving whole body BMC, bone formation marker (Oc) and physical fitness in early pubertal male basketball players.

  2. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  3. Perinatal exposure to PCB 153, but not PCB 126, alters bone tissue composition in female goat offspring

    International Nuclear Information System (INIS)

    Lundberg, Rebecca; Lyche, Jan L.; Ropstad, Erik; Aleksandersen, Mona; Roenn, Monika; Skaare, Janneche U.; Larsson, Sune; Orberg, Jan; Lind, P. Monica

    2006-01-01

    The aim of this study was to investigate if environmentally relevant doses of the putative estrogenic non dioxin-like PCB 153 and the dioxin-like PCB 126 caused changes in bone tissue in female goat offspring following perinatal exposure. Goat dams were orally dosed with PCB 153 in corn oil (98 μg/kg body wt/day) or PCB 126 (49 ng/kg body wt/day) from day 60 of gestation until delivery. The offspring were exposed to PCB in utero and through mother's milk. The suckling period lasted for 6 weeks. Offspring metacarpal bones were analysed using peripheral quantitative computed tomography (pQCT) after euthanisation at 9 months of age. The diaphyseal bone was analysed at a distance of 18% and 50% of the total bone length, and the metaphyseal bone at a distance of 9%. Also, biomechanical three-point bending of the bones was conducted, with the load being applied to the mid-diaphyseal pQCT measure point (50%). PCB 153 exposure significantly decreased the total cross-sectional area (125 mm 2 ± 4) versus non-exposed (142 mm 2 ± 5), decreased the marrow cavity (38 mm 2 ± 4) versus non-exposed (50 mm 2 ± 3) and decreased the moment of resistance (318 mm 3 ± 10) versus non-exposed (371 mm 3 ± 20) at the diaphyseal 18% measure point. At the metaphyseal measure point, the trabecular bone mineral density (121 mg/cm 3 ± 5) was increased versus non-exposed (111 mg/cm 3 ± 3). PCB 126 exposure did not produce any observable changes in bone tissue. The biomechanical testing of the bones did not show any significant changes in bone strength after PCB 153 or PCB 126 exposure. In conclusion, perinatal exposure to PCB 153, but not PCB 126, resulted in altered bone composition in female goat offspring

  4. Bone composition and bone mineral density of long bones of free-living raptors

    Directory of Open Access Journals (Sweden)

    Britta Schuhmann

    2014-10-01

    Full Text Available Bone composition and bone mineral density (BMD of long bones of two raptor and one owl species were assessed. Right humerus and tibiotarsus of 40 common buzzards, 13 white-tailed sea eagles and 9 barn owls were analyzed. Statistical analysis was performed for influence of species, age, gender and nutritional status. The BMD ranged from 1.8 g/cm3 (common buzzards to 2.0 g/cm3 (white-tailed sea eagles. Dry matter was 87.0% (buzzards to 89.5% (sea eagles. Percentage of bone ash was lower in sea eagles than in buzzards and owls. Content of crude fat was lower than 2% of the dry matter in all bones. In humeri lower calcium values (220 g/kg fat free dry matter were detected in sea eagles than in barn owls (246 g/kg, in tibiotarsi no species differences were observed. Phosphorus levels were lowest in sea eagles (humeri 104 g/kg fat free dry matter, tibiotarsi 102 g/kg and highest in barn owls. Calcium-phosphorus ratio was about 2:1 in all species. Magnesium content was lower in sea eagles (humeri 2590 mg/kg fat free dry matter, tibiotarsi 2510 mg/kg than in buzzards and owls. Bones of barn owls contained more copper (humeri 8.7 mg/kg fat free dry matter, tibiotarsi 12.7 mg/kg than in the Accipitridae. Zinc content was highest in sea eagles (humeri 278 mg/kg fat free dry matter, tibiotarsi 273 mg/kg and lowest in barn owls (humeri 185 mg/kg, tibiotarsi 199 mg/kg. The present study shows that bone characteristics can be considered as species specific in raptors.

  5. Regeneration of calvarial defects by a composite of bioerodible polyorthoester and demineralized bone in rats

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G

    1992-01-01

    A study was performed to evaluate regeneration of defects in rat calvaria either unfilled or filled with a bioerodible polyorthoester only, demineralized bone only, or a composite of both. At 4 weeks, histological and radiographic studies showed that defects filled with a composite of bioerodible...... polyorthoester and demineralized bone or demineralized bone alone were bridged by bone. Unfilled defects or defects filled with polyorthoester only did not heal. The polyorthoester caused slight inflammation that subsided by 3 weeks, and only traces of the filler could be detected at 4 weeks. The polyorthoester...... provided local hemostasis when used either alone or in composites with demineralized bone. The composite implant was moldable, easily contoured, and technically easier to use than demineralized bone alone....

  6. Antibacterial glass and glass-biodegradable matrix composites for bone tissue engineering

    OpenAIRE

    Fernandes, João Pedro Silva

    2017-01-01

    Multiple joint and bone diseases affect millions of people worldwide. In fact the Bone and Joint Decade’s association predicted that the percentage of people over 50 years of age affected by bone diseases will double by 2020. Bone diseases commonly require the need for surgical intervention, often involving partial or total bone substitution. Therefore biodegradable biomaterials designed as bone tissue engineered (BTE) devices to be implanted into the human body, function as a ...

  7. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells

    Science.gov (United States)

    Huang, Zhi; Chen, Yan; Feng, Qing-Ling; Zhao, Wei; Yu, Bo; Tian, Jing; Li, Song-Jian; Lin, Bo-Miao

    2011-09-01

    For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.

  8. Normalisation of body composition parameters for nutritional assessment

    International Nuclear Information System (INIS)

    Preston, Thomas

    2014-01-01

    Full text: Normalisation of body composition parameters to an index of body size facilitates comparison of a subject’s measurements with those of a population. There is an obvious focus on indexes of obesity, but first it is informative to consider Fat Free Mass (FFM) in the context of common anthropometric measures of body size namely, height and weight. The contention is that FFM is a more physiological measure of body size than body mass. Many studies have shown that FFM relates to height ^p. Although there is debate over the appropriate exponent especially in early life, it appears to lie between 2 and 3. If 2, then FFM Index (FFMI; kg/m2) and Fat Mass Index (FMI; kg/m2) can be summed to give BMI. If 3 were used as exponent, then FFMI (kg/m3) plus FMI (kg/m3) gives the Ponderal Index (PI; weight/height3). In 2013, Burton argued that that a cubic exponent is appropriate for normalisation as it is a dimensionless quotient. In 2012, Wang and co-workers repeated earlier observations showing a strong linear relationship between FFM and height3. The importance of the latter study comes from the fact that a 4 compartment body composition model was used, which is recognised as the most accurate means of describing FFM. Once the basis of a FFMI has been defined it can be used to compare measurements with those of a population, either directly, as a ratio to a norm or as a Z-score. FFMI charts could be developed for use in child growth. Other related indexes can be determined for use in specific circumstances such as: body cell mass index (growth and wasting); skeletal muscle mass index (SMMI) or appendicular SMMI (growth and sarcopenia); bone mineral mass index (osteoporosis); extracellular fluid index (hydration). Finally, it is logical that the same system is used to define an adiposity index, so Fat Mass Index (FMI; kg/height3) can be used as it is consistent with FFMI (kg/height3) and PI. It should also be noted that the index FM/FFM, describes an individual

  9. Sex-specific functional adaptation of the femoral diaphysis to body composition.

    Science.gov (United States)

    Lacoste Jeanson, Alizé; Santos, Frédéric; Dupej, Ján; Velemínská, Jana; Brůžek, Jaroslav

    2018-03-24

    The human femoral diaphysis is often used to reconstruct loading histories (mobility, activity, body mass). The proximal femur is known to be differentially affected by changes in total fat-mass (FM), fat-free mass (FFM), and body fat percentage (BF%), but the adaptation of the entire diaphysis to body composition has not been thoroughly characterized to date. Understanding how the femoral diaphysis adapts to body components would benefit biomechanical interpretations of the femoral variation and nutrition-related studies. Combining various methods from clinical nutrition, biological anthropology, and geometric morphometrics, we evaluated the correlation of measures taken on the entire femoral diaphysis with estimated FM, FFM, and BF% from 61 CT scans (17 females, 44 males). The sample was predominantly composed of people with obesity. Cortical area of the cross-sections and local cortical thickness showed high correlation with BF% in particular, in females only. The curvature significantly decreased with FM and BF% in both sexes. The lowest correlations are found with FFM. The observed sexual dimorphism is consistent with differing aging processes; cortical bone decreases in females through endosteal resorption while it remains almost constant in males who compensate for endosteal resorption by periosteal apposition on the diaphyseal surface. The functional adaptation to compressive forces indicates a systemic endosteal apposition of bone material with increased BF% and FM in females only. FM and BF% are linked to a straighter femur in both sexes, suggesting an optimization of the resistance to compressive loads by distributing them more linearly along the entire diaphysis. © 2018 Wiley Periodicals, Inc.

  10. The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting.

    Directory of Open Access Journals (Sweden)

    Mohssen Hakimi

    Full Text Available One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC. The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group. In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG, whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting.

  11. The assessment of whole body bone SPECT in oncology

    International Nuclear Information System (INIS)

    Scortechini, Shonika

    2009-01-01

    Full text: Objectives: To assess the significance and practicability of oncology whole body bone SPECT as part of the standard skeletal survey and its impact on the traditional planar whole body bone imaging protocol. Method: Three consenting oncology patients were injected with a standard adult dose of Tc-99m MOP. Delayed Imaging of whole body sweep and SPECT acquisitions were performed on a Siemens Symbia T6. The patient was positioned supine with arms down with a SPECT scan length covering vortex to thighs. SPECT data was reconstructed and a single whole body zipped file created. Normal SPECT slices along with a cine/MIP of the zipped data were created for review. Results: Both image data sets were reviewed to assess if SPECT provided any further diagnostic clinical information not apparent in planer imaging. In our limited review, whole body SPECT did not add extra value to the planar whole body scans performed; it did however demonstrate vertebral involvement with greater resolution. The processing software and system limitations in seamlessly knitting data sets (creating image artefacts) was a major limiting factor in not pursuing further studies. Conclusion: Both imaging techniques offer differing advantages and limitations, however due to image artefact in the triple knitted SPECT approach with current software technology, it cannot be substituted for whole body imaging at this time.

  12. Development of methods for body composition studies

    International Nuclear Information System (INIS)

    Mattsson, Soeren; Thomas, Brian J

    2006-01-01

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease. (review)

  13. Development of methods for body composition studies

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Soeren [Department of Radiation Physics, Lund University, Malmoe University Hospital, SE-205 02 Malmoe (Sweden); Thomas, Brian J [School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001 (Australia)

    2006-07-07

    This review is focused on experimental methods for determination of the composition of the human body, its organs and tissues. It summarizes the development and current status of fat determinations from body density, total body water determinations through the dilution technique, whole and partial body potassium measurements for body cell mass estimates, in vivo neutron activation analysis for body protein measurements, dual-energy absorptiometry (DEXA), computed tomography (CT) and magnetic resonance imaging (MRI, fMRI) and spectroscopy (MRS) for body composition studies on tissue and organ levels, as well as single- and multiple-frequency bioimpedance (BIA) and anthropometry as simple easily available methods. Methods for trace element analysis in vivo are also described. Using this wide range of measurement methods, together with gradually improved body composition models, it is now possible to quantify a number of body components and follow their changes in health and disease. (review)

  14. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  15. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    Science.gov (United States)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  16. Rotator cuff repair with a tendon-fibrocartilage-bone composite bridging patch.

    Science.gov (United States)

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R; Qu, Jin; An, Kai-Nan; Amadio, Peter C; Steinmann, Scott P; Zhao, Chunfeng

    2015-11-01

    To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/s. The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; Pfibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch-greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Skeletal status and body composition in young women with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Podfigurna-Stopa, Agnieszka; Pludowski, Pawel; Jaworski, Maciej; Lorenc, Roman; Genazzani, Andrea R; Meczekalski, Blazej

    2012-04-01

    Functional hypothalamic amenorrhea (FHA) related to hypoestrogenism and hormonal status may influence skeletal homeostasis and body composition. The study aimed to evaluate hormones concentrations, body composition and bone strength in FHA cases. Total body scans using DXA method (DPX-L, GE Lunar) were performed in a group of 27 women aged 21.8 years ± 3.9 with FHA related to weight loss. References of healthy control subjects were used to calculate Z-scores (age and gender matched), SD-scores (height and gender matched), and SDs-scores (weight and gender matched). Whole skeleton bone mineral content (TBBMC, g) and density (TBBMD, g/cm(2)), lumbar spine (L2-L4) bone mineral density (SBMD; g/cm(2)), lean body mass (LBM, g) and fat mass (FM, g) were investigated. Relative bone strength index was calculated as the TBBMC/LBM ratio. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, testosterone, and prolactin (PRL) concentrations were assayed to characterize hormonal profile of FHA cases. Hormonal evaluation in patients with FHA revealed significantly decreased serum concentrations of gonadotropins and estradiol. Serum LH concentrations were 1.47 ± 0.89 mIU/ml, FSH 4.44 ± 1.94 mIU/ml. Estradiol concentrations in serum were 27.08 ± 13.10 pg/ml. As evidenced by Z-scores, FHA cases had decreased SBMD, TBBMD and TBBMC Z-scores of -1.23 ± 0.90 (p < 0.0001), -0.72 ± 0.86 (p < 0.001), and -0.90 ± 1.40 (p < 0.01), respectively. Reduced FM, LBM and FM/LBM ratio Z-scores of -1.80 ± 2.28 (p < 0.001), -0.59 ± 1.49 (p < 0.05) and -0.74 ± 1.55 (p < 0.05), but not TBBMC/LBM Z-score of -0.54 ± 2.14 (ns) were noted in FHA cases compared with healthy control cases. TBBMC, TBBMD, TBBMC/LBM when BH- or BW-matched were normal as evidenced by SD-scores and SDs-scores. SBMD remained reduced when BH-matched (SD-score = -0.40 ± 0.86; p < 0.05) whereas FM and FM/LBM were lower

  18. Body composition of Fanconi anemia patients after hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Priscilla Peixoto Policarpo da Silva

    Full Text Available Abstract Introduction: Fanconi anemia is a rare genetic disease linked to bone marrow failure; a possible treatment is hematopoietic stem cell transplantation. Changes in the nutritional status of Fanconi anemia patients are not very well known. This study aimed to characterize body composition of adult, children and adolescent patients with Fanconi anemia who were submitted to hematopoietic stem cell transplantation or not. Methods: This cross-sectional study enrolled 63 patients (29 adults and 34 children and adolescents. Body composition was assessed based on diverse methods, including triceps skin fold, arm circumference, arm muscle area and bioelectrical impedance analysis, as there is no established consensus for this population. Body mass index was also considered as reference according to age. Results: Almost half (48.3% of the transplanted adult patients were underweight considering body mass index whereas eutrophic status was observed in 66.7% of the children and adolescents submitted to hematopoietic stem cell transplantation and in 80% of those who were not. At least 50% of all groups displayed muscle mass depletion. Half of the transplanted children and adolescents presented short/very short stature for age. Conclusion: All patients presented low muscle stores, underweight was common in adults, and short stature was common in children and adolescents. More studies are needed to detect whether muscle mass loss measured at the early stages of treatment results in higher risk of mortality, considering the importance of muscle mass as an essential body component to prevent mortality related to infectious and non-infectious diseases and the malnutrition inherent to Fanconi anemia.

  19. Chemical radioprotection to bone marrow stem cells after whole body gamma irradiation to mice

    Energy Technology Data Exchange (ETDEWEB)

    Dey, J.; Dey, T.B.; Ganguly, S.K.; Nagpal, K.K.; Ghose, A.

    1988-11-01

    Protection to mice bone marrow stem cells has been noted as early as two days after whole body gamma ray exposure by prior treatment with combination of hydroxytryptophan (HT) and one of the two thiol drugs viz., aminoethylisothiuronium bromide hydrobromide (AET) (20 mg/kg body weight) and B-mercaptopropionylglicine (MPG). The levels of protection to bone marrow stem cells thus obtained have been compared to that obtained by treating with the optimum radioprotecting dose of AET (200 mg/kg body weight). The study reports the bone marrow stem cells status after two days of 3 Gy, 5 Gy and 10 Gy whole body gamma irradiation in relation to the mentioned radioprotecting treatments as studied by spleen colony forming method.

  20. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    Science.gov (United States)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  1. Muscle size, quality, and body composition: characteristics of division I cross-country runners.

    Science.gov (United States)

    Roelofs, Erica J; Smith-Ryan, Abbie E; Melvin, Malia N; Wingfield, Hailee L; Trexler, Eric T; Walker, Nina

    2015-02-01

    The primary purpose of this study was to identify the relationship between muscle cross-sectional area (mCSA), echo intensity (EI), and body composition of Division I cross-country runners. The secondary purpose was to examine differences in these variables in athletes stratified based on stress-fracture (SFx) history. Thirty-six athletes were stratified based on sex and SFx history. A panoramic scan vastus lateralis was performed using a GE Logiq-e B-mode ultrasound. Echo intensity and mCSA were determined from the scan using a grayscale imaging software (ImageJ). Body composition measures were determined using dual-energy x-ray absorptiometry. For females, mCSA was significantly correlated with left leg lean mass (LM; R = 0.54) and EI (R = -0.57). Lean mass was significantly correlated with bone mineral density (BMD; R = 0.58) and bone mineral content (BMC; R = 0.56), whereas BMC was also correlated with leg LM (R = 0.72). For males, mCSA was significantly correlated with leg LM (R = 0.66), BMD (R = 0.50), and BMC (R = 0.54). Leg LM was significantly correlated with BMD (R = 0.53) and BMC (R = 0.77). Personal best times for males were significantly correlated with fat mass (R = 0.489) and %fat (R = 0.556) for the 10- and 5-km races, respectively. Female and male athletes with a history of SFx were not significantly different across any variables when compared with athletes with no history. These correlations suggest that more muscle mass may associate with higher BMD and BMC for stronger bone structure. Modifications in training strategies to include heavy resistance training and plyometrics may be advantageous for preventing risk factors associated with SFx reoccurrence.

  2. Total body and regional bone mineral content in hemodialysis patients

    International Nuclear Information System (INIS)

    Hagiwara, Satoshi; Aratani, Hideyui; Miki, Takami; Nishizawa, Yoshiki; Okamura, Terue; Koizumi, Yoshiko; Ochi, Hironobu; Morii, Hirotoshi

    1994-01-01

    Bone mineral content (BMC) in the total body and lumbar spine was evaluated in 126 hemodialysis patients (60 males, 66 females) by dual photon absorptiometry with the Norland DBD 2600. Measurements of: 1) total body BMC divided by lean body mass (BMC TB /LBM), 2) bone mineral density (BMD) of total body, 3) BMD of four regional sections (head, trunk, pelvis, and legs), and 4) BMD of lumbar spine, generally showed a significant decrease in the hemodialysis patients compared to the reference population. However, arm BMD did not show a significant difference between patients and control populations. The z-score of BMC TB /LBM declined significantly throughout the duration of hemodialysis, although that of the lumbar spine BMD did not. It should be noted that the degree of decrease in BMC was more prominent in the total body measurement than in the lumbar spine measurement. There was preferential osteopenia of the total body in the hemodialysis patients. Although the lumbar spine BMD showed a lower value than the control population, the lumbar spine is not the recommended region to monitor the BMD change in hemodialysis patients. (author)

  3. The value of combined examination of serum CA15-3, CEA level and whole body bone scan in the diagnosis of bone metastasis in breast cancer

    International Nuclear Information System (INIS)

    Lu Baoshi; Gao Yufang

    2011-01-01

    Objective: To explore the value of combined examination of serum tumormarkers carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA) and whole body bone scan in the diagnosis of bone metastasis in breast cancer. Methods: Whole body bone scan and serum CA15-3 and CEA levels with a electrochemical luminescence assay were performed in 97 patients with breast cancer (46 cases with bone metastasis and 51 cases without bone metastasis) and 45 patients with benign breast diseases. As for the negative cases who had significant pains in bones, CT or MRI was performed to make sure. Results: The serum level of CA15-3 and CEA were significantly higher in patients with bone metastasis than those in patients without bone metastasis and the benign lesions. The positive predicting values were 76.09% and 80.43%. Most patients with bone metastasis had positive results in bone scan (95.65%), only 2 cases had negative results (4.35%), which is positive by CT or MRI Seven. Seven patients without bone metastasis and Three patients with the benign lesions had positive results in bone scan, that may be caused by previous operation or injury. The combined determination of CA15-3, CEA and whole body bone scan had a better performance in sensitivity, specificity and accuracy than each single way. Conclusion: The combined determination of CA 15-3, CEA and whole body bone scan were valuable in the diagnosis of bone metastasis in breast cancer. (authors)

  4. A principal components approach to parent-to-newborn body composition associations in South India

    Directory of Open Access Journals (Sweden)

    Hill Jacqueline C

    2009-02-01

    Full Text Available Abstract Background Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. Birth weight is a composite measure, encompassing bone, fat and lean mass. These may have different determinants. The main purpose of this paper was to use anthropometry and principal components analysis (PCA to describe maternal and newborn body composition, and associations between them, in an Indian population. We also compared maternal and paternal measurements (body mass index (BMI and height as predictors of newborn body composition. Methods Weight, height, head and mid-arm circumferences, skinfold thicknesses and external pelvic diameters were measured at 30 ± 2 weeks gestation in 571 pregnant women attending the antenatal clinic of the Holdsworth Memorial Hospital, Mysore, India. Paternal height and weight were also measured. At birth, detailed neonatal anthropometry was performed. Unrotated and varimax rotated PCA was applied to the maternal and neonatal measurements. Results Rotated PCA reduced maternal measurements to 4 independent components (fat, pelvis, height and muscle and neonatal measurements to 3 components (trunk+head, fat, and leg length. An SD increase in maternal fat was associated with a 0.16 SD increase (β in neonatal fat (p Conclusion Principal components analysis is a useful method to describe neonatal body composition and its determinants. Newborn adiposity is related to maternal nutritional status and parity, while newborn length is genetically determined. Further research is needed to understand mechanisms linking maternal pelvic size to fetal growth and the determinants and implications of the components (trunk v leg length of fetal skeletal growth.

  5. Impact of hydration status on body composition as measured by dual energy X-ray absorptiometry in normal volunteers and patients on haemodialysis

    International Nuclear Information System (INIS)

    Horber, F.F.; Thomi, F.; Casez, J.P.; Fonteille, J.; Jaeger, Ph.

    1992-01-01

    To evaluate the influence of hydration status on the estimation of body composition using dual-energy X-ray absorptiometry (DXA), six normal volunteers and seven patients on maintenance haemodialysis were investigated using two different DXA machines (Lunar DPX, Hologic QDR 1000/W). Normal volunteers were studied (Hologic QDR 1000/W) before and 1 h after ingestion of breakfast, lunch and dinner (drinking various amounts of liquids at each meal, 0.5-2.4 kg). Whereas bone mineral content and body fat mass did not change, lean body mass of the trunk increased as a consequence of the meals. Conversely in patients on haemodialysis (Lunar DPX), lean body mass decreased in all segments of the body as a consequence of removal of 0.9-4.4 kg of salt-containing fluid by haemodialysis (trunk 61%, legs 30%, arms 5.5% and rest of the body 3.5%), whereas bone mineral content and body fat mass remained unchanged. (author)

  6. Bone induction by surface-double-modified true bone ceramics in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Jingfeng; Chen, Liaobin; Deng, Yu; Zheng, Qixin; Guo, Xiaodong; Zou, Zhenwei; Liu, Yudong; Lan, Shenghui

    2013-01-01

    True bone ceramic (TBC), obtained by twice sintering fresh bovine cancellous bone at high temperatures, is an osteoconductive and bioactive bone substitute material that exhibits excellent biocompatibility with hard tissue. The authors have previously synthesized a novel BMP-2-related peptide, P24, and found that it could enhance the osteoblastic differentiation of cells. The objective of the present study was to construct a double-modified TBC via mineralization into simulated body fluid and P24 incorporation for enhanced bone formation. In vitro experiments revealed that surface mineralization-modified (SMM) TBC scaffolds demonstrated efficiency for sustained release of P24. The P24/SMM-TBC composite exhibited increased osteogenic activity by cell adhesion rate determination, MTT assay, alkaline phosphatase staining, and calcium nodule staining with alizarin red compared with SMM-TBC and TBC. In vivo studies showed that the P24/SMM-TBC composite scaffold promoted significant bone defect repair, in marked contrast to stand-alone SMM-TBC and TBC, based on the results of radiographic evaluation and histological examination. These findings indicate that SMM-TBC is a good scaffold for the controlled release of P24 and that the P24/SMM-TBC composite could improve the adhesion, proliferation and differentiation of cells and repair bone defects. The double-modified P24/SMM-TBC composite biomaterial shows potential for clinical application in bone tissue engineering. (paper)

  7. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Science.gov (United States)

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Body Composition and Somatotype in Adolescent Competion Swimmers

    Directory of Open Access Journals (Sweden)

    José Miguel Martínez-Sanz

    2014-05-01

    Full Text Available Introduction: The swimmer is a high level athlete, with long limbs, and whose musculoskeletal components are important in sporting success. However, the fat component is paradoxical because of its relationship with the buoyancy and displacement of the body in the water. The aim of this study is to describe the anthropometric profile of adolescent competition swimmers.Material and methods: A total of 17 adolescent swimmers were evaluated, 10 boys (13.2 ±1.32 years and 7 girls (15±1.83 years. A qualified anthropometrist took anthropometric measures according to the protocol of the Society for the Advancement of Kinanthropometry (ISAK, with approved materials according to the methodology of Marfell-Jones et al, 2003. Body composition was calculated according to the consensus of Kinanthropometry and somatotype with Heath-Carter´s method.Results: Of all the variables studied (weight, height, folds, circumferences, diameters and lengths, significant differences were found (P<.05 between the sexes in height, arm span, skinfolds (triceps, subscapular, crestailiaca, ileo-spinal, abdominal, thigh, leg, sum of skinfolds, biacromial-bi-iliac index, bone body mass, muscle and fat, ectomorphy, and endomorphy.Conclusions: There are significant anthropometric differences between genders in adolescent swimmers (P<.05. Such differences, resulting in the development of both sexes, might be highly related to athletic performance of young athletes.

  10. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls

    OpenAIRE

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic bla...

  11. Busulfan and total body irradiation as antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogenic bone marrow transplantation

    International Nuclear Information System (INIS)

    Parkman, R.; Rappeport, J.M.; Hellman, S.; Lipton, J.; Smith, B.; Geha, R.; Nathan, D.G.

    1984-01-01

    The capacity of busulfan and total body irradiation to ablate hematopoietic stem cells as preparation for the allogeneic bone marrow transplantation of patients with congenital bone marrow disorders was studied. Fourteen patients received 18 transplants; busulfan was used in the preparatory regimen of eight transplants and total body irradiation in the regimens of six transplants. Sustained hematopoietic ablation was achieved in six of eight patients prepared with busulfan and in all six patients prepared with total body irradiation. Three patients prepared with total body irradiation died with idiopathic interstitial pneumonitis, whereas no patients receiving busulfan developed interstitial pneumonitis. The optimal antihematopoietic stem cell agent to be used for the preparation of patients with congenital bone marrow disorder for bone marrow transplantation is not certain

  12. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    Science.gov (United States)

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in

  13. Low-Dose Adefovir-Induced Hypophosphatemic Osteomalacia on Whole-Body Bone Scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hoon; Won, Kyoung Sook; Song, Bongil; Jo, Il; Zeon, Seok Kil [Keimyung Univ., Daegu (Korea, Republic of)

    2013-12-15

    While adefovir dipivoxil (ADV) effectively suppresses the hepatitis B virus, it can cause proximal renal tubular dysfunction leading to phosphate wasting. The safety of low-dose ADV (a dose of 10 mg/day), which does not induce clinically significant nephrotoxicity, is well recognized, but a few cases of hypophosphatemic osteomalacia (HO) caused by low-dose ADV therapy have recently been reported. Although HO induced by low-dose ADV therapy is rare, the presence of bone pain in patients treated with ADV should be monitored. Bone scintigraphy can be performed to confirm the occurrence of osteomalacia and to determine the disease extent. Bone scintigraphic and radiological image findings with a brief review of the literature are presented in this article. We report two cases of HO induced by low-dose ADV therapy that showed multifocal increased radiotracer uptakes in the bilateral bony ribs, spines, pelvic bones and lower extremities on whole-body bone scintigraphy. Bone pain gradually improved after phosphate supplementation and by changing the antiviral agent. Whole-body bone scintigraphy is a highly sensitive imaging tool and can show disease extent at once in the setting of the wide range of the clinical spectrum with nonspecific radiological findings. Furthermore, frequent involvement of the lower extremities, as a result of maximum weight bearing, could be an additional scintigraphic clue for the diagnosis of HO. These cases could be helpful for both clinicians prescribing ADV and nuclear physicians to prevent delayed diagnosis and plan further appropriate treatment.

  14. Low-Dose Adefovir-Induced Hypophosphatemic Osteomalacia on Whole-Body Bone Scintigraphy

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Won, Kyoung Sook; Song, Bongil; Jo, Il; Zeon, Seok Kil

    2013-01-01

    While adefovir dipivoxil (ADV) effectively suppresses the hepatitis B virus, it can cause proximal renal tubular dysfunction leading to phosphate wasting. The safety of low-dose ADV (a dose of 10 mg/day), which does not induce clinically significant nephrotoxicity, is well recognized, but a few cases of hypophosphatemic osteomalacia (HO) caused by low-dose ADV therapy have recently been reported. Although HO induced by low-dose ADV therapy is rare, the presence of bone pain in patients treated with ADV should be monitored. Bone scintigraphy can be performed to confirm the occurrence of osteomalacia and to determine the disease extent. Bone scintigraphic and radiological image findings with a brief review of the literature are presented in this article. We report two cases of HO induced by low-dose ADV therapy that showed multifocal increased radiotracer uptakes in the bilateral bony ribs, spines, pelvic bones and lower extremities on whole-body bone scintigraphy. Bone pain gradually improved after phosphate supplementation and by changing the antiviral agent. Whole-body bone scintigraphy is a highly sensitive imaging tool and can show disease extent at once in the setting of the wide range of the clinical spectrum with nonspecific radiological findings. Furthermore, frequent involvement of the lower extremities, as a result of maximum weight bearing, could be an additional scintigraphic clue for the diagnosis of HO. These cases could be helpful for both clinicians prescribing ADV and nuclear physicians to prevent delayed diagnosis and plan further appropriate treatment

  15. Body composition and energy metabolism in elderly people

    NARCIS (Netherlands)

    Visser, M.

    1995-01-01

    This thesis describes several studies related to the three components of energy balance in elderly people: body composition, energy expenditure, and energy intake.

    Body composition. The applicability of the body mass index, skinfold thickness method, and

  16. Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites.

    Science.gov (United States)

    Prieto, Edna M; Talley, Anne D; Gould, Nicholas R; Zienkiewicz, Katarzyna J; Drapeau, Susan J; Kalpakci, Kerem N; Guelcher, Scott A

    2015-11-01

    Established clinical approaches to treat bone voids include the implantation of autograft or allograft bone, ceramics, and other bone void fillers (BVFs). Composites prepared from lysine-derived polyurethanes and allograft bone can be injected as a reactive liquid and set to yield BVFs with mechanical strength comparable to trabecular bone. In this study, we investigated the effects of porosity, allograft particle size, and matrix mineralization on remodeling of injectable and settable allograft/polymer composites in a rabbit femoral condyle plug defect model. Both low viscosity and high viscosity grafts incorporating small (<105 μm) particles only partially healed at 12 weeks, and the addition of 10% demineralized bone matrix did not enhance healing. In contrast, composite grafts with large (105-500 μm) allograft particles healed at 12 weeks postimplantation, as evidenced by radial μCT and histomorphometric analysis. This study highlights particle size and surface connectivity as influential parameters regulating the remodeling of composite bone scaffolds. © 2015 Wiley Periodicals, Inc.

  17. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Leszek, E-mail: leszek.borkowski@umlub.pl [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek [Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin (Poland); Polkowska, Izabela [Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin (Poland); Belcarz, Anna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland); Karpiński, Mirosław [Department of Companion and Wildlife Animals, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Słowik, Tymoteusz [Independent Radiology Unit at Lublin Small Animals Medical Centre, Stefczyka 11, 20-151 Lublin (Poland); Matuszewski, Łukasz [Children' s Orthopaedic Clinic and Rehabilitation Department, Medical University of Lublin, Chodzki 2, 20-093 Lublin (Poland); Ślósarczyk, Anna [Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Ginalska, Grażyna [Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin (Poland)

    2015-08-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration.

  18. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits

    International Nuclear Information System (INIS)

    Borkowski, Leszek; Pawłowska, Marta; Radzki, Radosław P.; Bieńko, Marek; Polkowska, Izabela; Belcarz, Anna; Karpiński, Mirosław; Słowik, Tymoteusz; Matuszewski, Łukasz; Ślósarczyk, Anna; Ginalska, Grażyna

    2015-01-01

    A novel elastic hydroxyapatite-based composite of high surgical handiness has been developed. Its potential application in orthopedics as a filler of bone defects has been studied. The biomaterial was composed of carbonated hydroxyapatite (CHAP) granules and polysaccharide polymer (β-1,3-glucan). Cylinders of 4 mm in diameter and 6 mm in length were implanted into bone cavities created in the proximal metaphysis of tibiae of 24 New Zealand white rabbits. 18 sham-operated animals were used as controls. After 1, 3 or 6 months, the rabbits were euthanized, the bones were harvested and subjected to analysis. Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. Peripheral quantitative computed tomography (pQCT) indicated the stimulating effect of the biomaterial on bone formation and mineralization. Densitometry (DXA) analysis suggested that biomineralization of bones was preceded by bioresorption and gradual disappearance of porous ceramic granules. The findings suggest that the CHAP–glucan composite material enables regeneration of bone tissue and could serve as a bone defect filler. - Highlights: • Highly porous carbonate HAP granules and β-1,3-glucan were used to fill bone voids. • Critical size defects of rabbit tibiae were filled with the composite scaffolds. • Biocompatibility, mineralization and osseointegration of implants were examined. • Histological analysis indicated a high biocompatibility of composite grafts. • We report penetration of bony tissue into implants and advanced osseointegration

  19. The role of lean body mass and physical activity in bone health in children.

    Science.gov (United States)

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p  608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be considered in physical education curricula and other health-enhancing programs.

  20. Bone health in Down syndrome.

    Science.gov (United States)

    García-Hoyos, Marta; Riancho, José Antonio; Valero, Carmen

    2017-07-21

    Patients with Down syndrome have a number of risk factors that theoretically could predispose them to osteoporosis, such as early aging, development disorders, reduced physical activity, limited sun exposure, frequent comorbidities and use of drug therapies which could affect bone metabolism. In addition, the bone mass of these people may be affected by their anthropometric and body composition peculiarities. In general terms, studies in adults with Down syndrome reported that these people have lower areal bone mineral density (g/cm 2 ) than the general population. However, most of them have not taken the smaller bone size of people with Down syndrome into account. In fact, when body mineral density is adjusted by bone size and we obtain volumetric body mineral density (g/cm 3 ), the difference between both populations disappears. On the other hand, although people with Down syndrome have risk factor of hypovitaminosis D, the results of studies regarding 25(OH)D in this population are not clear. Likewise, the studies about biochemical bone markers or the prevalence of fractures are not conclusive. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  1. Method for palliation of pain in human bone cancer using therapeutic tin-117m compositions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Meinken, G.E.; Mausner, L.F.; Atkins, H.L.

    1998-01-01

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients. 5 figs

  2. Advances in allogenic bone graft processing and usage: preparation and evaluation of chitosan-demineralized cancellous bone powder composite scaffolds as a bone graft substitute

    International Nuclear Information System (INIS)

    Yongyudh Vajaradul

    2008-01-01

    Full text: Demineralized bone matrix (DBM) is currently used by surgeons. It usually exists as a lyophilized powder which is difficult to handle and operated. In this study, we try to improve these disadvantages by combining DBM with a biomaterial. It focuses on a natural biodegradable polymer, chitosan, to act as a temporary matrix for bone growth that easily prepare in any size and shape by using tissue engineering knowledge to get a proper temporary matrix. Thus, the development of chitosan-demineralized bone powder composite scaffold is an alternative way. Polymeric scaffold has been demonstrated to have great potential for tissue engineering because the scaffold or three dimension (3D) construct provides the necessary support for cells to proliferate, extracellular matrix deposition and vascularization of neo-tissue. Moreover, chitosan, a natural cationic polymer which its structural is similar to extracellular matrix glycosaminoblycans, is biodegradable, biocompatible, non-antigenic and biofunctional. It can enhance osteoblast cells proliferation and mineral matrix deposition in culture. The first study was to fabricate and analyze composite scaffold composed of either chitosan-demineralized cancellous bone powders or chitosan-demineralized cancellous cartilage bone powders in a ratio 50:50 and 70:30 w/w (chitosan : bone powders) based on physical properties composing of average pore diameter, mechanical integrity and swelling property. Secondly, scaffolds were evaluated in term of biological properties composing of their ability to support neo osteogenesis, including assessments of cell attachment and viability, cell morphology, and the biosynthesis of extracellular matrix. Results indicated that chitosan-demineralized cancellous bone powder composite scaffolds possessing an interconnecting, porous structure could be easily created through a simple freezing and lyophilization process. (Author)

  3. Vancomycin graft composite for infected bone defects

    International Nuclear Information System (INIS)

    Winkler, H.; Janata, O.; Georgopoulos, A.

    1999-01-01

    Reconstructive surgery under septic conditions represents a major challenge in orthopaedics. Local application of antibiotics can provide high drug levels at the site of infection without systemic effects. However, removal of non-resorbable implants and filling of defects usually requires additional operative procedures. An ideal antibiotic carrier should provide for : 1) Effective bactericidal activity, especially against staphylococci including MRSA; 2) High and long lasting levels at the site of infection without local or systemic toxicity; 3) Repair of defects without a second stage procedure. Allogeneic cancellous bone is proven to be effective in restoration of bone stock. Vancomycin is effective against all gram-positive populations and the agent of choice for infections with MRSA. The aim of our study is to investigate the efficacy of a combination of both components in bone infection. Cancellous bone of human origin was processed during several steps and incubated in 10% vancomycin solution. The antimicrobial activity of the vancomycin graft composite (VGC) was evaluated using an agar diffusion bioassay against staphylococcus aureus and high performance liquid chromatography (HPLC). The testing period was up to 9 weeks. Elution of vancomycin from the graft was evaluated in 2.5% human albumin solution, which was exchanged every 24 hours. Concentration of vancomycin in allograft-bone was between 6.653[tg/g and 23.194gg/g with an average of 15.250 [tg/g, which is equivalent to 10.000 times the minimum inhibitory concentration (MIC) for s. aureus. The initial activity decreased to approx. 50% during the first week and approx. 30% at the end of the 9th week. The lowest values measured exceeded the MIC by 2000 times. Concentration in surrounding fluid decreased from 24.395,80 to 18,43pg/ml after 11 complete exchanges. Human cancellous bone, processed in an adequate way, offers capability to store high quantities of vancomycin. Vancomycin graft composites are

  4. Body composition and basal metabolic rate in Hidradenitis Suppurativa

    DEFF Research Database (Denmark)

    Miller, I M; Rytgaard, Helene Charlotte; Mogensen, U B

    2016-01-01

    BACKGROUND: Several studies have suggested an association between Hidradenitis Suppurativa (HS) and obesity. Obesity is often expressed as Body Mass Index (BMI). However, BMI lacks information on body composition. General obesity is a predictor of health status and cardiovascular risk, but body...... composition (e.g. abdominal fat) may be more so. Basal metabolic rate (BMR) is an expression of resting metabolism and may serve as a complementary tool when assessing the possibly underlying metabolism behind a persons' body composition. OBJECTIVE: To investigate the body composition and basal metabolic rate...... in individuals with HS compared with healthy controls. METHODS: We performed a cross-sectional study on both a hospital-based and population-based HS group and compared with controls using Bioelectrical Impedance Analysis to assess body composition. RESULTS: We identified a hospital-based HS group of 32 hospital...

  5. Disease-related malnutrition: influence on body composition and prognosis

    OpenAIRE

    Pirlich, Matthias

    2010-01-01

    Disease-related malnutrition is a frequent clincal problem with severe medical and economic impact. This work summarizes studies on body composition analysis, risk factors, prevalence and prognostic impact of malnutrition. The diagnosis of malnutrition in patients with chronic liver disease is hampered by hyperhydration and requires body composition analysis. Using four different methods for body composition analysis (total body potassium counting, anthropometry, bioelectrical impedance analy...

  6. Effects of Zinc Compound on Body Weight and Recovery of Bone Marrow in Mice Treated with Total Body Irradiation

    Directory of Open Access Journals (Sweden)

    Ming-Yii Huang

    2007-09-01

    Full Text Available This study aimed to investigate if zinc compound would have effects on body weight loss and bone marrow suppression induced by total body irradiation (TBI. ICR mice were divided randomly into two groups and treated with test or control compounds. The test compound contained zinc (amino acid chelated with bovine prostate extract, and the control was reverse osmosis pure water (RO water. One week after receiving the treatment, mice were unirradiated, or irradiated with 6 or 3 Gy by 6MV photon beams to the total body. Body weight changes were examined at regular intervals. Three and 5 weeks after the radiation, animals were sacrificed to examine the histologic changes in the bone marrow. Lower body weight in the period of 1-5 weeks after radiation and poor survival rate were found after the 6 Gy TBI, as compared with the 3 Gy groups. The median survival time after 6 Gy and 3 Gy TBI for mice given the test compound were 26 and 76 days, respectively, and the corresponding figures were 14 and 70 days, respectively, for mice given the control compound (p < 0.00001. With zinc supplement, the mean body weight in mice which received the same dose of radiation was 7-8 g heavier than in the water-supplement groups during the second and third weeks (p < 0.05. Hence, there was no statistically significant difference in survival rate between zinc and water supplement in mice given the same dose of irradiation. Histopathologically there was less recovery of bone marrow cells in the 6Gy groups compared with the 3Gy groups. In the 3 Gy water-supplement group, the nucleated cells and megakaryocytes were recovered in the fifth week when recovery was still not seen in the 6Gy group. With zinc supplement, these cells were recovered in the third week. In this study, we found that zinc is beneficial to body weight in mice treated with TBI. Histologic examination of bone marrow showed better recovery of bone marrow cells in groups of mice fed with zinc. This study

  7. Quantitative in vivo micro-computed tomography for assessment of age-dependent changes in murine whole-body composition

    Directory of Open Access Journals (Sweden)

    Kim L. Beaucage

    2016-12-01

    Full Text Available Micro-computed tomography (micro-CT is used routinely to quantify skeletal tissue mass in small animal models. Our goal was to evaluate repeated in vivo micro-CT imaging for monitoring whole-body composition in studies of growth and aging in mice. Male mice from 2 to 52 weeks of age were anesthetized and imaged using an eXplore Locus Ultra and/or eXplore speCZT scanner. Images were reconstructed into 3D volumes, signal-intensity thresholds were used to classify each voxel as adipose, lean or skeletal tissue, and tissue masses were calculated from known density values. Images revealed specific changes in tissue distribution with growth and aging. Quantification showed biphasic increases in total CT-derived body mass, lean and skeletal tissue masses, consisting of rapid increases to 8 weeks of age, followed by slow linear increases to 52 weeks. In contrast, bone mineral density increased rapidly to a stable plateau at ~14 weeks of age. On the other hand, adipose tissue mass increased continuously with age. A micro-CT-derived total mass was calculated for each mouse and compared with gravimetrically measured mass, which differed on average by <3%. Parameters were highly reproducible for mice of the same age, but variability increased slightly with age. There was also good agreement in parameters for the same group of mice scanned on the eXplore Locus Ultra and eXplore speCZT systems. This study provides reference values for normative comparisons; as well, it demonstrates the usefulness of in vivo single-energy micro-CT scans to quantify whole-body composition in high-throughput studies of growth and aging in mice. Keywords: Adipose tissue, Bone mineral content, Bone mineral density, Growth, Lean tissue, Skeletal tissue

  8. Body composition and dietary intake in neoplasic disease

    International Nuclear Information System (INIS)

    Cohn, S.H.; Gartenhaus, W.; Vartsky, D.; Sawitsky, A.; Zanzi, I.; Vaswani, A.; Yasummure, S.; Rai, K.; Cartes, E.; Ellis, K.J.

    1981-01-01

    Changes in body composition in 37 cancer patients were studied over a period of 6 months. Initially, the patients were divided into two groups: those who lost body weight (over 10%) and those who maintained or gained body weight before the study. Analysis of body composition indicated that patients who lost body weight has caloric and protein intakes markedly below ''normal'' levels at the beginning of the study. There also appears to be a direct relationship between the protein intake and the total body potassium/total body water ratio in the cancer patients. At the end of the 6-month study, the patients were again placed into two groups on the basis of weight loss or gain (and maintenance). Changes in body composition over the period were analyzed in terms of lean body mass, its protein constituent, water, and fat. Weight loss was found to reflect primarily the loss of fat, water, lean body mass (potassium), and only to a minor extent the protein component of lean body mass (nitrogen). Further, on the basis of the values of the ratios of total body nitrogen/total body potassium/total body water, it was possible to ascertain the relative normalcy of the body tissue gained or lost in the 6-month period. The results of the study suggest that the ratio total body nitrogen/total body potassium may serve as the best indicator of recent or ongoing catabolism or anabolism of the neoplastic process. By means of the application of the techniques used for the determination of body composition, it should be possible to assess regimes of hyperalimentation of cancer patients who lose body weight

  9. [Application of GVF snake model in segmentation of whole body bone SPECT image].

    Science.gov (United States)

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2008-02-01

    Limited by the imaging principle of whole body bone SPECT image, the gray value of bladder area is quite high, which affects the image's brightness, contrast and readability. In the meantime, the similarity between bladder area and focus makes it difficult for some images to be segmented automatically. In this paper, an improved Snake model, GVF Snake, is adopted to automatically segment bladder area, preparing for further processing of whole body bone SPECT images.

  10. The bird's-eye views of the whole body bone scans

    Energy Technology Data Exchange (ETDEWEB)

    Machida, K; Akaike, A; Hayashi, S; Watari, T; Yasukochi, H [Tokyo Univ. (Japan). Faculty of Medicine

    1975-07-01

    Using a newly developed whole body gamma scanner (Toshiba-RDA-601), the authors recorded whole body bone scans in 5 patients (two normal, osteomalacia, bone metastases of prostate cancer and bone metastases of breast cancer), and compared the regular scintiscans with those of bird's-eye view images which were made with the data processor of the scanner. The scans were started about 2 hours after intravenous injection of 3 to 8 mCi of sup(99m)Tc-monofluorophosphate stannous fluoride. The recorded bird's-eye view scans displayed the skeletal system vividly as they were, and the distribution of radioactivity semiquantitatively. It was concluded that the bird'eye view scan is superior to the regular scan, in view of the point that it expresses the distribution of radioactivity semiquantitatively and enables one to know the amount of abnormally accumulated radioactivities by measuring the height of the peak of the diseased area, although this is very difficult in the regular scan. More clinical studies are needed in order to determine which is better for detecting abnormal part clinically.

  11. Nutritional interventions for optimizing healthy body composition in older adults in the community: an umbrella review of systematic reviews.

    Science.gov (United States)

    Schultz, Timothy J; Roupas, Peter; Wiechula, Richard; Krause, Debra; Gravier, Susan; Tuckett, Anthony; Hines, Sonia; Kitson, Alison

    2016-08-01

    Optimizing body composition for healthy aging in the community is a significant challenge. There are a number of potential interventions available for older people to support both weight gain (for those who are underweight) and weight loss (for overweight or obese people). While the benefits of weight gain for underweight people are generally clearly defined, the value of weight loss in overweight or obese people is less clear, particularly for older people. This umbrella review aimed to measure the effectiveness of nutritional interventions for optimizing healthy body composition in older adults living in the community and to explore theirqualitative perceptions. The participants were older adults, 60 years of age or older, living in the community. The review examinedsix types of nutritional interventions: (i) dietary programs, (ii) nutritional supplements, (iii) meal replacements, (iv) food groups, (v) food delivery support and eating behavior, and (vi) nutritional counselling or education. This umbrella review considered any quantitative systematic reviews and meta-analyses of effectiveness, or qualitative systematic reviews, or a combination (i.e. comprehensive reviews). The quantitative outcome measures of body composition were: (i) nutritional status (e.g. proportion of overweight or underweight patients); (ii) fat mass (kg), (iii) lean mass or muscle mass (kg), (iv) weight (kg) or BMI (kg/m), (v) bone mass (kg) or bone measures such as bone mineral density, and (vi) hydration status. The phenomena of interestwere the qualitative perceptions and experiences of participants. We developed an iterative search strategy for nine bibliometric databases and gray literature. Critical appraisal of 13 studies was conducted independently in pairs using standard Joanna Briggs Institute tools. Six medium quality and seven high quality studies were identified. Data was extracted independently in pairs from all 13 included studies using the standard Joanna Briggs Institute

  12. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.

    Science.gov (United States)

    Pina, S; Canadas, R F; Jiménez, G; Perán, M; Marchal, J A; Reis, R L; Oliveira, J M

    2017-01-01

    The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration. © 2017 S. Karger AG, Basel.

  13. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    International Nuclear Information System (INIS)

    Li Jingfeng; Lin Zhenyu; Zheng Qixin; Guo Xiaodong; Lan Shenghui; Liu Sunan; Yang Shuhua

    2010-01-01

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  14. Body composition in normal subjects: relation to lipid and glucose variables

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Almdal, Thomas Peter; Gotfredsen, A

    1996-01-01

    -sectional study. SUBJECTS: 173 (84 male and 89 female) healthy subjects, BMI mineral content (TBMC), total bone mineral density (TBMD), lean body soft tissue mass (LTM), total and regional fat mass (FM) were estimated in all......-cholesterol, S-triglyceride, and in males S-insulin was found. CONCLUSION: The present study gives coherent data on bone mineral content, lean body soft tissue mass total and regional fat mass for 173 healthy subjects with a BMI below 30 kg/m2. Total body fat mass increases, and lean mass decreases with age...

  15. Effect of Body Composition on Walking Economy

    Directory of Open Access Journals (Sweden)

    Maciejczyk Marcin

    2016-12-01

    Full Text Available Purpose. The aim of the study was to evaluate walking economy and physiological responses at two walking speeds in males with similar absolute body mass but different body composition. Methods. The study involved 22 young men with similar absolute body mass, BMI, aerobic performance, calf and thigh circumference. The participants differed in body composition: body fat (HBF group and lean body mass (HLBM group. In the graded test, maximal oxygen uptake (VO2max and maximal heart rate were measured. Walking economy was evaluated during two walks performed at two different speeds (4.8 and 6.0 km ‧ h-1. Results. The VO2max was similar in both groups, as were the physiological responses during slow walking. The absolute oxygen uptake or oxygen uptake relative to body mass did not significantly differentiate the studied groups. The only indicator significantly differentiating the two groups was oxygen uptake relative to LBM. Conclusions. Body composition does not significantly affect walking economy at low speed, while during brisk walking, the economy is better in the HLBM vs. HBF group, provided that walking economy is presented as oxygen uptake relative to LBM. For this reason, we recommend this manner of oxygen uptake normalization in the evaluation of walking economy.

  16. In vivo body composition studies in malnourished patients

    International Nuclear Information System (INIS)

    Allen, B.J.; Blagojevic, N.

    1987-01-01

    The establishment of an in vivo TBN facility at Lucas Heights, together with measurement techniques for whole body and extracellular water, is leading to an expanded interest in the relationships between clinical status, body composition and dietary regimes. The ANSTO program provides the opportunity for the first quantitative assessments of these factors in Australia. Body composition studies provide a common link with other-wise unrelated physiological or psychological diseases, and a pool of normal data is being established. Substantial improvements in patient care and quality of life should result from this project, together with a deeper understanding of the importance of body composition in disease-induced malnutrition

  17. In vivo body composition studies in malnourished patients

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B J; Blagojevic, N

    1987-09-01

    The establishment of an in vivo TBN facility at Lucas Heights, together with measurement techniques for whole body and extracellular water, is leading to an expanded interest in the relationships between clinical status, body composition and dietary regimes. The ANSTO program provides the opportunity for the first quantitative assessments of these factors in Australia. Body composition studies provide a common link with other-wise unrelated physiological or psychological diseases, and a pool of normal data is being established. Substantial improvements in patient care and quality of life should result from this project, together with a deeper understanding of the importance of body composition in disease-induced malnutrition.

  18. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.

    Science.gov (United States)

    Kim, MinSung; Jung, Won-Kyo; Kim, GeunHyung

    2013-11-01

    Biomedical scaffolds should be designed with highly porous three-dimensional (3D) structures that have mechanical properties similar to the replaced tissue, biocompatible properties, and biodegradability. Here, we propose a new composite composed of solid free-form fabricated polycaprolactone (PCL), bone morphogenic protein (BMP-2) or bone formation peptide (BFP-1), and alginate for bone tissue regeneration. In this study, PCL was used as a mechanical supporting component to enhance the mechanical properties of the final biocomposite and alginate was used as the deterring material to control the release of BMP-2 and BFP-1. A release test revealed that alginate can act as a good release control material. The in vitro biocompatibilities of the composites were examined using osteoblast-like cells (MG63) and the alkaline phosphatase (ALP) activity and calcium deposition were assessed. The in vitro test results revealed that PCL/BFP-1/Alginate had significantly higher ALP activity and calcium deposition than the PCL/BMP-2/Alginate composite. Based on these findings, release-controlled BFP-1 could be a good growth factor for enhancement of bone tissue growth and the simple-alginate coating method will be a useful tool for fabrication of highly functional biomaterials through release-control supplementation.

  19. Pediatric body composition analysis with dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Helba, Maura; Binkovitz, Larry A.

    2009-01-01

    Pediatric applications of body composition analysis (BCA) have become of increased interest to pediatricians and other specialists. With the increasing prevalence of morbid obesity and with an increased awareness of anorexia nervosa, pediatric specialists are utilizing BCA data to help identify, treat, and prevent these conditions. Dual-energy X-ray absorptiometry (DXA) can be used to determine the fat mass (FM) and lean tissue mass (LTM), as well as bone mineral content (BMC). Among the readily available BCA techniques, DXA is the most widely used and it has the additional benefit of precisely quantifying regional FM and LTM. This review evaluates the strengths and limitations of DXA as a pediatric BCA method and considers the utilization of DXA to identify trends and variations in FM and LTM measurements in obese and anorexic children. (orig.)

  20. Pediatric body composition analysis with dual-energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helba, Maura; Binkovitz, Larry A. [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2009-07-15

    Pediatric applications of body composition analysis (BCA) have become of increased interest to pediatricians and other specialists. With the increasing prevalence of morbid obesity and with an increased awareness of anorexia nervosa, pediatric specialists are utilizing BCA data to help identify, treat, and prevent these conditions. Dual-energy X-ray absorptiometry (DXA) can be used to determine the fat mass (FM) and lean tissue mass (LTM), as well as bone mineral content (BMC). Among the readily available BCA techniques, DXA is the most widely used and it has the additional benefit of precisely quantifying regional FM and LTM. This review evaluates the strengths and limitations of DXA as a pediatric BCA method and considers the utilization of DXA to identify trends and variations in FM and LTM measurements in obese and anorexic children. (orig.)

  1. CORRELATION OF PHYSICAL ACTIVITY LEVEL WITH BONE MINERAL DENSITY, CARDIO-RESPIRATORY FITNESS AND BODY COMPOSITION IN POST-MENOPAUSAL WOMEN

    Directory of Open Access Journals (Sweden)

    Niyati N Khona

    2017-09-01

    Full Text Available Background: Due to the hormonal changes in postmenopausal women they are prone for many complications like increased CVD risk factors, osteoporosis, obesity, mood swings and urinary incontinence. Physical inactivity in postmenopausal women leads to higher risk of developing CVD and osteoporosis. The objective was to find out the correlation of physical activity level with BMD, cardio-respiratory fitness and body composition in post-menopausal women Methods: 42 postmenopausal women were included. A detailed clinical evaluation with physical activity level (IPAQ-METS-mins/week, , BMD ( T-Scores, body composition (BMI, waist circumference, BIA & Skin fold calliper for fat %, cardio-respiratory fitness was measured by Balke protocol and VO2peak (ml/kg/min is estimated. Correlation of physical activity level with BMD, cardio-respiratory fitness and body composition were analysed using “Pearson’s product moment correlation co-efficient and Spearman’s rho.” Results: Spearman’s rank correlation rho for IPAQ with VO2 peak was 0.420,BMI was -0.388 and visceral fat was -0.384 indicating moderate positive correlation between IPAQ and cardio-respiratory fitness and weak negative correlation between IPAQ and BMI and visceral fat. Pearson’s product moment correlation coefficient of IPAQ with BMD was 0.147, body fat was -0.234 and waist circumference was -0.256 indicating no correlation. P value was significant for correlation of IPAQ with CRF (0.006, BMI (0.011 and Visceral fat (0.012. Conclusion: There is moderate positive correlation between IPAQ and cardio-respiratory fitness, weak negative correlation between IPAQ and BMI and visceral fat and no correlation between IPAQ and BMD, body fat and waist circumference

  2. Whole body bone scintigraphy in tenofovir-related osteomalacia: a case report

    Directory of Open Access Journals (Sweden)

    Di Biagio Antonio

    2009-07-01

    Full Text Available Abstract Introduction Tenofovir disoproxil fumarate (Viread® is the only nucleotide reverse transcriptase inhibitor currently approved for the treatment of HIV. It is frequently prescribed not only for its efficacy but also for its decreased side effect profile compared with other nucleotide analogs. In addition, it is now increasingly recognized as a cause of acquired Fanconi's syndrome in individuals with HIV. Case presentation We describe a 48-year-old woman infected with HIV, with chronic renal insufficiency, who developed Fanconi's syndrome after inclusion of tenofovir disoproxil fumarate in her antiretroviral therapy. A whole body bone scintigraphy was performed, revealing an abnormal distribution of radiotracer uptake, with characteristic changes compatible with osteomalacia. All symptoms disappeared after tenofovir discontinuation and mineral supplementation. No other explanation for the sudden and complete resolution of the bone disease was found. Conclusion The case highlights the role of whole body bone scintigraphy in the diagnosis of tenofovir-related osteomalacia.

  3. A comparative study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and 99mTc-MDP whole-body bone scanning for imaging osteolytic bone metastases

    International Nuclear Information System (INIS)

    Zhang, Lin; Chen, Lihua; Xie, Qiao; Zhang, Yongke; Cheng, Lin; Li, Haitao; Wang, Jian

    2015-01-01

    The objective of this study was to evaluate the feasibility and diagnostic value of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and 99m Tc-methylenediphosphonate (MDP) whole-body bone scanning (BS) for the detection of osteolytic bone metastases. Thirty-four patients with pathologically confirmed malignancies and suspected osteolytic bone metastases underwent 18 F-FDG PET/CT and 99m Tc-MDP whole-body BS within 30 days. The sensitivity, specificity, and accuracy with respect to the diagnosis of osteolytic bone metastases and bone lesions were compared between the two imaging methods. The sensitivity, specificity, and accuracy of 18 F-FDG PET/CT for the diagnosis of osteolytic bone metastases were 94.3% (95% confidence interval [CI], 91.6–96.2%), 83.3% (95% CI, 43.6–96.9%), and 94.2% (95% CI, 91.5–96.1%), respectively. It was found that 99m Tc-MDP whole-body BS could discriminate between patients with 50.2% (95% CI, 45.4–55.1%) sensitivity, 50.0% (95% CI, 18.8–81.2%) specificity, and 50.2% (95% CI, 45.5–55.1%) accuracy. 18 F-FDG PET/CT achieved higher sensitivity, specificity, and accuracy in detecting osteolytic bone metastases than 99mTc-MDP whole-body BS (p<0.001). F-FDG PET/CT has a higher diagnostic value than 99m Tc-MDP whole-body BS in the detection of osteolytic bone metastases, especially in the vertebra

  4. Body composition of the human lower extremity observed by computed tomography

    International Nuclear Information System (INIS)

    Suzuki, Masataka; Hasegawa, Makiko; Wu, Chung-Lei; Mimaru, Osamu

    1987-01-01

    Using computed tomography image, the body composition on the lower extremity were observed in 24 adult human (10 male, 14 female). CT image were taken at proximal section (upper a third on thigh), distal section (lower a third on thigh) and leg section (upper a third on leg), and the quantities determind from the images included the area of total cross-section, muscle, subcutaneous fat, connective tissue and bone in the each cross-section. The ratios of the each components to total area were surveyed. The age related changes and the differences between the three body types, which were defined by Rohrer's index, were discussed in both sexes. The following results were obtained. 1. The ratio of the each component to total sectional area in the three section levels was the highest in the muscle following in order of subcutaneous fat, connective tissue and bone in man generally. On the other hand, in female, the subcutaneous fat was higher than the muscle in the proximal section by A and C body types, but the muscle was higher than the subcutaneous fat by D body type in this section and by all body types in distal and leg sections. 2. Concerning the correlationship between the ratios of the components in the section and Rohrer's index or ages, they were in positive relation on the ratios of the subcutaneous fat and the connective tissue, and were in negative relation on the ratio of the muscle in the femoral section by male. 3. Decreasing with age of muscular area were found at under 50 ages in extensor, at 50 age in adductor and at about 60 ages in flexor on the proximal section, and at 50 age in extensor, after 55 age in adductor and at about 60 age in flexor on the distal section in man respectively. On the leg section, the decreasing tendency with ages were predominant in flexor by man and were found after 50 age by female too. (author)

  5. Analysis of bone mass density of lumbar spine zone of athletes

    African Journals Online (AJOL)

    hope&shola

    2010-10-25

    Oct 25, 2010 ... Strengthening exercises, together with walking and aerobic exercises ... effects of exercises on bone mass, the exercises putting load on the ...... activity, body weight and composition, and muscular strength on bone density in ...

  6. The relationships among total body fat, bone mineral content and bone marrow adipose tissue in early-pubertal girls.

    Science.gov (United States)

    L Newton, Anna; J Hanks, Lynae; Davis, Michelle; Casazza, Krista

    2013-01-01

    Investigation of the physiologic relevance of bone marrow adipose tissue (BMAT) during growth may promote understanding of the bone-fat axis and confluence with metabolic factors. The objective of this pilot investigation was two-fold: (1) to evaluate the relationships among total body fat, bone mineral content (BMC) and femoral BMAT during childhood and underlying metabolic determinants and (2) to determine if the relationships differ by race. Participants included white and non-Hispanic black girls (n=59) ages 4-10 years. Femoral BMAT volume was measured by magnetic resonance imaging, BMC and body fat by dual-energy X-ray absorptiometry. Metabolic parameters were assessed in the fasted state. Total fat and BMC were positively associated with BMAT; however, simultaneous inclusion of BMC and body fat in the statistical model attenuated the association between BMC and BMAT. Differences in BMAT volume were observed, non-Hispanic black girls exhibiting marginally greater BMAT at age eight (P=0.05) and white girls exhibiting greater BMAT at age ten (PBMAT and leptin (P=0.02) and adiponectin (P=0.002) in white girls while BMAT and insulin were inversely related in non-Hispanic black girls (P=0.008). Our findings revealed a positive relationship between BMAT, body fat and BMC, although body fat, respective to leptin, contributed partly to the relationship between BMAT and BMC. Despite large differences in total fat between non-Hispanic black and white, the relationship between BMAT and BMC was similar to white girls. However, this relationship appeared to be impacted through different mechanisms according to race.

  7. Body composition of adult brachium by X-ray computed tomography

    International Nuclear Information System (INIS)

    Tanaka, Ryoji

    1988-01-01

    Sexual and age-related differences of body composition was analyzed in brachium by X-ray computed tomography. Subjects included 104 normal healthy adults (49 males and 55 females). The ages of the subjects ranged between 20 and 69. CT images were taken at the proximal third point, center and distal third point of the upper arm. The cross sectional areas of subcutaneous fat, muscular layer, intermuscular connective tissue and bone were measured in each image. For the muscular layer, each muscle was specified and measured. Results were related to sexual and age differences. 1) In males the muscular layer was the largest, followed in order by the subcutaneous fat and bone at all levels. In females, the subcutaneous fat was the largest, and the muscular layer was second. 2) Subcutaneous fat in the males increased in the 50s and 60s. The muscular layer of the males tended to decrease with age. On the contrary, subcutaneous fat in females increased with age. 3) At the proximal level in males, the brachial triceps reduced with age and the deltoid muscles reduced more. The female triceps and deltoid muscles showed slight age related changes in size. 4) At the other two levels, though the male triceps decreased remarkably with age, the female triceps did not. These muscles were similar in both sexes in the 60s. 5) The sexual difference in the size of each muscle diminished with the difference in motor activity of both sexes. Intermuscular variation was reduced to difference in the fiber type composition of each muscle. (author)

  8. Body composition of adult brachium by X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryoji

    1988-10-01

    Sexual and age-related differences of body composition was analyzed in brachium by X-ray computed tomography. Subjects included 104 normal healthy adults (49 males and 55 females). The ages of the subjects ranged between 20 and 69. CT images were taken at the proximal third point, center and distal third point of the upper arm. The cross sectional areas of subcutaneous fat, muscular layer, intermuscular connective tissue and bone were measured in each image. For the muscular layer, each muscle was specified and measured. Results were related to sexual and age differences. (1) In males the muscular layer was the largest, followed in order by the subcutaneous fat and bone at all levels. In females, the subcutaneous fat was the largest, and the muscular layer was second. (2) Subcutaneous fat in the males increased in the 50s and 60s. The muscular layer of the males tended to decrease with age. On the contrary, subcutaneous fat in females increased with age. (3) At the proximal level in males, the brachial triceps reduced with age and the deltoid muscles reduced more. The female triceps and deltoid muscles showed slight age related changes in size. (4) At the other two levels, though the male triceps decreased remarkably with age, the female triceps did not. These muscles were similar in both sexes in the 60s. (5) The sexual difference in the size of each muscle diminished with the difference in motor activity of both sexes. Intermuscular variation was reduced to difference in the fiber type composition of each muscle. (author).

  9. Whole body retention of 99mTc-diphosphonate. Relation to bio-chemical indices of bone turnover and to total body calcium

    International Nuclear Information System (INIS)

    Thomsen, K.; Johansen, J.; Nilas, L.; Christiansen, C.

    1987-01-01

    Whole body retention (WBR) and urinary excretion (UE) of 99m Te-diphosphonate were determined in 161 healthy adults and the results were compared to accepted biochemical markers of bone turnover. WBR was corrected for total body bone mineral (TBBM) and UE from forearm bone mineral content (BMC). Both uncorrected and corrected retention measurements were highly significantly correlated to the biochemical markers (P<0.001), but the r values were low (0.22-0.64). All bone turnover variables demonstrated considerably higher levels of bone turnover in postmenopausal women than in premenopausal women (P<0.001), whereas the variables were unchanged with age in men. The correction of WBR for TBBM and UE for BMC increased the validity of the retention methods and the two calculations gave exactly the same results on a group basis, both demonstrating significantly higher bone turnover in women than in men in each age group (P<0.05-P<0.001). All the turnover variables were measured in a group of perimenopausal women (n=33). The data clearly demonstrated that bone turnover is menopause dependent, whereas age in itself is of minor significance. (orig.)

  10. Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Warming, Lise; Ravn, Pernille; Christiansen, Claus

    2003-01-01

    as double-layer thickness. Body composition was measured by dual energy x-ray absorptiometry, which divides the body into fat mass, lean mass, and bone mass, both for the total body and regional body compartments. An abdominal region was inserted manually. Statistics were Pearson correlations and analysis...... of variance. RESULTS: Endometrial thickness and total body bone mass were correlated, respectively, to body mass index (r = 0.14, P ... correlate with increased endometrial thickness and bone mass....

  11. Osteochondroma after total body irradiation in bone marrow transplant recipients. Report of two cases

    International Nuclear Information System (INIS)

    Maeda, Go; Yokoyama, Ryohei; Ohtomo, Katsuyuki; Takayama, Jun; Beppu, Yasuo; Fukuma, Hisatoshi; Ohira, Mutsuro

    1996-01-01

    We present two cases of osteochondroma after total body irradiation in bone marrow recipients, the first in a 6-year-old boy with juvenile chronic myelogenous leukemia and the second in a 13-year-old boy with acute myelogenous leukemia. The patients developed multiple osteochondromas three years and seven years, respectively, after 12 Gy of total body irradiation. Neither had a family history of hereditary multiple osteochondromatosis. A review of the English literature revealed only one report describing five cases of osteochondroma after 12 Gy of total body irradiation in bone marrow transplant recipients. Osteochondroma should be considered as an additional adverse effect of total body irradiation. (author)

  12. Non-invasive techniques for determining musculoskeleton body composition

    International Nuclear Information System (INIS)

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights

  13. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    Directory of Open Access Journals (Sweden)

    Mary-Ellen Brierley

    Full Text Available The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range, with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  14. The Body and the Beautiful: Health, Attractiveness and Body Composition in Men's and Women's Bodies.

    Science.gov (United States)

    Brierley, Mary-Ellen; Brooks, Kevin R; Mond, Jonathan; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    The dominant evolutionary theory of physical attraction posits that attractiveness reflects physiological health, and attraction is a mechanism for identifying a healthy mate. Previous studies have found that perceptions of the healthiest body mass index (weight scaled for height; BMI) for women are close to healthy BMI guidelines, while the most attractive BMI is significantly lower, possibly pointing to an influence of sociocultural factors in determining attractive BMI. However, less is known about ideal body size for men. Further, research has not addressed the role of body fat and muscle, which have distinct relationships with health and are conflated in BMI, in determining perceived health and attractiveness. Here, we hypothesised that, if attractiveness reflects physiological health, the most attractive and healthy appearing body composition should be in line with physiologically healthy body composition. Thirty female and 33 male observers were instructed to manipulate 15 female and 15 male body images in terms of their fat and muscle to optimise perceived health and, separately, attractiveness. Observers were unaware that they were manipulating the muscle and fat content of bodies. The most attractive apparent fat mass for female bodies was significantly lower than the healthiest appearing fat mass (and was lower than the physiologically healthy range), with no significant difference for muscle mass. The optimal fat and muscle mass for men's bodies was in line with the healthy range. Male observers preferred a significantly lower overall male body mass than did female observers. While the body fat and muscle associated with healthy and attractive appearance is broadly in line with physiologically healthy values, deviations from this pattern suggest that future research should examine a possible role for internalization of body ideals in influencing perceptions of attractive body composition, particularly in women.

  15. Case Study: The Effect of 32 Weeks of Figure-Contest Preparation on a Self-Proclaimed Drug-Free Female's Lean Body and Bone Mass.

    Science.gov (United States)

    Petrizzo, John; DiMenna, Frederick J; Martins, Kimberly; Wygand, John; Otto, Robert M

    2017-12-01

    To achieve the criterion appearance before competing in a physique competition, athletes undergo preparatory regimens involving high-volume intense resistance and aerobic exercise with hypocaloric energy intake. As the popularity of "drug-free" competition increases, more athletes are facing this challenge without the recuperative advantage provided by performance-enhancing drugs. Consequently, the likelihood of loss of lean body and/or bone mass is increased. The purpose of this investigation was to monitor changes in body composition for a 29-year-old self-proclaimed drug-free female figure competitor during a 32-week preparatory regimen comprising high-volume resistance and aerobic exercise with hypocaloric energy intake. We used dual-energy x-ray absorptiometry (DXA) to evaluate regional fat and bone mineral density. During the initial 22 weeks, the subject reduced energy intake and engaged in resistance (4-5 sessions/week) and aerobic (3 sessions/week) training. During the final 10 weeks, the subject increased exercise frequency to 6 (resistance) and 4 (aerobic) sessions/week while ingesting 1130-1380 kcal/day. During this 10-week period, she consumed a high quantity of protein (~55% of energy intake) and nutritional supplements. During the 32 weeks, body mass and fat mass decreased by 12% and 55%, respectively. Conversely, lean body mass increased by 1.5%, an amount that exceeded the coefficient of variation associated with DXA-derived measurement. Total bone mineral density was unchanged throughout. In summary, in preparation for a figure competition, a self-proclaimed drug-free female achieved the low body-fat percentage required for success in competition without losing lean mass or bone density by following a 32-week preparatory exercise and nutritional regimen.

  16. The effect of hemiplegia on bone mass and soft tissue body composition

    International Nuclear Information System (INIS)

    Iversen, E.; Hassager, C.; Christiansen, C.

    1989-01-01

    The content of bone mineral (BMC), lean tissue, and fat tissue were measured by single and dual photon absorptiometry in both the paretic and the nonparetic limbs of 15 patients, hemiplegic due to cerebrovascular accident 23-38 weeks earlier. Compared with the non-paretic arm, the paretic arm had approximately 10% lower (P < 0.01) BMC. This difference was largest at the measuring site with the highest ratio of trabecular to compact bone. The paretic leg had a 4% (P < 0.001) lower BMC than the non-paretic leg. For both the arms and the legs, the lean content was lower (P < 0.05) and the fat content higher (P < 0.01) in the paretic than in the non-paretic. This was relatively more pronounced in the arms than in the legs. We conclude that partial immobilization, owing to parasis after a cerebrovascular accident, results in characteristic changes in the affected limbs, with a marked decrease in the content of bone and lean tissue and a pronounced increase in fatty tissue. (author)

  17. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  18. Evaluation of body composition and cartilage biomarkers in large-breed dogs fed two foods designed for growth.

    Science.gov (United States)

    Schoenherr, William D; Macleay, Jennifer M; Yamka, Ryan M

    2010-08-01

    To evaluate cartilage and bone biomarkers and body composition in growing large-breed dogs consuming a diet designed for growth. 43 large-breed 2 month-old-puppies. Dogs were randomly assigned to receive 1 of 2 foods until 18 months of age. Dogs were evaluated at 2, 5, 12, and 18 months of age via dual energy x-ray absorptiometry (DEXA), CBC, serum biochemical profile, and concentrations or activities of taurine, vitamin E, fatty acids, glutathione peroxidase, C-propeptide of type II collagen (CPII), cartilage oligomeric matrix protein (COMP), carboxy-terminal cross-linked fragment of type II collagen (CTXII), bone specific alkaline phosphatase (BAP), osteocalcin, ghrelin, and growth hormone. Blood components largely reflected the composition of the foods. Dogs fed the food with a higher concentration of protein, calcium, n-3 fatty acids, and antioxidants had a lower percentage of body fat and greater percentage of lean body mass at 5, 12, and 18 months of age, and higher CPII:CTXII ratio and lower COMP at 18 months of age. The BAP activity, osteocalcin concentration, and CTXII concentration declined with age, whereas COMP concentration and CPII concentration were similar at all time points for both foods. The BAP activity, osteocalcin concentration, and CTXII concentration were greater during growth than at 18 months of age. The food that was proportionately higher in protein, calcium, n-3 fatty acids, and antioxidants increased lean body mass and may have positively affected cartilage turnover as maturity was attained. Whether the rate of cartilage turnover during growth affects development of orthopedic disease or arthritis in adulthood has yet to be determined.

  19. Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences.

    Science.gov (United States)

    Reventlow, Susanne Dalsgaard; Hvas, Lotte; Malterud, Kirsti

    2006-06-01

    The imaging technology of bone scans allows visualization of the bone structure, and determination of a numerical value. Both these are subjected to professional interpretation according to medical (epidemiological) evidence to estimate the individual's risk of fractures. But when bodily experience is challenged by a visual diagnosis, what effect does this have on an individual? The aim of this study was to explore women's bodily experiences after a bone scan and to analyse how the scan affects women's self-awareness, sense of bodily identity and integrity. We interviewed 16 Danish women (aged 61-63) who had had a bone scan for osteoporosis. The analysis was based on Merleau-Ponty's perspective of perception as an embodied experience in which bodily experience is understood to be the existential ground of culture and self. Women appeared to take the scan literally and planned their lives accordingly. They appeared to believe that the 'pictures' revealed some truth in themselves. The information supplied by the scan fostered a new body image. The women interpreted the scan result (a mark on a curve) to mean bodily fragility which they incorporated into their bodily perception. The embodiment of this new body image produced new symptom interpretations and preventive actions, including caution. The result of the bone scan and its cultural interpretation triggered a reconstruction of the body self as weak with reduced capacity. Women's interpretation of the bone scan reorganized their lived space and time, and their relations with others and themselves. Technological information about osteoporosis appeared to leave most affected women more uncertain and restricted rather than empowered. The findings raise some fundamental questions concerning the use of medical technology for the prevention of asymptomatic disorders.

  20. Effect of Raised Body Fat on Vitamin D, Leptin and Bone Mass

    International Nuclear Information System (INIS)

    Fatima, S. S.; Alam, F.

    2015-01-01

    Objectives: To estimate leptin, vitamin D and bone mineral density levels in individuals with high fat mass, and to assess any correlation. Methods: The cross-sectional study was conducted at the Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi, and Aga Khan University, Karachi, from August 2012 to July 2014, and comprised healthy male volunteers between the ages of 18-60 years. Body fat percentage was determined using bioelectrical impedance analysis and the participants were classified as: Group A (15-21.9); Group B (22-27.9); and Group C (>28). Bone mineral density was calculated by ultrasound bone densitometer (T-score between +1 and -1 considered normal). Enzyme-linked immunosorbent assay kits were used to determine the levels of vitamin D and leptin. SPSS 19 was used for statistical analysis. Results: A total of 132 male subjects participated in this study, with each of the 3 groups having 44(33.3 percent). Despite all groups having low Vitamin D, a marked decrease was observed in group C compared to groups A and B (p <0.018). Bone mineral density T-score was <-1; total calcium was within normal range in all three groups. Serum leptin was raised in Group C compared to group A and B (p=0.03). Body fat percentage was negatively associated with vitamin D (p=0.004; r = -0.351), while it was positively correlated with leptin (p =0.038; r = 0.256). Conclusion: Excess of body fat percentage led to decreased vitamin D and raised leptin. However, bone mineral density and calcium levels were within normal range, suggesting that other factors might have played a role in maintaining bone mass in obese individuals, such as leptin. (author)

  1. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction

    International Nuclear Information System (INIS)

    Guo, H; Wei, J; Liu, C S

    2006-01-01

    A new type of composite bone cement was prepared and investigated by adding calcium sulfate (CS) to calcium phosphate cement (CPC). This composite cement can be handled as a paste and easily shaped into any contour, which can set within 5-20 min, the setting time largely depending on the liquid-solid (L/S) ratio; adding CS to CPC had little effect on the setting time of the composite cements. No obvious temperature increase and pH change were observed during setting and immersion in simulated body fluid (SBF). The compressive strength of the cement decreased with an increase in the content of CS. The degradation rate of the composite cements increased with time when the CS content was more than 20 wt%. Calcium deficient apatite could form on the surface of the composite cement because the release of calcium into SBF from the dissolution of CS and the apatite of the cement induced the new apatite formation; increasing the content of CS in the composite could improve the bioactivity of the composite cements. The results suggested that composite cement has a reasonable setting time, excellent degradability and suitable mechanical strength and bioactivity, which shows promising prospects for development as a clinical cement

  2. Body composition and perception of teenagers from public schools

    Directory of Open Access Journals (Sweden)

    Ana Paula Araújo Ferreira

    2013-10-01

    Full Text Available Adolescence is accompanied by cognitive, emotional, social and biological changes; situations that increase the risk for development of psychosomatic disorders. This study measured and classified body composition and compared it to body self-perception in adolescents. Students from the seventh to ninth grade in public primary education in Distrito Federal, Brazil, answered socio-demographic and body self-perception questionnaires. Weight and height were measured and body mass index (BMI was calculated for body composition classification. From the 977 adolescents, 79.1% presented eutrophic BMI. Of the 473 boys, 11.4% were overweight and 4.7% underweight, 23.8% perceived the body as smaller than it really is and 25.5% tried to gain body mass. Of the 504 girls, 11.9% were overweight and 13.4% underweight, 24.1% perceived the body as larger than it really is and 32.5% tried to lose body mass. Inadequate body composition, prevalent in 20.9% of adolescents, may harm growth, development and health. These problems may be aggravated by the high prevalence of distorted body self-perception and attitudes for bodily changes. It is recommended the implementation of educational interventions on body composition, perception and culture and health, with different approaches by gender.

  3. Strength training and body composition in middle-age women.

    Science.gov (United States)

    Burrup, Rachelle; Tucker, Larry A; LE Cheminant, James D; Bailey, Bruce W

    2018-01-01

    Strength training is a sound method to improve body composition. However, the effect of age, diet, menopause, and physical activity on the relationship between strength training and body composition in women remains unknown. The purpose of this study was to examine the intricacies of the relationship between strength training and body composition in 257 middle-age women and to quantify the effect of these factors on the association. The study was cross-sectional. Five variables were used to index strength training participation. Body composition was assessed by dual-energy X-ray absorptiometry. Diet was assessed by 7-day weighed food records, and physical activity was measured objectively using accelerometers. There were 109 strength trainers in the sample. For each day per week of strength training, body fat was 1.3 percentage points lower (F=14.8, Pdevote to strength training, the lower their body fat and the higher their fat-free mass tend to be. A significant portion of the differences in body composition seems to result from lifters participating in more physical activity than non-lifters. Menopause status also contributes significantly to the relationship.

  4. Body composition and hydration factors in infants and young children using multicompartment models

    International Nuclear Information System (INIS)

    Villegas-Valle, Rosa Consuelo; Valencia, Mauro E; Sotelo-Cruz, Norberto; Antunez-Roman, Lesley Evelyn; Lopez-Jimenez, Cesar A; Monreal-Barraza, Brianda I; Robles-Valenzuela, Edna L; Hurtado-Valenzuela, Jaime Gabriel

    2014-01-01

    Full text: Background. Until recently deuterium (2H2O) analysis has been performed almost exclusively by isotope ratio mass spectrometry (IRMS). The IAEA has promoted the FTIR methodology to measure deuterium (2H2O) enrichment, but there is limited information in infants and small children, which have different hydration status than adults. Due to the limited information available, the optimum deuterium dose amount to be administered to children in these studies has also been controversial. The aim of this investigation were to measure body composition and determine the hydration factors in infants and young children using multi-compartment models generating algorithms for prediction of body composition. Subjects and Methods. Seventy-eight male and female infants and young children (ages 3-24 months), from the urban and agricultural zones of Hermosillo, Sonora, Mexico participated. We measured weight, length and circumferences to evaluate nutritional status using the WHO Growth Reference 2006. We also measured total body water (TBW) by deuterium oxide dilution, bone mineral content (BMC) through a DXA scan and body density was estimated through published algorithms. Bioimpedance analysis (BIA) was also measured to explore the prediction of body composition using this technique. Results. In general, children from the urban area had better nutritional indicators than children from the agricultural area. Eleven (16.1%) children had some type of malnutrition (any nutritional index below -2 Z cutoff point) and 2 were overweight. Optimal amount of deuterium for dosing in this age range was 0.53 to 0.83 mg/kg body weight, which has implications for future studies of body composition in infants and young children. DXA overestimated body fat percentage compared to other 2, 3 and 4 compartment models (p 0.05). Resistance or impedance indexes (Height2/R or Z) were not important predictors of FFM or TBW (increase in R2 = 0.004). Prediction of FFM was then performed by using

  5. [On the preparation and mechanical properties of PVA hydrogel bionic cartilage/bone composite artificial articular implants].

    Science.gov (United States)

    Meng, Haoye; Zheng, Yudong; Huang, Xiaoshan; Yue, Bingqing; Xu, Hong; Wang, Yingjun; Chen, Xiaofeng

    2010-10-01

    In view of the problems that conventional artificial cartilages have no bioactivity and are prone to peel off in repeated uses as a result of insufficient strength to bond with subchondral bone, we have designed and prepared a novel kind of PVA-BG composite hydrogel as bionic artificial articular cartilage/bone composite implants. The effects of processes and conditions of preparation on the mechanical properties of implant were explored. In addition, the relationships between compression strain rate, BG content, PVA hydrogels thickness and compressive tangent modulus were also explicated. We also analyzed the effects of cancellous bone aperture, BG and PVA content on the shear strength of bonding interface of artificial articular cartilage with cancellous bone. Meanwhile, the bonding interface of artificial articular cartilage and cancellous bone was characterized by scanning electron microscopy. It was revealed that the compressive modulus of composite implants was correspondingly increased with the adding of BG content and the augments of PVA hydrogel thickness. The compressive modulus and bonding interface were both related to the apertures of cancellous bone. The compressive modulus of composite implants was 1.6-2.23 MPa and the shear strength of bonding interface was 0.63-1.21 MPa. These results demonstrated that the connection between artificial articular cartilage and cancellous bone was adequately firm.

  6. The development of a composite bone model for training on placement of dental implants.

    Science.gov (United States)

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-04-01

    It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane.

  7. Diagnostic accuracy of bone metastases detection in cancer patients. Comparison between bone scintigraphy and whole-body FDG-PET

    International Nuclear Information System (INIS)

    Fujimoto, Ryota; Higashi, Tatsuya; Nakamoto, Yuji

    2006-01-01

    18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has become widely available and an important oncological technique. To evaluate the influence of PET on detection of bone metastasis, we compared the diagnostic accuracy of PET and conventional bone scintigraphy (BS) in a variety of cancer patients. Consecutive ninety-five patients with various cancers, who received both PET and BS within one month, were retrospectively analyzed. A whole-body PET (from face to upper thigh) and a standard whole body BS were performed and these images were interpreted by two experienced nuclear medicine physicians with and without patient information using monitor diagnosis. Each image interpretation was performed according to 8 separate areas (skull, vertebra, upper limbs, sternum and clavicles, scapula, ribs, pelvis, and lower limbs) using a 5-point-scale (0: definitely negative, 1: probably negative, 2: equivocal, 3: probably positive, 4: definitely positive for bone metastasis). Twenty-one of 95 patients (22.1%) with 43 of 760 areas (5.7%) of bone metastases were finally confirmed. In untreated patients, 12 of 14 bone metastasis positive patients were detected by PET, while 9 of 14 were detected by BS. Three cases showed true positive in PET and false negative in BS due to osteolytic type bone metastases. In untreated cases, PET with and without clinical information showed better sensitivity than BS in patient-based diagnosis. For the purpose of treatment effect evaluation, PET showed better results because of its ability in the evaluation of rapid response of tumor cells to chemotherapy. Out of 10 cases of multiple-area metastases, 9 cases included vertebrae. There was only one solitary lesion located outside of field of view (FOV) of PET scan in the femur, but with clinical information that was no problem for PET diagnosis. Diagnostic accuracy of bone metastasis was comparable in PET and BS in the present study. In a usual clinical condition, limited FOV (from

  8. Nanoporous Calcium Silicate and PLGA Bio composite for Bone Repair

    International Nuclear Information System (INIS)

    Su, J.; Wang, Z.; Wu, Y.; Cao, L.; Ma, Y.; Yu, B.; Li, M.; Yan, Y.

    2010-01-01

    Nanoporous calcium silicate (n-CS) with high surface area was synthesized using the mixed surfactants of EO20PO70EO20 (polyethylene oxide)20(polypropylene oxide)70(polyethylene oxide)20, P123) and hexadecyltrimethyl ammonium bromide (CTAB) as templates, and its composite with poly(lactic acid-co-glycolic acid) (PLGA) were fabricated. The results showed that the n-CS/PLGA composite (n-CPC) with 20 wt% n-CS could induce a dense and continuous layer of apatite on its surface after soaking in simulated body fluid (SBF) for 1 week, suggesting the excellent in vitro bioactivity. The n-CPC could promote cell attachment on its surfaces. In addition, the proliferation ratio of MG63 cells on n-CPC was significantly higher than PLGA; the results demonstrated that n-CPC had excellent cytocompatibility. We prepared n-CPC scaffolds that contained open and interconnected macroporous ranging in size from 200 to 500 μ m. The n-CPC scaffolds were implanted in femur bone defect of rabbits, and the in vivo biocompatibility and osteogenicity of the scaffolds were investigated. The results indicated that n-CPC scaffolds exhibited good biocompatibility, degradability, and osteogenesis in vivo. Collectively, these results suggested that the incorporation of n-CS in PLGA produced biocomposites with improved bioactivity and biocompatibility.

  9. Body composition, disordered eating and menstrual regularity in a ...

    African Journals Online (AJOL)

    Body composition, disordered eating and menstrual regularity in a group of South African ... e between body composition and disordered eating in irregular vs normal menstruating athletes. ... measured by air displacement plethysmography.

  10. Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications

    International Nuclear Information System (INIS)

    Ashuri, Maziar; Moztarzadeh, Fathollah; Nezafati, Nader; Ansari Hamedani, Ali; Tahriri, Mohammadreza

    2012-01-01

    In the present study, a bioceramic-based composite was prepared by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol–gel-derived bioactive glass (64SiO 2 -26CaO-5MgO-5ZnO) (based on mol%) powders. HA powder was mixed with different concentrations of the glass powders up to 30 wt.%. The effect of adding bioactive glass powder to HA matrix, on the mechanical properties of the composite was assessed by compression test. The specimen with the highest compressive strength was chosen to be immersed in simulated body fluid (SBF) to study apatite forming ability and dissolution behavior. It was found that compressive strength of the specimen was decreased 65% after maintaining in the SBF for 14 days. X-ray diffraction (XRD) showed prevalence of HA and β-TCP related peaks. Also, the surface morphology of the composite was observed using scanning electron microscopy (SEM). The study of degradation behavior revealed Si release capability of this composite. Biological evaluations in vitro confirmed the composite studied could induce osteoblast-like cells' activities. - Highlights: ► A novel composite based on HA/bioactive glass for bone substitutes was developed. ► Evaluations in vitro confirmed the composites induce bone-like cells' activities. ► A successful compromise of bioactivity and cytocompatibility was observed.

  11. Body composition in long-term survivors of acute lymphoblastic leukemia diagnosed in childhood and adolescence: A focus on sarcopenic obesity.

    Science.gov (United States)

    Marriott, Christopher J C; Beaumont, Lesley F; Farncombe, Troy H; Cranston, Amy N; Athale, Uma H; Yakemchuk, Valerie N; Webber, Colin E; Barr, Ronald D

    2018-03-15

    The late effects of treatment for acute lymphoblastic leukemia (ALL) include disordered body composition, especially obesity. Less attention has been focused on the loss of skeletal muscle mass (SMM) and the combined morbidity of sarcopenic obesity. A cross-sectional study of body composition was undertaken via dual-energy x-ray absorptiometry in 75 long-term survivors of ALL (more than 10 years after the diagnosis). Measures were obtained of the fat mass (FM), fat-free mass (equivalent to the lean body mass [LBM]), and whole-body bone mineral content. Health-related quality of life (HRQL) was measured with the Health Utilities Index. The sum of the FM, LBM, and whole-body bone mineral content matched the total body weight measured directly (r = 0.998). The appendicular lean mass (ALM) was derived from the LBM in all 4 limbs and accounted for approximately 75% of the SMM. According to the fat mass index (FMI; ie, FM/height 2 ), 12% of females and 18% of males were frankly obese by World Health Organization criteria. The median FMI z score was + 0.40, whereas the median z score for the appendicular lean mass index (ALMI; ie, ALM/height 2 ) was -0.40. Sarcopenic obesity, defined as a positive FMI z score with a negative ALMI z score, was present in 32 subjects (43%). There were statistically significant and clinically important differences in overall HRQL between subjects with and without sarcopenic obesity. Sarcopenic obesity is prevalent in long-term survivors of ALL, and this places them in double jeopardy from excess body fat and inadequate SMM (eg, a combination of metabolic and frailty syndromes). It is associated with an adverse impact on overall HRQL. Cancer 2018;124:1225-31. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. Fabrication of nanocrystalline hydroxyapatite doped degradable composite hollow fiber for guided and biomimetic bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ning [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Nichols, Heather L. [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Tylor, Shila [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Wen Xuejun [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States)]. E-mail: xjwen@clemson.edu

    2007-04-15

    Natural bone tissue possesses a nanocomposite structure interwoven in a three-dimensional (3-D) matrix, which plays critical roles in conferring appropriate physical and biological properties to the bone tissue. Single type of material may not be sufficient to mimic the composition, structure and properties of native bone, therefore, composite materials consisting of both polymers, bioceramics, and other inorganic materials have to be designed. Among a variety of candidate materials, polymer-nanoparticle composites appear most promising for bone tissue engineering applications because of superior mechanical properties, improved durability, and surface bioactivity when compared with conventional polymers or composites. The long term objective of this project is to use highly aligned, bioactive, biodegradable scaffold mimicking natural histological structure of human long bone, and to engineer and regenerate human long bone both in vitro and in vivo. In this study, bioactive, degradable, and highly permeable composite hollow fiber membranes (HFMs) were fabricated using a wet phase phase-inversion approach. The structure of the hollow fiber membranes was examined using scanning electron microscopy (SEM); degradation behavior was examined using weigh loss assay, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC); and bioactivity was evaluated with the amount of calcium deposition from the culture media onto HFM surface. Doping PLGA HFMs with nanoHA results in a more bioactive and slower degrading HFM than pure PLGA HFMs.

  13. Body composition changes in female bodybuilders during preparation for competition.

    Science.gov (United States)

    van der Ploeg, G E; Brooks, A G; Withers, R T; Dollman, J; Leaney, F; Chatterton, B E

    2001-04-01

    To determine anthropometric and body composition changes in female bodybuilders during preparation for competition. There was an attempt to match subjects in the control and experimental groups for height and percentage body fat (%BF) for the initial test of this longitudinal study. Five competitive bodybuilders (-X +/- s.d.: 35.3 +/- 5.7 y; 167.3 +/- 3.7 cm; 66.38 +/- 6.30 kg; 18.3 +/- 3.5 %BF) and five athletic females (-X +/- s.d.: 30.9 +/- 13.0 y; 166.9 +/- 3.9 cm; 55.94 +/- 3.59 kg; 19.1 +/- 3.3 %BF) were recruited from advertisements in a bodybuilding newsletter and placed on sports centre noticeboards. The following measurements were conducted 12 weeks, 6 weeks and 3-5 d before the bodybuilders' competitions: anthropometric profile, body density by underwater weighing, total body water via deuterium dilution and bone mineral mass from a dual-energy X-ray absorptiometry scan. A combination of the last three measurements enabled the %BF to the determined by a four compartment model. A significant (P bodybuilders as they prepared for competition was primarily due to a reduction in fat mass (FM; -4.42 kg; 76.2%) as opposed to fat-free mass (FFM; -1.38 kg; 23.8%). The decreases in body mass and FM over the final 6 weeks were greater than those over the first 6 weeks. Their %BF decreased (P bodybuilders were accompanied by a significant decline (P bodybuilders presented with low %BFs at the start of the experiment, they still significantly decreased their body mass during the 12 week preparation for competition and most of this loss was due to a reduction in FM as opposed to FFM.

  14. A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism.

    Science.gov (United States)

    Lehnen, Tatiana Ederich; da Silva, Marcondes Ramos; Camacho, Augusto; Marcadenti, Aline; Lehnen, Alexandre Machado

    2015-01-01

    Conjugated linoleic acid (CLA) is highly found in fats from ruminants and it appears to favorably modify the body composition and cardiometabolic risk factors. The capacity of CLA to reduce the body fat levels as well as its benefic actions on glycemic profile, atherosclerosis and cancer has already been proved in experimental models. Furthermore, CLA supplementation may modulate the immune function, help re-synthetize of glycogen and potentiate the bone mineralization. CLA supplementation also could increase the lipolysis and reduce the accumulation of fatty acids on the adipose tissue; the putative mechanisms involved may be its action in reducing the lipase lipoprotein activity and to increase the carnitine-palmitoil-transferase-1 (CAT-1) activity, its interaction with PPARγ, and to raise the expression of UCP-1. Although studies made in human have shown some benefits of CLA supplementation as the weight loss, the results are still discordant. Moreover, some have shown adverse effects, such as negative effects on glucose metabolism and lipid profile. The purpose of this article is to review the available data regarding the benefits of CLA on the energetic metabolism and body composition, emphasizing action mechanisms.

  15. Obesity, body composition, and prostate cancer

    Directory of Open Access Journals (Sweden)

    Fowke Jay H

    2012-01-01

    Full Text Available Abstract Background Established risk factors for prostate cancer have not translated to effective prevention or adjuvant care strategies. Several epidemiologic studies suggest greater body adiposity may be a modifiable risk factor for high-grade (Gleason 7, Gleason 8-10 prostate cancer and prostate cancer mortality. However, BMI only approximates body adiposity, and may be confounded by centralized fat deposition or lean body mass in older men. Our objective was to use bioelectric impedance analysis (BIA to measure body composition and determine the association between prostate cancer and total body fat mass (FM fat-free mass (FFM, and percent body fat (%BF, and which body composition measure mediated the association between BMI or waist circumference (WC with prostate cancer. Methods The study used a multi-centered recruitment protocol targeting men scheduled for prostate biopsy. Men without prostate cancer at biopsy served as controls (n = 1057. Prostate cancer cases were classified as having Gleason 6 (n = 402, Gleason 7 (n = 272, or Gleason 8-10 (n = 135 cancer. BIA and body size measures were ascertained by trained staff prior to diagnosis, and clinical and comorbidity status were determined by chart review. Analyses utilized multivariable linear and logistic regression. Results Body size and composition measures were not significantly associated with low-grade (Gleason 6 prostate cancer. In contrast, BMI, WC, FM, and FFM were associated with an increased risk of Gleason 7 and Gleason 8-10 prostate cancer. Furthermore, BMI and WC were no longer associated with Gleason 8-10 (ORBMI = 1.039 (1.000, 1.081, ORWC = 1.016 (0.999, 1.033, continuous scales with control for total body FFM (ORBMI = 0.998 (0.946, 1.052, ORWC = 0.995 (0.974, 1.017. Furthermore, increasing FFM remained significantly associated with Gleason 7 (ORFFM = 1.030 (1.008, 1.052 and Gleason 8-10 (ORFFM = 1.044 (1.014, 1.074 after controlling for FM. Conclusions Our results

  16. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts

    International Nuclear Information System (INIS)

    Berggren, A.; Weiland, A.J.; Ostrup, L.T.

    1982-01-01

    Researchers studied the value of bone scintigraphy in the assessment of anastomotic patency and bone-cell viability in free bone grafts revascularized by microvascular anastomoses in twenty-seven dogs. The dogs were divided into three different groups, and scintigraphy was carried out using technetium-labeled methylene diphosphonate in composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and periosteal grafts placed in different recipient beds. The viability of the grafts were evaluated by histological examination and fluorescence microscopy after triple labeling with oxytetracycline on the first postoperative day, alizarin complexone on the fourth postoperative day, and DCAF on the eleventh postoperative day. A positive scintiscan within the first week following surgery indicated patent microvascular anastomoses, and histological study and fluorescence microscopy confirmed that bone throughout the graft was viable. A positive scintiscan one week after surgery or later does not necessarily indicate microvascular patency or bone-cell survival, because new bone formed by creeping substitution on the surface of a dead bone graft can result in this finding

  17. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Poedenphant, J.; Nilas, L.; Christiansen, C.

    1989-01-01

    We investigated the descriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMD spine ) also measured by DPA, and to the bone-mineral content of the forearms (BMC forearm ) measured by single photon absorptiometry (SPA). TBBD, BMD spine and BMC forearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMD spine or BMC forearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures. BMC forearm had an intermediate position, whereas BMD spine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMD spine or BMC forearm , whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements. (author)

  18. Seasonal Changes in Soccer Players' Body Composition and Dietary Intake Practices.

    Science.gov (United States)

    Devlin, Brooke L; Kingsley, Michael; Leveritt, Michael D; Belski, Regina

    2017-12-01

    Devlin, BL, Kingsley, M, Leveritt, MD, and Belski, R. Seasonal changes in soccer players' body composition and dietary intake practices. J Strength Cond Res 31(12): 3319-3326, 2017-The aims of this study were 2-fold: to determine seasonal changes in dietary intake and body composition in elite soccer players and to evaluate the influence of self-determined individual body composition goals on dietary intake and body composition. This longitudinal, observational study assessed body composition (total mass, fat-free soft tissue mass, and fat mass) using dual-energy x-ray absorptiometry and dietary intake (energy and macronutrients) via multiple-pass 24-hour recalls, at 4 time points over a competitive season in elite soccer players from one professional club in the Australian A-League competition. Self-reported body composition goals were also recorded. Eighteen elite male soccer players took part (25 ± 5 years, 180.5 ± 7.4 cm, 75.6 ± 6.5 kg). Majority (≥67%) reported the goal to maintain weight. Fat-free soft tissue mass increased from the start of preseason (55,278 ± 5,475 g) to the start of competitive season (56,784 ± 5,168 g; p nutrition recommendations. The self-reported body composition goals did not strongly influence dietary intake practices or changes in body composition. This study has demonstrated that body composition changes over the course of a soccer season are subtle in elite soccer players despite relatively low self-reported intake of energy and carbohydrate.

  19. Disorders of bone-mineral metabolism and their correction with women who have body weight deficiency at pregravid stage and during pregnancy

    Directory of Open Access Journals (Sweden)

    L. P. Shelestova

    2017-10-01

    Full Text Available The processes in bone-mineral metabolism provide normal course of pregnancy, labour and fetus development, women with body weight deficiency are at risk reduction of bone tissue mineral density, progressing of osteopenia and osteoporosis. This shows the necessity of medical and preventive measures that have the aim to correct calcium- phosphorus and bone metabolism with women who have body weight deficiency. Aim. To elaborate and to evaluate medical and preventive measures that have the aim to correct disorders in bone-mineral metabolism with women who have body weight deficiency at pregravid stage and during pregnancy. Materials and methods. The efficiency of adding combined medicine of calcium carbonate and cholecalciferol and dietary nourishment to traditional treatment that affected the state of bone-mineral metabolism with women who have body weight deficiency at pregravid stage and during pregnancy was studied. Results. With women who have body weight deficiency at pregravid stage and during pregnancy it is noted statistically considerable reduction in blood of total calcium and bone tissue markers that grows with the course of gestation. The changes in mineral density of bone tissue can be seen from the existence of osteopenic syndrome at pregravid stage that occurs with every third woman who has body weight deficiency and with every second before labour. The use of elaborated medical and preventive measures including combined medicine of calcium carbonate and cholecalciferol allows to normalize the indexes of bone-mineral metabolism with women who have body weight deficiency. Conclusions. Women with body weight deficiency already at pregravid stage have disorders in bone metabolism and coming of pregnancy lead to aggravation of bone metabolism disorders. The additional use of combined medicine of calcium carbonate and cholecalciferol and dietary nourishment made the indexes of calcium-phosphorus and bone metabolism better and osteopenic

  20. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  1. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  2. Body composition in acromegaly - before and after therapy

    International Nuclear Information System (INIS)

    Brummer, R.J.M.; Bengtsson, B.A.; Isaksson, B.

    1986-01-01

    Acromegaly is a disease caused by a benign pituitary tumor producing excess amount of growth hormone. A changed body composition can be a functional parameter of the disorder. The aim of this study is to describe body composition in acromegaly before and after therapy. Total body potassium (TBK) was measured as total exchangeable potassium using 42 K by dilution technique or by counting gamma radiation from the naturally present 40 K in a high sensitivity 3π whole body counter. Total body water (TBW) was determined with an isotope dilution technique using tritiated water as a tracer. The specific activity was measured in urine or plasma. The predicted values for TBK, TBW, and body fat (BF) were calculated by equations using body weight (BW), body height, age and sex as independent variables. The normal values for BW were calculated by using body height and sex as independent variables

  3. Biocompatibility of single-walled carbon nanotube composites for bone regeneration.

    Science.gov (United States)

    Gupta, A; Liberati, T A; Verhulst, S J; Main, B J; Roberts, M H; Potty, A G R; Pylawka, T K; El-Amin Iii, S F

    2015-05-01

    The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70-7. ©2015 The British Editorial

  4. Organic composite-mediated surface coating of human acellular bone matrix with strontium.

    Science.gov (United States)

    Huang, Yi-Zhou; Wang, Jing-Jing; Huang, Yong-Can; Wu, Cheng-Guang; Zhang, Yi; Zhang, Chao-Liang; Bai, Lin; Xie, Hui-Qi; Li, Zhao-Yang; Deng, Li

    2018-03-01

    Acellular bone matrix (ACBM) provides an osteoconductive scaffold for bone repair, but its osteoinductivity is poor. Strontium (Sr) improves the osteoinductivity of bone implants. In this study, we developed an organic composite-mediated strontium coating strategy for ACBM scaffolds by using the ion chelating ability of carboxymethyl cellulose (CMC) and the surface adhesion ability of dopamine (DOPA). The organic coating composite, termed the CMC-DOPA-Sr composite, was synthesized under a mild condition, and its chemical structure and strontium ion chelating ability were then determined. After surface decoration, the physicochemical properties of the strontium-coated ACBM (ACBM-Sr) scaffolds were characterized, and their biocompatibility and osteoinductivity were determined in vitro and in vivo. The results showed that the CMC-DOPA-Sr composite facilitated strontium coating on the surface of ACBM scaffolds. The ACBM-Sr scaffolds possessed a sustained strontium ion release profile, exhibited good cytocompatibility, and enhanced the osteogenic differentiation of mesenchymal stem cells in vitro. Furthermore, the ACBM-Sr scaffolds showed good histocompatibility after subcutaneous implantation in nude mice. Taken together, this study provided a simple and mild strategy to realize strontium coating for ACBM scaffolds, which resulted in good biocompatibility and improved osteoinductivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    International Nuclear Information System (INIS)

    Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N.; Gomes, M. E.; Reis, R. L.; Chiellini, F.; Chiellini, E.

    2008-01-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ε-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications

  6. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    Science.gov (United States)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  7. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.

    Science.gov (United States)

    Sroka-Bartnicka, Anna; Kimber, James A; Borkowski, Leszek; Pawlowska, Marta; Polkowska, Izabela; Kalisz, Grzegorz; Belcarz, Anna; Jozwiak, Krzysztof; Ginalska, Grazyna; Kazarian, Sergei G

    2015-10-01

    The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.

  8. Mass of organs and composition of the body of Japanese Reference Man

    International Nuclear Information System (INIS)

    Tanaka, Gi-ichiro

    1990-01-01

    Reference Man as defined and described in ICRP Publication 23 is in the process of major revision, with an emphasis on the age and sex, and characteristics of non-European populations. Japanese Reference Man (or Woman) is to be defined as the subject, normal and healthy, 20 to 30 years of age, who inhabits in Japan and live on the 'standard diet'. He (or she) is a Mongoloid in race, and 170 (or 160) cm in height, and 60 (or 51) kg in weight. Physical properties such as masses of 114 organs, tissues and components, and their specific gravities of Japanese Reference Male are given. Body composition or body fat, LBM, skeleton, soft lean body mass (SLBM), body water, blood, muscle, ash, protein and specific gravity were also given as well as body surface. These data are primarily based on the data obtained for normal Japanese, and, where data unavailable, they were derived from ICRP Reference Man data by using a new concept of SLBM. Red bone marrow was estimated to be 1,000g as compared to 1,500g in Reference Man. Body fat was obtained by using Nagamine's equations, which showed a recent slight tendency of obesity. In conclusion, the present data for Japanese Reference Man could be used in designing appropriate phantoms, mathematical and real, for Japanese. Japanese Reference Man will also provide a basis for Asian Reference Man, which, in principle, should be consistent with ICRP concepts of Reference Man. (author)

  9. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    Science.gov (United States)

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Growth and Body Composition of School-Aged Children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde

    growth or remodeling. Seasonal variations in growth and changes in body composition, if present, are of interest when trying to understand the regulation of growth. They may also be important to be aware of when assessing growth and body composition during shorter periods of time. The overall aim...... of this thesis was to identify factors influencing or associated with growth and body composition of 8-11 year old children. Four specific research questions were specified: 1.) Does a school meal intervention based on the New Nordic Diet (NND) influence height, body mass index (BMI) z-score, waist circumference...... school meals based on a NND for three months and for another three months they ate packed lunch brought from home (control). At baseline, between the two dietary periods, and after the last dietary period children went through a number of investigations. In paper I we showed that ad libitum school meals...

  11. Bone Composition in Male and Female Göttingen Minipigs Fed Variously Restrictedly and near ad Libitum

    DEFF Research Database (Denmark)

    Bollen, P. J. A.; Lemmens, A. G.; Beynen, A. C.

    2006-01-01

    diet 2 was a high fat, low fibre diet. A higher level of feed intake led to a significant increase in the following parameters: body weight development, bone size (length and width of rib and femur), bone volume (rib), bone (rib) dry matter and ash content (mg), as well as bone density (femur...... development, bone volume, and dry matter and ash content of the rib (mg) as compared to males. Also bone mineral concentrations in the femur, expressed as calcium, phosphorus and magnesium in mg/cm3, were significantly higher in females as compared to males, as was the Ca:Pi ratio. Bone density measurements...... of the femur’s proximal and distal segment, and total femur bone density (g/cm2) were significantly higher in females as compared to males. Feed conversion in females was significantly lower than in males. This study illustrates that female and male minipigs show distinct differences in body and bone...

  12. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo.

    Science.gov (United States)

    Rexhepi, Sylejman; Bahtiri, Elton; Rexhepi, Mjellma; Sahatciu-Meka, Vjollca; Rexhepi, Blerta

    2015-08-01

    Body weight and body mass index (BMI) are considered potentially modifiable determinants of bone mass. Therefore, the aim of this study was to explore the association between body weight and body mass index (BMI) with total hip and lumbar spine bone mineral density (BMD). This cross-sectional study included a population of 100 women and 32 men from Kosovo into three BMI groups. All the study subjects underwent dual-energy X-ray absorptiometry (DXA) measurements. Total hip BMD levels of obese menopausal and premenopausal women and men were significantly higher compared to overweight or normal weight subjects, while lumbar spine BMD levels of only menopausal women and men were higher among obese subjects. Age-adjusted linear regression analysis showed that BMI is a significant independent associate of lumbar spine and total hip BMD in menopausal women and men. Despite positive association between BMI and lumbar spine and total hip BMD in menopausal women, presence of more obese and osteoporotic subjects among menopausal women represent a population at risk for fractures because of poor balance and frequent falls; therefore, both obesity and osteoporosis prevention efforts should begin early on in life.

  13. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Method of quantification of bone scintigraphy using technetium labelled stannous pyrophosphate. Results concerning 882 whole-body scintigraphy

    International Nuclear Information System (INIS)

    Chedeville, Rene.

    1976-01-01

    Considerable progress was made in isotope bone imaging with strontium 85 after the principle of quantification was introduced by Rosenthall in 1965. In 1971, Subramanian and McAffee reported that excellent visualization could be obtained with polyphosphates labelled with sup(99m)Tc. In the present study, imaging was performed 4 hours after injection of sup(99m)Tc pyrophosphate. An Elscint dual head wole body scanner and a VDP 2 off-line calculator were used. Counts were collected over selected regions of interest, each measuring 4.5 x 3.5 cm, and over the whole body. After checking reproducibility by double counting (SD of the mean = 15%), two methods of quantification were studied, the counts being expressed as: the ratio of the number of counts in the bone segment to the number of counts in the knee, the ratio of the number of counts in the bone segment/the number of counts in the whole body. In these operations, the whole body count was multiplied by 2.10 -3 in order to have a ratio whole body count.2.10 -3 /knee = 1. The ratios calculated from the different bone diseases under study were then compared [fr

  15. Effects of Ramadan fasting on body composition and arterial stiffness.

    Science.gov (United States)

    Sezen, Yusuf; Altiparmak, Ibrahim Halil; Erkus, Muslihittin Emre; Kocarslan, Aydemir; Kaya, Zekeriya; Gunebakmaz, Ozgur; Demirbag, Recep

    2016-12-01

    To examine the effects of Ramadan fasting on body composition, arterial stiffness and resting heart rate. This prospective study was conducted at the Department of Cardiology, Harran University, Sanliurfa, Turkey, during Ramadan 2015, and comprised overweight and obese males. Body composition, arterial stiffness and echocardiography were assessed before and after Ramadan. Body composition was assessed by bioelectrical impedance analysis using segmental body composition analyser. Arterial stiffness and haemodynamic parameters were also measured. SPSS 20 was used for data analysis. Of the 100 subjects enrolled, 70(70%) were included. The overall mean age was 37±7 years. No significant changes were observed in blood pressures, resting heart rate, aortic pulse wave velocity, aortic augmentation index-75, aortic pulse pressure, brachial pulse pressure, basal metabolic rate, total body water, fat-free mass, and echocardiographic parameters (p>0.05 each). Although aortic pulse wave velocity (m/s) and augmentation index-75 (%) decreased after fasting period compared to that of before Ramadan, these reductions did not reach statistically significant levels (8.6±1.8 vs. 8.9±1.9, and 13.6±6.6 vs. 14.7±9.3, respectively; p>0.05 each). Body mass index, waist-hip ratio, body water rate, percentage of body fat mass, body fat mass, and visceral fat mass percentage were significantly reduced (pRamadan. Ramadan fasting had beneficial effects on body composition, but did not have any significant effect on arterial stiffness and resting heart rate.

  16. Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older.

    Science.gov (United States)

    Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M

    2017-10-01

    The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength

  17. Sesamol attenuates cytogenetic damages in bone marrow cells of whole body gamma irradiated mice

    International Nuclear Information System (INIS)

    Kumar, Arun; Tamizh Selvan, G.; Adhikari, Jawahar S.; Chaudhury, N.K.

    2014-01-01

    Whole body radiation exposure cause damages to all vital organs and bone marrow is the most sensitive. Pre-treatment with antioxidant as single prophylactic dose is expected to lower induction of damages in bone marrow. In the present study we have focused on sesamol, a dietary antioxidant mediated radioprotection in bone marrow cells of gamma irradiated mice and compared with melatonin. Male C57BL/6 mice were intraperitoneally administered with sesamol (10 and 20 mg/kg body) and after 30 minutes exposed to whole body gamma radiation using 60 Co Teletherapy unit. Mice were injected with 0.2 ml of a metaphase arresting agent (0.05% colchicine) intra-peritoneally 3 hours prior to sacrifice (24 hrs. post-irradiation). Bone marrow cells were flushed out from femurs of each animal and processed for chromosomal aberration assay. Another set of experiment without colchicine injection was performed to access the DNA damage in bone marrow using alkaline comet assay. At least 100 metaphases per animal were scored under light microscope to record various aberrations and total chromosomal aberrations (TCA) was calculated. Similar measurements were performed with melatonin for comparing the efficacy of sesamol. Gamma irradiation has increased the chromatid type aberrations (break formation, fragment) and chromosomal type aberrations (ring formation, acentric) in bone marrow cells. The results have shown significant (p< 0.001) increase in TCA of irradiated mice than control. While pre-treatment of sesamol and melatonin 10 mg/kg significantly (p<0.05) reduced the TCA. The extend of protection has increased at 20 mg/kg significantly (p<0.001) as evident from the reduced TCA compared to irradiated group. Interestingly, sesamol and melatonin have shown similar extent of reduction of TCA. Thus sesamol has demonstrated strong ability to protect bone marrow at low dosage. These investigations on sesamol mediated protection in bone marrow are likely to benefit development of

  18. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  19. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  20. Estimation of body composition of pigs

    International Nuclear Information System (INIS)

    Ferrell, C.L.; Cornelius, S.G.

    1984-01-01

    A study was conducted to evaluate the use of deuterium oxide (D2O) for in vivo estimation of body composition of diverse types of pigs. Obese (Ob, 30) and contemporary Hampshire X Yorkshire (C, 30) types of pigs used in the study were managed and fed under typical management regimens. Indwelling catheters were placed in a jugular vein of 6 Ob and 6 C pigs at 4, 8, 12, 18 and 24 wk of age. The D2O was infused (.5 g/kg body weight) as a .9% NaCl solution into the jugular catheter. Blood samples were taken immediately before and at .25, 1, 4, 8, 12, 24 and 48 h after the D2O infusion and D2O concentration in blood water was determined. Pigs were subsequently killed by euthanasia injection. Contents of the gastrointestinal tract were removed and the empty body was then frozen and later ground and sampled for subsequent analyses. Ground body tissue samples were analyzed for water, fat, N, fat-free organic matter and ash. Pig type, age and the type X age interaction were significant sources of variation in live weight, D2O pool size and all empty body components, as well as all fat-free empty body components. Relationships between age and live weight or weight of empty body components, and between live weight, empty body weight, empty body water or D2O space and weight of empty components were highly significant but influenced, in most cases, by pig type. The results of this study suggested that, although relationships between D2O space and body component weights were highly significant, they were influenced by pig type and were little better than live weight for the estimation of body composition

  1. Bio-impedance body composition comparisons between athletes and healthy subjects

    International Nuclear Information System (INIS)

    Clarion, A; Ribbe, E; Rebeyrol, J; Moreno, M-V; Rousseaux-Rousseaux-Blanchi, M-P; Dechavanne, C

    2013-01-01

    Body composition is a useful means for athletes' body composition assessment, relying on reference population data. This study aims at comparing body composition multifrequency impedance data of athletes and healthy adult populations. Differences were found in tissular, hydration and metabolic indices. They were significant, in the expected direction, but quite weak and additional data from reference technologies would set if specific equations are needed. The current ones are nevertheless suitable for reliable follow-up studies.

  2. The effects of L-thyroxin replacement therapy on bone minerals and body composition in hypothyroid children

    OpenAIRE

    Salama, Hassan M.; El-Dayem, Soha A.; Yousef, Hala; Fawzy, Ashraf; Abou-Ismail, Laila; El-lebedy, Dalia

    2010-01-01

    Introduction Prolonged treatment with levothyroxine 4 (L-T4) is a well known risk factor for osteoporosis. Patients on L-T4 replacement occasionally have a subnormal TSH, which carries a risk of development of bone loss. Thyroid hormones directly affect bone cells, stimulating osteoclastic and osteoblastic activity with a predominance of bone resorption and decrease of bone mineral density (BMD). Material and methods The study included 35 hypothyroid patients with mean age 11.57 ±5.06, while ...

  3. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  4. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    Science.gov (United States)

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P

  5. PHYSIQUE AND BODY COMPOSITION OF GIRLS PRACTISING CONTEMPORARY DANCE

    Directory of Open Access Journals (Sweden)

    Przednowek Karolina H.

    2017-09-01

    Full Text Available Introduction. Physique and body composition are often explored in sport-related research. This is due to the fact that morphological features can be useful for determining a person’s predispositions for practising a given type of physical activity. Dance, as any other sports discipline, has an impact on the physique and motor skills of those who practise it. Most research concerning the physique and body composition of dancers conducted so far has focused on persons practising ballet or competitive ballroom dancing. Investigating these issues in contemporary dancers is a new field of study. The aim of the current study was to examine the physique and body composition of girls aged 14-17 years practising contemporary dance. Material and methods. The study involved 23 girls who trained contemporary dance twice a week for 2 hours. The participants of the study had been training since the age of six. Basic anthropometric measurements were performed. Body composition was analysed based on parameters measured using a Tanita body composition analyser. Conclusions. The analysis found that girls training contemporary dance were characterised by a leptosomatic physique. BMI values in both younger and older contemporary dancers indicated that their weight was normal. Compared to girls who did not practise any particular type of sport, contemporary dancers had a lower weight, a lower body water percentage, and a lower body fat percentage. The dancers were also characterised by a greater circumference of the waist, hips, arm, and chest compared to untrained peers.

  6. The influence of body composition assessed by dual-energy x-ray absorptiometry on functional capacity of patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gualberto Ruas

    Full Text Available INTRODUCTION: The individual with chronic obstructive pulmonary disease (COPD can experience a significant reduction of body composition, peripheral muscle dysfunction, resulting in a negative influence on functional capacity. OBJECTIVES: To analyze the influence of body composition assessed by dual-energy x-ray absorptiometry on functional capacity of patients with chronic obstructive pulmonary disease (COPD. MATERIALS AND METHODS: Eleven male patients with COPD (COPDG, seven presenting moderate obstruction and four severe, and 11 sedentary male subjects (CG were evaluated by dual-energy x-ray absorptiometry to assess their body composition. All subjects also performed the 6-minute walk test (6MWT and Step Test (6MST to assess their functional capacity. RESULTS: No significant differences were found between groups for anthropometric data such as age, weight, height and body mass index (BMI. However, the COPDG presented Forced Vital Capacity (FVC, Forced Expiratory Volume in one second (FEV1, FEV1/FVC ratio, Maximal Voluntary Ventilation (MVV, Walked Distance (WD and Number of Steps (NS significantly lower than the CG (p < 0.05, Student's t-test. The Body Bone Mass (BBM, BBM%, Lean Mass (LM, LM%, and Right Lower Limb (RLL and Left Lower Limb (LLL were significantly lower in the COPDG when compared with the CG, presenting statistically significant positive correlations with 6MWT's WD and 6MST's NS (p < 0.05, Pearson's test. CONCLUSION: We conclude that body composition is an important prognostic factor for patients with COPD, which reinforces the importance of assessing body composition by dual-energy absorptiometry since it has demonstrated with satisfactory accuracy in clinical practice. Moreover, it is a useful parameter for evaluation and reassessment in pulmonary rehabilitation programs.

  7. Body composition, dietary intake and physical activity of young survivors of childhood cancer.

    Science.gov (United States)

    Murphy-Alford, Alexia J; White, Melinda; Lockwood, Liane; Hallahan, Andrew; Davies, Peter S W

    2018-03-07

    To describe the body composition, dietary intake and physical activity and of paediatric, adolescent and young adult childhood cancer survivors (CCS) and examine the factors that impact body composition after treatment. This prospective cross-sectional study involved 74 subjects who were at least three years post treatment. Measurements included anthropometry, whole body potassium counting, air displacement plethysmography, and three day physical activity and diet diaries. The CCS had significantly reduced body cell mass index Z-scores compared to controls (p = 0.0001), with 59% considered undernourished. The CCS had a significantly higher percent fat (p = 0.002) than the controls, with 27% classified as obese. The intake of 60% of CCS met estimated energy requirements, but the CCS consumed high amount of energy from fat and low amount of energy from carbohydrates. A high percentage of CCS did not meet their dietary requirements for calcium (61%), magnesium (46%), folate (38%) and iodine (38%). The CCS group had a light active lifestyle with 64% spending more than 2 h daily on screen time. Receiving a bone marrow transplant (r = -0.27; p = 0.02) and physical activity level (r = 0.49; p = 0.0001) were significantly correlated with body cell mass index. This study demonstrates that increased fat mass and decreased body cell mass is a concern for CCS and that CCS have poor health behaviours including light active lifestyles, excessive screentime, high fat intake, and poor intake of essential nutrients. This study has highlighted that CCS are at risk of both obesity and undernutrition and that increasing body cell mass as well as decreasing fat mass should be a focus of energy balance interventions in survivorship. There is a need for parents and children undergoing treatment for cancer to be educated about diet quality and importance of daily physical activity to ensure healthy habits are established and maintained into survivorship. Copyright © 2018

  8. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration.

    Science.gov (United States)

    Tamburaci, Sedef; Tihminlioglu, Funda

    2017-11-01

    In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of diatomite to the chitosan matrix increased the surface roughness, swelling capacity and tensile modulus of membranes. An increase of about 52% in Young's modulus was achieved for 10wt% diatomite composite membranes compared with chitosan membranes. High cell viability results were obtained with indirect extraction method. Besides, in vitro cell proliferation and ALP activity results showed that diatom incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. The novel composite membranes prepared in the present study with tunable properties can be considered as a potential candidate as a scaffold in view of its enhanced physical & chemical properties as well as biological activities for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Body Composition Assessment from Birth to Two Years of Age

    International Nuclear Information System (INIS)

    2013-01-01

    During infancy and early childhood, the pace and quality of growth mark the risk of ill health in the short and longer term. Measurements of body weight and its changes are frequently taken as indicators of growth, without adequate attention being paid to linear growth or body composition during this critical window of opportunity, as these measurements are more challenging to make. To better define and characterize healthy growth, there is a need for guidance on the use of standardized methodologies to assess body composition during early life to differentiate between nutrient partitioning to fat free mass and to fat mass in infants and young children. Given the necessity for an international consensus, in 2009 the IAEA initiated a review of body composition assessment techniques as the basis for efforts aimed at the standardization of body composition assessment from birth to 2 years of age. This initiative follows the IAEA's long standing tradition of providing guidance on the use of nuclear techniques in nutrition. This publication was developed by an international group of experts as an integral part of the IAEA's contribution to the transfer of technology and capacity building in this field to assist Member States in their efforts to improve the nutrition and health of infants and young children, who are among the most vulnerable population groups. This publication provides practical information on the assessment of body composition from birth up to 2 years of age and is intended for nutritionists, paediatricians and other health professionals. The body composition assessment techniques included in this publication were considered the methodologies with the highest potential for standardization globally - based on considerations such as access to equipment, cost and the training needs of staff - and include stable isotope dilution for total body water assessment as well as dual energy X ray absorptiometry and air displacement plethysmography. In addition, the

  10. Body Composition Assessment from Birth to Two Years of Age

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    During infancy and early childhood, the pace and quality of growth mark the risk of ill health in the short and longer term. Measurements of body weight and its changes are frequently taken as indicators of growth, without adequate attention being paid to linear growth or body composition during this critical window of opportunity, as these measurements are more challenging to make. To better define and characterize healthy growth, there is a need for guidance on the use of standardized methodologies to assess body composition during early life to differentiate between nutrient partitioning to fat free mass and to fat mass in infants and young children. Given the necessity for an international consensus, in 2009 the IAEA initiated a review of body composition assessment techniques as the basis for efforts aimed at the standardization of body composition assessment from birth to 2 years of age. This initiative follows the IAEA's long standing tradition of providing guidance on the use of nuclear techniques in nutrition. This publication was developed by an international group of experts as an integral part of the IAEA's contribution to the transfer of technology and capacity building in this field to assist Member States in their efforts to improve the nutrition and health of infants and young children, who are among the most vulnerable population groups. This publication provides practical information on the assessment of body composition from birth up to 2 years of age and is intended for nutritionists, paediatricians and other health professionals. The body composition assessment techniques included in this publication were considered the methodologies with the highest potential for standardization globally - based on considerations such as access to equipment, cost and the training needs of staff - and include stable isotope dilution for total body water assessment as well as dual energy X ray absorptiometry and air displacement plethysmography. In addition, the

  11. Influence of Body Composition on Gait Kinetics throughout Pregnancy and Postpartum Period

    Science.gov (United States)

    Branco, Marco; Santos-Rocha, Rita; Vieira, Filomena; Silva, Maria-Raquel; Aguiar, Liliana; Veloso, António P.

    2016-01-01

    Pregnancy leads to several changes in body composition and morphology of women. It is not clear whether the biomechanical changes occurring in this period are due exclusively to body composition and size or to other physiological factors. The purpose was to quantify the morphology and body composition of women throughout pregnancy and in the postpartum period and identify the contribution of these parameters on the lower limb joints kinetic during gait. Eleven women were assessed longitudinally, regarding anthropometric, body composition, and kinetic parameters of gait. Body composition and body dimensions showed a significant increase during pregnancy and a decrease in the postpartum period. In the postpartum period, body composition was similar to the 1st trimester, except for triceps skinfold, total calf area, and body mass index, with higher results than at the beginning of pregnancy. Regression models were developed to predict women's internal loading through anthropometric variables. Four models include variables associated with the amount of fat; four models include variables related to overall body weight; three models include fat-free mass; one model includes the shape of the trunk as a predictor variable. Changes in maternal body composition and morphology largely determine kinetic dynamics of the joints in pregnant women. PMID:27073713

  12. Age, gender, and race/ethnic differences in total body and subregional bone density.

    Science.gov (United States)

    Looker, A C; Melton, L J; Harris, T; Borrud, L; Shepherd, J; McGowan, J

    2009-07-01

    Total body bone density of adults from National Health and Nutrition Examination Survey (NHANES) 1999-2004 differed as expected for some groups (men>women and blacks>whites) but not others (whites>Mexican Americans). Cross-sectional age patterns in bone mineral density (BMD) of older adults differed at skeletal sites that varied by degree of weight-bearing. Total body dual-energy X-ray absorptiometry (DXA) data offer the opportunity to compare bone density of demographic groups across the entire skeleton. The present study uses total body DXA data (Hologic QDR 4500A, Hologic, Bedford MA, USA) from the NHANES 1999-2004 to examine BMD of the total body and selected skeletal subregions in a wide age range of adult men and women from three race/ethnic groups. Total body, lumbar spine, pelvis, right leg, and left arm BMD and lean mass from 13,091 adults aged 20 years and older were used. The subregions were chosen to represent sites with different degrees of weight-bearing. Mean BMD varied in expected ways for some demographic characteristics (men>women and non-Hispanic blacks>non-Hispanic whites) but not others (non-Hispanic whites>Mexican Americans). Differences in age patterns in BMD also emerged for some characteristics (sex) but not others (race/ethnicity). Differences in cross-sectional age patterns in BMD and lean mass by degree of weight-bearing in older adults were observed for the pelvis, leg, and arm. This information may be useful for generating hypotheses about age, race, and sex differences in fracture risk in the population.

  13. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation

    International Nuclear Information System (INIS)

    Lee, Jae Hyup; Baek, Hae-Ri; Lee, Ji-Ho; Ryu, Mi Young; Seo, Jun-Hyuk; Lee, Kyung-Mee

    2014-01-01

    Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space. (paper)

  14. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair

    NARCIS (Netherlands)

    Guillaume, O.; Geven, M. A.; Sprecher, C. M.; Stadelmann, V. A.; Grijpma, D. W.; Tang, T.T.; Qin, L.; Lai, Y.; Alini, M.; de Bruijn, J. D.; Yuan, H.; Richards, R.G.; Eglin, D.

    2017-01-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated

  15. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Kiamehr, Mostafa; Yang, Xuebin; Su, Bo

    2013-01-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO 2 , 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  16. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  17. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    Science.gov (United States)

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P BMAT) were not related to changes in BMD.

  18. Aluminum Silicate Nanotube Coating of Siloxane-Poly(lactic acid-Vaterite Composite Fibermats for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Shuji Yamazaki

    2012-01-01

    Full Text Available In our earlier work, a flexible fibermat consisting of a biodegradable composite with soluble silicate species, which has been reported to enhance bone formation, was prepared successfully using poly(L-lactic acid and siloxane-containing calcium carbonate particles by electrospinning. The fibermat showed enhanced bone formation in an in vivo test. In the present work, to improve the hydrophilicity of skeletal fibers in a fibermat, they were coated with nanotubular aluminum silicate crystals, which have a hydrophilic surface that has excellent affinity to body fluids and a high surface area advantageous for pronounced protein adsorption. The nanotubes were coated easily on the fiber surface using an electrophoretic method. In a conventional contact angle test, a drop of water rapidly penetrated into the nanotube-coated fibermat. The culture test using murine osteoblast-like cells (MC3T3-E1 showed that the cell attachment to the nanotube-coated fibermat at an early stage after seeding was enhanced in comparison with that to the noncoated one. This approach may provide a new method of improving the surface of polymer-based biomaterials.

  19. Whole body bone scintigram with sup(99m)Tc-phosphate compounds

    International Nuclear Information System (INIS)

    Oyamada, Hiyoshimaru; Orii, Hirotake; Tabei, Toshio; Ishibashi, Hiroyoshi.

    1975-01-01

    Among the compounds of four different types, which are sup(99m)Tc-polyphosphate suppled by A Company, sup(99m)Tc-pyrophosphate by B Company, and sup(99m)Tc-pyrophosphate of electrolysis method and sup(99m)Tc-diphosphonate by C Company, sup(99m)Tc-diphosphonate showed the most favorable result with a constantly good scintigram quality. The remaining three compounds were found also favorable for clinical application. Besides these are undesirable accumulations, rather low energy of sup(99m)Tc-causes different pictures upon the anterior and the posterior views, and previously irradiated area shows a decreased uptake of these compounds. The usefulness of whole body scintigrams in the detection of metastatic bone tumors was also discussed. There was a definite superiority with this technique over the conventional X-ray study. Especially, in thoracic vertebrae, pelvic bone, and ribs, far many diseased areas were detected on the scintigrams than the areas which the physicians noticed or suspected the metastases. As a conclusion, although there are some problems on the scintigrams, it can be said that sup(99m)Tc-phosphate compounds are very useful in detection of metastatic bone tumors, especially with the help of whole body scanner. (JPN)

  20. Bone mineral density in immigrants from southern China to Denmark. A cross-sectional study

    DEFF Research Database (Denmark)

    Ravn, Pernille; Wang, S; Overgaard, K

    1996-01-01

    Immigration from Japan to USA has been shown to increase bone mineral density (BMD) and body fat in women. The effects of immigration between other geographical areas on bone mass and body composition are largely unknown, especially in men. In the present study, we measured bone mass and body...... composition by dual energy X-ray absorptiometry (Hologic QDR-2000) in 73 healthy premenopausal women (age 35 +/- 8 years) and 69 men (age 40 +/- 12 years) who had immigrated from southern China to Denmark 2 months to 36 years ago. The BMD measurements (Total BMD, trunk BMD and leg BMD) were related positively...... to years since immigration (YSI) (R2 = 0.10-0.16, p women, but not in men. Fat distribution was related mainly to age in both premenopausal women and men (R2 = 0.16-0.26, p women (age 36 +/- 6 years). Chinese...

  1. Alterations to Bone Mineral Composition as an Early Indication of Osteomyelitis in the Diabetic Foot

    OpenAIRE

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Holmes, Crystal M.; Morris, Michael D.; Roessler, Blake J.

    2013-01-01

    OBJECTIVE Osteomyelitis in the diabetic foot is a major risk factor for amputation, but there is a limited understanding of early-stage infection, impeding limb-preserving diagnoses. We hypothesized that bone composition measurements provide insight into the early pathophysiology of diabetic osteomyelitis. RESEARCH DESIGN AND METHODS Compositional analysis by Raman spectroscopy was performed on bone specimens from patients with a clinical diagnosis of osteomyelitis in the foot requiring surgi...

  2. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    Science.gov (United States)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  3. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  4. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  5. Body composition in men with anorexia nervosa: Longitudinal study.

    Science.gov (United States)

    El Ghoch, Marwan; Calugi, Simona; Milanese, Chiara; Bazzani, Paola Vittoria; Dalle Grave, Riccardo

    2017-07-01

    To compare body composition patterns before and after complete weight restoration in men with anorexia nervosa. Dual-energy X-ray absorptiometry (DXA) was used to measure body composition patterns in 10 men with anorexia nervosa before and after complete weight restoration, and in 10 healthy men matched to age and patients' post-treatment body mass index (BMI). Before weight restoration, men with anorexia nervosa displayed lower total body fat mass (FM) and lean mass (LBM) than those in the healthy comparison group, with a greater FM loss from the extremity than the trunk region. After short-term weight restoration, patients displayed complete normalization in total LBM and FM, but greater deposition of FM in the trunk region. Short-term weight restoration can normalize body composition patterns in men with anorexia nervosa, but results in a central adiposity phenotype. The clinical implication of this finding is unknown, but should be explored given the high levels of concern about central adiposity in anorexia nervosa. © 2017 Wiley Periodicals, Inc.

  6. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping.

    Science.gov (United States)

    Kozielski, M; Buchwald, T; Szybowicz, M; Błaszczak, Z; Piotrowski, A; Ciesielczyk, B

    2011-07-01

    Biomechanical properties of bone depend on the composition and organization of collagen fibers. In this study, Raman microspectroscopy was employed to determine the content of mineral and organic constituents and orientation of collagen fibers in spongy bone in the human head of femur at the microstructural level. Changes in composition and structure of trabecula were illustrated using Raman spectral mapping. The polarized Raman spectra permit separate analysis of local variations in orientation and composition. The ratios of ν₂PO₄³⁻/Amide III, ν₄PO₄³⁻/Amide III and ν₁CO₃²⁻/ν₂PO₄³⁻ are used to describe relative amounts of spongy bone components. The ν₁PO₄³⁻/Amide I ratio is quite susceptible to orientation effect and brings information on collagen fibers orientation. The results presented illustrate the versatility of the Raman method in the study of bone tissue. The study permits better understanding of bone physiology and evaluation of the biomechanical properties of bone.

  7. Body composition of term healthy Indian newborns.

    Science.gov (United States)

    Jain, V; Kurpad, A V; Kumar, B; Devi, S; Sreenivas, V; Paul, V K

    2016-04-01

    Previous anthropometry-based studies have suggested that in Indian newborns fat mass is conserved at the expense of lean tissue. This study was undertaken to assess the body composition of Indian newborns and to evaluate its relation with parents' anthropometry, birth weight and early postnatal weight gain. Body composition of healthy term singleton newborns was assessed by the deuterium dilution method in the second week of life. Anthropometry was carried out at birth and on the day of study. Data from 127 babies were analyzed. Birth weight was 2969±383 g. Body composition was assessed at a mean age of 12.7±3.1 days. Fat and fat-free mass were 354±246 and 2764±402 g, respectively, and fat mass percentage (FM%) was 11.3±7.3%. Birth weight and fat-free mass were higher among boys, but no gender difference was noted in FM%. Birth weight was positively correlated with fat as well as fat-free mass but not FM%. FM% showed positive correlation with gain in weight from birth to the day of assessment. This is the first study from India to report body composition in newborns using deuterium dilution. FM% was comparable to that reported for Western populations for babies of similar age. Our results suggest that the percentage of fat and fat-free mass is relatively constant over the range of birth weights included in this study, and greater weight gain during early postnatal period results in greater increase in FM%.

  8. The relationship between body composition and femoral neck osteoporosis or osteopenia in adults with previous poliomyelitis.

    Science.gov (United States)

    Chang, Kwang-Hwa; Tseng, Sung-Hui; Lin, Yu-Ching; Lai, Chien-Hung; Hsiao, Wen-Tien; Chen, Shih-Ching

    2015-04-01

    Articles in the literature describing the association between body composition and osteoporosis in subjects with poliomyelitis are scarce. To assess the relationship between body composition and femoral neck osteoporosis or osteopenia in adults with previous polio. After excluding postmenopausal women, 44 polio (mean age ± standard deviation, 46.1 ± 3.3 years) and 44 able-bodied control volunteers (47.0 ± 4.0 years) participated in the study. Each participant's femoral neck bone mineral density (FNBMD) and whole body composition were measured using dual-energy X-ray absorptiometry. With local reference BMD values of normal young adults installed in the instrument, we obtained T-score values that depended on each FNBMD value. A T-score value of ≤-1.0 indicated decreased T-score, including osteoporosis (T-score ≤ -2.5) and osteopenia (-1.0 to -2.5). This study conducted logistic regression analyses to find factors associated with osteoporosis and osteopenia. Based on the FNBMD T-score values, 60.0% of middle-aged men with polio had osteoporosis. In adjusted logistic regression analyses, total lean tissue mass (Adjusted odds ratio [95% confidence interval], 0.74 [0.56-0.99], P < 0.05) and male gender (947.16 [6.02-148,926.16], P < 0.01) were important factors associated with decreased T-score in polio group. Osteoporosis or osteopenia is a common medical problem for middle-aged men with polio. Reduced total lean tissue mass seems to be one of the important factors associated with osteoporosis or osteopenia among subjects with polio. Further research for a clinical tool to assess lean tissue mass for subjects with polio is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Ko-Ning Ho

    2016-03-01

    Full Text Available Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry resembles human bone. The aim of this study was to compare the performance of a novel bioresorbable purified fibrillar collagen and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP ceramic composite versus collagen alone and a bovine xenograft-collagen composite in beagles. Collagen plugs, bovine graft-collagen composite and HA/β-TCP-collagen composite were implanted into the left and right first, second and third mandibular premolars, and the fourth molar was left empty for natural healing. In total, 20 male beagle dogs were used, and quantitative and histological analyses of the extraction ridge was done. The smallest width reduction was 19.09% ± 8.81% with the HA/β-TCP-collagen composite at Week 8, accompanied by new bone formation at Weeks 4 and 8. The HA/β-TCP-collagen composite performed well, as a new osteoconductive and biomimetic composite biomaterial, for socket bone preservation after tooth extraction.

  10. Nutrient Requirements, Body Composition, and Health of Military Women

    National Research Council Canada - National Science Library

    Costello, Rebecca

    1998-01-01

    .... As pan of the Defense Women's Health Research Program, a new report from the Committee on Body Composition, Nutrition, and Health of Military Women of the Institute of the Institute of Medicine examines issues of body composition, fitness, and appearance standards and their impact on the health, nutritional status, and performance of active-duty women.

  11. Evaluation of porous gradient hydroxyapatite/zirconia composites for repair of lumbar vertebra defect in dogs.

    Science.gov (United States)

    Shao, Rong-Xue; Quan, Ren-Fu; Huang, Xiao-Long; Wang, Tuo; Xie, Shang-Ju; Gao, Huan-Huan; Wei, Xi-Cheng; Yang, Di-Sheng

    2016-04-01

    To evaluate the effects of porous gradient composites with hydroxyapatite/zirconia and autologous iliac in repair of lumbar vertebra body defects in dogs. (1) New porous gradient hydroxyapatite/zirconia composites were prepared using foam immersion, gradient compound and high temperature sintering; (2) A total of 18 adult beagle dogs, aged five to eight months and weighted 10-13 kg, were randomly assigned into two subgroups, which were implanted with new porous gradient hydroxyapatite/zirconia composites (subgroup A in 12) or autologous iliac bone (subgroup B in 6); (3) The post-operative data were analyzed and compared between the subgroups to repair the vertebral body defect by roentgenoscopy, morphology and biomechanics. The porosity of new porous gradient hydroxyapatite/zirconia composites is at 25 poles per inch, and the size of pores is at between 150 and 300 µm. The post-operative roentgenoscopy displayed that new-bone formation is increased gradually, and the interface between composites and host-bone becomes became blur, and the new-bone around the composites were integrated into host-bone at 24 weeks postoperatively in subgroup A. As to subgroup B, the resorption and restructure were found at six weeks after the surgery, and the graft-bone and host-bone have been integrated completely without obvious boundary at 24 weeks postoperatively. Histomorphologic study showed that the amount of bone within pores of the porous gradient hydroxyapatite/zirconia composites increased continuously with a prolonged implantation time, and that partial composites were degradated and replaced by new-bone trabeculae. There was no significant difference between subgroups (P > 0.05) in the ultimate compressive strengths. New porous gradient hydroxyapatite/zirconia composites can promote the repair of bony defect, and induce bone tissue to ingrow into the pores, which may be applied widely to the treatment of bony defect in the future. © The Author(s) 2016.

  12. Assessment of nutritional status in cancer--the relationship between body composition and pharmacokinetics.

    Science.gov (United States)

    Prado, Carla M M; Maia, Yara L M; Ormsbee, Michael; Sawyer, Michael B; Baracos, Vickie E

    2013-10-01

    Several nutritional assessment tools have been used in oncology settings to monitor nutritional status and its associated prognostic significance. Body composition is fundamental for the assessment of nutritional status. Recently, the use of accurate and precise body composition tools has significantly added to the value of nutritional assessment in this clinical setting. Computerized tomography (CT) is an example of a technique which provides state-of-the-art assessment of body composition. With use of CT images, a great variability in body composition of cancer patients has been identified even in people with identical body weight or body mass index. Severe muscle depletion (sarcopenia) has emerged as a prevalent body composition phenotype which is predictive of poor functional status, shorter time to tumor progression, shorter survival, and higher incidence of dose-limiting toxicity. Variability in body composition of cancer patients may be a source of disparities in the metabolism of cytotoxic agents. Future clinical trials investigating dose reductions in patients with sarcopenia and dose-escalating studies based on pre-treatment body composition assessment have the potential to alter cancer treatment paradigms.

  13. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  14. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Science.gov (United States)

    Zhou, Yuanyuan; Yao, Hongchang; Wang, Jianshe; Wang, Dalu; Liu, Qian; Li, Zhongjun

    2015-01-01

    In bone tissue engineering, collagen/hydroxyapatite (HAP) fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the obtained composite fibers was evaluated by in vitro culture of the human myeloma cells (U2-OS). Taken together, the process outlined herein provides an effective, non-toxic approach for the fabrication of collagen/HAP composite nanofibers that could be good candidates for bone tissue engineering. PMID:25995630

  15. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  16. Gender differences in body composition, physical activity, eating behavior and body image among normal weight adolescents--an evolutionary approach.

    Science.gov (United States)

    Kirchengast, Sylvia; Marosi, Andrea

    2008-12-01

    Body composition but also physical activity patterns underlie gender typical differences throughout human life. In the present study the body composition of 354 girls and 280 boys ageing between 11 and 18 years originating from Eastern Austria were analyzed using bioelectrical impedance method. Normal weight according to body mass index categories was a strict inclusion criterion. Information regarding physical activity during school and leisure time, daily nutritional habits, subjective body satisfaction and weight control practices were collected by means of a structured and standardized questionnaire. Results of the analyses reveal that--as to be expected--adolescent boys and girls differed significantly in body composition, but also in physical activity patterns. Even normal weight girls exhibited a significantly higher amount of absolute and relative fat mass, whereas normal weight boys showed a significantly higher amount of fat free body mass. Furthermore male adolescents were significantly more physically active than their female counterparts. According to the results of multiple regression analyses physical activity patterns had beside sex an independent influence on body composition parameters during adolescence. In contrast, girls and boys showed only minor differences in nutritional habits and weight control practices. Nutritional habits, body satisfaction and weight control practices were not significantly related to body composition parameters. The observed gender differences in body composition as well as in physical activity patterns are interpreted in an evolutionary sense.

  17. Developing a novel magnesium glycerophosphate/silicate-based organic-inorganic composite cement for bone repair.

    Science.gov (United States)

    Ding, Zhengwen; Li, Hong; Wei, Jie; Li, Ruijiang; Yan, Yonggang

    2018-06-01

    Considering that the phospholipids and glycerophosphoric acid are the basic materials throughout the metabolism of the whole life period and the bone is composed of organic polymer collagen and inorganic mineral apatite, a novel self-setting composite of magnesium glycerophosphate (MG) and di-calcium silicate(C2S)/tri-calcium silicate(C3S) was developed as bio-cement for bone repair, reconstruction and regeneration. The composite was prepared by mixing the MG, C2S and C3S with the certain ratios, and using the deionized water and phosphoric acid solution as mixed liquid. The combination and formation of the composites was characterized by FTIR, XPS and XRD. The physicochemical properties were studied by setting time, compressive strength, pH value, weight loss in the PBS and surface change by SEM-EDX. The biocompatibility was evaluated by cell culture in the leaching solution of the composites. The preliminary results showed that when di- and tri-calcium silicate contact with water, there are lots of Ca(OH) 2 generated making the pH value of solution is higher than 9 which is helpful for the formation of hydroxyapatite(HA) that is the main bone material. The new organic-inorganic self-setting bio-cements showed initial setting time is ranged from 20 min to 85 min and the compressive strength reached 30 MPa on the 7th days, suitable as the bone fillers. The weight loss was 20% in the first week, and 25% in the 4th week. Meanwhile, the new HA precipitated on the composite surface during the incubation in the SBF showed bioactivity. The cell cultured in the leaching liquid of the composite showed high proliferation inferring the new bio-cement has good biocompatibility to the cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria).

    Science.gov (United States)

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B; Redelstorff, Ragna; Carballido, Jose L; Sander, P Martin

    2010-05-18

    Sauropods were the largest terrestrial tetrapods (>10(5) kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size.

  19. Massa óssea e composição corporal em estudantes universitários Bone mass and body composition in college students

    Directory of Open Access Journals (Sweden)

    Cristina Reuter

    2012-06-01

    Full Text Available OBJETIVO: Comparar a densidade mineral óssea (DMO e a composição corporal (CC de universitários com diferentes estilos de vida. MÉTODOS: Estudo transversal realizado em 85 estudantes dos cursos de Medicina (MED e Educação Física (EF da Universidade Regional de Blumenau. As variáveis antropométricas, sociodemográficas, clínicas e de estilo de vida foram obtidas por meio de anamnese densitométrica e as variáveis densitométricas por raio-x de dupla energia (DXA. Os testes estatísticos foram: t de Student, qui-quadrado e regressão logística. RESULTADOS: Os acadêmicos de EF apresentaram massa magra maior (79,5 ± 5,9 versus 75,1 ± 5,3; p = 0,03 e gordura corporal menor (16,7 ± 6,1 versus 21,6 ± 5,6; p = 0,02, e as acadêmicas de EF apresentaram massa magra maior (68,2 ± 5,5 versus 65,3 ± 5,5; p = 0,05. A DMO do colo do fêmur (CF, fêmur total (FT e corpo total (CT foi maior nos acadêmicos de EF em ambos os sexos. Os estudantes de EF praticavam mais exercícios físicos do que os de MED. A baixa massa óssea (BMO foi mais frequente nos estudantes de MED (34,9% versus 4,7%; p = 0,001, sendo que o risco de um estudante de MED ter BMO foi 9 vezes maior para a CL, 5 vezes para o CF, 8 vezes para o FT e 7 vezes para o CT. CONCLUSÃO: A CC e a DMO foram diferentes entre os estudantes; os acadêmicos de MED apresentaram um risco maior de ter BMO e os acadêmicos de EF praticavam mais exercícios físicos.OBJECTIVE: To compare bone mineral density (BMD and body composition (BC of college students with different lifestyles. METHODS: Transversal study with 85 students of Medicine (MED and Physical Education (PE at the Universidade Regional de Blumenau, SC, Brazil. The anthropometric, socio-demographic, clinical, and lifestyle variables were obtained through densitometric anamnesis and densitometric variables by dual-energy X-ray (DXA. The statistical tests used were: Student's t-test, Chi-square test, and logistic regression. RESULTS

  20. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Science.gov (United States)

    Andrade, E.; Solís, C.; Canto, C. E.; de Lucio, O. G.; Chavez, E.; Rocha, M. F.; Villanueva, O.; Torreblanca, C. A.

    2014-08-01

    Analysis of ancient human bones found in "El Cóporo", an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone's black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  1. Differences in body composition and prevalence for postural ...

    African Journals Online (AJOL)

    The aim of this study is to compare the prevalence rate for postural deviations and body composition status among two racial groups in South Africa. The sample (n = 216) consisted of 89 African girls and 127 Caucasian girls. Anthropometric (BMI and percentage body fat) and body posture measurements were performed.

  2. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis.

    Science.gov (United States)

    Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R

    2018-05-02

    The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.

  3. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shengjie [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Sun, Junying, E-mail: wodaoshi@sohu.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Li, Yadong [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123 (China); Li, Jun [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China); Cui, Wenguo [Orthopedic Institute, Soochow University, 708 Renmin Rd, Suzhou, Jiangsu 215007 (China); Li, Bin, E-mail: binli@suda.edu.cn [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006 (China)

    2014-02-01

    Polymeric nanofibrous composite scaffolds incorporating bioglass and bioceramics have been increasingly promising for bone tissue engineering. In the present study, electrospun poly (L-lactic acid) (PLLA) scaffolds containing dicalcium silicate (C{sub 2}S) nanoparticles (approximately 300 nm) were fabricated. Using a novel ultrasonic dispersion and aging method, uniform C{sub 2}S nanoparticles were prepared and they were homogenously distributed in the PLLA nanofibers upon electrospinning. In vitro, the PLLA-C{sub 2}S fibers induced the formation of HAp on the surface when immersed in simulated body fluid (SBF). During culture, the osteoblastic MC3T3-E1 cells adhered well on PLLA-C{sub 2}S scaffolds, as evidenced by the well-defined actin stress fibers and well-spreading morphology. Further, compared to pure PLLA scaffolds without C{sub 2}S, PLLA-C{sub 2}S scaffolds markedly promoted the proliferation of MC3T3-E1 cells as well as their osteogenic differentiation, which was characterized by the enhanced alkaline phosphatase (ALP) activity. Together, findings from this study clearly demonstrated that PLLA-C{sub 2}S composite scaffold may function as an ideal candidate for bone tissue engineering. - Highlights: • Dicalcium silicate (C{sub 2}S) nanoparticles were prepared via a sol–gel process. • C{sub 2}S nanoparticles were stabilized using ultrasonic-aging technique. • PLLA-C{sub 2}S composite nanofibers were fabricated through electrospinning technique. • C{sub 2}S nanoparticles could be homogenously distributed in nanofibers. • The composite scaffolds enhanced proliferation and differentiation of osteoblasts.

  4. Precision of dual energy X-ray absorptiometry for body composition measurements in cats

    International Nuclear Information System (INIS)

    Borges, N.C.; Vasconcellos, R.S.; Canola, J.C.; Carciofi, A.C.; Pereira, G.T.; Paula, F.J.A.

    2008-01-01

    A short-term precision error of the individual subject and the DEXA technique, such as the effect of the repositioning of the cat on the examination table, were established. Four neutered adult cats (BW=4342 g) and three females (BW=3459 g) were submitted to five repeated scans with and without repositioning between them. Precision was estimated from the mean of the five measurements and expressed by the individual coefficient of variation (CV). The precision error of the technique was estimated by the variance of scan pool (n=35) and expressed in CV for the technique (CVt). The degrees of freedom and confidence intervals were determined to avoid underestimation of precision errors. Bone mineral content (BMC), lean mass (LM), and fat mass (FM) averages were higher (P<0.05) when animals were repositioned. The CVt was significantly higher (P<0.05) for bone mineral density (BMD), LM, and FM when the animals were repositioned. For short-term precision measurements, the repositioning of the animal was important to establish the precision of the technique. The dual energy xray absorptiometry method provided precision for body composition measurements in adult cats. (author)

  5. Radiation nephritis following total-body irradiation and cyclophosphamide in preparation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Bergstein, J.; Andreoli, S.P.; Provisor, A.J.; Yum, M.

    1986-01-01

    Two children prepared for bone marrow transplantation with total-body irradiation and cyclophosphamide developed hypertension, microscopic hematuria, proteinuria, diminished renal function, and anemia six months after transplantation. Light microscopy of the kidneys revealed mesangial expansion, glomerular capillary wall thickening, and lumenal thrombosis. Electron microscopy demonstrated widening of the subendothelial space due to the deposition of amorphous fluffy material. In one patient, immunofluorescence microscopy revealed glomerular capillary wall deposition of fibrin and immunoglobulins. The clinical and histologic findings support the diagnosis of radiation nephritis. Patients prepared for bone marrow transplantation with total-body irradiation and cyclophosphamide should be followed closely after transplantation for the development of hypertension, proteinuria, and renal insufficiency

  6. Impact of obesity on bone metabolism.

    Science.gov (United States)

    López-Gómez, Juan J; Pérez Castrillón, José L; de Luis Román, Daniel A

    2016-12-01

    High weight is a protective factor against osteoporosis and risk of fracture. In obesity, however, where overweight is associated to excess fat, this relationship does not appear to be so clear, excess weight has sometimes been associated to decreased bone mass. Obesity interferes with bone metabolism through mechanical, hormonal, and inflammatory factors. These factors are closely related to weight, body composition, and dietary patterns of these patients. The net beneficial or harmful effect on bone mass or risk of fracture of the different components of this condition is not well known. We need to recognize patients at a greater risk of bone disease related to obesity to start an adequate intervention. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  7. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material

    International Nuclear Information System (INIS)

    Araujo, P.M.; Lima, M.G.; Costa, A.C.; Pallone, E.M.

    2016-01-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al_2O_3/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al_2O_3/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  8. Body composition in hemodialysis patients measured by dual-energy X-ray absorptiometry

    DEFF Research Database (Denmark)

    Stenver, Doris Irene; Gotfredsen, Arne; Hilsted, J

    1995-01-01

    Dual-energy X-ray absorptiometry (DXA) measures three of the principal components of the body: fat mass, lean soft-tissue mass (comprising muscle, inner organs, and the body water), and the bone mineral content. The purpose of this study was to test the estimation capacity of DXA when it is applied...... and reduction in fat-free mass (lean soft-tissue mass plus bone mineral content) was observed by DXA. The estimation of the fat-free mass was independent of the amount of fluid loss. No significant differences in variance between the data obtained before and after the dialysis were observed. We conclude...

  9. Cost-effectiveness of bone densitometry among Caucasian women and men without a prior fracture according to age and body weight.

    Science.gov (United States)

    Schousboe, J T; Gourlay, M; Fink, H A; Taylor, B C; Orwoll, E S; Barrett-Connor, E; Melton, L J; Cummings, S R; Ensrud, K E

    2013-01-01

    We used a microsimulation model to estimate the threshold body weights at which screening bone densitometry is cost-effective. Among women aged 55-65 years and men aged 55-75 years without a prior fracture, body weight can be used to identify those for whom bone densitometry is cost-effective. Bone densitometry may be more cost-effective for those with lower body weight since the prevalence of osteoporosis is higher for those with low body weight. Our purpose was to estimate weight thresholds below which bone densitometry is cost-effective for women and men without a prior clinical fracture at ages 55, 60, 65, 75, and 80 years. We used a microsimulation model to estimate the costs and health benefits of bone densitometry and 5 years of fracture prevention therapy for those without prior fracture but with femoral neck osteoporosis (T-score ≤ -2.5) and a 10-year hip fracture risk of ≥3%. Threshold pre-test probabilities of low BMD warranting drug therapy at which bone densitometry is cost-effective were calculated. Corresponding body weight thresholds were estimated using data from the Study of Osteoporotic Fractures (SOF), the Osteoporotic Fractures in Men (MrOS) study, and the National Health and Nutrition Examination Survey (NHANES) for 2005-2006. Assuming a willingness to pay of $75,000 per quality adjusted life year (QALY) and drug cost of $500/year, body weight thresholds below which bone densitometry is cost-effective for those without a prior fracture were 74, 90, and 100 kg, respectively, for women aged 55, 65, and 80 years; and were 67, 101, and 108 kg, respectively, for men aged 55, 75, and 80 years. For women aged 55-65 years and men aged 55-75 years without a prior fracture, body weight can be used to select those for whom bone densitometry is cost-effective.

  10. Ethnic Differences in Bone Health

    Directory of Open Access Journals (Sweden)

    Ayse eZengin

    2015-03-01

    Full Text Available There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture as well muscle strength (mass, force generation, anatomy and fat mass. We review what is known about differences in bone-densitometry derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 – 2014. A ‘one size fits all approach’ should not be used to understand better ethnic differences in fracture risk.

  11. Whole-body and pinhole bone scintigraphic manifestations of Reiter`s syndrome: distribution patterns and early and characteristic signs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hoon; Chung, Soo-Kyo; Park, Young-Ha; Lee, Sung-Yong; Sohn, Hyung-Sun [Department of Nuclear Medicine, Catholic University Hospitals, Seoul (Korea, Republic of); Bahk, Yong-Whee [Department of Radiology, Samsung Cheil Hospital, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    1999-02-01

    The characteristic whole-body and pinhole scintigraphic manifestations of osteo-enthesopathy and arthropathy in Reiter`s syndrome (RS) are described, with an emphasis on early diagnosis. We analysed 59 sets of whole-body and pinhole bone scintigrams of 59 patients with RS. The population comprised 47 men and 12 women with an age range from 15 to 53 years (mean=29.4). Bone scintigraphy was carried out 2-2.5 h after intravenous injection of technetium-99m hydroxydiphosphonate using a single-head gamma camera (Siemens Orbiter Model 6601) with a low-energy high-resolution and a 4-mm pinhole collimator for whole-body and pinhole scintigraphy, respectively. In total 262 lesions of osteo-enthesopathy and arthritis were detected on 59 whole-body scintigrams, an incidence of 4.4 lesions per patient. As anticipated, the lesional distribution was asymmetrical: 68% were in the lower limb skeleton and 32% in the axial and upper limb skeleton. Pinhole bone scintigraphy, applied selectively to one region of interest in each case, enabled us to accurately diagnose arthritis and osteo-enthesopathy. It was noteworthy that osteo-enthesopathy, alone or in combination with arthritis, occurred in 78.9%, and had a strong predilection for the foot bones, especially the calcaneus (25.6%). Pinhole scintigraphy detected enthesopathy in the absence of radiographic alteration in 14.1% of cases and portrayed characteristic signs of RS in 6.9%. Whole-body bone scintigraphy augmented with pinhole scintigraphy was found to be useful in order to panoramically display the systemic involvement pattern, to assess the characteristic bone and articular alterations and to detect early signs of RS. (orig.) With 10 figs., 3 tabs., 19 refs.

  12. Tough and strong porous bioactive glass-PLA composites for structural bone repair.

    Science.gov (United States)

    Xiao, Wei; Zaeem, Mohsen Asle; Li, Guangda; Bal, B Sonny; Rahaman, Mohamed N

    2017-08-01

    Bioactive glass scaffolds have been used to heal small contained bone defects but their application to repairing structural bone is limited by concerns about their mechanical reliability. In the present study, the addition of an adherent polymer layer to the external surface of strong porous bioactive glass (13-93) scaffolds was investigated to improve their toughness. Finite element modeling (FEM) of the flexural mechanical response of beams composed of a porous glass and an adherent polymer layer predicted a reduction in the tensile stress in the glass with increasing thickness and elastic modulus of the polymer layer. Mechanical testing of composites with structures similar to the models, formed from 13-93 glass and polylactic acid (PLA), showed trends predicted by the FEM simulations but the observed effects were considerably more dramatic. A PLA layer of thickness -400 µm, equal to -12.5% of the scaffold thickness, increased the load-bearing capacity of the scaffold in four-point bending by ~50%. The work of fracture increased by more than 10,000%, resulting in a non-brittle mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture shown to be conducive to bone infiltration, could provide optimal implants for healing structural bone defects.

  13. Body Composition and Mortality Predictors in Hemodialysis Patients.

    Science.gov (United States)

    Caetano, Cristina; Valente, Ana; Oliveira, Telma; Garagarza, Cristina

    2016-03-01

    To evaluate how different compartments of body composition can affect survival in hemodialysis (HD) patients. Multicenter longitudinal observational study of a cohort of patients in HD with 12 months of follow-up. Patients from 34 Nephrocare dialysis units in Portugal were included. A total of 697 patients on maintenance HD during 4 hours 3 days per week were enrolled. Dry weight, presence of diabetes, body mass index (BMI), lean tissue index (LTI), fat tissue index (FTI), body cell mass index (BCMI), albumin and hydration status were recorded at baseline. In all patients, the assessment of body composition was carried out using the Body Composition Monitor (BCM; Fresenius Medical Care a Deutschland GmbH, Germany). Survival during a 12-month period of follow-up. Patient's mean (±standard deviation) age was 65.4 ± 14.3 years, and median (interquartile range) HD vintage was 41 (19-81) months. Patients who died during the study period, had higher age (P < .001), lower dry weight (P = .001), BMI (P < .001), albumin (P < .001), LTI (P = .015), and also lower BCMI (P = .046). Patients with diabetes (P = .045), BMI < 18.5 kg/m(2) (P < .001), albumin < 4.0 g/dL (P < .001), relative overhydration ≥ 15% (P = .001), low FTI (P = .019), and also those in the lowest tertile of BCMI (P = .022) displayed a significantly worse survival. In the Cox regression analysis, the overall mortality of patient was related to low FTI, relative overhydration, BMI < 18.5 kg/m(2), BCMI ≤ 5.2 kg/m(2), and albumin < 4.0 g/dL. Several body composition parameters demonstrated to have an important role in predicting 1-year mortality in HD patients. Albumin, FTI, and BMI were useful predictors of mortality in these patients. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. Bone Diseases

    Science.gov (United States)

    Your bones help you move, give you shape and support your body. They are living tissues that rebuild constantly ... childhood and your teens, your body adds new bone faster than it removes old bone. After about ...

  15. Of cells and surfaces for bone tissue engineering

    NARCIS (Netherlands)

    Barradas, A.M.C.

    2012-01-01

    New biomaterials are being developed to meet the bone healing needs of patients. When these biomaterials encounter cells in the tissues within the body, their physico-chemical properties (namely their chemical composition and structural properties) will impact the way cells behave and consequently

  16. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  17. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    Science.gov (United States)

    2012-01-01

    Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0

  18. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Li, Shau-Hsuan; Huang, Yung-Cheng; Huang, Wan-Ting; Lin, Wei-Che; Liu, Chien-Ting; Tien, Wan-Yu; Lu, Hung-I

    2012-01-01

    Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.003, univariately) and overall survival (P = 0

  19. Body composition in the Study of Women Entering and in Endocrine Transition (SWEET): A perspective of African women who have a high prevalence of obesity and HIV infection.

    Science.gov (United States)

    Jaff, Nicole G; Norris, Shane A; Snyman, Tracy; Toman, Marketa; Crowther, Nigel J

    2015-09-01

    Little data are available for sub-Saharan African women on changes in body composition in menopause transition (MT). The study aimed to determine whether there are differences in body adiposity, lean muscle mass, and bone mineral density (BMD) across MT groups in urban African women, who have a high prevalence of obesity and HIV infection, and if this is related to an altered hormonal milieu. Participants were 702 black urban women. Menopause stage was defined using STRAW+10 criteria. Levels of follicle stimulating hormone (FSH), estradiol (E2), dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), testosterone (T) and sex hormone blinding globulin (SHBG) were measured. Body composition was measured with dual-energy X-ray absorptiometry (DXA) and ultrasound scans. Whole body lean mass (p=0.002) and BMD (pART) correlated negatively with total fat mass (β=-2.92, p=0.008) and total bone mineral content (BMC; β=-78.8, p=0.003). The MT in this population is characterized by lower whole body lean mass and BMD in post- compared to premenopausal subjects but there are minimal differences in fat mass. Lower lean mass and BMD were associated with higher FSH and lower E2 serum levels, respectively. Use of ART was associated with lower fat mass and BMC. Copyright © 2015. Published by Elsevier Inc.

  20. Dual energy X-Ray absorptiometry body composition reference values from NHANES.

    Directory of Open Access Journals (Sweden)

    Thomas L Kelly

    Full Text Available In 2008 the National Center for Health Statistics released a dual energy x-ray absorptiometry (DXA whole body dataset from the NHANES population-based sample acquired with modern fan beam scanners in 15 counties across the United States from 1999 through 2004. The NHANES dataset was partitioned by gender and ethnicity and DXA whole body measures of %fat, fat mass/height(2, lean mass/height(2, appendicular lean mass/height(2, %fat trunk/%fat legs ratio, trunk/limb fat mass ratio of fat, bone mineral content (BMC and bone mineral density (BMD were analyzed to provide reference values for subjects 8 to 85 years old. DXA reference values for adults were normalized to age; reference values for children included total and sub-total whole body results and were normalized to age, height, or lean mass. We developed an obesity classification scheme by using estabbody mass index (BMI classification thresholds and prevalences in young adults to generate matching classification thresholds for Fat Mass Index (FMI; fat mass/height(2. These reference values should be helpful in the evaluation of a variety of adult and childhood abnormalities involving fat, lean, and bone, for establishing entry criteria into clinical trials, and for other medical, research, and epidemiological uses.

  1. Bone attachment to glass-fibre-reinforced composite implant with porous surface.

    Science.gov (United States)

    Mattila, R H; Laurila, P; Rekola, J; Gunn, J; Lassila, L V J; Mäntylä, T; Aho, A J; Vallittu, P K

    2009-06-01

    A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n=5-6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC-bone interface was significantly higher (283.3+/-55.3N) than the shear force at interfaces of solid PMMA/bone (14.4+/-11.0 N; pshielding effect.

  2. Holistic processing of human body postures: evidence from the composite effect.

    Science.gov (United States)

    Willems, Sam; Vrancken, Leia; Germeys, Filip; Verfaillie, Karl

    2014-01-01

    The perception of socially relevant stimuli (e.g., faces and bodies) has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception). In the present study, we investigated whether there is also a composite effect for the perception of body postures: are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1) and a vertical composite effect (i.e., left-right body halves; Experiment 2) were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically.

  3. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    Science.gov (United States)

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  4. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    Science.gov (United States)

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  5. Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang.

    Directory of Open Access Journals (Sweden)

    Wen-Ling Wang

    Full Text Available Danggui Buxue Tang (DBT is a traditional Chinese herbal decoction containing Radix Astragali and Radix Angelicae sinensis. Pharmacological results indicate that DBT can stimulate bone cell proliferation and differentiation. The aim of the study was to investigate the efficacy of adding DBT to bone substitutes on bone regeneration following bone injury. DBT was incorporated into porous composites (GGT made from genipin-crosslinked gelatin and β-triclacium phosphates as bone substitutes (GGTDBT. The biological response of mouse calvarial bone to these composites was evaluated by in vivo imaging systems (IVIS, micro-computed tomography (micro-CT, and histology analysis. IVIS images revealed a stronger fluorescent signal in GGTDBT-treated defect than in GGT-treated defect at 8 weeks after implantation. Micro-CT analysis demonstrated that the level of repair from week 4 to 8 increased from 42.1% to 71.2% at the sites treated with GGTDBT, while that increased from 33.2% to 54.1% at GGT-treated sites. These findings suggest that the GGTDBT stimulates the innate regenerative capacity of bone, supporting their use in bone tissue regeneration.

  6. Modeling the movement and equilibrium of water in the body of ruminants in relation to estimating body composition by deuterium oxide dilution

    International Nuclear Information System (INIS)

    Arnold, R.N.

    1986-01-01

    Deuterium oxide (D 2 O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D 2 O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the blood flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D 2 O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min

  7. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  8. Body composition in elderly people: effect of criterion estimates on predictive equations

    International Nuclear Information System (INIS)

    Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.; Wang, J.; Pierson, R.N. Jr.

    1991-01-01

    The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, 3 H 2 O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (P less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition

  9. Fractionated homogenous total-body irradiation prior to bone marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Duehmke, E; Brix, F; Hebbinghaus, D; Jensen, M; Wendhausen, H; Schmitz, N

    1985-03-01

    At the University of Kiel, myeloid and acute lymphatic leukemia is treated since 1983 by total-body irradiation applied prior to bone marrow transplantation. Dose deviations in the midplane caused by the irregular surface and tissue inhomogeneities of the patient are reduced down to +-3.5% compared to the central ray, with the help of CT-based individual compensators. This method prevents above all an excessive dose to the lungs. The radiobiologic advantages of fractionated irradiation have been employed for all patients treated hitherto (n = 9). At present, a total body dose of 12 Gy in six fractions is applied within three days. There were no undesired acute radiogenic reactions except a mild acute mucositis found in all patients. Chronic side effects, especially in the lungs, were not demonstrated, too. However, the average follow-up time of 149 days has been rather short. One patient died from relapse of leukemia after a total dose of 10 Gy, another patient died because the transplanted bone marrow was rejected, and a third died from catheter sepsis. Six out of nine patients are in complete remission with a maximum index of Karnofsky. The limited experiences gained hitherto show that the homogeneous accelerated-fractionated total-body irradiation offers essential advantages compared to non-compensated single dose irradiation with respect to the prevention of undesired radiogenic effects in sound tissues and that its therapeutic efficacy is at least the same.

  10. The use of bioelectrical impedance analysis for body composition in epidemiological studies

    DEFF Research Database (Denmark)

    Böhm, A; Heitmann, B L

    2013-01-01

    BACKGROUND/OBJECTIVES: Bioelectrical impedance analysis (BIA) is a relatively simple, inexpensive and non-invasive technique to measure body composition and is therefore suitable in field studies and larger surveys. SUBJECTS/METHODS: We performed an overview of BIA-derived body fat percentages (BF......%) from 55 published studies of healthy populations aged 6-80 years. In addition, the relationship between body mass index (BMI) and body composition is documented in the context of BIA as a good alternative to closely differentiate which composition of the body better relates to the risk...

  11. Total and regional body-composition changes in early postmenopausal women

    DEFF Research Database (Denmark)

    Wang, Q; Hassager, C; Ravn, Pernille

    1994-01-01

    Total and regional body composition were measured in 373 early postmenopausal women aged 49-60 y by dual-energy x-ray absorptiometry to evaluate whether the changes in body composition in the early postmenopausal years are related to menopause itself or merely to age. Both fat mass and fat...

  12. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biomechanical properties of an advanced new carbon/flax/epoxy composite material for bone plate applications.

    Science.gov (United States)

    Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba

    2013-04-01

    This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bone mineral metabolism, bone mineral density, and body composition in patients with chronic pancreatitis and pancreatic exocrine insufficiency

    DEFF Research Database (Denmark)

    Haaber, Anne Birgitte; Rosenfalck, A M; Hansen, B

    2000-01-01

    Calcium and vitamin D homeostasis seem to be abnormal in patients with exocrine pancreatic dysfunction resulting from cystic fibrosis. Only a few studies have evaluated and described bone mineral metabolism in patients with chronic pancreatitis and pancreatic insufficiency....

  15. Association between body composition and body mass index in young Japanese women.

    Science.gov (United States)

    Yamagishi, Hiroyuki; Kitano, Takao; Kuchiki, Tsutomu; Okazaki, Hideki; Shibata, Shigeo

    2002-06-01

    The National Nutrition Survey of Japan indicated a trend toward a decreasing body mass index (BMI; kg/m2) among young Japanese women. Current studies suggest that not-high BMI often does not correlate with not-high body fat percentage. Recently, the classification of BMI in adult Asians was proposed by the International Obesity Task Force. The addition of an "at risk of overweight" category, BMI as 23.0-24.9, was intended to prevent chronic diseases. We investigated the association between body fat percentage (BF%) and BMI to evaluate the screening performance of BMI focused on individual preventive medicine. The subjects consisted of 605 female college students. The subjects' ages (y), heights (cm), body weights (kg), BMIs, and BF percents with underwater weighing expressed as the means +/- SD were 19.6 +/- 0.5, 158.7 +/- 5.6, 53.8 +/- 7.2, 21.3 +/- 2.4, and 24.9 +/- 4.9, respectively. We defined high BF% as +/- 85th percentile of BF% (29.8%). High-BF% individuals are often not classified into BMI > or = 23.0 because their BMI readings are very broad (18.4-31.7). In comparison to the screening performances (specificity and sensitivity), BMI > or = 23.0 (85.3% and 52.1%, respectively), rather than BMI > or = 25.0 (96.7% and 29.8%, respectively), is recommended for the mass evaluation of fatness. For this reason, the BMI "at risk of overweight" category is characterized as the threshold of increasing the appearance ratio of high-BF% individuals. In conclusion, the BMI > or = 25.0 kg/m2 category is determined as high BF%, regardless of body composition measurement for mass evaluation as a result of quite high specificity. Even so, body composition measurement is necessitated by the individual evaluation of fatness focused on preventive medicine because BMI performed a poor representation of body composition, especially BMI < 25.0 kg/m2 individuals.

  16. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid

    International Nuclear Information System (INIS)

    Ambrus, C.M.; Ambrus, J.L.

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole-body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colony-forming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls

  17. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.

  18. [Preparation of sodium alginate-nanohydroxyapatite composite material for bone repair and its biocompatibility].

    Science.gov (United States)

    Wang, Yanmei; He, Jiacai; Li, Quanli; Shen, Jijia

    2014-02-01

    To prepare sodium alginate-nanohydroxyapatite composite material and to explore its feasibility as a bone repair material. Sodium alginate-nanohydroxyapatite composite material was prepared using chemical cross-linking and freeze-drying technology. The composite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) and its porosity was measured by liquid displacement method. The fifth passage of bone marrow stromal stem cells (BMSCs) were incubated on the composite material and then growth was observed by inverted microscope and SEM. BMSCs were cultured with liquid extracts of the material, methyl thiazolyl tetrazolium (MTT) assay was used to calculate the relative growth rate (RGR) on 1, 3, 5 d and to evaluate the cytotoxicity. Fresh dog blood was added into the liquid extracts to conduct hemolysis test, the spectrophotometer was used to determine the optical density (OD) and to calculate the hemolysis rate. Sodium alginate-nanohydroxyapatite composite material displayed porosity, the porous pore rate was (88.6 +/- 4.5)%. BMSCs showed full stretching and vigorous growth under inverted microscope and SEM. BMSCs cultured with liquid extracts of the material had good activities. The toxicity of composite material was graded as 1. Hemolysis test results showed that the hemolysis rate of the composite material was 1.28%, thus meeting the requirement of medical biomaterials. The composite material fabricated in this study has high porosity and good biocompatibility.

  19. Lack of Association between Body Weight, Bone Mineral Density and Vitamin D Receptor Gene Polymorphism in Normal and Osteoporotic Women

    Directory of Open Access Journals (Sweden)

    Massimo Poggi

    1999-01-01

    Full Text Available In an ethnically homogeneous population of women living in Tuscany, Italy, the relationships between age, body weight, bone mineral density and the vitamin D receptor (VDR gene polymorphism were studied, with the objective of recognizing patients at risk for osteoporosis. In 275 women bone mineral density was measured by Dual Energy X-rays Absorptiometry (DEXA. In 50 of them the individual genetic pattern for VDR was evaluated by DNA extraction followed by PCR amplification of the VDR gene, and digestion with the restriction enzyme BsmI. Age and bone mineral density were inversely related (R2 = 0.298. Body weight was associated with bone mineral density (R2 = 0.059, but not with age. In osteoporotic women, mean (± SD body weight was 59.9 ± 6.5 Kg, lower than that recorded in non osteoporotic women (64.2 ± 9.4 Kg, even though not significantly different (p = 0.18. No association was found between VDR gene polymorphism, bone density or body weight. The performance of anthropometric and genetic components appear to be poor, and, at least for the time being, bone mineral density measurement by means of MOC-DEXA represents the optimal method to detect women at risk for postmenopausal osteoporosis.

  20. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  1. Holistic processing of human body postures: Evidence from the composite effect

    Directory of Open Access Journals (Sweden)

    Sam eWillems

    2014-06-01

    Full Text Available The perception of socially relevant stimuli (e.g., faces and bodies has received considerable attention in the vision science community. It is now widely accepted that human faces are processed holistically and not only analytically. One observation that has been taken as evidence for holistic face processing is the face composite effect: Two identical top halves of a face tend to be perceived as being different when combined with different bottom halves. This supports the hypothesis that face processing proceeds holistically. Indeed, the interference effect disappears when the two face parts are misaligned (blocking holistic perception. In the present study, we investigated whether there is also a composite effect for the perception of body postures: Are two identical body halves perceived as being in different poses when the irrelevant body halves differ from each other? Both a horizontal (i.e., top-bottom body halves; Experiment 1 and a vertical composite effect (i.e., left-right body halves; Experiment 2 were examined by means of a delayed matching-to-sample task. Results of both experiments indicate the existence of a body posture composite effect. This provides evidence for the hypothesis that body postures, as faces, are processed holistically.

  2. Application of semiquantitative analysis of whole body bone imaging on distal femoral metaphysis osseous metastasis of neuroblastoma

    International Nuclear Information System (INIS)

    Liu Yang; Wang Huixiang; Zhou Tao

    2012-01-01

    Objective: To evaluate the value of semiquantitative analysis of whole body bone imaging on distal femoral metaphysis osseous metastasis of neuroblastoma. Methods: Twenty-nine patients with confirmed neuroblastoma by pathological reports were divided into group of metastasis and group of no metastasis by bone marrow slides, X-ray, CT, MRI or clinical follow-up. Whole body bone imaging was performed pre-or postoperation. All cases were analysed by two methods: (1) Semi-quantitative analysis: Regions of interest on bilateral distal femoral metaphysic and middle of femoral were drawn, and their average counts were measured. The ratio of radioactivity of distal femoral metaphysic to middle of femoral was calculated; (2) Visual analysis:Bilateral distal femoral metaphysic metastasis were diagnosed by visual analysis according to whole body bone imaging. The differences between this two methods were compared. Results: There were differences of the ratio of radioactivity of distal femoral metaphysic to middle of femoral between group of metastasis and group of no metastasis (t =8.334, P<0.01), and there was no significant difference between t the two methods (χ 2 =0.68, P>0.05). The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of semiquantitative analysis in detecting osseous metastasis were 90.5% , 95.7% , 94.4% , 86.4% and 97.1% , while visual analysis were 81% , 100% , 95.6% , 100% and 94.5% . Conclusions: Radionuclide whole body bone imaging was of great importance in diagnosis of osseous metastasis of neuroblastoma. The diagnostic accuracy was improved by combination of visual analysis and semi-quantitative analysis. (authors)

  3. Age-related changes in body composition of bovine growth hormone transgenic mice.

    Science.gov (United States)

    Palmer, Amanda J; Chung, Min-Yu; List, Edward O; Walker, Jennifer; Okada, Shigeru; Kopchick, John J; Berryman, Darlene E

    2009-03-01

    GH has a significant impact on body composition due to distinct anabolic and catabolic effects on lean and fat mass, respectively. Several studies have assessed body composition in mice expressing a GH transgene. Whereas all studies report enhanced growth of transgenic mice as compared with littermate controls, there are inconsistencies in terms of the relative proportion of lean mass to fat mass in these animals. The purpose of this study was to characterize the accumulation of adipose and lean mass with age and according to gender in a bovine (b) GH transgenic mouse line. Weight and body composition measurements were assessed in male and female bGH mice with corresponding littermate controls in the C57BL/6J genetic background. Body composition measurements began at 6 wk and continued through 1 yr of age. At the conclusion of the study, tissue weights were determined and triglyceride content was quantified in liver and kidney. Although body weights for bGH mice were significantly greater than their corresponding littermate controls at all time points, body composition measurements revealed an unexpected transition midway through analyses. That is, younger bGH mice had relatively more fat mass than nontransgenic littermates, whereas bGH mice became significantly leaner than controls by 4 months in males and 6 months in females. These results reveal the importance in timing and gender when conducting studies related to body composition or lean and fat tissue in GH transgenic mice or in other genetically manipulated mouse strains in which body composition may be impacted.

  4. Study of Body Composition by Impedance Analysis

    Science.gov (United States)

    González-Solís, J. L.; Vargas-Luna, M.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gutiérrez-Juárez, G.; Huerta-Franco, R.; Sanchis-Sabater, A.

    2002-08-01

    This work presents a set of impedance measurements and preliminary results on the analysis of body composition using impedance spectroscopy. This study is made using a pork meat sample and spectra from fat and flesh region were independently obtained using the same electrodes array. From these measurements, and theoretical considerations, it is possible to explain the behavior of the composite sample flesh-fat-flesh and, fitting the electrical parameters of the model, it shows the plausibility of a physical and quantitative application to human corporal composition.

  5. Diagnostic performance of 18F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma.

    Science.gov (United States)

    Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji

    2018-04-17

    Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV

  6. Discordant effect of body mass index on bone mineral density and speed of sound

    Directory of Open Access Journals (Sweden)

    Hagag Philippe

    2003-07-01

    Full Text Available Abstract Background Increased BMI may affect the determination of bone mineral density (BMD by dual X-ray absorptiometry (DXA and speed of sound (SOS measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI on BMD and SOS measured along bones. Methods We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m2, and 11 lean (BMI = 21 kg/m2 postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. Results Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P P Conclusions The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women.

  7. Body composition in patients with schizophrenia: Comparison with healthy controls

    Directory of Open Access Journals (Sweden)

    Sugawara Norio

    2012-05-01

    Full Text Available Abstract Background Recently, a relationship between obesity and schizophrenia has been reported. Although fat- mass and fat free mass have been shown to be more predictive of health risk than body mass index, there are limited findings about body composition among patients suffering from schizophrenia. The aim of this study is to compare the body composition of schizophrenia patients with that of healthy subjects in Japan. Methods We recruited patients (n = 204, aged 41.3 ± 13.8 (mean ± SD years old with the DSM-IV diagnosis of schizophrenia who were admitted to psychiatric hospital using a cross-sectional design. Subjects' anthropometric measurements including weight, height, body mass index (BMI, and medications were also collected. Body fat, percent (% body fat, fat- free mass, muscle mass, and body water were measured using the bioelectrical impedance analysis (BIA method. Comparative analysis was performed with schizophrenic subjects and 204 healthy control individuals. Results In a multiple regression model with age, body mass index, and dose in chlorpromazine equivalents, schizophrenia was a significantly linked with more body fat, higher % body fat, lower fat- free mass, lower muscle mass, and lower body water among males. In females, schizophrenia had a significant association with lower % body fat, higher fat- free mass, higher muscle mass, and higher body water. Conclusions Our data demonstrate gender differences with regard to changes in body composition in association with schizophrenia. These results indicate that intervention programs designed to fight obesity among schizophrenic patients should be individualized according to gender.

  8. Changes in Bone Mineral Density, Body Composition, Vitamin D Status, and Mineral Metabolism in Urban HIV-Positive South African Women Over 12 Months.

    Science.gov (United States)

    Hamill, Matthew M; Pettifor, John M; Ward, Kate A; Norris, Shane A; Prentice, Ann

    2017-08-01

    Human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are associated with bone loss and poor vitamin D status in white populations, though their relative roles are not known. No previous studies have examined longitudinal changes in areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), or in vitamin D status in HIV-positive African women. Of 247 premenopausal, urban, black African women from Soweto, South Africa, initially recruited, 187 underwent anthropometry, DXA scanning and blood and urine collections at both baseline and 12 months. Of these, 67 were HIV-negative throughout (Nref), 60 were HIV-positive with preserved CD4 counts at baseline (Ppres), and 60 were HIV-positive with low CD4 counts at baseline, eligible for ART by South African standards of care at the time (Plow). No participant had been exposed to ART at baseline. By 12 months, 51 Plow women had initiated ART, >85% of whom took combined tenofovir disoproxil fumarate (TDF), lamivudine, and efavirenz. By 12 months, Plow and Nref, but not Ppres, increased in body weight and fat mass (group-by-timepoint p ≤ 0.001, p = 0.002, respectively). Plow had significant decreases in aBMD of 2% to 3%, before and after size adjustment, at the femoral neck (p ≤ 0.002) and lumbar spine (p ≤ 0.001), despite significant weight gain. These decreases were associated with increased bone turnover but there were no significant differences or changes over time in vitamin D status, serum phosphate concentrations, or renal phosphate handling. Excluding data from nine Plow women unexposed to ART and 11 Ppres women who had initiated ART accentuated these findings, suggesting the bone loss in Plow was related to ART exposure. This is the first study describing DXA-defined bone loss in HIV-positive Sub-Saharan African women in association with ART. Further work is required to establish if bone loss continues with ongoing ART and, if so, whether this

  9. Individual differences in post radiation regeneration of the bone marrow in nonuniform irradiation (experimental investigation)

    International Nuclear Information System (INIS)

    Kalandarova, M.P.

    1980-01-01

    Reparative regeneration in bone marrow of sternum and iliac bone in each of 20 dogs was studied after single and two-time total X-ray irradiation. Extreme dose rates in bodies differed 5 and 8 times. It was shown that bone marrow repair did not depend on its composition before irradiation. Dogs whose bone narrow was rich of cellular elements before irradiation had both active and sharply reduced bone marrow regeneration after single and two-time irradiation in 0.75-1.45 Gy doses (sternum). Animals with a poor total cellular composition of bone marrow of sternum before irradiation also had differences in the course of reparative processes: in some of them they were considerably pronoUnced and in others bone marrow aplasia lasted for one month. IndiVidual differences in the bone marrow (iliac bone) irradiated with 1.85-3.2 Gy doses were less marked during the reparative regeneration

  10. Siliceous mesostructured cellular foams/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate composite biomaterials for bone regeneration

    Directory of Open Access Journals (Sweden)

    Yang S

    2014-10-01

    Full Text Available Shengbing Yang,1,* Shuogui Xu,2,* Panyu Zhou,2,* Jing Wang,3 Honglue Tan,4 Yang Liu,5 TingTing Tang,4 ChangSheng Liu1,3,5 1The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China; 2Changhai Hospital, Department of Orthopedics, the Second Military Medical University, Shanghai, People’s Republic of China; 3Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China; 4Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine China, Shanghai, People’s Republic of China; 5Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China *These authors contributed equally to this workAbstract: Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBHHx with siliceous mesostructured cellular foams (SMC, using the porogen leaching method. Surface hydrophilicity, morphology, and recombinant human bone morphogenetic protein 2 adsorption/release behavior of the SMC/PHBHHx scaffolds were analyzed. Results of scanning electron microscopy indicated that the SMC was uniformly dispersed in the PHBHHx scaffolds, and SMC modification scaffolds have an interconnected porous architecture with pore sizes ranging from 200 to 400 µm. The measurements of the water contact angles suggested that the incorporation of SMC into PHBHHx improves the hydrophilicity of the composite. In vitro studies with simulated body fluid show great improvements to bioactivity and biodegradability versus pure PHBHHx scaffolds. Cell adhesion and cell proliferation on the scaffolds was also evaluated, and the new

  11. Bone Mineral Density after Weight Gain in 160 Patients with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Najate Achamrah

    2017-09-01

    Full Text Available Low bone mineral density (BMD is a frequent complication in anorexia nervosa (AN. There are controversial points of views regarding the restoration of bone mineralization after recovery in AN. We aimed to assess changes of BMD at 3 years in patients with AN and to explore the relationships between body composition, physical activity, and BMD. Patients with AN were included from 2009 to 2011 in a first visit (T0 with evaluation of weight, height, body mass index (BMI, body composition [fat mass (FM and fat-free mass], and BMD. Those who had low BMD, either osteoporosis or osteopenia, were admitted in a second visit (T1 to carry out a new bone densitometry examination and body composition; they were also asked for their physical activity. At T0, our study involved 160 patients. Low BMD was observed in 53.6% of them and significant factors associated with demineralization were lower BMIs (16.5 ± 2.1 vs 17.3 ± 2.3 kg/m2, p = 0.01 and higher duration of AN (11.4 ± 10.5 vs 6.4 ± 6.5 years, p = 0.001. At 3 years follow-up (T1, 42 patients were involved and no significant changes in BMD were observed despite body weight increase (3.8 ± 6.1 kg. Interestingly, FM gain was a significant factor associated with BMD improvement at follow-up (8.0 ± 9.1 vs 3.0 ± 3.5 kg, p = 0.02. Our findings suggest that the restoration of normal bone values is not related to the increase of body weight, at least after 3 years. FM seems to play an important role in the pathophysiological mechanism of osteoporosis and osteopenia in AN.

  12. The comparing results of carcinoma between three-phase and delayed whole body bone scan

    International Nuclear Information System (INIS)

    Si Hongwei; Li Xianfeng

    2004-01-01

    Purpose: Three phase bone scan is an imaging technology in nuclear medicine, which composed of blood flow phase, blood pool phase and delayed phase and the last one is often performed in routine works in department of nuclear medicine. The purpose of this study is to evaluate the merit of three-phase bone scan.Methods: In this study, we chose 54 patients who were having an regional pain which caused by benign or malignant carcinoma that diagnosed by CT, X-ray, ECT, MRI or other examinations. The imaging were acquired simultaneously from both anterior and posterior views, after a bolus injection of 1110 MBq technetium-99m-labelled methylene diphosphonate (MDP), blood phase contains 20 frame sand 3 seconds per frame, blood pool phase contains 5 frames and 1 minute per frame, delayed phase was performed 2.5 hour later. According to the results of three-phase bone scan, the patients were divided into 2 groups: normal and abnormal groups. The abnormal group includes early phase positive,delay positive and all three phase positive sets. The comparing among the 3 sets were analyzed by chi-square test and other statistic means.Results: There were 54 patients who had suffered lung cancer, breast cancer and other cancer,involved in this study, 34 males and 20 females, ranged age 17 to 88 years, were normal in 15 cases,positive in 22 cases, the results in delayed phase were positive in 9 cases, blood flow and blood pool phase showed blood flow changes in 4 cases and soft tissue tumors were seen in 4 cases. Three phase bone scan was more sensitive than delayed whole body bone scan in detecting the abnormal sites (p 0.05) The sensitivity of detecting tumors in blood flow and blood pool phase,delayed phase were respectively lower than in three phase bone scan (p<0.001).Conclusion: It is more sensitivity of detecting tumor lesions in three phase bone scan than in delayed phase whole body bone scan and the changes of blood flow and soft tissue can be seen in three phase bone scan

  13. Body composition assessment in American Indian children.

    Science.gov (United States)

    Lohman, T G; Caballero, B; Himes, J H; Hunsberger, S; Reid, R; Stewart, D; Skipper, B

    1999-04-01

    Although the high prevalence of obesity in American Indian children was documented in several surveys that used body mass index (BMI, in kg/m2) as the measure, there is limited information on more direct measurements of body adiposity in this population. The present study evaluated body composition in 81 boys (aged 11.2+/-0.6 y) and 75 girls (aged 11.0+/-0.4 y) attending public schools in 6 American Indian communities: White Mountain Apache, Pima, and Tohono O'Odham in Arizona; Oglala Lakota and Sicangu Lakota in South Dakota; and Navajo in New Mexico and Arizona. These communities were participating in the feasibility phase of Pathways, a multicenter intervention for the primary prevention of obesity. Body composition was estimated by using a combination of skinfold thickness and bioelectrical impedance measurements, with a prediction equation validated previously in this same population. The mean BMI was 20.4+/-4.2 for boys and 21.1+/-5.0 for girls. The sum of the triceps plus subscapular skinfold thicknesses averaged 28.6+/-7.0 mm in boys and 34.0+/-8.0 mm in girls. Mean percentage body fat was 35.6+/-6.9 in boys and 38.8+/-8.5 in girls. The results from this study confirmed the high prevalence of excess body fatness in school-age American Indian children and permitted the development of procedures, training, and quality control for measurement of the main outcome variable in the full-scale Pathways study.

  14. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children.

    Science.gov (United States)

    Ambroszkiewicz, Jadwiga; Chełchowska, Magdalena; Szamotulska, Katarzyna; Rowicka, Grażyna; Klemarczyk, Witold; Strucińska, Małgorzata; Gajewska, Joanna

    2018-02-07

    Vegetarian diets contain many beneficial properties as well as carry a risk of inadequate intakes of several nutrients important to bone health. The aim of the study was to evaluate serum levels of bone metabolism markers and to analyze the relationships between biochemical bone markers and anthropometric parameters in children on vegetarian and omnivorous diets. The study included 70 prepubertal children on a lacto-ovo-vegetarian diet and 60 omnivorous children. Body composition, bone mineral content (BMC), and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry. Biochemical markers-bone alkaline phosphatase (BALP), C-terminal telopeptide of type I collagen (CTX-I), osteoprotegerin (OPG), nuclear factor κB ligand (RANKL), sclerostin, and Dickkopf-related protein 1 (Dkk-1)-were measured using immunoenzymatic assays. In vegetarians, we observed a significantly higher level of BALP ( p = 0.002) and CTX-I ( p = 0.027), and slightly lower spine BMC ( p = 0.067) and BMD ( p = 0.060) than in omnivores. Concentrations of OPG, RANKL, sclerostin, and Dkk-1 were comparable in both groups of children. We found that CTX-I was positively correlated with BMC, total BMD, and lumbar spine BMD in vegetarians, but not in omnivores. A well-planned vegetarian diet with proper dairy and egg intake does not lead to significantly lower bone mass; however, children following a lacto-ovo-vegetarian diet had a higher rate of bone turnover and subtle changes in bone regulatory markers. CTX-I might be an important marker for the protection of vegetarians from bone abnormalities.

  15. Body composition assessment in Taiwanese individuals with poliomyelitis.

    Science.gov (United States)

    Chang, Kwang-Hwa; Lai, Chien-Hung; Chen, Shih-Ching; Hsiao, Wen-Tien; Liou, Tsan-Hon; Lee, Chi-Ming

    2011-07-01

    To measure the changes in the total and regional body fat mass, and assess the clinical usefulness of the body mass index (BMI) in detecting overweight subjects with sequelae of poliomyelitis. Prospective, cross-sectional study. General community. Subjects with poliomyelitis (n=17; age range, 42-57y; mean, 47y; 12 men, 5 women) and able-bodied people (n=17) matched by sex, age, body weight, and body height participated in the study. Not applicable. Total and regional body composition was measured with dual-energy x-ray absorptiometry. Clinical characteristics such as blood pressure, serum biochemical studies, and habitual behaviors (daily cigarette smoking, alcohol consumption, and exercise regimen) of all participants were evaluated. Compared with able-bodied controls, subjects with poliomyelitis had a 50% greater total body fat mass, significant increases in the regional fat mass in every part of the body, and had the greatest increase of fat mass in the thorax. Nearly all the subjects (94%) with poliomyelitis were obese according to standards of body composition. However, one third of them had a BMI value of less than 25.0kg/m(2). People with poliomyelitis have a higher prevalence of obesity and a significant increase in total and regional fat mass. Current BMI underestimates the total body fat mass percentage compared with the control; therefore, a population-specific BMI should be used to address the prevalence of obesity in postpolio survivors. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Characterization of college football athletes and basketball: Anthropometry and Body Composition CARACTERIZACIÓN DE DEPORTISTAS UNIVERSITARIOS DE FÚTBOL Y BALONCESTO: ANTROPOMETRÍA Y COMPOSICIÓN CORPORAL

    Directory of Open Access Journals (Sweden)

    Pablo Juan Verdoy

    2011-01-01

    Full Text Available Abstract Introduction and Objectives. Anthropometric study of university population, comprising men and women college athletes participating in the Championships of Spain's 2008 College basketball and football. The aim of this study is to describe the body composition of male and female college athletes in football and basketball specialtiesMethods. This is a cross-sectional study with direct anthropometric measurements. These have been obtained by following the rules and techniques recommended by the International Group of Cineantropometry.Results. The college athletes generally have a higher percentage of muscle weight and fat mass and bone weight lower percentage of male college athletes. The male basketball players have a higher percentage of fat mass and bone weight and lower percentage of muscle weight in football players.  mong women, we found that basketball players have a higher percentage of bone weight and lower percentage of fat mass and muscle mass than soccer players.Conclusions. The competitive level of body composition changes substantially, primarily among females. It is important to have data on body composition at the college level.Keywords: Body Composition, Fat Mass, Muscle Mass, Weight Bone, Anthropometry.ResumenIntroducción y Objetivos. Estudio antropométrico de población universitaria, compuesta por deportistas universitarios de ambos sexos participantes en los Campeonatos de España Universitarios 2008 de baloncesto y fútbol. El objetivo de este estudio es describir la composición corporal de los deportistas universitarios de ambos sexos en las especialidades de fútbol y baloncesto.Métodos. Se trata de un estudio observacional transversal con mediciones antropométricas directas. Estas se han obtenido siguiendo las normas y técnicas recomendadas por el Grupo Internacional de Cineantropometría.Resultados. Las deportistas universitarias en general, presentan mayor porcentaje de peso muscular y de masa grasa, as

  17. Tensile behaviour and properties of a bone analogue composite (HA, HDPE) crosslinked by gamma radiation

    International Nuclear Information System (INIS)

    Romero, G.; Smolko, Eduardo E.

    2005-01-01

    A natural composite material, hydroxyapatite (HA) and high density polyethylene (HDPE) crosslinked by ionizing radiations is been developed as a bioactive analogue material for bone replacement. Mechanical properties of the composites irradiated up to 300 kGy under tensile tests was studied. Gel content and micrographs of different composite fractures are shown. (author)

  18. Bodies in Composition: Teaching Writing through Kinesthetic Performance

    Science.gov (United States)

    Butler, Janine

    2017-01-01

    This article calls on composition instructors to reflect consciously on how we can use our bodies kinesthetically to perform multimodal writing processes through gestural, visual, and spatial modes. Teaching writing through kinesthetic performance can show students that our bodies are being constructed via interaction with audiences, akin to the…

  19. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    Science.gov (United States)

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016

  20. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Zhou YY

    2015-04-01

    Full Text Available Yuanyuan Zhou,1,2 Hongchang Yao,1 Jianshe Wang,1 Dalu Wang,1 Qian Liu,1 Zhongjun Li11College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China; 2Institute of Enviromental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People’s Republic of ChinaAbstract: In bone tissue engineering, collagen/hydroxyapatite (HAP fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the

  1. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    Science.gov (United States)

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  2. Body composition in chemotherapy: the promising role of CT scans.

    Science.gov (United States)

    Prado, Carla M M

    2013-09-01

    Reducing cancer-treatment toxicity was a largely ignored research agenda, which is now emerging as an active area of investigation. Studies of human body composition using computerized tomography scans have provided proof-of-concept that variability in drug disposition and toxicity profiles may be partially explained by different features in body composition. Collectively, studies suggest that skeletal muscle depletion (regardless of body weight) is an independent predictor of severe toxicity, affecting cancer treatment and its outcomes. Although precise mechanisms are unknown, pharmacokinetic parameters such as variations in volume of distribution and increased drug exposure may explain such findings. Computerized tomography scans are readily available in clinical databases of diagnostic images and provide feasible, reliable, and highly differentiated measurements of body composition. These images should be used to optimize screening and management of patients in order to prevent severe toxicity, and to improve the efficacy and cost-efficiency of chemotherapy treatments.

  3. Changes in body composition of cancer patients following combined nutritional support

    International Nuclear Information System (INIS)

    Cohn, S.H.; Vartsky, D.; Vaswani, A.N.; Sawitsky, A.; Rai, K.; Gartenhaus, W.; Yasumura, S.; Ellis, K.J.

    1982-01-01

    The effects of combined nutritional support (parenteral, enteral, and oral) were measured in cancer patients unable to maintain normal alimentation.Changes in body composition were quantified by measurement of total body levels of nitrogen, potassium, water, and fat. The protein-calorie intake of the patients was also evaluated by dietary survey (4-day recall). Standard anthropometric and biochemical measurements for nutritional assessment were obtained for comparison. The dietary evaluation indicated that the dietary supplementation for all patients was more than adequate to meet their energy requirements. Determination of body composition indicated that change in body weight was equal to the sum of the changes in body protein, total body water, and total body fat. Information on the nature of the tissue gained was obtained by comparison of body composition data with the ratio of protein:water:lean body mass for normal tissue. The mean gain of protein in the cancer patients was quite small (0.3-0.6 kg). The main change in body weight appeared to be the result of gains in body water and body fat. The total body nitrogen to potassium ratio served to define the extent of tissue anabolism following hyperalimentation. The ratio dropped in the cancer patients following hyperalimentation toward the value of the control subjects on ad libitum diets. Total body nitrogen was determined by prompt gamma neutron activation analysis, total body potassium by whole-body counting

  4. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism.

    Science.gov (United States)

    Pappalardo, Giulia; Almeida, Ana; Ravasco, Paula

    2015-04-01

    The objective of this review article is to present the most recent intervention studies with EPA on nutritional outcomes in cancer patients, e.g. nutritional status, weight & lean body mass. For this purpose a PubMed(®) and MedLine(®) search of the published literature up to and including January 2014 that contained the keywords: cancer, sarcopenia, EPA, ω-3 fatty acids, weight, intervention trial, muscle mass was conducted. The collected data was summarized and written in text format and in tables that contained: study design, patient' population, sample size, statistical significance and results of the intervention. The paper will cover malignancy, body composition, intervention with EPA, physiological mechanisms of action of EPA, effect of EPA on weight and body composition, future research. In cancer patients deterioration of muscle mass can be present regardless of body weight or Body Mass Index (BMI). Thus, sarcopenia in cancer patients with excessive fat mass (FM), entitled sarcopenic obesity, has gained greater relevance in clinical practice; it can negatively influence patients' functional status, tolerance to treatments & disease prognosis. The search for an effective nutritional intervention that improves body composition (preservation of muscle mass and muscle quality) is of utmost importance for clinicians and patients. The improvement of muscle quality is an even more recent area of interest because it has probable implications in patients' prognosis. Eicosapentaenoic acid (EPA) has been identified as a promising nutrient with the wide clinical benefits. Several mechanisms have been proposed to explain EPA potential benefits on body composition: inhibition of catabolic stimuli by modulating pro-inflammatory cytokines production and enhancing insulin sensitivity that induces protein synthesis; also, EPA may attenuate deterioration of nutritional status resulting from antineoplastic therapies by improving calorie and protein intake as well. Indeed

  5. TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

    Science.gov (United States)

    Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.

    2012-09-01

    Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

  6. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    Science.gov (United States)

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  7. Bone turnover markers during pubertal development: relationships with growth factors and adipocytokines.

    Science.gov (United States)

    Jürimäe, Jaak; Mäestu, Jarek; Jürimäe, Toivo

    2010-01-01

    The rapid increase in skeletal mass that occurs during puberty is caused by increases in longitudinal growth as well as cortical thickness. The measurement of growth changes during puberty using two-dimensional (dual-energy X-ray absorptiometry) and/or three-dimensional (computed tomography, magnetic resonance imaging) measurement devices provides only a static representation of bone tissue parameters. The measurement of bone turnover markers provides a more dynamic picture of the nature of bone tissue that can be repeated at much shorter intervals during puberty. The bone turnover markers are products of osteoblasts and osteoclasts which can be measured in urine or blood. The increase in different markers of bone turnover coincides with the pubertal growth spurt and thereafter markers decline until they converge into adult values. The initiation of puberty is accompanied by increases in androgens and estrogens. The effects of sex hormones on bone mineral accrual are mediated mainly by growth hormone and insulin-like growth factor-1, but they also exert a direct effect on bone metabolism. Important determinants of bone mineral accrual during puberty include optimal nutritional status, body composition parameters and physical activity pattern. All of these determinants are related to the state of energy balance, while peripheral indicators of energy balance, such as different growth factors and adipocytokines, may also have a positive influence of the growing skeleton. Taken together, bone mineral accrual during puberty is a complex interaction between physical activity pattern, various body composition parameters, specific growth factors and adipocytokines, and also sex hormones. Copyright © 2010 S. Karger AG, Basel.

  8. Effects of high-intensity strength interval training program on body composition

    OpenAIRE

    Juránková, Michaela; Bílý, Jiří; Hrazdíra, Eduard

    2015-01-01

    The aim of this work was to examine effects of 10-week high-intensity strength interval training (HIIT) program on body composition. Seven women (31.0 ± 6.0 years old, 65.7 ± 9.8 kg body weight, 23.6 ± 2.8 kg*m−2 BMI, 18.6 ± 5.8 kg body fat, 26.0 ± 3.4 kg muscle mass) completed intervention program. We performed an analyze of body composition before and after training program. We focused especially on body fat and muscle mass. Each session consisted of short term bouts (until 30 s duration) w...

  9. Body composition and habitual and match-day dietary intake of the ...

    African Journals Online (AJOL)

    Of all the MVC rugby players (N=35), 18 completed the sections on body composition and match-day dietary intake, while 11 completed the habitual dietary intake section. Body composition data were collected by an International Society for the Advancement of Kinanthropometry-accredited biokineticist. Habitual dietary ...

  10. Measuring Nutritional Status, Hydration and Body Composition Changes in Acute Stroke

    OpenAIRE

    Kafri, Mohannad

    2013-01-01

    Background: Dysphagia and cognitive problems, both common after stoke, may affect dietary intake increasing the risk of malnutrition. Malnutrition has adverse effects on body composition especially in conditions that escalate the stress response in the body and may be associated with immobility such as stroke. Study objective: The objective of my study was to understand the prognosis of malnutrition on post cardiovascular disease (CV) outcomes, understand body composition ch...

  11. Use of D-T-produced fast neutrons for in vivo body composition analysis: a reference method for nutritional assessment in the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Kehayias, J.J. [USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St., Boston, 02111-1524 MA (United States)

    2004-05-01

    Body composition has become the main outcome of many nutritional intervention studies including osteoporosis, malnutrition, obesity, AIDS, and aging. Traditional indirect body composition methods developed with healthy young adults do not apply to the elderly or diseased. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. Non-bone phosphorus for muscle is measured by the {sup 31}P(n,{alpha}){sup 28}Al reaction, and nitrogen for protein via the {sup 14}N(n,2n){sup 13}N fast neutron reaction. Inelastic neutron scattering is used to measure total body carbon and oxygen. Body fat is derived from carbon after correcting for contributions from protein, bone, and glycogen. Carbon-to-oxygen ratio (C/O) is used to measure the distribution of fat and lean tissue in the body and to monitor small changes of lean mass. A sealed, D-T neutron generator is used for the production of fast neutrons. Carbon and oxygen mass and their ratio are measured in vivo at a radiation exposure of less than 0.06 mSv. Gamma-ray spectra are collected using large BGO detectors and analyzed for the 4.43 MeV state of carbon and 6.13 MeV state of oxygen, simultaneously with the irradiation. P and N analysis by delayed fast neutron activation is performed by transferring the patient to a shielded room equipped with an array of NaI(Tl) detectors. A combination of measurements makes possible the assessment of the ''quality'' of fat-free mass. The neutron generator system is used to evaluate the efficacy of new treatments, to study mechanisms of lean tissue depletion with aging, and to investigate methods for preserving function and quality of life in the elderly. It is also used as a reference method for the validation of portable instruments of nutritional assessment. (orig.)

  12. Comparison of body composition between professional sportswomen and apparently healthy age- and sex-matched controls

    Directory of Open Access Journals (Sweden)

    Raman K Marwaha

    2015-01-01

    Full Text Available Introduction: In view of the relationship between physical activity and nutrition on body composition, we assessed lean and fat mass and BMC (total and regional in professional Indian sportswomen and compared it with apparently healthy age- and sex-matched females. Materials and Methods: This cross-sectional study included 104 sportswomen and an equal number of age-matched normal healthy females (controls. They were evaluated for anthropometry and body composition (fat, lean mass, and bone mineral content (BMC by DXA. Results: Mean age (19.1 ± 1.3 vs. 19.4 ± 1.5 years and body mass index (21.34 ± 3.02 vs. 21.26 ± 4.05 kg/m 2 were comparable in both groups. Sportswomen had higher intake of energy, macronutrients, calcium, phosphorus and magnesium. Total lean mass (33.67 ± 3.49 vs. 31.14 ± 3.52 kg, P < 0.0001, appendicular skeletal muscle index (5.84 ± 0.57 vs. 5.46 ± 0.63 kg/m 2 ; P < 0.0001 and BMC (2.27 ± 0.32 vs. 2.13 ± 0.34 kg, P < 0.002 was significantly higher and percentage fat mass was significantly lower (33.1 ± 7.5 vs. 37.0 ± 8.3; P < 0.0001 among sportswomen when compared to controls. Conclusions: Indian sportswomen have a higher total and regional lean mass, BMC, and lower percentage fat mass when compared with healthy females. Physical activity, energy, protein and calcium intake were positively associated with lean mass and BMC.

  13. Body Mass Index and Body Composition with Deuterium in Costa Rican Children

    International Nuclear Information System (INIS)

    Quintana-Guzmán, E.; Salas-Chaves, M. D. P.

    2015-01-01

    Body Mass Index (BMI) has been adopted as international measure for measuring adiposity in children with the disadvantage that it varies with age, sex and sexual maturation with no differentiation between fat mass and mass free of grease. The analysis of body composition allow to know if the overweight is due to fatty tissue being the deuterium isotope dilution a validated reference method using Infrared Spectrometry Transformed of Fourier (FTIR). We studied a total 118 boys and girls from 6 to 9 years old getting the values of z score of BMI for age and percentage of fat mass by FTIR. The results obtained in this study demonstrated that Costa Rica does not escape to the global problem of childhood obesity founding by BMI 18.6% of overweight and 10% of obesity and by body composition 9% of overweight and 57% of obesity. Isotopic deuterium dilution method demonstrated in this study to be more suitable for the analysis of obesity and overweight in children since BMI presented false positive and false negative results giving less accurate information of adiposity of the subject. (author)

  14. Alterations of body mass index and body composition in atomic bomb survivors.

    Science.gov (United States)

    Tatsukawa, Y; Misumi, M; Yamada, M; Masunari, N; Oyama, H; Nakanishi, S; Fukunaga, M; Fujiwara, S

    2013-08-01

    Obesity, underweight, sarcopenia and excess accumulation of abdominal fat are associated with a risk of death and adverse health outcomes. Our aim was to determine whether body mass index (BMI) and body composition, assessed with dual-energy X-ray absorptiometry (DXA), are associated with radiation exposure among atomic bomb (A-bomb) survivors. This was a cross-sectional study conducted in the Adult Health Study of the Radiation Effects Research Foundation. We examined 2686 subjects (834 men and 1852 women), aged 48-89 years (0-40 years at A-bomb exposure), for BMI analysis. Among them, 550 men and 1179 women underwent DXA in 1994-1996 and were eligible for a body composition study. After being adjusted for age and other potential confounding factors, A-bomb radiation dose was associated significantly and negatively with BMI in both sexes (P=0.01 in men, P=0.03 in women) and appendicular lean mass (Pbomb radiation exposure. We will need to conduct further studies to evaluate whether these alterations affect health status.

  15. Estimating body weight and body composition of chickens by using noninvasive measurements.

    Science.gov (United States)

    Latshaw, J D; Bishop, B L

    2001-07-01

    The major objective of this research was to develop equations to estimate BW and body composition using measurements taken with inexpensive instruments. We used five groups of chickens that were created with different genetic stocks and feeding programs. Four of the five groups were from broiler genetic stock, and one was from sex-linked heavy layers. The goal was to sample six males from each group when the group weight was 1.20, 1.75, and 2.30 kg. Each male was weighed and measured for back length, pelvis width, circumference, breast width, keel length, and abdominal skinfold thickness. A cloth tape measure, calipers, and skinfold calipers were used for measurement. Chickens were scanned for total body electrical conductivity (TOBEC) before being euthanized and frozen. Six females were selected at weights similar to those for males and were measured in the same way. Each whole chicken was ground, and a portion of ground material of each was used to measure water, fat, ash, and energy content. Multiple linear regression was used to estimate BW from body measurements. The best single measurement was pelvis width, with an R2 = 0.67. Inclusion of three body measurements in an equation resulted in R2 = 0.78 and the following equation: BW (g) = -930.0 + 68.5 (breast, cm) + 48.5 (circumference, cm) + 62.8 (pelvis, cm). The best single measurement to estimate body fat was abdominal skinfold thickness, expressed as a natural logarithm. Inclusion of weight and skinfold thickness resulted in R2 = 0.63 for body fat according to the following equation: fat (%) = 24.83 + 6.75 (skinfold, ln cm) - 3.87 (wt, kg). Inclusion of the result of TOBEC and the effect of sex improved the R2 to 0.78 for body fat. Regression analysis was used to develop additional equations, based on fat, to estimate water and energy contents of the body. The body water content (%) = 72.1 - 0.60 (body fat, %), and body energy (kcal/g) = 1.097 + 0.080 (body fat, %). The results of the present study

  16. Single walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. Copyright © 2013 Orthopaedic Research Society.

  17. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration

    NARCIS (Netherlands)

    Danoux, Charlene; Barbieri, D.; Yuan, Huipin; de Bruijn, Joost Dick; van Blitterswijk, Clemens; Habibovic, Pamela

    2014-01-01

    Synthetic bone graft substitutes based on composites consisting of a polymer and a calcium-phosphate (CaP) ceramic are developed with the aim to satisfy both mechanical and bioactivity requirements for successful bone regeneration. In the present study, we have employed extrusion to produce a

  18. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    Science.gov (United States)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  19. Dietary strategies and body composition in elite weightlifting: Systematic Review

    Directory of Open Access Journals (Sweden)

    Alejandro Martínez-Rodríguez

    2017-10-01

    Full Text Available Introduction: There is little literature that showed the nutritional bases to optimize weightlifting performance. The objective was to perform a systematic review of the body composition and nutritional composition of diets in elite weightlifting athletes. Material and Methods: Articles published in Pubmed, Web of Science and Sport Discuss were reviewed following PRISMA Statement. The process for selecting studies was performed duplicated by two researchers in two stages (screening and application of eligibility criteria. A qualitative synthesis of the main characteristics and findings was made. The quality of studies was assessed. Results: Of the 610 articles found, 8 met the inclusion criteria, which were the studies performed in elite or high-level menopausal women, and information on dietary habits and/or body composition. Body composition identified that the percentage of fat mass was around 15%. A caloric intake of 4080.65±1602.69kcal, a protein intake of 17.29±3.2% of total daily energy (TDE, 42.48±5.6% TDE of carbohydrates and a 36.1±9.75% TDE of fats. A suboptimal dietary profile is suggested, showing an excess in fat intake, which could explain the excess body fat observed in some. Athletes’ protein intake and carbohydrates were within the recommended ranges except for 2 studies. Conclusions: An incorrect diet on the part of the elite weightlifting athletes was observed, which could condition their body composition negatively. The need for advice and intervention by a dietitian-nutritionist professionals was observed.

  20. Body composition changes in females treated for breast cancer: a review of the evidence.

    Science.gov (United States)

    Sheean, Patricia M; Hoskins, Kent; Stolley, Melinda

    2012-10-01

    Body composition changes cannot be precisely captured using body weight or body mass index measures. Therefore, the primary purpose of this review was to characterize the patterns of body composition change in females treated for breast cancer including only studies that utilize imaging technologies to quantify adipose tissue and lean body mass (LBM). We reviewed PubMed for studies published between 1971 and 2012 involving females diagnosed with breast cancer where computed axial tomography , dual-energy X-ray absorptiometry, or magnetic resonance imaging were employed for body composition assessment. Of the initial 440 studies, 106 papers were evaluated and 36 papers met all eligibility criteria (15 observational and 21 intervention trials). Results of these studies revealed that body weight did not consistently increase. Importantly, studies also showed that body weight did not accurately depict changes in lean or adipose tissues. Further findings included that sarcopenic obesity as a consequence of breast cancer treatment was not definitive, as menopausal status may be a substantial moderator of body composition. Overall, the behavioral interventions did not exhibit consistent or profound effects on body composition outcomes; approximately half showed favorable influence on adiposity while the effects on LBM were not apparent. The use of tamoxifen had a clear negative impact on body composition. The majority of studies were conducted in predominantly white survivors, highlighting the need for trials in minority populations. Collectively, these studies were limited by age, race, and/or menopause status matched control groups, overall size, and statistical power. Very few studies simultaneously collected diet and exercise data-two potential factors that impact body composition. Future breast cancer trials should prioritize precise body composition methodologies to elucidate how these changes impact recurrence, prognosis, and mortality, and to provide clinicians

  1. [Analysis of the body composition of Spanish women with fibromyalgia].

    Science.gov (United States)

    Aparicio, Virginia A; Ortega, Francisco B; Heredia, José M; Carbonell-Baeza, Ana; Delgado-Fernández, Manuel

    2011-01-01

    To describe the anthropometric profile and body composition of women from Southern Spain diagnosed with fibromyalgia (FM) and to compare the observed values with values from other studies conducted on FM patients and with national reference values. The body composition of 104 women diagnosed with FM was assessed using an eight-electrode impedance meter. The reliability of the body composition measurement was tested in a randomly selected sub-sample (n=28). The reliability study showed a test-retest systematic error close to zero in most of the parameters studied. The women with FM who were studied had a mean weight of 71.3±13.4 kg, height of 158±6 cm, body mass index of 28.6±5.1 kg/m(2), body fat mass of 38.6±7.6%, total body water of 31.6±3.8 l and muscle mass of 23.4±3.0 kg. In general, there were no substantial differences in weight and body mass index between women with FM and those analyzed in other Spanish and European studies involving FM patients, nor when they were compared with regional or national reference values. However, the prevalence of obesity in the women with FM under study was 33.7%, a higher figure than that from the national reference data for obesity in similarly aged women (i.e. 26,4%). The results suggest that obesity is a common condition in women diagnosed with FM, its prevalence in this population being higher than the national reference values. This study provides detailed information about the body composition characteristics of women with FM. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  2. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.

    Science.gov (United States)

    Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng

    2018-08-01

    In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.

  3. The Role of Nutrition in the Changes in Bone and Calcium Metabolism During Space Flight

    Science.gov (United States)

    Morey-Holton, Emily R.; Arnaud, Sara B.

    1995-01-01

    On Earth, the primary purpose of the skeleton is provide structural support for the body. In space, the support function of the skeleton is reduced since, without gravity, structures have only mass and no weight. The adaptation to space flight is manifested by shifts in mineral distribution, altered bone turnover, and regional mineral deficits in weight-bearing bones. The shifts in mineral distribution appear to be related to the cephalic fluid shift. The redistribution of mineral from one bone to another or to and from areas in the same bone in response to alterations in gravitational loads is more likely to affect skeletal function than quantitative whole body losses and gains. The changes in bone turnover appear dependent upon changes in body weight with weight loss tending to increase bone resorption as well as decrease bone formation. During bedrest, the bone response to unloading varies depending upon the routine activity level of the subjects with more active subjects showing a greater suppression of bone formation in the iliac crest with inactivity. Changes in body composition during space flight are predicted by bedrest studies on Earth which show loss of lean body mass and increase tn body fat in adult males after one month. In ambulatory studies on Earth, exercising adult males of the same age, height, g weight, body mass index, and shoe size show significantly higher whole body mineral and lean body mass. than non-exercising subjects. Nutritional preference appears to change with activity level. Diet histories in exercisers and nonexercisers who maintain identical body weights show no differences in nutrients except for slightly higher carbohydrate intake in the exercisers. The absence of differences in dietary calcium in men with higher total body calcium is noteworthy. In this situation, the increased bone mineral content was facilitated by the calcium endocrine system. This regulatory system can be by-passed by raising dietary calcium. Increased

  4. MRI-guided attenuation correction in whole-body PET/MR. Assessment of the effect of bone attenuation

    International Nuclear Information System (INIS)

    Akbarzadeh, A.; Ay, M.R.; Ahmadian, A.; Riahi Alam, N.; Zaidi, H.

    2013-01-01

    Hybrid positron emission tomography (PET)/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies. (author)

  5. Use of tritiated water for estimating body composition in grazing ewes

    International Nuclear Information System (INIS)

    Russel, A.J.F.; Foot, J.Z.; McFarlane, D.M.

    1982-01-01

    Tritiated water was used to estimate total body water, body composition and water turnover of non-pregnant, pregnant, non-lactating and lactating grazing sheep. Body composition was estimated from equilibrated and extrapolated values of tritiated water space. These methods both overestimated the total body water measured directly. Body fat could be predicted satisfactorily from tritiated water space within the physiological states of ewes, i.e. lactating, pregnant, etc., although for lactating ewes the error of prediction is greater. It appears inadvisable at this stage to use equations derived from all classes of ewes to estimate body fat in ewes of any one physiological state. Water turnover varied, with the physiological state being highest for lactating ewes. (author)

  6. Body composition of freshwater Wallago attu in relation to body size ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... water content. There was no significant influence of sex on body composition of W. attu. .... determined in duplicate for each fish using 1 g sub samples in a ... fish was calculated using a formula K = 100 x W/L3 by the method.

  7. International society of sports nutrition position stand: diets and body composition

    OpenAIRE

    Aragon, Alan A.; Schoenfeld, Brad J.; Wildman, Robert; Kleiner, Susan; VanDusseldorp, Trisha; Taylor, Lem; Earnest, Conrad P.; Arciero, Paul J.; Wilborn, Colin; Kalman, Douglas S.; Stout, Jeffrey R.; Willoughby, Darryn S.; Campbell, Bill; Arent, Shawn M.; Bannock, Laurent

    2017-01-01

    Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature regarding the effects of diet types (macronutrient composition; eating styles) and their influence on body composition. The ISSN has concluded the following. 1) There is a multitude of diet types and eating styles, whereby numerous subtypes fall under each major dietary archetype. 2) All body composition assessment methods have strengths and limi...

  8. Body mass index and body composition among rescue firefighters personnel in Selangor, Malaysia

    Science.gov (United States)

    Rahimi, Nor Atiqah; Sedek, Razalee; Teh, Arnida Hani

    2016-11-01

    Obesity is a major public health problem in general population and there is no exception for firefighters. This disorder is definitely a burden for firefighters as they needed to be physically fit in order to work in dangerous situation and extinguishing fires. The purposes of this study were to determine physical characteristics and body composition among Malaysian Firefighters (MF) and to explore their association. This cross-sectional study involved 330 rescue firefighters aged between 20-50 years old from nine different districts in Selangor conducted between August and November 2015. Anthropometric measurements included height, weight and waist circumference (WC). Body composition was measured using bioelectrical impedance. The mean height, weight, body mass index (BMI), WC and body fat percentage were 169.4±5.3 cm, 74.5±12.2 kg, 25.9±3.82 kg/m2, 90.7±48.3 cm and 25.8±6.2 % respectively. The results also showed that 0.6% of them were underweight, 41.5% were normal, 44.8% were overweight and 13% were obese. The percentage of 34.8% firefighters with WC values of more than 90 cm means that they were at greater risk to have cardiovascular and diabetes disease. Body composition analysis showed that 75.5% of the subjects have high body fat level, 19.7% subjects were in healthy range but only 4.8% were considered as lean subjects. BMI was highly correlated with weight (r=0.917, p<0.01), WC (r=0.858, p<0.01) and body fat percentage (r=0.757, <0.01). Body fat percentage also showed to have a high correlation with BMI (r=0.757, p<0.01) and WC (r=0.693, p<0.01). Furthermore, overweight and obesity were found to be more prevalent among firefighters personnel of older age, married, less educated and have longer duration of services. It can be concluded that more than half of the firefighter personnel were either overweight or obese and 35% of them were at greater risk of having non-communicable diseases. This study provides useful information and serves as a source of

  9. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications.

    Science.gov (United States)

    Meischel, M; Eichler, J; Martinelli, E; Karr, U; Weigel, J; Schmöller, G; Tschegg, E K; Fischerauer, S; Weinberg, A M; Stanzl-Tschegg, S E

    2016-01-01

    Aim of this study was to evaluate the response of bone to novel biodegradable polymeric composite implants in the femora of growing rats. Longitudinal observation of bone reaction at the implant site (BV/TV) as well as resorption of the implanted pins were monitored using in vivo micro-focus computed tomography (µCT). After 12, 24 and 36 weeks femora containing the implants were explanted, scanned with high resolution ex vivo µCT, and the surface roughness of the implants was measured to conclude on the ingrowth capability for bone tissue. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to observe changes on the surface of Polyhydroxybutyrate (PHB) during degradation and cell ingrowth. Four different composites with zirconium dioxide (ZrO2) and Herafill(®) were compared. After 36 weeks in vivo, none of the implants did show significant degradation. The PHB composite with ZrO2 and a high percentage (30%) of Herafill® as well as the Mg-alloy WZ21 showed the highest values of bone accumulation (increased BV/TV) around the implant. The lowest value was measured in PHB with 3% ZrO2 containing no Herafill®. Roughness measurements as well as EDX and SEM imaging could not reveal any changes on the PHB composites׳ surfaces. Biomechanical parameters, such as the adhesion strength between bone and implant were determined by measuring the shear strength as well as push-out energy of the bone-implant interface. The results showed that improvement of these mechanical properties of the studied PHBs P3Z, P3Z10H and P3Z30H is necessary in order to obtain appropriate load-bearing material. The moduli of elasticity, tensile strength and strain properties of the PHB composites are close to that of bone and thus promising. Compared to clinically used PLGA, PGA and PLA materials, their additional benefit is an unchanged local pH value during degradation, which makes them well tolerated by cells and immune system. They might be used

  10. Body composition as measured by in vivo neutron activation analysis

    International Nuclear Information System (INIS)

    Cohn, S.H.; Sawitsky, A.; Vartsky, D.; Yasumura, S.; Zanzi, I.; Gartenhaus, W.; Ellis, K.J.

    1979-01-01

    A large scale study is currently underway on the changes in body composition resulting from the cachexia of malignancy. The ultimate objective of the overall project is to assess the changes in body composition associated with hyperalimentation and other modes of nutritional support to cancer patients. The first phase of this study is now in progress. In this phase, a study is being made of a control group of normal patients to provide baseline data against which data from cancer patients can be evaluated. Total body nitrogen and potassium are measured in a group of normal men and women, and are analyzed as a function of age. Additionally, changes in skeletal mass (total body calcium) are also recorded, and body water is measured simultaneously with the use of tritiated water

  11. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

    Science.gov (United States)

    Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.

    2018-03-01

    Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

  12. Bone healing and bone substitutes.

    Science.gov (United States)

    Costantino, Peter D; Hiltzik, David; Govindaraj, Satish; Moche, Jason

    2002-02-01

    With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

  13. Fabrication and Characterization of Collagen-Immobilized Porous PHBV/HA Nano composite Scaffolds for Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Jin-Young, B.; Zhi-Cai, X.; Giseop, K.; Keun-Byoung, Y.; Soo-Young, P.; Lee, S.P.; Inn-Kyu, K.

    2012-01-01

    The porous composite scaffolds (PHBV/HA) consisting of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and hydroxyapatite (HA) were fabricated using a hot-press machine and salt-leaching. Collagen (type I) was then immobilized on the surface of the porous PHBV/HA composite scaffolds to improve tissue compatibility. The structure and morphology of the collagen-immobilized composite scaffolds (PHBV/HA/Col) were investigated using a scanning electron microscope (SEM), Fourier transform infrared (FTIR), and electron spectroscopy for chemical analysis (ESCA). The potential of the porous PHBV/HA/Col composite scaffolds for use as a bone scaffold was assessed by an experiment with osteoblast cells (MC3T3-E1) in terms of cell adhesion, proliferation, and differentiation. The results showed that the PHBV/HA/Col composite scaffolds possess better cell adhesion and significantly higher proliferation and differentiation than the PHBV/HA composite scaffolds and the PHBV scaffolds. These results suggest that the PHBV/HA/Col composite scaffolds have a high potential for use in the field of bone regeneration and tissue engineering.

  14. Study of whole-body bone mineral density measurement in 6 to 19 year-old students in Beijing

    International Nuclear Information System (INIS)

    Liu Jiachang; Ouyang Qiaohong; Zhang Jin; Liu Qing; Teng Xiaomei

    2003-01-01

    Objective: To observe the changes of bone mineral density (BMD) in young boys and girls from 6-19 years old in Beijing area. Methods: 1139 healthy young boys and girls undergoing whole body scanning with dual energy X-ray bone densitometer were divided into different groups according to sex and age. Results: There were no significant difference in body height, weight, BMD and bone mineral contents (BMC) between boys and girls from 6 to 10 years old. The annual growth rates of body height, BMD, and BMC were the fastest in girls from 6 to 14 and boys from 6 to 16 years old, respectively. Thereafter, the annual growth rates of body height, BMD, and BMC didn't significantly increase in boys and girls. There were two fast-growth periods in BMD growth stage, being at 11 and 14 years old in girls, and at 12 and 15 years old in boys. The total body BMD was significantly correlated with the height in girls under 12 years (P < 0.001, r = 0.485-0.575) and in boys under 14 years (P < 0.01-0.001, r=0.402-0.814). Afterwards, no marked correlation was found between BMD and the height in various groups. Nevertheless, the body weight was always markedly correlated with BMD in boys and girls (P < 0.001, r=0.654-0.864). Conclusions: The body height and BMD in young boys and girls had their own characteristics, and the important growth periods were under 14 years in girls and under 16 years in boys

  15. Inability of donor total body irradiation to prolong survival of vascularized bone allografts: Experimental study in the rat

    International Nuclear Information System (INIS)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.; Weiland, A.J.

    1990-01-01

    At the present time, the toxic side effects of recipient immunosuppression cannot be justified for human non-vital organ transplantation. Total body irradiation has proven effective in ablating various bone-marrow-derived and endothelial immunocompetent cellular populations, which are responsible for immune rejection against donor tissues. Irradiation at a dose of 10 Gy was given to donor rats six days prior to heterotopic transplantation of vascularized bone allografts to host animals. Another group of recipient rats also received a short-term (sixth to fourteenth day after grafting), low dose of cyclosporine. Total body irradiation was able merely to delay rejection of grafts across a strong histocompatibility barrier for one to two weeks, when compared to nonirradiated allografts. The combination of donor irradiation plus cyclosporine did not delay the immune response, and the rejection score was similar to that observed for control allografts. Consequently, allograft viability was quickly impaired, leading to irreversible bone damage. This study suggest that 10 Gy of donor total body irradiation delivered six days prior to grafting cannot circumvent the immune rejection in a vascularized allograft of bone across a strong histocompatibility barrier

  16. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Solís, C.; Canto, C.E.; Lucio, O.G. de [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F. (Mexico); Chavez, E. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, 07738 México D.F. (Mexico); Rocha, M.F.; Villanueva, O.; Torreblanca, C.A. [Centro INAH Zacatecas, Miguel Auza No. 205, Col. Centro, Zacatecas/Zacatecas CP 98000 (Mexico)

    2014-08-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: {sup 14}C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The {sup 14}C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment.

  17. Radiocarbon dating and compositional analysis of pre-Columbian human bones

    International Nuclear Information System (INIS)

    Andrade, E.; Solís, C.; Canto, C.E.; Lucio, O.G. de; Chavez, E.; Rocha, M.F.; Villanueva, O.; Torreblanca, C.A.

    2014-01-01

    Analysis of ancient human bones found in “El Cóporo”, an archaeological site in Guanajuato, Mexico; were performed using a multi techniques scheme: 14 C radiocarbon dating, IBA (Ion Beam Analysis), SEM-EDS (Scanning Electron Microscope Energy Dispersive X-ray Spectroscopy). We measured the elemental composition of the bones, especially some with a superficial black pigmentation. Soil samples collected from the burial place were also analyzed. The 14 C dating was performed with a new High Voltage Europe 1 MV Tandentron Accelerator Mass Spectrometer (AMS) recently installed in the IFUNAM (Instituto de Física, Universidad Nacional Autónoma de México). The radiocarbon dating allowed us to determine the date of death of the individual in a period between the year 890 and 975 AD, which is consistent with the late period of the Cóporo civilization. The element sample analysis of bones with the surface black pigmentation show higher levels of Fe, Mn and Ba compared when bone’s black surface was mechanically removed. These three elements were found in soil samples from the skeleton burial place. These results indicate more likely that the bone black coloration is due to a postmortem alteration occurring in the burial environment

  18. The role of total body irradiation in preparation for bone marrow transplantation in acute leukaemia. A review

    International Nuclear Information System (INIS)

    Zwaan, F.E.

    1979-01-01

    From extrapolation obtained from animal studies and radiation accidents, it is assumed that for man the LD 50 (30) will be between 300-500 rads total body irradiation (TBI) and the LD 100 at least 600 rads TBI. A dose of 1000 rads TBI is generally used in man for conditioning for bone marrow transplantation. In acute leukemia, total body irradiation is usually associated with cytoreductive chemotherapy. In Seattle 110 patients underwent bone marrow transplantation for acute leukemia in relapse. 15 patients became long term survivors. The main cause of failure were GVH, interstitial pneumonitis and leukemic relapse. New attempts are being made to improve the results: (1) better cytoreductive therapy preceding transplantation, (2) bone marrow transplantation during remission of the disease, (3) prevention of interstitial pneumonitis by modifications of the TBI technique

  19. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    Science.gov (United States)

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species.

    Science.gov (United States)

    Toppe, Jogeir; Albrektsen, Sissel; Hope, Britt; Aksnes, Anders

    2007-03-01

    The chemical composition, content of minerals and the profiles of amino acids and fatty acids were analyzed in fish bones from eight different species of fish. Fish bones varied significantly in chemical composition. The main difference was lipid content ranging from 23 g/kg in cod (Gadus morhua) to 509 g/kg in mackerel (Scomber scombrus). In general fatty fish species showed higher lipid levels in the bones compared to lean fish species. Similarly, lower levels of protein and ash were observed in bones from fatty fish species. Protein levels differed from 363 g/kg lipid free dry matter (dm) to 568 g/kg lipid free dm with a concomitant inverse difference in ash content. Ash to protein ratio differed from 0.78 to 1.71 with the lowest level in fish that naturally have highest swimming and physical activity. Saithe (Pollachius virens) and salmon (Salmo salar) were found to be significantly different in the levels of lipid, protein and ash, and ash/protein ratio in the bones. Only small differences were observed in the level of amino acids although species specific differences were observed. The levels of Ca and P in lipid free fish bones were about the same in all species analyzed. Fatty acid profile differed in relation to total lipid levels in the fish bones, but some minor differences between fish species were observed.

  1. Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair

    International Nuclear Information System (INIS)

    Jiang Liuyun; Li Yubao; Zhang Li; Wang Xuejiang

    2009-01-01

    The composite biomaterial made from nano-hydroxyapatite(n-HA) and chitosan(CS) cross-linked with carboxymethyl cellulose(CMC) by a co-solution method has been studied. Fourier transform infrared absorption spectra (IR), X-ray diffraction (XRD), burn-out test, chemical analysis, transmission electron microscope(TEM) and universal material testing machine were used to test the properties of the composite. The experiment of SBF soaking for 8 weeks was used to investigate their degradation and bioactivity in vitro. The results show that the formation of composite is mainly contributed to the ionic cross-linking of CMC with CS, and n-HA particles in the form of nanometer grade short crystals are uniformly distributed in the organic network structure of polyelectrolyte complexes, which endows the composite with high compressive strength and good bioactivity. The compressive strength and degradation rate are concerned with the content of n-HA. It can be stated that the n-HA/CS/CMC composite whose weight ratio is 40/30/30 may be a potential candidate as one of novel bone repair materials because of its high compressive strength and acceptable degradation rate as well as good bioactivity, displaying a promising prospect of the clinical application of CMC-contained composite in the field of bone repair

  2. Glucose Homeostasis Variables in Pregnancy versus Maternal and Infant Body Composition

    Directory of Open Access Journals (Sweden)

    Pontus Henriksson

    2015-07-01

    Full Text Available Intrauterine factors influence infant size and body composition but the mechanisms involved are to a large extent unknown. We studied relationships between the body composition of pregnant women and variables related to their glucose homeostasis, i.e., glucose, HOMA-IR (homeostasis model assessment-insulin resistance, hemoglobin A1c and IGFBP-1 (insulin-like growth factor binding protein-1, and related these variables to the body composition of their infants. Body composition of 209 women in gestational week 32 and of their healthy, singleton and full-term one-week-old infants was measured using air displacement plethysmography. Glucose homeostasis variables were assessed in gestational week 32. HOMA-IR was positively related to fat mass index and fat mass (r2 = 0.32, p < 0.001 of the women. Maternal glucose and HOMA-IR values were positively (p ≤ 0.006 associated, while IGFBP-1was negatively (p = 0.001 associated, with infant fat mass. HOMA-IR was positively associated with fat mass of daughters (p < 0.001, but not of sons (p = 0.65 (Sex-interaction: p = 0.042. In conclusion, glucose homeostasis variables of pregnant women are related to their own body composition and to that of their infants. The results suggest that a previously identified relationship between fat mass of mothers and daughters is mediated by maternal insulin resistance.

  3. Relationship of insulin-like growth factor 1 and bone parameters in 7–15 years old apparently, healthy Indian children

    Directory of Open Access Journals (Sweden)

    Veena H Ekbote

    2015-01-01

    Full Text Available Objective: Growth hormone through insulin-like growth factor 1 (IGF-1 plays an important role in both bone growth and mineralization. This cross-sectional study was carried out to evaluate the relationship between serum IGF-1 concentrations and dual energy X-ray (DXA measured whole body less head bone area (BA, lean body mass (LBM, and bone mineral content (BMC. Methods: One hundred and nineteen children (boys = 70, age = 7.3–15.6 years were studied for their anthropometric parameters by standard methods and bone and body composition by DXA. Their fasting serum IGF-1 concentrations were assessed by enzyme-linked immunosorbent assay and Z-scores were calculated using available reference data. Bone and body composition parameter Z-scores were calculated using ethnic reference data. Results: Mean age of the boys and girls was similar (11.5 ± 1.8 years. The mean serum IGF-1concentrations and IGF-1 Z-scores were similar (P > 0.1 between boys and girls and were of the order of (302.3 ± 140.0 and − 1.4 ± 1.1, respectively. The LBM for age and BA for age Z-score was greater in children with IGF-1 Z-score > median than children with IGF-1 Z-score 0.1. Conclusion: Serum IGF-1 levels were more strongly associated with BA and LBM, suggesting that its effect on bone is greater with respect to periosteal bone acquisition and through its effect on muscle mass.

  4. Associations between adiposity, hormones, and gains in height, whole-body height-adjusted bone size, and size-adjusted bone mineral content in 8- to 11-year-old children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2016-01-01

    We examined fat-independent associations of hormones with height and whole-body bone size and mineral content in 633 school children. IGF-1 and osteocalcin predict growth in height, while fat, osteocalcin, and in girls also, IGF-1 predict growth in bone size. Leptin and ghrelin are inversely asso...

  5. Diamond as a scaffold for bone growth.

    Science.gov (United States)

    Fox, Kate; Palamara, Joseph; Judge, Roy; Greentree, Andrew D

    2013-04-01

    Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

  6. Body Composition and Anti-Neoplastic Treatment in Adult and Older Subjects - A Systematic Review.

    Science.gov (United States)

    Gérard, S; Bréchemier, D; Lefort, A; Lozano, S; Abellan Van Kan, G; Filleron, T; Mourey, L; Bernard-Marty, C; Rougé-Bugat, M E; Soler, V; Vellas, B; Cesari, M; Rolland, Y; Balardy, L

    2016-01-01

    The estimation of the risk of poor tolerance and overdose of antineoplastic agents protocols represents a major challenge in oncology, particularly in older patients. We hypothesize that age-related modifications of body composition (i.e. increased fat mass and decreased lean mass) may significantly affect tolerance to chemotherapy. We conducted a systematic review for the last 25 years (between 1990 and 2015), using US National library of Medicine Medline electronic bibliographic database and Embase database of cohorts or clinical trials exploring (i) the interactions of body composition (assessed by Dual X-ray Absorptiometry, Bioelectrical Impedance Analyses, or Computerized Tomography) with pharmacokinetics parameters, (ii) the tolerance to chemotherapy, and (iii) the consequences of chemotherapies or targeted therapies on body composition. Our search identified 1504 articles. After a selection (using pre-established criteria) on titles and abstract, 24 original articles were selected with 3 domains of interest: impact of body composition on pharmacokinetics (7 articles), relationship between body composition and chemotoxicity (14 articles), and effect of anti-cancer chemotherapy on body composition (11 articles). The selected studies suggested that pharmacokinetic was influenced by lean mass, that lower lean mass could be correlated with toxicity, and that sarcopenic patients experienced more toxicities that non-sarcopenic patients. Regarding fat mass, results were less conclusive. No studies specifically explored the topic of body composition in older cancer patients. Plausible pathophysiological pathways linking body composition, toxicity, and pharmacokinetics are sustained by the actual review. However, despite the growing number of older cancer patients, our review highlighted the lack of specific studies in the field of anti-neoplastic agents toxicity regarding body composition conducted in elderly.

  7. Human body composition models and methodology : theory and experiment

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01


    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors.

  8. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Paşcu, Elena I.; Stokes, Joseph; McGuinness, Garrett B., E-mail: garrett.mcguinness@dcu.ie

    2013-12-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  9. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    International Nuclear Information System (INIS)

    Paşcu, Elena I.; Stokes, Joseph; McGuinness, Garrett B.

    2013-01-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  10. Body Composition Response to Lower Body Positive Pressure Training in Obese Children

    OpenAIRE

    Basant H. El-Refay; Nabeel T. Faiad

    2014-01-01

    Background: The high prevalence of obesity in Egypt has a great impact on the health care system, economic and social situation. Evidence suggests that even a moderate amount of weight loss can be useful. Aim of the study: To analyze the effects of lower body positive pressure supported treadmill training, conducted with hypocaloric diet, on body composition of obese children. Methods: Thirty children aged between 8 and 14 years, were randomly assigned into two groups: intervention group (15 ...

  11. Challenges in the noninvasive detection of body composition using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenliang Chen

    2014-11-01

    Full Text Available Noninvasive detection of body composition plays a significant role in the improvement of life quality and reduction in complications of the patients, and the near-infrared (NIR spectroscopy, with the advantages of painlessness and convenience, is considered as the most promising tool for the online noninvasive monitoring of body composition. However, quite different from other fields of online detection using NIR spectroscopy, such as food safety and environment monitoring, noninvasive detection of body composition demands higher precision of the instruments as well as more rigorousness of measurement conditions. Therefore, new challenges emerge when NIR spectroscopy is applied to the noninvasive detection of body composition, which, in this paper, are first concluded from the aspects of measurement methods, measurement conditions, instrument precision, multi-component influence, individual difference and novel weak-signal extraction method based on our previous research in the cutting-edge field of NIR noninvasive blood glucose detection. Moreover, novel ideas and approaches of our group to solve these problems are introduced, which may provide evidence for the future development of noninvasive blood glucose detection, and further contribute to the noninvasive detection of other body compositions using NIR spectroscopy.

  12. Correlation between birth weight and maternal body composition.

    LENUS (Irish Health Repository)

    Kent, Etaoin

    2013-01-01

    To estimate which maternal body composition parameters measured using multifrequency segmental bioelectric impedance analysis in the first trimester of pregnancy are predictors of increased birth weight.

  13. Tracking of Body Composition in Pre-Adolescent Thai Children

    International Nuclear Information System (INIS)

    Thasanauwan, Wiyada; Kijboonchoo, Kallaya; Srichan, Weerachat; Judprasong, Kunchit; Wimonpeerapattana, Wanphen

    2014-01-01

    Full text: Background: Childhood obesity is one of the global malnutrition problem. To assess body composition, stable isotope has been widely used for total body water (TBW) and body fat assessments. In the year 2008, Thailand involved in the IAEA Technical Cooperation Project (TC project) which aimed to develop and validate tools for Thai children to assess obesity in 247 pre-adolescent children aged 8 to 10 years. Later in the year 2011, only 100 children were agreed to be tracked for their body composition assessment. Objective: To explore the changes of body composition and to compare the changes between gender in 3 years period. Materials and methods: A total of 100 children (49 boys and 51 girls), who involved the project in 2008 (P1) and later in 2011 (P2) were measured for their body composition. BMI for age using WHO 2007 cut off was used to identify their nutritional status. TBW was determined by deuterium oxide dilution technique. Fat-free mass (FFM) and fat mass (FM) were estimated. Results: Out of 100 children, 87 children (41 boys and 46 girls) provided the completed data of TBW at P1 and P2. They all grew up with significantly increased in weight, height, BMI (p<0.001). Their body composition in terms of %TBW, %FEM and %FM were not changed in both genders. Boys had significant higher %FFM than girls in P1 (71.5% in boys and 67.4% in girls, p<0.05) while %FM were significant lower than girls (28.5% in boys and 32.6% in girls, p<0.05). However, after 3 years, no significant different between boys and girls was observed. Over the 3 years period, based on BMI for age, the proportion of overweight and obese children increased from 36.6% to 48.8% for boys, and from 32.6% to 41.3% for girls. Around 17% of normal boys became overweight and obese, and for girls only 8.7% was found. Less than 5% of overweight and obese boys became normal, and none for girls. Conclusion: The obesity problem was inevitably increased when children are advance in age. However for

  14. [Analysis of elderly outpatients in relation to nutritional status, sarcopenia, renal function, and bone density].

    Science.gov (United States)

    Salmaso, Franciany Viana; Vigário, Patrícia dos Santos; Mendonça, Laura Maria Carvalho de; Madeira, Miguel; Vieira Netto, Leonardo; Guimarães, Marcela Rodrigues Moreira; Farias, Maria Lucia Fleiuss de

    2014-04-01

    To evaluate relationships between nutritional status, sarcopenia and osteoporosis in older women. We studied 44 women, 67-94 years, by mini-nutritional assessment (MAN), glomerular filtration corr. 1.73 m(2), body mass index (BMI), arm circumference and calf (CP and CB), bone mineral density and body composition, DXA (fat mass MG; lean MM). We gauge sarcopenia: IMM MM = MSS + MIS/height(2). We used the Pearson correlation coefficient, p nutritional status and body composition; and major influences on BMD were nutritional status and fat mass.

  15. body composition, and subjective assessments of training

    Directory of Open Access Journals (Sweden)

    J Giessing

    2016-08-01

    Full Text Available Most studies of resistance training (RT examine methods that do not resemble typical training practices of persons participating in RT. Ecologically valid RT programs more representative of such practices are seldom compared. This study compared two such approaches to RT. Thirty participants (males, n=13; females, n=17 were randomised to either a group performing low volume ‘High Intensity Training’ (HIT; n=16 or high volume ‘Body-building’ (3ST; n=14 RT methods 2x/week for 10 weeks. Outcomes included muscular performance, body composition, and participant’s subjective assessments. Both HIT and 3ST groups improved muscular performance significantly (as indicated by 95% confidence intervals with large effect sizes (ES; 0.97 to 1.73 and 0.88 to 1.77 respectively. HIT had significantly greater muscular performance gains for 3 of 9 tested exercises compared with 3ST (p < 0.05 and larger effect sizes for 8 of 9 exercises. Body composition did not significantly change in either group. However, effect sizes for whole body muscle mass changes were slightly more favourable in the HIT group compared with the 3ST group (0.27 and -0.34 respectively in addition to whole body fat mass (0.03 and 0.43 respectively and whole body fat percentage (-0.10 and -0.44 respectively. Significant muscular performance gains can be produced using either HIT or 3ST. However, muscular performance gains may be greater when using HIT. Future research should look to identify which components of ecologically valid RT programs are primarily responsible for these differences in outcome.

  16. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults

    Directory of Open Access Journals (Sweden)

    Angélica Castilho Alonso

    2012-12-01

    Full Text Available OBJECTIVE: The aim of the present study was to evaluate the influence of anthropometric characteristics and gender on postural balance in adults. One hundred individuals were examined (50 males, 50 females; age range 20-40 years. METHODS: The following body composition measurements were collected (using bone densitometry measurements: fat percentage (% fat, tissue (g, fat (g, lean mass (g, bone mineral content (g, and bone mineral density (g/cm2. In addition, the following anthropometric measurements were collected: body mass (kg, height (cm, length of the trunk-cephalic region (cm, length of the lower limbs (cm and length of the upper limbs (cm. The following indices were calculated: body mass index (kg/m², waist-hip ratio and the support base (cm². Also, a postural balance test was performed using posturography variables with open and closed eyes. RESULTS: The analysis revealed poor correlations between postural balance and the anthropometric variables. A multiple linear regression analysis demonstrated that the whole group (female and male height explained 12% of the medial-lateral displacement, 10% of the speed of oscillation, and 11% of the displacement area. The length of the trunk-cephalic length explained 6% of the displacement in the anteroposterior direction. With eyes closed, the support base and height explained 18% of the medial displacement, and the lateral height explained 10% of the displacement speed and 5% of the scroll area. CONCLUSION: Measured using posturography, the postural balance was only slightly influenced by the anthropometric variables, both with open and closed eyes. Height was the anthropometric variable that most influenced postural balance, both in the whole group and separately for each gender. Postural balance was more influenced by anthropometric factors in males than females.

  17. Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia

    2013-02-01

    The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.

  18. Electrospun Gelatin/β-TCP Composite Nanofibers Enhance Osteogenic Differentiation of BMSCs and In Vivo Bone Formation by Activating Ca2+-Sensing Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Xuehui Zhang

    2015-01-01

    Full Text Available Calcium phosphate- (CaP- based composite scaffolds have been used extensively for the bone regeneration in bone tissue engineering. Previously, we developed a biomimetic composite nanofibrous membrane of gelatin/β-tricalcium phosphate (TCP and confirmed their biological activity in vitro and bone regeneration in vivo. However, how these composite nanofibers promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs is unknown. Here, gelatin/β-TCP composite nanofibers were fabricated by incorporating 20 wt% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite β-TCP nanofibers had a nonwoven structure with a porous network and a rough surface. Spectral analyses confirmed the presence and chemical stability of the β-TCP and gelatin components. Compared with pure gelatin nanofibers, gelatin/β-TCP composite nanofibers caused increased cell attachment, proliferation, alkaline phosphatase activity, and osteogenic gene expression in rat BMSCs. Interestingly, the expression level of the calcium-sensing receptor (CaSR was significantly higher on the composite nanofibrous scaffolds than on pure gelatin. For rat calvarial critical sized defects, more extensive osteogenesis and neovascularization occurred in the composite scaffolds group compared with the gelatin group. Thus, gelatin/β-TCP composite scaffolds promote osteogenic differentiation of BMSCs in vitro and bone regeneration in vivo by activating Ca2+-sensing receptor signaling.

  19. The interplay between nutrition and body composition

    African Journals Online (AJOL)

    or radiation treatment for cancer.3.4 The loss of body tissue may be .... adjacent to areas of damage or surgical injury should give valuable .... The composition of weight loss caused by chronic ... pancreatitis (E) (N = 6); burns IF) (N = 4).

  20. Changes in body composition as a result of chemotherapy

    NARCIS (Netherlands)

    Berg, van den Maaike M.G.A.

    2017-01-01

    Because of the improved survival rate, both short term and long term adverse effects of breast cancer treatment have become increasingly important. Body weight and body composition before, during, and after chemotherapy may influence side effects during treatment and survival. The aims of this