WorldWideScience

Sample records for bonding hydration ion

  1. Cooperativity in ion hydration

    NARCIS (Netherlands)

    Tielrooij, K.J.; Garcia-Araez, N.; Bonn, M.; Bakker, H.J.

    2010-01-01

    Despite prolonged scientific efforts to unravel the effects of ions on the structure and dynamics of water, many open questions remain, in particular concerning the spatial extent of this effect (i.e., the number of water molecules affected) and the origin of ion-specific effects. A combined

  2. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  3. Ion mixing, hydration, and transport in aqueous ionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Ying-Lung Steve; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, and Computation Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Witten, Thomas A., E-mail: t-witten@uchicago.edu [Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  4. Ion mixing, hydration, and transport in aqueous ionic systems

    Science.gov (United States)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-01

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.

  5. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  6. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  7. Gas phase hydration of halogenated benzene cations. Is it hydrogen or halogen bonding?

    Science.gov (United States)

    Mason, Kyle A; Pearcy, Adam C; Attah, Isaac K; Platt, Sean P; Aziz, Saadullah G; El-Shall, M Samy

    2017-07-19

    Halogen bonding (XB) non-covalent interactions can be observed in compounds containing chlorine, bromine, or iodine which can form directed close contacts of the type R1-XY-R2, where the halogen X acts as a Lewis acid and Y can be any electron donor moiety including electron lone pairs on hetero atoms such as O and N, or π electrons in olefin double bonds and aromatic conjugated systems. In this work, we present the first evidence for the formation of ionic halogen bonds (IXBs) in the hydration of bromobenzene and iodobenzene radical cations in the gas phase. We present a combined thermochemical investigation using the mass-selected ion mobility (MSIM) technique and density functional theory (DFT) calculations of the stepwise hydration of the fluoro, chloro, bromo, and iodobenzene radical cations. The binding energy associated with the formation of an IXB in the hydration of the iodobenzene cation (11.2 kcal mol -1 ) is about 20% higher than the typical unconventional ionic hydrogen bond (IHB) of the CH δ+ OH 2 interaction. The formation of an IXB in the hydration of the iodobenzene cation involves a significant entropy loss (29 cal mol -1 K -1 ) resulting from the formation of a more ordered structure and a highly directional interaction between the oxygen lone pair of electrons of water and the electropositive region around the iodine atom of the iodobenzene cation. In comparison, the hydration of the fluorobenzene and chlorobenzene cations where IHBs are formed, -ΔS° = 18-21 cal mol -1 K -1 consistent with the formation of less ordered structures and loose interactions. The electrostatic potentials on the lowest energy structures of the hydrated halogenated benzene radical cations show clearly that the formation of an IXB is driven by a positively charged σ-hole on the external side of the halogen atom X along the C-X bond axis. The size of the σ-hole increases significantly in bromobenzene and iodobenzene radical cations which results in strong

  8. Polarization and charge transfer in the hydration of chloride ions

    International Nuclear Information System (INIS)

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-01

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  9. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.

    Science.gov (United States)

    Ahmed, Mohammed; Namboodiri, V; Singh, Ajay K; Mondal, Jahur A

    2014-10-28

    The hydration energy of an ion largely resides within the first few layers of water molecules in its hydration shell. Hence, it is important to understand the transformation of water properties, such as hydrogen-bonding, intermolecular vibrational coupling, and librational freedom in the hydration shell of ions. We investigated these properties in the hydration shell of mono- (Cl(-) and I(-)) and bivalent (SO4(2-) and CO3(2-)) anions by using Raman multivariate curve resolution (Raman-MCR) spectroscopy in the OH stretch, HOH bend, and [bend+librational] combination bands of water. Raman-MCR of aqueous Na-salt (NaCl, NaI, Na2SO4, and Na2CO3) solutions provides ion-correlated spectra (IC-spectrum) which predominantly bear the vibrational characteristics of water in the hydration shell of respective anions. Comparison of these IC-spectra with the Raman spectrum of bulk water in different spectral regions reveals that the water is vibrationally decoupled with its neighbors in the hydration shell. Hydrogen-bond strength and librational freedom also vary with the nature of anion: hydrogen-bond strength, for example, decreases as CO3(2-) > SO4(2-) > bulk water ≈ Cl(-) > I(-); and the librational freedom increases as CO3(2-) ≈ SO4(2-) water water in the hydration shell of anions.

  10. Hydrated-ion ordering in electrical double layers.

    Science.gov (United States)

    Espinosa-Marzal, Rosa M; Drobek, Tanja; Balmer, Tobias; Heuberger, Manfred P

    2012-05-07

    In this work we revisit the surface forces measured between two atomically flat mica surfaces submerged in a reservoir of potassium nitrate (KNO(3)) solution. We consider a comprehensive range of concentrations from 0.08 mM to 2.6 M. The significantly improved resolution available from the extended surface force apparatus (eSFA) allows the distinction of hydration structures and hydrated-ion correlations. Above concentrations of 0.3 mM, hydrated-ion correlations give rise to multiple collective transitions (4 ± 1 Å) in the electrical double layers upon interpenetration. These features are interpreted as the result of hydrated-ion ordering (e.g. layering), in contrast to the traditional interpretation invoking water layering. The hydrated-ion layer adjacent to the surface (i.e. outer Helmholtz layer) is particularly well defined and plays a distinctive role. It can be either collectively expelled in a 5.8 ± 0.3 Å film-thickness transition or collectively forced to associate with the surface by external mechanical work. The latter is observed as a characteristic 2.9 ± 0.3 Å film-thickness transition along with an abrupt decrease of surface adhesion at concentrations above 1 mM. At concentrations as low as 20 mM, attractive surface forces are measured in deviation to the DLVO theory. The hydration number in the confined electrolyte seems to be significantly below that of the bulk. A 1-3 nm thick ionic layer solidifies at the surfaces at concentrations >100 mM, i.e. below bulk saturation.

  11. Effect of small cage guests on hydrogen bonding of tetrahydrofuran in binary structure II clathrate hydrates.

    Science.gov (United States)

    Alavi, Saman; Ripmeester, John A

    2012-08-07

    Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.

  12. Hydration structure and water exchange dynamics of Fe(II) ion in ...

    African Journals Online (AJOL)

    Computer simulation studies of the hydration structure and water exchange dynamics in the first hydration shell for Fe(II) in water are presented. The structure of the hydrated ion is discussed in terms of radial distribution functions, coordination numbers, and angular distributions. The average first-shell hydration structure is ...

  13. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  14. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.

    2011-02-11

    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  15. Hydration study of ordinary portland cement in the presence of zinc ions

    Directory of Open Access Journals (Sweden)

    Monica Adriana Trezza

    2007-12-01

    Full Text Available Hydration products of Portland cement pastes, hydrated in water and in the presence of zinc ions were studied comparatively at different ages. Hydration products were studied by X ray diffractions (XRD and infrared spectroscopy (IR. Although IR is not frequently used in cement chemistry, it evidenced a new phase Ca(Zn(OH32. 2H2O formed during cement hydration in the presence of zinc. The significant retardation of early cement hydration in the presence of zinc is assessed in detail by differential calorimetry as a complement to the study carried out by IR and XRD, providing evidence that permits to evaluate the kinetic of the early hydration.

  16. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  17. A structural study of nepheline hydrate I, an inorganic ion exchanger

    International Nuclear Information System (INIS)

    Hansen, S.

    1985-01-01

    The crystal structures of nepheline hydrates I, Na 3 Al 3 Si 3 O 12 x 2H 2 O, and three compounds produced by ion exchange with aqueous KCl, RbCl and CsCl at 80 degrees C, have been studied using X-ray diffraction methods. This synthetic silicate has a tetrahedral framework with a two-dimensional pore system consisting of perpendicular 8-ring and 6-ring channels. The long-range ordering of Si and Al into adjacent tetrahedra is well developed. Some aspects of the topology, geometry and bonding of the tetrahedral frame are discussed. Related framework types are derived by unit cell twinning of the idealized cristobalite structure. A limit in the ion exchange is observed when about 1/3 of the Na + ions have been replaced. This behaviour is explained by the restricted volume of two Na sites situated in the 6-ring channel. The readily exchangeable ions and water molecules in the 8-ring channels an arrangement which gradually changes when the size of the alkali metal-ion increases. Most K + -exchanged crystals have a unit cell which is determined by the translational symmetry of the framework, while the original Na form has a two-fold superstructure and the Rb + -exchanged form has a five-fold superstructure. Caesium-ion-exchanged crystals have incommensurate structures. The occurrence of superstructures is related to long-range ordering of the species in the 8-ring channels. (author)

  18. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  19. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk ...

  20. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments

    Czech Academy of Sciences Publication Activity Database

    Castrovilli, M. C.; Markush, P.; Bolognesi, P.; Rousseau, P.; Maclot, S.; Cartoni, A.; Delaunay, R.; Domaracka, A.; Kočišek, Jaroslav; Huber, B. A.; Avaldi, L.

    2017-01-01

    Roč. 19, č. 30 (2017), s. 19807-19814 ISSN 1463-9076 Institutional support: RVO:61388955 Keywords : fragmentation * nano-hydrated 5BrU clusters * low energy carbon ions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  1. Fragmentation of pure and hydrated clusters of 5Br-uracil by low energy carbon ions: observation of hydrated fragments

    Czech Academy of Sciences Publication Activity Database

    Castrovilli, M. C.; Markush, P.; Bolognesi, P.; Rousseau, P.; Maclot, S.; Cartoni, A.; Delaunay, R.; Domaracka, A.; Kočišek, Jaroslav; Huber, B. A.; Avaldi, L.

    2017-01-01

    Roč. 19, č. 30 (2017), s. 19807-19814 ISSN 1463-9076 Institutional support: RVO:61388955 Keywords : fragmentation * nano -hydrated 5BrU clusters * low energy carbon ions Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  2. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  3. Hydrated and Solvated Tin(II) Ions in Solution and the Solid State, and a Coordination Chemistry Overview of the d10s2Metal Ions.

    Science.gov (United States)

    Persson, Ingmar; D'Angelo, Paola; Lundberg, Daniel

    2016-12-19

    The coordination chemistry of d 10 s 2 metal ions is strongly affected by an (at least partially) occupied d 10 s 2 metal ion-ligand atom antibonding orbital, which may cause a void in the coordination sphere due to repulsion between the electrons in the antibonding orbital on the metal ion and those on the ligands. The character of the formed d 10 s 2 metal ion-ligand atom bond plays an important role in the electron density in the antibonding orbital and thereby also in the coordination chemistry. The hydrated tin(II) ion, [Sn(H 2 O) 3 ] 2+ , and the trihydroxidostannate ion, [Sn(OH) 3 ] - , have very different mean Sn-O bond lengths (2.21 and 2.08 Å, respectively) and O-Sn-O angles (ca. 78 and 90°, respectively) both in the solid state and in solution. On increasing the covalency of the tin(II)-ligand bonds, the repulsion decreases and higher coordination numbers are obtained, as seen in the dimethylsulfoxide- and N,N-dimethylthioformamide-solvated tin(II) ions, both of which are five-coordinate with square-pyramidal structures. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    Science.gov (United States)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-05-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased.

  5. Effects of electronic structure on the hydration of PbNO3(+) and SrNO3(+) ion pairs.

    Science.gov (United States)

    Cooper, Richard J; Heiles, Sven; Williams, Evan R

    2015-06-28

    Hydration of PbNO3(+) and SrNO3(+) with up to 30 water molecules was investigated with infrared photodissociation (IRPD) spectroscopy and with theory. These ions are the same size, yet the IRPD spectra of these ion pairs for n = 2-8 are significantly different. Bands in the bonded O-H region (∼3000-3550 cm(-1)) indicate that the onset of a second hydration shell begins at n = 5 for PbNO3(+) and n = 6 for SrNO3(+). Spectra for [PbNO3](+)(H2O)2-5 and [SrNO3](+)(H2O)3-6 indicate that the structures of clusters with Pb(ii) are hemidirected with a void in the coordinate sphere. A natural bond orbital analysis of [PbNO3](+)(H2O)5 indicates that the anisotropic solvation of the ion is due to a region of asymmetric electron density on Pb(ii) that can be explained by charge transfer from the nitrate and water ligands into unoccupied p-orbitals on Pb(ii). There are differences in the IRPD spectra of PbNO3(+) and SrNO3(+) with up to 25 water molecules attached. IR intensity in the bonded O-H region is blue-shifted by ∼50 cm(-1) in nanodrops containing SrNO3(+) compared to those containing PbNO3(+), indicative of a greater perturbation of the water H-bond network by strontium. The free O-H stretches of surface water molecules in nanodrops containing 10, 15, 20, and 25 water molecules are red-shifted by ∼3-8 cm(-1) for PbNO3(+) compared to those for SrNO3(+), consistent with more charge transfer between water molecules and Pb(ii). These results demonstrate that the different electronic structure of these ions significantly influences how they are solvated.

  6. Aqueous solutions of calcium ions: hydration numbers and the effect of temperature.

    Science.gov (United States)

    Zavitsas, Andreas A

    2005-11-03

    Hydration numbers of calcium ions are determined from extensive measurements of colligative properties of water solutions of calcium salts. The hydration numbers reported refer to the average number of water molecules that are bound sufficiently strongly to calcium ions so as to be removed from the solvent and become part of the solute. Contrary to common descriptions of deviations from ideal behavior for concentrated solutions, ideal behavior is demonstrated when mole fractions are calculated by taking account of such bound water. Measurements over wide concentration and temperature ranges are used to obtain the effect of temperature on the average hydration number of Ca(2+). Freezing point depression measurements yield a hydration number of 12.0 +/- 0.8. Boiling point elevations yield 6.7 +/- 0.6. Consistent with this, vapor pressure measurements from 0 to 200 degrees C show a gradual decrease in hydration number with increasing temperature, with a value of 5.0 at 200 degrees C.

  7. Single hydration of the peptide bond: the case of the Vince lactam.

    Science.gov (United States)

    Écija, Patricia; Basterretxea, Francisco J; Lesarri, Alberto; Millán, Judith; Castaño, Fernando; Cocinero, Emilio J

    2012-10-18

    2-Azabicyclo[2.2.1]hept-5-en-3-one (ABH or Vince lactam) and its monohydrated complex (ABH···H(2)O) have been observed in a supersonic jet by Fourier transform microwave spectroscopy. ABH is broadly used in the synthesis of therapeutic drugs, whereas the ABH···H(2)O system offers a simple model to explain the conformational preferences of water linked to a constrained peptidic bond. A single predominant form of the Vince lactam and its singly hydrated complex have been detected, determining the rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling tensor. The monohydrated complex is stabilized by two hydrogen bonds (C═O···H-O and N-H···O) closing a six-membered ring. The complexation energy has been estimated to be ∼10 kJ mol(-1) from experimental results. In addition, the observed structure in the gas phase has been compared with solid-phase diffraction data. The structural parameters and binding energies of ABH···H(2)O have also been compared with similar molecules containing peptide bonds. Ab initio (MP2) and density functional (M06-2X and B3LYP) methods have supported the experimental work, describing the rotational parameters and conformational landscape of the title compound and its singly hydrated complex.

  8. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state.

    Science.gov (United States)

    Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar

    2012-09-17

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands.

  9. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state

    Science.gov (United States)

    Krakowiak, Joanna; Lundberg, Daniel

    2012-01-01

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen donor solvents water, dimethylsulfoxide (dmso) and N,N′-dimethylpropyleneurea (dmpu) has been studied in solution by EXAFS and large angle X-ray scattering (LAXS) and in solid state by single crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and dimethylsulfoxide solvated oxovanadium(IV) ions vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O=V-Operp bond angle is ca. 98°. In the dmpu solvated oxovanadium(IV) ion, the space demanding properties of the dmpu molecule leaving no solvent molecule in the trans position to the oxo group which reduces the coordination number to 5. The O=V-O bond angle is consequently much larger, 106°, and the mean V=O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and dimethylsulfoxide solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in cis position with mean V=O bond distances of 1.6 Å and a O=V=O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen donor ligands. PMID:22950803

  10. Solvated Positron Chemistry. The Reaction of Hydrated Positrons with Chloride Ions

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Shantarovich, V. P.

    1974-01-01

    The reaction of hydrated positrons (caq+ with cloride ions in aqueous solutions has been studied by means of positron annihilation angular correlation measurements. A rate constant of k = (2.5 ± 0.5) × 1010 M−1 s−1 was found. Probably the reacting positrons annihilated from an e+ Cl− bound state...... resulting in an angular correlation curve 8% narrower than for the hydrated positron. Carbontetrachloride in benzene seems to give similar, but smaller effect....

  11. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  12. Hydration to the poly(oxyethylene) derivative complexes of alkali metal ions and barium ion in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Kikuchi, Yoichi; Kubota, Mitsuru; Suzuki, Toshio; Sawada, Kiyoshi.

    1994-01-01

    A series of poly(oxyethylene) derivatives (POE compound) complexes of alkali metal and barium ions were extracted into 1,2-dichloroethane (1,2-DCE) by forming ion-pairs with picrate ion. Water molecules were coextracted into 1,2-DCE with the ion-pairs. The mean number of water molecules bound to the POE compound, X H2O,S , and its complex, X H2O,comp , in water saturated with 1,2-DCE was determined by means of aquametry. The X H2O,S value increases with the increase in the number of the oxyethylene units (EO unit) of the POE compound. The X H2O,comp value decreases in the order Li + >Na + >K + ≅Rb + ≅Cs + in any POE compound systems, and increases with the number of EO units of the POE compounds for a given metal ion. These results are interpreted by the hypothesis that the water molecules bound to the complex are those hydrated to the central metal ion, and the hydrated metal ion is surrounded by the EO chain with a helical conformation in the complex. The large number of water molecules are coordinating to the lithium ion complexes and bring about a serious distortion in the helical structure of the complexes. Because of the ion-pair formation with two picrate ions, the X H2O,comp values of barium ion complexes are smaller than those of potassium ion complexes. (author)

  13. Effects of ion concentration on the hydrogen bonded structure of ...

    Indian Academy of Sciences (India)

    WINTEC

    Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. A NAG. 1. , D CHAKRABORTY and A CHANDRA*. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016. 1. Present address: Department of Chemistry and Chemical Engineering,.

  14. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    In aqueous solutions, the alkali metals ions are associated with a number of H2O molecules. A distinction is made between a primary solvent shell, (or inner solvation shell), consisting of H2O molecules directly coordinated to the metal ion, and a secondary (or outer) solvation shell, consisting....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...

  15. Crystal structure and hydrogen bonding in the water-stabilized proton-transfer salt brucinium 4-amino­phenyl­arsonate tetra­hydrate

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D.

    2016-01-01

    In the structure of the brucinium salt of 4-amino­phenyl­arsonic acid (p-arsanilic acid), systematically 2,3-dimeth­oxy-10-oxostrychnidinium 4-amino­phenyl­ar­son­ate tetra­hydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water mol­ecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H⋯O(anion) hydrogen bond, as well as through water O—H⋯O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure. PMID:27308034

  16. Crystal structure and hydrogen bonding in the water-stabilized proton-transfer salt brucinium 4-amino-phenyl-arsonate tetra-hydrate.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2016-05-01

    In the structure of the brucinium salt of 4-amino-phenyl-arsonic acid (p-arsanilic acid), systematically 2,3-dimeth-oxy-10-oxostrychnidinium 4-amino-phenyl-ar-son-ate tetra-hydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water mol-ecules of solvation are accommodated between the layers and are linked to them through a primary cation N-H⋯O(anion) hydrogen bond, as well as through water O-H⋯O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.

  17. Effects of surface hydration state and application method on the bond strength of self-etching adhesives to cut enamel.

    Science.gov (United States)

    Caneppele, Taciana Marco Ferraz; Torres, Carlos Rocha Carlos; Sassaki, Alan; Valdetaro, Fernanda; Fernandes, Ricardo Silva; Prieto de Freitas, Carolina; Batista, Graziela Ribeiro

    2012-02-01

    To evaluate the effect of surface hydration state and application method on the microtensile bond strength of one-step self-etching adhesives systems to cut enamel. One hundred ninety-five bovine teeth were used. The enamel on the buccal side was flattened with 600-grit SiC paper. For the control group, 15 teeth received Adper Single Bond 2, applied according to manufacturer's recommendations. The other specimens were divided into three groups according to the adhesive system used: Futura Bond M (FM; Voco), Clearfil S3 Bond (CS; Kuraray), and Optibond All in One (OA; Kerr). For each group, two hydration states were tested: D: blown dry with air; W: the excess of water was removed with absorbent paper. Two application methods were tested: P (passive): the adhesive was simply left on the surface; A (active): the adhesive was rubbed with an applicator point. A coat of Grandio composite resin (Voco) was applied on the surface. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm), which underwent microtensile bond testing. The data in MPa were submitted to a three-way ANOVA and Tukey's test (α = 5%). The ANOVA showed significant differences for application method and the type of adhesive, but not for hydration state. For the application method, the results of Tukey's test were: P: 31.46 (± 7.09)a; A: 34.04 (± 7.19)b. For the type of adhesive, the results were: OA: 31.29 (± 7.05)a; CS: 32.28 (± 7.14)a; FM: 34.68 (± 7.17)b; different lower-case letters indicate statistically significant differences. Active application improved the bond strength to cut enamel. The adhesive Futurabond M showed the highest bond strength to cut enamel.

  18. Hydration and ion pairing of aqueous phosphate solutions as observed by dielectric spectroscopy

    OpenAIRE

    Eiberweiser, Andreas

    2013-01-01

    The present thesis represents the first detailed DRS study (25°C, 0.2 ≤ ν/GHz ≤ 89) of inorganic phosphate hydration and ion-pairing. To gain more insight into the physical origin of a low-amplitude low-frequency mode frequently present in electrolyte solutions also aqueous NaCl solutions were investigated. The complete series of potassium phosphates was investigated in order to extract detailed information on the hydration of phosphate anions, especially the distribution of strongly bound an...

  19. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  20. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis.

    Science.gov (United States)

    Qi, Wenpeng; Zhao, Hongwei

    2015-09-21

    The water confined in nanotubes has been extensively studied, because of the potential usages in drug delivery and desalination. The radial distribution of the dielectric constant parallel along the nanotube axis was obtained by molecular dynamics simulations in a carbon nanotube and a nanotube with a very small van der Waals potential. The confined water was divided into two parts, the middle part water and the hydration water. In both cases, the hydrogen bond orientation of the middle water is isotropic, while the hydrogen bonds in hydration layers are apt to parallel along the nanotube axis. Therefore, the hydration water has higher dipole correlations increasing the dielectric constant along the nanotube axis.

  1. Collision Induced Dissociation Products of Disulfide-Bonded Peptides: Ions Result from the Cleavage of More Than One Bond

    Science.gov (United States)

    Clark, Daniel F.; Go, Eden P.; Toumi, Melinda L.; Desaire, Heather

    2011-03-01

    Disulfide bonds are a post-translational modification (PTM) that can be scrambled or shuffled to non-native bonds during recombinant expression, sample handling, or sample purification. Currently, mapping of disulfide bonds is not easy because of various sample requirements and data analysis difficulties. One step towards facilitating this difficult work is developing a better understanding of how disulfide-bonded peptides fragment during collision induced dissociation (CID). Most automated analysis algorithms function based on the assumption that the preponderance of product ions observed during the dissociation of disulfide-bonded peptides result from the cleavage of just one peptide bond, and in this report we tested that assumption by extensively analyzing the product ions generated when several disulfide-bonded peptides are subjected to CID on a quadrupole time of flight (QTOF) instrument. We found that one of the most common types of product ions generated resulted from two peptide bond cleavages, or a double cleavage. We found that for several of the disulfide-bonded peptides analyzed, the number of double cleavage product ions outnumbered those of single cleavages. The influence of charge state and precursor ion size was investigated, to determine if those parameters dictated the amount of double cleavage product ions formed. It was found in this sample set that no strong correlation existed between the charge state or peptide size and the portion of product ions assigned as double cleavages. These data show that these ions could account for many of the product ions detected in CID data of disulfide bonded peptides. We also showed the utility of double cleavage product ions on a peptide with multiple cysteines present. Double cleavage products were able to fully characterize the bonding pattern of each cysteine where typical single b/ y cleavage products could not.

  2. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.

    2017-03-24

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  3. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    Science.gov (United States)

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  4. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  5. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    Science.gov (United States)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  6. Lutetium(III) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    Energy Technology Data Exchange (ETDEWEB)

    Sessa, Francesco; D’Angelo, Paola, E-mail: p.dangelo@uniroma1.it [Dipartimento di Chimica, Università di Roma “La Sapienza,” P. le A. Moro 5, 00185 Roma (Italy); Spezia, Riccardo [CNRS, UMR 8587, Laboratoire Analyse et Modelisation Pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne, Blvd. F. Mitterrand, 91025 Evry Cedex (France)

    2016-05-28

    The structure and dynamics of the lutetium(III) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(III) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(III) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  7. Heavy ions collisions and the site-bond percolation

    International Nuclear Information System (INIS)

    Desbois, J.

    1986-07-01

    Site-bond percolation on a lattice is used for the investigation of heavy ions reactions. A model characterized by two parameters, p and q, is worked out and a critical zone in the p-q plane is shown up. Analytical expressions for various quantities concerning percolation and evaporation are established. Calculations of energy spectra, linear momentum transfer, fragment multiplicities and mass yields at various bombarding energies are compared with experimental data. Different possibilities for the attainment of the multifragmentation regime are discussed. 17 figs; 43 refs

  8. Steric and Electronic Effects in the Host-Guest Hydrogen Bonding in Clathrate Hydrates

    Czech Academy of Sciences Publication Activity Database

    Kulig, W.; Kubisiak, P.; Cwiklik, Lukasz

    2011-01-01

    Roč. 115, č. 23 (2011), s. 6149-6154 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z40400503 Keywords : basis-sets * density * clathrate hydrates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  9. Absolute ion hydration enthalpies from absolute hardness and some VBT relationships

    Science.gov (United States)

    Kaya, Savaş; Fernandes de Farias, Robson

    2018-01-01

    In the present work, absolute hydration enthalpies are calculated from ion absolute hardness for a series of +1 and -1 ions. The calculated values are compared with those previously reported (Housecroft, 2017) [2] and relationships between Vm-1/3 and absolute hardness are stablished. The following empirical equations have been derived, for cations and anions, respectively: ΔhydHo = -(9.645 η+ + 245.930) and ΔhydHo = -(64.601 η- + 12.321). In such equations, η+ and η- are the absolute hardness. It is shown that for d block monocations (Cu+, Ag+ and Au+), hydration enthalpy is closely related with Clementi effective nuclear charge by the equation: ΔhydHo = -(9.645 η+ + 245.930) (Zeff/(n - 1)), where n is the main quantum number. Furthermore, is shown that a typical VBT parameter (Vm-1/3) is related with η+ and η- values and so, with the energies of the frontier orbitals, that is, is stablished a direct relationship between a structural parameter available by X-ray data and the energy of atomic/molecular orbitals.

  10. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    OpenAIRE

    S. Adams; R.P. Rao

    2010-01-01

    Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV) parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach...

  11. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  12. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing

    Science.gov (United States)

    Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle

    2018-04-01

    Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.

  13. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    Science.gov (United States)

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine.

  14. Structure of the Hydrated Platinum(II) Ion And the Cis-Diammine-Platinum(II) Complex in Acidic Aqueous Solution: An EXAFS Study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilehvand, F.; Laffin, L.J.

    2009-05-18

    Careful analysis of Pt L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) spectra shows that the hydrated platinum(II) ion in acidic (HClO{sub 4}) aqueous solution binds four water molecules with the Pt-O bond distance 2.01(2) {angstrom} and one (or two) in the axial position at 2.39(2) {angstrom}. The weak axial water coordination is in accordance with the unexpectedly small activation volume previously reported for water exchange in an interchange mechanism with associative character. The hydrated cis-diammineplatinum(II) complex has a similar coordination environment with two ammine and two aqua ligands strongly bound with Pt-O/N bond distances of 2.01(2) {angstrom} and, in addition, one (or two) axial water molecule at 2.37(2) {angstrom}. This result provides a new basis for theoretical computational studies aiming to connect the function of the anticancer drug cis-platin to its ligand exchange reactions, where usually four-coordinated square planar platinum(II) species are considered as the reactant and product. {sup 195}Pt NMR spectroscopy has been used to characterize the Pt(II) complexes.

  15. Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane

    Science.gov (United States)

    Zaccai, Giuseppe; Bagyan, Irina; Combet, Jérôme; Cuello, Gabriel J.; Demé, Bruno; Fichou, Yann; Gallat, François-Xavier; Galvan Josa, Victor M.; von Gronau, Susanne; Haertlein, Michael; Martel, Anne; Moulin, Martine; Neumann, Markus; Weik, Martin; Oesterhelt, Dieter

    2016-08-01

    Understanding adaptation to extreme environments remains a challenge of high biotechnological potential for fundamental molecular biology. The cytosol of many microorganisms, isolated from saline environments, reversibly accumulates molar concentrations of the osmolyte ectoine to counterbalance fluctuating external salt concentrations. Although they have been studied extensively by thermodynamic and spectroscopic methods, direct experimental structural data have, so far, been lacking on ectoine-water-protein interactions. In this paper, in vivo deuterium labeling, small angle neutron scattering, neutron membrane diffraction and inelastic scattering are combined with neutron liquids diffraction to characterize the extreme ectoine-containing solvent and its effects on purple membrane of H. salinarum and E. coli maltose binding protein. The data reveal that ectoine is excluded from the hydration layer at the membrane surface and does not affect membrane molecular dynamics, and prove a previous hypothesis that ectoine is excluded from a monolayer of dense hydration water around the soluble protein. Neutron liquids diffraction to atomic resolution shows how ectoine enhances the remarkable properties of H-bonds in water—properties that are essential for the proper organization, stabilization and dynamics of biological structures.

  16. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E. S.; Zhou, Jing; Hu, Lang; Burns, Peter C.; Liu, Tianbo

    2015-11-16

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60-(H2O)n (m≈20 and n≈310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.

  17. Selective permeability of uranyl peroxide nanocages to different alkali ions: influences from surface pores and hydration shells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yunyi; Haso, Fadi; Zhou, Jing; Hu, Lang; Liu, Tianbo [Department of Polymer Science, University of Akron, OH (United States); Szymanowski, Jennifer E.S.; Burns, Peter C. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN (United States)

    2015-12-14

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li{sub 48+m}K{sub 12}(OH){sub m}[UO{sub 2}(O{sub 2})(OH)]{sub 60-}(H{sub 2}O){sub n} (m∼20 and n∼310) (U{sub 60}) shows selective permeability to different alkali ions. The subnanometer pores on the water-ligand-rich surface of U{sub 60} are able to block Rb{sup +} and Cs{sup +} ions from passing through, while allowing Na{sup +} and K{sup +} ions, which possess larger hydrated sizes, to enter the interior space of U{sub 60}. An interestingly high entropy gain during the binding process between U{sub 60} and alkali ions suggests that the hydration shells of Na{sup +}/K{sup +} and U{sub 60} are damaged during the interaction. The ion selectivity of U{sub 60} is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Hydration of freestanding Nafion membrane in proton and sodium ion exchanged forms probed by infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Basnayake, Rukma; Wever, Walter [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Korzeniewski, Carol [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)], E-mail: carol.korzeniewski@ttu.edu

    2007-12-20

    Transmission infrared spectroscopy was used to follow the uptake of water into Nafion 112 ({approx}50 {mu}m thick) membrane under conditions that enabled detection of vibrational bands for water in different environments inside membrane pores and channels. The evolution of infrared features for interfacial and weakly hydrogen bonded water were followed upon exposure of initially vacuum dried membranes, exchanged by either Na{sup +} or H{sup +}, to low humidity atmospheres. The rapid uptake of water into H{sup +} exchanged Nafion 112 precluded time resolved spectral measurements. However, the considerably slower timeframe for water incorporation into Na{sup +} exchanged membrane enabled the evolution of different environments for water to be observed. Under approximately 10% relative humidity, the time dependent increases in absorbance for a mode of interfacial water near 3674 cm{sup -1} and a mode of more bulk-like, weakly hydrogen bonded water at 3525 cm{sup -1} in Na{sup +} exchanged Nafion 112 could be fit by a pore diffusion model. The results provide a foundation for the application of multivariate analysis techniques to identify different structures that develop in metal cation exchanged Nafion during changes in hydration state.

  19. SOLVENT EFFECTS IN THE LIQUID-PHASE HYDRATION OF CYCLOHEXENE CATALYZED BY A MACROPOROUS STRONG ACID ION-EXCHANGE RESIN

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1992-01-01

    The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured

  20. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  1. Study of the action of phosphate ions contained in the mixing water on the hydration of a Portland cement

    International Nuclear Information System (INIS)

    Benard, Ph.

    2005-12-01

    Cementation is considered as the most attractive solution for the conditioning of low and intermediate radioactive wastes. The species contained in these wastes can strongly influence the reactivity of the cement pastes, it is in particular the case of the ortho-phosphate ions which are found in the evaporation concentrates. The aim of our work was to determine the influence of these ions on the hydration and the rheological properties of the cement pastes at early age as well as the mechanical and physical properties on the hardened material. (author)

  2. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution

    Science.gov (United States)

    Lanaro, G.; Patey, G. N.

    2018-01-01

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (˜49 kJ mol-1) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li+ and F- ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  3. Correlations of acute toxicity of metal ions and the covalent/ionic character of their bonds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.E.; Williams, M.W.; Jacobson, K.B.; Hingerty, B.E.

    1984-01-01

    We have investigated correlations between physicochemical properties of 24 metal ions and their acute toxicity in mice and Drosophila. A high correlation for a softness parameter suggests that the relative covalent/ionic character of the bonds formed by the metal ions may be important in determining their toxicity. This hypothesis is reinforced by model calculations of metal binding to dinucleotides in water. Since the nature of bonds depends on ligand electronegativity, we searched for correlations involving this parameter. Although electronegativity is useful for interpreting some aspects of metal-ion behavior related to toxicity, it does not yield improved correlations. 8 refs., 3 figs., 1 tab.

  4. Magnetic Interactions in the Copper Complex (L-Aspartato)(1,10-phenanthroline)copper(II) Hydrate. An Exchange-Coupled Extended System with Two Dissimilar Copper Ions.

    Science.gov (United States)

    Brondino, Carlos D.; Calvo, Rafael; Atria, Ana María; Spodine, Evgenia; Nascimento, Otaciro R.; Peña, Octavio

    1997-07-02

    We report EPR measurements in single-crystal samples at the microwave frequencies 9.8 and 34.3 GHz and magnetic susceptibility measurements in polycrystalline samples for the ternary complex of copper with aspartic acid and phenanthroline, (L-aspartato)(1,10-phenanthroline)copper(II) hydrate. The crystal lattice of this compound is composed of two dissimilar copper ions identified as Cu(A) and Cu(B), which are in two types of copper chains called A and B, respectively, running parallel to the b crystal axis. The copper ions in the A chains are connected by the aspartic acid molecule, and those in the B chains by a chemical path that involves a carboxylate bridge and a hydrogen bond. Both chains are held together by a complex network of hydrogen bonds and by hydrophobic interactions between aromatic amines. Magnetic susceptibility data indicate a Curie-Weiss behavior in the studied temperature range (2-300 K). The EPR spectra at 9.8 GHz display a single exchange collapsed resonance for any magnetic field orientation, in the so-called strong exchange regime. Those at 34.3 GHz are within the so-called weak exchange regime and display two resonances which belong to each type of copper ion chain. The decoupling of the spectra at 34.3 GHz using a theory based on Anderson's model for the case of two weakly exchange coupled spins S = (1)/(2) allows one to obtain the angular variation of the squares of the g-factor and the peak-to-peak line width of each resonance. This model also allows one to evaluate the exchange parameter |J(AB)/k| = 2.7(6) mK associated with the chemical path connecting dissimilar copper ions. The line width data obtained for each component of the spectra at 34.3 GHz are analyzed in terms of a model based on Kubo and Tomita's theory, to obtain the exchange parameters |J(A)/k| = 0.77(2) K and |J(B)/k| = 1.44(2) K associated with the chemical paths connecting the similar copper ions of types A and B, respectively.

  5. Effect of molar ratio of counter-ions to cationic surfactants on drag reduction characteristics of trimethylolethane hydrate slurries

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hiroshi; Tateishi, Shingo; Komoda, Yoshiyuki [Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2010-12-15

    An experimental study on flow characteristics of trimethylolethane (TME) hydrate slurries treated with drag-reducing surfactants has been performed in order to investigate the effect of molar ratio of counter-ions to surfactants. As drag-reducing surfactants, oleylbishydroxyethylmethylammonium chloride was used. The molar ratio of counter-ions of sodium salicylate to surfactants ranged from 0 to 100 and surfactant concentration was changed in two steps; 1000 ppm and 2.000 ppm while the concentration of TME in water was set constant at 25 wt%. From the results, it was found that the drag reduction limitation becomes larger when the molar ratio of the counter-ions to surfactants is set around 20 for each surfactant concentration. From the detailed discussions, the drag reduction characteristics in a higher range of the molar ratio of counter-ions to surfactants were found to relate to the molar ratio of counter-ions to TME more significantly. Under the present conditions, it was concluded that 0.05 of the molar ratio of counter-ions to TME shows the most effective drag reduction. (author)

  6. Adherence and Bonding of the Ion Plated Films.

    Science.gov (United States)

    1983-07-01

    different. The high energy particles(ions and atoms) arrive at the substrate with energy, high enough to cause particle implatation into the substrate...contact and the inability to apply pure tensile stresses nor- mal to the interface without attaching a connection to the thin film(54 ). Lack.of

  7. Halonium Ions as Halogen Bond Donors in the Solid State [XL2]Y Complexes.

    Science.gov (United States)

    Rissanen, Kari; Haukka, Matti

    2015-01-01

    The utilization of halogen bonding interactions is one of the most rapidly developing areas of supramolecular chemistry. While the other weak non-covalent interactions and their influence on the structure and chemistry of various molecules, complexes, and materials have been investigated extensively, the understanding, utilizations, and true nature of halogen bonding are still relatively unexplored. Thus its final impact in chemistry in general and in materials science has not yet been fully established. Because of the polarized nature of a Z-X bond (Z=electron-withdrawing atom or moiety and X=halogen atom), such a moiety can act as halogen bond donor when the halogen is polarized enough by the atom/moiety Z. The most studied and utilized halogen bond donor molecules are the perfluorohalocarbons, where Z is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. Complementing the contemporary halogen bonding research, this chapter reviews the solid state structural chemistry of the most extremely polarized halogen atoms, viz. halonium ions, X+, and discussed them as halogen bond donors in the solid state [XL2]Y complexes (X=halonium ion, Y=any anion).

  8. Positive and negative hydration effects as determined by quasielastic cold neutron scattering

    International Nuclear Information System (INIS)

    Novikov, A.G.; Savostin, V.V.; Sobolev, O.V.; Rodnikova, M.N.

    1997-01-01

    2 M solutions of cesium and lithium chlorides are investigated by the cold neutron scattering method. Quasielastic scattering law is derived from the complete experimental scattering law by means of inelastic component removal. Its analysis allows one to judge about the diffusion processes in the solutions in question. Coefficients of lithium and cesium ion hydrate water molecule selfdiffusion, continuous diffusion of water molecules in the first hydrate sphere of ions studied are obtained, periods of water molecule settles life in different regions of solution, hydration dynamic numbers of lithium and cesium ions are evaluated. Comparison to the data on pure water makes it possible to judge about cesium ion loosing effect on hydrogen bond grid and about negative hydration of that ion. (author)

  9. Modelling of Ion Transport in Solids with a General Bond Valence Based Force-Field

    Directory of Open Access Journals (Sweden)

    S. Adams

    2010-12-01

    Full Text Available Empirical bond length - bond valence relations provide insight into the link between structure of and ion transport in solid electrolytes. Building on our earlier systematic adjustment of bond valence (BV parameters to the bond softness, here we discuss how the squared BV mismatch can be linked to the absolute energy scale and used as a general Morse-type interaction potential for analyzing low-energy pathways in ion conducting solid or mixed conductors either by an energy landscape approach or by molecular dynamics (MD simulations. For a wide range of Lithium oxides we could thus model ion transport revealing significant differences to an earlier geometric approach. Our novel BV-based force-field has also been applied to investigate a range of mixed conductors, focusing on cathode materials for lithium ion battery (LIB applications to promote a systematic design of LIB cathodes that combine high energy density with high power density. To demonstrate the versatility of the new BV-based force-field it is applied in exploring various strategies to enhance the power performance of safe low cost LIB materials (LiFePO4, LiVPO4F, LiFeSO4F, etc..

  10. Three-dimensional hydrogen-bonded structures in the hydrated proton-transfer salts of isonipecotamide with the dicarboxylic oxalic and adipic acid homologues.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2013-10-01

    The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O(+)·C2HO4(-)·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O(+)·C6H8O4(2-)·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-H···O(carboxyl) hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-H···O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-H···O(carboxyl) hydrogen bonds, generating cyclic R4(3)(10) and R3(2)(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-H···O(water) hydrogen bonds, to give a cyclic R4(2)(8) association which is conjoined with an R4(4)(12) motif. Further N-H···O(water), water O-H···O(amide) and piperidinium N-H···O(carboxyl) hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

  11. Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops.

    Science.gov (United States)

    O'Brien, Jeremy T; Williams, Evan R

    2012-06-20

    Ensemble infrared photodissociation (IRPD) spectra in the hydrogen stretch region (~2800-3800 cm(-1)) are reported for aqueous nanodrops containing ~250 water molecules and either SO(4)(2-), I(-), Na(+), Ca(2+), or La(3+) at 133 K. Each spectrum has a broad feature in the bonded-OH region (~2800-3500 cm(-1)) and a sharp feature near 3700 cm(-1), corresponding to the free-OH stretch of surface water molecules that accept two hydrogen bonds and donate one hydrogen bond (AAD water molecules). A much weaker band corresponding to AD surface water molecules is observed for all ions except SO(4)(2-). The frequencies of the AAD free-OH stretch red-shift with increasingly positive charge, consistent with a Stark effect as a result of the ion's electric field at the droplet surface, and from which the corresponding frequency for water molecules at the surface of neutral nanodrops of this size is estimated to be 3699.3-3700.1 cm(-1). The intensity of the AAD band increases with increasing positive charge, consistent with a greater population of AAD water molecules for the more positively charged nanodrops. The spectra of M(H(2)O)(~250), M = Na(+) and I(-), are very similar, whereas those for Ca(2+) and SO(4)(2-) have distinct differences. These results indicate that the monovalent ions do not affect the hydrogen-bonding network of the majority of water molecules whereas this network is significantly affected in nanodrops containing the multivalent ions. The ion-induced effect on water structure propagates all the way to the surface of the nanodrops, which is located more than 1 nm from the ion.

  12. Effect of Mg2+, Al3+, and Fe3+ ions on crystallization of type α hemi-hydrated calcium sulfate under simulated conditions of hemi-hydrate process of phosphoric acid

    Science.gov (United States)

    Yang, Lin; Cao, Jianxin; Luo, Tong

    2018-03-01

    The present study investigated the effects of Mg2+, Al3+, and Fe3+ ions, as additives, on crystallization of type α hemi-hydrated calcium sulfate (α-HH) under simulated conditions of hemi-hydrate wet-process phosphoric acid production. Results showed that induction time of α-HH without additives reduces with increasing supersaturated ratios, but increases in the presence of Mg2+, Al3+, and Fe3+ ions. Under the same concentration of impurity ions, the order of extending induction time of α-HH is as follows: Fe3+>Mg2+>Al3+, and surface energy and critical nucleus radius of α-HH increase in the presence of Mg2+, Al3+, and Fe3+ ions. Accordingly, nucleation rate and growth efficiency of α-HH crystals reduce. Length of α-HH crystals decreases and its diameter thicken in the presence of Mg2+, Al3+, and Fe3+ ions. The crystals of α-HH easily grow in the direction of [0 1 0], and feature long-needles. On the other hand, Mg2+, Al3+, and Fe3+ ions are mainly adsorbed on the exposed surface {1 -1 0} of α-HH crystals. Thus, crystal shapes of α-HH eventually show wedge or short columns.

  13. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .3. EFFECT OF SULFOLANE ON THE EQUILIBRIUM CONVERSION

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium

  14. Effect of aluminate ions on the heat of hydration of cementitious waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1993-11-01

    During the hydration and setting of high-salt content liquid waste grouts, considerable heat is generated by exothermic reactions within the grout. These reactions include hydration reactions of cementitious solids and reactions between waste constituents and the solids. Adiabatic temperature rises exceeding 80 degrees C have been estimated for grouts prepared with a dry blend of 47 wt % fly ash, 47 wt % blast furnace slag, and 6 wt % type I/II Portland cement (1) Performance criteria for grout disposal specify that the temperature of the grout waste form must not exceed 90 degrees C (2) To counter the increase in temperature, inert solids were added to the ''47/47/6'' dry blend to reduce the amount of heat-generating solids, thereby decreasing the temperature rise. Based on preliminary results from adiabatic calorimetry, a dry blend consisting of 40 wt % limestone flour, 28 wt % class F fly ash, 28 wt % ground blast furnace slag, and 4 wt % type I/II Portland cement was selected for further testing

  15. Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO2

    International Nuclear Information System (INIS)

    Kluth, P.; Johannessen, B.; Giraud, V.; Cheung, A.; Glover, C.J.; Azevedo, G. de M; Foran, G.J.; Ridgway, M.C.

    2004-01-01

    Au nanocrystals (NCs) fabricated by ion implantation into thin SiO 2 and annealing were investigated by means of extended x-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiO 2 matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25 A

  16. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  17. QUANTUM MECHANICAL STUDY OF THE COMPETITIVE HYDRATION BETWEEN PROTONATED QUINAZOLINE AND LI+, NA+, AND CA2+ IONS

    Science.gov (United States)

    Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...

  18. Sorption rate of uranyl ions by hyphan cellulose exchangers and by hydrated titanium dioxide

    International Nuclear Information System (INIS)

    Ambe, F.; Burba, P.; Lieser, K.H.

    1979-01-01

    Sorption of uranyl ions by the cellulose exchanger Hyphan proceeds rather fast. Two steps are observed with half-times of the order of 10 s and 2 min. The majority of the uranyl ions is bound in 1 min. Sorption of uranyl ions by titanium dioxide is a very slow process. For particle sizes between 0,1 and 0,5 mm the half-time is about 3 h and equilibrium is attained in about 1 day. The effect of stirring suspensions of inorganic sorbents like titanium dioxide in solution is investigated in detail. Sorption of uranyl ions by titanium dioxide and change in pH in solution are measured simultaneously as a function of time. (orig.) [de

  19. Cryo-planing of frozen-hydrated samples using cryo triple ion gun milling (CryoTIGM™).

    Science.gov (United States)

    Chang, Irene Y T; Joester, Derk

    2015-12-01

    Cryo-SEM is a high throughput technique for imaging biological ultrastructure in its most pristine state, i.e. without chemical fixation, embedding, or drying. Freeze fracture is routinely used to prepare internal surfaces for cryo-SEM imaging. However, the propagation of the fracture plane is highly dependent on sample properties, and the resulting surface frequently shows substantial topography, which can complicate image analysis and interpretation. We have developed a broad ion beam milling technique, called cryogenic triple ion gun milling (CryoTIGM™ ['krī-ə-,tīm]), for cryo-planing frozen-hydrated biological specimens. Comparing sample preparation by CryoTIGM™ and freeze fracture in three model systems, Baker's yeast, mouse liver tissue, and whole sea urchin embryos, we find that CryoTIGM™ yields very large (∼700,000 μm(2)) and smooth sections that present ultrastructural details at similar or better quality than freeze-fractured samples. A particular strength of CryoTIGM™ is the ability to section samples with hard-soft contrast such as brittle calcite (CaCO3) spicules in the sea urchin embryo. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.

    Science.gov (United States)

    Rudolph, Wolfram W; Irmer, Gert

    2015-01-07

    Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121-3.050 mol L(-1)) range at room temperature (23 °C). A very weak mode at 343 cm(-1) with a full width at half height at 49 cm(-1) in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La(3+) nona-hydrate was also detected in a 1.2 mol L(-1) La(CF3SO3)3(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5-3.050 mol L(-1). The chloro-complexes in LaCl3(aq) are fairly weak and disappear with dilution. At a concentration La(OH2)(9-n)Cln](+3-n) (n = 1-3) were formed. The La(NO3)3(aq) spectra were compared with a spectrum of a 0.409 mol L(-1) NaNO3(aq) and it was concluded that in La(NO3)3(aq) over the concentration range from 0.121-1.844 mol L(-1), nitrato-complexes, [La(OH2)(9-n)(NO3)n](+3-n) (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution La(OH2)9](3+) with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La-O stretching mode at 328.2 cm(-1), is only slightly smaller than the experimental one.

  1. Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study.

    Science.gov (United States)

    Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Xiao, Cheng-Liang; Zhao, Yu-Liang; Wei, Yue-Zhou; Chai, Zhi-Fang; Shi, Wei-Qun

    2014-03-20

    Studying the bonding nature of uranyl ion and graphene oxide (GO) is very important for understanding the mechanism of the removal of uranium from radioactive wastewater with GO-based materials. We have optimized 22 complexes between uranyl ion and GO applying density functional theory (DFT) combined with quasi-relativistic small-core pseudopotentials. The studied oxygen-containing functional groups include hydroxyl, carboxyl, amido, and dimethylformamide. It is observed that the distances between uranium atoms and oxygen atoms of GO (U-OG) are shorter in the anionic GO complexes (uranyl/GO(-/2-)) compared to the neutral GO ones (uranyl/GO). The formation of hydrogen bonds in the uranyl/GO(-/2-) complexes can enhance the binding ability of anionic GO toward uranyl ions. Furthermore, the thermodynamic calculations show that the changes of the Gibbs free energies in solution are relatively more negative for complexation reactions concerning the hydroxyl and carboxyl functionalized anionic GO complexes. Therefore, both the geometries and thermodynamic energies indicate that the binding abilities of uranyl ions toward GO modified by hydroxyl and carboxyl groups are much stronger compared to those by amido and dimethylformamide groups. This study can provide insights for designing new nanomaterials that can efficiently remove radionuclides from radioactive wastewater.

  2. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  3. Hydration processes of electrolyte anions and cations on pt(111), Ir(111), Ru(001) and Au(111) surfaces: coadsorption of water molecules with electrolyte ions.

    Science.gov (United States)

    Ito, M; Nakamura, M

    2002-01-01

    Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.

  4. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    Science.gov (United States)

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  5. Prediction and analysis of the structure of hydrated Mn2+, V2+, Ti3 and Cr3 ions by means of the MD simulation methods

    International Nuclear Information System (INIS)

    Iglesias, Y.J.

    2002-01-01

    Classical Molecular dynamics (MD) and hybrid Quantum/Molecular Mechanics-Molecular Dynamics (QM/MM-MD) simulations have been performed to investigate structural properties of Mn(II), V(II), Cr(III) and Ti(III) cations in aqueous solution. The first hydration sphere in QM/MM-MD simulations is treated quantum mechanically, while the rest of the system is described by classical analytical two- and three-body potentials. The results obtained for the first hydration shell from this method are in agreement with experimental data, showing 100 % of 6 fold coordination around the ion in all cases. The results prove that non/additive contributions are mandatory for an accurate description of ion hydration. Within the QM/MM method, the inclusion of a perturbation field describing the remaining system was shown to be an accurate tool for evaluating the first shell structure, and thus to be a good alternative for systems, where the construction of a three-body correction function is difficult or too time-consuming. (author)

  6. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst.

    Science.gov (United States)

    Wei, Weiqi; Wu, Shubin

    2017-10-01

    Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl 2 ·RH 2 O) and sulfated titania catalyst (SO 4 2- /TiO 2 ) were investigated in this study. The results showed the introduction of sulfate into the TiO 2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl 2 ·RH 2 O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl 2 ·RH 2 O hydrate and SO 4 2- /TiO 2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrogen- and Halogen-Bonds between Ions of like Charges: Are They Anti-Electrostatic in Nature?

    Science.gov (United States)

    Wang, Changwei; Fu, Yuzhuang; Zhang, Lina; Danovich, David; Shaik, Sason; Mo, Yirong

    2018-04-05

    Recent theoretical studies suggested that hydrogen bonds between ions of like charges are of a covalent nature due to the dominating n D →σ* H-A charge-transfer (CT) interaction. In this work, energy profiles of typical hydrogen (H) and halogen (X) bonding systems formed from ions of like charges are explored using the block-localized wavefunction (BLW) method, which can derive optimal geometries and wave functions with the CT interaction "turned off." The results demonstrate that the kinetic stability, albeit reduced, is maintained for most investigated systems even after the intermolecular CT interaction is quenched. Further energy decomposition analyses based on the BLW method reveal that, despite a net repulsive Coulomb repulsion, a stabilizing component exists due to the polarization effect that plays significant role in the kinetic stability of all systems. Moreover, the fingerprints of the augmented electrostatic interaction due to polarization are apparent in the variation patterns of the electron density. All in all, much like in standard H- and X-bonds, the stability of such bonds between ions of like charges is governed by the competition between the stabilizing electrostatic and charge transfer interactions and the destabilizing deformation energy and Pauli exchange repulsion. While in most cases of "anti-electrostatic" bonds the CT interaction is of a secondary importance, we also find cases where CT is decisive. As such, this work validates the existence of anti-electrostatic H- and X-bonds. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Mechanical properties considerations for use of epoxy insulators and bonded joints in neutral beam ion sources

    Science.gov (United States)

    Doll, D. W.; Trester, P. W.; Staley, H. G.

    1981-10-01

    In the Doublet III (D-III) neutral beam injectors, cast, rigid epoxy insulators are joined to the AISI 304 stainless steel corona rings with semirigid epoxy adhesive. Selected mechanical properties of these materials were measured between 11 C and 65 C, well below the material temperature limits, to identify the trends and to confirm adequate mechanical strength for the insulators. Significant creep deformation was measured at 22 C. Empirical relationships were developed to predict long term strain over a range of stress and temperature of design interest. Delayed failure was observed in bonded specimens at stress levels well below the ultimate strength. In order to protect the D-III neutral beam ion source epoxy from elevated temperature effects, a chill was installed in the cooling water circuit. Outgassing measurements of the insulator epoxy were made and found to be low and primarily H2O.

  9. Versatile micropipette technology based on deep reactive ion etching and anodic bonding for biological applications

    International Nuclear Information System (INIS)

    Lopez-Martinez, M J; Campo, E M; Esteve, J; Plaza, J A; Caballero, D; Errachid, A; Fernandez, E

    2009-01-01

    A novel, versatile and robust technology to manufacture transparent micropipettes, suitable for biological applications, is presented here. Up to three deep reactive ion etchings have been included in the manufacturing process, providing highly controlled geometry of reservoirs, connection cavities and inlet ports. Etching processes have been used for the definition of chip and reservoir and for nozzle release. Additionally, special design considerations have been developed to facilitate micro-to-macro fluidic connections. Implementation of anodic bonding to seal a glass substrate to the fluidic structure etched on Si, allowed observation of the flow inside the reservoir. Flow tests have been conducted by filling channels with different fluids. Flow was observed under an optical microscope, both during capillary filling and also during pumping. Dispensing has been demonstrated by functionalizing the surface of an AFM cantilever. Mechanical tests performed by piercing live mouse cells with FIB-sharpened micropipettes suggest the design is sturdy for biological piercing applications

  10. CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl−, SO42− and HCO3-: The effects of electrostricted water and ion hydration thermodynamics

    International Nuclear Information System (INIS)

    Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will; Zhang, Tongwei; Romanak, Katherine D.

    2016-01-01

    Dissolution of CO 2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO 2 entering the atmosphere. Ions in solution partially control the amount of CO 2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO 2 solubility is difficult to predict. In this study, CO 2 solubility was experimentally determined in water, NaCl, CaCl 2 , Na 2 SO 4, and NaHCO 3 solutions and a mixed brine similar to the Bravo Dome natural CO 2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO 2 pressures to 35.5 MPa. Increasing ionic strength decreased CO 2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO 2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO 2 was strongly correlated (R 2  = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO 2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO 2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl 2 brine and a natural Na + , Ca 2+ , Cl − type brine with minor amounts of Mg 2+ , K + , Sr 2+ and Br − ). - Highlights: • Measured CO 2 solubility in Na + , Cl − , HCO 3 - , Ca 2+ and SO 4 2− solutions at high PCO 2 . • A new equation calculates electrostricted water (mol/kgw) from hydration number. • CO 2 solubility strongly correlates (R 2  = 0.96) to electrostricted water. • Ion electrostriction of water limits its availability for CO 2 caging and solvation. • Correlations predict CO 2 solubility of several mixed brines to within 1–9%.

  11. Guided ion beam and theoretical studies of the bond energy of SmS.

    Science.gov (United States)

    Armentrout, P B; Demireva, Maria; Peterson, Kirk A

    2017-12-07

    Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS + + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS + is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS + with Xe, CO, and O 2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS + + CO → Sm + + COS exchange reaction are combined to yield D 0 (Sm + -S) = 3.37 ± 0.20 eV. The CO and O 2 reactions also yield a SmSO + product, with measured endothermicities that indicate D 0 (SSm + -O) = 3.73 ± 0.16 eV and D 0 (OSm + -S) = 1.38 ± 0.27 eV. The SmS + bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS + , and for comparison, SmO, SmO + , and EuO.

  12. A new calcium sulfate hemi-hydrate.

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R; Nonat, André

    2010-02-28

    Calcium sulfate hydrates receive significant attention due to numerous large scale industrial applications. There has been a long debate on the possible existence of two gypsum hemi-hydrate polymorphs, denoted alpha- and beta-CaSO(4).0.5H(2)O. In this work, a new crystal structure of calcium sulfate hemi-hydrates is presented, denoted beta-CaSO(4).0.5H(2)O. The structure was solved using powder neutron diffraction data, the space group is P3(1) and the unit cell in a hexagonal setting a = 6.9268(1), c = 12.7565(3) A. The structure has two calcium-oxygen coordination polyhedra: Ca1 is eight coordinated and has Ca-O bond lengths in the range 2.31(3) to 2.89(2) A and Ca2 is nine coordinated and has one Ca-O(water) bond length of 2.43(3) A, and eight Ca-O bonds in the range 2.30(4) to 2.86(4) A. Two sulfate ions have S-O bonds in the range 1.47(3) to 1.49(4) A, and 1.47(3) to 1.50(3) A, respectively. The water molecule forms a hydrogen bond of 2.55(4) A to an oxygen atom in one of the sulfate ions. The structure of the hemi-hydrate beta-CaSO(4).0.5H(2)O has one-dimensional channels running parallel to the c-axis where the water molecules are located. This relates the structures of alpha- and beta-CaSO(4).0.5H(2)O and soluble anhydrite AIII-CaSO(4), which all have similar channel structures. The water molecules in the structure of beta-CaSO(4).0.5H(2)O are packed in the channels with a three fold (3(1)) symmetry in a different way as compared to the pseudo hexagonal found in the structure of alpha-CaSO(4).0.5H(2)O.

  13. Associative Ionization of Excited Sodium Species with Various Ligands: Assessing Relative Bonding Strengths of Ion-ligand Interactions

    Czech Academy of Sciences Publication Activity Database

    Gilligan, J. J.; McCunn, L. R.; Leskiw, B. D.; Herman, Zdeněk; Castleman Jr., A. W.

    2001-01-01

    Roč. 204, 1/3 (2001), s. 247-253 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z4040901 Keywords : associative ionization * cluster ions * sodium bonding energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.176, year: 2001

  14. K+ congeners that do not compromise Na+ activation of the Na+,K+-ATPase: hydration of the ion binding cavity likely controls ion selectivity.

    Science.gov (United States)

    Mahmmoud, Yasser A; Kopec, Wojciech; Khandelia, Himanshu

    2015-02-06

    The Na(+),K(+)-ATPase is essential for ionic homeostasis in animal cells. The dephosphoenzyme contains Na(+) selective inward facing sites, whereas the phosphoenzyme contains K(+) selective outward facing sites. Under normal physiological conditions, K(+) inhibits cytoplasmic Na(+) activation of the enzyme. Acetamidinium (Acet(+)) and formamidinium (Form(+)) have been shown to permeate the pump through the outward facing sites. Here, we show that these cations, unlike K(+), are unable to enter the inward facing sites in the dephosphorylated enzyme. Consistently, the organic cations exhibited little to no antagonism to cytoplasmic Na(+) activation. Na(+),K(+)-ATPase structures revealed a previously undescribed rotamer transition of the hydroxymethyl side chain of the absolutely conserved Thr(772) of the α-subunit. The side chain contributes its hydroxyl to Na(+) in site I in the E1 form and rotates to contribute its methyl group toward K(+) in the E2 form. Molecular dynamics simulations to the E1·AlF4 (-)·ADP·3Na(+) structure indicated that 1) bound organic cations differentially distorted the ion binding sites, 2) the hydroxymethyl of Thr(772) rotates to stabilize bound Form(+) through water molecules, and 3) the rotamer transition is mediated by water traffic into the ion binding cavity. Accordingly, dehydration induced by osmotic stress enhanced the interaction of the congeners with the outward facing sites and profoundly modified the organization of membrane domains of the α-subunit. These results assign a catalytic role for water in pump function, and shed light on a backbone-independent but a conformation-dependent switch between H-bond and dispersion contact as part of the catalytic mechanism of the Na(+),K(+)-ATPase. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A Pseudo MS3 Approach for Identification of Disulfide-Bonded Proteins: Uncommon Product Ions and Database Search

    Science.gov (United States)

    Chen, Jianzhong; Shiyanov, Pavel; Schlager, John J.; Green, Kari B.

    2012-02-01

    It has previously been reported that disulfide and backbone bonds of native intact proteins can be concurrently cleaved using electrospray ionization (ESI) and collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). However, the cleavages of disulfide bonds result in different cysteine modifications in product ions, making it difficult to identify the disulfide-bonded proteins via database search. To solve this identification problem, we have developed a pseudo MS3 approach by combining nozzle-skimmer dissociation (NSD) and CID on a quadrupole time-of-flight (Q-TOF) mass spectrometer using chicken lysozyme as a model. Although many of the product ions were similar to those typically seen in MS/MS spectra of enzymatically derived peptides, additional uncommon product ions were detected including ci-1 ions (the ith residue being aspartic acid, arginine, lysine and dehydroalanine) as well as those from a scrambled sequence. The formation of these uncommon types of product ions, likely caused by the lack of mobile protons, were proposed to involve bond rearrangements via a six-membered ring transition state and/or salt bridge(s). A search of 20 pseudo MS3 spectra against the Gallus gallus (chicken) database using Batch-Tag, a program originally designed for bottom up MS/MS analysis, identified chicken lysozyme as the only hit with the expectation values less than 0.02 for 12 of the spectra. The pseudo MS3 approach may help to identify disulfide-bonded proteins and determine the associated post-translational modifications (PTMs); the confidence in the identification may be improved by incorporating the fragmentation characteristics into currently available search programs.

  16. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis

    International Nuclear Information System (INIS)

    Pocker, Y.; Bjorkquist, D.W.

    1977-01-01

    The approach to equilibrium between carbon dioxide and bicarbonate has been followed by zero-order kinetics both from direction of CO 2 hydration and HCO 3 - dehydration. The rates are monitored at 25.0 0 C using stopped-flow indicator technique in H 2 O as well as D 2 O. The hydration of CO 2 is subject to catalysis by H 2 O (k 0 = 2.9 x 10 -2 s -1 ) and OH - (k/sub OH - / = 6.0 x 10 3 M -1 s -1 ). The value of 0.63 for the ratio k/sub OH - //k/sub OD - / is consistent with a mechanism utilizing a direct nucleophilic attack of OH - on CO 2 . In reverse direction HCO 3 - dehydration is catalyzed predominantly by H 3 O + (k/sub H 3 O + / 4.1 x 10 4 M -1 s -1 ) and to a much lesser degree by H 2 O (k 0 = 2 x 10 -4 s -1 ). The value of 0.56 for ratio k/sub H 3 O + //kD 3 O + / indicates that HCO 3 - may be protonated either in a preequilibrium step or in a rate-determining dehydration step. Both the hydration of CO 2 and the dehydration of bicarbonate are subject to general catalysis. For CO 2 , dibasic phosphate, a zinc imidazole complex, and a copper imidazole complex all enhanced the rate of hydration with respective rate coefficients of 3 x 10 -1 , 6.0, and 2.5 M -1 s -1 . For bicarbonate, monobasic phosphate catalyzed the rate of dehydration (k/sub H 2 PO 4 - / = 1 x 10 -1 M -1 s -1 ). Additionally in going from an ionic strength of 0.1 to 1.0 there was a negligible salt effect for the water-catalyzed hydration of CO 2 . However, the rate constant for the hydronium ion catalyzed dehydration of HCO 3 - was reduced from 4.1 x 10 4 M -1 s -1 to 2.3 x 10 4 M -1 s -1 for the same change in ionic strength. Finally the rate of CO 2 uptake by the complex Co(NH 3 ) 5 OH 2 3+ was followed spectrophotometrically both in H 2 O and D 2 O to determine the solvent isotope effect for a reaction known to involve a nucleophilic attack of a Co(III)-hydroxo complex on CO 2

  17. Investigation of the potential of silica-bonded macrocyclic ligands for separation of metal ions from nuclear waste

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Colton, N.G.; Bruening, R.L.

    1992-01-01

    This report describes the testing of some novel separations materials known as SuperLig trademark materials for their ability to separate efficiently and selectively certain metal ions from a synthetic, nonradioactive nuclear waste solution. The materials, developed and patented by IBC Advanced Technologies, are highly selective macrocyclic ligands that have been covalently bonded to silica gel. The SuperLig trademark materials that were tested are: (1) SuperLig trademark 601 for barium (Ba 2+ ) and strontium (Sr 2+ ) separation, (2) SuperLig trademark 602 for cesium (Cs + ) and rubidium (Rb + ) separation, (3) SuperLig trademark 27 for palladium (Pd 2+ ) separation, and (4) SuperLig trademark II for silver (Ag + ) and ruthenium (Ru 3+ ) separation. Our observations show that the technology for separating metal ions using silica-bonded macrocycles is essentially sound and workable to varying degrees of success that mainly depend on the affinity of the macrocycle for the metal ion of interest. It is expected that ligands will be discovered or synthesized that are amenable to separating metal ions of interest using this technology. Certainly more development, testing, and evaluation is warranted. 3 figs., 11 tabs

  18. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries

    Science.gov (United States)

    Wu, Xuan; Zhao, Wei; Wang, Hong; Qi, Xiujun; Xing, Zheng; Zhuang, Quanchao; Ju, Zhicheng

    2018-02-01

    Potassium-ion batteries are attracting great attention as a promising alternative to lithium-ion batteries due to the abundance and low price of potassium. Herein, the phosphorus/carbon composite, obtained by a simple ball-milling of 20 wt% commercial red phosphorus and 80 wt% graphite, is studied as a novel anode for potassium-ion batteries. Considering the high theoretical specific capacity of phosphorus and formation of stable phosphorus-carbon bond, which can alleviate the volume expansion efficiently, the phosphorus/carbon composite exhibits a high charge capacity of 323.5 mA h g-1 after 50 cycles at a current density of 50 mA g-1 with moderate rate capability and cycling stability. By the X-ray diffraction analysis, the alloying-dealloying mechanism of phosphorus is proposed to form a KP phase. Meanwhile, prepotassiation treatment is conducted to improve the low initial coulomb efficiency.

  19. Retention of alkali ions by hydrated low-pH cements: Mechanism and Na{sup +}/K{sup +} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Bach, T.T.H.; Chabas, E. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, DEN/MAR/DTCD/SPDE, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Pochard, I., E-mail: isabelle.pochard@u-bourgogne.fr [ICB, UMR 6303 CNRS Université de Bourgogne, 21078 Dijon (France); Cau Dit Coumes, C. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, DEN/MAR/DTCD/SPDE, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Haas, J. [ICB, UMR 6303 CNRS Université de Bourgogne, 21078 Dijon (France); Frizon, F. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, DEN/MAR/DTCD/SPDE, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Nonat, A. [ICB, UMR 6303 CNRS Université de Bourgogne, 21078 Dijon (France)

    2013-09-15

    Low-pH cements, also referred to as low-alkalinity cements, can be designed by replacing significant amounts of Portland cement by pozzolanic materials. Their pore solution is characterized by a pH near 11, and an alkali concentration much lower than that of Portland cement. This work investigates the retention of sodium and potassium by a hydrated low-pH cement comprising 60% Portland cement and 40% silica fume. It is shown that sorption of potassium is higher than that of sodium and mainly results from counterion charge balancing of the C-S-H negative surface charge. To explain the greater retention of potassium compared to sodium, it is postulated that potassium, unlike sodium, may enter the interlayer of C-S-H to compensate the negative charges in the interlayer, in addition to the external surfaces. This assumption is supported by structural characterization of C-S-H using X-ray diffraction.

  20. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  1. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    Abstract. Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage's geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and ...

  2. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    International Nuclear Information System (INIS)

    Baconnais, S.; Delavoie, F.; Zahm, J.M.; Milliot, M.; Terryn, C.; Castillon, N.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E.; Balossier, G.

    2005-01-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na + absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na + , Mg 2+ , P, S and Cl - ) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR inh -172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF

  3. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    International Nuclear Information System (INIS)

    Souda, Ryutaro

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H + ion is scattered from physisorbed Ar at any coverage whereas the H + yield from solid H 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes

  4. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    CERN Document Server

    Souda, R

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H sup + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H sup + ion is scattered from physisorbed Ar at any coverage whereas the H sup + yield from solid H sub 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F sup + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H sub 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

  5. Ion Beam Enhanced Deposition as Alternative Pretreatment for Adhesive Bonding of Aircraft Alloys

    National Research Council Canada - National Science Library

    Koch, Gerhardus

    1994-01-01

    .... The objective of the work described in this paper was to demonstrate the feasibility of applying a non-chemical technique to generate an aluminum oxide surface with adhesive bonding properties...

  6. A Versatile Technology Based on Deep Reactive Ion Etching and Anodic Bonding for the Application of Micromixers and Microfilters

    Directory of Open Access Journals (Sweden)

    Safae MERZOUK

    2014-05-01

    Full Text Available A technology for the fabrication of silicon micromixers and microfilters is presented with their applications being analyzed. The versatility of this technology is observed with the use of two different photolithographic masks where active microfluidic components have been developed. The silicon micromixers and microfilters were developed and manufactured by photolithography (PL and deep-reactive ion etching (DRIE and then bonded onto sand-blasted glass wafers by anodic bonding. The fluidic flow within the specialized microchannel was observed under an optical microscope with micromixing using two differently colored dyes and the microfiltration of poly (D, L lactic-co-glycolic acid microparticles (MP-PLGA for size-sorting and separation Finally, the microfiltering device was injected with a whole blood sample for the separation of larger leukocyte cells.

  7. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  8. DFT Study of the effects of counter ions on bonding, molecular and ...

    Indian Academy of Sciences (India)

    Abstract. The structures and properties of pentaflourophenyl xenonium diflouride cation (PFF) have been studied in their salts with 12 different counter ions using DFT calculations. The results demonstrated the huge effect of counter ion on all properties. The hybridization values, obtained from the NBO calculations, showed.

  9. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    Fuels in India’s Energy Future. Workshop on “Alternate Fuels in India’s Energy Future”, held at Hotel International, New Delhi,19 Sept 2006 , Jointly organised by CII,ERM and British High Commission Bangs, N.L., D.S. Sawyer, X. Golovchenko... hydrates: relevance to world margin stability and climatic change, Tutorial book: Gent, Belgium, pp. 1-37. Sloan, E. D., 1998, Clathrate hydrates of natural gases. 2 nd edition: Marcel Dekker, Inc., New York, pp705. Stakes...

  10. Analysis of molecular species of triacylglycerols from vegetable oils containing fatty acids with non-methylene-interrupted double bonds, by HPLC in the silver-ion mode

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Y.; Kim, S. [Dong A Univ., Pusan (Korea, Republic of)

    1998-10-20

    The possibilities for application of silver ion HPLC to analysis of the triacylglycerols containing conjugate trienoic acids and {Delta}{sup 5}-polymethylene-interrupted acids and proportions of triacylglycerol fractions obtained by silver-ion HPLC from the seed oil of Momordica charantia double bonds were examined, respectively. The triacylglycerols of seed oils containing conjugate trienoic acids such as {alpha}-eleostearic acid (C{sub 18:3 9c,11t,13t}) and punicic acid (C{sub 18:3} {sub 9c,11t,13c}) were resolved by silver-ion HPLC. Fractions were fractionated on the basis of the number and configuration of double bonds in the species, and the elution profile is quite different from that of the species comprising exclusively saturated and unsaturated fatty acids with methylene-interrupted double bonds ; for instance, the species (DT(c2)) composed of one dienoic acid and two conjugate trienoic acids eluted much earlier than the species (D{sub 2}T{sub c}) composed of two dienoic acids and one conjugate trienoic acid, in spite of having larger number of double bonds. This means that the interaction of conjugate double bonds with silver ions is weaker than that of methylene-interrupted double bonds, presumably because of the delocalization of {pi}-electrons in conjugate double bonds. In this instance, the strength of interaction of a conjugate trienoic double bond system with silver ions seemed to be between that of methylene-interrupted dienoic and monoenoic double bond systems. Triacylglycerols of the seeds of Ginkgo biloba have been resolved by HPLC in the silver-ion mode according to the number and position of double bonds. In this instance, the strength of interaction between the {pi}-electrons of double bonds in the fatty acyl residues and silver ions is in the order; C{sub 18:3{omega}3}>C(20:3){Delta}{sup 5,11,14}C{sub 18:3}{Delta}{sup 5,9,12}>= C{sub 18:2{omega}6}>C{sub 18:2}{Delta}{sup 5,9}>C{sub 18:1{omega}9}>C{sub 18:1ome= ga7}. 49 refs., 2 figs., 2 tabs.

  11. Study of the action of phosphate ions contained in the mixing water on the hydration of a Portland cement; Etude de l'action des phosphates presents dans l'eau de gachage sur l'hydratation d'un ciment Portland

    Energy Technology Data Exchange (ETDEWEB)

    Benard, Ph

    2005-12-15

    Cementation is considered as the most attractive solution for the conditioning of low and intermediate radioactive wastes. The species contained in these wastes can strongly influence the reactivity of the cement pastes, it is in particular the case of the ortho-phosphate ions which are found in the evaporation concentrates. The aim of our work was to determine the influence of these ions on the hydration and the rheological properties of the cement pastes at early age as well as the mechanical and physical properties on the hardened material. (author)

  12. Metal-Ion- and Hydrogen-Bond-Mediated Interstellar Prebiotic Chemistry: The First Step in the Formose Reaction.

    Science.gov (United States)

    Thripati, Sorakayala; Ramabhadran, Raghunath O

    2017-11-16

    The formose reaction, which offers a feasible chemical pathway for the prebiotic synthesis of sugars, is a well-studied reaction for over two hundred and 50 years. Yet huge knowledge gaps exist even in the very first step of the formose reaction. In this work, we provide a new and otherwise unintuitive reaction pathway for the gas-phase conversion of formaldehyde to glycolaldehyde (the first step in the formose reaction) occurring in the interstellar medium (ISM). Employing electronic structure calculations (CCSD(T) and DFT methods), we exhaustively probe the role of various metal ions and small molecules detected in the ISM to propose a new mechanism wherein metal-oxygen interactions and hydrogen bonds cooperatively facilitate an otherwise implausible chemical reaction. The reactions involving Mg 2+ are throughout found to be barrierless, and those featuring Al + ions are noted to only have a small barrier. The proton affinities of the small molecules, metal-oxygen interactions, and the extent of C-C-bond formation are found to be the significant factors that influence the barrier heights. The mechanism is also shown to be consistent with well-known experimental details in the terrestrial formose reaction (which could, however, proceed through a different mechanism). Future experimental and theoretical scope arising out of this paper are subsequently discussed.

  13. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Li, Xiaolin; Peng, Huisheng; Wang, Donghai

    2015-12-22

    Maintaining structural stability is a great challenge for high-capacity conversion electrodes with large volume change but is necessary for the development of high-energy-density, long-cycling batteries. Here, we report a stable phosphorus anode for sodium ion batteries by the synergistic use of chemically bonded phosphorus-carbon nanotube (P-CNT) hybrid and cross-linked polymer binder. The P-CNT hybrid was synthesized through ball-milling of red phosphorus and carboxylic group functionalized carbon nanotubes. The P-O-C bonds formed in this process help maintain contact between phosphorus and CNTs, leading to a durable hybrid. In addition, cross-linked carboxymethyl cellulose-citric acid binder was used to form a robust electrode. As a result, this anode delivers a stable cycling capacity of 1586.2 mAh/g after 100 cycles, along with high initial Coulombic efficiency of 84.7% and subsequent cycling efficiency of ∼99%. The unique electrode framework through chemical bonding strategy reported here is potentially inspirable for other electrode materials with large volume change in use.

  14. In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope.

    Science.gov (United States)

    de Winter, D A Matthijs; Mesman, Rob J; Hayles, Michael F; Schneijdenberg, Chris T W M; Mathisen, Cliff; Post, Jan A

    2013-07-01

    Recently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Tuning the intermolecular proton bond in the H5O2+ `Zundel ion' scaffold

    DEFF Research Database (Denmark)

    Olesen, S. G.; Guasco, T. L.; Roscioli, J. R.

    2011-01-01

    a remarkably similar trend as the exterior OH groups are sequentially solvated or are replaced by methyl substituents. In effect, solvents H-bonding to exterior OH groups act to increase the proton affinity of the water to which they are bound in a roughly additive fashion. We discuss this behavior...

  16. Crystal structures and hydrogen bonding in the isotypic series of hydrated alkali metal (K, Rb and Cs) complexes with 4-amino-phenyl-arsonic acid.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2017-02-01

    The structures of the alkali metal (K, Rb and Cs) complex salts with 4-amino-phenyl-arsonic acid ( p -arsanilic acid) manifest an isotypic series with the general formula [ M 2 (C 6 H 7 AsNO 3 ) 2 (H 2 O) 3 ], with M = K {poly[di-μ 3 -4-amino-phenyl-arsonato-tri-μ 2 -aqua-dipotassium], [K 2 (C 6 H 7 AsNO 3 ) 2 (H 2 O) 3 ], (I)}, Rb {poly[di-μ 3 -4-amino-phenyl-arsonato-tri-μ 2 -aqua-dirubidium], [Rb 2 (C 6 H 7 AsNO 3 ) 2 (H 2 O) 3 ], (II)}, and Cs {poly[di-μ 3 -4-amino-phenyl-arsonato-tri-μ 2 -aqua-dirubidium], [Cs 2 (C 6 H 7 AsNO 3 ) 2 (H 2 O) 3 ], (III)}, in which the repeating structural units lie across crystallographic mirror planes containing two independent and different metal cations and a bridging water mol-ecule, with the two hydrogen p -arsanilate ligands and the second water mol-ecule lying outside the mirror plane. The bonding about the two metal cations in all complexes is similar, one five-coordinate, the other progressing from five-coordinate in (I) to eight-coordinate in both (II) and (III), with overall M -O bond-length ranges of 2.694 (5)-3.009 (7) (K), 2.818 (4)-3.246 (4) (Rb) and 2.961 (9)-3.400 (10) Å (Cs). The additional three bonds in (II) and (III) are the result of inter-metal bridging through the water ligands. Two-dimensional coordination polymeric structures with the layers lying parallel to (100) are generated through a number of bridging bonds involving the water mol-ecules (including hydrogen-bonding inter-actions), as well as through the arsanilate O atoms. These layers are linked across [100] through amine N-H⋯O hydrogen bonds to arsonate and water O-atom acceptors, giving overall three-dimensional network structures.

  17. Crystal structures and hydrogen bonding in the isotypic series of hydrated alkali metal (K, Rb and Cs) complexes with 4-amino­phenyl­arsonic acid

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D.

    2017-01-01

    The structures of the alkali metal (K, Rb and Cs) complex salts with 4-amino­phenyl­arsonic acid (p-arsanilic acid) manifest an isotypic series with the general formula [M 2(C6H7AsNO3)2(H2O)3], with M = K {poly[di-μ3-4-amino­phenyl­arsonato-tri-μ2-aqua-dipotassium], [K2(C6H7AsNO3)2(H2O)3], (I)}, Rb {poly[di-μ3-4-amino­phenyl­arsonato-tri-μ2-aqua-dirubidium], [Rb2(C6H7AsNO3)2(H2O)3], (II)}, and Cs {poly[di-μ3-4-amino­phenyl­arsonato-tri-μ2-aqua-dirubidium], [Cs2(C6H7AsNO3)2(H2O)3], (III)}, in which the repeating structural units lie across crystallographic mirror planes containing two independent and different metal cations and a bridging water mol­ecule, with the two hydrogen p-arsanilate ligands and the second water mol­ecule lying outside the mirror plane. The bonding about the two metal cations in all complexes is similar, one five-coordinate, the other progressing from five-coordinate in (I) to eight-coordinate in both (II) and (III), with overall M—O bond-length ranges of 2.694 (5)–3.009 (7) (K), 2.818 (4)–3.246 (4) (Rb) and 2.961 (9)–3.400 (10) Å (Cs). The additional three bonds in (II) and (III) are the result of inter-metal bridging through the water ligands. Two-dimensional coordination polymeric structures with the layers lying parallel to (100) are generated through a number of bridging bonds involving the water mol­ecules (including hydrogen-bonding inter­actions), as well as through the arsanilate O atoms. These layers are linked across [100] through amine N—H⋯O hydrogen bonds to arsonate and water O-atom acceptors, giving overall three-dimensional network structures. PMID:28217343

  18. R-O-C(triple bond)N species produced by ion irradiation of ice mixtures: comparison with astronomical observations

    Science.gov (United States)

    Palumbo, M. E.; Strazzulla, G.; Pendleton, Y. J.; Tielens, A. G.

    2000-01-01

    We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.

  19. Effect of metal ion hydration on the interaction between sodium carboxylates and aluminum(III) or chromium(III) ions in aqueous solution.

    Science.gov (United States)

    Pereira, Rui F P; Tapia, Maria J; Valente, Artur J M; Burrows, Hugh D

    2012-01-10

    The interaction between sodium octanoate, decanoate, and dodecanoate and aluminum(III) and chromium(III) has been studied in water at natural pH values, starting well below the surfactant critical micelle concentration, using electrical conductivity, turbidity, and potentiometric measurements. With decanoate or dodecanoate, maximum interaction occurs at 3:1 stoichiometry, corresponding to charge neutralization. Although the solutions become turbid with both metal ions, indicating phase separation, differences are observed and attributed to the fact that aluminum(III) is relatively labile to substitution and rapidly replaces its water ligands, whereas chromium(III) is substitution inert. This shows up in well-defined floc formation with Al(3+), whereas Cr(3+) suspensions do not precipitate, probably because that replacement of coordinated water by carboxylate ligands is impeded. This can be overcome by increasing temperature, and differences in the thermal behavior with Al(3+) and Cr(3+) are suggested to be due to increased involvement of substitution reactions in the latter case. The effect of octanoate on the trivalent metal ions is less clear, and with Cr(3+) interaction only occurs when the carboxylate is in excess. Hydrophobic interactions between alkyl chains play a major role in driving phase separation. At high surfactant concentrations, the solid phases do not dissolve, in contrast to what is observed with the corresponding alkylsulfates. This has implications for use of these systems in metal separation through froth flotation. The concentration of metal ions in supernatant solution has been determined for sodium dodecanoate and sodium dodecylsulfate with Al(3+) and Cr(3+) over the whole surfactant concentration range by inductively coupled plasma-mass spectrometry (ICP-MS). From this, association constants have been determined and are found to be larger for the carboxylate than the alkylsulfate, in agreement with the greater Lewis basicity of the -CO(2

  20. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modeling the Nanophase Structural Dynamics of Phenylated Sulfonated Poly Ether Ether Ketone Ketone (Ph-SPEEKK) Membranes as a Function of Hydration

    Energy Technology Data Exchange (ETDEWEB)

    Lins, Roberto D.; Devanathan, Ramaswami; Dupuis, Michel

    2011-03-03

    Solvated phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes in the presence of hydronium ions were modeled by classical molecular dynamics simulations. The characterization of the nanophase structure and dynamics of such membranes was carried out as a function of the water content lambda, where lambda is the number of water molecules per sulfonate group, for lambda values of 3.5, 6, 11, 25, and 40. Analysis of pair correlation functions supports the experimental observation of membrane swelling upon hydration as well the increase in water and hydronium ion diffusion with increasing lambda. While the average number of hydrogen bonds between hydronium ions and sulfonate groups is dramatically affected by the hydration level, the average lifetime of the hydrogen bonds remains essentially constant. The membrane is found to be relatively rigid and its overall flexibility shows little dependence on water content. Compared to Nafion, water and ion diffusion coefficients are considerably smaller at lower hydration levels and room temperature. However, at higher lambda values of 25 and 40 these coefficients are comparable to those in Nafion at a lambda value of 16. This study also shows that water diffusion in Ph-SPEEKK membranes at low hydration levels can be significantly improved by raising the temperature with important implications for proton conductivity.

  2. Gas-Phase Reactions of Hydrated Alkaline Earth Metal Ions, M2+ (H2O)n (M = Mg, Ca, Sr, Ba and n = 4–7), With Benzene

    Science.gov (United States)

    Rodriguez-Cruz, Sandra E.; Williams, Evan R.

    2005-01-01

    Gas-phase reactions of hydrated divalent alkaline earth metal ions and benzene were investigated by electrospray ionization Fourier-transform mass spectrometry. Rate constants for solvent-exchange reactions were determined as a function of hydration extent for Mg2+, Ca2+, Sr2+, and Ba2+ clusters containing four to seven water molecules each. All of the strontium and barium clusters react quickly with benzene. Barium reacts slightly faster than the corresponding strontium cluster with the same number of water molecules attached. For calcium, clusters with four and five water molecules react quickly, whereas those with six and seven water molecules do not. Magnesium with four water molecules reacts quickly, but not when five through seven water molecules are attached. The slow reactivity observed for some of these clusters indicates that the cation–π interaction between the metal ion and benzene is partially screened by the surrounding water molecules. The reactivity of magnesium with seven water molecules is intermediate that of the hexa- and pentahydrate and the tetrahydrate. This result is consistent with the seventh water molecule being in the outer shell and much more weakly bound. The unusual trend in reactivity observed for magnesium may be due to the presence of mixed shell structures observed previously. These results are the first to provide information about the relative importance of cation–π interactions in divalent metal ions as a function of metal hydration extent. Such studies should also provide a model and some insight into the relative binding affinities of divalent metal ions to aromatic residues on peptides and proteins. PMID:11281600

  3. Gas-phase reactions of hydrated alkaline earth metal ions, M2+ (H2O)n (M = Mg, Ca, Sr, Ba and n = 4-7), with benzene.

    Science.gov (United States)

    Rodriguez-Cruz, S E; Williams, E R

    2001-03-01

    Gas-phase reactions of hydrated divalent alkaline earth metal ions and benzene were investigated by electrospray ionization Fourier-transform mass spectrometry. Rate constants for solvent-exchange reactions were determined as a function of hydration extent for Mg2+, Ca2+, Sr2+, and Ba2+ clusters containing four to seven water molecules each. All of the strontium and barium clusters react quickly with benzene. Barium reacts slightly faster than the corresponding strontium cluster with the same number of water molecules attached. For calcium, clusters with four and five water molecules react quickly, whereas those with six and seven water molecules do not. Magnesium with four water molecules reacts quickly, but not when five through seven water molecules are attached. The slow reactivity observed for some of these clusters indicates that the cation-pi interaction between the metal ion and benzene is partially screened by the surrounding water molecules. The reactivity of magnesium with seven water molecules is intermediate that of the hexa- and pentahydrate and the tetrahydrate. This result is consistent with the seventh water molecule being in the outer shell and much more weakly bound. The unusual trend in reactivity observed for magnesium may be due to the presence of mixed shell structures observed previously. These results are the first to provide information about the relative importance of cation-pi interactions in divalent metal ions as a function of metal hydration extent. Such studies should also provide a model and some insight into the relative binding affinities of divalent metal ions to aromatic residues on peptides and proteins.

  4. Ultrafast phosphate hydration dynamics in bulk H2O

    International Nuclear Information System (INIS)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-01-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H 2 PO 4 − ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν S (PO 2 − )) and asymmetric (ν AS (PO 2 − )) PO 2 − stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH) 2 ) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S (PO 2 − ) and ν AS (PO 2 − ) transition frequencies with larger frequency excursions for ν AS (PO 2 − ). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO 2 − ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H 2 PO 4 − /H 2 O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water

  5. Ultrafast phosphate hydration dynamics in bulk H2O

    Science.gov (United States)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-06-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4- ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ν S ( PO2 - ) ) and asymmetric ( ν A S ( PO2 - ) ) PO 2- stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S ( PO2 - ) and ν A S ( PO2 - ) transition frequencies with larger frequency excursions for ν A S ( PO2 - ) . The calculated frequency-time correlation function is in good agreement with the experiment. The ν ( PO2 - ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4-/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  6. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    Science.gov (United States)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: Δ9,12,1518:3, Δ6,9,1218:3, and Δ5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  7. Polyethylene oxide hydration in grafted layers

    Science.gov (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  8. Erratum : Critical Properties of Spin-1 Antiferromagnetic Heisenberg Chains with Bond Alternation and Uniaxial Single-Ion-Type Anisotropy (vol 69, pg 237, 2000)

    OpenAIRE

    Chen, Wei; 飛田, 和男; Sanctuary, Bryan C.

    2008-01-01

    Original Paper :Critical Properties of Spin-1 Antiferromagnetic Heisenberg Chains with Bond Alternation and Uniaxial Single-Ion-Type AnisotropyWei Chen, Kazuo Hida and Bryan Clifford Sanctuary Journal of the Physical Society of Japan 69 (2000) pp.237-241

  9. Change of electrical conductivities between hydrated and dehydrated samples of honeycomb sheet structures with mixed oxidation state paddlewheel dirhodium complexes and halide ions.

    Science.gov (United States)

    Fuma, Yasuhiro; Miyashita, Osamu; Kawamura, Takashi; Ebihara, Masahiro

    2012-07-21

    A series of mixed oxidation state compounds, [{Rh(2)(acam)(4)}(3)(μ(3)-X)(2)]·nH(2)O (Hacam = acetamide; X = Cl, n = 4 (1·4H(2)O); X = Br, n = 10 (2·10H(2)O); X = I, n = 10 (3·10H(2)O)) and [{Rh(2)(pram)(4)}(3)(μ(3)-X)(2)]·6H(2)O (Hpram = propionamide; X = Cl (4·6H(2)O), Br (5·6H(2)O), I (6·6H(2)O)) were synthesized and their X-ray structures were determined. In the crystal structure of all of these complexes, dirhodium complexes and halide ions construct 2-D honeycomb sheet arrangements in which the walls consist of Rh(2) units and halide ions lie at the corners. Complexes 1·4H(2)O, 4·6H(2)O, 5·6H(2)O and 6·6H(2)O have three independent Rh(2) units, in which there are two Rh(2)(5+) and one Rh(2)(4+). In these structures, the water molecules hydrogen bond to O atoms and from the N atoms of the amidate ligands. The number of hydrogen bonds from water molecules to the Rh(2)(4+) unit is greater than that to the Rh(2)(5+) units. This suggests that there exists pinning of the oxidation states by water molecules. In the structures of 2·10H(2)O and 3·10H(2)O, all of the Rh(2) units are crystallographically equivalent. In these structures, eight of the 10 water molecules form a honeycomb-like network between the {Rh(2)(acam)(4)}(3)X(2) honeycomb sheets. The former four structures show very low electrical conductivities of ca. 10(-8) S cm(-1) (room temperature, pellets) and the latter structures have the higher values of ca. 10(-4) S cm(-1). In the former complexes, improvement of the values to 10(-6) S cm(-1) was observed, caused by loss of pinning water.

  10. Protons in hydrated protein powders

    International Nuclear Information System (INIS)

    Careri, G.; Bruni, F.; Consolini, G.

    1995-01-01

    Previous work from this laboratory has shown that hydrated lysozyme powders exhibit a dielectric behaviour, due to proton conductivity, explainable within the frame of percolation theory. Long range proton displacement appears only above the critical hydration for percolation, when the 2-dimensional motion takes place on fluctuating clusters of hydrogen-bonded water molecules adsorbed on the protein surface. The emergence of biological function, enzyme catalysis, was found to coincide with the critical hydration for percolation. More recently, we have evaluated the protonic conductivity of hydrated lysozyme powders, from room down to liquid N 2 temperature. In the high temperature limit a classical isotopic effect can be detected, and the conductivity follows the familiar Arrhenius law for thermally activated hopping. In the low temperature region the conductivity shows a temperature dependence in agreement with prediction by the theory of dissipative quantum tunneling. Below room temperature the static dielectric constant, and the dielectric relaxation time for charge transport showed an increase likely to be identified with the formation of a polaronic-solitonic species as predicted by the theory of proton transport in water chains, a species which displays a larger effective mass and a larger dipole moment that the usual hydrated protonic defects. The purpose of this paper is twofold. In the first section we present a tutorial report of some previous experimental results on proton displacement in slightly hydrated biological systems at room temperature, to show that in these systems the emergence of biological systems at room temperature, to show that in these systems the emergence of biological function coincides with the onset of percolative pathways in the water molecules network adsorbed on the surface of biomolecules. In the second section, we report on preliminary data on the dielectric relaxation of hydrated lysozyme below room temperature, to suggest

  11. Molecular structures and hydrogen bonding in the crystalline hydrates of two flexible double betaines with different quaternary ammonio groups in the adipic acid skeleton

    Science.gov (United States)

    Wu, De-Dong; Mak, Thomas C. W.

    1995-12-01

    Crystalline dihydrates of two flexible double betaines -O 2CCH(R)CH 2CH 2CH(R)CO -2 ( 1, R = Me 3N +, 2, R = C 5H 5N +) have been characterized by single-crystal X-ray analysis. Both compounds crystallize in the monoclinic space group {P2 1}/{c} with a = 7.463(4), b = 10.312(6), c = 9.978(5) Å, β = 90.18(5)°, Z = 2 for 1·2H 2O and a = 9.063(2), b = 7.665(1), c = 11.962(1) Å, β = 94.89(1)°, Z = 2 for 2·2H 2O. Both betaine molecules occupy l¯ sites but differ with regard to the orientation of the carboxylate groups and ammonio groups. In each crystal structure, the formation of donor hydrogen bonds from the water molecules to adjacent carboxylate groups gives rise to an infinte two-dimensional network composed of a packing of identical 26-membered rings.

  12. Subcontract Report: Diffusion Mechanisms and Bond Dynamics in Solid Electrolyte Ion-Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zevgolis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alvez, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehmedovic, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shea, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Varley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wood, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Adelstein, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-03

    We employ first-principles molecular dynamics simulations and Maximally Localized Wannier Function (MLWF) analysis to explore how halide substitution and nano-phase microstructures affect diffusivity, through the activation energy barrier - Ea and D0, in the solid electrolyte Li3InBr6-xClx. We find that nano-phase microstructures with x=3 (50-50 Br-Cl) mixed composition have a higher diffusivity compared to x=2 and x=3 solid solutions. There is a positive linear relationship between ln(D0.) and Ea, which suggests that for superionic conductivity optimizing both the activation energy and the D0 is important. Bond frustration due to mismatch in crystal geometry and ideal coordination number leads to especially high diffusivity through a high D0 in the x=3 composition.

  13. Sodium and potassium salts of dichloroisocyanuric acid and their hydrates as antimicrobials agents studied by 35Cl-NQR spectroscopy and DFT calculations

    International Nuclear Information System (INIS)

    Walczak, A.; Brycki, B.; Kaczmarek, M.; Poleshchuk, O.Kh.; Ostafin, M.; Nogaj, B.

    2006-01-01

    The electronic structure of dichloroisocyanuric acid derivatives was analysed by 35 Cl-NQR spectroscopy and DFT calculations. Here we concentrate our attention on three different factors: type of metallic substituent (sodium and potassium), temperature of the sample (liquid nitrogen and room) and degree of hydration (an amount of water molecules attached to analysed compounds). In particular, all the variations in 35 Cl-NQR frequencies upon hydration of salts containing sodium and potassium ions are explained as a consequence of H-bonds formation and accompanied effects of charge redistribution. Our studies can be useful in searching for the derivatives of dichloroisocyanuric acid revealing higher antimicrobial activity

  14. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  15. Glucose and Mannose: A Link between Hydration and Sweetness.

    Science.gov (United States)

    Rhys, N H; Bruni, F; Imberti, S; McLain, S E; Ricci, M A

    2017-08-24

    Glucose and mannose have a different degree of sweetness, implying different affinity to the sweet taste receptor. While the receptor structure is still undefined, there are several geometrical models for their binding mechanism. A detailed study of the hydration structure of sugars with known degree of sweetness is bound to provide information on the accuracy of such models. Our neutron diffraction study on the hydration of glucose and mannose show that both α- and β-glucose form strong hydrogen bonds with water, and that the steric hindrance of their first hydration shell matches the receptor geometrical model. The α-anomer of mannose has a similar, well-defined first hydration shell, but with fewer and weaker hydrogen bonds compared to glucose. Conversely, the hydration shell of β-mannose (reported as bitter) does not match the receptor geometrical model. These findings suggest a link between the hydration shell of sugars and their degree of sweetness.

  16. The solid phase extraction of some metal ions using palladium nanoparticles attached to silica gel chemically bonded by silica-bonded N-propylmorpholine as new sorbent prior to their determination by flame atomic absorption spectroscopy.

    Science.gov (United States)

    Ghaedi, M; Rezakhani, M; Khodadoust, S; Niknam, K; Soylak, M

    2012-01-01

    In this research at first palladium nanoparticle attached to a new chemically bonded silica gel has been synthesized and has been characterized with different techniques such as X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Then, this new sorbent (chemically modified silica gel with N-propylmorpholine (PNP-SBNPM)) was efficiently used for preconcentration of some metal ions in various food samples. The influence of effective variables including mass of sorbent, flow rate, pH of sample solutions and condition of eluent such as volume, type and concentration on the recoveries of understudy metal ions were investigated. Following the optimization of variables, the interfering effects of some foreign ions on the preconcentration and determination of the investigated metal ions described. At optimum values of variables, all investigated metal ions were efficiently recovered with efficiency more than 95%, relative standard deviation (RSD) between 2.4 and 2.8, and detection limit in the range of 1.4-2.7 ng mL⁻¹. The present method is simple and rapidly applicable for the determination of the understudied metal ions (ng mL⁻¹) in different natural food samples.

  17. The Solid Phase Extraction of Some Metal Ions Using Palladium Nanoparticles Attached to Silica Gel Chemically Bonded by Silica-Bonded N-Propylmorpholine as New Sorbent prior to Their Determination by Flame Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ghaedi

    2012-01-01

    Full Text Available In this research at first palladium nanoparticle attached to a new chemically bonded silica gel has been synthesized and has been characterized with different techniques such as X-ray diffraction (XRD, fourier transform infrared (FT-IR, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. Then, this new sorbent (chemically modified silica gel with N-propylmorpholine (PNP-SBNPM was efficiently used for preconcentration of some metal ions in various food samples. The influence of effective variables including mass of sorbent, flow rate, pH of sample solutions and condition of eluent such as volume, type and concentration on the recoveries of understudy metal ions were investigated. Following the optimization of variables, the interfering effects of some foreign ions on the preconcentration and determination of the investigated metal ions described. At optimum values of variables, all investigated metal ions were efficiently recovered with efficiency more than 95%, relative standard deviation (RSD between 2.4 and 2.8, and detection limit in the range of 1.4–2.7 ng mL−1. The present method is simple and rapidly applicable for the determination of the understudied metal ions (ng mL−1 in different natural food samples.

  18. Two-Step Adsorption of PtCl62– Complexes at a Charged Langmuir Monolayer: Role of Hydration and Ion Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Ahmet [Chemical; Rock, William [Chemical; Qiao, Baofu [Chemical; Bu, Wei [Center; Lin, Binhua [Center

    2017-11-03

    Anion exchange at positively charged interfaces plays an important role in a variety of physical and chemical processes. However, the molecular-scale details of these processes, especially with heavy and large anionic complexes, are not well-understood. We studied the adsorption of PtCl62– anionic complexes to floating DPTAP monolayers in the presence of excess Cl- as a function of the bulk chlorometalate concentration. This system aims to simulate the industrial conditions for heavy metal separations with solvent extraction. In situ X-ray scattering and fluorescence measurements, which are element and depth sensitive, show that the chlorometalate ions only adsorb in the diffuse layer at lower concentrations, while they adsorb predominantly in the Stern layer at higher concentrations. The response of DPTAP molecules to the adsorbed ions is determined independently by grazing incidence X-ray diffraction and supports this picture. Molecular dynamics simulations further elucidate the nanoscale structure of the interfacial complexes. The results suggest that ion hydration and ion-ion correlations play a key role in the competitive adsorption process.

  19. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  20. Effect of isotopy and temperature on hydration of alkanols

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.P.; Batov, D.V.; Krestov, G.A.

    1987-07-10

    The authors determine isotope and temperature effects on the hydration of alkanols at a temperature of 278.15 K in solutions of water and heavy water. Aspects of isotopic exchange between hydrogen and deuterium are given as are enthalpies of hydration, evaporation, and dissolution for the alkanols. The possibility of weak hydrogen bond formation was examined.

  1. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  2. Highly hydrated cations: deficiency, mobility, and coordination of water in crystalline nonahydrated scandium(III), yttrium(III), and lanthanoid(III) trifluoromethanesulfonates.

    Science.gov (United States)

    Abbasi, Alireza; Lindqvist-Reis, Patric; Eriksson, Lars; Sandström, Dick; Lidin, Sven; Persson, Ingmar; Sandström, Magnus

    2005-07-04

    Trivalent lanthanide-like metal ions coordinate nine water oxygen atoms, which form a tricapped trigonal prism in a large number of crystalline hydrates. Water deficiency, randomly distributed over the capping positions, was found for the smallest metal ions in the isomorphous nonahydrated trifluoromethanesulfonates, [M(H2O)n](CF3SO3)3, in which M = Sc(III), Lu(III), Yb(III), Tm(III) or Er(III). The hydration number n increases (n = 8.0(1), 8.4(1), 8.7(1), 8.8(1) and 8.96(5), respectively) with increasing ionic size. Deuterium (2H) solid-state NMR spectroscopy revealed fast positional exchange between the coordinated capping and prism water molecules; this exchange started at temperatures higher than about 280 K for lutetium(III) and below 268 K for scandium(III). Similar positional exchange for the fully nonahydrated yttrium(III) and lanthanum(III) compounds started at higher temperatures, over about 330 and 360 K, respectively. An exchange mechanism is proposed that can exchange equatorial and capping water molecules within the restrictions of the crystal lattice, even for fully hydrated lanthanoid(III) ions. Phase transitions occurred for all the water-deficient compounds at approximately 185 K. The hydrated scandium(III) trifluoromethanesulfonate transforms reversibly (DeltaH degrees = -0.80(1) kJ mol(-1) on cooling) to a trigonal unit cell that is almost nine times larger, with the scandium ion surrounded by seven fully occupied and two partly occupied oxygen atom positions in a distorted capped trigonal prism. The hydrogen bonding to the trifluoromethanesulfonate anions stabilises the trigonal prism of water ligands, even for the crowded hydration sphere of the smallest metal ions in the series. Implications for the Lewis acid catalytic activity of the hydrated scandium(III) and lanthanoid(III) trifluoromethanesulfonates for organic syntheses performed in aqueous media are discussed.

  3. Investigation of the hydrated 7-hydroxy-4-methylcoumarin dimer by combined IR/UV spectroscopy

    International Nuclear Information System (INIS)

    Stamm, A.; Schwing, K.; Gerhards, M.

    2014-01-01

    The first molecular beam investigations on a coumarin dimer and clusters of a coumarin dimer with water both in the neutral (S 0 ) and cationic (D 0 ) electronic ground state are performed. The structure and structural changes due to ionization of the isolated 7-hydroxy-4-methylcoumarin dimer (7H4MC) 2 as well as its mono- and dihydrate (7H4MC) 2 (H 2 O) 1-2 are analyzed by applying combined IR/UV spectroscopy compared with density functional theory calculations. In case of the neutral dimer of 7H4MC a doubly hydrogen-bonded structure is formed. This doubly hydrogen-bonded arrangement opens to a singly hydrogen-bonded structure in the ion presenting a rearrangement reaction within an isolated dimer. By attaching one or two water molecules to the neutral 7H4MC dimer water is inserted into the hydrogen bonds. In contrast to the non-hydrated species this general binding motif with water in a bridging function does not change via ionization but especially for the dihydrate the spatial arrangement of the two 7H4MC units changes strengthening the interaction between the aromatic chromophores. The presented analyses illustrate the strong dependence of binding motifs as a function of successive hydration and charge including a rearrangement reaction

  4. Investigation of the hydrated 7-hydroxy-4-methylcoumarin dimer by combined IR/UV spectroscopy.

    Science.gov (United States)

    Stamm, A; Schwing, K; Gerhards, M

    2014-11-21

    The first molecular beam investigations on a coumarin dimer and clusters of a coumarin dimer with water both in the neutral (S0) and cationic (D0) electronic ground state are performed. The structure and structural changes due to ionization of the isolated 7-hydroxy-4-methylcoumarin dimer (7H4MC)2 as well as its mono- and dihydrate (7H4MC)2(H2O)1-2 are analyzed by applying combined IR/UV spectroscopy compared with density functional theory calculations. In case of the neutral dimer of 7H4MC a doubly hydrogen-bonded structure is formed. This doubly hydrogen-bonded arrangement opens to a singly hydrogen-bonded structure in the ion presenting a rearrangement reaction within an isolated dimer. By attaching one or two water molecules to the neutral 7H4MC dimer water is inserted into the hydrogen bonds. In contrast to the non-hydrated species this general binding motif with water in a bridging function does not change via ionization but especially for the dihydrate the spatial arrangement of the two 7H4MC units changes strengthening the interaction between the aromatic chromophores. The presented analyses illustrate the strong dependence of binding motifs as a function of successive hydration and charge including a rearrangement reaction.

  5. Temperature and Size Dependence of Characteristic Hydrogen-Bonded Network Structures with Ion Core Switching in Protonated (Methanol)6-10-(Water)1Mixed Clusters: A Revisit.

    Science.gov (United States)

    Katada, Marusu; Hsu, Po-Jen; Fujii, Asuka; Kuo, Jer-Lai

    2017-07-27

    Hydrogen-bonded network structures and preferential ion core in the protonated methanol-water mixed clusters, H + (methanol) n -(water) 1 (n = 6-10), were explored by a combination of infrared spectroscopy and theoretical calculations. Infrared spectra of the OH stretch region of the clusters were measured at the two different temperature ranges by using Ar-tagging. Stable isomer structures of the clusters were searched by the multiscale modeling approach and temperature dependent infrared spectra were simulated based on the statistical populations of the isomers. The combined experimental and theoretical studies revealed that the characteristic multiring structures begin to form at n = 7 under the low temperature condition and they are preferential at the wide temperature range in n ≥ 8. It was also demonstrated that the preferential ion core type changes from methanol (MeOH 2 + ) to water (H 3 O + ) with increasing cluster size. In n ≤ 8, the observed infrared spectral features partly depend on the monitoring vibrational predissociation channel, and weak correlations between the hydrogen-bonded network structure and preferential dissociation channels were suggested. However, the ion core type does not necessarily correlate to the preferential dissociation channel. This implies that large rearrangement of the hydrogen-bonded network structure occurs prior to the dissociation.

  6. Unraveling halide hydration: A high dilution approach

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-01

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (Δ G^{ominus }_{hyd}[H^+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a Δ G^{ominus }_{hyd}[H^+] value of -1100 kJ mol-1 [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl-, Br-, and I- ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F- ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl-, Br-, and I- ions does not extend beyond the ion first hydration shell, and the structure of water in the F- second shell is also substantially unaffected by the ion.

  7. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  8. Proton-bound cluster ions in ion mobility spectrometry

    Science.gov (United States)

    Ewing, R. G.; Eiceman, G. A.; Stone, J. A.

    1999-01-01

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  9. Reactions of hydrated singly charged first-row transition-metal ions M+(H2O)n (M=V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) toward nitric oxide in the gas phase.

    Science.gov (United States)

    van der Linde, Christian; Höckendorf, Robert F; Balaj, O Petru; Beyer, Martin K

    2013-03-11

    Reactions of M(+) (H2 O)n (M=V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n≤40) with NO were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Uptake of NO was observed for M=Cr, Fe, Co, Ni, Zn. The number of NO molecules taken up depends on the metal ion. For iron and zinc, NO uptake is followed by elimination of HNO and formation of the hydrated metal hydroxide, with strong size dependence. For manganese, only small HMnOH(+) (H2 O)n-1 species, which are formed under the influence of room-temperature black-body radiation, react with NO. Here NO uptake competes with HNO formation, both being primary reactions. The results illustrate that, in the presence of water, transition-metal ions are able to undergo quite particular and diverse reactions with NO. HNO is presumably formed through recombination of a proton and (3) NO(-) for M=Fe, Zn, preferentially for n=15-20. For manganese, the hydride in HMnOH(+) (H2 O)n-1 is involved in HNO formation, preferentially for n≤4. The strong size dependence of the HNO formation efficiency illustrates that each molecule counts in the reactions of small ionic water clusters. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spectroscopic determination of gas-water interactions in clathrate hydrates

    International Nuclear Information System (INIS)

    Richardson, H.H. Jr.

    1985-01-01

    The technique of forming clathrate hydrates by first forming the amorphous deposits of gas-water mixture and, secondly, annealing this deposit was used to form the clathrate hydrates of ethylene oxide, hydrogen sulfide and sulfur dioxide. Once the clathrate hydrate formed as a thin film on the CsI substrate, the infrared spectrum of these hydrates could be obtained. The clathrate hydrates could be irradiated with 1.7 MeV electrons to promote high proton concentrations in the clathrate hydrate lattice at low temperatures (approx.30K) where the Bjerrum defects in the lattice are not mobile. The ring breathing model of ethylene oxide in the clathrate hydrate can be assigned. It was possible to incorporate D 2 O into the hydrogen bonded lattice of the ethylene oxide clathrate hydrate by growing the clathrate hydrate epitaxially on a thin film of clathrate hydrate at 100 K. The half-life of the D 2 O molecules in the ethylene oxide clathrate hydrate was only 9 minutes at 120 K. The activation energy determined from the hopping rate constant in ethylene oxide clathrate hydrate was 4.5 +/- 1.8 Kcal/mole. Irradiation of the ethylene oxide clathrate hydrate with 1.7 MeV electrons transformed some of the ethylene oxide molecules in the cages to (a) CH 2 = CH 2 , (b) CH 2 = C = O, (c) CH 3 -CH 2 -OH, (d) CO 2 , and (e) CO. A steady state concentration of coupled HOD was maintained in irradiated samples of ethylene oxide clathrate hydrates at a temperature around 80 K. The enclathrated H 2 S molecule in the small cages had a different infrared spectrum (broad band complex centered at 2600 cm -1 ) from the H 2 S molecules which had been enclathrated in the large cages (broad band complex centered at 2550 cm -1 )

  11. Gas hydrate and humans

    Science.gov (United States)

    Kvenvolden, K.A.

    2000-01-01

    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  12. Ion-orbital coupling in Car-Parrinello calculations of hydrogen-bond vibrational dynamics: Case study with the NH3-HCl dimer

    Science.gov (United States)

    Ong, S. W.; Lee, B. X. B.; Kang, H. C.

    2011-09-01

    We have performed Car-Parrinello molecular dynamics (CPMD) calculations of the hydrogen-bonded NH3-HCl dimer. Our main aim is to establish how ionic-orbital coupling in CPMD affects the vibrational dynamics in hydrogen-bonded systems by characterizing the dependence of the calculated vibrational frequencies upon the orbital mass in the adiabatic limit of Car-Parrinello calculations. We use the example of the NH3-HCl dimer because of interest in its vibrational spectrum, in particular the magnitude of the frequency shift of the H-Cl stretch due to the anharmonic interactions when the hydrogen bond is formed. We find that an orbital mass of about 100 a.u. or smaller is required in order for the ion-orbital coupling to be linear in orbital mass, and the results for which can be accurately extrapolated to the adiabatic limit of zero orbital mass. We argue that this is general for hydrogen-bonded systems, suggesting that typical orbital mass values used in CPMD are too high to accurately describe vibrational dynamics in hydrogen-bonded systems. Our results also show that the usual application of a scaling factor to the CPMD frequencies to correct for the effects of orbital mass is not valid. For the dynamics of the dimer, we find that the H-Cl stretch and the N-H-Cl bend are significantly coupled, suggesting that it is important to include the latter degree of freedom in quantum dynamical calculations. Results from our calculations with deuterium-substitution show that both these degrees of freedom have significant anharmonic interactions. Our calculated frequency for the H-Cl stretch using the Becke-exchange Lee-Yang-Parr correlation functional compares reasonably well with a previous second-order Møller-Plesset calculation with anharmonic corrections, although it is low compared to the experimental value for the dimer trapped in a neon-matrix.

  13. Exploitation of subsea gas hydrate reservoirs

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  14. Hydration of amphiphilic metal chelates in aqueous solutions and its effect on partition equilibria in solvent extraction

    International Nuclear Information System (INIS)

    Narbutt, J.

    2001-01-01

    In this paper author deals with hydration of metal complexes formed in aqueous solution significantly affects their distribution (partition) between the aqueous and organic phase. Three kinds of hydration: hydrophobic hydration of lipophilic fragments of ligands, inner-sphere hydration, i.e. coordination of water molecules in the inner-sphere of the central metal ion, and outer-sphere hydration, as well as other factor influenced of extraction are reviewed

  15. Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions.

    Science.gov (United States)

    Ghaedi, Mehrorang; Niknam, Khodabakhsh; Zamani, Saeed; Larki, Habib Abasi; Roosta, Mostafa; Soylak, Mustafa

    2013-08-01

    Silica gel chemically bonded N-propyl kriptofix 21 (SBNPK 21) and N-propyl kriptofix 22 (SBNPK 22) and subsequently immobilized with palladium nanoparticles (PNP-SBNPK 21 and PNP-SBNPK 22) to produce two new complexing lipophilic materials. Then these novel sorbents were applied for the enrichment of some metal ions and their subsequent determination by flame atomic absorption spectroscopy (FAAS). The influences of the variables including pH, amount of solid phase, sample flow rate, eluent conditions and sample volume on the metal ion recoveries were investigated. The detection limit of proposed method was in the interval 2.1-2.3 and 1.7-2.8 ng mL(-1) for PNP-SBNPK 21 and PNP-SBNPK 22 respectively, while the preconcentration factor was 80 for two sorbents. The relative standard deviations of recoveries were between 1.23-1.31 and 1.28-1.49 for PNP-SBNPK 21 and PNP-SBNPK 22 respectively. The method has high sorption-preconcentration efficiency even in the presence of various interfering ions. Due to the reasonable selectivity of proposed method, the relative standard deviation of recoveries of all understudied metal ions in some complicated matrices was less than 3.0%. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    Science.gov (United States)

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water. Copyright © 2013 Wiley Periodicals, Inc.

  17. A novel technique using DNA denaturation to detect multiply induced single-strand breaks in a hydrated plasmid DNA molecule by X-ray and 4He2+ ion irradiation

    International Nuclear Information System (INIS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Noguchi, M.; Urushibara, A.

    2011-01-01

    To detect multiple single-strand breaks (SSBs) produced in plasmid DNA molecules by direct energy deposition from radiation tracks, we have developed a novel technique using DNA denaturation by which irradiated DNA is analysed as single-strand DNA (SS-DNA). The multiple SSBs that arise in both strands of DNA, but do not induce a double-strand break, are quantified as loss of SS-DNA using agarose gel electrophoresis. We have applied this method to X-ray and 4 He 2+ ion-irradiated samples of fully hydrated pUC18 plasmid DNA. The fractions of both SS-DNA and closed circular DNA (CC-DNA) exponentially decrease with the increasing dose of X rays and 4 He 2+ ions. The efficiency of the loss of SS-DNA was half that of CC-DNA for both types of irradiation, indicating that one of two strands in DNA is not broken when one SSB is produced in CC-DNA by irradiation. Contrary to our initial expectation, these results indicate that SSBs are not multiply induced even by high linear energy transfer radiation distributed in both strands. (authors)

  18. Characterizing Ni(II) hydration in aqueous solution using DFT and EXAFS.

    Science.gov (United States)

    Liu, H Y; Fang, C H; Fang, Y; Zhou, Y Q; Ge, H W; Zhu, F Y; Sun, P C; Miao, J T

    2016-01-01

    In the present work, a detailed investigation of Ni(II) hydration in water solutions was carried out using density functional theory (DFT) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The hydrated characteristics of [Ni(H2O)n](2+) clusters, such as energy parameters, atomic charge distributions, and bond parameters, were explored using DFT with Becke's three-parameter exchange potential and the Lee-Yang-Parr correlation functional (B3LYP). DFT calculations indicated that the preferred structure of the first hydration shell of Ni(II) generally has a coordination number of six and is almost unaffected by the water molecules in the outer solvation shell, whereas the structure of the second solvation shell varies as the hydration proceeds. EXAFS measurements are reported for aqueous NiSO4 and Ni(NO3)2 solutions and the Ni(NO3)2·6H2O crystal. Analysis of the EXAFS spectra of these three systems using a multiparameter fitting procedure showed that, in each case, the first coordination shell consists of six water molecules with a Ni-O coordination distance of 2.04 Å, and that there is no Ni-S or Ni-N coordination in the first shell. There was no evidence of outer-shell SO4(2-) or NO3(-) ions substituting inner-sphere water molecules in NiSO4 and Ni(NO3)2. The characteristics of Ni(II) hydration obtained from DFT calculations agreed well with those obtained experimentally using EXAFS.

  19. Cation mobility and kinetics of ion exchange in zirconium hydrogen monothiophosphate hydrate, Zr(HPO(3)S)(2)x1.5H(2)O.

    Science.gov (United States)

    Stenina, I A; Aliev, A D; Dorhout, P K; Yaroslavtsev, A B

    2004-11-01

    The ion conductivity of zirconium hydrogen monothiophosphate (Zr(HPO(3)S)(2)x1.5H(2)O) has been measured by impedance spectroscopy. The measured value of proton conductivity is 3 x 10(-5) S/cm at 298 K. Conductivity was shown to decrease with increasing temperature due to a dehydration process. Above 450 K, the conductivity is likely governed by proton transport in the anhydrous phase Zr(HPO(3)S)(2). The activation energies of proton conductivity were measured to be 18 +/- 2 kJ/mol for Zr(HPO(3)S)(2)x1.5H(2)O and 60 +/- 3 kJ/mol for the anhydrous compound. The kinetics of ion exchange was studied with the use of potentiometric titration for several ion pairs, H(+)/Na(+), H(+)/Zn(2+), and Na(+)/Zn(2+) in Zr(HPO(3)S)(2)x1.5H(2)O. The diffusion coefficient values for H(+)/Na(+) ion exchange in Zr(HPO(3)S)(2)x1.5H(2)O are lower than those reported in alpha-zirconium phosphate. At the same time, the mobility of zinc ions in Zr(HPO(3)S)(2)x1.5H(2)O is higher than sodium ion mobility. The ion exchange H(+)/Zn(2+) is accompanied by the slow hydrolysis of the initial compound. In all cases, the powdered solids were evaluated by powder X-ray diffraction, and particle sizes were controlled by grinding and sieving the powders.

  20. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  1. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  2. Observation of covalent and electrostatic bonds in nitrogen-containing polycyclic ions formed by gas phase reactions of the benzene radical cation with pyrimidine.

    Science.gov (United States)

    Attah, Isaac Kwame; Soliman, Abdel-Rahman; Platt, Sean P; Meot-Ner Mautner, Michael; Aziz, Saaudallah G; Samy El-Shall, M

    2017-03-01

    Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocyclics (PANHs) are present in ionizing environments, including interstellar clouds and solar nebulae, where their ions can interact with neutral PAH and PANH molecules leading to the formation of a variety of complex organics including large N-containing ions. Herein, we report on the formation of a covalently-bonded (benzene·pyrimidine) radical cation dimer by the gas phase reaction of pyrimidine with the benzene radical cation at room temperature using the mass-selected ion mobility technique. No ligand exchange reactions with benzene and pyrimidine are observed indicating that the binding energy of the (benzene·pyrimidine)˙ + adduct is significantly higher than both the benzene dimer cation and the proton-bound pyrimidine dimer. The (benzene·pyrimidine)˙ + adduct shows thermal stability up to 541 K. Thermal dissociation of the (C 6 D 6 ·C 4 H 4 N 2 )˙ + adduct at temperatures higher than 500 K produces C 4 H 4 N 2 D + (m/z 82) suggesting the transfer of a D atom from the C 6 D 6 moiety to the C 4 H 4 N 2 moiety before the dissociation of the adduct. Mass-selected ion mobility of the (benzene·pyrimidine)˙ + dimer reveals the presence of two families of isomers formed by electron impact ionization of the neutral (benzene·pyrimidine) dimer. The slower mobility peak corresponds to a non-covalent family of isomers with larger collision cross sections (76.0 ± 1.8 Å 2 ) and the faster peak is consistent with a family of covalent isomers with more compact structures and smaller collision cross sections (67.7 ± 2.2 Å 2 ). The mobility measurements at 509 K show only one peak corresponding to the family of stable covalently bonded isomers characterized by smaller collision cross sections (66.9 ± 1.9 Å 2 at 509 K). DFT calculations at the M06-2X/6-311++G** level show that the most stable (benzene·pyrimidine)˙ + isomer forms a covalent C-N bond with a binding energy of 49

  3. Hydrogen Bonding in Ion-pair Molecules in Vapors over ionic liquids, studied by Raman Spectroscopy and ab initio Calculations

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The hydrogen bonding interactions in selected archetypal vapor molecules formed in the gas phase over protic ionic liquids are discussed, based on Raman spectroscopy assisted with ab initio molecular orbital DFT-type quantum mechanical calculations (B3LYP with 6-311+G(d,p) basis sets) on assumed...... Ionic Liquid, To be submitted for J. Phys. Chem. A (2009)....

  4. Effects of Au and Pd Additions on Joint Strength, Electrical Resistivity, and Ion-Migration Tolerance in Low-Temperature Sintering Bonding Using Ag2O Paste

    Science.gov (United States)

    Ito, Takeyasu; Ogura, Tomo; Hirose, Akio

    2012-09-01

    A new bonding process using an Ag2O paste consisting of Ag2O particles mixed with a triethylene glycol reducing agent has been proposed as an alternative joining approach for microsoldering in electronics assembly, which currently uses Pb-rich, high-temperature solders. Ag nanoparticles were formed at approximately 130°C to 160°C through a reduction process, sintered to one another immediately, and bonded to a metal substrate. An Au-coated Cu specimen was successfully bonded using the Ag2O paste. The resulting joint exhibited superior strength compared with joints fabricated using conventional Pb-rich solders. To improve ion-migration tolerance, the Ag2O paste was mixed with Au and Pd microparticles to form sintered Ag-Au and Ag-Pd layers, respectively. The additions of Au and Pd improved the ion-migration tolerance of the joint. Regarding the mechanical properties of the joints, addition of secondary Au and Pd both resulted in decreased joint strength. To match the joint strength of conventional Pb-10Sn solder, the mixing ratios of Au and Pd were estimated to be limited to 16 vol.% and 7 vol.%, respectively. The electrical resistivities of the sintered layers consisting of 16 vol.% Au and 7 vol.% Pd were lower than that of Pb-10Sn solder. Thus, the additive fractions of Au and Pd to the Ag2O paste should be less than 16 vol.% and 7 vol.%, respectively, to avoid compromising the mechanical and electrical properties of the sintered layer relative to those of contemporary Pb-10Sn solder. Following the addition of Au and Pd to the paste, the ion-migration tolerances of the sintered layers were approximately 3 and 2 times higher than that of pure Ag, respectively. Thus, the addition of Au was found to improve the ion-migration tolerance of the sintered Ag layer more effectively and with less sacrifice of the mechanical and electrical properties of the sintered layer than the addition of Pd.

  5. Perturbation of second and farther hydration shells of alkali cations and bromide in concentrated aqueous protein as a water-shortage medium.

    Science.gov (United States)

    Ohki, Takumi; Harada, Makoto; Okada, Tetsuo

    2008-09-25

    The Gibbs free energies of transfer of selected ions from water to concentrated aqueous ovalbumin and albumin (DeltaW(W') G degrees j) have been determined by ion-transfer voltammetry. Negative values for the tetrabutylammonium ion suggest its direct binding to ovalbumin. In contrast, for alkali cations and bromide, the DeltaW(W') G degrees j values are positive and increase with increasing ovalbumin concentration. Positive values are confirmed for concentrated aqueous albumin and poly(styrenesulfonate) as well. The largest value (ca. 10 kJ mol(-1)) is found for the transfer of K(+) from water to 30 wt % ovalbumin. To reveal the solvation structure of these ions in ovalbumin solutions, X-ray absorption fine structure (XAFS) measurements have been performed at the K, Rb, and Br K-edges. Interestingly, the spectra obtained in 30 wt % ovalbumin solutions are identical to those for the corresponding hydrated ions. This strongly suggests that the first coordination shell structures of these ions are not affected by a large concentration of ovalbumin. The detected positive free energy of transfer is slightly lower than the hydrogen bonding energy of a water molecule and should thus come from the perturbation of the second and farther hydration shells of the ions under a water-shortage condition caused by a high concentration of ovalbumin.

  6. Exploration of the Singlet O2 Oxidation of 8-Oxoguanine by Guided-Ion Beam Scattering and Density Functional Theory: Changes of Reaction Intermediates, Energetics, and Kinetics upon Protonation/Deprotonation and Hydration.

    Science.gov (United States)

    Sun, Yan; Lu, Wenchao; Liu, Jianbo

    2017-02-09

    8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is one of the most common DNA lesions resulting from reactive oxygen species and ionizing radiation, and is involved in mutagenesis, carcinogenesis, and cell death. Notably, 8-oxodGuo is more reactive toward singlet (a 1 Δ g ) O 2 than the undamaged guanosine, and the lesions arising from the secondary oxidation of 8-oxodGuo are more mutagenic. Herein the 1 O 2 oxidation of free base 8-oxoguanine (8-oxoG) was investigated at different initial conditions including protonated [8-oxoG + H] + , deprotonated [8-oxoG - H] - , and their monohydrates. Experiment was carried out on a guided-ion beam scattering tandem mass spectrometer. Measurements include the effects of collision energy (E col ) on reaction cross sections over a center-of-mass E col range from 0.1 to 0.5 eV. The aim of this study is to quantitatively probe the sensitivity of the early stage of 8-oxoG oxidation to ionization and hydration. Density functional theory and Rice-Ramsperger-Kassel-Marcus calculations were performed to identify the intermediates and the products along reaction pathways and locate accessible reaction potential energy surfaces, and to rationalize reaction outcomes from energetic and kinetic points of view. No product was observed for the reaction of [8-oxoG + H] + ·W 0,1 (W = H 2 O) because insurmountable barriers block the addition of 1 O 2 to reactant ions. Neither was [8-oxoG - H] - reactive with 1 O 2 , in this case due to the rapid decay of transient intermediates to starting reactants. However, the nonreactivity of [8-oxoG - H] - was inverted by hydration; as a result, 4,5-dioxetane of [8-oxoG - H] - was captured as the main oxidation product. Reaction cross section for [8-oxoG - H] - ·W + 1 O 2 decreases with increasing E col and becomes negligible above 0.3 eV, indicating that the reaction is exothermic and has no barriers above reactants. The contrasting oxidation behaviors of [8-oxoG + H] + ·W 0,1 and [8-oxoG - H] - ·W 0

  7. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    Science.gov (United States)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  8. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces.

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-14

    Full-dimensional vibrational spectra are calculated for both X - (H 2 O) and X - (D 2 O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  9. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  10. Multi-species Ionic Diffusion in Concrete with Account to Interaction Between Ions in the Pore Solution and the Cement Hydrates

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    relevance in terms of standard solubility thermodynamics. On the other hand the presented model is capable of accurately simulate the well documented peak behavior of the chloride profiles and the measured high content of calcium ions in pore solution under conditions when also chlorides is present....... In this sense the established multi-species models for concrete based on standard solubility calculations alone is still incomplete....

  11. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Nicolardi, Simone; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2014-06-03

    Structural confirmation and quality control of recombinant monoclonal antibodies (mAbs) by top-down mass spectrometry is still challenging due to the size of the proteins, disulfide content, and post-translational modifications such as glycosylation. In this study we have applied electrochemistry (EC) to overcome disulfide bridge complexity in top-down analysis of mAbs. To this end, an electrochemical cell was coupled directly to an electrospray ionization (ESI) source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS) equipped with a 15 T magnet. By performing online EC-assisted reduction of interchain disulfide bonds in an intact mAb, the released light chains could be selected for tandem mass spectrometry (MS/MS) analysis without interference from heavy-chain fragments. Moreover, the acquisition of full MS scans under denaturing conditions allowed profiling of all abundant mAb glycoforms. Ultrahigh-resolution FTICR-MS measurements provided fully resolved isotopic distributions of intact mAb and enabled the identification of the most abundant adducts and other interfering species. Furthermore, it was found that reduction of interchain disulfide bonds occurs in the ESI source dependent on capillary voltage and solvent composition. This phenomenon was systematically evaluated and compared with the results obtained from reduction in the electrochemical cell.

  12. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    Czech Academy of Sciences Publication Activity Database

    Shaffer, C. J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, F.

    2016-01-01

    Roč. 27, č. 4 (2016), s. 633-645 ISSN 1044-0305 R&D Projects: GA ČR(CZ) GA14-31419S; GA ČR GP13-01214P Institutional support: RVO:61388963 Keywords : peptide-peptide ion complexes * laser photodissociation * diazirine chromophores * photoleucine * Born-Oppenheimer molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.786, year: 2016

  13. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  14. Effect of hydration on the organo-noble gas molecule HKrCCH: role of krypton in the stabilization of hydrated HKrCCH complexes.

    Science.gov (United States)

    Biswas, Biswajit; Singh, Prashant Chandra

    2015-11-11

    The effect of hydration on the fluorine free organo-noble gas compound HKrCCH and the role of krypton in the stabilization of the hydrated HKrCCH complexes have been investigated using the quantum chemical calculations on the HKrCCH-(H2O)n=1-6 clusters. Structure and energetics calculations show that water stabilizes HKrCCH through the π hydrogen bond in which the OH group of water interacts with the C[triple bond, length as m-dash]C group of HKrCCH. A maximum of four water molecules can directly interact with the C[triple bond, length as m-dash]C of HKrCCH and after that only inter-hydrogen bonding takes place between the water molecules indicating that the primary hydration shell contains four water molecules. Atom in molecule analysis depicts that π hydrogen bonded complexes of the hydrated HKrCCH are cyclic structures in which the OKr interaction cooperates in the formation of strong O-HC[triple bond, length as m-dash]C interaction. Structure, energetics and charge analysis clearly established that krypton plays an important role in the stabilization as well as the formation of the primary hydration shell of hydrated HKrCCH complexes.

  15. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  16. Possible mechanisms for the interaction of polymeric composite resins with Cu(II) ions in aqueous solution

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The interaction between the active groups of polymeric composite resins such as Poly(acrylamide-acrylic acid)-ethylenediaminetetra acetic acid disodium salt P(AM-AA)EDTANa 2 , Poly(acrylamide-acrylic acid)- montmorillonite P(AM-AA)-montmorillonite, and Poly(acrylamide-acrylic acid)-potassium nickel hexacyanoferrate P(AM-AA)-KNiHCF, with copper sulfate as a test ion has been studied. The spectroscopic studies show that the mechanism of interaction between polymeric composite resins and copper sulfate is a bond formation between the active groups of polymeric chains and copper ion. The bond formation depends on nature of polymeric chains. It was also found that the amide groups form complexes with hydrated cations, while carboxylate group interact by ion exchange mechanism through complex formation. Montmorillonite and hexacyanoferrate of the resins interact with metal ions by ion exchange mechanism

  17. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  18. Charge accumulation in the buried oxide of SOI structures with the bonded Si/SiO2 interface under γ-irradiation: effect of preliminary ion implantation

    International Nuclear Information System (INIS)

    Naumova, O V; Fomin, B I; Ilnitsky, M A; Popov, V P

    2012-01-01

    In this study, we examined the effect of preliminary boron or phosphorous implantation on charge accumulation in the buried oxide of SOI-MOSFETs irradiated with γ-rays in the total dose range (D) of 10 5 –5 × 10 7 rad. The buried oxide was obtained by high-temperature thermal oxidation of Si, and it was not subjected to any implantation during the fabrication process of SOI structures. It was found that implantation with boron or phosphorous ions, used in fabrication technologies of SOI-MOSFETs, increases the concentration of precursor traps in the buried oxide of SOI structures. Unlike in the case of boron implantation, phosphorous implantation leads to an increased density of states at the Si/buried SiO 2 interface during subsequent γ-irradiation. In the γ-irradiated SOI-MOSFETs, the accumulated charge density and the density of surface states in the Si/buried oxide layer systems both vary in proportion to k i ln D. The coefficients k i for as-fabricated and ion-implanted Si/buried SiO 2 systems were evaluated. From the data obtained, it was concluded that a low density of precursor hole traps was a factor limiting the positive charge accumulation in the buried oxide of as-fabricated (non-implanted) SOI structures with the bonded Si/buried SiO 2 interface. (paper)

  19. Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins.

    Science.gov (United States)

    Bo, Chunmiao; Wang, Chaozhan; Wei, Yinmao

    2016-11-01

    Immobilized metal affinity chromatography (IMAC) has been widely used for the specific separation of biopolymers. However, leakage of metal ions from IMAC adsorbents is of concern in IMAC. In this study, we designed a novel tridenate bis(5-methyltetrazolium)amine (BMTA) to reduce the leakage of metal ions by improving the affinity to immobilized metal ions. The ligand was bonded onto silica via three-step reaction to prepare a high-performance IMAC stationary phase. The chromatographic behaviors of ribonuclease A, cytochrome c, and lysozyme on the Cu(II)-, Ni(II)-, and Zn(II)-chelated stationary phase were investigated with respect to pH effect and elution with an imidazole gradient. The retention times of these three proteins increased by increasing the pH of the mobile phase but decreased by increasing the concentration of the competitive displacer. The retaining strength of the three proteins on the chelated stationary phase were in the order Cu(II) > Ni(II) > Zn(II). The behavior of these three proteins was consistent with the properties of a typical IMAC. The BMTA ligand exhibited a much stronger affinity for Cu(II) and Ni(II) than iminodiacetic acid (IDA), which is often regarded as a standard tridentate IMAC ligand. Quantum mechanical calculations at the B3LYP/6-31G level were used to image the coordination mode of the protein-metal ions-BMTA complex. In addition, a fused histidine-tagged cecropin b-human epidermal growth factor (CB-EGF) from Escherichia coli crude extract was purified by the Ni(II)-chelated stationary phase, and the purity of the CB-EGF was determined to be at least 90 %. These results suggest that the BMTA ligand may have potential applications in the preparation of therapeutics. Graphical Abstract A novel ligand of tridenate bis(5-methyltetrazolium)amine (BMTA) was designed to reduce the leakage of metal ions from the column in immobolized metal affinity chromatography (IMAC).

  20. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong

    2013-08-01

    As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media.

  1. The formation of gas hydrates and the effect of inhibitiors on their ...

    African Journals Online (AJOL)

    Natural gas hydrate is a solid crystalline compound produced by combining water and gas and it is considered as the clathrates. Guest gas molecules are stuck insider the pores of water networks produced by hydrogen bonds between molecules of water. There are different ways to analyze the hydrate formation operating ...

  2. A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms.

    Science.gov (United States)

    Mahamid, Julia; Schampers, Ruud; Persoon, Hans; Hyman, Anthony A; Baumeister, Wolfgang; Plitzko, Jürgen M

    2015-11-01

    Cryo-electron tomography provides 3D views of cellular architecture with molecular resolution. A principal limitation of cryo-transmission electron microscopy performed on cells or tissues is the accessible specimen thickness. Recently it has been shown that cryo-focused ion beam milling of plunge-frozen eukaryotic cells can produce homogeneously thin, distortion free lamellas for cryo-electron tomography. Multicellular organisms and tissue cannot be properly vitrified and thinned using this technique because they are considerably thicker. High pressure freezing is therefore necessary to provide optimal preservation. Here, we describe a workflow for preparing lamellas from Caenorhabditis elegans worms using cryo-FIB applied to high pressure frozen samples. We employ cryo-planing followed by correlative cryo-fluorescence microscopy to navigate this large multicellular volume and to localize specific targets within. To produce vitreous lamellas amenable to cryo-TEM observations at these targeted locations, we have developed a dedicated lift-out procedure at cryogenic temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  4. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    OpenAIRE

    Chang, Seok-Woo

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyap...

  5. A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution.

    Science.gov (United States)

    Mishra, Ratan K; Fernández-Carrasco, Lucia; Flatt, Robert J; Heinz, Hendrik

    2014-07-21

    Tricalcium aluminate (C3A) is a major phase of Portland cement clinker and some dental root filling cements. An accurate all-atom force field is introduced to examine structural, surface, and hydration properties as well as organic interfaces to overcome challenges using current laboratory instrumentation. Molecular dynamics simulation demonstrates excellent agreement of computed structural, thermal, mechanical, and surface properties with available experimental data. The parameters are integrated into multiple potential energy expressions, including the PCFF, CVFF, CHARMM, AMBER, OPLS, and INTERFACE force fields. This choice enables the simulation of a wide range of inorganic-organic interfaces at the 1 to 100 nm scale at a million times lower computational cost than DFT methods. Molecular models of dry and partially hydrated surfaces are introduced to examine cleavage, agglomeration, and the role of adsorbed organic molecules. Cleavage of crystalline tricalcium aluminate requires approximately 1300 mJ m(-2) and superficial hydration introduces an amorphous calcium hydroxide surface layer that reduces the agglomeration energy from approximately 850 mJ m(-2) to 500 mJ m(-2), as well as to lower values upon surface displacement. The adsorption of several alcohols and amines was examined to understand their role as grinding aids and as hydration modifiers in cement. The molecules mitigate local electric fields through complexation of calcium ions, hydrogen bonds, and introduction of hydrophobicity upon binding. Molecularly thin layers of about 0.5 nm thickness reduce agglomeration energies to between 100 and 30 mJ m(-2). Molecule-specific trends were found to be similar for tricalcium aluminate and tricalcium silicate. The models allow quantitative predictions and are a starting point to provide fundamental understanding of the role of C3A and organic additives in cement. Extensions to impure phases and advanced hydration stages are feasible.

  6. ions

    African Journals Online (AJOL)

    (MP2 B2). In order to draw the final conclusion about the content of the isomers of pentaatomic ions in saturated vapor over cesium chloride, we have taken into account the entropy factor. We considered the isomerization reactions which are given below: Cs3Cl2. + (V-shaped) = Cs3Cl2. + (cyclic or bipyramidal). (1). Cs2Cl3.

  7. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage.

    Science.gov (United States)

    Pathak, Amar Deep; Nedea, Silvia; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-04-21

    Salt hydrates store solar energy in chemical form via a reversible dehydration-hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The mixture of CaCl2 and MgCl2 hydrates has been shown experimentally to have exceptional cycle stability and improved kinetics. However, the optimal operating conditions for the mixture are unknown. To understand the appropriate balance between dehydration and hydrolysis kinetics in the mixtures, it is essential to gain in-depth insight into the mixture components. We present a GGA-DFT level study to investigate the various gaseous structures of CaCl2 hydrates and to understand the relative stability of their conformers. The hydration strength and relative stability of conformers are dominated by electrostatic interactions. A wide network of intramolecular homonuclear and heteronuclear hydrogen bonds is observed in CaCl2 hydrates. Equilibrium product concentrations are obtained during dehydration and hydrolysis reactions under various temperature and pressure conditions. The trend of the dehydration curve with temperature in CaCl2 hydrates is similar to the experiments. Comparing these results to those of MgCl2 hydrates, we find that CaCl2 hydrates are more resistant towards hydrolysis in the temperature range of 273-800 K. Specifically, the present study reveals that the onset temperatures of HCl formation, a crucial design parameter for MgCl2 hydrates, are lower than for CaCl2 hydrates except for the mono-hydrate.

  8. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu

    2006-01-01

    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  9. Electronic bond structure of the H2+ ion in a strong magnetic field: A study of the parallel configuration

    International Nuclear Information System (INIS)

    Kappes, U.; Schmelcher, P.

    1995-01-01

    A large number of magnetically dressed states of the hydrogen molecular ion for parallel internuclear and magnetic field axes are investigated. The numerical calculations of the molecular states and potential-energy curves in the fixed-nuclei approximation are based on a recently established and optimized atomic orbital basis set. We study electronic states within the range 0≤|m|≤10 of magnetic quantum numbers and for several field strengths. In particular, we also investigate many excited states within a subspace for fixed magnetic quantum number and parity. In order to understand the influence of the magnetic field on theof excited molecular states, we perform a detailed comparison of the electronic probability distributions and potential-energy curves in the field-free space with those in the presence of a magnetic field. As a major result we observe the existence of two different classes of strongly bound, i.e., stable, magnetically dressed states whose corresponding counterparts in the field-free space exhibit purely repulsive potential-energy curves, i.e., are unstable. Corrections which are going beyond the fixed-nuclei approach, i.e., the coupling of the center of mass to the electronic motion, as well as the mass corrections are investigated in order to ensure the physical validity of our results

  10. Crystal structure of CsNaX-zeolite in hydrated and dehydrated forms

    International Nuclear Information System (INIS)

    Butikova, I.K.; Shepelev, Yu.F.; Smolin, Yu.I.

    1989-01-01

    The crystal structure of CsNaX-zeolite is determined by roentgenography in hydrated and dehydrated (400 deg C) forms on NaX-zeolite monocrystal modified by the Na + and Cs + ion exchange. Cs + ions in the hydrated form are located in a big cavity in S2 positions opposite 6-member cubooctahedron rings and S3 beside 12-member windows connecting big cavities. During dehydration Cs + ions pass through 6-member windows into cubooctahedron and in the hexagonal prism

  11. Stepwise hydration of ionized aromatics. Energies, structures of the hydrated benzene cation, and the mechanism of deprotonation reactions.

    Science.gov (United States)

    Ibrahim, Yehia M; Meot-Ner Mautner, Michael; Alshraeh, Edreese H; El-Shall, M Samy; Scheiner, Steve

    2005-05-18

    The stepwise binding energies (DeltaHdegree(n-1,n)) of 1-8 water molecules to benzene(.+) [Bz(.+)(H2O)n] were determined by equilibrium measurements using an ion mobility cell. The stepwise hydration energies, DeltaHdegree(n-1,n), are nearly constant at 8.5 +/- 1 kcal mol-1 from n = 1-6. Calculations show that in the n = 1-4 clusters, the benzene(.+) ion retains over 90% of the charge, and it is extremely solvated, that is, hydrogen bonded to an (H2O)n cluster. The binding energies and entropies are larger in the n = 7 and 8 clusters, suggesting cyclic or cage-like water structures. The concentration of the n = 3 cluster is always small, suggesting that deprotonation depletes this ion, consistent with the thermochemistry since associative deprotonation Bz(.+)(H2O)(n-1) + H2O-->C6H5. + (H2O)nH+ is thermoneutral or exothermic for n > or = 4. Associative intracluster proton transfer Bz(.+)(H2O)(n+1) + H2O-->C6H5.(H2O)nH+ would also be exothermic for n > or = 4, but lack of H/D exchange with D2O shows that the proton remains on C6H6(.+) in the observed Bz(.+)(H2O)n clusters. This suggests a barrier to intracluster proton transfer, and as a result, the [Bz(.+)(H2O)n]* activated complexes either undergo dissociative proton transfer, resulting in deprotonation and generation of (H2O)nH+, or become stabilized. The rate constant for the deprotonation reaction shows a uniquely large negative temperature coefficient of K = cT(-67+/-4) (or activation energy of -34+/- 1 kcal mol-1), caused by a multibody mechanism in which five or more components need to be assembled for the reaction.

  12. Gel phase in hydrated calcium dipicolinate

    Science.gov (United States)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-11-01

    The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.

  13. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio

    2015-01-01

    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  14. Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite.

    Science.gov (United States)

    Yan, KeFeng; Li, XiaoSen; Xu, ChunGang; Lv, QiuNan; Ruan, XuKe

    2014-06-01

    The formation and mechanism of CH4 hydrate intercalated in montmorillonite are investigated by molecular dynamics (MD) simulation. The formation process of CH4 hydrate in montmorillonite with 1 ~ 8 H2O layers is observed. In the montmorillonite, the "surface H2O" constructs the network by hydrogen bonds with the surface Si-O ring of clay, forming the surface cage. The "interlayer H2O" constructs the network by hydrogen bonds, forming the interlayer cage. CH4 molecules and their surrounding H2O molecules form clathrate hydrates. The cation of montmorillonite has a steric effect on constructing the network and destroying the balance of hydrogen bonds between the H2O molecules, distorting the cage of hydrate in clay. Therefore, the cages are irregular, which is unlike the ideal CH4 clathrate hydrates cage. The pore size of montmorillonite is another impact factor to the hydrate formation. It is quite easier to form CH4 hydrate nucleation in montmorillonite with large pore size than in montmorillonite with small pore. The MD work provides the constructive information to the investigation of the reservoir formation for natural gas hydrate (NGH) in sediments.

  15. Efeito do íon comum na reação de hidratação do MgO Common-ion effect on the MgO hydration reaction

    Directory of Open Access Journals (Sweden)

    L. F. Amaral

    2008-03-01

    equilibrium shifting, known as common-ion effect, on the MgO hydration was evaluated adding several additives (MgCl2, MgSO4, CaCl2 e KOH. Among them, the CaCl2 delayed the reaction, whereas KOH showed opposite behavior. MgCl2 and MgSO4 presented similar results and both effects (reaction delay and speed up, depending of their concentration in suspensions. The possible explanation for these behaviors are discussed in this paper. The results were evaluated considering the kinetics and the thermodynamics of the reaction, and the mechanical damages caused in the materials.

  16. Aluminum Sulfate 18 Hydrate

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  17. A Molecular Dynamic Simulation of Hydrated Proton Transfer in Perfluorosulfonate Ionomer Membranes (Nafion 117

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2015-01-01

    Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.

  18. The Methane Hydrate Reservoir System

    Science.gov (United States)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  19. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    Science.gov (United States)

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  20. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  1. Freezing and melting of salt hydrates next to solid surfaces probed by infrared-visible sum frequency generation spectroscopy.

    Science.gov (United States)

    Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali

    2013-06-12

    Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.

  2. The Hydrated Electron

    Science.gov (United States)

    Herbert, John M.; Coons, Marc P.

    2017-05-01

    Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters [Formula: see text], the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species e-(aq) and its excited states, in bulk water and at the air/water interface, are also addressed.

  3. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  4. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  5. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  6. Ions in water: the microscopic structure of a concentrated HCl solution.

    Science.gov (United States)

    Botti, A; Bruni, F; Imberti, S; Ricci, M A; Soper, A K

    2004-10-22

    A neutron diffraction experiment with isotopic H/D substitution on a concentrated HCl/H2O solution is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. This allows us to investigate both the changes of the water structure in the presence of ions and their solvation shell, overcoming the limitations of standard diffraction experiments. It is found that the interaction with the solutes affects the tetrahedral network of hydrogen bonded water molecules, in a manner similar to the application of an external pressure to pure water, although HCl seems less effective than other solutes, such as NaOH, at the same concentration. Consistent with experimental and theoretical data, the number of water molecules in the solution is not sufficient to completely dissociate the acid molecule. As a consequence, both dissociated H+ and Cl- ions and undissociated HCl molecules coexist in the sample, and this mixture is correctly reproduced in the simulation box. In particular, the hydrated H+ ions, forming a H3O+ complex, participate in three strong and short hydrogen bonds, while a well-defined hydration shell is found around the chlorine ion. These results are not consistent with the findings of early diffraction experiments on the same system and could only be obtained by combining high quality experimental data with a proper computer simulation. (c) 2004 American Institute of Physics.

  7. Cobalt bis(dicarbollide) ions with covalently bonded CMPO groups as selective extraction agents for lanthanide and actinide cations from highly acidic nuclear waste solutions

    International Nuclear Information System (INIS)

    Gruner, B.; Plesek, J.; Baca, J.; Cisarova, I.; Dozol, J.F.; Rouquette, H.; Vinas, C.; Selucky, P.; Rais, J.

    2002-01-01

    A new series of boron substituted cobalt bis(dicarbollide)(1-) ion (1) derivatives of the general formula [(8-CMPO-(CH 2 -CH 2 O) 2 -1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )-3,3'-Co] - (CMPO = Ph 2 P(O)-CH 2 C(O)NR, R = C 4 H 9 (3b), -C 12 H 25 (4b), -CH 2 -C 6 H 5 (5b)) was prepared by ring cleavage of the 8-dioxane-cobalt bis(dicarbollide) (2) bi-polar compound by the respective primary amines and by subsequent reaction of the resulting amino derivatives (3a-5a) with the nitrophenyl ester of diphenyl-phosphoryl-acetic acid. The compounds were synthesized with the aim to develop a new class of more efficient extraction agents for liquid/liquid extraction of polyvalent cations, i.e. lanthanides and actinides, from high-level activity nuclear waste. All compounds were characterized by a combination of 11 B NMR, 1 H high field NMR, Mass Spectrometry with Electro-spray and MALDI TOF ionisation, HPLC and other techniques. The molecular structure of the supramolecular Ln 3+ complex of the anion 5b was determined by single crystal X-ray diffraction analysis. Crystallographic results proved that the Ln(m) atom is bonded to three functionalized cobalt bis(dicarbollide) anions in a charge compensated complex. The cation is tightly coordinated by six oxygen atoms of the CMPO terminal groups (two of each ligand) and by three water molecules completing the metal coordination number to 9. Atoms occupying the primary coordination sphere form a tri-capped trigonal prismatic arrangement. Very high liquid-liquid extraction efficiency of all anionic species was observed. Moreover, less polar toluene can be applied as an auxiliary solvent replacing the less environmentally friendly nitro- and chlorinated solvents used in the current dicarbollide liquid-liquid extraction process. The extraction coefficients are sufficiently high for possible technological applications. (authors)

  8. Effects of water on mortar-brick bond

    NARCIS (Netherlands)

    Groot, C.J.W.P.

    1995-01-01

    The quality of bond in masonry is, to a large extent, a function of the (i) the hydration conditions and (ii) the mortar composition of the mortar-brick interface. For insight into the effects of these parameters on bond performance it is essential to dispose of quantitative information about water

  9. Hydrogen bond dynamics and vibrational spectral diffusion in ...

    Indian Academy of Sciences (India)

    Abstract. We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on ...

  10. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  11. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters

    Science.gov (United States)

    Hey, John C.; Doyle, Emily J.; Chen, Yuting; Johnston, Roy L.

    2018-03-01

    We present putative global minima for the micro-hydrated sulfite SO32-(H2O)N and chlorate ClO32(H2O)N systems in the range 3≤N≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤N≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems. This article is part of the theme issue `Modern theoretical chemistry'.

  12. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters.

    Science.gov (United States)

    Hey, John C; Doyle, Emily J; Chen, Yuting; Johnston, Roy L

    2018-03-13

    We present putative global minima for the micro-hydrated sulfite SO 3 2- (H 2 O) N and chlorate ClO 3 - (H 2 O) N systems in the range 3≤ N ≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤ N ≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Authors.

  13. X-ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates

    Directory of Open Access Journals (Sweden)

    Katharina Fucke

    2010-07-01

    Full Text Available A review. Diffraction methods are a powerful tool to investigate the crystal structure of organic compounds in general and their hydrates in particular. The laboratory standard technique of single crystal X-ray diffraction gives information about the molecular conformation, packing and hydrogen bonding in the crystal structure, while powder X-ray diffraction on bulk material can trace hydration/dehydration processes and phase transitions under non-ambient conditions. Neutron diffraction is a valuable complementary technique to X-ray diffraction and gives highly accurate hydrogen atom positions due to the interaction of the radiation with the atomic nuclei. Although not yet often applied to organic hydrates, neutron single crystal and neutron powder diffraction give precise structural data on hydrogen bonding networks which will help explain why hydrates form in the first place.

  14. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  15. Formation of methane hydrate from polydisperse ice powders.

    Science.gov (United States)

    Kuhs, Werner F; Staykova, Doroteya K; Salamatin, Andrey N

    2006-07-06

    Neutron diffraction runs and gas-consumption experiments based on pressure-volume-temperature measurements are conducted to study the kinetics of methane hydrate formation from hydrogenated and deuterated ice powder samples in the temperature range of 245-270 K up to high degrees of transformation. An improved theory of the hydrate growth in a polydisperse ensemble of randomly packed ice spheres is developed to provide a quantitative interpretation of the data in terms of kinetic model parameters. This paper continues the research line of our earlier study which was limited to the monodisperse case and shorter reaction times (Staykova et al., 2003). As before, we distinguish the process of initial hydrate film spreading over the ice particle surface (stage I) and the subsequent hydrate shell growth (stage II) which includes two steps, i.e., an interfacial clathration reaction and the gas and water transport (diffusion) through the hydrate layer surrounding the shrinking ice cores. Although kinetics of hydrate formation at stage II is clearly dominated by the diffusion mechanism which becomes the limiting step at temperatures above 263 K, both steps are shown to be essential at lower temperatures. The permeation coefficient D is estimated as (1.46 +/- 0.44) x 10(-12) m2/h at 263 K with an activation energy Q(D) approximately 52.1 kJ/mol. This value is close to the energy of breaking hydrogen bonds in ice Ih and suggests that this process is the rate-limiting step in hydrate formation from ice in the slower diffusion-controlled part of the reaction.

  16. Thermodynamic studies on semi-clathrate hydrates of TBAB + gases containing carbon dioxide

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali

    2012-01-01

    CO 2 capture has become an important area of research mainly due to its drastic greenhouse effects. Gas hydrate formation as a separation technique shows tremendous potential, both from a physical feasibility as well as an envisaged lower energy utilization criterion. Briefly, gas (clathrate) hydrates are non-stoichiometric, ice-like crystalline compounds formed through a combination of water and suitably sized guest molecule(s) under low-temperatures and elevated pressures. As the pressure required for gas hydrate formation is generally high, therefore, aqueous solution of tetra-n-butyl ammonium bromide (TBAB) is added to the system as a gas hydrate promoter. TBAB generally reduces the required hydrate formation pressure and/or increases the formation temperature as well as modifies the selectivity of hydrate cages to capture CO 2 molecules. TBAB also takes part in the hydrogen-bonded cages. Such hydrates are called 'semi-clathrate' hydrates. Evidently, reliable and accurate phase equilibrium data, acceptable thermodynamic models, and other thermodynamic studies should be provided to design efficient separation processes using the aforementioned technology. For this purpose, phase equilibria of clathrate/semi-clathrate hydrates of various gas mixtures containing CO 2 (CO 2 + CH 4 /N 2 /H 2 ) in the presence of pure water and aqueous solutions of TBAB have been measured in this thesis. In the theoretical section of the thesis, a thermodynamic model on the basis of the van der Waals and Platteeuw (vdW-P) solid solution theory along with the modified equations for determination of the Langmuir constants of the hydrate formers has been successfully developed to represent/predict equilibrium conditions of semi-clathrate hydrates of CO 2 , CH 4 , and N 2 . Later, several thermodynamic consistency tests on the basis of Gibbs-Duhem equation as well as a statistical approach have been applied on the phase equilibrium data of the systems of mixed/simple clathrate hydrates

  17. Thermodynamic Properties of Hydrogen + Tetra-n-Butyl Ammonium Bromide Semi-Clathrate Hydrate

    Directory of Open Access Journals (Sweden)

    Shunsuke Hashimoto

    2010-01-01

    Full Text Available Thermodynamic stability and hydrogen occupancy on the hydrogen + tetra-n-butyl ammonium bromide semi-clathrate hydrate were investigated by means of Raman spectroscopic and phase equilibrium measurements under the three-phase equilibrium condition. The structure of mixed gas hydrates changes from tetragonal to another structure around 95 MPa and 292 K depending on surrounding hydrogen fugacity. The occupied amount of hydrogen in the semi-clathrate hydrate increases significantly associated with the structural transition. Tetra-n-butyl ammonium bromide semi-clathrate hydrates can absorb hydrogen molecules by a pressure-swing without destroying the hydrogen bonds of hydrate cages at 15 MPa or over.

  18. Hydration of ammonia, methylamine, and methanol in amorphous solid water

    Science.gov (United States)

    Souda, Ryutaro

    2016-02-01

    Interactions of polar protic molecules with amorphous solid water (ASW) have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. The ammonia and methylamine are incorporated into the interior of porous ASW films. They are caged by water molecules and are released during water crystallization. In contrast, the methanol-water interaction is not influenced by pores of ASW. The methanol additives tend to survive water crystallization and are released during ASW film evaporation. The hydration of n-hexane in ASW is influenced significantly by methanol additives because n-hexane is accommodated in a methanol-induced hydration shell.

  19. X-ray and neutron diffraction in the study of organic crystalline hydrates.

    OpenAIRE

    Fucke, K.; Steed, J.W.

    2010-01-01

    A review. Diffraction methods are a powerful tool to investigate the crystal structure of organic compounds in general and their hydrates in particular. The laboratory standard technique of single crystal X-ray diffraction gives information about the molecular conformation, packing and hydrogen bonding in the crystal structure, while powder X-ray diffraction on bulk material can trace hydration/dehydration processes and phase transitions under non-ambient conditions. Neutron diffraction is a ...

  20. Animated molecular dynamics simulations of hydrated Cesium-smectite interlayers

    International Nuclear Information System (INIS)

    Sutton, Rebecca; Sposito, Garrison

    2002-01-01

    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional analytical methods. Cs+ could be seen to jump from one attracting location near a layer charge site to the next, and water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. The extent of this sharing interaction in the interlayer was determined by the smectite charge distribution, but increased with increasing water content. Water molecules also could be seen to interact directly with the mineral surface, entering its ditrigonal cavities to approach attracting charge sites. The frequency and duration of cavity habitation increased with increasing water content and tetrahedral charge, and was inhibited the more perpendicular was the structural hydroxyl orientation relative to the mineral surface. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output

  1. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  2. Calculation of Vibrational Spectra of p-Ethylbenzenesulfonic Acid Hydrates

    Science.gov (United States)

    Zelenkovskii, V. M.; Bezyazychnaya, T. V.; Soldatov, V. S.

    2013-09-01

    Quantum-chemical calculations of vibrational spectra of the sulfonated ion-exchanger model p-ethylbenzenesulfonic acid hydrated by 1-10 water molecules and its dimer were calculated by the non-empirical SCF MO LCAO method with the 6-31G(d) basis set. The calculated results were compared with experimental IR and Raman spectra of sulfonated ion exchangers. The infl uence of hydration on the vibrational frequencies of functional groups in the ion exchangers was analyzed. It was shown that the sulfonic acid was completely dissociated if three and more water molecules per functional group were present. Bands near 1130 cm-1 were due to S-O-H bending vibrations in the absence of water molecules and C-S-O-H3O combination vibrations with 3-6 water molecules per sulfonic acid.

  3. Polarization response of clathrate hydrates capsulated with guest molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qun; Li, Jinshan, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn; Huang, Hui [Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900 (China); Wang, Xinqin; Yang, Mingli, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2016-05-28

    Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest–cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads to the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.

  4. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison

    2002-01-01

    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  5. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Directory of Open Access Journals (Sweden)

    Sposito Garrison

    2002-09-01

    Full Text Available Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  6. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  7. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  8. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  9. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  10. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  11. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  12. Raman and DFT Study on N-H+…Cl- Hydrogen Bonding in 1,1,3,3-Tetra-Methylguanidinium Chloride forming an Ion-pair Molecule in the Vapor Phase

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Riisager, Anders; Fehrmann, Rasmus

    The chemistry of 1,1,3,3-tetramethylguanidinium ([TMGH]+) chloride, a low temperature (molten) ionic liquid, is discussed, based on its Raman spectra associated with ab initio molecular orbital DFT-type quantum mechanical calculations (with 6-311+G(d,p) basis sets) on “molecules” in isolated...... gaseous free states without any assumed symmetry. The calculations on the monomeric [TMGH]+ ion and the dimeric ion pair converged to give geometries near the established crystal structure of the [TMGH]Cl salt. This salt is known to contain dimeric ion pairs of the kind [TMGH]ClCl[TMGH](Fig.1...... that dimeric molecular ion pairs with four N-H+…Cl- hydrogen bonds seem to exist also in the solutions, and probably are responsible for the relatively high solubility of the “salt” in ethanol. The “salt” can be easily sublimed at about 200-230 oC. The Raman spectrum of the vapor at 225 ºC has a characteristic...

  13. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  14. Ruthenium Nanoparticles Mediated Electrocatalytic Reduction of UO22+Ions for Its Rapid and Sensitive Detection in Natural Waters.

    Science.gov (United States)

    Gupta, Ruma; Sundararajan, Mahesh; Gamare, Jayashree S

    2017-08-01

    Reduction of UO 2 2+ ions to U 4+ ions is difficult due to involvement of two axially bonded oxygen atoms, and often requires a catalyst to lower the activation barrier. The noble metal nanoparticles (NPs) exhibit high electrocatalytic activity, and could be employed for the sensitive and rapid quantifications of U0 2 2+ ions in the aqueous matrix. Therefore, the Pd, Ru, and Rh NPs decorated glassy carbon electrode were examined for their efficacy toward electrocatalytic reduction of UO 2 2+ ions and observed that Ru NPs mediate efficiently the electro-reduction of UO 2 2+ ions. The mechanism of the electroreduction of UO 2 2+ by the RuNPs/GC was studied using density functional theory calculations which pointed different approach of 5f metal ions electroreduction unlike 4p metal ions such as As(III). RuNP decorated on the glassy carbon would be hydrated, which in turn assist to adsorb the uranyl sulfates through hydrogen bonding thus facilitated electro-reduction. Differential pulse voltammetric (DPV) technique, was used for rapid and sensitive quantification of UO 2 2+ ions. The RuNPs/GC based DPV technique could be used to determine the concentration of uranyl in a few minutes with a detection limit of 1.95 ppb. The RuNPs/GC based DPV was evaluated for its analytical performance using seawater as well lake water and groundwater spiked with known amounts of UO 2 2+ .

  15. Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. E.; Kothapalli, C.; Lee, M.S. [Mississippi State University, Swalm School of Chemical Engineering, MS (United States); Woolsey, J. R. [University of Mississippi, Centre of Marine Resources and Environmental Technology, MS (United States)

    2003-10-01

    Large gas hydrate mounds have been photographed in the seabed of the Gulf of Mexico and elsewhere. According to industry experts, the carbon trapped within gas hydrates is two or three times greater than all known crude oil, natural gas and coal reserves in the world. Gas hydrates, which are ice-like solids formed from the hydrogen bonding of water as water temperature is lowered under pressure to entrap a suitable molecular-size gas in cavities of the developing crystal structure, are found below the ocean floor to depths exhibiting temperature and pressure combinations within the appropriate limits. The experiments described in this study attempt to ascertain whether biosurfactant byproducts of microbial activity in seabeds could catalyze gas hydrate formation. Samples of five possible biosurfactants classifications were used in the experiments. Results showed that biosurfactants enhanced hydrate formation rate between 96 per cent and 288 percent, and reduced hydrate induction time 20 per cent to 71 per cent relative to the control. The critical micellar concentration of rhamnolipid/seawater solution was found to be 13 ppm at hydrate-forming conditions. On the basis of these results it was concluded that minimal microbial activity in sea floor sands could achieve the threshold concentration of biosurfactant that would greatly promote hydrate formation. 28 refs., 2 tabs., 4 figs.

  16. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan [Institute of Biotechnology CAS, Videnska 1083, 142 20 Prague (Czech Republic)

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  17. A QUANTUM MECHANICAL STUDY OF THE PROTONATION AND COVALENT HYDRATION OF QUINAZOLINE IN THE PRESENCE OF METAL CATIONS

    Science.gov (United States)

    We have investigated the protonation and reversible covalent hydration of quinazoline in the presence of Li+, Na+, and Ca2+ ions using ab initio quantum mechanical calculations at the MP2/6-31G**//HF/6-31G*level of theory. Proton affinities, enthalpies of hydration at 298.15K (DH...

  18. Contribution to the systemic study of energetic systems including electrochemical devices: Bond Graph formalism applied to modelling fuel cells, lithium-ion batteries and sun-racer; Contribution a l'etude systemique de dispositifs energetiques a composants electrochimiques. Formalisme Bond Graph applique aux piles a combustible, accumulateurs lithium-ion, vehicule solaire

    Energy Technology Data Exchange (ETDEWEB)

    Saisset, R.

    2004-04-01

    This thesis is a contribution to the study of electric power conversion systems including electrochemical devices. A systemic approach draws advantage of the unified Bond Graph formalism in order to model every component as well as the whole system. A state of the art of electrochemical devices for decentralized electric energy generation and storage put emphasis on common phenomena with the aim of developing 'system oriented' generic models. Solid Oxide and Proton Exchange Fuel Cells (SOFC, PEMFC), as well as Lithium Ion batteries, have been modelled through an efficient work with electrochemistry specialists. These models involve an explicit representation, at a macroscopic level, of conversion and irreversible phenomena linked to the chemical reaction and coupled together both in the hydraulic, chemical, thermodynamic, electric and thermal fields. These models are used to study the modularity of the components, particularly the electric and thermal imbalances in the series and parallel fuel cells associations. The systemic approach is also applied to the study of architectures and energy management of electric power generating units involving PEMFC and battery or super-capacitors storage. Different working conditions for the fuel cells are defined and studied, consisting in either voltage or current or power imposed by means of the storage and static converters environment. Identification of parameters and working tests are performed on specially developed test benches so as to validate theoretical results. At last, the method is applied to study a 'sun-racer', an original complex system with embedded photovoltaic generator, electrochemical storage and brush-less wheel motor, wholly modelled in order to compare various energy management onboard the solar vehicle 'Solelhada'. (author)

  19. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, K.; Bosáková, Z.; Cvačka, Josef

    2015-01-01

    Roč. 407, č. 17 (2015), s. 5175-5188 ISSN 1618-2642 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : double bond * gas-phase chemistry * lipidomics * olive oil * vernix caseosa Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015

  20. Structure and Hydrogen Bonding of 2-aminopyridine·(H2O)n (n=1,2) Studied by Infrared Ion Depletion Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Wu, R.; Nachtigall, Petr; Brutschy, B.

    2004-01-01

    Roč. 6, č. 3 (2004), s. 515-521 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : hydrogen bonding * electronic and vibrational spectra * spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.076, year: 2004

  1. Localization of Fatty Acyl and Double Bond Positions in Phosphatidylcholines Using a Dual Stage CID Fragmentation Coupled with Ion Mobility Mass Spectrometry

    NARCIS (Netherlands)

    Castro-Perez, J.; Roddy, T.P.; Nibbering, N.M.M.; Shah, V.; McLaren, D.G.; Previs, S.; Attygalle, A.B.; Herath, K.; Chen, Z.; Wang, S.P.; Mitnaul, L.; Hubbard, B.K.; Vreeken, R.J.; Johns, D.G.; Hankemeier, Th.

    2011-01-01

    A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility

  2. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Hydration structure of Ti(III) and Cr(III): Monte Carlo simulation ...

    African Journals Online (AJOL)

    Classical Monte Carlo simulations were performed to investigate the solvation structures of Ti(III) and Cr(III) ions in water with only ion-water pair interaction potential and by including three-body correction terms. The hydration structures were evaluated in terms of radial distribution functions, coordination numbers and ...

  4. HYDRATION STRUCTURE OF Ti(III) AND Cr(III): MONTE CARLO ...

    African Journals Online (AJOL)

    a

    ABSTRACT. Classical Monte Carlo simulations were performed to investigate the solvation structures of Ti(III) and Cr(III) ions in water with only ion-water pair interaction potential and by including three-body correction terms. The hydration structures were evaluated in terms of radial distribution functions, coordination ...

  5. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  6. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  7. Hydration water and microstructure in calcium silicate and aluminate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, Emiliano [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Ridi, Francesca [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Baglioni, Piero [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy)

    2006-09-13

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C{sub 3}S, C{sub 2}S) and aluminates (C{sub 3}A, C{sub 4}AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm{sup -1} monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the {sup 1}H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron

  8. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  9. Enhancement of Hydrogen Storage Capacity in Hydrate Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2012-02-16

    First principles electronic structure calculations of the gas phase pentagonal dodecahedron (H2O)20 (D-cage) and tetrakaidecahedron (H2O)24 (T-cage), which are building blocks of structure I (sI) hydrate lattice, suggest that these can accommodate up to a maximum of 5 and 7 guest hydrogen molecules, respectively. For the pure hydrogen hydrate, Born-Oppenheimer Molecular Dynamics (BOMD) simulations of periodic (sI) hydrate lattices indicate that the guest molecules are released into the vapor phase via the hexagonal phases of the larger T-cages. An additional mechanism for the migration between neighboring D- and T-cages was found to occur through a shared pentagonal face via the breaking and reforming of a hydrogen bond. This molecular mechanism is also found for the expulsion of a CH4 molecule from the D-cage. The presence of methane in the larger T-cages was found to block this release, therefore suggesting possible scenarios for the stabilization of these mixed guest clathrate hydrates and the potential enhancement of their hydrogen storage capacity.

  10. [NMF and cosmetology of cutaneous hydration].

    Science.gov (United States)

    Marty, J-P

    2002-01-01

    In the stratum corneum, the water binds to the intracellular hygroscopic and hydrosoluble substances called "natural moisturizing factors" or NMF. These "natural moisturizing factors" contained in the corneocytes are formed during epidermal differentiation and may represent up to 10 p. cent of the corneocyte mass. They are principally amino acids, carboxylic pyrrolidone acid, lactic acid, urea, glucose and mineral ions. Keratinization plays an important part in the formation of NMF that exhibit strong osmotic potential attracting the water molecules. The binding of water to NMF is the static aspect of cutaneous hydration. The second, dynamic, aspect is related to the selective permeability of the stratum corneum and to its lipid barrier properties, the permeability of which depends on the integrity and nature of the inter-corneocyte lipids and their lamellar organization between the cells. In these conditions, hydration cosmetics rely on two concepts that can be isolated or associated: the supply of hydrophilic substances to the stratum corneum, capable of attracting and retaining water (moisturizer) or capable of restoring the barrier in order to restore normal water loss or of protecting it against aggression (occlusive).

  11. Hydration and rotational diffusion of levoglucosan in aqueous solutions

    Science.gov (United States)

    Corezzi, S.; Sassi, P.; Paolantoni, M.; Comez, L.; Morresi, A.; Fioretto, D.

    2014-05-01

    Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.

  12. Energy resource potential of natural gas hydrates

    Science.gov (United States)

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  13. Glycine zinc sulfate penta-hydrate: redetermination at 10 K from time-of-flight neutron Laue diffraction.

    Science.gov (United States)

    Fortes, A Dominic; Howard, Christopher M; Wood, Ian G; Gutmann, Matthias J

    2016-10-01

    Single crystals of glycine zinc sulfate penta-hydrate [systematic name: hexa-aqua-zinc tetra-aquadiglycinezinc bis-(sulfate)], [Zn(H 2 O) 6 ][Zn(C 2 H 5 NO 2 ) 2 (H 2 O) 4 ](SO 4 ) 2 , have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO 6 octa-hedra on sites of symmetry -1 and two SO 4 tetra-hedra with site symmetry 1; the octa-hedra comprise one [tetra-aqua-diglycine zinc] 2+ ion (centred on one Zn atom) and one [hexa-aqua-zinc] 2+ ion (centred on the other Zn atom); the glycine zwitterion, NH 3 + CH 2 COO - , adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N-H⋯O hydrogen bonds between the amine and carboxyl-ate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and U ij parameters, which provide accurate inter-nuclear X -H ( X = N, O) bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

  14. Structures of Hydrated Alkali Metal Cations, M+(H2O)nAr (m = Li, Na, K, rb and Cs, n = 3-5), Using Infrared Photodissociation Spectroscopy and Thermodynamic Analysis

    Science.gov (United States)

    Ke, Haochen; van der Linde, Christian; Lisy, James M.

    2014-06-01

    Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.

  15. Study on the hydration of oriented DNA by the neutron scattering technique

    International Nuclear Information System (INIS)

    Dahlborg, U.; Dimic, V.; Rupprecht, A.

    1980-01-01

    Three different experimental methods of neutron scattering have been employed in order to study the hydration problem in various forms of oriented DNA fibrils. It is found that the water of hydration forms an internal structure in the samples and that this structure is not very strongly coupled to the macromolecular surface. The existence of hydrogen bonds between water molecules is clearly demonstrated. Qualitative agreement between calculated structure factors and measured 'elastic' diffraction patterns for a dry DNA sample is obtained. In order to reproduce the measured diffraction pattern for a wet sample it is not enough to include only the water molecules within the first hydration shell in a structure factor calculation. It is concluded that by employing the high resolution 'elastic' diffraction technique it should be possible to obtain detailed information on the problem of hydration in DNA. (Auth.)

  16. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    Science.gov (United States)

    Tan, Ming-Liang; Miller, Benjamin T.; Te, Jerez; Cendagorta, Joseph R.; Brooks, Bernard R.; Ichiye, Toshiko

    2015-02-01

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol VE as a function of ethanol mole fraction XE is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has "brittle" hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

  17. Controlled formation of cyclopentane hydrate suspensions via capillary-driven jet break-up

    Science.gov (United States)

    Geri, Michela; McKinley, Gareth

    2017-11-01

    Clathrate hydrates are crystalline compounds that form when a lattice of hydrogen-bonded water molecules is filled by guest molecules sequestered from an adjacent gas or liquid phase. Being able to rapidly produce and transport synthetic hydrates is of great interest given their significant potential as a clean energy source and safe option for hydrogen storage. We propose a new method to rapidly produce cyclopentane hydrate suspensions at ambient pressure with tunable particle size distribution by taking advantage of the Rayleigh-Plateau instability to form a mono-disperse stream of droplets during the controlled break-up of a water jet. The droplets are immediately frozen into ice particles through immersion in a subcooled reservoir and converted into hydrates with a dramatic reduction in the nucleation induction time. By measuring the evolution of the rheological properties with time, we monitor the process of hydrates formation via surface crystallization and agglomeration with different droplet size distributions. This new method enables us to gain new insights into hydrate formation and transport which was previously hindered by uncontrolled droplet formation and hydrate nucleation processes. MITei Chevron Fellowship.

  18. Rates and mechanisms of conversion of ice nanocrystals to hydrates of HCl and HBr: acid diffusion in the ionic hydrates.

    Science.gov (United States)

    Devlin, J Paul; Gulluru, Dheeraj B; Buch, Victoria

    2005-03-03

    This FTIR study focuses on solid-state chemistry associated with formation and interconversion of the ionic HX (X = Cl, Br) hydrates. Kinetic data are reported for conversions of ice nanocrystal arrays exposed to the saturation pressure of the acids in the 110 approximately 125 K range. The product is amorphous acid dihydrate in the case of HBr, and amorphous monohydrate for HCl. The rate-determining step is identified as HX diffusion through the hydrate product crust toward the interfacial reaction zone, rather than diffusion through ice, as commonly believed. Slowing of the conversion process is thus observed with increasing thickness of the crust. The diffusion coefficient (D(e)) and activation energy values for HX diffusion through the hydrates were evaluated with the help of the shrinking-core model. Hydrate crystallization occurs as a separate step, upon heating above 130 K. Subsequently, rates of reversible transitions between crystal di- and monohydrates were observed upon exposure to acid vapor and acid evacuation. In conversion from di- to monohydrate, the rate slows after fast formation of several layers; subsequently, diffusion through the product crust appears to be the rate-controlling step. The activation energy for HBr diffusion through crystal dihydrate is found to be significantly higher than that for the amorphous analogue. Conjecture is offered for a molecular mechanism of HX transport through the crystal hydrate, based on (i) spectroscopic/computational evidence for the presence of molecular HX bonded to X(-) in each of the ionic hydrate phases and (ii) the relative E(a) values found for HBr and HCl diffusion. Monte Carlo modeling suggests acid transport to the reaction zone along boundaries between "nanocrystallites" generated by multiple hydrate nucleation events at the particle surfaces. The reverse conversion, of crystalline monohydrate particles to the dihydrate phase, as well as dihydrate to trihydrate, displays nearly constant rate

  19. STRUCTURE OF Co(III) AND Fe(III) TRANSITION METAL IONS IN ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia ... The hydration structures of Co(III) and Fe(III) ions have been investigated by Metropolis Monte Carlo (MC) simulations using only ion-water pair interaction ... KEY WORDS: Metropolis Monte Carlo simulation, Hydration structure, Fe(III) and Co(III) ions, Three-body corrections

  20. Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms

    Directory of Open Access Journals (Sweden)

    Christian R. Trott

    2012-09-01

    Full Text Available Classical equilibrium molecular dynamics (MD simulations have been performed to investigate the computational performance of the Simple Point Charge (SPC and TIP4P water models applied to simulation of methane hydrates, and also of liquid water, on a variety of specialised hardware platforms, in addition to estimation of various equilibrium properties of clathrate hydrates. The FPGA-based accelerator MD-GRAPE 3 was used to accelerate substantially the computation of non-bonded forces, while GPU-based platforms were also used in conjunction with CUDA-enabled versions of the LAMMPS MD software packages to reduce computational time dramatically. The dependence of molecular system size and scaling with number of processors was also investigated. Considering performance relative to power consumption, it is seen that GPU-based computing is quite attractive.

  1. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  2. Neutron protein crystallography hydrogen protons and hydration in bio-macromolecules

    CERN Document Server

    Niimura, Nobuo

    2011-01-01

    This text is dedicated to the emerging field of neutron protein crystallography (NPC). It covers all of the practical aspects of NPC and demonstrates how NPC can explore protein features such as hydrogen bonds, protonation and deprotonation of amino acid residues, and hydration structures.

  3. Hydration and translocation of an excess proton in water clusters: An ...

    Indian Academy of Sciences (India)

    The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite temperature quantum simulations. The simulations are performed by employing the method of Car–Parrinello molecular dynamics where the forces on the nuclei are ...

  4. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  5. Femtosecond study of the effects of ions and hydrophobes on the dynamics of water.

    Science.gov (United States)

    van der Post, Sietse T; Tielrooij, Klaas-Jan; Hunger, Johannes; Backus, Ellen H G; Bakker, Huib J

    2013-01-01

    We study the effects of ions and hydrophobic molecular groups on the orientational dynamics of water using THz dielectric relaxation (THz-DR) and polarization-resolved femtosecond infrared (fs-IR) pump-probe spectroscopy. We measure the dynamics of water in solutions of NaI, NaCl, CsCl, guanidinium chloride (GndCl) and tetramethyl guanidinium chloride (TMGndCl) of different the static dipoles of their surrounding water molecules. With fs-IR we find that concentrations. With THz-DR we observe that strongly hydrated cations align the OD groups that form hydrogen bonds to halide anions reorient with two distinct time constants of 2 +/- 0.3 ps and 9 +/- 1 ps. The fast process is assigned to a wobbling motion of the OD group that keeps the hydrogen bond with the anion intact. The amplitude of this wobbling motion depends on the nature of both the anion and the counter cation. The replacement of four of the six hydrogen atoms of the weakly hydrated cation guanidinium by hydrophobic methyl groups leads to an exceptionally strong slowing down of the water dynamics. Hydrophobic groups thus appear to have a much stronger effect on the dynamics of water than ions. These findings give new insights in the mechanism of protein denaturation by GndCl and TMGndCl.

  6. Possible mechanisms for interaction of poly electrolytes with ions in aqueous solution

    International Nuclear Information System (INIS)

    Siyam, T.

    1995-01-01

    The interaction between the active groups of water soluble poly electrolytes such as polyacrylamide 'neutral polymers PAM', poly sodium acrylate 'anionic polymer PAANA', polyacrylamide-diallyamine-hydrochloride 'cationic polymer PAM-DAA-HCl and polyacrylamide-diallylethylamine-hydrochloride 'cationic polymer PAM-DAEA-HCl' with copper sulphate has been carried out under different experimental conditions. Spectroscopic studies show that the mechanism of the flock formation due to interaction between the polymer and copper sulphate is a bond formation between the active group of polymeric chains and copper sulphate. This bond formation depends on the nature of polymer chain. It was also found that the amide groups form complexes with hydrated cations, while both carboxylate-and ammonium groups interact by ion-exchange mechanism. The same studies were applied on polyacrylamideacrylic acid resin 'PAM-AA' resin and copper sulphate. The obtained results show that the resin interacts by the same mechanism, where the amide groups form a complex with hydrated cations, while the carboxylic group interacts by ion-exchange mechanism. 1 fig., 1 tab

  7. Raman and infrared spectroscopic studies of the structure of water (H2O, HOD, D2O) in stoichiometric crystalline hydrates and in electrolyte solutions

    International Nuclear Information System (INIS)

    Buanam-Om, C.

    1981-01-01

    The chapter of reviews presents in particular the Badger-Bauer-rule, distance and angle dependence of O-H...Y hydrogen bond and the structure of aqueous electrolyte solutions. A chapter of vibrational spectroscopic investigations of crystalline hydrates - metal perchlorate hydrates follows. Two further chapters just so investigate metal halide hydrates and some sulfate hydrates and related systems. The following chapter describes near infrared spectroscopic investigations of HOD(D 2 O) and its electrolyte solutions. The concluding chapter contains thermodynamic consequences and some properties of electrolyte solutions from vibrational spectroscopic investigations. (SPI) [de

  8. Oxo-functionalization and reduction of the uranyl ion through lanthanide-element bond homolysis: synthetic, structural, and bonding analysis of a series of singly reduced uranyl-rare earth 5f1-4f(n) complexes.

    Science.gov (United States)

    Arnold, Polly L; Hollis, Emmalina; Nichol, Gary S; Love, Jason B; Griveau, Jean-Christophe; Caciuffo, Roberto; Magnani, Nicola; Maron, Laurent; Castro, Ludovic; Yahia, Ahmed; Odoh, Samuel O; Schreckenbach, Georg

    2013-03-13

    The heterobimetallic complexes [{UO2Ln(py)2(L)}2], combining a singly reduced uranyl cation and a rare-earth trication in a binucleating polypyrrole Schiff-base macrocycle (Pacman) and bridged through a uranyl oxo-group, have been prepared for Ln = Sc, Y, Ce, Sm, Eu, Gd, Dy, Er, Yb, and Lu. These compounds are formed by the single-electron reduction of the Pacman uranyl complex [UO2(py)(H2L)] by the rare-earth complexes Ln(III)(A)3 (A = N(SiMe3)2, OC6H3Bu(t)2-2,6) via homolysis of a Ln-A bond. The complexes are dimeric through mutual uranyl exo-oxo coordination but can be cleaved to form the trimetallic, monouranyl "ate" complexes [(py)3LiOUO(μ-X)Ln(py)(L)] by the addition of lithium halides. X-ray crystallographic structural characterization of many examples reveals very similar features for monomeric and dimeric series, the dimers containing an asymmetric U2O2 diamond core with shorter uranyl U═O distances than in the monomeric complexes. The synthesis by Ln(III)-A homolysis allows [5f(1)-4f(n)]2 and Li[5f(1)-4f(n)] complexes with oxo-bridged metal cations to be made for all possible 4f(n) configurations. Variable-temperature SQUID magnetometry and IR, NIR, and EPR spectroscopies on the complexes are utilized to provide a basis for the better understanding of the electronic structure of f-block complexes and their f-electron exchange interactions. Furthermore, the structures, calculated by restricted-core or all-electron methods, are compared along with the proposed mechanism of formation of the complexes. A strong antiferromagnetic coupling between the metal centers, mediated by the oxo groups, exists in the U(V)Sm(III) monomer, whereas the dimeric U(V)Dy(III) complex was found to show magnetic bistability at 3 K, a property required for the development of single-molecule magnets.

  9. Hydration Structures and Water Chemistry at Zirconia-Water Interfaces

    Science.gov (United States)

    Hou, Binyang; Park, Changyong; Kim, Seunghyun; Kim, Taeho; Kim, Ji Hyun; Kim, Jongjin; Hong, Seungbum; Bahn, Chi Bum

    Zirconia is an important material in numerous applications, such as gas sensors, solid oxide fuel cell electrolytes, and bio-medical materials. It also plays a key role on protecting zirconium alloys in highly corrosive environments found in pressurized water reactors. The degradation of the metal/oxide is primarily due to the interactions of surface oxide with water. Here we study the interactions of zirconia with water in terms of interfacial hydration structures at the 8 mol% yttria-stabilized zirconia (YSZ) surfaces using synchrotron-based X-ray reflectivity techniques. Interfacial hydration structures on three crystallographic orientations were determined with sub-angstrom resolution and compared with each other to identify common features and different surface chemistry effects on the interfacial processes. Meanwhile, zinc injection into the reactor coolant system has been known to be effective in both reducing radioactive wastes and stabilizing crud oxide layers of the metal alloys. We also studied the effect of zinc adsorption on the interfacial hydration structures of YSZs. Our X-ray reflectivity data reveal obvious hydration structure changes at (100) and (111) surfaces, but only minor changes at (110) surface. We further confirmed the detailed element specific adsorption profiles of Zn2+ ions near (110) and (111) surfaces with resonant anomalous X-ray reflectivity measurements.

  10. Evaluation of superpave mixtures containing hydrated lime.

    Science.gov (United States)

    2013-07-01

    The use of hydrated lime in Hot-Mix Asphalt (HMA) mixtures can reduce permanent deformation, long-term aging, and moisture : susceptibility of mixtures. In addition, hydrated lime increases the stiffness and fatigue resistance of mixtures. This study...

  11. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  12. Nonlinearity and isotope effect in temporal evolution of mesoscopic structure during hydration of cement

    International Nuclear Information System (INIS)

    Mazumder, S.

    2011-01-01

    the complex local geometry. The noteworthy observations point to the effect of hydrogen bonding on mesoscopic structure resulting from hydration although hydrogen bond with deuterium is only slightly stabler yielding a longer lifetime vis-a-vis bond involving hydrogen. Aforementioned investigations also provide an explanation for disagreement with the hypothesis of dynamical scaling for hydration of cement with heavy water and is a step forward towards general understanding of hydration process. (author)

  13. Evaluation of hydration indexes in kale leaves

    OpenAIRE

    Calbo, Adonai G.; Ferreira, Marcos D.

    2011-01-01

    Hydration indexes are practical variables for quantifying plant water stress and can be useful for agronomic purposes. Three adapted hydration indexes based on relative water content, volumetric hydration, and leaf turgor pressure were evaluated in kale (Brassica oleracea var. acephala) leaf segments. Relative water content and volumetric hydration were measured in leaf segments after a water infiltration procedure with the aim of filling its large intercellular volumes (@18%v/v). The infiltr...

  14. Formation of an Ion-Pair Molecule with a Single NH+...Cl- Hydrogen Bond: Raman spectra of 1,1,3,3-Tetramethylguanidinium chloride in the solid state, in solution and in the vapor phase

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Riisager, Anders; Fehrmann, Rasmus

    2008-01-01

    Some ionic compounds (salts) form liquids when heated to temperatures in the range of 200-300 °C. They may be referred to as moderate temperature ionic liquids. An example of such a compound is the 1,1,3,3- tetramethylguanidinium chloride, [TMGH]Cl, melting at ∼212 °C. The chemistry of this compo......Some ionic compounds (salts) form liquids when heated to temperatures in the range of 200-300 °C. They may be referred to as moderate temperature ionic liquids. An example of such a compound is the 1,1,3,3- tetramethylguanidinium chloride, [TMGH]Cl, melting at ∼212 °C. The chemistry...... and the dimeric chloride ion-pair salt converged to give geometries near the established crystal structure of [TMGH]Cl. The structures and their binding energies are given as well as calculated vibrational harmonic normal modes (IR and Raman band wavenumbers and intensities). Experimentally obtained Raman...... scattering spectra are presented and assigned, by comparing to the quantum mechanical calculations. It is concluded that dimeric molecular ion pairs with four N-H+ · · · Cl- hydrogen bonds probably exist in the solutions and are responsible for the relatively high solubility of the “salt” in ethanol...

  15. Interfacial Structural Transition in Hydration Shells of a Polarizable Solute.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2015-05-22

    Electrostatics of polar solvation is typically described by harmonic free energy functionals. Polarizability contributes a negative polarization term that can make the harmonic free energy negative. The harmonic truncation fails in this regime. Simulations of polarizable ideal dipoles in water show that water's susceptibility passes through a maximum in the range of polarizabilities zeroing the harmonic term out. The microscopic origin of the nonmonotonic behavior is an interfacial structural transition involving the density collapse of the first hydration layer and enhanced number of dangling OH bonds.

  16. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  17. Growth of hydrated gel layers in nuclear waste glasses

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Machiels, A.J.

    1984-01-01

    The hydration kinetics of waste glasses in contact with an aqueous solution has been studied by using three different approaches. Emphasis has been placed on modeling processes in the transition zone defined as the region in which the nature of the glass changes from the original dry glass to an open hydrated structure. The first model relies on concentration-dependent diffusion coefficients to obtain a transition zone in which the ions mobility is extremely low compared to that in the gel layer. In the second model, the transition zone and hydrated layer are treated as distinct phases and it is assumed that ion exchange at their common boundary is the rate-controlling process. The third model treats the transition zone as a thin film of constant thickness and low diffusivity. In the absence of appreciable network dissolution, all three models indicate that growth of the gel layer becomes eventually proportional to the square root of time; however, as long as processes in the transition zone are rate controlling, growth is linearly proportional to time

  18. Changes in the hydration structure of imidazole upon protonation: Neutron scattering and molecular simulations

    Science.gov (United States)

    Duboué-Dijon, Elise; Mason, Philip E.; Fischer, Henry E.; Jungwirth, Pavel

    2017-05-01

    The imidazole motif is widely encountered in biomolecules, and its biological role, for instance, as a proton relay, is often linked to its ability to form hydrogen bonds with water molecules. The detailed characterization of the hydration pattern of imidazole and of its changes upon protonation is thus of high interest. Here, we combine neutron scattering experiments with force field simulations to provide an unprecedented characterization of the neutral and protonated imidazole solvation at the atomistic level. We show that neutron diffraction data can be used to assess the quality of the imidazole force field in molecular simulations. Simulations using the CHARMM general force field for imidazole are in excellent agreement with the experimental neutron scattering data and we use them to provide an atomic scale interpretation of the neutron scattering patterns. Upon protonation, we clearly identify the signature of the reorganization in the hydration pattern caused by the change from one H-bond donor and one H-bond acceptor group for imidazole to two H-bond donor groups for imidazolium. We also point the limits of the experiment, which are rather insensitive to details of the H-bond geometry at the deprotonated nitrogen of imidazole and further complement the description of the hydration structure with ab initio molecular dynamics simulations.

  19. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  20. DNA hydration studied by neutron fiber diffraction

    International Nuclear Information System (INIS)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-01-01

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix

  1. Hydration mechanisms of mineral trioxide aggregate.

    Science.gov (United States)

    Camilleri, J

    2007-06-01

    To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.

  2. How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates.

    Science.gov (United States)

    Holzammer, Christine; Finckenstein, Agnes; Will, Stefan; Braeuer, Andreas S

    2016-03-10

    We present an experimental Raman study on how the addition of sodium chloride to CO2-hydrate-forming systems inhibits the hydrate formation thermodynamically. For this purpose, the molar enthalpy of reaction and the molar entropy of reaction for the reaction of weakly hydrogen-bonded water molecules to strongly hydrogen bonded water molecules are determined for different salinities from the Raman spectrum of the water-stretching vibration. Simultaneously, the influence of the salinity on the solubility of CO2 in the liquid water-rich phase right before the start of hydrate formation is analyzed. The results demonstrate that various mechanisms contribute to the inhibition of gas hydrate formation. For the highest salt concentration of 20 wt % investigated, the temperature of gas hydrate formation is lowered by 12 K. For this concentration the molar enthalpy and entropy of reaction become smaller by 50 and 20%, respectively. Concurrently, the solubility of carbon dioxide is reduced by 70%. These results are compared with data in literature for systems of sodium chloride in water (without carbon dioxide).

  3. Li-Ion Battery Cathodes: Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode (Adv. Mater. 23/2016).

    Science.gov (United States)

    Kim, Hyejung; Lee, Sanghan; Cho, Hyeon; Kim, Junhyeok; Lee, Jieun; Park, Suhyeon; Joo, Se Hun; Kim, Su Hwan; Cho, Yoon-Gyo; Song, Hyun-Kon; Kwak, Sang Kyu; Cho, Jaephil

    2016-06-01

    The formation of a spinel Lix CoO2 layer in a Ni-rich secondary particle for lithium-ion batteries is reported by S. K. Kwak, J. Cho, and co-workers on page 4705, who find that the spinel-like Lix CoO2 layer, between layered primary particles, can enhance the mechanical strength of secondary particles by enhancing the interfacial binding energy among the grains. Moreover, the layer can effectively protect the unstable surface of the primary particles and offers a fast electron-ion pathway, resulting in overall enhancements of stability and kinetics in battery performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.

    Science.gov (United States)

    Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi

    2017-10-01

    We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.

  5. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Travis [Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Beck, Thomas L. [Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters of size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.

  6. Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong

    2016-08-01

    Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.

  7. Apparatus investigates geological aspects of gas hydrates

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  8. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  9. The influence of water flow (reversal) on bond strength development in young masonry

    NARCIS (Netherlands)

    Groot, C.; Larbi, J.

    1999-01-01

    Water loss from the fresh mortar is believed to be related to mortar-brick bond strength development in masonry. Recent research on mortar-brick bond has shown that, particularly, effects of water flow on the composition and the hydration conditions of the mortar-brick interface have to be taken

  10. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  11. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  12. Glacial Cycles Influence Marine Methane Hydrate Formation

    Science.gov (United States)

    Malinverno, A.; Cook, A. E.; Daigle, H.; Oryan, B.

    2018-01-01

    Methane hydrates in fine-grained continental slope sediments often occupy isolated depth intervals surrounded by hydrate-free sediments. As they are not connected to deep gas sources, these hydrate deposits have been interpreted as sourced by in situ microbial methane. We investigate here the hypothesis that these isolated hydrate accumulations form preferentially in sediments deposited during Pleistocene glacial lowstands that contain relatively large amounts of labile particulate organic carbon, leading to enhanced microbial methanogenesis. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent organic carbon deposition controlled by glacioeustatic sea level variations. In the model, hydrate forms in sediments with greater organic carbon content deposited during the penultimate glacial cycle ( 120-240 ka). The model predictions match hydrate-bearing intervals detected in three sites drilled on the northern Gulf of Mexico continental slope, supporting the hypothesis of hydrate formation driven by enhanced organic carbon burial during glacial lowstands.

  13. Is the Surface of Gas Hydrates Dry?

    Directory of Open Access Journals (Sweden)

    Nobuo Maeda

    2015-06-01

    Full Text Available Adhesion (cohesion and agglomeration properties of gas hydrate particles have been a key to hydrate management in flow assurance in natural gas pipelines. Despite its importance, the relevant data in the area, such as the surface energy and the interfacial energy of gas hydrates with gas and/or water, are scarce; presumably due to the experimental difficulties involved in the measurements. Here we review what is known about the surface energy and the interfacial energy of gas hydrates to date. In particular, we ask a question as to whether pre-melting can occur on the surface of gas hydrates. Surface thermodynamic analyses show that pre-melting is favoured to occur on the surface of gas hydrates, however, not sufficient data are available to assess its thickness. The effects of the existence of pre-melting layers on the cohesion and friction forces between gas hydrate particles are also discussed.

  14. Arrangement and mobility of water in vermiculite hydrates followed by 1H NMR spectroscopy.

    Science.gov (United States)

    Sanz, J; Herrero, C P; Serratosa, J M

    2006-04-20

    The arrangement of water molecules in one- and two-layer hydrates of high-charged vermiculites, saturated with alkaline (Li(+), Na(+)) and alkali-earth (Mg(2+), Ca(2+), Ba(2+)) cations, has been analyzed with (1)H NMR spectroscopy. Two different orientations for water molecules have been found, depending on the hydration state and the sites occupied by interlayer cations. As the amount of water increases, hydrogen bond interactions between water molecules increase at expenses of water-silicate interactions. This interaction favors water mobility in vermiculites. A comparison of the temperature dependence of relaxation times T(1) and T(2) for one and two-layer hydrates of Na-vermiculite shows that the rotations of water molecules around C(2)-axes and that of cation hydration shells around the c-axis is favored in the two-layer hydrate. In both hydrates, the anisotropic diffusion of water takes place at room temperature, preserving the orientation of water molecules relative to the silicate layers. Information obtained by NMR spectroscopy is compatible with that deduced by infrared spectroscopy and with structural studies carried out with X-ray and neutron diffraction techniques on single-crystals of vermiculite.

  15. Comparative atomic-scale hydration of the ceramide and phosphocholine headgroup in solution and bilayer environments

    Science.gov (United States)

    Gillams, Richard J.; Lorenz, Christian D.; McLain, Sylvia E.

    2016-06-01

    Previous studies have used neutron diffraction to elucidate the hydration of the ceramide and the phosphatidylcholine headgroup in solution. These solution studies provide bond-length resolution information on the system, but are limited to liquid samples. The work presented here investigates how the hydration of ceramide and phosphatidylcholine headgroups in a solution compares with that found in a lipid bilayer. This work shows that the hydration patterns seen in the solution samples provide valuable insight into the preferential location of hydrating water molecules in the bilayer. There are certain subtle differences in the distribution, which result from a combination of the lipid conformation and the lipid-lipid interactions within the bilayer environment. The lipid-lipid interactions in the bilayer will be dependent on the composition of the bilayer, whereas the restricted exploration of conformational space is likely to be applicable in all membrane environments. The generalized description of hydration gathered from the neutron diffraction studies thus provides good initial estimation for the hydration pattern, but this can be further refined for specific systems.

  16. Investigation of the Methane Hydrate Formation by Cavitation Jet

    Science.gov (United States)

    Morita, H.; Nagao, J.

    2015-12-01

    Methane hydrate (hereafter called "MH") is crystalline solid compound consisting of hydrogen-bonded water molecules forming cages and methane gas molecules enclosed in the cage. When using MH as an energy resource, MH is dissociated to methane gas and water and collect only the methane gas. The optimum MH production method was the "depressurization method". Here, the production of MH means dissociating MH in the geologic layers and collecting the resultant methane gas by production systems. In the production of MH by depressurization method, MH regeneration was consider to important problem for the flow assurance of MH production system. Therefore, it is necessary to clarify the effect of flow phenomena in the pipeline on hydrate regeneration. Cavitation is one of the flow phenomena which was considered a cause of MH regeneration. Large quantity of microbubbles are produced by cavitation in a moment, therefore, it is considered to promote MH formation. In order to verify the possible of MH regeneration by cavitation, it is necessary to detailed understanding the condition of MH formation by cavitation. As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on MH formation using by cavitation. The primary objective of this study is to demonstrate the formation MH by using cavitation in the various temperature and pressure condition, and to clarify the condition of MH formation by using observation results.

  17. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.

    Science.gov (United States)

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-10-01

    We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.

  18. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, Igor L.; Udachin, Konstantin A.; Ratcliffe, Christopher I. [National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6 (Canada); Alavi, Saman; Ripmeester, John A., E-mail: John.Ripmeester@nrc-cnrc.gc.ca [National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2015-02-21

    The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO{sub 2} and isobutane-CO{sub 2}, that are predicted to enhance or to diminish guest–host hydrogen bonding interactions as compared to those in pure CO{sub 2} hydrate and we have studied guest dynamics in each using {sup 13}C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO{sub 2} sII hydrate using the combined single crystal X-ray diffraction and {sup 13}C NMR powder pattern data and have performed molecular dynamics-simulation of the CO{sub 2} dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO{sub 2} hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO{sub 2} molecules in the THF-CO{sub 2} hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A–host water–guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 10

  19. Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra.

    Science.gov (United States)

    Smiechowski, Maciej; Stangret, Janusz

    2006-11-28

    This paper attempts to elucidate the number and nature of the hydration spheres around the proton in an aqueous solution. This phenomenon was studied in aqueous solutions of selected acids by means of Fourier transform infrared spectroscopy of semiheavy water (HDO), isotopically diluted in H(2)O. The quantitative version of difference spectrum procedure was applied for the first time to investigate such systems. It allowed removal of bulk water contribution and separation of the spectra of solute-affected HDO. The obtained spectral data were confronted with ab initio calculated structures of small gas-phase and polarizable continuum model (PCM) solvated aqueous clusters, H+(H2O)n, n=2-8, in order to help in establishing the structural and energetic states of the consecutive hydration spheres of the hydrated proton. This was achieved by comparison of the calculated optimal geometries with the interatomic distances derived from HDO band positions. The structure of proton hydration shells outside the first hydration sphere essentially follows the model structure of other hydrated cations, previously revealed by affected HDO spectra. The first hydration sphere complex in diluted aqueous solutions was identified as an asymmetric variant of the regular Zundel cation [The Hydrogen Bond: Recent Developments in Theory and Experiments, edited by P. Schuster, G. Zundel, and C. Sandorfy (North-Holland, Amsterdam, 1976), Vol. II, p. 683], intermediate between the ideal Zundel and Eigen structures [E. Wicke et al., Z. Phys. Chem. Neue Folge 1, 340 (1954)]. Evidence was found for the existence of strong and short hydrogen bonds, with oxygen-oxygen distance derived from the experimental affected spectra equal 2.435 A on average and in the PCM calculations about 2.41-2.44 A. It was also evidenced for the first time that the proton possesses four well-defined hydration spheres, which were characterized in terms of hydrogen bonds' lengths and arrangements. Additionally, an outer

  20. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  1. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    Science.gov (United States)

    Hansen, T. C.; Falenty, A.; Kuhs, W. F.

    2016-02-01

    The lattice constants of hydrogenated and deuterated CH4-, CO2-, Xe- (clathrate structure type I) and N2-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO2 as compared to methane, CO2-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO2-water system. (3) The expansivity of CO2-hydrate is larger than for CH4-hydrate which leads to larger lattice constants for the former at temperatures above ˜150 K; this is likely due to the higher motional degrees of freedom of the CO2 guest molecules. (4) The cage occupancies of Xe- and CO2-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms' vibrational energy to thermal expansion is important, most prominently for CO2- and Xe-hydrates.

  2. Hydration number and heat of solution in water of tris(ethylenediamine)complexes or several sulfates at infinite dilution

    International Nuclear Information System (INIS)

    Mashima, Michio; Usami, Hiroyasu; Suzuki, Syozi; Takase, Takao

    1975-01-01

    Hydration number and heat of solution in water of eight kinds of tris(ethylenediamine)complexes of nickel(II), cadmium(II) and chromium(III), six kinds of simple salts which mainly consisted of sulfates, seven kinds of chromium(III) complexes with ligand of different valency were determined at infinite dilution (25 0 C) using an ultrasonic interferometer and a micro calorimeter of twin-type. Those of two kinds of cobalt(III) complexes and of two kinds of bis(ethylenediamine)copper(II) complexes were also determined. The additive property held on both bydration number and heat of solution in water of the constituent ions. The average hydration numbers per gram ion were as follows; [Ni(en) 3 ] 2+ : 14, [Cd(en) 3 ] 2+ : 22, [Co(CO 3 ).(NH 3 ) 4 ] + : 24, [Cr(en) 3 ] 3+ : 18, [Cu(en) 2 ] 2+ :15, OH - :5.6 mol. But two values of hydration numbers, 7 and 16, were obtained for a sulfate ion. in the case of tris(ethylenediamine)complex ions with equal valency, those having larger ionic radius of the central metal had greater hydration number. Hydration numbers of [Cr(NH 3 ) 6 ] 3+ (12) were smaller than those of [CrCl 2 (H 2 O) 4 ] + (16) and [CrCl(NH 3 ) 4 (H 2 O)] 2+ (15), and greater than that of [Cr(NCS) 6 ] 3- (6). Thus the change in hydration numbers of chromium(III) complex ions by the valency consisted with the case of cobalt(III) complex ions. The heat of solution in water of these electrolytes except for several sulfates at infinite dilution (25 0 C) were in good agreement with the value of -0.6 kcal/hydrate H 2 O mol. (auth.)

  3. Tensile strength of hydrated cement paste phases assessed by microbending tests and nanoindentation

    Czech Academy of Sciences Publication Activity Database

    Němeček, J.; Králík, V.; Šmilauer, V.; Polívka, Leoš; Jäger, Aleš

    2016-01-01

    Roč. 73, Oct (2016), 164-173 ISSN 0958-9465 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : cement * hydration products * micro-beam * tensile strength * fracture energy * nanoindentation * focused ion beam Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.265, year: 2016

  4. Effect of Anion Triiodide on the Main Phase Transition of Fully Hydrated Dipalmitoylphosphatidylcholine Bilayers

    OpenAIRE

    Hobai, S.; Fazakas, Z.

    1998-01-01

    The paper describes the effect of anion I-3 on thermotropic mesomorphism of fully hydrated dipalmitoylphosphatidylcholine bilayers. The biphasic behaviour of melting temperature - I-3 concentration dependence and the increase of DELTA T values with I-3 concentration (DELTA T = melting temperature - freezing temperature) suggest the appearance of interdigitated phase of bilayers induced by I-3 ions.

  5. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    Gas hydrates, which had been found in subsurface geological environments of deep-sea sediments and permafrost regions, are solid crystalline compounds of gas molecules and water. The estimated energy resources of hydrates are at least twice of that of the conventional fossil fuel in the world. Gas hydrates have a great opportunity to become a dominating future energy. In the past years, many laboratory experiments had been conducted to study chemical and thermodynamic characteristics of gas hydrates in order to investigate the formation and dissociation mechanisms of hydrates. However, it is difficult to observe the formation and dissociation of hydrates in a porous media from a physical experiment directly. The purpose of this study was to model the dynamic formation mechanisms of gas hydrate in porous media by reservoir simulation. Two models were designed for this study: 1) a closed-system static model with separated gas and water zones; this model was a hydrate equilibrium model to investigate the behavior of the formation of hydrates near the initial gas-water contact; and 2) an open-system dynamic model with a continuous bottom-up gas flow; this model simulated the behavior of gas migration and studied the formation of hydrates from flowed gas and static formation water in porous media. A phase behavior module was developed in this study for reservoir simulator to model the pressure-volume-temperature (PVT) behavior of hydrates. The thermodynamic equilibriums and chemical reactions were coupled with the phase behavior module to have functions modelling the formation and dissociation of hydrates from/to water and gas. The simulation models used in this study were validated from the code-comparison project proposed by the NETL. According to the modelling results of the closed-system static model, we found that predominated location for the formation of hydrates was below the gas-water contact (or at the top of water zone). The maximum hydrate saturation

  6. Bond energies of ThO{sup +} and ThC{sup +}: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O{sub 2} and CO

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Richard M; Citir, Murat; Armentrout, P. B., E-mail: armentrout@chem.utah.edu [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 (United States); Battey, Samuel R.; Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

    2016-05-14

    Kinetic energy dependent reactions of Th{sup +} with O{sub 2} and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO{sup +} in the reaction of Th{sup +} with O{sub 2} is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/k{sub LGS} = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO{sup +} and ThC{sup +} in the reaction of Th{sup +} with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D{sub 0}(Th{sup +}–O) = 8.57 ± 0.14 eV and D{sub 0}(Th{sup +}–C) = 4.82 ± 0.29 eV. The present value of D{sub 0} (Th{sup +}–O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D{sub 0} (Th{sup +}–C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL{sup +}, ZrL{sup +}, and HfL{sup +} (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC{sup +}, ThO, and ThO{sup +}, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO{sup +} BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An{sup +} promotion energies to the reactive state is used to estimate AnO{sup +} and AnC{sup +} BDEs. For AnO{sup +}, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  7. Bond energies of ThO+ and ThC+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO

    Science.gov (United States)

    Cox, Richard M.; Citir, Murat; Armentrout, P. B.; Battey, Samuel R.; Peterson, Kirk A.

    2016-05-01

    Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+-O) = 8.57 ± 0.14 eV and D0(Th+-C) = 4.82 ± 0.29 eV. The present value of D0 (Th+-O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0 (Th+-C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  8. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Carles Calero

    2016-04-01

    Full Text Available Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs. We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii to the higher probability of water–lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  9. Fundamentals and applications of gas hydrates.

    Science.gov (United States)

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T

    2011-01-01

    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  10. A modeling study of methane hydrate decomposition in contact with the external surface of zeolites.

    Science.gov (United States)

    Smirnov, Konstantin S

    2017-08-30

    The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH 4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite.

  11. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  12. Natural gas hydrate occurrence and issues

    Science.gov (United States)

    Kvenvolden, K.A.

    1994-01-01

    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  13. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  14. Nonlinear fluid dynamics of nanoscale hydration water layer

    Science.gov (United States)

    Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin

    In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).

  15. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  16. Effect of cations on the hydrated proton.

    Science.gov (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J

    2014-09-17

    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  17. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    Science.gov (United States)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and

  18. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  19. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2010-01-01

    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  20. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations

    Science.gov (United States)

    Kulasinski, Karol; Derome, Dominique; Carmeliet, Jan

    2017-06-01

    A model of the secondary layer of wood cell wall consisting of crystalline cellulose, hemicellulose, and lignin is constructed and investigated with molecular dynamics simulations in the full range of hydration: from dry to saturated state. The model is considered a composite with the cellulose fibrils embedded in hemicellulose and lignin, forming a soft amorphous matrix. Its complex structure leads to nonlinear and anisotropic swelling and mechanical weakening. The water diffusivity through the pores is affected by an interplay between stiff cellulose fibers and weakening amorphous polymers. The formation and breaking of hydrogen bonds within the polymers and at the interfaces is found to be the underlying mechanism of adsorption-induced mechanical softening. The model is tested for adsorption isotherm, mechanical moduli, hydrogen bonds, and water diffusivity that all undergo a substantial change as the hydration increases. The determined physical and mechanical properties, changing with hydration, agree qualitatively with experimental measurements.

  1. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique

    Science.gov (United States)

    Talakokula, Visalakshi; Bhalla, Suresh; Gupta, Ashok

    2018-01-01

    Concrete is the most widely used material in civil engineering construction. Its life begins when the hydration process is activated after mixing the cement granulates with water. In this paper, a non-dimensional hydration parameter, obtained from piezoelectric ceramic (PZT) patches bonded to rebars embedded inside concrete, is employed to monitor the early age hydration of concrete. The non-dimensional hydration parameter is derived from the equivalent stiffness determined from the piezo-impedance transducers using the electro-mechanical impedance (EMI) technique. The focus of the study is to monitor the hydration process of cementitious materials commencing from the early hours and continue till 28 days using single non-dimensional parameter. The experimental results show that the proposed piezo-based non-dimensional hydration parameter is very effective in monitoring the early age hydration, as it has been derived from the refined structural impedance parameters, obtained by eliminating the PZT contribution, and using both the real and imaginary components of the admittance signature.

  2. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  3. THE ROLE OF HYDRATION IN THE HYDROLYSIS OF PYROPHOSPHATE - A MONTE-CARLO SIMULATION WITH POLARIZABLE-TYPE INTERACTION POTENTIALS

    NARCIS (Netherlands)

    STMARTIN, H; ORTEGABLAKE, [No Value; LES, A; ADAMOWICZ, L

    1994-01-01

    The exchange of energy in biochemical reactions involves, in a majority of cases, the hydrolysis of phosphoanhydrides (P-O-P). This discovery has lead to a long discussion about the origin of the high energy of such bonds, and to a proposal that hydration plays a major role in the energetics of the

  4. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.

    2005-01-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  5. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  6. Packing interactions in hydrated and anhydrous forms of the antibiotic Ciprofloxacin: a solid-state NMR, X-ray diffraction, and computer simulation study.

    Science.gov (United States)

    Mafra, Luís; Santos, Sérgio M; Siegel, Renée; Alves, Inês; Paz, Filipe A Almeida; Dudenko, Dmytro; Spiess, Hans W

    2012-01-11

    We present an experimental NMR, X-ray diffraction (XRD), and computational study of the supramolecular assemblies of two crystalline forms of Ciprofloxacin: one anhydrate and one hydrate forming water wormholes. The resonance assignment of up to 51 and 54 distinct (13)C and (1)H resonances for the hydrate is reported. The effect of crystal packing, identified by XRD, on the (1)H and (13)C chemical shifts including weak interionic H-bonds, is quantified; (1)H chemical shift changes up to ∼-3.5 ppm for CH···π contacts and ∼+2 ppm (CH···O((-))); ∼+4.7 ppm (((+))NH···O((-))) for H-bonds. Water intake induces chemical shift changes up to 2 and 5 ppm for (1)H and (13)C nuclei, respectively. Such chemical shifts are found to be sensitive detectors of hydration/dehydration in highly insoluble hydrates. © 2011 American Chemical Society

  7. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr

    2016-01-01

    a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...

  8. Ab initio study of the intermolecular potential energy surface in the ion-induced-dipole hydrogen-bonded O2(-)(X2Πg)-H2(X1Σg(+)) complex.

    Science.gov (United States)

    Fawzy, Wafaa M

    2012-01-26

    This work presents the first investigation on the intermolecular potential energy surface of the ground electronic state of the O2(-)(2Πg)-H2(1Σg(+)) complex. High level correlated ab initio calculations were carried out using the Hartree-Fock spin-unrestricted coupled cluster singles and doubles including perturbative triples correction [RHF-UCCSD(T)]/aug-cc-pVXZ levels of calculations, where XZ = DZ, TZ, QZ, and 5Z. Results of full geometry optimization and the intermolecular potential energy surface (IPES) calculations show four equivalent minimum energy structures of L-shaped geometry with Cs symmetry at equilibrium along the 2A″ surface of the complex. For these equilibrium minimum energy structures, the most accurate value for the dissociation energy (De) was calculated as 1407.7 cm(-1), which was obtained by extrapolating the counterpoise (CP) corrected De values to the complete basis set (CBS) limit. This global minimum energy structure is stabilized by an ion-induced-dipole hydrogen bond. Detailed investigations of the IPES show that the collinear structure is unstable, while the C2v geometries present saddle points along the 2A″ surface. The barrier height between the two equivalent structures that differs in whether the hydrogen-bonded hydrogen atom is above or below the axis that connects centers of masses of the H2 and O2(-) moieties within the complex was calculated as 70 cm(-1). This suggests that the complex exhibits large amplitude motion. The barrier height to rotation of the H2 moiety by 180° within the complex is 1020 cm(-1). Anharmonic oscillator calculations predicted a strong H-H stretch fundamental transition at 3807 cm(-1). Results of the current work are expected to stimulate further theoretical and experimental investigations on the nature of intermolecular interactions in complexes that contain the superoxide radical and various closed-shell molecules that model atmospheric and biological molecules. These studies are fundamental

  9. Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, Alondra Torres [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Separation Technology Group, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Kroon, Maaike C. [Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Separation Technology Group, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Peters, Cor J. [Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Separation Technology Group, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); The Petroleum Institute, Chemical Engineering Department, P. O. Box 2533, Abu Dhabi (United Arab Emirates); Moudrakovski, Igor L.; Ratcliffe, Christopher I.; Ripmeester, John A., E-mail: John.Ripmeester@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); Alavi, Saman [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-06-07

    Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH{sub 3}F and a large polar molecule induces defects on the clathrate hydrate framework that allow intercage guest dynamics. {sup 13}C NMR chemical shifts of a CH{sub 3}F/CH{sub 4}/TBME sH hydrate and a temperature analysis of the {sup 2}H NMR powder lineshapes of a CD{sub 3}F/THF sII and CD{sub 3}F/TBME sH hydrate, displayed evidence that the populations of CH{sub 4} and CH{sub 3}F in the D and D{sup ′} cages were in a state of rapid exchange. A hydrogen bonding analysis using molecular dynamics simulations on the TBME/CH{sub 3}F and TBME/CH{sub 4} sH hydrates showed that the presence of CH{sub 3}F enhances the hydrogen bonding probability of the TBME molecule with the water molecules of the cavity. Similar results were obtained for THF/CH{sub 3}F and THF/CH{sub 4} sII hydrates. The enhanced hydrogen bond formation leads to the formation of defects in the water hydrogen bonding lattice and this can enhance the migration of CH{sub 3}F molecules between adjacent small cages.

  10. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  11. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  12. Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R. [Department of Chemistry, Georgetown University, Washington, District of Columbia 20057 (United States); Miller, Benjamin T.; Brooks, Bernard R. [Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892 (United States); Ichiye, Toshiko, E-mail: ti9@georgetown.edu [Department of Chemistry, Georgetown University, Washington, District of Columbia 20057 (United States); Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892 (United States)

    2015-02-14

    The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V{sub E} as a function of ethanol mole fraction X{sub E} is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decrease is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.

  13. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  14. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...

  15. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  16. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  17. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  18. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  19. 78 FR 26337 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-05-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is to...

  20. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  1. 76 FR 59667 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2011-09-27

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane...-5600. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory...

  2. 78 FR 37536 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2013-06-21

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  3. 77 FR 40032 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane...

  4. Structures and the Hydrogen Bonding Abilities of Estrogens Studied by Supersonic Jet/laser Spectroscopy

    Science.gov (United States)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2013-06-01

    Estrone, estradiol, estriol are known as endogenous estrogen which have the same steroidal frame with different substituent, leading to difference of physiological activity upon the formation of hydrogen bond with estrogen receptor. In the present study, structures of estrogens and their hydrated clusters in a supersonic jet have been studied by various laser spectroscopic techniques and density functional theory calculation to study how the difference of substituents affects their hydrogen bonding ability. Infrared spectra in the OH stretching region indicate a formation of intramolecular hydrogen-bond in estriol, which may lead to weaker physiological activity among the three estrogens. We also measured electronic and infrared spectra of 1:1 hydrated clusters of estrogen. The results show a switch of stable hydration site from the phenolic OH group to the five member ring by substituting one more OH group.

  5. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  7. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    International Nuclear Information System (INIS)

    Smith, David E.

    2000-01-01

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing

  8. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites

    Science.gov (United States)

    Zhou, Yang; Hou, Dongshuai; Jiang, Jinyang; She, Wei; Yu, Jiao

    2017-11-01

    Calcium silicate hydrates (C-S-H) may potentially exhibit extraordinary performance when modified by polymers, in which way the properties of cement-based materials can be improved from the genetic level. In this molecular dynamics simulation of the interaction between C-S-H and polyethylene glycol, apart from the H bond network connection in the interface, another chemical adsorption was observed. Calcium of C-S-H broke the Csbnd O bond of PEG and formed a new Casbnd C connection, which created a stronger link between the organic and inorganic phases.

  9. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  10. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  11. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  13. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    Energy Technology Data Exchange (ETDEWEB)

    Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1N 6N5 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2016-01-28

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

  14. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  15. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures.

    Science.gov (United States)

    Camilleri, Josette; Laurent, Patrick; About, Imad

    2014-11-01

    The calcium-releasing ability of pulp-capping materials induces pulp tissue regeneration. Tricalcium silicate-based materials produce calcium hydroxide as a by-product of hydration. Assessment of hydration and calcium ion leaching is usually performed on samples that have been aged in physiological solution for a predetermined period of time. The hydration and activity of the materials in vivo may not be similar to those displayed in vitro because of insufficient fluid available in contact with dentin. The aim of this research was the assessment of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material after pulp capping and to compare it with direct hydration in an aqueous solution. The extent of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material with a similar composition to Biodentine but not incorporating the additives was assessed by scanning electron microscopy and energy dispersive spectroscopy of polished specimens after being allowed to hydrate in Hank's balanced salt solution for 14 days. The extent of hydration was compared with material hydration when used as direct pulp capping materials by using a tooth culture model. Material activity was also assessed by x-ray diffraction analysis to investigate the deposition of calcium hydroxide by the materials, and calcium ion leaching in Hank's balanced salt solution was assessed by ion chromatography. Biodentine and the prototype tricalcium silicate cement hydrated and reaction by-products were deposited in the cement matrix both after pulp capping and when incubated in an aqueous solution. Calcium hydroxide was formed, and calcium ions were leached in solution. Theracal LC hydration was incomplete because of the limited moisture diffusion within the material. Thus, no calcium hydroxide was produced, and a lower calcium ion leaching was recorded. Theracal LC had a heterogeneous structure with large unhydrated

  16. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  17. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  18. Clathrate hydrate tuning for technological purposes

    Science.gov (United States)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco

    2010-05-01

    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  19. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  20. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  1. Structure and dynamics of empty cages in xenon clathrate hydrate.

    Science.gov (United States)

    Ikeda-Fukazawa, Tomoko; Yamaguchi, Yohei; Nagashima, Kazushige; Kawamura, Katsuyuki

    2008-12-14

    We performed molecular dynamics calculations of xenon clathrate hydrate to investigate the effects of empty cages on the structure and dynamics of the surrounding lattice. The distinct structure and dynamics of the empty cages, and cages including Xe, which coexist in the lattice, were analyzed. The results show that the ellipsoidal tetrakaidecahedral cage shrinks along the minor (100) axis and expands along the major (100) axis due to the absence of Xe from the cage, whereas the dodecahedral cage shrinks isotropically. These distortions of the empty cages cause a reduction in the lattice constant and an enhancement of the thermal vibrations of the surrounding lattice. The vibrational density of states shows that the hydrogen bonds consisting of the tetrakaidecahedral cage are strengthened by the absence of Xe, whereas those of the dodecahedral cage are weakened. These results show differing mechanisms of guest-host interaction for the two types of cages including Xe. Repulsion is the dominant guest-host interaction for the dodecahedral cage, as proposed by previous studies. For the tetrakaidecahedral cage, however, attractive interaction is dominant along the major (100) axis, whereas repulsive interaction is dominant along the minor (100) axis. The present results suggest that a small number of empty cages can affect not only the local structures but also the macroscopic properties of the crystal. It is concluded that the distortions of the empty cages are one of the important factors governing the density and phase equilibrium of clathrate hydrates.

  2. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  3. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  4. Electrical properties of methane hydrate + sediment mixtures

    Science.gov (United States)

    Du Frane, Wyatt L.; Stern, Laura A.; Weitemeyer, Karen A.; Constable, Steven; Roberts, Jeffery J.

    2011-01-01

    As part of our DOE-funded proposal to characterize gas hydrate in the Gulf of Mexico using marine electromagnetic methods, a collaboration between SIO, LLNL, and USGS with the goal of measuring the electrical properties of lab-created methane (CH4) hydrate and sediment mixtures was formed. We examined samples with known characteristics to better relate electrical properties measured in the field to specific gas hydrate concentration and distribution patterns. Here we discuss first-ever electrical conductivity (σ) measurements on unmixed CH4 hydrate (Du Frane et al., 2011): 6 x 10-5 S/m at 5 °C, which is ~5 orders of magnitude lower than seawater. This difference allows electromagnetic (EM) techniques to distinguish highly resistive gas hydrate deposits from conductive water saturated sediments in EM field surveys. More recently, we performed measurements on CH4 hydrate mixed with sediment and we also discuss those initial findings here. Our results on samples free of liquid water are important for predicting conductivity of sediments with pores highly saturated with gas hydrate, and are an essential starting point for comprehensive mixing models.

  5. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  6. The Complex Solid-State Landscape of Sodium Diatrizoate Hydrates.

    Science.gov (United States)

    Najib, Mohd Nadzri Mohd; Back, Kevin; Edkins, Katharina

    2017-12-06

    Pharmaceutical sodium salts are prone to incorporate water into their crystal structures. The model compound diatrizoic acid monosodium salt, an X-ray contrast agent, has been investigated in depth towards its interaction with water in the solid state. Five hydrates with water content ranging from 0.3 to 8 molar equivalents of water show a high degree of interconvertibility, stoichiometric and non-stoichiometric behaviour, and potential of amorphisation during release of water. A DMSO/water mixed solvate further highlights the high attraction of this salt to incorporate water. All incorporated solvent coordinates to the sodium cation and can further interact and stabilise the respective crystal forms by hydrogen bonding. DTS thus highlights the importance of an in-depth investigation of sodium salts used pharmaceutically to guarantee dose uniformity and stability of final formulation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. X hydrogen bonds

    Indian Academy of Sciences (India)

    sigma electrons, can be hydrogen bond acceptors.11–14. The recent IUPAC report and recommendation on hydro gen bond have recognised the diverse nature of hydro- gen bond donors and acceptors.13,14. Unlike methane, hydrogen bonding by higher alkanes has not received much attention. One of the earlier works.

  8. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  9. A molecular dynamic study on the dissociation mechanism of SI methane hydrate in inorganic salt aqueous solutions.

    Science.gov (United States)

    Xu, Jiafang; Chen, Zhe; Liu, Jinxiang; Sun, Zening; Wang, Xiaopu; Zhang, Jun

    2017-08-01

    Gas hydrate is not only a potential energy resource, but also almost the biggest challenge in oil/gas flow assurance. Inorganic salts such as NaCl, KCl and CaCl 2 are widely used as the thermodynamic inhibitor to reduce the risk caused by hydrate formation. However, the inhibition mechanism is still unclear. Therefore, molecular dynamic (MD) simulation was performed to study the dissociation of structure I (SI) methane hydrate in existence of inorganic salt aqueous solution on a micro-scale. The simulation results showed that, the dissociation became stagnant due to the presence of liquid film formed by the decomposed water molecules, and more inorganic ions could shorten the stagnation-time. The diffusion coefficients of ions and water molecules were the largest in KCl system. The structures of ion/H 2 O and H 2 O/H 2 O were the most compact in hydrate/NaCl system. The ionic ability to decompose hydrate cells followed the sequence of: Ca 2+ >2K + >2Cl - >2Na + . Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Aspects of Hydrate Management - Deposition Phenomena

    OpenAIRE

    Langen, Heidi

    2016-01-01

    The purpose of this thesis has been to investigate the factors with the largest influence on the adhesion strength of a hydrate deposit on a solid surface. This has been done through a literature study on the subject, and a thorough experimental project in a laboratory. The experiments involved forming hydrate deposits on a pipe of steel, before removing the deposits and finding the pressure required to do so. The hydrate was formed by a solution of tetrahydrofuran and water in a tank where t...

  11. Effect of fly ash on the hydration process in cemented paste backfill at early stages

    Energy Technology Data Exchange (ETDEWEB)

    Simon, D.; Grabinsky, M.W. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2009-07-01

    Cemented paste backfill (CPB) is a sustainable backfilling technique used in underground mining operations that ensures ground stabilization. The technique uses mine waste for filling the voids created by underground mining. Compared to conventional backfilling technologies, CPB has the advantage of rapid transport to the stopes; shorter turn-around cycle time; elimination of the drainage barricades in the CPB-filled stopes; and diversion of mine waste from surface disposal sites to underground stopes. Partial replacement of Portland cement with fly ash or ground blast furnace slag, can significantly reduce production costs and improve the performance of typical CPBs. This paper studied the effect of fly ash on the hydration process in CPB during the early stages of hydration using non-destructive, electromagnetic (EM) wave-based techniques. The study showed that the use of fly ash in Portland cement delayed the hydration process, and that the delay was proportional to the replacement level. At later onset times, the fly ash particles enhanced the hydration process by providing additional ions that contributed to the formation of hydration products and ultimately increased the mechanical strength of CPB. The EM test results on CPB obtained in the controlled laboratory environment were compared with in situ test results obtained in an actual backfilled test stope. The EM-wave based techniques were found to be sensitive to paste composition, including binder content, binder type and water content of the paste. 16 refs., 3 tabs., 6 figs.

  12. The Co-III-C bond in (1-thia-4,7-diazacyclodecyl-kappa N-3(4),N-7,C-10)(1,4,7-triazacyclononane-kappa N-3(1),N-4,N-7)-cobalt(III) dithionate hydrate

    DEFF Research Database (Denmark)

    Harris, Pernille; Kofod, P.; Song, Y.S.

    2003-01-01

    In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6.H2O, the Co-C bond distance is 1.9930 (13) Angstrom, which is shorter than for related compounds with the linear 1,6-diamino-3-thiahexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclodecan-8-ide anion. The coordinated carbanion...

  13. The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments.

    Science.gov (United States)

    Tarek, M; Tobias, D J

    2000-12-01

    We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required.

  14. Methane hydrate morphology of natural hydrate-bearing sediment from Nankai trough, Japan

    Science.gov (United States)

    Konno, Y.; Jin, Y.; Yoneda, J.; Kida, M.; Nagao, J.

    2016-12-01

    As a part of MH21, the Research Consortium for Methane Hydrate Resources in Japan, who initiated Japan's Methane Hydrate R&D Program (managed by the Ministry of Economy, Trade, and Industry (METI)), we developed newly pressured hydrate sediment analyzing apparatus (Pressured Non-destructive Analysis Tools, here after PNATs) including an X-ray computed-tomography (CT) system, gamma-ray density measurement system, an instrumented pressure testing chamber (IPTC). The Japanese IPTC was developed with strong cooperation from Georgia Tech and the U.S. Geological Survey. In this study, we investigated the hydrate morphology in natural gas hydrate-bearing (GH) sediment recovered from eastern Nankai trough area under hydro-pressurized condition using PNATs. In addition to P-wave measurement via the IPTC, we assessed hydrate saturation Sh in sediment sample by using our newly ATR-IR probe for the IPTC. Our analysis reveals that the pressurized sample shows load-bearing GH sediment.

  15. Hydrate formation in heterogeneous sediments: To what extent does hydrate distribution record the local environmental history?

    Science.gov (United States)

    Rempel, A. W.; VanderBeek, B. P.

    2017-12-01

    The distribution of methane hydrate in marine sediments reflects the interplay between supply by methanogenesis and far-field transport, and the environmental conditions that set the local methane solubility, which is modulated by the physical properties of the host sediments. We explore the extent to which detailed observations of hydrate distribution and models of hydrate growth, especially in the vicinity of dipping sand layers, can be used to infer the environmental conditions that prevailed during emplacement. Anomalously high hydrate saturations found in association with relatively more coarse-grained strata have been attributed to both enhanced fluid focusing through more permeable sediment layers and to perturbations in phase equilibrium related to pore-space geometry. In order to achieve more accurate predictions of hydrate occurrence, we incorporate treatments for the influence of pore architecture on growth dynamics that have been validated using analog ice-water and water-vapor systems. We demonstrate how pore-size effects on methane solubility and permeability-driven variations in fluid flux can be parameterized into a 1D model for hydrate growth along dipping, coarse-grained layers embedded in a finer-grained sediment package. We show how the vertical distribution of hydrate varies in response to changes in grain size and rates of fluid advection, sedimentation, and in situ methane production. Our modeling shows that sharp gradients in methane solubility, which occur along stratigraphic boundaries, promote the diffusive growth of localized regions of high hydrate saturation while enhanced fluid advection favors more distributed growth throughout high permeability layers. Sedimentation tends to suppress the growth of diffusive hydrate saturation anomalies and can lead to steady-state hydrate saturation profiles. In situ methane production increases hydrate concentrations at shallow depths relative to models where methane is supplied advectively from a

  16. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    OpenAIRE

    Cesare Altavilla; Maria Soledad Prats Moya; Pablo Caballero Pérez

    2017-01-01

    Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration know...

  17. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  18. Hydration interactions and stability of soluble microbial products in aqueous solutions.

    Science.gov (United States)

    Wang, Ling-Ling; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2013-10-01

    Soluble microbial products (SMP) are organic compounds excreted by microorganisms in their metabolism and decay and the main constituents in effluent from biological wastewater treatment systems. They also have an important contribution to the dissolved organic matters in natural aqueous systems. So far the interactions between SMP colloids have not been well explored. In this work, the interactions between SMP colloids in water and salt solutions were studied by using a combination of static and dynamic light scattering, Fourier transform infrared spectra, Zeta potential and acid-base titration techniques. The second osmotic virial coefficient had a larger value in a 750-mM salt solution than that in a 50-mM solution, indicating that repulsion between SMP colloids increased with an increase in salt concentration, which is contrary with the classic Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Such a repulsion was attributed to water structuring and enhanced by the accumulation of hydrophilic counter ions around SMP colloids and the formed hydration force. The repulsion and hydration effect led to the dispersing and deeper draining structure, accompanied by a decreased hydrodynamic radius and increased diffusion coefficient. This hydration force was related to so-called ion specific effect, and electrolyte sodium chloride had a more substantial effect on hydration force than KCl, CsCl, NaBr and NaI. Our results provide an experimental approach to explore the SMP structures, inter-colloid interactions and confirm the non-DLVO forces. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Geomechanical property of gas hydrate sediment in the Nankai trough

    Energy Technology Data Exchange (ETDEWEB)

    Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Matsuoka, T.; Ikeda, H. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering; Inamori, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Technology Research Center

    2008-07-01

    Well logging data and core samples from the Nankai trough area were used to investigate the geomechanical properties and geological history of gas hydrate-bearing sediments. The Coulomb-Mohr failure criterion was used to calculate the mechanical strength of the hydrate sediments. The dynamic Young's modulus was calculated using theoretical and experimental data. The study showed that sediments below the gas hydrate later are mechanically weaker than sediments within the gas hydrate layer. The mechanical strength of the core samples was then measured both before and after dissociation. The study showed that saturated gas hydrates are 4 times stronger than gas hydrate-dissociated cores. It was concluded that hydrate-bearing sediments are mechanically stronger than non-hydrate-bearing sediments. Results of the study will be used to develop methods of predicting risk factors for sea floor deformations and well-bore collapse during gas hydrate extraction processes in hydrate reservoirs. 6 refs., 5 figs.

  20. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  1. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  2. Proton NMR relaxation of hydrated insulin powder

    International Nuclear Information System (INIS)

    Sanches, R.; Donoso, J.P.; Mascarenhas, S.; Panepucci, H.C.

    1985-01-01

    Water proton nuclear magnetic relaxation measurements were obtained for hydrated insulin powder as a function of the water content. For samples containing enough water to complete the hydration shell, the data for the spin-lattice and spin-spin relaxation times are consistent with a model in which water molecules exist in two phases, one exhibiting restricted motion and identified with water of hydration and another identified as free water with motions similar to ordinary water. For samples containing only water of hydration, a model for the spin-spin relaxation time is discussed, in which the water molecules relaxation is described in terms for four relaxation times. Estimates are obtained for these relaxation times, in good agreement with the experimental data. (Author) [pt

  3. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  4. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  5. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  6. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  7. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  10. Spectroscopic methods in gas hydrate research.

    Science.gov (United States)

    Rauh, Florian; Mizaikoff, Boris

    2012-01-01

    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  11. Intercalation chemistry and chemical bonding

    Science.gov (United States)

    Hagenmuller, Paul

    In contrast to amphoteric graphite, the layer-type oxides or chalcogenides generally play the role of acceptors in chemical or electrochemical intercalation reactions. Due to the more ionic character of the MO bonds, the structural evolution of the oxides may usually be explained on hand of electrostatic considerations, or in terms of cation oxido-reduction. For the more covalent chalcogenides, the occupancy of higher energy levels in the band structure by the transferred electrons constitute mostly a prevailing factor, giving rise to structural changes but also to modifications of the physical properties. The ionic character of the MO bonds accounts for the strong tendency of the oxides to undergo 2D→3D transformations as a result of intercalation processes. Such features are determining for the choice of the electrode materials for lithium-ion batteries as far as users require high electrode capacity, stability, and cyclability.

  12. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  13. Role of Lanthanide-Ligand bonding in the magnetization relaxation ...

    Indian Academy of Sciences (India)

    Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, ...

  14. Hydrate Shell Growth Measured Using NMR.

    Science.gov (United States)

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  15. Raman spectroscopic measurements on fluoromethane clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering, Div. of Applied Physics; Ohmura, R. [Keio Univ., Kohoku-ku, Yokohama (Japan). Dept. of Mechanical Engineering; Hori, A. [Kitami Inst. of Technology, Kitami (Japan). Course of Civil Engineering

    2008-07-01

    The occupation of guest molecules in clathrate-structure cages is of interest to researchers, since this property is involved in the estimation of guest molecule density, the stability of clathrate hydrates, and other features. However, such occupation is known to be non-stoichiometric. It remains difficult to accurately estimate the total amount of natural gases in the hydrates located in the deep ocean or in permafrost. This paper discussed the systematic observations of fluoromethane clathrate hydrates using Raman spectroscopy in conjunction with previously obtained Raman spectra for methane (CH{sub 4}) hydrate. Four types of fluoromethane were utilized as standard guest molecules to investigate cage occupation in the hydrates, as all of them were included in the same crystal structure and shared similar functional groups. The types of fluoromethane that were used included fluoromethane (CH{sub 3}F), difluoromethane (CH{sub 2}F{sub 2}), trifluoromethane (CHF{sub 3}), and tetrafluoromethane (CF{sub 4}). The paper discussed the experimental methods including the temperature and pressure conditions of fluorocarbon hydrate formation. It was concluded that the summary of the Raman peak positions of fluoromethane molecules indicate that the influence of deuterized host molecules on the intramolecular vibration frequencies is less than that suggested by experimental error. The obtained data were confirmed to agree with the empirical model for the Raman peak positions on guest molecules, when the relative position of the guest molecule in a host cage structure is considered. 28 refs., 1 tab., 7 figs.

  16. Electrical properties of polycrystalline methane hydrate

    Science.gov (United States)

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  17. Hydration during intense exercise training.

    Science.gov (United States)

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  18. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  19. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Fischermeier, E. [Technische Univ. Dresden (Germany); Pospisil, P. [A.S.C. R., Prague (Czech Republic). J. Heyrovsky Inst. Physical Chemistry; Solioz, M. [Bern Univ. (Switzerland); Sayed, A.; Hof, M.

    2017-07-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P{sub 1B}-type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  20. Internal hydration of a metal-transporting ATPase is controlled by membrane lateral pressure

    International Nuclear Information System (INIS)

    Fahmy, Karim; Pospisil, P.; Sayed, A.; Hof, M.

    2017-01-01

    The active transport of ions across biological mem branes requires their hydration shell to interact with the interior of membrane proteins. However, the influence of the external lipid phase on internal dielectric dynamics is hard to access by experiment. Using the octahelical transmembrane architecture of the copper-transporting P 1B -type ATPase from Legionella pneumophila (LpCopA) as a model structure, we have established the site-specific labeling of internal cysteines with a polarity-sensitive fluorophore. This enabled dipolar relaxation studies in a solubilized form of the protein and in its lipid-embedded state in nano-discs (NDs). Time-dependent fluorescence shifts revealed the site-specific hydration and dipole mobility around the conserved ion-binding motif. The spatial distribution of both features is shaped significantly and independently of each other by membrane lateral pressure.

  1. Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption.

    NARCIS (Netherlands)

    Fabra, M.; Raldua, D.; Bozzo, M.G.; Deen, P.M.T.; Lubzens, E.; Cerda, J.

    2006-01-01

    In marine fish, meiosis resumption is associated with a remarkable hydration of the oocyte, which contributes to the survival and dispersal of eggs and early embryos in the ocean. The accumulation of ions and the increase in free amino acids generated from the cleavage of yolk proteins (YPs) provide

  2. Influence of pozzolana on C4AF hydratio n and the effects of chloride and sulfate io ns on the hydrates formed

    Directory of Open Access Journals (Sweden)

    RIMVYDAS KAMINSKAS

    2011-09-01

    Full Text Available This study investigated the influence of natural pozzolana additive on the hydration of C4AF (aluminoferrite and the effects of chloride and sulfate ions on the hydrates formed. In the samples, 25% (by weight of the C4AF was replaced with pozzolana. The mixture was then hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months, and then soaked in a 5% Na2SO4 solution for 3 months at 20°C. It is estimated that under normal conditions, pozzolana additive accelerates the formation of CO32-–AFm (monocarboaluminate and gibbsite, however, impede the formation of cubic aluminum hydrates. Also, part of the amorphous SiO2 penetrates into the structure of hydrates of C4AF and initiates the formation of hydrated alumino-silicate (gismondine. Monocarboaluminate affected by NaCl becomes unstable and takes part in reactions producing Ca2Al(OH6Cl·2H2O (hydrocalumite-M. After samples were transferred from a saturated NaCl solution to a 5% Na2SO4 solution, hydrocalumite-M was the source of aluminates for the formation of ettringite. In samples with pozzolana additive, the hydrated alumino-silicate and gibbsite compounds that were formed remained stable in an environment containing chloride and sulfate ions and retarded the corrosion reaction of C4AF hydrates.

  3. Physical chemistry of portland-cement hydrate, radioactive-waste hosts: Final report, January 16, 1987--December 31, 1987

    International Nuclear Information System (INIS)

    Grutzeck, M.W.

    1989-01-01

    This is a final report summarizing the results of a study of the physical and crystal chemistry of potential hydroxylated radioactive waste hosts compatible with portland cement. Research has focussed on the identification and evaluation of hydrated host phases for four ions: cesium, strontium, iodine and boron. These ions were chosen because they are among the most long lived of the radioactive waste ions as well as the most difficult to immobilize with cement-based materials. Results show that such phases do indeed exist, and that they are excellent host phases for the above ions

  4. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    demonstrated here for a range of metaphosphate and diborate glasses, the complete description of the energy landscape for mobile ions also provides an effective tool for achieving a more detailed understanding of ion transport in glasses. The investigation of time evolutions can be included, if the bond valence analysis is ...

  5. Stabilization of ammonia-rich hydrate inside icy planets.

    Science.gov (United States)

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas

    2017-08-22

    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  6. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  7. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  8. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally change. ?? 2004 Published by Elsevier B.V.

  9. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction.

    Science.gov (United States)

    Smith, J David; Meuler, Adam J; Bralower, Harrison L; Venkatesan, Rama; Subramanian, Sivakumar; Cohen, Robert E; McKinley, Gareth H; Varanasi, Kripa K

    2012-05-07

    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.

  10. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Kleinsorge, B. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom); Milne, W. I. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ, (United Kingdom)

    2000-04-10

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies <60 eV and increases for films grown using ion energies >160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of {sigma}- to {pi}-bonded carbon atoms. (c) 2000 American Institute of Physics.

  11. Australia's Bond Home Bias

    OpenAIRE

    Anil V. Mishra; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  12. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    Science.gov (United States)

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Hydration characteristics of Biodentine and Theracal used as pulp capping materials.

    Science.gov (United States)

    Camilleri, Josette

    2014-07-01

    Investigation of the hydration and characterization of Theracal and Biodentine used for pulp capping. The setting mechanism and characterization of set Biodentine and Theracal after immersion in Hank's balanced salt solution (HBSS) for 28 days was investigated by scanning electron microscopy (SEM) of polished specimens and X-ray diffraction (XRD) analysis. The bioactivity and surface microstructure of cements immersed in HBSS or water was also assessed by similar techniques together with leaching in solution investigated by ion chromatography (IC). Biodentine hydration resulted in the formation of calcium hydroxide which was present in the material matrix and also on the material surface. Theracal was composed of large cement particles which showed some evidence of reaction rims on hydration. The material matrix included a barium zirconate phase as radiopacifier and also a glass phase composed of strontium, silicon and aluminum. This phase could not be detected in XRD analysis. Formation of a calcium phosphate phase was demonstrated on Theracal immersed in HBSS. Both materials leached calcium ions in solution. The presence of a resin matrix modifies the setting mechanism and calcium ion leaching of Theracal. The clinical implications of these findings need to be investigated. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  15. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  16. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  18. Crystal structures of highly simplified BPTIs provide insights into hydration-driven increase of unfolding enthalpy.

    Science.gov (United States)

    Islam, Mohammad Monirul; Yohda, Masafumi; Kidokoro, Shun-Ichi; Kuroda, Yutaka

    2017-03-07

    We report a thermodynamic and structural analysis of six extensively simplified bovine pancreatic trypsin inhibitor (BPTI) variants containing 19-24 alanines out of 58 residues. Differential scanning calorimetry indicated a two-state thermal unfolding, typical of a native protein with densely packed interior. Surprisingly, increasing the number of alanines induced enthalpy stabilization, which was however over-compensated by entropy destabilization. X-ray crystallography indicated that the alanine substitutions caused the recruitment of novel water molecules facilitating the formation of protein-water hydrogen bonds and improving the hydration shells around the alanine's methyl groups, both of which presumably contributed to enthalpy stabilization. There was a strong correlation between the number of water molecules and the thermodynamic parameters. Overall, our results demonstrate that, in contrast to our initial expectation, a protein sequence in which over 40% of the residues are alanines can retain a densely packed structure and undergo thermal denaturation with a large enthalpy change, mainly contributed by hydration.

  19. Crystal structure and encapsulation dynamics of ice II-structured neon hydrate

    Science.gov (United States)

    Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C.; Han, Jiantao; Germann, Timothy C.; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S.; Zhao, Yusheng

    2014-01-01

    Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms. PMID:25002464

  20. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  1. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  2. Irrigation port hydration in phacoemulsification surgery.

    Science.gov (United States)

    Suzuki, Hisaharu; Masuda, Yoichiro; Hamajima, Yuki; Takahashi, Hiroshi

    2018-01-01

    In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome. We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port. The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP) technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group) and 30 eyes underwent surgeries without the HYUIP technique (control). The three points evaluated during each surgery included 1) the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2) the need for conventional hydration, and 3) watertight completion at the end stage of surgery. The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups. The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse.

  3. Blue LED irradiation to hydration of skin

    Science.gov (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.

    2015-06-01

    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  4. Tenulin 0.25-hydrate, a sesquiterpene lactone isolated from Helenium amarum

    Directory of Open Access Journals (Sweden)

    Bruce Noll

    2013-08-01

    Full Text Available The asymmetric unit of the title compound, C17H22O5·0.25H2O [systematic name: 2-hydroxy-2,2a,6,9a-tetramethyl-2a,4a,5,6,6a,9a,9b,9c-octahydro-2H-1,4-dioxadicyclopent[cd,f]azulene-3,9-dione 0.25-hydrate], a natural product isolated from Helenium amarum, contains two independent tenulin molecules and half a water molecule of crystallization situated on a twofold rotation axis. The hydroxy group of the hemiketal moiety is in a β-position. In the crystal, each water molecule interacts with four tenulin molecules via O—H...O hydrogen bonds. The two independent tenulin molecules (A and B differ only in the character of their participation in hydrogen bonding. Specifically, while A is an acceptor of Owater—H...OA and a donor of OA—H...OB hydrogen bonds, molecule B is an acceptor of the latter hydrogen bond and the donor of an OB—H...Owater hydrogen bond. In the crystal, these O—H...O hydrogen bonds link the tenulin and water molecules into layers parallel to the ac plane.

  5. New Composite Sorbents for Caesium and Strontium Ions Sorption

    Directory of Open Access Journals (Sweden)

    Mykola Kartel

    2017-06-01

    Full Text Available Composite lignocellulose-inorganic sorbents derived from plant residues of agriculture and food industry, modified with ferrocyanides of d-metals and hydrated antimony pentoxide were prepared. Caesium and strontium ions removal from water was tested by radiotracer method. Sorption of heavy metal ions, methylene blue, gelatin, vitamin B12 was also studied.

  6. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    NBO analysis and red shift of vibrational frequency reveal that hydrogen bond formation between methanol and water molecules of 1CH4@512 cage is favourable subsequently after breaking its original hydrogen bonded network. Keywords. Density functional theory; natural bond orbital; red shift of vibrational frequency;.

  7. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  8. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  9. THz characterization of hydrated and anhydrous materials

    Science.gov (United States)

    Sokolnikov, Andre

    2011-06-01

    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  10. Method for production of hydrocarbons from hydrates

    Science.gov (United States)

    McGuire, Patrick L.

    1984-01-01

    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  11. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  13. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  14. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki

    2011-01-01

    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  15. Chemical bonding and charge density distribution analysis of ...

    Indian Academy of Sciences (India)

    The mid bond electron density values revealed the enhancement of covalent nature between titanium and oxygen ions and predominant ionic nature between barium and oxygen ions. Average grain sizes were estimated for the undoped and doped samples. SEM investigations showed the existence of smaller grains with ...

  16. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  17. Water anomalous thermodynamics, attraction, repulsion, and hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Cerdeiriña, Claudio A., E-mail: calvarez@uvigo.es [Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004 (Spain); Debenedetti, Pablo G., E-mail: pdebene@princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-04-28

    A model composed of van der Waals-like and hydrogen bonding contributions that simulates the low-temperature anomalous thermodynamics of pure water while exhibiting a second, liquid-liquid critical point [P. H. Poole et al., Phys. Rev. Lett. 73, 1632 (1994)] is extended to dilute solutions of nonionic species. Critical lines emanating from such second critical point are calculated. While one infers that the smallness of the water molecule may be a relevant factor for those critical lines to move towards experimentally accessible regions, attention is mainly focused on the picture our model draws for the hydration thermodynamics of purely hydrophobic and amphiphilic non-electrolyte solutes. We first focus on differentiating solvation at constant volume from the corresponding isobaric process. Both processes provide the same viewpoint for the low solubility of hydrophobic solutes: it originates from the combination of weak solute-solvent attractive interactions and the specific excluded-volume effects associated with the small molecular size of water. However, a sharp distinction is found when exploring the temperature dependence of hydration phenomena since, in contrast to the situation for the constant-V process, the properties of pure water play a crucial role at isobaric conditions. Specifically, the solubility minimum as well as enthalpy and entropy convergence phenomena, exclusively ascribed to isobaric solvation, are closely related to water’s density maximum. Furthermore, the behavior of the partial molecular volume and the partial molecular isobaric heat capacity highlights the interplay between water anomalies, attraction, and repulsion. The overall picture presented here is supported by experimental observations, simulations, and previous theoretical results.

  18. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  19. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  20. Morphology of methane hydrate host sediments

    Science.gov (United States)

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  1. Arctic Gas hydrate, Environment and Climate

    Science.gov (United States)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund

    2015-04-01

    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  2. Hydrate Technology For Transporting Natural Gas

    OpenAIRE

    Dawe, R. A.

    2003-01-01

    Natural gas hydrate (NGH) is a viable alternative to LNG (Liquefied Natural Gas) or pipelines for the transportation of natural gas from source to demand. It involves three stages: production, transportation and re-gasification. The production of the hydrate occurs at pressures >50 bar at temperatures ~10oC in the presence of water and natural gas (particularly methane, ethane, propane). Transportation is by insulated bulk carrier at around –5 oC and atmospheric pressure or 0 oC at 10 bar, an...

  3. What are gas hydrates?: Chapter 1

    Science.gov (United States)

    Beaudoin, Y.C.; Waite, W.; Boswell, R.; Dallimore, Scott

    2014-01-01

    The English chemistry pioneer Sir Humphry Davy first combined gas and water to produce a solid substance in his lab in 1810. For more than a century after that landmark moment, a small number of scientists catalogued various solid “hydrates” formed by combining water with an assortment of gases and liquids. Sloan and Koh (2007) review this early research, which was aimed at discerning the chemical structures of gas hydrates (Fig. 1.1), as well as the pressures and temperatures at which they are stable. Because no practical applications were found for these synthetic gas hydrates, they remained an academic curiosity.

  4. Dehydration of plutonium or neptunium trichloride hydrate

    Science.gov (United States)

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  5. Experimental Study of Gas Hydrate Dynamics

    Science.gov (United States)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  6. Thermal Conductivity of Methane-Hydrate

    OpenAIRE

    Krivchikov, A. I.; Gorodilov, B. Ya.; Korolyuk, O. A.; Manzhelii, V. G.; Conrad, H.; Press, W.

    2004-01-01

    The thermal conductivity of the methane hydrate CH4 (5.75 H2O) was measured in the interval 2-140 K using the steady-state technique. The thermal conductivity corresponding to a homogeneous substance was calculated from the measured effective thermal conductivity obtained in the experiment. The temperature dependence of the thermal conductivity is typical for the thermal conductivity of amorphous solids. It is shown that after separation of the hydrate into ice and methane, at 240 K, the ther...

  7. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  8. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-03-23

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2004-01-01

    -proton interaction in the hydrogen bond. (ii) a harmonic coupling between the protons in adjacent hydrogen bonds, and (iii) a harmonic coupling between the nearest-neighbor heavy ions (an isolated diatomic chain with the lowest acoustic band) or instead a harmonic on-site potential for the heavy ions (a diatomic...

  10. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates.

    Science.gov (United States)

    Seo, Yutaek; Kang, Seong-Pil; Jang, Wonho

    2009-09-03

    Gas hydrates are becoming an attractive way of storing and transporting large quantities of natural gas, although there has been little effort to understand the preferential occupation of heavy hydrocarbon molecules in hydrate cages. In this work, we present the formation kinetics of mixed hydrate based on a gas uptake measurement during hydrate formation, and how the compositions of the hydrate phase are varied under corresponding formation conditions. We also examine the effect of silica gel pores on the physical properties of mixed hydrate, including thermodynamic equilibrium, formation kinetics, and hydrate compositions. It is expected that the enclathration of ethane and propane is faster than that of methane early stage hydrate formation, and later methane becomes the dominant component to be enclathrated due to depletion of heavy hydrocarbons in the vapor phase. The composition of the hydrate phase seems to be affected by the consumed amount of natural gas, which results in a variation of heating value of retrieved gas from mixed hydrates as a function of formation temperature. 13C NMR experiments were used to measure the distribution of hydrocarbon molecules over the cages of hydrate structure when it forms either from bulk water or water in silica gel pores. We confirm that 70% of large cages of mixed hydrate are occupied by methane molecules when it forms from bulk water; however, only 19% of large cages of mixed hydrate are occupied by methane molecules when it forms from water in silica gel pores. This result indicates that the fractionation of the hydrate phase with heavy hydrocarbon molecules is enhanced in silica gel pores. In addition when heavy hydrocarbon molecules are depleted in the vapor phase during the formation of mixed hydrate, structure I methane hydrate forms instead of structure II mixed hydrate and both structures coexist together, which is also confirmed by 13C NMR spectroscopic analysis.

  11. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  12. Hydration behaviors of calcium silicate-based biomaterials

    Directory of Open Access Journals (Sweden)

    Yuan-Ling Lee

    2017-06-01

    Conclusion: Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level.

  13. Polymer hydration and stiffness at biointerfaces and related cellular processes.

    Science.gov (United States)

    Kerch, Garry

    2018-01-01

    The direct and indirect (by changing mechanical properties) effects of hydration at interfaces on cellular processes and tissue diseases are reviewed. The essential effect of substrate stiffness on cellular processes was demonstrated in the last decade. The combined effect of surface stiffness and hydration at interfaces has garnered much less attention, though hydration and dehydration play important roles in biological processes. This review focuses on the studies that demonstrate how hydration affects biological processes at interfaces. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. Various types of implant and blood contacting device coatings with varied surface stiffness and hydration have been reported. Effect of hydration on polymer modulus of elasticity and viscoelasticity was discussed taking into account cells adhesion, migration, proliferation, differentiation on surfaces with various degree of hydration. Future directions of research were considered, including the use of nanotechnology to regulate the hydration degree. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Methane hydrates in marine sediments - Untapped source of energy

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    will be required to turn this potential resource into gas reserves while developing technologies to conduct safe petroleum operation in hydrate areas, and defining the role of methane hydrates in global climate....

  15. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  16. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    Science.gov (United States)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  17. Bonding topologies in diamondlike amorphous-carbon films

    International Nuclear Information System (INIS)

    Siegal, M. P.; Provencio, P. N.; Tallant, D. R.; Simpson, R. L.; Kleinsorge, B.; Milne, W. I.

    2000-01-01

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces; their thicknesses increase with deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of σ- to π-bonded carbon atoms. (c) 2000 American Institute of Physics

  18. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    Formation of hydrates in gas transmission lines due to high pressures and low temperatures is a serious problem in the oil and gas industry with potential hazards and/or economic losses. Kinetic hydrate inhibitors are water soluble polymeric compounds that prevent or delay hydrate formation. This...

  19. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  20. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.

    2003-01-01

    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bac......At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate...... oxidation was extremely low (2.1 mmol m(-2) d(-1)) and was probably due to aerobic oxidation of methane. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation...

  1. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree of ...

  2. Gypsum hydration: a theoretical and experimental study

    NARCIS (Netherlands)

    Yu, Qingliang; Brouwers, Jos; de Korte, A.C.J.; Fischer, H.B; Bode, K.A.

    2009-01-01

    Calcium sulphate dihydrate (CaSO4·2H2O or gypsum) is used widely as building material because of its excellent fire resistance, aesthetics, and low price. Hemihydrate occurs in two formations of α- and β-type. Among them β-hemihydrate is mainly used to produce gypsum plasterboard since the hydration

  3. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  4. Gold(III)-Catalyzed Hydration of Phenylacetylene

    Science.gov (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  5. A new approach to model mixed hydrates

    Czech Academy of Sciences Publication Activity Database

    Hielscher, S.; Vinš, Václav; Jäger, A.; Hrubý, Jan; Breitkopf, C.; Span, R.

    2018-01-01

    Roč. 459, March (2018), s. 170-185 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA17-08218S Institutional support: RVO:61388998 Keywords : gas hydrate * mixture * modeling Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 https://www. science direct.com/ science /article/pii/S0378381217304983

  6. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...

  7. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  8. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  9. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  10. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    Science.gov (United States)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  11. Hydrated electron yields in liquid and supercritical water—a theory

    International Nuclear Information System (INIS)

    Schiller, Robert; Horváth, Ákos

    2012-01-01

    Our theory, outlined earlier [Schiller, R., 1990. Ion-electron pairs in condensed polar media treated as H-like atoms. J. Chem. Phys. 92, 5527–5532.], is based on the idea that the electron and its geminate positive ion form a hydrogen-like atom, which can be ionized at the expense of the energy fluctuations in the medium. Temperature, T, static relative permittivity, ε s , and constant-volume molar specific heat, C v m , play here the decisive role; the combination Tε s 2 √(C v m ), is the variable by which the yield can be predicted. The calculations agree with the recent experimental results on the temperature dependent yields of hydrated electrons by Kratz et al. [Kratz, S., Torres-Alcan, J., Urbanek, J., Lindner, J., Vöhringer, P., 2010. Geminate recombination of hydrated electrons in liquid-to-supercritical water studied by ultrafast time-resolved spectroscopy. Phys. Chem. Chem. Phys. 12, 12169–12176.] reasonably well. - Highlights: ► A theory of hydrated electron yield as a function of temperature is presented. ► Geminate recombination is regarded to be the decisive process. ► Its probability is described in terms of quantum mechanics and statistical mechanics. ► Probability depends on temperature, dielectric constant and specific heat. ► Calculations reproduce the yields observed in liquid and supercritical water.

  12. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  13. Ion separation from dilute electrolyte solutions by nanofiltration

    International Nuclear Information System (INIS)

    Garcia, Corazon M.

    2000-03-01

    Nanofiltration (NF) is a pressure-driven process which is considered potential for the separation of ionic species selectively from solutions containing mixture of electrolyte solutes. The lower operating pressure requirement of NF than reverse osmosis (RO) makes the earlier potentially economical. In the separation of ions, many authors believed that there are membranes with characteristic fixed surface charge and that the mechanism of separation of ions is by the differences in valences of the ions. In this study, experiments involving dilute single-solute and multiple-solute electrolyte solutions were performed using three different NF membranes. Permeate fluxes and ion rejections of the different species of ions in samples of permeate solutions were measured at varied conditions. The mechanism of separation in NF was determined based on the analysis of the trends and behavior of ion rejection relative to the solution temperature, pressure, type of solute, feed concentration and feed solution pH. The results of the experiments show that there is no evidence of the presence of fixed surface charge on the NF membranes. Ion separation was made possible by the combination of sieve effect and ion-hydration effect. Ions having higher hydration numbers showed higher ion rejection than those having lower hydration numbers. A method to determine the effective membrane pore size of NF membranes using hydrodynamic model was proposed. The proposed method is based on the assumptions that the membrane is neutral and that the separation is based on sieving effect. (Author)

  14. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    International Nuclear Information System (INIS)

    Manohara, G.V.; Vishnu Kamath, P.; Milius, Wolfgang

    2012-01-01

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueous exfoliation into 2–5 nm-thick tactoids with a radial dimension of 0.2–0.5 μm. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration–dehydration of Ni/Al–CH 3 COO LDH. Highlights: ► Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. ► Intercalated acetate ion shows reversible hydration with variation in humidity. ► An ordered interstratified phase was observed during hydration/dehydration cycle. ► A solution type equilibrium is observed between hydration–dehydration phases. ► These LDHs undergo facile aqueous exfoliation.

  15. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  16. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.; TOMOV,S.; WINTER,W.J.; EATON,M.; MAHAJAN,D.

    2004-12-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2).

  17. Study of the interaction of multiply charged ions and complex systems of biological interest: effects of the molecular environment

    International Nuclear Information System (INIS)

    Capron, Michael

    2011-01-01

    This PhD thesis describes the experimental study of the interaction between slow multiply charged ions (tens of keV) and molecular systems of biological interest (amino acids and nucleobases). It is the aim to identify and to better understand the effect of a molecular environment on different collision induced phenomena. To do so, the time of flight spectra of cationic products emerging from collisions with isolated molecules as well as clusters are compared. It is shown that the molecular environment protects the molecule as it allows to distribute the transferred energies and charges over the whole system (global decrease of the fragmentation and quenching of some fragmentation channels). Furthermore, in the case of adenine clusters, the molecular environment weakens some intramolecular bonds. Moreover, products of chemical reactions are observed concerning proton transfer processes in hydrated cluster of adenine and the formation of peptides bonds between beta-alanine molecules in a cluster. The latter finding is studied as a function of the cluster size and type of the projectile. Some criteria for peptide bond formation, such as flexibility and geometry of the molecule, are investigated for different amino acids. (author)

  18. Hofmeister Effect on PNIPAM in Bulk and at an Interface: Surface Partitioning of Weakly Hydrated Anions

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2017-01-01

    The effect of sodium fluoride, sodium trichloroacetate, and sodium thiocyanate on the stability and conformation of poly(N-isopropylacrylamide), in bulk solution and at the gold-aqueous interface, is investigated by differential scanning calorimetry, dynamic light scattering, quartz crystal...... microbalance, and atomic force microscopy. The results indicate a surface partitioning of the weakly hydrated anions, i.e., thiocyanate and trichloroacetate, and the findings are discussed in terms of anion-induced electrostatic stabilization. Although attractive polymer-ion interactions are suggested...... for thiocyanate and trichloroacetate, a salting-out effect is found for sodium trichloroacetate. This apparent contradiction is explained by a combination of previously suggested mechanisms for the salting-out effect by weakly hydrated anions....

  19. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  20. Molecular simulation of non-equilibrium methane hydrate decomposition process

    Energy Technology Data Exchange (ETDEWEB)

    Bagherzadeh, S.Alireza; Englezos, Peter [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 (Canada); Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6 (Canada); Ripmeester, John A., E-mail: john.ripmeester@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6 (Canada)

    2012-01-15

    Graphical abstract: Highlights: > Decomposition of methane hydrate is studied with molecular dynamics simulations. > Simulations are performed under adiabatic conditions (no thermostats). > The effects of heat and mass transfer during the decomposition are observed. > Temperature gradients are established as the hydrate decomposes. > Intrinsic reaction kinetics picture of hydrate dissociation is revisited. - Abstract: We recently performed constant energy molecular dynamics simulations of the endothermic decomposition of methane hydrate in contact with water to study phenomenologically the role of mass and heat transfer in the decomposition rate [S. Alavi, J.A. Ripmeester, J. Chem. Phys. 132 (2010) 144703]. We observed that with the progress of the decomposition front temperature gradients are established between the remaining solid hydrate and the solution phases. In this work, we provide further quantitative macroscopic and molecular level analysis of the methane hydrate decomposition process with an emphasis on elucidating microscopic details and how they affect the predicted rate of methane hydrate decomposition in natural methane hydrate reservoirs. A quantitative criterion is used to characterize the decomposition of the hydrate phase at different times. Hydrate dissociation occurs in a stepwise fashion with rows of sI cages parallel to the interface decomposing simultaneously. The correlations between decomposition times of subsequent layers of the hydrate phase are discussed.

  1. Solid state interconversion between anhydrous norfloxacin and its hydrates.

    Science.gov (United States)

    Chongcharoen, Wanchai; Byrn, Stephen R; Sutanthavibul, Narueporn

    2008-01-01

    This work is focused on characterizing and evaluating the solid state interconversion of norfloxacin (NF) hydrates. Four stoichiometric NF hydrates, dihydrate, hemipentahydrate, trihydrate, pentahydrate and a disordered NF state, were generated by various methods and characterized by X-ray powder diffractometry (XRPD), thermal analysis and Karl Fisher titrimetry. XRPD patterns of all NF hydrates exhibited crystalline structures. NF hydrate conversion was studied with respect to mild elevated temperature and various degrees of moisture levels. NF hydrates transformed to anhydrous NF Form A after gentle heating at 60 degrees C for 48 h except dihydrate and trihydrate where mixture in XRPD patterns between anhydrous NF Form A and former structures existed. Desiccation of NF hydrates at 0% RH for 7 days resulted in only partial removal of water molecules from the hydrated structures. The hydrated transitional phase and the disordered NF state were obtained from the incomplete dehydration of NF hydrates after thermal treatment and pentahydrate NF after desiccation, respectively. Anhydrous NF Form A and NF hydrates transformed to pentahydrate NF when exposed to high moisture environment except dihydrate. In conclusion, surrounding moisture levels, temperatures and the duration of exposure strongly influenced the interconversion pathways and stoichiometry of anhydrous NF and its hydrates. (c) 2007 Wiley-Liss, Inc.

  2. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  3. A method of harvesting gas hydrates from marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Q.; Brill, J.P.; Sarica, C. [Tulsa Univ., Tulsa, OK (United States). Dept. of Petroleum Engineering

    2008-07-01

    Methane is known to exist in gas hydrates, but low productivity is expected for gas production from gas hydrates in marine sediments because of the shallow depths, low hydrate concentration, low permeability of the gas hydrate stability zone, lack of driving pressure and the slow melting process. This paper presented a newly developed methane harvesting method which aims to overcome technical barriers, maintain cost and energy efficiencies and minimize safety and environmental concerns. The method is based on the concept of capturing the gas released from hydrate dissociation in the sediments. The captured gases can reform hydrates inside and overhead receiver, which once full, can be lifted to shallow warm water for gas collection. This simple and open production system does not require high pressure and does not involve any flow assurance issues. As such, technical difficulties, safety issues and environmental concerns are minimized. The proposed gas harvesting method makes the best use of the nature of hydrates and the subsea pressure and temperature profiles. It combines many new concepts, including electrically adding heat inside the hydrate rich sediments to release gas, using an overhead receiver to capture the gas, allowing the gas to reform hydrates again in the overhead receiver, and lifting produced hydrates to warm water where it can be released and collected. It was concluded that this newly proposed production system enables the development of massive hydrate production fields on the sea bed with high production rates that are economically viable. 4 refs., 7 figs.

  4. FY 1998 annual report on the preliminary research and development of techniques for developing resources from gas-hydrate. Studies on gas-hydrate exploration, excavation techniques, methods for assessing environmental impacts, and gas hydrate handling systems; 1998 nendo gas hydrate shigenka gijutsu sendoken kaihatsu seika hokokusho. Tansanado ni kansuru kenkyu kaihatsu, kussaku gijutsu nado ni kansuru kenkyu kaihatsu, kankyo eikyo hyokaho no kenkyu kaihatsu, riyo system ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This R and D project is for the preliminary studies on development of the following 4 types of techniques for developing resources from gas-hydrates (GH): (1) gas-hydrate exploration, (2) excavation techniques, (3) methods for assessing environmental impacts, and (4) gas hydrate handling systems. The FY 1988 R and D results are described. For gas-hydrate exploration, the methods for analyzing inorganic ions and trace quantities of elements, which are necessary for accurately estimating the offshore GH around Japan, are established; and case studies are conducted for methods of predicting GH deposit forming mechanisms, and stability fields of GH, based on terrestrial heat flow and seismic data. For excavation techniques, GH decomposition rate is analyzed using a laboratory system which reproduces conditions of excavation of GH layers. For methods for assessing environmental impacts, a geo-hazard predicting model is established, to study ground displacement and gas leakage sensing systems and data transmission systems to cope with the hazards. For gas hydrate handling systems, an overall system is studied, and storage and transportation systems are outlined. (NEDO)

  5. Solvation dynamics through Raman spectroscopy: hydration of Br2 and Br3(-), and solvation of Br2 in liquid bromine.

    Science.gov (United States)

    Branigan, Edward T; Halberstadt, N; Apkarian, V A

    2011-05-07

    Raman spectroscopy of bromine in the liquid phase and in water illustrates uncommon principles and yields insights regarding hydration. In liquid Br(2), resonant excitation over the B((3)Π(0u)(+)) ← X((1)Σ(g)(+)) valence transition at 532 nm produces a weak resonant Raman (RR) progression accompanied by a five-fold stronger non-resonant (NR) scattering. The latter is assigned to pre-resonance with the C-state, which in turn must be strongly mixed with inter-molecular charge transfer states. Despite the electronic resonance, RR of Br(2) in water is quenched. At 532 nm, the homogeneously broadened fundamental is observed, as in the NR case at 785 nm. The implications of the quenching of RR scattering are analyzed in a simple, semi-quantitative model, to conclude that the inertial evolution of the Raman packet in aqueous Br(2) occurs along multiple equivalent water-Br(2) coordinates. In distinct contrast with hydrophilic hydration in small clusters and hydrophobic hydration in clathrates, it is concluded that the hydration shell of bromine in water consists of dynamically equivalent fluxional water molecules. At 405 nm, the RR progression of Br(3)(-) is observed, accompanied by difference transitions between the breathing of the hydration shell and the symmetric stretch of the ion. The RR scattering process in this case can be regarded as the coherent photo-induced electron transfer to the solvent and its radiative back-transfer.

  6. Methane hydrate in the global organic carbon cycle

    Science.gov (United States)

    Kvenvolden, K.A.

    2002-01-01

    The global occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the global organic carbon cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for global change including global climate change.

  7. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  8. Shape Bonding method

    Science.gov (United States)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  9. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  10. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...... bonds. The purpose is further to analyse the tax consequences of issuing bonds in both a direct issue of bonds and through securitization....

  11. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural motifs also lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion

  12. An 17O nuclear quadrupole double resonance study of several crystal hydrates

    Science.gov (United States)

    Gosling, P.; Rabbani, S. R.

    1987-05-01

    Using the technique of double resonance with coupled multiplets (DRCM), 17O double resonance signals were detected in natural abundance from the H 2O molecule in the hydrates BeSO 4 · 4H 2O, AlCl 3 · 6H 2O, CH 3COOLi · 2H 2O, LiClO 4 · 3H 2O, Sr(OH) 2 · H 2O, Ba(OH) 2 · 8H 2O, LiBr · 2H 2O and MgSO 4 · 7H 2O. Using the DRCM technique approximate values for the HOH bond angle and the OH bond length were determined from the dipolar structure present on the 17O double resonance signals. A Townes and Dailey analysis was used to examine the small differences in the 17O quadrupole coupling constants and asymmetry parameters between these samples.

  13. Quinolinium 8-hy-droxy-7-iodo-quinoline-5-sulfonate 0.8-hydrate.

    Science.gov (United States)

    Smith, Graham

    2012-12-01

    In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy-droxy-7-iodo-quinoline-5-sulfonic acid), C9H7N(+)·C9H5INO4S(-)·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π-π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy-droxy O-H⋯O and quinolinium N-H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H⋯O hydrogen-bonding inter-actions along b, giving a two-dimensional network.

  14. Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2012-12-01

    Full Text Available In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid, C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37 lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6 Å]. The cations and anions are linked into chains extending along c through hydroxy O—H...O and quinolinium N—H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H...O hydrogen-bonding interactions along b, giving a two-dimensional network.

  15. Thermodiffusion as a probe of protein hydration for streptavidin and the streptavidin-biotin complex

    Science.gov (United States)

    Niether, Doreen; Sarter, Mona; König, Bernd; Zamponi, Michaela; Fitter, Jörg; Stadler, Andreas; Wiegand, Simone

    2018-01-01

    Molecular recognition via protein-ligand interactions is of fundamental importance to numerous processes in living organisms. Microscale thermophoresis (MST) uses the sensitivity of the thermophoretic response upon ligand binding to access information on the reaction kinetics. Additionally, thermophoresis is promising as a tool to gain information on the hydration layer, as the temperature dependence of the thermodiffusion behaviour is sensitive to solute-solvent interactions. To quantify the influence of structural fluctuations and conformational motion of the protein on the entropy change of its hydration layer upon ligand binding, we combine quasi-elastic incoherent neutron scattering (QENS) and isothermal titration calorimetry (ITC) data from literature. However, preliminary results show that replacing water with deuterated water leads to changes of the thermophoretic measurements, which are similar to the changes observed upon binding by biotin. In order to gain a better understanding of the hydration layer all measurements need to be performed in heavy water. This will open a route to develop a microscopic understanding of the correlation between the strength and number of hydrogen bonds and the thermophoretic behaviour.

  16. Recent results on hydrogen and hydration in biology studied by neutron macromolecular crystallography.

    Science.gov (United States)

    Niimura, N; Arai, S; Kurihara, K; Chatake, T; Tanaka, I; Bau, R

    2006-02-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins, a technique complimentary to ultra-high-resolution [1, 2] X-ray diffraction. Three different types of neutron diffractometers for biological macromolecules have been constructed in Japan, France and the United States, and they have been used to determine the crystal structures of proteins up to resolution limits of 1.5-2.5 A. Results relating to hydrogen positions and hydration patterns in proteins have been obtained from these studies. Examples include the geometrical details of hydrogen bonds, H/D exchange in proteins and oligonucleotides, the role of hydrogen atoms in enzymatic activity and thermostability, and the dynamical behavior of hydration structures, all of which have been extracted from these structural results and reviewed. Other techniques, such as the growth of large single crystals, the preparation of fully deuterated proteins, the use of cryogenic techniques, and a data base of hydrogen and hydration in proteins, will be described.

  17. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  18. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  19. Bonding topologies in diamondlike amorphous-carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; PROVENCIO,PAULA P.; TALLANT,DAVID R.; SIMPSON,REGINA L.; KLEINSORGE,B.; MILNE,W.I.

    2000-01-27

    The carbon ion energy used during filtered cathodic vacuum arc deposition determines the bonding topologies of amorphous-carbon (a-C) films. Regions of relatively low density occur near the substrate/film and film/surface interfaces and their thicknesses increase with increasing deposition energy. The ion subplantation growth results in mass density gradients in the bulk portion of a-C in the growth direction; density decreases with distance from the substrate for films grown using ion energies < 60 eV and increases for films grown using ion energies > 160 eV. Films grown between these energies are the most diamondlike with relatively uniform bulk density and the highest optical transparencies. Bonding topologies evolve with increasing growth energy consistent with the propagation of subplanted carbon ions inducing a partial transformation of 4-fold to 3-fold coordinated carbon atoms.

  20. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.