WorldWideScience

Sample records for bonding and joining

  1. Mechanical joining and adhesive bonding - basics, technology, applications; Fuegen durch Umformen und Kleben - Grundlagen, Technologie, Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Meschut, G. [Volkswagen AG, Konzern-Forschung, Wolfsburg (Germany)

    2001-07-01

    This contribution uses material combinations current in the automotive industry to demonstrate the mutual dependence of joining processes and their implications for the geometric shaping of fasteners in the combined shaping and adhesive bonding joining process. The mechanical properties of joints made using combined and elementary methods are compared taking into consideration quasi static, oscillating and impact-type loads, and ageing characteristics. The results demonstrate that the combination of mechanical and adhesive bonding methods produces joints of technologically high quality which can be implemented in optimised light-weight construction. General information is provided on the use of low-heat hybrid joining technology for project planning of this type of connections in industrial practice. (orig.) [German] Der Beitrag verdeutlicht anhand von aktuellen Werkstoffkombinationen aus dem Fahrzeugbau die gegenseitige Beeinflussung der Fuegeprozesse und die Folgen fuer die Fuegeelementausbildung bei der Verfahrenskombination Fuegen durch Umformen und Kleben. Die mechanischen Eigenschaften von kombiniert gefuegten und elementar gefuegten Verbindungen unter quasistatischer, schwingender und stossartiger Belastung sowie das Alterungsverhalten werden gegenuebergestellt. Die Ergebnisse zeigen, dass mittels der Kombination mechanischer Fuegeverfahren mit dem Kleben technologisch hochwertige Verbindungen fuer den eigenschaftsoptimierten Leichtbau realisierbar sind. Fuer die Projektierung derartiger Verbindungen in der industriellen Praxis werden allgemeingueltige Hinweise zum Einsatz der waermearmen Hybridfuegetechnik gegeben. (orig.)

  2. Mechanical joining and adhesive bonding. Joining processes with new challenges to materials testing; Umformen und Kleben. Fuegeverfahren mit neuen Herausforderungen fuer die Materialpruefung

    Energy Technology Data Exchange (ETDEWEB)

    Meschut, G. [Volkswagen AG, Wolfsburg (Germany)

    2002-07-01

    This contribution highlights new material combinations in the automotive industry to demonstrate the mutual dependence of joining processes and their implications for the geometric shaping of fasteners in the combined shaping and adhesive bonding joining process. The mechanical properties of joints produced by combined and elementary methods are compared taking into consideration quasi static, oscillating and impact-type loads, and ageing characteristics. The results demonstrate that the combination of mechanical and adhesive bonding methods produces joints of high technological quality which can be implemented in optimised light-weight construction. General information is provided on the use of low-heat hybrid joining technology for project planning of this type of connections in industrial practice. (orig.)

  3. Study of diffusion bonding of WL10 to SS joining with and without titanium interlayer using thermo mechanical simulator

    International Nuclear Information System (INIS)

    The sound joining of Tungsten alloy (W+1%LaO3) material with Stainless Steel material (SS316L) is demanded for He-cooled divertor for demo like Tokamak in near future application. The life of the divertor finger can be assessed by quality of the joining between two the materials. Due to significantly large difference of thermal mismatch, the joining of WL10 and SS material is appeared to be difficult one. The Helium cooled modular divertor is expected to face with the heat load of 10MW/m2 with operation temperature at W tile ∼ 1700°C and 700°C for WL10 to SS region (thimble). There are possible ways for joining of these two materials such as vacuum brazing route, diffusion bonding route etc. In this paper, diffusion bonding route was followed to prepare the joining of the WL10 material and SS material using Thermo mechanical simulator machine (Gleeble 3800). Diffusion bonding of WL10 and SS material has been carried out at various temperatures 800 °C, 850°C, 900 °C, 950 °C and 1000 °C with uniaxial pressure 5 MPa to 20 MPa with the hold time of 15 Min and 30 Min with and without titanium interlayer. The joint specimens have been investigated by NDT (UT by immersion probe), microstructural examination and hardness measurement. In this paper, the methodology for the preparation of diffusion bonding and the optimization of the diffusion bonding parameters for the joining of WL10 and SS material will be discussed. (author)

  4. Effect of joining temperature on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer

    OpenAIRE

    Zhong, Zhihong; Jung, Hun-chea; Hinoki, Tatsuya; KOHYAMA, Akira

    2010-01-01

    A diffusion bonding process, for joining of tungsten to ferritic steel using nickel as an interlayer, was developed for nuclear component application. The effect of joining temperature on the microstructure and tensile strength of the joint was investigated in this work. Metallographic analysis revealed that a good bonding was obtained at both the tungsten/nickel and nickel/steel interfaces, and the diffusion products were identified in the diffusion zone. Nano-indentation test across the joi...

  5. Eutectic liquid phase bonding for metal to ceramic joining

    International Nuclear Information System (INIS)

    The primary aim of this study was to join the oxidation resistant FeCrAl alloy to reaction bonded silicon nitride by a simple and commercially viable technique, with a view for higher temperature applications (above 600 degree C). Also, to study the mechanism of joining and the effects of processing parameters upon the microstructure / property / performance of the joints. Joining was achieved between the FeCrAl alloy and silicon nitride by the use of a non-remaining Cu interlayer. Good interfacial bonding was achieved with no reaction layer product or remaining interlayer foil. The joints had very modest average shear strength values and this was due to the thermal stresses that were induced during process cooling. However, this system does offer a realistic possibility for higher temperature applications, as compared to active metal brazing systems. This was demonstrated by the joints performing reasonably well under rigorous thermal cycling. (author)

  6. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    International Nuclear Information System (INIS)

    Highlights: • Friction bit joining (FBJ) and weld-bonding (adhesive + FBJ) processes. • FBJ to spot weld high-strength Al alloy to high-strength steel. • Lap shear strength of ∼10 kN for high-strength Al alloy to high-strength steel. • Effective corrosion mitigation by combining FBJ with adhesive. - Abstract: In this work, we have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. The FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints

  7. Microstructural and mechanical characterizations of steel tubes joined by transient liquid phase bonding using an amorphous Fe–B–Si interlayer

    International Nuclear Information System (INIS)

    Highlights: • We joined steel tubes by means of TLPB process using a Fe–B–Si foil as interlayer. • We characterized both microstructure and mechanical properties of the joint. • The microstructure at the joint consists only of ferrite grains. • Evidences of non-epitaxial solidification were found. • Both tensile and hardness tests show the soundness of the joint. - Abstract: In this work the transient liquid phase bonding process was successfully used to join seamless carbon steel tubes using an amorphous Fe–B–Si foil as interlayer. The tubes were aligned with their butted surfaces in contact with the interlayer and the entire assembly was heated by means of an induction furnace under a reducing atmosphere. The temperature was raised to the process temperature (≈1300 °C) and then held for 7 min. The joining process was performed under a pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed by electron probe microanalysis. The joint region (JR) presents only ferrite grains - in contrast with the heat affected zone (HAZ) and the base metal (BM), whose microstructures consist of ferrite and cementite. Si content at the JR was precisely determined by chemical profiling, showing higher concentrations of Si compared with the HAZ and BM. These results are in accordance with the fact that the cementite is unable to form in Si enriched zones. Also, ferrite grains at the JR present high-angle grain boundaries with respect to the grains of the HAZ. Tensile tests show that the joined tubes failed away from the bond, at the HAZ, and reached 96% of the ultimate tensile strength of the BM, in the as-bonded condition. Microindentation hardness profiles across the bonding zone are in agreement with the observed microstructures at the different zones of the bond region

  8. Microstructural and mechanical characterizations of steel tubes joined by transient liquid phase bonding using an amorphous Fe–B–Si interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, Nicolas, E-mail: nicolasdiluozzo@gmail.com [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Doisneau, Béatrice; Boudard, Michel [Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Fontana, Marcelo; Arcondo, Bibiana [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2014-12-05

    Highlights: • We joined steel tubes by means of TLPB process using a Fe–B–Si foil as interlayer. • We characterized both microstructure and mechanical properties of the joint. • The microstructure at the joint consists only of ferrite grains. • Evidences of non-epitaxial solidification were found. • Both tensile and hardness tests show the soundness of the joint. - Abstract: In this work the transient liquid phase bonding process was successfully used to join seamless carbon steel tubes using an amorphous Fe–B–Si foil as interlayer. The tubes were aligned with their butted surfaces in contact with the interlayer and the entire assembly was heated by means of an induction furnace under a reducing atmosphere. The temperature was raised to the process temperature (≈1300 °C) and then held for 7 min. The joining process was performed under a pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed by electron probe microanalysis. The joint region (JR) presents only ferrite grains - in contrast with the heat affected zone (HAZ) and the base metal (BM), whose microstructures consist of ferrite and cementite. Si content at the JR was precisely determined by chemical profiling, showing higher concentrations of Si compared with the HAZ and BM. These results are in accordance with the fact that the cementite is unable to form in Si enriched zones. Also, ferrite grains at the JR present high-angle grain boundaries with respect to the grains of the HAZ. Tensile tests show that the joined tubes failed away from the bond, at the HAZ, and reached 96% of the ultimate tensile strength of the BM, in the as-bonded condition. Microindentation hardness profiles across the bonding zone are in agreement with the observed microstructures at the different zones of the bond region.

  9. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  10. LAMP Joining between Ceramic and Plastic

    Science.gov (United States)

    Kawahito, Yousuke; Nishimoto, Kouji; Katayama, Seiji

    Joining of dissimilar materials is necessary and important from a manufacturing viewpoint. Therefore, the authors have developed a new laser direct joining method between a metal and a plastic which is named Laser Assisted Metal and Plastic (LAMP) joining method. In this research, LAMP joining was applied to join silicon nitride Si3N4 ceramic and polyethylene terephthalate (PET) engineering plastic, although metal was replaced by ceramic. The tensile shear strength of obtained joints was 3100 N at the maximum, which was strong enough to elongate a PET base plate of 2 mm in thickness and 30 mm in width. Moreover, transmission electron microscopes (TEM) observation demonstrates that the ceramic and the plastic are tightly bonded on atomic or molecular sized level.

  11. Structural Join and Staircase Join Algorithms of Sibling Relationship

    Institute of Scientific and Technical Information of China (English)

    Chang-Xuan Wan; Xi-Ping Liu

    2007-01-01

    The processing of XML queries can result in evaluation of various structural relationships. Efficient algorithms for evaluating ancestor-descendant and parent-child relationships have been proposed. Whereas the problems of evaluating preceding-sibling-following-sibling and preceding-following relationships are still open. In this paper, we studied the struc-tural join and staircase join for sibling relationship. First, the idea of how to filter out and minimize unnecessary reads of elements using parent's structural information is introduced, which can be used to accelerate structural joins of parent-child and preceding-sibling-following-sibling relationships. Second, two efficient structural join algorithms of sibling relationship are proposed. These algorithms lead to optimal join performance: nodes that do not participate in the join can be judged beforehand and then skipped using B+-tree index. Besides, each element list joined is scanned sequentially once at most.Furthermore, output of join results is sorted in document order. We also discussed the staircase join algorithm for sibling axes. Studies show that, staircase join for sibling axes is close to the structural join for sibling axes and shares the samecharacteristic of high efficiency. Our experimental results not only demonstrate the effectiveness of our optimizing techniquesfor sibling axes, but also validate the efficiency of our algorithms. As far as we know, this is the first work addressing thisproblem specially.

  12. Joints of magnesium to dissimilar metals - comperative study of soldering, adhesive bonding and mechanical joining; Magnesium-Mischverbindungen - Vergleichende Untersuchungen zwischen Loeten, Kleben und mechanischem Fuegen

    Energy Technology Data Exchange (ETDEWEB)

    Muecklich, S.; Wielage, B. [Technische Univ. Chemnitz (Germany); Horstmann, M.; Hahn, O. [Paderborn Univ. (Germany). Lehrstuhl fuer Werkstoff- und Fuegetechnik

    2007-07-01

    For joints of magnesium to dissimilar metals like aluminium or steel, the fundamentals and the state of knowledge concerning glueing, soldering, mechanical joining and hybrid methods are pointed out. (orig.)

  13. Laser direct joining of metal and plastic

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Seiji [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kawahito, Yousuke [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: kawahito@jwri.osaka-u.ac.jp

    2008-12-15

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film.

  14. Laser direct joining of metal and plastic

    International Nuclear Information System (INIS)

    We have developed an innovative rapid laser direct joining process of metal and plastic lap plates without adhesives or glues. The joints made between a Type 304 stainless steel plate and a polyethylene terephthalate (PET) plastic sheet of 30 mm width possessed tensile shear loads of about 3000 N. Transmission electron microscope photographs of the joint demonstrated that Type 304 and the PET were bonded on the atomic, molecular or nanostructural level through a Cr oxide film

  15. Joining of TiAl to Steel by Diffusion Bonding with Ni/Ti Reactive Multilayers

    Directory of Open Access Journals (Sweden)

    Sónia Simões

    2016-04-01

    Full Text Available Dissimilar diffusion bonds of TiAl alloy to AISI 310 stainless steel using Ni/Ti reactive multilayers were studied in this investigation. The Ni and Ti alternating layers were deposited by d.c. magnetron sputtering onto the base materials, with a bilayer thickness of 30 and 60 nm. Joining experiments were performed at 700 and 800 °C for 60 min under pressures of 50 and 10 MPa. The effectiveness of using Ni/Ti multilayers to improve the bonding process was assessed by microstructural characterization of the interface and by mechanical tests. Diffusion bonded joints were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS, electron backscatter diffraction (EBSD, transmission electron microscopy (TEM and selected area electron diffraction (SAED, high resolution TEM (HRTEM and Fast Fourier transform (FFT. The bonding interfaces are thin (approximately 5 µm thick with a layered microstructure. For all joints, the interface is mainly composed of equiaxed grains of NiTi and NiTi2. The thickness and number of layers depends on the joining conditions and bilayer thickness of the multilayers. Mechanical characterization of the joints was performed by nanoindentation and shear tests. Young´s modulus distribution maps highlight the phase differences across the joint´s interface. The highest shear strength value is obtained for the joint produced at 800 °C for 60 min under a pressure of 10 MPa using Ni/Ti multilayers with 30 nm of bilayer thickness.

  16. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  17. Lightning fast and space efficient inequality joins

    KAUST Repository

    Khayyat, Zuhair

    2015-09-01

    Inequality joins, which join relational tables on inequality conditions, are used in various applications. While there have been a wide range of optimization methods for joins in database systems, from algorithms such as sort-merge join and band join, to various indices such as B+-tree, R*-tree and Bitmap, inequality joins have received little attention and queries containing such joins are usually very slow. In this paper, we introduce fast inequality join algorithms. We put columns to be joined in sorted arrays and we use permutation arrays to encode positions of tuples in one sorted array w.r.t. the other sorted array. In contrast to sort-merge join, we use space efficient bit-arrays that enable optimizations, such as Bloom filter indices, for fast computation of the join results. We have implemented a centralized version of these algorithms on top of PostgreSQL, and a distributed version on top of Spark SQL. We have compared against well known optimization techniques for inequality joins and show that our solution is more scalable and several orders of magnitude faster.

  18. Lightning Fast and Space Efficient Inequality Joins

    KAUST Repository

    Khayyat, Zuhair

    2015-09-01

    Inequality joins, which join relational tables on inequality conditions, are used in various applications. While there have been a wide range of optimization methods for joins in database systems, from algorithms such as sort-merge join and band join, to various indices such as B+-tree,R*-tree and Bitmap, inequality joins have received little attention and queries containing such joins are usually very slow. In this paper, we introduce fast inequality join algorithms. We put columns to be joined in sorted arrays and we use permutation arrays to encode positions of tuples in one sorted array w.r.t. the other sorted array. In contrast to sort-merge join, we use space effcient bit-arrays that enable optimizations, such as Bloom filter indices, for fast computation of the join results. We have implemented a centralized version of these algorithms on top of PostgreSQL, and a distributed version on top of Spark SQL. We have compared against well known optimization techniques for inequality joins and show that our solution is more scalable and several orders of magnitude faster.

  19. Simple method to join YAG ceramics and crystals

    Science.gov (United States)

    Bagayev, S. N.; Kaminskii, A. A.; Kopylov, Yu. L.; Kotelyanskii, I. M.; Kravchenko, V. B.

    2012-04-01

    Method to join samples of yttrium aluminum garnet (YAG) ceramics and crystals together includes deposition of thin SiOx layer(s) on flat polished surfaces of the samples to be joined and heating the samples with the contacting surfaces above 1700 °C. There is no visible border between the crystal samples bonded. YAG single crystal solid state growth takes place on the bonded crystal-ceramics border, and crystal growth velocity is much higher when intermediate SiOx layer is used.

  20. Comparison of joining techniques: soldering, adhesive bonding, mechanical joining of magnesium; Fuegeverfahren im Vergleich: Loeten, Kleben, Mechanisches Fuegen von Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, O.; Horstmann, M. [Laboratorium fuer Werkstoff- und Fuegetechnik (LWF), Universitaet Paderborn (Germany); Wielage, B.; Muecklich, S. [Lehrstuhl fuer Verbundwerkstoffe, TU Chemnitz (Germany)

    2007-02-15

    Due to their light weight construction potential magnesium sheets are of increasing interest during recent years. During the production process appropriated joining technologies are necessary for sheets to obtain various knot, profile, and sheet structures. Thus studies to develop appropriated joining technologies are of high importance. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Aufgrund des hohen Leichtbaupotenzials ist das Interesse der Industrie an Magnesiumblech in den letzten Jahren deutlich gestiegen. Damit das Blechmaterial in geeigneter Weise in der Produkten verarbeitet werden kann, bedarf es auch entsprechender Fuegeverfahren, die eine Verbindung mit unterschiedlichsten Knoten-, Profil- und Blechstrukturen sicherstellen koennen. Demgemaess haben auch die Forschungsanstrengungen zur Entwicklung geeigneter Fuegeverfahren zugenommen. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  2. Laser-generated Macroscopic and Microscopic Surface Structures for the Joining of Aluminum and Thermoplastics using Friction Press Joining

    Science.gov (United States)

    Fuchs, Alexander N.; Wirth, Franz X.; Rinck, Philipp; Zaeh, Michael F.

    Structural lightweight construction is increasingly utilized in the aerospace and automotive industry. Hybrid structures have great potential, especially with regard to load-specific component layouts. Usually, a surface pre-treatment is applied prior to joining dissimilar materials to improve bonding mechanisms such as form closure. In previous studies pulsed wave (pw) lasers were used for structuring metals. This paper presents the results of aluminum pre-treatment via a continuous wave (cw) single-mode fiber laser: macroscopic and microscopic structures were generated on the aluminum surface; the samples were joined with glass fiber reinforced polyamide using Friction Press Joining (FPJ), a method for joining metals and thermoplastic polymers in lap joint configuration. Using these new methods for surface structuring, shear strength was increased by 40% compared to previous studies with pw lasers.

  3. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  4. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  5. International Symposium on Interfacial Joining and Surface Technology (IJST2013)

    Science.gov (United States)

    Takahashi, Yasuo

    2014-08-01

    Interfacial joining (bonding) is a widely accepted welding process and one of the environmentally benign technologies used in industrial production. As the bonding temperature is lower than the melting point of the parent materials, melting of the latter is kept to a minimum. The process can be based on diffusion bonding, pressure welding, friction welding, ultrasonic bonding, or brazing-soldering, all of which offer many advantages over fusion welding. In addition, surface technologies such as surface modification, spraying, coating, plating, and thin-film formation are necessary for advanced manufacturing, fabrication, and electronics packaging. Together, interfacial joining and surface technology (IJST) will continue to be used in various industrial fields because IJST is a very significant form of environmentally conscious materials processing. The international symposium of IJST 2013 was held at Icho Kaikan, Osaka University, Japan from 27-29 November, 2013. A total of 138 participants came from around the world to attend 56 oral presentations and 36 posters presented at the symposium, and to discuss the latest research and developments on interfacial joining and surface technologies. This symposium was also held to commemorate the 30th anniversary of the Technical Commission on Interfacial Joining of the Japan Welding Society. On behalf of the chair of the symposium, it is my great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE). Among the presentations, 43 papers are published here, and I believe all of the papers have provided the welding community with much useful information. I would like to thank the authors for their enthusiastic and excellent contributions. Finally, I would like to thank all members of the committees, secretariats, participants, and everyone who contributed to this symposium through their support and invaluable effort for the success of IJST 2013. Yasuo Takahashi Chair of IJST 2013

  6. Hot-press fabrication and joining of boron carbide

    International Nuclear Information System (INIS)

    A method has been developed for fabricating long, cylindrical rubber-mill rolls of boron carbide for use with abrasive materials. The technique consisted of initially hot pressing the boron carbide (to 90% of the theoretical density) to short, hollow cylinders having a length-to-diameter ratio of about one. This initial hot-press operation was followed by a second hot press to join or bond, and further densify, the short sections into a final compact having a length-to-diameter ratio of three. Flexural-strength data show that the integrity of the bond is comparable to that of the base material

  7. Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics

    Energy Technology Data Exchange (ETDEWEB)

    Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

    2005-02-09

    Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

  8. Progress in Joining Ceramics to Metals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The research and development of joining methods of ceramics to metals, especially brazing, diffusion bonding and partial transition liquid phase bonding, were introduced. Some opinions were put forward. For new composites emerging, it is necessary to develop new joining methods, particularly in the field of high temperature technique for joining ceramics to superalloys.

  9. Possibilities of joining techniques application at railway lines joining and maintenance

    Directory of Open Access Journals (Sweden)

    I. Samardžić

    2011-10-01

    Full Text Available This paper presents most important techniques which is possible to apply at joining of railway lines as well as maintenance procedure. Beside thermit welding as a older joint process for that job (since 1895. it is mentioned flash welding as a modern joining technique interesting from the point of cost efficiency. In a case of maintance tasks it is necessary to caunt arc welding processes and thermit welding, too. Authors gave some experimental date collected during investigation on railway lines joining techniques application.

  10. Joining and surfacing of advanced materials

    Institute of Scientific and Technical Information of China (English)

    Andrzej Kolasa; Wladyslaw Wlosinski

    2004-01-01

    The application of advanced materials, i.e. advanced ceramics, glasses, intermetallic phases and various type of composites, not only depends on their manufacture processes including a great input of know-how, but also on their abilities for processing, among which the joining processes play an important role. The uses of advanced materials are changing rapidly, with a major emphasis on technical applications, especially the components of machines, apparatus and technical devices expected to withstand very heavy exploitation conditions. Furthermore,these materials are becoming more complex, in terms of being strengthened and toughened by transformation processes as well as by the addition of other ceramic or metallic materials including nanomaterials. The successful use of advanced materials requires the development of equally advanced joining materials, processes and technology. Some selected examples of results of joining advanced materials with the use of various procedures as well as surface modification of structural components with the use of advanced materials obtained in the Welding Engineering Department of Warsaw University of Technology, Poland, are presented.

  11. Joining of dissimilar materials

    Science.gov (United States)

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  12. R and D of joining technology for SiC components with channel

    International Nuclear Information System (INIS)

    Full text of publication follows: Silicon carbide fiber reinforced silicon carbide matrix composites (SiC/SiC) are attractive structural material for high-temperature components as advanced energy system because of their excellent thermo-mechanical and low activation properties. Nevertheless, there are some critical issues connected to the size and complex shapes of the component for practical use because of machining difficulties. The solution to this problem is to use joining to build up large or complex shapes from a series of smaller and simply shaped components. Joining of SiC/SiC has been demonstrated using various techniques including diffusion bonding, brazing bonding and hot pressing with sinterable SiC powder. Development of reliable and simple joining method for SiC/SiC composites that satisfies the requirements of mechanical integrity, thermal properties and safety during operation and maintenance or accident is strongly required. In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The mechanical strength and microstructure of joining material between SiC substrates are investigated. It has been also examined to produce SiC component with channel by using joining technique like powder sintering and diffusion bonding. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine β-SiC nano-powder which the average particle size is below 30 nm, Al2O3, Y2O3, and SiO2 were used as joining adhesives. The specimens were joined with 20 MPa and 1400-1900 deg. C by hot pressing in argon atmosphere. The tensile and shear tests were performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM). The joining conditions for SiC component with channel were

  13. Joins of DGA modules and sectional category

    OpenAIRE

    Fernández Suárez, Lucía; Ghienne, Pierre; Kahl, Thomas; Vandembroucq, Lucile

    2009-01-01

    We construct an explicit semifree model for the fiber join of two fibrations p: E --> B and p': E' --> B from semifree models of p and p'. Using this model, we introduce a lower bound of the sectional category of a fibration p which can be calculated from any Sullivan model of p and which is closer to the sectional category of p than the classical cohomological lower bound given by the nilpotency of the kernel of p^*: H^*(B;Q) --> H^*(E;Q). In the special case of the evaluation fibration X^I ...

  14. Effects of Applied Load on 6061-T6 Aluminum Joined Employing a Novel Friction Bonding Process

    Energy Technology Data Exchange (ETDEWEB)

    Douglas E. Burkes; Neil P. Hallinan; Karen L. Shropshire; Peter B. Wells

    2008-12-01

    Friction bonding is under consideration for use in mass production of plate-type nuclear fuels for research reactors. This article discusses the effects of applied load (the most important process parameter for fabrication of these fuels) on temperature distribution, microstructure, and mechanical properties. Friction bonding experiments showed that tool geometry caused temperature gradients across the tool surface. Temperatures at the joint interface suggested the advancing side of the tool produced a majority of the frictional heat, while the retreating side of the tool mainly forged the plasticized material while bonding increased with applied load. The microstructure across the tool surface was also altered and, as a function of applied load, affected the mechanical properties. The 6061 aluminum alloy had mechanical properties close to a T4 temper after processing. Results documented in this article will aid in continual enhancement of friction bonding for nuclear fuel plate fabrication, and will hopefully contribute to continued advancement of friction stir welding (FSW) state of the art.

  15. Conjoint Forming - Technologies for Simultaneous Forming and Joining

    Science.gov (United States)

    Groche, P.; Wohletz, S.; Mann, A.; Krech, M.; Monnerjahn, V.

    2016-03-01

    The market demand for new products optimized for e. g. lightweight applications or smart components leads to new challenges in production engineering. Hybrid structures represent one promising approach. They aim at higher product performance by using a suitable combination of different materials. The developments of hybrid structures stimulate the research on joining of dissimilar materials. Since they allow for joining dissimilar materials without external heating technologies based on joining by plastic deformation seem to be of special attractiveness. The paper at hand discusses the conjoint forming approach. This approach combines forming and joining in one process. Two or more workpieces are joined while at least one workpiece is plastically deformed. After presenting the fundamental joining mechanisms, the conjoint forming approach is discussed comprehensively. Examples of conjoint processes demonstrate the effectiveness and reveal the underlying phenomena.

  16. Fabrication and Life Prediction of SSiC Ceramic Joint Joined with Silicon Resin YR3370

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-kun; XU Bing-she

    2007-01-01

    Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperatures ranging from 1 100 ℃ to 1 300 ℃. Three point bending strength of the joint reached the maximum of 179 MPa as joined at 1 200 ℃. The joining layer is continuous, homogeneous and densified and has a thickness of 2 tm -5 μm. The joining mechanism is that the amorphous silicon oxycarbide (SixOyCz) ceramic pyrolyzed from silicon resin YR3370 acts as an inorganic adhesive to SSiC substrate, which means the formation of the continuous Si-C bond structure between SixOyCz structure and SSiC substrate. Life prediction of the ceramic joint can be realized through the measurement of the critical time of the joint after the cyclic loading test.

  17. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai, E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Koyanagi, Takaaki; Hinoki, Tatsuya [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Henager, Charles H. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Ferraris, Monica [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ∼3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Under the more aggressive irradiation conditions (800 °C, ∼5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  18. Radiation-tolerant joining technologies for silicon carbide ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai; Snead, Lance L.; Cheng, Ting; Shih, Chunghao; Lewis, W. Daniel; Koyanagi, Takaaki; Hinoki, Tatsuya; Henager, Charles H.; Ferraris, Monica

    2014-05-01

    Silicon carbide (SiC) for nuclear structural applications, whether in the monolithic ceramic or composite form, will require a robust joining technology capable of withstanding the harsh nuclear environment. This paper presents significant progress made towards identifying and processing irradiation-tolerant joining methods for nuclear-grade SiC. In doing so, a standardized methodology for carrying out joint testing has been established consistent with the small volume samples mandated by neutron irradiation testing. Candidate joining technologies were limited to those that provide low induced radioactivity and included titanium diffusion bonding, Ti–Si–C MAX-phase joining, calcia–alumina glass–ceramic joining, and transient eutectic-phase SiC joining. Samples of these joints were irradiated in the Oak Ridge National Laboratory High Flux Isotope Reactor at 500 or 800 °C, and their microstructure and mechanical properties were compared to pre-irradiation conditions. Within the limitations of statistics, all joining methodologies presented retained their joint mechanical strength to ~3 dpa at 500 °C, thus indicating the first results obtained on irradiation-stable SiC joints. Finally, under the more aggressive irradiation conditions (800 °C, ~5 dpa), some joint materials exhibited significant irradiation-induced microstructural evolution; however, the effect of irradiation on joint strength appeared rather limited.

  19. Pi Bond Orders and Bond Lengths

    Science.gov (United States)

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  20. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  1. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    International Nuclear Information System (INIS)

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si3N4. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation

  2. Fastening, coupling and joining technique between diaspora and irredenta

    Science.gov (United States)

    Bauer, C.-O.

    1980-06-01

    The problem of eliminating the present divergence and shattering (diaspora) in the treatment of problems of the fastening, coupling, and joining technique on different technical branches is examined. It is shown that by an appropriate independence the fastening, coupling and joining techniques can recognize and consequently utilize the numerous performance reserves which are concealed by the present organization and action due to the lack of systematically tended works.

  3. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  4. Joins via Geometric Resolutions: Worst-case and Beyond

    OpenAIRE

    Khamis, Mahmoud Abo; Ngo, Hung Q.; Ré, Christopher; Rudra, Atri

    2014-01-01

    We present a simple geometric framework for the relational join. Using this framework, we design an algorithm that achieves the fractional hypertree-width bound, which generalizes classical and recent worst-case algorithmic results on computing joins. In addition, we use our framework and the same algorithm to show a series of what are colloquially known as beyond worst-case results. The framework allows us to prove results for data stored in Btrees, multidimensional data structures, and even...

  5. Combustion based technique for synthesis and joining of refractory materials

    Science.gov (United States)

    White, Jeremiah David Edward

    Gasless combustion systems offer features that make them attractive tools for a variety of potential applications. Among them are rapid heating rates, high exothermicity, and high maximum temperatures. These characteristics were exploited to accomplish three separate concepts including the joining of refractory materials, synthesis of a pore-free composite, and the study of thermal explosion in mechanically activated powders. Honeywell Aerospace is a leading producer of carbon brakes for commercial aircraft. The manufacturing process involves chemical vapor infiltration (CVI) to form a carbon matrix around a carbon fiber preform. A major disadvantage of this approach is the time required to form a fully dense preform, which is on the order of 140 days. In addition, after the brakes are in service, they have to be discarded while there is a relatively thick amount of friction material still available. There is a profit motive for reusing these discs which are out of spec. One such example would be to perform a refurbishment by bonding a new thin C/C element onto a used "core" to produce a brake that meets performance specifications. Unfortunately, joining C/C composites is not a simple task, as carbon does not lend itself to welding, and other means (e.g. mechanical or adhesives) would not hold up to the harsh operational conditions. A novel apparatus was designed, built, and proven to join C/C using so-called reactive resistance welding (RRW). It is shown that a joint stronger than the original material can be achieved using moderate electrical current and mechanical force. Additionally, joining layers of similar thickness and microstructure were obtained with different reactive media, ranging from pellets of pressed powders (˜1-2 mm) to thin metal foils (˜25 micron). By modifying the schematic of the RRW apparatus, porous C/C was infiltrated with liquid silicon in order to form a new pore-free C/C-SiC composite. It is shown that using such a process, the silicon

  6. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation

    International Nuclear Information System (INIS)

    The joining of Al-Fe nanoparticles (NPs) by femtosecond (fs) laser irradiation is reported in this paper. Fe and Al NPs were deposited on a carbon film in vacuum via fs laser ablation. Particles were then exposed to multiple fs laser pulses at fluences between 0.5 and 1.3 mJ/cm2. Transmission Electron Microscopy (TEM) and Electron Diffraction X-ray observations indicate that Al and Fe NPs bond to each other under these conditions. For comparison, bonding of Al to Al and Fe to Fe NPs was also investigated. The nanostructure, as observed using TEM, showed that individual Al NPs were monocrystalline while individual Fe NPs were polycrystalline prior to joining and that these structures are retained after the formation of Al-Al and Fe-Fe NPs. Al-Fe NPs produced by fs laser joining exhibited a mixed amorphous and crystalline phase at the interface. Bonding is suggested to originate from intermixing within a region of high field intensity between particles

  7. Joining of thin thickness SiCf/SiC composites: research of a joining composition and of an associated elaboration process

    International Nuclear Information System (INIS)

    The present work is part of the Fourth Generation Fast Reactors program. One of the key issues is the joining of the SiCf/SiC ceramic matrix composites (CMC) to seal the combustible cladding. At the present time, no chemical composition as a joint is refractive enough to face the expected operating temperatures. The aims of this study are the following: (1) the identification of a joining composition and its associated elaboration process answering the specifications, (2) the validation of a local and fast heating process and (3) the definition of mechanical tests to characterise these joinings. We describe the methodology and the results for joining SiC and SiCf/SiC substrates at solid and liquid state using metallic silicides. Joint integrity and joint strength can be improved by adding small SiC particles to the silicides powders. Chemical reactivity, wettability tests and thermomechanical properties analysis have been carried out on the joints. Cross sections of the assembly were prepared to study the joint/substrate chemical bonding, the cracking and the crack deflection in the vicinity of the interface. Also, one of the challenge consists in using a local heating at a high temperature (around 1800 C) for a short time to avoid the degradation of the composite structure. The assemblies have been then performed in an inductive furnace but in order to prepare the joining technology, trials of local heating have also been investigated with a CO2 laser beam and a microwave generator. Finally, descriptions of the 4-points bending mechanical test used and the associated results are presented. (author)

  8. An event history analysis of union joining and leaving.

    Science.gov (United States)

    Buttigieg, Donna M; Deery, Stephen J; Iverson, Roderick D

    2007-05-01

    This article examines parallel models of union joining and leaving using individual-level longitudinal panel data collected over a 5-year period. The authors utilized objective measures of joining and leaving collected from union and organizational records and took into account time by using event history analysis. The results indicated that union joining was negatively related to procedural justice and higher performance appraisals and positively related to partner socialization and extrinsic union instrumentality. Conversely, members were most likely to leave the union when they perceived lower procedural justice, where there was no union representative present in the workplace, and where they had individualistic orientations. The authors discuss the implications of these findings for theory and practice for trade unions. PMID:17484562

  9. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60 and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  10. Multicenter bonds, bond valence and bond charge apportion

    International Nuclear Information System (INIS)

    In the same way that the valence of an atom issues from the definition of bond index, we shoe here that the three-center bond index lends itself to the definition of a bond valence. Within the charge of a bond, we show that its self-charge (i.e., the amount of electron kept by the atoms involved in the bond) is parted in a such a way that the more electronegative atom tends to allot more electronic charge than the other atom. We give examples of these quantities and discuss the results for different kinds of chemical systems. We also show some results for four-center indices and report six-center indices for hexagonal rings. (author). 54 refs., 4 figs., 8 tabs

  11. Explosive Joining

    Science.gov (United States)

    1989-01-01

    Laurence J. Bement of Langley Research Center invented a technique to permit metal joining operations under hazardous or inaccessible conditions. The process, which provides a joint with double the strength of the parent metal, involves the use of very small quantities of ribbon explosive to create hermetically sealed joints. When the metal plates are slammed together by the explosion's force, joining is accomplished. The collision causes a skin deep melt and ejection of oxide films on the surfaces, allowing a linkup of electrons that produce superstrong, uniform joints. The technique can be used to join metals that otherwise would not join and offers advantages over mechanical fasteners and adhesives. With Langley assistance, Demex International Ltd. refined and commercialized the technology. Applications include plugging leaking tubes in feedwater heaters. Demex produces the small plugs, associated sleeves and detonators. The technology allows faster plugging, reduces downtime, cuts plugging costs and increases reliability.

  12. Effect of metal priming agents on bonding characteristics of an acrylic resin joined to SUS XM27 steel.

    Science.gov (United States)

    Ishikawa, Yumi; Kawamoto, Yoshikazu; Koizumi, Hiroyasu; Furuchi, Mika; Matsumura, Hideo; Tanoue, Naomi

    2006-12-01

    The purpose of the current study was to evaluate the effect of functional monomers contained in the primers on adhesive bonding of a steel alloy. SUS XM27 steel was primed with one of the following materials; Alloy Primer, Estenia Opaque Primer, and V-Primer. The functional monomers in the primers were a phosphate (10-methacryloyloxydecyl dihydrogen phosphate; MDP) and a thione (6-(4-vinylbenzyl-n-propyl) amino-1,3,5-triazine-2,4-dithione, -dithiol tautomer; VTD) for Alloy Primer, MDP alone for Estenia, and VTD alone for V-Primer. The steel disks were bonded with an acrylic resin (Unifast Trad), and bond strength was determined. Of the three primers, both the Alloy Primer (33.3 MPa) and Estenia Opaque Primer (33.9 MPa) materials exhibited far better post-thermocycling bond strength than V-Primer (0 MPa). It can be concluded that the phosphate MDP is effective, whereas the thione VTD is ineffective for bonding SUS XM27 steel. PMID:17220619

  13. How to join and participate in a medical corporation.

    Science.gov (United States)

    Thomas, C

    1986-09-01

    Some nurse practitioners are becoming shareholders of medical corporations. This article discusses preliminary plans and specific areas to consider before joining a medical corporation. Information is also presented on precautions that the NP should consider taking before becoming a shareholder in a medical corporation, and the benefits the NP can expect from such involvement. PMID:3763064

  14. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  15. Joining the RHIC Online and Offline Models

    CERN Document Server

    Malitsky, Nikolay; Fedotov, Alexei V; Kewisch, Jorg; Luccio, Alfredo U; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Satogata, Todd; Talman, Richard M; Tepikian, Steven; Wei, Jie

    2005-01-01

    The paper presents an interface encompassing the RHIC online ramp model and the UAL offline simulation framework. The resulting consolidated facility aims to minimize the gap between design and operational data, and to facilitate analysis of RHIC performance and future upgrades in an operational context. The interface is based on the Accelerator Description Exchange Format (ADXF), and represents a snapshot of the RHIC online model which is in turn driven by machine setpoints. This approach is also considered as an intermediate step towards integrating the AGS and RHIC modeling environments to produce a unified online and offline AGS model for operations.

  16. Joining the Ideational and the Interpersonal Metafunction

    DEFF Research Database (Denmark)

    Holsting, Alexandra

    systemic functional point of view and to demonstrate how the systemic concepts of semantic domain and different linguistic metafunctions, in this case the ideational and the interpersonal, can shed new light on this field. Based on analyses of newspaper examples, it is demonstrated how the resources in...... question are ideational (clause complex, Angle) and interpersonal (modal Adjunct, modal auxiliary, mood) and how they – individually and in combination – emphasize different aspects of projection meaning. A specific status is ascribed to the subjunctive mood, which has a special instructive function that...

  17. Development and characterization of HIP joining techniques for Si3N4 materials

    International Nuclear Information System (INIS)

    The report deals with the development and optimization of reproducible techniques for joining Si3N4 with Si3N4 without interlayers consisting of other materials, applying hot isostatic pressing and vacuum plasma spraying. Furthermore, experiments are reported that have been performed in addition to the above-mentioned, for preparing Si3N4 sintered specimens without sintering additives, applying the HIP technique. The resulting specimens have been tested for their joining characteristics, which are reported. All reported experiments have been performed varying essential parameters such as HIP temperature, pressure, holding time, surface roughness, and heat treatment. Every parameter has been examined individually for its effect on the bonding strength of the prepared Si3N4-Si3N4 joint, applying 4P bending tests at room temperature and at 1200deg C. (orig./MM)

  18. Boys and Girls: Join the Club

    Science.gov (United States)

    D'Allesandro, Lou; Wool, Michael; McKenzie, Mary Alice

    2012-01-01

    Boys & Girls Clubs of America count 4,000 community-based clubs serving more than 4 million young people through membership and community outreach. They provide a safe place to spend time during non-school hours and the summer as an alternative to the streets or being home alone--a place to play, have fun and learn. Boys & Girls Clubs began in New…

  19. Marie and Pierre Curie: joined in science

    International Nuclear Information System (INIS)

    This book relates the life and works of the most famous married couple of scientists. Their works have completely overturned the science of the 20. century and their discovery of radium was rewarded by the Nobel price in 1903. This marriage both in science and life ended three years later because of a banal accident: Pierre Curie is fatally knocked down by a horse carriage in Paris. (J.S.)

  20. Quantum theory and the lattice join

    International Nuclear Information System (INIS)

    An informal explanation is presented of Birkhoff's and von Neumann's proposal according to which it is necessary, due to quantum theory, to replace the well-known lattice of properties, which is a heritage from George Boole, by a new quantum lattice of properties mirroring the structure of the Hilbert space. (Z.S.). 4 figs., 12 refs

  1. Joining distributed complex objects: definition and performance

    NARCIS (Netherlands)

    Teeuw, Wouter B.; Blanken, Henk M.

    1992-01-01

    The performance of a non-standard distributed database system is strongly ifluenced by complex objects. The effective exploitation of parallelism in querying them and a suitable structure to store them are required in order to obtain acceptable response times in these database environments where per

  2. Recent progress in micro and nano-joining

    Science.gov (United States)

    Zhou, Y.; Hu, A.; Khan, M. I.; Wu, W.; Tam, B.; Yavuz, M.

    2009-05-01

    Micro and nano-joining has been identified as a key enabling technology in the construction of micromechanical and microelectronic devices. The current article reviews recent progress in micro and nano-joining. In particular, laser micro-welding (LMW) of crossed 316 LVM stainless steel (SS) wire was compared to conventional resistance micro-welding (RMW) and was successfully employed in welding a Pt-Ir /SS dissimilar combination. Welding of Au nanoparticles was realized using femtosecond laser irradiation and its application in the surface enhanced Raman spectroscopy was investigated. Brazing between carbon nanotube (CNT) bundles and Ni electrodes was attained in vacuum, resulting in the development of a novel CNT filament of incandescent lamps.

  3. Trend and Development of Semisolid Metal Joining Processing

    Directory of Open Access Journals (Sweden)

    M. N. Mohammed

    2015-01-01

    Full Text Available The semisolid metal joining (SSMJ process or thixojoining process has recently been developed based on the principles of SSM processing, which is a technology that involves the formation of metal alloys between solidus and liquidus temperatures. Thixojoining has many potential benefits, which has encouraged researchers to carry out feasibility studies on various materials that could be utilized in this process and which could transform the production of metal components. This paper reviews the findings in the literature to date in this evolving field, specifically, the experimental details, technology considerations for industrialization, and advantages and disadvantages of the various types of SSMJ methods that have been proposed. It also presents details of the range of materials that have been joined by using the SSMJ process. Furthermore, it highlights the huge potential of this process and future directions for further research.

  4. M2-Edge Colorings Of Cacti And Graph Joins

    Directory of Open Access Journals (Sweden)

    Czap Július

    2016-02-01

    Full Text Available An edge coloring φ of a graph G is called an M2-edge coloring if |φ(v| ≤ 2 for every vertex v of G, where φ(v is the set of colors of edges incident with v. Let 2(G denote the maximum number of colors used in an M2-edge coloring of G. In this paper we determine 2(G for trees, cacti, complete multipartite graphs and graph joins.

  5. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  6. Money and Nominal Bonds

    OpenAIRE

    Marchesiani, Alessandro; Senesi, Pietro

    2007-01-01

    This paper studies an economy with trading frictions, ex post heterogeneity and nominal bonds in a model à la Lagos and Wright (2005). It is shown that a strictly positive interest rate is a sufficient condition for the allocation with nominal bonds to be welfare improving. This result comes from the protection against the inflation tax.

  7. Joining of silicon carbide/silicon carbide composites and dense silicon carbide using combustion reactions in the titanium-carbon-nickel system

    International Nuclear Information System (INIS)

    This paper reports on a ceramic joining technique that has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC ceramics using Ti-C-Ni powder mixtures that ignite below 1200 degrees C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. during this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between the TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa

  8. Laser based metal and plastics joining for lightweight design

    Science.gov (United States)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  9. New sandwichmaterials - production, forming, joining and corrosion behaviour; Neuartige Sandwichverbunde - Herstellung, Umformverhalten, Fuegen und Korrosionsverhalten

    Energy Technology Data Exchange (ETDEWEB)

    Palkowski, H.; Lange, G. [TU Clausthal, Institut fuer Metallurgie (IMET), Lehrstuhl fuer Werkstoffumformung, Robert-Koch-Strasse 42, 38678 Clausthal-Zellerfeld (Germany); Giese, P.; Wesling, V. [Technische Universitaet Clausthal, Institut fuer Schweisstechnik und Trennende Fertigungsverfahren (Germany); Spieler, S.; Goellner, J. [Otto-von-Guericke-Universitaet Magdeburg Institut fuer Werkstoff- und Fuegetechnik (Germany)

    2006-07-15

    New sandwich structures with sheet metal of CrNi-steel and core layer made of polypropylene were examined with regard to the processing and corrosion characteristics. Practicable solutions for bonding sandwich structures are represented with selected examples of bonding variants. Joining of the sandwich structures was carried out by laser welding and in form of hybrid junctions by adhesion and welding. It has to be taken into account that construction units are transformed before joining. The joint if possible does not lie in the transforming range if it is joined first. In the 3 roll bending test tubing elements up to a process-bound diameter of 70 mm were manufactured. As expected the corrosion resistance is affected negatively by the oxide scale due to welding at the fusion lines. The characteristics of the basic material were regained after removing the oxide scale. A sensitization to intergranular corrosion was not detected. With correct subsequent treatment the finished sandwich structures are sufficient for the appropriate requirements. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Neuartige Blechsandwichstrukturen aus hochlegiertem Chrom-Nickel-Stahl mit Kernschichten aus Polypropylen wurden hinsichtlich der Verarbeitungs- und Korrosionseigenschaften untersucht. Anhand einiger ausgewaehlter Beispiele von Fuegevarianten werden praktikable Loesungen fuer das Verbinden der Cr-Ni-Blechsandwichstrukturen dargestellt. Die Ausfuehrung der Verbindungen der Sandwichstrukturen untereinander erfolgte mittels Laserstrahlschweissen und in Form von Hybridverbindungen durch Kleben und Schweissen. Es ist zu beachten, dass Bauteile vor dem Fuegen umgeformt werden bzw. die Fuegestelle moeglichst nicht im Umformbereich liegt, wenn zuerst gefuegt wird. Im 3-Rollenbiegeversuch wurden Rohrelemente bis zu einem verfahrensbegrenzten Durchmesser von 70 mm gefertigt. - Erwartungsgemaess wirkten sich die infolge des Schweissens auf den Schmelzlinien befindlichen

  10. Joining of SiC-ceramics by means of boron carbide, silicon and carbon for high temperature applications

    International Nuclear Information System (INIS)

    The present work is a contribution to joining of SiC-Ceramics for high temperature applications. The aim was to develop a joining technique for Silicon Carbide ceramics by means of boron, carbon and silicon. The joint is created by the formation of a welding zone, which consists of SiC as it is the material to be joined. For this purpose are used the follow means: (a) sputtering layers of B4C, Si and C, (b) vacuum coatings of Si or Si foils and C, (c) powder mixtures of B4C, Si and C. The joints were examined at ceramographic cross sections of the bonding zone, by means of XRD, REM/EDAX, TEM and EPMA. The bond strength was determined in the 4-point bend test at room temperature and at 1370 C. It was found that a useable result can be obtained, if the temperature of the joining process exceeds the melting point of Si (1410 C). A high bending strength with a high Weibull modulus was achieved by using sputter layers. The powder mixtures provided a satisfactory bending strength with a low Weibull modulus. (orig.)

  11. Joining of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-02-01

    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium

  12. Joining and Testing Composite Plates to Ti Tubes

    Science.gov (United States)

    Morscher, Gregory N.; Singh, Mrityunjay; Shpargei, Tarah; Asthana, Rajiv

    2005-01-01

    The joining of metal tubes to composite plates is required for heat-rejection components in several space applications. Currently a number of different braze compositions are being evaluated as to their effectiveness. Such tube-plate configurations cannot be represented by traditional methods of testing, e.g., lap joints. The joined region is not between two flat surfaces, but rather between a flat surface and a curved surface. Therefore, several tests have been employed to ascertain the effectiveness of the different braze approaches in tension that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these "tube-tests" will be discussed for the three different braze compositions, Cu-ABA, Ti-Cu-Sil, and Ti-Cu-Ni. In addition, fracture analysis of the failed joints was performed and offers insights into the cause of joint failure and the distinctions which need to be made between the "strength" of a joint versus the "load carrying ability" of a joint.

  13. End Closure Joining of Ferritic-Martensitic and Oxide-Dispersion Strengthened Steel Cladding Tubes by Magnetic Pulse Welding

    Science.gov (United States)

    Lee, Jung-Gu; Park, Jin-Ju; Lee, Min-Ku; Rhee, Chang-Kyu; Kim, Tae-Kyu; Spirin, Alexey; Krutikov, Vasiliy; Paranin, Sergey

    2015-07-01

    The magnetic pulse welding (MPW) technique was employed for the end closure joining of fuel pin cladding tubes made of ferritic-martensitic (FM) steel and oxide-dispersion strengthened (ODS) steel. The technique is a solid-state impact joining process based on the electromagnetic force, similar to explosive welding. For a given set of optimal process parameters, e.g., the end-plug geometry, the rigid metallurgical bonding between the tube and end plug was obtained by high-velocity impact collision accompanied with surface jetting. The joint region showed a typical wavy morphology with a narrow grain boundary-like bonding interface. There was no evidence of even local melting, and only the limited grain refinement was observed in the vicinity of the bonding interface without destructing the original reinforcement microstructure of the FM-ODS steel, i.e., a fine grain structure with oxide dispersion. No leaks were detected during helium leakage test, and moreover, the rupture occurred in the cladding tube section without leaving any joint damage during internal pressure burst test. All of the results proved the integrity and durability of the MPWed joints and signified the great potential of this method of end closure joining for advanced fast reactor fuel pin fabrication.

  14. Joining Forces

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese and U.S. navies are bound to work together for the common good of the international community Sino-U.S. military relations recently received another boost. The Japan-Ibased U.S. destroyer USS Fitzgerald joined Chinese and foreign naval vessels in a grand international fleet review to celebrate the 60th anniversary of the founding of the Navy of the People’s Liberation Army (PLA) in the coastal city of Qingdao

  15. How cellulose stretches: synergism between covalent and hydrogen bonding

    OpenAIRE

    Altaner, Clemens M.; Thomas, Lynne H.; Fernandes, Anwesha N; Jarvis, Michael C.

    2014-01-01

    Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent C–O–C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellul...

  16. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans.

    Science.gov (United States)

    Lieber, Michael R; Gu, Jiafeng; Lu, Haihui; Shimazaki, Noriko; Tsai, Albert G

    2010-01-01

    Double-strand breaks (DSBs) arise in dividing cells about ten times per cell per day. Causes include replication across a nick, free radicals of oxidative metabolism, ionizing radiation, and inadvertent action by enzymes of DNA metabolism (such as failures of type II topoisomerases or cleavage by recombinases at off-target sites). There are two major double-strand break repair pathways. Homologous recombination (HR) can repair double-strand breaks, but only during S phase and typically only if there are hundreds of base pairs of homology. The more commonly used pathway is nonhomologous DNA end joining, abbreviated NHEJ. NHEJ can repair a DSB at any time during the cell cycle and does not require any homology, although a few nucleotides of terminal microhomology are often utilized by the NHEJ enzymes, if present. The proteins and enzymes of NHEJ include Ku, DNA-PKcs, Artemis, DNA polymerase mu (Pol micro), DNA polymerase lambda (Pol lambda), XLF (also called Cernunnos), XRCC4, and DNA ligase IV. These enzymes constitute what some call the classical NHEJ pathway, and in wild type cells, the vast majority of joining events appear to proceed using these components. NHEJ is present in many prokaryotes, as well as all eukaryotes, and very similar mechanistic flexibility evolved both convergently and divergently. When two double-strand breaks occur on different chromosomes, then the rejoining is almost always done by NHEJ. The causes of DSBs in lymphomas most often involve the RAG or AID enzymes that function in the specialized processes of antigen receptor gene rearrangement. PMID:20012587

  17. Explosive Spot Joining of Metals

    Science.gov (United States)

    Bement, Laurence J. (Inventor); Perry, Ronnie B. (Inventor)

    1997-01-01

    The invention is an apparatus and method for wire splicing using an explosive joining process. The apparatus consists of a prebend, U-shaped strap of metal that slides over prepositioned wires. A standoff means separates the wires from the strap before joining. An adhesive means holds two ribbon explosives in position centered over the U-shaped strap. A detonating means connects to the ribbon explosives. The process involves spreading strands of each wire to be joined into a flat plane. The process then requires alternating each strand in alignment to form a mesh-like arrangement with an overlapped area. The strap slides over the strands of the wires. and the standoff means is positioned between the two surfaces. The detonating means then initiates the ribbon explosives that drive the strap to accomplish a high velocity. angular collision between the mating surfaces. This collision creates surface melts and collision bonding resulting in electron-sharing linkups.

  18. R and D of joining technology for SiC components with channel

    International Nuclear Information System (INIS)

    The new joining method of SiC components with channel was developed in this study by using hot-press. The SiC ceramics was joined by using mixed Al2O3, Y2O3, SiO2 and SiC powders. Joining was carried out at from 1500 deg. C to 1900 deg. C for 1 h, under an applied pressure, range from 5 MPa to 20 MPa. Microstructural characterization was carried out for the joined materials by optical and scanning electron microscopy. The mechanical property of the joint was evaluated through a tensile test. The joint strength was increased with increasing joining temperature and pressure. In joining of complex shape SiC components, the serious deformation of substrate occurred because of high joining temperature and pressure. The low joining condition, In case of 1800 deg. C and 20 MPa, deformation of substrate not occurred. It is possible that the deformation of substrate was controlled by joining temperature. The joint layer of SiC component by using new joining method was cleaned and uniformed.

  19. Joining of polymer composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

  20. Bond Rupture following C14 and T3 Beta Decay

    International Nuclear Information System (INIS)

    As a result of nuclear transformations an atom acquires a recoil energy, and a portion of this energy becomes associated with the chemical bond or bonds joining the activated atom to the molecule. Usually sufficient energy is deposited in these bonds to permit the activated atom to dissociate from the remainder of the molecule. Bond-rupture, however, usually does not occur with 100% efficiency. Momentum transfer to an atom in a molecule (internal excitation and bond-rupture) have been discussed recently with reference to activation of atoms joined to a molecule by only one bond. Additional molecules are considered in the present paper, and data presented on the net recoil energy required for bond- rupture, the rotational and vibrational excitation energies received by the rupturing bond, the internal energy of the radical originally bonded to the activated atom, and the kinetic energy of the radicals. It is shown that, on the average, the recoil energy that must be acquired by the activated atom in order to rupture from the molecule is about 25% greater than that calculated assuming a pseudo-diatomic molecule. Data are also presented for certain C14 and T3 beta-decay recoil processes. For C14O2 it is calculated that a net N14 recoil energy s 1.92 times the ON-O+ bond dissociation energy is required for bond-rupture. Since the NO+2 product may possess about 0.6 to 1.0 eV of electronic excitation energy, the ON-O+ bond dissociation energy is not uniquely defined. The calculated value of non-bond-rupture is 73 - 87% in good agreement with the reported experimental value of 81%. Similar data are also presented for such molecules as CH3T, C2H5T, C3H7T, and C142H6. (author)

  1. Assessment of alternative joining techniques for Ti–6Al–4V/CFRP hybrid joints regarding tensile and fatigue strength

    International Nuclear Information System (INIS)

    Highlights: • Nd:YAG laser riveting of Ti–6Al–4V/CFRP lap joint was successfully realized. • Tensile strength is comparable to that of conventional riveted lap joints. • Fatigue strength of conventional riveted joint can be increased by adhesive bonding. • The effect of adhesive bonding is comparable to surface structuring of Ti–6Al–4V. - Abstract: CFRP and titanium joints are used in the aerospace industry. These materials are usually joined by titanium rivets which are inserted into holes drilled through both materials. Conventional riveted hybrid joints of CFRP and titanium parts fail under quasi static loading due to the uneven load distribution at the titanium rivets. Under cyclic loading, the fatigue failure occurs mainly in the titanium part because of the higher notch sensitivity. The aim of this work is the comparison of different joining concepts in terms of stiffness, strength and fatigue limit. First, laser riveting, here titanium pins are Nd:YAG laser beam welded to the Ti–6Al–4V parts. Second, conventional riveted hybrid joint is combined with adhesive bonding. Third, surface structuring of the Ti–6Al–4V parts is used to enhance friction in the riveted joint. Tensile and fatigue tests as well as fractographical examinations are performed to establish the process–property–performance relationship of the hybrid joints. Laser riveting leads to higher stiffness but equal strength, when compared to conventional riveted joints. Fatigue life is improved by the implementation of adhesive bonding and surface structuring

  2. A review of the US joining technologies for plasma facing components in the ITER fusion reactor

    International Nuclear Information System (INIS)

    This paper is a review of the current joining technologies for plasma facing components in the US for the International Thermonuclear Experimental Reactor (ITER) project. Many facilities are involved in this project. Many unique and innovative joining techniques are being considered in the quest to join two candidate armor plate materials (beryllium and tungsten) to a copper base alloy heat sink (CuNiBe, OD copper, CuCrZr). These techniques include brazing and diffusion bonding, compliant layers at the bond interface, and the use of diffusion barrier coatings and diffusion enhancing coatings at the bond interfaces. The development and status of these joining techniques will be detailed in this report

  3. Predictive modeling of reactive wetting and metal joining.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.

    2013-09-01

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  4. Meet and Join Matrices in the Poset of Exponential Divisors

    Indian Academy of Sciences (India)

    Ismo Korkee; Pentti Haukkanen

    2009-06-01

    It is well-known that $(\\mathbb{Z}_+,|)=(\\mathbb{Z}_+,GCD,LCM)$ is a lattice, where $|$ is the usual divisibility relation and $GCD$ and $LCM$ stand for the greatest common divisor and the least common multiple of positive integers. The number $d=\\prod^r_{k=1}p^{d^{(k)}}_k$ is said to be an exponential divisor or an -divisor of $n=\\prod^r_{k=1}p^{n^{(k)}}_k(n >1)$, written as $d|_e n$, if $d^{(k)}|n^{(k)}$ for all prime divisors $p_k$ of . It is easy to see that $(\\mathbb{Z}_+\\backslash\\{1\\},|_e)$ is a poset under the exponential divisibility relation but not a lattice, since the greatest common exponential divisor $(GCED)$ and the least common exponential multiple $(LCEM)$ do not always exist. In this paper we embed this poset in a lattice. As an application we study the $GCED$ and $LCEM$ matrices, analogues of $GCD$ and $LCM$ matrices, which are both special cases of meet and join matrices on lattices.

  5. Non-homologous end joining: advances and frontiers.

    Science.gov (United States)

    Yang, Kai; Guo, Rong; Xu, Dongyi

    2016-07-01

    DNA double-strand breaks (DSBs) are the most serious form of DNA damage. In human cells, non-homologous end joining (NHEJ) is the major pathway for the repair of DSBs. Different types of DSBs result in different subsets of NHEJ repair strategies. These variations in NHEJ repair strategies depend on numerous elements, such as the flexible recruitment of NHEJ-related proteins, the complexity of the DSB ends, and the spatial- and temporal-ordered formation of the multi-protein complex. On the one hand, current studies of DNA DSBs repair focus on the repair pathway choices between homologous recombination and classic or alternative NHEJ. On the other hand, increasing researches have also deepened the significance and dug into the cross-links between the NHEJ pathway and the area of genome organization and aging. Although remarkable progress has been made in elucidating the underlying principles during the past decades, the detailed mechanism of action in response to different types of DSBs remains largely unknown and needs further evaluation in the future study. PMID:27217473

  6. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  7. Non-Asymptotic Delay Bounds for (k,l) Fork-Join Systems and Multi-Stage Fork-Join Networks

    OpenAIRE

    Fidler, Markus; JIANG, Yuming

    2015-01-01

    Parallel systems have received increasing attention with numerous recent applications such as fork-join systems, load-balancing, and l-out-of-k redundancy. Common to these systems is a join or resequencing stage, where tasks that have finished service may have to wait for the completion of other tasks so that they leave the system in a predefined order. These synchronization constraints make the analysis of parallel systems challenging and few explicit results are known. In this work, we mode...

  8. Combustion Synthesis of NiAl and In-situ Joining to Ni-based Superalloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Combustion synthesis is used as a joining technology to join Ni-based superalloys with in-situ synthesized NiAl filler. The synthesis mechanism is discussed. The microstructure of the joints is investigated and the joint strength is also evaluated by tensile testing.

  9. Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    Science.gov (United States)

    Hofmann, Douglas C.; Roberts, Scott; Kozachkov, Henry; Demetriou, Marios D.; Schramm, Joseph P.; Johnson, William L.

    2012-01-01

    Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure

  10. Hydrogen bonding and anaesthesia

    Science.gov (United States)

    Sándorfy, C.

    2004-12-01

    General anaesthetics act by perturbing intermolecular associations without breaking or forming covalent bonds. These associations might be due to a variety of van der Waals interactions or hydrogen bonding. Neurotransmitters all contain OH or NH groups, which are prone to form hydrogen bonds with those of the neurotransmitter receptors. These could be perturbed by anaesthetics. Aromatic rings in amino acids can act as weak hydrogen bond acceptors. On the other hand the acidic hydrogen in halothane type anaesthetics are weak proton donors. These two facts together lead to a probable mechanism of action for all general anaesthetics.

  11. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan;

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  12. Precision Joining Center

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.W.; Westphal, D.A.

    1991-08-01

    A workshop to obtain input from industry on the establishment of the Precision Joining Center (PJC) was held on July 10--12, 1991. The PJC is a center for training Joining Technologists in advanced joining techniques and concepts in order to promote the competitiveness of US industry. The center will be established as part of the DOE Defense Programs Technology Commercialization Initiative, and operated by EG G Rocky Flats in cooperation with the American Welding Society and the Colorado School of Mines Center for Welding and Joining Research. The overall objectives of the workshop were to validate the need for a Joining Technologists to fill the gap between the welding operator and the welding engineer, and to assure that the PJC will train individuals to satisfy that need. The consensus of the workshop participants was that the Joining Technologist is a necessary position in industry, and is currently used, with some variation, by many companies. It was agreed that the PJC core curriculum, as presented, would produce a Joining Technologist of value to industries that use precision joining techniques. The advantage of the PJC would be to train the Joining Technologist much more quickly and more completely. The proposed emphasis of the PJC curriculum on equipment intensive and hands-on training was judged to be essential.

  13. Mounting and joining technology for the dosimetric and control pipelines of WWER-440 type power reactors

    International Nuclear Information System (INIS)

    The development of the mounting and joining technology for the pulse tubes and dosimetric pipelines is described. A GRW type welding machine was chosen for the mechanized welding of austenitic steel pulse tubes. The technology is very effective, high quality of joints can be attained even by workers of low qualification. For the joining of aluminium tubes of the dosimetric pipeline a sticking technology using epoxy adhesive resins has been developed. The AN 134 type resin proved to be very effective. (author)

  14. Microstructural and mechanical characterization of W/SiC bonding for structural material in fusion

    International Nuclear Information System (INIS)

    The SiC/SiC composites are expected to be employed as structural materials in fusion reactors after DEMO. Tungsten may be used as armor material of divertor to protect from the high temperature heat flux. An advanced SiC/SiC composite, NITE SiC/SiC, has excellent resistance to high stress and temperature, and diffusion and sinter bonding methods using high temperature are able to join SiC/SiC composites. This work evaluates the microstructure of interphases when tungsten is joined to SiC to screen potential bonding techniques. The W/SiC joints were produced by diffusion bonding, sinter bonding and liquid phase sinter bonding methods using the hot-pressing methods. Evaluation by SEM, EPMA, TEM and shear test showed the promise of these bonding methods.

  15. Effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste

    International Nuclear Information System (INIS)

    The effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste was investigated by thermal analysis, transmission electron microscopy (TEM) observation, and tensile shear testing. A complete weight loss of diethylene glycol (DEG) in a paste occurred during the redox reaction, whereas a polyethylene glycol 400 (PEG) paste retained the PEG solvent until about 300°C due to its longer carbon chains. Residual PEG in the paste reduced the natural oxide film on copper and nickel substrates during bonding, facilitating a direct sinter of silver nanoparticles to these substrates. On the other hand, silver nanoparticles were sintered to the natural oxide film on an aluminum substrate by the DEG paste. The suitability of the reducing solvent for oxide film reduction of the metal substrate during bonding was explained by an Ellingham diagram. (author)

  16. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    International Nuclear Information System (INIS)

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated

  17. When and Whom to Join: The Expansion of Ongoing Violent Interstate Conflicts

    OpenAIRE

    Bayer, Reşat; Joyce, Kyle A.; Ghosn, Faten

    2014-01-01

    The opportunity and willingness framework has received much attention in research on interstate conflict expansion. This framework is extended here by examining when and what side third parties join during ongoing conflicts. It is maintained that without examining both timing and side selection, understanding of conflict expansion is limited. The timing and side joined in interstate disputes between 1816 and 2001 are analysed using a competing risks duration model. The findings contribute nov...

  18. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich

    2004-01-01

    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  19. Mezzanine finance and corporate bonds

    OpenAIRE

    Libena TETREVOVA

    2009-01-01

    The article deals with the problems of mezzanine finance in relation to corporate bonds. Firstly, attention is paid to definition of mezzanine finance. The term mezzanine finance is used as a term for hybrid forms of financing that combine elements of debt and equity financing. Mezzanine finance represents an alternative form of financing corporate activities. Secondly, possible forms of mezzanine finance are characterized. We can say that special types of corporate bonds (convertible bonds a...

  20. Joining of 14YWT and F82H by friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, D.T., E-mail: hoelzerd@ornl.gov; Unocic, K.A.; Sokolov, M.A.; Feng, Z.

    2013-11-15

    Friction stir welding was investigated for joining specimens of the ODS 14YWT ferritic alloy together and to an F82H tempered martensitic steel plate. The FSW run was performed using a polycrystalline boron nitride tool and resulted in good bonding between 14YWT/14YWT and 14YWT/F82H. Joints and interfaces were observed by light microscopy and SEM analysis to be narrow in width. The ultra-small grain size of 14YWT increased by a factor up to 4 while that of F82H decreased by a considerable amount in the weld zones. The TEM analysis showed no significant changes in the size of the oxygen-enriched nanoclusters in the weld zone of 14YWT. However, defects such as a wormhole on the advancing side of the weld zone in 14YWT and small pores associated with joints and interfaces were observed in the FSW sample. The hardness measurements from unaffected zone into weld zones showed ∼20% decrease in hardness for 14YWT (from ∼500 VH to ∼380 VH) and ∼100% increase in hardness of F82H (from ∼220 VH to ∼440 VH)

  1. Joining of 14YWT and F82H by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T [ORNL; Unocic, Kinga A [ORNL; Sokolov, Mikhail A [ORNL; Feng, Zhili [ORNL

    2013-01-01

    The feasibility of using friction stir welding (FSW) to join specimens of the advanced oxide dispersion strengthened (ODS) 14YWT nanostructured ferritic alloy (NFA) and a plate of F82H tempered martensitic steel (TMS) was investigated. The sample used in the FSW experiment consisted of spot welding four specimens 14YWT prepared from prior tested dual notch fracture toughness bend bars in a corresponding slot that was machined in the F82H plate. The FSW run was successfully performed on the sample using a polycrystalline boron nitride tool (PCBN) that resulted in joints showing good bonding between butt joints of 14YWT specimens and 14YWT specimens and F82H plate. The joints were characterized by light microscopy and SEM analysis and were observed to be relatively narrow in width. The ultra-fine grain size associated with 14YWT increased by a factor of up to 3 while that of F82H was refined by a considerable amount in the thermomechanically affected zones (TMAZ) due to FSW. In addition, porosity was observed in the TMAZ of 14YWT on the advancing side of the FSW joint and at the interface between F82H and 14YWT. Vickers hardness (VH) measurements showed a decrease of ~120 VH from ~500 VH (~20% decrease) for 14YWT and an increase of ~220 VH from ~220 VH (~100% increase) for F82H in the FSW zones. Further refinements in the FSW process will be required to minimize defects including porosity.

  2. Spatial join optimization among WFSs based on recursive partitioning and filtering rate estimation

    Science.gov (United States)

    Lan, Guiwen; Wu, Congcong; Shi, Guangyi; Chen, Qi; Yang, Zhao

    2015-12-01

    Spatial join among Web Feature Services (WFS) is time-consuming for most of non-candidate spatial objects may be encoded by GML and transferred to client side. In this paper, an optimization strategy is proposed to enhance performance of these joins by filtering non-candidate spatial objects as many as possible. By recursive partitioning, the data skew of sub-areas is facilitated to reduce data transmission using spatial semi-join. Moreover filtering rate is used to determine whether a spatial semi-join for a sub-area is profitable and choose a suitable execution plan for it. The experimental results show that the proposed strategy is feasible under most circumstances.

  3. Joining titanium materials with tungsten inert gas welding, laser welding, and infrared brazing.

    Science.gov (United States)

    Wang, R R; Welsch, G E

    1995-11-01

    Titanium has a number of desirable properties for dental applications that include low density, excellent biocompatibility, and corrosion resistance. However, joining titanium is one of the practical problems with the use of titanium prostheses. Dissolved oxygen and hydrogen may cause severe embrittlement in titanium materials. Therefore the conventional dental soldering methods that use oxygen flame or air torch are not indicated for joining titanium materials. This study compared laser, tungsten inert gas, and infrared radiation heating methods for joining both pure titanium and Ti-6Al-4V alloy. Original rods that were not subjected to joining procedures were used as a control method. Mechanical tests and microstructure analysis were used to evaluate joined samples. Mechanical tests included Vickers microhardness and uniaxial tensile testing of the strength of the joints and percentage elongation. Two-way analysis of variance and Duncan's multiple range test were used to compare mean values of tensile strength and elongation for significant differences (p < or = 0.05). Tensile rupture occurred in the joint region of all specimens by cohesive failure. Ti-6Al-4V samples exhibited significantly greater tensile strength than pure titanium samples. Samples prepared by the three joining methods had markedly lower tensile elongation than the control titanium and Ti-6Al-4V rods. The changes in microstructure and microhardness were studied in the heat-affected and unaffected zones. Microhardness values increased in the heat-affected zone for all the specimens tested. PMID:8809260

  4. Common Influence Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Mamoulis, Nikos; Karras, Panagiotis

    We identify and formalize a novel join operator for two spatial pointsets P and Q. The common influence join (CIJ) returns the pairs of points (p,q),p isin P,q isin Q, such that there exists a location in space, being closer to p than to any other point in P and at the same time closer to q than to...... any other point in Q. In contrast to existing join operators between pointsets (i.e., e-distance joins and fc-closest pairs), CIJ is parameter- free, providing a natural join result that finds application in marketing and decision support. We propose algorithms for the efficient evaluation of CIJ, for...... pointsets indexed by hierarchical multi-dimensional indexes. We validate the effectiveness and the efficiency of these methods via experimentation with synthetic and real spatial datasets. The experimental results show that a non-blocking algorithm, which computes intersecting pairs of Voronoi cells on...

  5. Querying and Merging Heterogeneous Data by Approximate Joins on Higher-Order Terms

    OpenAIRE

    S. Price; Flach, PA

    2008-01-01

    Integrating heterogeneous data from sources as diverse as web pages, digital libraries, knowledge bases, the Semantic Web and databases is an open problem. The ultimate aim of our work is to be able to query such heterogeneous data sources as if their data were conveniently held in a single relational database. Pursuant to this aim, we propose a generalisation of joins from the relational database model to enable joins on arbitrarily complex structured data in a higher-order representation. B...

  6. Study of international published experiences in joining copper and copper-alloys

    International Nuclear Information System (INIS)

    This study has revealed a number of joining processes to be used when manufacturing copper-canisters for the final storage of high level nuclear waste. However, the decision on which material and which joining process to be used has to be based on the design criterions. The welding procedure has to be qualified, i.e. it shall be demonstrated whether the procedure is capable of fulfilling specified requirements. 32 refs

  7. A Review of Similar and Dissimilar Micro-joining of Nitinol

    Science.gov (United States)

    Deepan Bharathi Kannan, T.; Ramesh, T.; Sathiya, P.

    2016-04-01

    NiTinol belongs to a class of smart materials which has a wide range of applications in the field of automotive, aerospace, biomedical, robotics, etc., owing to the growing trend in miniaturization of components. Micro-joining is becoming one of the important and familiar processes in the fabrication of miniaturized components. Recently, effective micro-joining of thin sheets has been gaining a lot of interest among researchers. In this article, the research and progress in micro-joining of NiTinol to itself and other metals are reviewed at different aspects. To date, laser welding, tungsten inert gas welding, and resistance welding have been used to a large extent in investigating the weldability of NiTinol alloys. Some important welding parameters used in micro joining by various researchers and their effects on weld qualities are detailed in this review. Metallurgical aspects, mechanical properties and corrosion aspects of micro-joined NiTinol sheets/wires are discussed. The aim of this report is to review the recent progress in micro-joining of NiTinol and to provide a basis for follow-on research.

  8. Modeling and experimental evaluation of the diffusion bonding of the oxide dispersion strengthened steel PM2000

    Science.gov (United States)

    Sittel, Wiebke; Basuki, Widodo W.; Aktaa, Jarir

    2015-10-01

    A modeling based optimization process of the solid state diffusion bonding is presented for joining ferritic oxide dispersion strengthened steels PM2000. An optimization study employing varying bonding temperatures and pressures results in almost the same strength and toughness of the bonded compared to the as received material. TEM investigations of diffusion bonded samples show a homogeneous distribution of oxide particles at the bonding seam similar to that in the bulk. Hence, no loss in strength or creep resistance due to oxide particle agglomeration is found, as verified by the mechanical properties observed for the joint.

  9. Laser hybrid joining of plastic and metal components for lightweight components

    Science.gov (United States)

    Rauschenberger, J.; Cenigaonaindia, A.; Keseberg, J.; Vogler, D.; Gubler, U.; Liébana, F.

    2015-03-01

    Plastic-metal hybrids are replacing all-metal structures in the automotive, aerospace and other industries at an accelerated rate. The trend towards lightweight construction increasingly demands the usage of polymer components in drive trains, car bodies, gaskets and other applications. However, laser joining of polymers to metals presents significantly greater challenges compared with standard welding processes. We present recent advances in laser hybrid joining processes. Firstly, several metal pre-structuring methods, including selective laser melting (SLM) are characterized and their ability to provide undercut structures in the metal assessed. Secondly, process parameter ranges for hybrid joining of a number of metals (steel, stainless steel, etc.) and polymers (MABS, PA6.6-GF35, PC, PP) are given. Both transmission and direct laser joining processes are presented. Optical heads and clamping devices specifically tailored to the hybrid joining process are introduced. Extensive lap-shear test results are shown that demonstrate that joint strengths exceeding the base material strength (cohesive failure) can be reached with metal-polymer joining. Weathering test series prove that such joints are able to withstand environmental influences typical in targeted fields of application. The obtained results pave the way toward implementing metalpolymer joints in manufacturing processes.

  10. Credit default swaps, bond spreads and the bond market

    OpenAIRE

    Zhu, Meicheng

    2014-01-01

    With the rapid development of the credit default swap (CDS) market, the issue of how the introduction of CDSs affects the corporate bond market has been of particular interest to researchers and policy makers. This has been investigated in the literature from two perspectives. One is to examine the relationship between the CDS and the bond markets in price discovery, and the other is concerned with researching the CDS trading effects on bond spreads. Referring to the former approach, most rel...

  11. Solder extrusion pressure bonding process and bonded products produced thereby

    Science.gov (United States)

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  12. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  13. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    OpenAIRE

    Ivan Michalec; Milan Marônek

    2013-01-01

    Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  14. Effects of bonding temperature on microstructure, fracture behavior and joint strength of Ag nanoporous bonding for high temperature die attach

    International Nuclear Information System (INIS)

    Ag nanoparticle sintering has received much attention as an alternative joining method to lead-based soldering for high temperature electronic applications. However, there are still certain issues with this method, such as difficulties of in controlling the joining layer thickness and the occurrence of unexpected voids resulting from solvent evaporation. In this study, the effect of bonding temperature (200–400 °C) and environment (air and N2) on the joint strength of Ag nanoporous bonding (NPB) on electroless nickel/immersion gold finished Cu disks was investigated. A nanoporous Ag sheet fabricated using dealloying method from an Al–Ag precursor was adopted as the insert material. The NPB was conducted at various temperatures (200–400 °C) for 30 min at a pressure of 20 MPa in both air and N2 environments. The joint strength of NPB was closely related with the microstructure of the Ag layer and the fracture mode of the joint, and increased with increasing bonding temperature through the formation of strong interface and a coarsened Ag layer. The effect of the bonding environment was not significant, except in the case of bonding temperature of 400 °C

  15. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  16. Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures

    Science.gov (United States)

    Meschut, G.; Janzen, V.; Olfermann, T.

    2014-05-01

    Driven by increasing costs for energy and raw material and especially by the European CO2-emission laws, automotive industry faces the challenge to develop more lightweight and at the same time still rigid and crash-stable car bodies, that are affordable for large-scale production. The implementation of weight-reduced constructions depends not only on the availability of lightweight materials and related forming technologies, but also on cost-efficient and reliable joining technologies suitable for multi-material design. This article discusses the challenges and requirements for these technologies, based on the example of joining aluminium with press-hardened boron steels, what is considered as a very important material combination for affordable future lightweight mobility. Besides a presentation of recent developments for extending the process limits of conventional mechanical joining methods, new promising technologies such as resistance element welding are introduced. In addition, the performance, advantages, and disadvantages of the presented technologies are compared and discussed.

  17. Glass-ceramic joining and coating of SiC/SiC for fusion applications

    International Nuclear Information System (INIS)

    The aim of this work is the joining and the coating of SiC/SiC composites by a simple, pressureless, low cost technique. A calcia-alumina glass-ceramic was chosen as joining and coating material, because its thermal and thermomechanical properties can be tailored by changing the composition, it does not contain boron oxide (incompatible with fusion applications) and it has high characteristic temperatures (softening point at about 1400 C). Furthermore, the absence of silica makes this glass-ceramic compatible with ceramic breeder materials (i.e. lithium-silicates, -alluminates or -zirconates). Coatings and joints were successfully obtained with Hi-Nicalon fiber-reinforced CVI silicon carbide matrix composite. Mechanical shear strength tests were performed on joined samples and the compatibility with a ceramic breeder material was examined. (orig.)

  18.  Optimizing relational algebra operations using discrimination-based joins and lazy products

    DEFF Research Database (Denmark)

    Henglein, Fritz

    We show how to implement in-memory execution of the core re- lational algebra operations of projection, selection and cross-product eciently, using discrimination-based joins and lazy products. We introduce the notion of (partitioning) discriminator, which par- titions a list of values according to...... a specied equivalence relation on keys the values are associated with. We show how discriminators can be dened generically, purely functionally, and eciently (worst-case linear time) on top of the array-based basic multiset discrimination algorithm of Cai and Paige (1995). Discriminators provide the...... basis for discrimination-based joins, a new technique for computing joins that requires neither hashing nor sorting. Discriminators also provide ecient implementations for eliminating duplicates, set union and set dierence. We represent a cross-product lazily as a formal pair of the argument sets...

  19. Behavior of joining interface between thin film metallic glass and silicon nitride at heating

    International Nuclear Information System (INIS)

    Thin film metallic glass is usually deposited directly on a substrate. The strength of the adhesive join between the substrate surface and the thin film metallic glass is important for fabrication of micro- and/or nano-electromechanical systems. The strength of the join is especially affected by the stresses at the interface, created by the thermal history during the fabrication process and/or during use. In the present study, a bimetallic cantilever of silicon nitride film with a Pd-based thin film metallic glass was fabricated and heated under vacuum in order to generate high stresses at the joining interface. The behavior at the interface were observed and analyzed in terms of the projected length of the cantilever

  20. Developments in laser joining and welding of plastics using high-power laser diodes

    Science.gov (United States)

    Hoult, Tony; Ong, Raymond

    2002-02-01

    Diode lasers are now being employed in industry for a range of applications, in particular they are starting to be used as alternatives to conventional techniques for thermal joining of plastics. This is being assisted by the use of improved reliability aluminum-free diodes and diode laser systems, partly due to a better understanding of failure mechanisms. The laser welding and related techniques are dependent on transmission of part of an infra-red beam through the upper layer of a joint and semi-quantitative assessment of this is required for specific applications. The technique is applicable not only to high average powers, but also to very low average power, in this regime delicate thin-walled components may be joined. Recent developments using derivatives of this technique have shown that a wide range of similar and dissimilar material combinations may be joined.

  1. Optimizing relational algebra operations using discrimination-based joins and lazy products

    DEFF Research Database (Denmark)

    Henglein, Fritz

    on the notion of (equiv- alence) discriminator. A discriminator partitions a list of values according to a user-specified equivalence relation on keys the val- ues are associated with. Equivalence relations can be specified in an expressive embedded language for denoting equivalence rela- tions. We......We show how to efficiently evaluate generic map-filter-product queries, generalizations of select-project-join (SPJ) queries in re- lational algebra, based on a combination of two novel techniques: generic discrimination-based joins and lazy (formal) products. Discrimination-based joins are based...... show that discriminators can be constructed generically (by structural recursion on equivalence expressions), purely func- tionally, and efficiently (worst-case linear time). The array-based basic multiset discrimination algorithm of Cai and Paige (1995) provides a base discriminator that is both...

  2. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    International Nuclear Information System (INIS)

    The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD) simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area

  3. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    Directory of Open Access Journals (Sweden)

    Su Ding

    2015-05-01

    Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  4. Loosening and damage mechanism of thread-joined structures in nuclear power equipment

    International Nuclear Information System (INIS)

    The author proposes a loosening mechanism of thread-joined structures under vibrate environments in the nuclear power equipment and structures, which is on the base of the macro and imperceptible-mechanics analysis. It has answered the problems on the seizing, the adhesive wearing, the generation of cracks, the thread-tooth fracture. So it has a conclusion that the loosening of thread-joined structures is essential trend, in other words, the locking property of thread-pair is failure under vibrate environments

  5. Hot rolling joining process

    International Nuclear Information System (INIS)

    In the case of incorporating nonferrous metal equipment in fuel reprocessing processes, from the viewpoint of reducing maintenance works for the piping connection to peripheral equipments, it is desirable to adopt the pipe joints of joining the materials of different kinds, which have the high reliability against leakage. In order to meet this demand, the development of the manufacturing technology of the pipe joints by hot rolling process has been carried out. As for the structure of this pipe joint, a small diameter nonferrous metal pipe and a large diameter stainless steel pipe are joined by hot rolling by using an inserted material. The materials are Ti-5% Ta, Ti and Zr for the nonferrous metals, SUS 304L for the stainless steel, and Ta foil for the inserted material. The merits and demerits of this pipe joints are shown. The control of the interface structure in the joining of different materials was carried out by using the inserted material. The method of manufacturing the pipe joints and the proper conditions of the rolling joining are explained. As for the performance of the pipe joints, the evaluations of the defects in the joining interface, the strength of the joining, the corrosion resistance and the susceptibility to stress corrosion cracking are reported. (K.I.)

  6. Metal-ceramic joining; Proceedings of the Symposium, TMS Fall Meeting, Detroit, MI, Oct. 8, 9, 1990

    International Nuclear Information System (INIS)

    Topics discussed in this book are in the areas of high temperature applications, joining processes, and electronic applications in metal ceramic joining. Papers are presented on the reactive diffusion bonding of Si3N4 to MA6000, the material factors affecting joining of silicon nitride ceramics, an overview of techniques and recent advances in ceramic-metal joining and metallization, a residual stress analysis and microstructural observations of ceramic-to-metal brazed joints, and the peel adhesion bond strength of direct bonded copper-alumina as affected by alumina sintering aids. Attention is also given to joining of partially stabilized zirconia to nodular cast iron, the silicate brazing of alumina ceramics using calcium aluminosilicate interlayers, graded metal-ceramic microjoints in parallel, the reactive metal brazing of aluminum nitride, and the effect of substrate surface on the bonding of Cu-AlN by active metal thin film and gas-metal eutectic methods

  7. Kinematics analysis and optimization of the fast shearing-extrusion joining mechanism for solid-state metal

    Science.gov (United States)

    Zhang, Shuangjie; Yao, Yunfeng; Li, Lingchong; Wang, Lijuan; Li, Junxia; Li, Qiang

    2015-11-01

    Dynamical Joining of the solid-state metal is the key technology to realize endless hot rolling. The heating and laser welding method both require long joining time. Based on super deformation method, a 7-bar and 2-slider mechanism was developed in Japan, and the joining time is less than 0.5 s, however the length of each bar are not reported and this mechanism is complex. A relatively simple 6-bar and 1-slider mechanism is put forward, which can realize the shearing and extrusion motion of the top and bottom blades with a speed approximately equal to the speed of the metal plates. In order to study the kinematics property of the double blades, based on complex vector method, the multi-rigid-body model is built, and the displacement and speed functions of the double blades, the joining time and joining thickness are deduced, the kinematics analysis shows that the initial parameters can't satisfy the joining process. Hence, optimization of this mechanism is employed using genetic algorithm(GA) and the optimization parameters of this mechanism are obtained, the kinematics analysis show that the joining time is less than 0.1 s, the joining thickness is more than 80% of the thickness of the solid-state metal, and the horizontal speeds of the blades are improved. A new mechanism is provided for the joining of the solid-state metal and a foundation is laid for the design of the device.

  8. Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications

    International Nuclear Information System (INIS)

    Diffusion bonding techniques were employed to join high Cr oxide dispersion strengthened (ODS) ferritic steel (Fe–15Cr–2W–0.2Ti–0.35Y2O3) and F82H steel under uni-axial hydrostatic pressure using a high vacuum hot press, and the microstructure and mechanical properties of the joints were investigated. The dissimilar joints were bonded by solid-state diffusion bonding (SSDB) and liquid phase diffusion bonding (LPDB). After bonding process, heat treatments were conducted to utilize the phase transformation of F82H steel for recovering the martensitic structure. Tensile tests with miniaturized specimens were carried out to investigate and compare the bonding strengths of each joint. Microstructure was observed for the bonding interface, and fracture mode was investigated after the tensile tests. LPDB joint of interfacial F82H steel fully recovered to martensite phase by post-joining heat treatments, while SSDB joint had ferrite phases at the interface even after heat treatment, which is considered to be due to decarburization of F82H steel during the bonding process. Therefore it is considered that the insert material plays a role as diffusion barrier of carbon during LPDB process. Microstructure observations and tensile tests of the joints revealed that the LPDB joints possess suitable tensile properties which are comparable to that of F82H steel. This indicates that LPDB is more promising method to bond ODS-FS and F82H steel than SSDB.

  9. Algebraic modelling and performance evaluation of acyclic fork-join queueing networks

    OpenAIRE

    Krivulin, Nikolai K.

    2012-01-01

    Simple lower and upper bounds on mean cycle time in stochastic acyclic fork-join queueing networks are derived using a (max,+)-algebra based representation of network dynamics. The behaviour of the bounds under various assumptions concerning the service times in the networks is discussed, and related numerical examples are presented.

  10. PRESS RELEASE-Foseco and ProService Join Forces for Thermal Analysis Systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ Foseco and ProService have joined forces to drive the development of thermal analysis as the leading metallurgical control tool for iron foundries. As part of the agreement, Foseco has funded the development of a web-based version of ITACA and ProService have appointed Foseco as exclusive distributors for its ITACA Thermal Analysis systems.

  11. Ex-WTO Chief and lndustry Veteran join CNOOC's Advisory Body

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    CNOOC Limited announced on March 20 that world-renowned corporate leaders, Mr. Peter Sutherland, a non-executive Chairman of BP plc andex-Director general of WTO organization and Professor Cornelius Herkstrǒter, a retired Chairman of Royal Dutch/Shell have joined the International Advisory Board (“IAB”) of the Company.

  12. FATHER, SOCIAL BOND AND WOMEN

    Directory of Open Access Journals (Sweden)

    SYLVIA DE CASTRO KORGI

    2006-05-01

    Full Text Available On the cross-point of two of the most important and inseparable Freudian questions: What is a father?and, What a woman wants?, this paper begins a reflection about the women’s place in the Freudianarticulation of the relationship between the father and the social bond. In fact, the Freudian father, thanksto the law mediation which he is its agent, has as a function the regulation of the pleasure that participatesin the social bond, making this way possible the human community. On the other hand, the support ofthe human community is the bond among brothers, as well as Freud presents it in his foundational textof the Law. How to precise the women’s place in this arrangement? The reflection stands out this thatexceeds the Father’s Law and that Freud sets on women’s account, initially under the figure of heropposition to the culture.

  13. Space construction requirements for joining, inspection, development testing, and flight checkout

    Science.gov (United States)

    Morgenthaler, George W.; Nii, Kendall M.

    1990-01-01

    Space construction poses new challenges not yet met in the space program to date. New materials: High strength to weight ratio metal matrix composites and other kinds of composites have been developed. They have not been fully characterized as regards rolling, drilling, cutting, forming, joining, etc. New joining methods: Many types of joining methods are proposed for use in space construction. It is important to understand the key discriminators in choosing one method over another. Once the discriminators are known, one can rank the various methods of joining or connecting things in space. New constructors: Astronauts frequently mention that EVA effort is very exhausting because of the suit inflexibility. For these reasons, as well as the inherent risk, hazards due to radiation, and other concerns mentioned in the literature, it is likely that robot workers of various sorts will play a key role. Now one must consider the question of qualifying space joining methods that will be applied by robots as well as those being applied by humans. New NDE methods/space qualification of detectors: For every joining method that is used here on earth, there are various non-destructive inspection techniques, such as ultrasonic inspection and x-ray inspection. It will be necessary to develop inspection techniques for all joining methods that will be approved for use in space. The detector must also be space qualified. Development testing: As a new concept for space habitat goes through its conceptual phases, various development tests are anticipated for the first time. Some elements cannot be adequately tested except in space itself. Flight check-out: Assuming that one is assembling the Mars spacecraft in earth orbit and that all of the preceding questions have been resolved, the day finally arrives when the fully assembled vehicle is ready for occupancy and journeying to Mars. It will be necessary to conduct a final flight readiness review, countdown procedure, and certification

  14. Status of Joining Thin Sheet and Thin Wall Tubes of 14YWT

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    Beginning this fiscal year, the FCRD research project initiated an investigation on joining thin sections of the advanced ODS 14YWT ferritic alloy. Friction stir welding (FSW) was investigated as a method to join thin plate and tubing of 14YWT since it is a solid state joining method that has been shown in past studies to be a promising method for joining plates of ODS alloys, such as 14YWT. However, this study will attempt to be the first to demonstrate if FSW can successfully join thin plates and thin wall tubing of 14YWT. In the first FSW attempt, a 1.06 cm thick plate of 14YWT (SM13 heat) was successfully rolled at 1000ºC to the target thickness of 0.1 cm with no edge cracking. This achievement is a highlight since previous attempts to roll 14YWT plates have resulted in extensive cracking. For the FSW run, a pin tool being developed by the ORNL FSW Process Development effort was used. The first FSW run successfully produced a bead-on-plate weld in the 0.1 cm thick plate. The quality of the weld zone appears very good with no evidence of large defects such as cavities. The microstructural characterization study of the bead-on-plate weld zone has been initiated to compare the results of the microstructure analysis with those obtained in the reference microstructural analysis of the 14YWT (SM13 heat) that showed ultra-fine grain size of 0.43 μm and a high number density of ~2-5 nm sizes oxygen-enriched nanoclusters.

  15. Stephen Sundlof joins Center for Public and Corporate Veterinary Medicine

    OpenAIRE

    Owczarski, Mark

    2010-01-01

    Dr. Stephen F. Sundlof , director of the Center for Food Safety and Applied Nutrition (CFSAN) for the U.S. Food and Drug Administration (FDA), has accepted a two-year assignment with the Center for Public and Corporate Veterinary Medicine, part of the Virginia-Maryland Regional College of Veterinary Medicine, to expand its programs related to food safety and security.

  16. Joining the club: Conforming to and resisting biology in practice

    Science.gov (United States)

    Buxton, Cory Alexander

    2000-10-01

    This study explores how science and scientists were produced and reproduced within the setting of a university biology department. It builds upon recent work in anthropology of education and feminist science studies. My purpose was to look at both the contextual and constitutive values of science as they were negotiated and played out in the training of scientists in a setting where: (1) women were well represented in leadership positions; and (2) "mainstream" science was being both taught and practiced. Findings included the organization of a status hierarchy within the department, the meanings of science and scientists that students constructed within the social spaces they occupied, examples of individual resistance to certain norms of biology practice, and examples of institutional opposition to that resistance. There was some evidence that the unusually high representation of women in positions of leadership in the biology department did result in changes in both the contextual and constitutive values of how science was conceptualized, practiced and taught in this setting. Contextually, social spaces controlled by women were likely to emphasize: (1) teamwork bringing together participants with varied backgrounds and perspectives; (2) flexible and collaborative use of physical space; and (3) willingness to do work for which they went unacknowledged or to share rewards equally even when the work distribution was not equitable. Constitutively, these social spaces were prone to: (1) interdisciplinary synthesis and comprehensive approaches; (2) the study of topics that reconsidered beliefs about gender roles in plant and animal reproduction; (3) work that would be slower and take longer to produce (and publish) but might make a large contribution (be a high quality product) eventually; and (4) an awareness by women that their practices were different in some ways than the practices of their male colleagues.

  17. Space systems engineering and risk management - joined at the hip

    Science.gov (United States)

    Rose, James R.

    2004-01-01

    This paper explores the separate skills and capabilities practiced until now, and the powerful coupling to be achieved, practically and effectively, in implementing a space mission, from inception (pre-phase A) to the end of Operations (phase E). The use of risk assessment techniques in balancing cost risk against performance risk, and the application of the systems engineering team in these trades, is the key to achieving this new implementation paradigm.

  18. Shanghai and Hong Kong Join Efforts for Oil Futures Exchanges

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Shanghai Futures Exchange (SHFE) and Hong Kong Exchanges and Clearing Limited (HKEx) announced in midApril they will jointly introduce crude oil futures. The two exchanges will jointly develop an energy derivatives market that serves both Chinese and international investors,according to a memorandum of understanding (MOU) signed between the two exchanges.

  19. Talking REDD+: Beyond forestry - joining up and moving forward

    Energy Technology Data Exchange (ETDEWEB)

    Nhantumbo, Isilda; Rolington, Leianne

    2011-12-15

    On Sunday 27 November 2011, the eve of the 17th conference of the parties to the UNFCCC (COP17), the International Institute for Environment and Development, together with its partners, hosted a South-South learning event, 'REDD+, poverty reduction and sustainable development: are there cost-effective and pro-poor options?' This was a platform to share information about the practices that already work, to discuss how REDD+ can build on and scale up cost-effective options that deal with the fundamental problem of climate change. Deforestation and degradation of forests requires concerted interventions across national and regional borders. Learning from each other's experience in dealing with the underlying problems and understanding how to adapt them to a different local context is critical – and will help to both ensure its success and to lower transaction costs. This briefing gives an overview of the key REDD+ issues, in particular: integrating mitigation and adaptation actions; addressing tenure; learning from participatory forest management and payment for ecosystems services; taking the right approach to gender; developing safeguards to minimize negative impacts of REDD+; and strengthening South-South collaboration to reduce the transaction costs of REDD+.

  20. OF ALIENATION, ASSOCIATION, AND ADVENTURE: WHY GERMAN FIGHTERS JOIN ISIL

    Directory of Open Access Journals (Sweden)

    Dorle Hellmuth

    2016-03-01

    Full Text Available This article provides an analysis of German foreign fighters who have left for Syria and Iraq since early 2012 and make up the second largest contingent among Western foreign fighters. It draws on statistical information about German foreign fighters, but also uses case studies in an attempt to shed more detailed light on their motivations and why they became radicalized. Drawing on recently released government data, trial documents, and media reports, the article seeks to contribute to new research on the prevailing mechanisms of Jihadi radicalization. To facilitate this kind of comprehensive analysis, McCauley and Moskalenko’s Friction framework is applied to fourteen prominent German fighters, including Denis Cuspert (who served as medium-level ISIL propaganda official, Philip Bergner and Robert Baum (responsible for ISIL suicide attacks in Iraq and Syria, Kreshnik B. and Harun Pashtoon (among the first returning fighters convicted of ISIL membership and other terrorist activities. The article concludes with a discussion of countermeasures used to prevent foreign fighters from leaving Germany, deradicalize those who have started to embrace violent ideas and/or actions, and deal with returning foreign fighters.

  1. Aria Sardinia: the on line community joining tradition and innovatiom

    Directory of Open Access Journals (Sweden)

    Fabrizio Lao

    2005-12-01

    Full Text Available The "ARIA Sardinia" project (Network Actions for Italians Abroad has been especially designed to integrate and give value to the network of relationships between public administrations, local socio-economic stakeholders and Italian communities abroad, this goal to be pursued with the support of new technologies and learning approaches emerging within the context of on line interest communities. The general objective of the project is the development of competencies and knowledge, intended to combine specific technical skills with local "territorial knowledge", in a process where the strengthening and the dissemination of these forms of culture come from the prompt use of innovative tools. The main activities of the project are the actions intended to guide and assist entrepreneurs, associations, development projects' partners or promoters in the path of acquisition and dissemination of the competencies which are necessary to the involvement of Italians abroad into the internationalization process of Sardinian economy. ARIA Sardinia was funded by the Italian Foreign Affairs Ministry and the European Social Fund (FSE, within the framework of the National Operational Program for Technical Assistance and System Action (PON ATAS aimed at specific promotion initiatives and fostering of permanent links between Southern Italy economy and Italians living abroad. Keywords: on line community, networking, Italians abroad, Sardinian economy, Sardinia, culture.

  2. Mexico joins the venture: Joint Implementation and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Imaz, M.; Gay, C.; Friedmann, R.; Goldberg, B.

    1998-11-01

    Joint Implementation (JI) and its pilot phase of Activities Implemented Jointly (AIJ) are envisioned as an economic way of reducing global emissions of greenhouse gases. This paper draws upon the Mexican experience with AIJ to identify Mexican concerns with AIJ/JI and proposed solutions to these. Three approved Mexican AIJ projects (Ilumex, Scolel Te, and Salicornia) are described in detail. The Ilurnex project promotes the use of compact fluorescent lamps in Mexican homes of the States of Jalisco and Nuevo Leon, to reduce electric demand. Scolel Te is a sustainable forest management project in Chiapas. Salicornia examines the potential for carbon sequestration with a Halophyte-based crop irrigated with saline waters in Sonora. These three projects are reviewed to clarify the issues and concerns that Mexico has with AIJ and JI and propose measures to deal with them. These initial Mexican AIJ projects show that there is a need for creation of standard project evaluation procedures, and criteria and institutions to oversee project design, selection, and implementation. Further JI development will be facilitated by national and international clarification of key issues such as additionality criteria, carbon-credit sharing, and valuation of non-GHG environmental and/or social benefits and impacts for AIJ projects. Mexico is concerned that JI funding could negatively impact official development assistance or that OECD countries will use JI to avoid taking significant GHG mitigation actions in their own countries. The lack of carbon credit trading in the AIJ stage must be removed to provide useful experience on how to share carbon credits. National or international guidelines are needed to ensure that a portion of the carbon credits is allocated to Mexico.

  3. CERN and Caltech join forces to smash Internet speed record

    CERN Multimedia

    2003-01-01

    CERN and California Institute of Technology (Caltech) will receive an award for transferring over a Terabyte of data across 7,000 km of network at 5.44 gigabits per second (Gbps), smashing the old record of 2.38 Gbps achieved in February between CERN in Geneva and Sunnyvale in California by a Caltech, CERN, Los Alamos National Laboratory and SLAC team (1/2 page).

  4. Weldability and joining techniques for advanced fossil energy system alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  5. Joining of Ukraine to the European scientific and metric systems

    Directory of Open Access Journals (Sweden)

    O.M. Sazonets

    2015-09-01

    Full Text Available At the present stage of development it is necessary to form the knowledge which structures knowledge as the object of management. In conditions of technological globalism there are structural changes in the information environment of countries. Scientific metrics is sufficiently developed in other countries, especially in the EU. The article contains the description of the first index calculation system of scientific references called Science Citation Index (SCI. The main advantage of this project was searching for information not only by the author and thematic categories, but also by the list of cited literature. The authors define the scientific and metric base in the following way: scientific and metric database (SMBD is the bibliographic and abstract database with the tools for tracking citations of articles published in scientific journals. The most prominent European scientific and metric bases are examined. The authors show that the bases have the performance assessment tools which track down the impact of scientific papers and publications of individual scientists and research institutions. The state of crisis in scientific and technological activities in Ukraine as well as the economy as a whole, needs immediate organization of national scientific and metric system.

  6. Sinopec and CNOOC Join Hands for Oil Import

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Sinopec and CNOOC, two of China's big-three oil companies, have set up a joint venture to import crude oil.The joint venture makes CNOOC the fifth largest crude oil importer in China. Following the move, CNOOC is also likely to gain government approval to build a large refinery and market oil products this year, company executives said.

  7. Joining the Game: Living and Learning as an Action Researcher

    Science.gov (United States)

    Hughes, Susan

    2016-01-01

    This study reports on graduate students' thoughts and beliefs about utilizing action research as a means of professional development two years after their graduation from a Master of Arts program in Education. Because many school districts now encourage teachers to engage in self-study and to collect data that informs their instruction, the author…

  8. Promoting metastasis: neutrophils and T cells join forces.

    Science.gov (United States)

    Fridlender, Zvi G; Albelda, Steven M; Granot, Zvi

    2015-07-01

    The role neutrophils play in cancer is a matter of debate as both pro- and anti-tumor functions have been documented. In a recent publication in Nature, Coffelt et al. identify a new mechanism where neutrophils and T cells cooperate to generate metastasis-supporting immune suppression. PMID:26138787

  9. Elections for staff representatives – Join, commit and vote!

    CERN Multimedia

    Staff Association

    2015-01-01

    The Staff Council is a statutory body representing collectively in the area of employment conditions all CERN staff members (MPE and MPA), as well as the pensioners, former Cernois. The Staff Council is the supreme representative body of the CERN staff and pensioners, which defines the main lines of the policy of the Staff Association. The Staff Council is composed of staff representatives (45 seats to represent staff members, and 5 for representing fellows and associate members), as well as delegates for pensioners (seven positions), designated by GAC-EPA. Every two years, the Council is renewed through elections. Concerning the 45 delegates representing staff members, all departments have a least two seats allocated, one in career paths AA to D and one in career paths E to H. This guarantees a fair distribution of seats among the various organizational units and career paths. The table below, shows the exact number of delegates per department and career paths. Staff members or fellows who want to participa...

  10. Localisation - When Language, Culture and Technology Join Forces

    Directory of Open Access Journals (Sweden)

    Jody Byrne

    2012-08-01

    Full Text Available When you switch on your computer and type up a letter, what language do you see? What about when you visit a website or play a computer game? Does your mobile phone speak your language? Chances are that each of these technological marvels of the modern age communicates with you in your own language. For many of us, this is so commonplace and seamless that we hardly give it a moment's thought but behind the scenes there is a whole industry dedicated to making sure that technology bridges the gap between language and culture without you even noticing.

  11. Joining a healing community for cancer: who and why?

    Science.gov (United States)

    Sutherland, C E; Goldstein, M S

    1992-08-01

    This paper provides a description and evaluation of selected aspects of The Wellness California. Based upon participant observation, TWC's philosophy and program are described. The ways in which charismatic leadership is used to create a sense of 'healing charisma' is specified. Interviews were conducted at 3 points over a 10 month period with 65 individuals who initiated contact with TWC. Thirty-seven eventually became participants at TWC, while the 28 who did not were used as a comparison group. Participants were healthier, more oriented toward self-care and less satisfied with their existing social support networks. The findings indicate the role, and limitations, of healing communities for people with chronic physical illness. PMID:1519085

  12. ITs in Engineering Education: Joining Efforts Between SPEE and IGIP

    Directory of Open Access Journals (Sweden)

    Alberto Cardoso

    2012-01-01

    Full Text Available The International Society for Engineering Education (IGIP and The Portuguese Society for Engineering Education (SPEE, the first being the oldest European Society for Engineering Education in Europe and the second the very young Society for Engineering Education in Portugal, have been intensifying the collaboration between the two societies as well as the exchange and dissemination of information about their relevant activities, whilst promoting understanding and cooperation between their respective members. One possible way is to create joint working groups, open to the members of both societies, on common topics of interest. In fact, both societies already kicked off this activity. The first initiative happened during the 1st World Engineering Education Flash Week (WEE, Lisbon, 2011. The SPEE-IGIP Flash Moment was a one day event integrated in the main Conference, which was dedicated to “Information & Communication Technologies in Engineering Education”.
    ITs allow the development of different teaching strategies which contribute to enhance the learning outcomes of students. ITs are also particularly suited to develop Life Long Learning tools, in a broad range of Engineering subjects, either open to the general market or oriented to a very specific public.
    Examples of teaching strategies involving ITs have been addressed during the Flash Moment SPEE-IGIP which took place during WEE, and some are described in detail in the present work.

  13. Characteristics of deformation joining of aluminum-stainless steel composite sheet

    Institute of Scientific and Technical Information of China (English)

    李培武; 孙康宁; 李爱民; 李中友; 刘秀忠; 栾新民; 徐秀丽

    2003-01-01

    In order to study the characteristics of deformation joining of aluminum-stainless steel composite sheet,an applied example of this composite sheet was given.The conditions of the composite sheet were discussed,the optical micrographs and scanning electron micrographs were examined by contrast ways of deformation joining and braze joining.Simultaneously the analysis of energy spectrum was also conducted.The results indicate that the deformation joining composite sheet possesses high bonding strength,good corrosion resistance,less inclusions and less microcracks.

  14. Joining and Integration of Silicon Nitride Ceramics for Aerospace and Energy Systems

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2009-01-01

    Light-weight, creep-resistant silicon nitride ceramics possess excellent high-temperature strength and are projected to significantly raise engine efficiency and performance when used as turbine components in the next-generation turbo-shaft engines without the extensive cooling that is needed for metallic parts. One key aspect of Si3N4 utilization in such applications is its joining response to diverse materials. In an ongoing research program, the joining and integration of Si3N4 ceramics with metallic, ceramic, and composite materials using braze interlayers with the liquidus temperature in the range 750-1240C is being explored. In this paper, the self-joining behavior of Kyocera Si3N4 and St. Gobain Si3N4 using a ductile Cu-based active braze (Cu-ABA) containing Ti will be presented. Joint microstructure, composition, hardness, and strength as revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Knoop microhardness test, and offset compression shear test will be presented. Additionally, microstructure, composition, and joint strength of Si3N4/Inconel 625 joints made using Cu-ABA, will be presented. The results will be discussed with reference to the role of chemical reactions, wetting behavior, and residual stresses in joints.

  15. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  16. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    Energy Technology Data Exchange (ETDEWEB)

    Vannod, J., E-mail: jonas.vannod@a3.epfl.ch [Centre Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Laboratoire de Simulation des Materiaux, EPFL, CH-1015 Lausanne (Switzerland); Bornert, M. [Laboratoire Navier, Universite Paris Est, Ecole des Ponts ParisTech, F-77455 Marne-la-Vallee (France); Bidaux, J.-E. [University of Applied Sciences Western Switzerland, CH-1950 Sion (Switzerland); Bataillard, L. [Heraeus Medical Components Division, CH-1400 Yverdon-les-bains (Switzerland); Karimi, A. [Institut de Physique de la Matiere Condensee, EPFL, CH-1015 Lausanne (Switzerland); Drezet, J.-M. [Laboratoire de Simulation des Materiaux, EPFL, CH-1015 Lausanne (Switzerland); Rappaz, M., E-mail: michel.rappaz@epfl.ch [Laboratoire de Simulation des Materiaux, EPFL, CH-1015 Lausanne (Switzerland); Hessler-Wyser, A., E-mail: aicha.hessler@epfl.ch [Centre Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2011-10-15

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  17. Diffusion bonding and brazing of high purity copper for linear collider accelerator structures

    Science.gov (United States)

    Elmer, J. W.; Klingmann, J.; van Bibber, K.

    2001-05-01

    Diffusion bonding and brazing of high purity copper were investigated to develop procedures for joining precision machined copper components for the Next Linear Collider (NLC). Diffusion bonds were made over a range of temperatures from 400 °C to 1000 °C, under two different loading conditions [3.45 kPa (0.5 psi) and 3.45 MPa (500 psi)], and on two different diamond machined surface finishes. Brazes were made using pure silver, pure gold, and gold-nickel alloys, and different heating rates produced by both radiation and induction heating. Braze materials were applied by both physical vapor deposition (PVD) and conventional braze alloy shims. Results of the diffusion bonding experiments showed that bond strengths very near that of the copper base metal could be made at bonding temperatures of 700 °C or higher at 3.45 MPa bonding pressure. At lower temperatures, only partial strength diffusion bonds could be made. At low bonding pressures (3.45 kPa), full strength bonds were made at temperatures of 800 °C and higher, while no bonding (zero strength) was observed at temperatures of 700 °C and lower. Observations of the fracture surfaces of the diffusion bonded samples showed the effects of surface finish on the bonding mechanism. These observations clearly indicate that bonding began by point asperity contact, and flatter surfaces resulted in a higher percentage of bonded area under similar bonding conditions. Results of the brazing experiments indicated that pure silver worked very well for brazing under both conventional and high heating rate scenarios. Similarly, pure silver brazed well for both the PVD layers and the braze alloy shims. The gold and gold-containing brazes had problems, mainly due to the high diffusivity of gold in copper. These problems led to the necessity of overdriving the temperature to ensure melting, the presence of porosity in the joint, and very wide braze joints. Based on the overall findings of this study, a two-step joining method

  18. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    Science.gov (United States)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  19. RECQ HELICASE RECQL4 PARTICIPATES IN NON-HOMOLOGOUS END JOINING AND INTERACTS WITH THE KU COMPLEX

    DEFF Research Database (Denmark)

    Shamanna, Raghavendra A; Singh, Dharmendra Kumar; Lu, Huiming;

    2014-01-01

    on the activity of DNA-PK, extracts from RECQL4 knockdown cells display reduced end-joining activity on DNA substrates with cohesive and non-cohesive ends. Depletion of RECQL4 also reduced the end joining activity on a GFP reporter plasmid in vivo. Knockdown of RECQL4 increased the sensitivity of cells to γ...

  20. Exploring the Fitness Centre Industry in Malaysia; What Factors Influence Joining and Retention and Prevents People from Joining

    OpenAIRE

    Smith, Helen B

    2008-01-01

    Malaysia’s fitness centre industry has seen rapid growth over the last 6 years with the opening of more than 25 international chain outlets of which the majority is owned by California Fitness, Celebrity Fitness, Fitness First and True Fitness. An increasing population and year on year GDP growth, together with the support of the Malaysian government, contribute to further the growth of the industry. The purpose of the study is to explore, investigate and reveal information about the growth a...

  1. DNA Ligases I and III Cooperate in Alternative Non-Homologous End-Joining in Vertebrates

    OpenAIRE

    Katja Paul; Minli Wang; Emil Mladenov; Alena Bencsik-Theilen; Theresa Bednar; Wenqi Wu; Hiroshi Arakawa; George Iliakis

    2013-01-01

    Biochemical and genetic studies suggest that vertebrates remove double-strand breaks (DSBs) from their genomes predominantly by two non-homologous end joining (NHEJ) pathways. While canonical NHEJ depends on the well characterized activities of DNA-dependent protein kinase (DNA-PK) and LIG4/XRCC4/XLF complexes, the activities and the mechanisms of the alternative, backup NHEJ are less well characterized. Notably, the contribution of LIG1 to alternative NHEJ remains conjectural and although bi...

  2. Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate

    International Nuclear Information System (INIS)

    Fractal-inspired designs for interconnects that join rigid, functional devices can ensure mechanical integrity in stretchable electronic systems under extreme deformations. The bonding configuration of such interconnects with the elastomer substrate is crucial to the resulting deformation modes, and therefore the stretchability of the entire system. In this study, both theoretical and experimental analyses are performed for postbuckling of fractal serpentine interconnects partially bonded to the substrate. The deformation behaviors and the elastic stretchability of such systems are systematically explored, and compared to counterparts that are not bonded at all to the substrate

  3. Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haoran [Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Departments of Civil and Environmental Engineering and Mechanical Engineering, Center for Engineering and Health, Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Xu, Sheng; Rogers, John A., E-mail: y-huang@northwestern.edu, E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Xu, Renxiao; Huang, Yonggang, E-mail: y-huang@northwestern.edu, E-mail: jrogers@illinois.edu [Departments of Civil and Environmental Engineering and Mechanical Engineering, Center for Engineering and Health, Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Jiang, Jianqun [Department of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Yihui [Departments of Civil and Environmental Engineering and Mechanical Engineering, Center for Engineering and Health, Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States); Center for Mechanics and Materials, Tsinghua University, Beijing 100084 (China)

    2015-03-02

    Fractal-inspired designs for interconnects that join rigid, functional devices can ensure mechanical integrity in stretchable electronic systems under extreme deformations. The bonding configuration of such interconnects with the elastomer substrate is crucial to the resulting deformation modes, and therefore the stretchability of the entire system. In this study, both theoretical and experimental analyses are performed for postbuckling of fractal serpentine interconnects partially bonded to the substrate. The deformation behaviors and the elastic stretchability of such systems are systematically explored, and compared to counterparts that are not bonded at all to the substrate.

  4. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  5. Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding

    International Nuclear Information System (INIS)

    In this study, AISI 316L series austenitic stainless steel sheets were joined by tungsten inert gas welding method in continuous and pulsed currents. Regarding microstructural investigation and hardness values of weld metal, samples were welded to investigate the effect of current type on grain structures of weld metal. Results showed that samples welded by using pulsed current had considerable different properties compared to the samples welded by using continuous current. While the weld metals of joinings obtained by using continuous current displayed a coarse-grained and columnar structure, weld metals obtained by using pulsed current had a finer-grained structure. It was also found that hardness values of samples, which were welded with continuous and pulsed current, were quite different.

  6. Equitable Strong Edge Coloring of the Joins of Paths and Cycles

    Institute of Scientific and Technical Information of China (English)

    Tao WANG; Ming Ju LIU; De Ming LI

    2012-01-01

    For a proper edge coloring c of a graph G,if the sets of colors of adjacent vertices are distinct,the edge coloring c is called an adjacent strong edge coloring of G.Let ci be the number of edges colored by i.If |ci - cj| ≤ 1 for any two colors i and j,then c is an equitable edge coloring of G.The coloring c is an equitable adjacent strong edge coloring of G if it is both adjacent strong edge coloring and equitable edge coloring.The least number of colors of such a coloring c is called the equitable adjacent strong chromatic index of G.In this paper,we determine the equitable adjacent strong chromatic index of the joins of paths and cycles.Precisely,we show that the equitable adjacent strong chromatic index of the joins of paths and cycles is equal to the maximum degree plus one or two.

  7. Community, joining and specialization in open source software innovation: A case study

    OpenAIRE

    Vonkrogh, Georg; Spaeth, Sebastian; Lakhani, Karim

    2003-01-01

    This paper develops an inductive theory of the open source software (OSS) innovation process by focussing on the creation of Freenet, a project aimed at developing a decentralized and anonymous peer-to-peer electronic file sharing network. We are particularly interested in the strategies and processes by which new people join the existing community of software developers, and how they initially contribute code. Analyzing data from multiple sources on the Freenet software development process, ...

  8. Paying clinicians to join clinical trials: a review of guidelines and interview study of trialists

    OpenAIRE

    Hawker Sheila; Kerr Christine; Raftery James; Powell John

    2009-01-01

    Abstract Background The motivations of clinicians to participate in clinical trials have been little studied. This project explored the potential role of payment for participation in publicly funded clinical trials in the UK. The aims were to review relevant guidelines and to collate and analyse views of clinical trialists on the role of payments and other factors that motivated clinicians to join clinical trials. Methods Review of guidelines governing payments to clinicians for recruitment t...

  9. A Combined Experimental and Numerical Approach to the Laser Joining of Hybrid Polymer - Metal Parts

    Science.gov (United States)

    Rodríguez-Vidal, E.; Lambarri, J.; Soriano, C.; Sanz, C.; Verhaeghe, G.

    A two-step method for the joining of opaque polymer to metal is presented. Firstly, the metal is structured locally on a micro-scale level, to ensure adhesion with the polymeric counterpart. In a second step, the opposite side of the micro-structured metal is irradiated by means of a laser source. The heat thereby created is conducted by the metal and results in the melting of the polymer at the interface. The polymer thereby adheres to the metal and flows into the previously engraved structures, creating an additional mechanical interlock between the two materials. The welding parameters are fine-tuned with the assistance of a finite element model, to ensure the required interface temperature. The method is illustrated using a dual phase steel joined to a fiber-reinforced polyamide. The effect of different microstructures, in particular geometry and cavity aspect ratio, on the joint's tensile-shear mechanical performance is discussed.

  10. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  11. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications, phase 2

    Science.gov (United States)

    Sundberg, G. J.; Vartabedian, A. M.; Wade, J. A.; White, C. S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP'ed Si3N4 with 4wt% Y2O3 (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  12. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  13. A joined multi-metric calibration of river discharge and nitrate loads with different performance measures

    Science.gov (United States)

    Haas, Marcelo B.; Guse, Björn; Pfannerstill, Matthias; Fohrer, Nicola

    2016-05-01

    Hydrological models are useful tools to investigate hydrology and water quality in catchments. The calibration of these models is a crucial step to adapt the model to the catchment conditions, allowing effective simulations of environmental processes. In the model calibration, different performance measures need to be considered to represent different hydrology and water quality conditions in combination. This study presents a joined multi-metric calibration of discharge and nitrate loads simulated with the ecohydrological model SWAT. For this purpose, a calibration approach based on flow duration curves (FDC) is advanced by also considering nitrate duration curves (NDC). Five segments of FDCs and of NDCs are evaluated separately to consider the different phases of hydrograph and nitrograph. To consider both magnitude and dynamics in river discharge and nitrate loads, the Kling-Gupta Efficiency (KGE) is used additionally as a statistical performance metric to achieve a joined multi-variable calibration. The results show that a separate assessment of five different magnitudes improves the calibrated nitrate loads. Subsequently, adequate model runs with good performance for different hydrological conditions both for discharge and nitrate are detected in a joined approach based on FDC, NDC, and KGE. In that manner, plausible results were obtained for discharge and nitrate loads in the same model run. Using a multi-metric performance approach, the simultaneous multi-variable calibration led to a balanced model result for all magnitudes of discharge and nitrate loads.

  14. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  15. Coincident In Vitro Analysis of DNA-PK-Dependent and -Independent Nonhomologous End Joining

    Directory of Open Access Journals (Sweden)

    Cynthia L. Hendrickson

    2010-01-01

    Full Text Available In mammalian cells, DNA double-strand breaks (DSBs are primarily repaired by nonhomologous end joining (NHEJ. The current model suggests that the Ku 70/80 heterodimer binds to DSB ends and recruits DNA-PKcs to form the active DNA-dependent protein kinase, DNA-PK. Subsequently, XRCC4, DNA ligase IV, XLF and most likely, other unidentified components participate in the final DSB ligation step. Therefore, DNA-PK plays a key role in NHEJ due to its structural and regulatory functions that mediate DSB end joining. However, recent studies show that additional DNA-PK-independent NHEJ pathways also exist. Unfortunately, the presence of DNA-PKcs appears to inhibit DNA-PK-independent NHEJ, and in vitro analysis of DNA-PK-independent NHEJ in the presence of the DNA-PKcs protein remains problematic. We have developed an in vitro assay that is preferentially active for DNA-PK-independent DSB repair based solely on its reaction conditions, facilitating coincident differential biochemical analysis of the two pathways. The results indicate the biochemically distinct nature of the end-joining mechanisms represented by the DNA-PK-dependent and -independent NHEJ assays as well as functional differences between the two pathways.

  16. Method for reactively joining materials

    OpenAIRE

    Brinkman, H J; Duszczyk, J.; Katgerman, L

    2000-01-01

    Method for reactively joining materials in solid form, such as intermetallic compounds and technical ceramics, wherein: a) a mixed powder is provided in solid form between the materials to be joined; b) at least the powder mixture is locally heated, causing exothermic reactions to take place, whereby the heat is released at the contact surfaces of the materials to be joined, where it causes a local melting; and c) subsequently cools down. At least one of the materials to be joined has a melti...

  17. Development and Characterization of the Bonding and Integration Technologies Needed for Fabricating Silicon Carbide Based Injector Components

    Science.gov (United States)

    Halbig,Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  18. Mechanical and microstructural behaviour during bonding of alumina to niobium by liquid state diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Lemus R, J.; Ramirez R, M. I.; Verduzco M, J. A.; Zarate M, J., E-mail: jlruiz@umich.mx [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigacion en Metalurgia y Materiales, Francisco Mujica s/n, 58000 Morelia, Michoacan (Mexico)

    2015-10-15

    The objective of this work was to study various aspects of liquid state diffusion bonding of cylindrical samples of Al{sub 2}O{sub 3} and commercially pure niobium (99.7%) by brazing using a 25 μm thick 70/Cu-30/Zn (wt %) alloy as joining element. Initially, sintering of alumina powder was carried out in order to produce a 7 mm diameter samples at 1550 degrees C by 60 minutes. Joining experiments were carried out on Al{sub 2}O{sub 3}/Cu-Zn/Nb/Cu-Zn/Al{sub 2}O{sub 3} sandwich-like combinations at temperature of 920, 950 and 980 degrees C using vary holding times under Ar. The experimental results show a successful joining of Al{sub 2}O{sub 3} to Nb at 950 and 980 degrees C, however not at 920 degrees C. Joining of Al{sub 2}O{sub 3}/Cu-Zn/Nb/Cu-Zn/Al{sub 2}O{sub 3} occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Scanning electron microscopy (Sem) micrographs show the layer formed in the reaction zone. It was observed that the width of the reaction zone increases with bonding temperature and time. Electron probe microanalysis (Epma) revealed that at any particular bonding temperature, Nb travel into the Cu-Zn joining element forming a circular precipitate phase near to the Al{sub 2}O{sub 3} ceramic. Shears test evaluation show results vary from 57 to 127 MPa in samples joined at 980 degrees C and time vary from 10 to 35 minutes, respectively. (Author)

  19. Mechanical and microstructural behaviour during bonding of alumina to niobium by liquid state diffusion

    International Nuclear Information System (INIS)

    The objective of this work was to study various aspects of liquid state diffusion bonding of cylindrical samples of Al2O3 and commercially pure niobium (99.7%) by brazing using a 25 μm thick 70/Cu-30/Zn (wt %) alloy as joining element. Initially, sintering of alumina powder was carried out in order to produce a 7 mm diameter samples at 1550 degrees C by 60 minutes. Joining experiments were carried out on Al2O3/Cu-Zn/Nb/Cu-Zn/Al2O3 sandwich-like combinations at temperature of 920, 950 and 980 degrees C using vary holding times under Ar. The experimental results show a successful joining of Al2O3 to Nb at 950 and 980 degrees C, however not at 920 degrees C. Joining of Al2O3/Cu-Zn/Nb/Cu-Zn/Al2O3 occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Scanning electron microscopy (Sem) micrographs show the layer formed in the reaction zone. It was observed that the width of the reaction zone increases with bonding temperature and time. Electron probe microanalysis (Epma) revealed that at any particular bonding temperature, Nb travel into the Cu-Zn joining element forming a circular precipitate phase near to the Al2O3 ceramic. Shears test evaluation show results vary from 57 to 127 MPa in samples joined at 980 degrees C and time vary from 10 to 35 minutes, respectively. (Author)

  20. Effect of anodizing on pulsed Nd:YAG laser joining of polyethylene terephthalate (PET) and aluminium alloy (A5052)

    International Nuclear Information System (INIS)

    Highlights: ► Anodizing could improve the effectiveness of the laser joining process. ► Depth of molten pool will increase shear strength. ► Formation of bubbles will influence the shear strength. ► Shear strength is increased with increasing of heat input and pulse duration. -- Abstract: A series of laser joining experiments between polyethylene terephthalate (PET) and aluminium alloy (A5052) were conducted to investigate the effect of anodizing on A5052 surface on dissimilar materials used in joining. In this study, PET/A5052 joints with anodized A5052 surface exhibited greater shear strength compared to PET/A5052 joints without anodizing. The shear strength of the joints was increased with increasing of heat input and pulse duration. This indicates that the anodizing process could improve shear strength of the laser joining specimens. Significant molten pools were formed in both PET/A5052 (anodized) and PET/A5052 (as-received) joints except for PET/A5052 (as-received) sample joined at the lowest heat input and pulse duration. For the test results from laser joining under different pulse duration at the constant heat input, it was shown that joining behaviour was dominantly controlled by heat input and not by pulse duration.

  1. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    different from the conventional distance joins and closest pairs problems. We are not aware of efficient processing algorithms for RCJ in the literature. A brute-force solution requires computational cost quadratic to input size and it does not scale well for large datasets. In view of this, we develop...

  2. Microstructure, Mechanical Properties, Hot-Die Forming, and Joining of 47XD Gamma TiAl Rolled Sheets

    Science.gov (United States)

    Das, G.; Draper, S.; Whittenberger, J. D.; Bartolotta, P. A.

    2001-01-01

    The microstructure and mechanical properties, along with the hot-die forming and joining of Ti-47Al-2Nb-2Mn-0.8 vol% TiB, sheets (known as 47XD), produced by a low-cost rolling process, were evaluated. A near-gamma microstructure was obtained in the as-rolled condition. The microstructures of heat-treated sheets ranged from a recrystallized equiaxed near-gamma microstructure at 1,200 to 1,310 C, to a duplex microstructure at 1,350 C, to a fully lamellar microstructure at 1,376 C. Tensile behavior was determined for unidirectionally rolled and cross-rolled sheets for room temperature (RT) to 816 C. Yield stress decreased gradually with increasing deformation temperature up to 704 C; above 704 C, it declined rapidly. Ultimate tensile strength exhibited a gradual decrease up to 537 C before peaking at 704 C, followed by a rapid decline at 816 C. The modulus showed a gradual decrease with temperature, reaching approximately 72% of the RT value at 816 C. Strain to failure increased slowly from RT to 537 C; between 537 C and 704 C it exhibited a phenomenal increase, suggesting that the ductile-brittle transition temperature was below 704 C. Fracture mode changed from transgranular fracture at low temperature, to a mixture of transgranular and intergranular fracture at intermediate temperature, to ductile fracture at 816 C, coupled with dynamic recrystallization at large strains. Creep rupture response was evaluated between 649 and 816 C over the stress range of 69 to 276 MPa. Deformation parameters for steady-state creep rate and time-to-rupture were similar: activation energies of approximately 350 kJ/mol and stress exponents of approximately 4.5. Hot-die forming of sheets into corrugations was done at elevated temperatures in vacuum. The process parameters to join sheets by diffusion bonding and brazing with TiCuNi 70 filler alloy were optimized for test coupons and successfully used to fabricate large truss-core and honeycomb structures. Nondestructive evaluation

  3. Strength of Bond Covenants and Bond Assessment Framework

    Directory of Open Access Journals (Sweden)

    Noel Yahanpath

    2012-06-01

    Full Text Available We examine bond covenants of 29 New Zealand bond issues between 2001 and 2007.Results from the study indicate that protection provided for bondholders is weak and limited.On average, only 2-3 types of covenants are embedded with the issues and only 27% of thesecovenants provide full protection to the bondholders. However, bondholders are not compensated for taking the additional risk. We propose an alternative assessment framework that directly assesses the level of protection offered to bondholders. We calculate thecovenant quality score for the issues and classify them into four levels of protection: very high protection, moderate, low and very low. Recent legislative changes will go some way towards improving investor protection and confidence, but the effect is yet to be seen. This proposed scoring framework can be used by potential investors to complement the traditional credit ratings when making their investment decisions.

  4. Diversification, original sin, and international bond portfolios

    OpenAIRE

    John D. Burger; Warnock, Francis E.

    2003-01-01

    This paper has two main goals: to analyze country allocations in international bond portfolios and to describe the development of bond markets around the world. In the primary analysis, we find that country weights in U.S. investors' foreign bond portfolios are determined by the openness of capital accounts and potential diversification benefits. Positions in local-currency-denominated bonds are particularly sensitive to past and prospective volatility of returns. Analysis of reallocations in...

  5. European corporate bond liquidity and yield spreads

    OpenAIRE

    Pukka, Juhamatti

    2010-01-01

    PURPOSE OF THE STUDY The purpose of this study is to provide new empirical evidence on European corporate bond liquidity determinants and the liquidity effect on yield spreads. European corporate bond market is mostly ignored in corporate bond liquidity literature and this thesis’ purpose is to contribute to literature by being among the first papers to estimate liquidity determinants with comprehensive European corporate bond data, covering both investment grade and speculative grade rati...

  6. Effect of material flow on joint strength in activation spot joining of Al alloy and steel sheets

    Science.gov (United States)

    Watanabe, Goro; Yogo, Yasuhiro; Takao, Hisaaki

    2014-08-01

    A new joining method for dissimilar metal sheets was developed where a rotated consumable rod of Al alloy is pressed onto an Al alloy sheet at the part overlapped with a mild steel sheet. The metal flow in the joining region is increased by the through-hole in the Al sheet and consumable Al rod. The rod creates the joint interface and pads out of the thinly joined parts through pressing. This produces a higher joint strength than that of conventional friction stir spot welding. Measurements of the joint interface showed the presence of a 5-10 nm thick amorphous layer consisting of Al and Mg oxides.

  7. Joining Strength and Microstructure of Sintered SiC/SiC Joints Prepared by Active Brazing Process

    OpenAIRE

    LIU Yan,HUANG Zheng-Ren,LIU Xue-Jian,YUAN Ming

    2009-01-01

    Sintered SiC ceramics were brazed with itself by ternary Ag-Cu-Ti filler metal foil. Effects of brazing parameters such as temperature, holding time on joining strength, together with interface microstructure and reaction products were investigated. Experimental results indicate that joining strength has peak value with the increasing of brazing temperature and holding time, and the max fourª²point bending strength of SiC/SiC joints reaches 342MPa. The joining strength increases first with th...

  8. Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system

    Science.gov (United States)

    Prasad, Mandava; Mohamed, Shamil; Nayak, Krishna; Shetty, Sharath Kumar; Talapaneni, Ashok Kumar

    2014-01-01

    Background: The success of bonding brackets to enamel with resin bonding systems is negatively affected by contamination with oral fluids such as blood and saliva. The new self-etch primer systems combine conditioning and priming agents into a single application, making the procedure more cost effective. Objective: The purpose of the study was to investigate the effect of moisture, saliva and blood contamination on shear bond strength of orthodontic brackets bonded with conventional bonding system and self-etch bonding system. Materials and Methods: Each system was examined under four enamel surface conditions (dry, water, saliva, and blood), and 80 human teeth were divided into two groups with four subgroups each of 10 according to enamel surface condition. Group 1 used conventional bonding system and Group 2 used self-etched bonding system. Subgroups 1a and 2a under dry enamel surface conditions; Subgroups 1b and 2b under moist enamel surface condition; Subgroups 3a and 3b under saliva enamel surface condition and Subgroup 4a and 4b under blood enamel surface condition. Brackets were bonded, and all the samples were then submitted to a shear bond test with a universal testing machine with a cross head speed of 1mm/sec. Results: The results showed that the contamination reduced the shear bond strength of all groups. In self-etch bonding system water and saliva had significantly higher bond strength when compared to other groups. Conclusion: It was concluded that the blood contamination showed lowest bond strength from both bonding systems. Self-etch bonding system resulted in higher bond strength than conventional bonding system under all conditions except the dry enamel surface. PMID:24678210

  9. Transient liquid phase bonding of carbon steel tubes using a Cu interlayer: Characterization and comparison with amorphous Fe–B–Si interlayer bonds

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, Nicolas, E-mail: nicolasdiluozzo@gmail.com [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Boudard, Michel; Doisneau, Béatrice [Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Fontana, Marcelo; Arcondo, Bibiana [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2014-12-05

    Highlights: • Cu and Fe–B–Si foils were used as interlayers to bond steel tubes by TLPB process. • The microstructure and mechanical properties were characterized. • In Cu bonded samples, the solidification process was not systematically completed. • When using Cu foils, evidences of epitaxial solidification were observed. • Tensile tests show that Cu and Fe–B–Si bonded samples failed away from the joint. - Abstract: In the present work the transient liquid phase bonding process was performed to join seamless carbon steel tubes using commercially pure Cu interlayers. The structural and mechanical characteristics of the resulting bonds are compared with those achieved using amorphous Fe–B–Si interlayers, under the same process parameters: a holding temperature of 1300 °C, a holding time of 7 min and an applied pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed using electron probe microanalysis. Whereas the amorphous Fe-B-Si interlayer leads to a completion of the bonding process over the whole bonding area, the bond performed using a Cu interlayer achieved the completion of the bonding process only partially. As the Cu is a cementite promoter, the amount of cementite coexisting with ferrite grains is higher in the joint region (JR) – corresponding to the higher concentration of Cu – as compared with the heat affected zone (HAZ) and the base metal (BM). An opposite effect is observed when using Fe-B-Si interlayers due to the fact that the cementite is unable to form in Si enriched zones – the microstructure at the JR presents only ferrite grains. Tensile tests show that the joined tubes using Cu or Fe–B–Si interlayers failed away from the bond, at the HAZ, attaining almost the same ultimate tensile strength of the BM, in the as-received condition. Hardness

  10. Transient liquid phase bonding of carbon steel tubes using a Cu interlayer: Characterization and comparison with amorphous Fe–B–Si interlayer bonds

    International Nuclear Information System (INIS)

    Highlights: • Cu and Fe–B–Si foils were used as interlayers to bond steel tubes by TLPB process. • The microstructure and mechanical properties were characterized. • In Cu bonded samples, the solidification process was not systematically completed. • When using Cu foils, evidences of epitaxial solidification were observed. • Tensile tests show that Cu and Fe–B–Si bonded samples failed away from the joint. - Abstract: In the present work the transient liquid phase bonding process was performed to join seamless carbon steel tubes using commercially pure Cu interlayers. The structural and mechanical characteristics of the resulting bonds are compared with those achieved using amorphous Fe–B–Si interlayers, under the same process parameters: a holding temperature of 1300 °C, a holding time of 7 min and an applied pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed using electron probe microanalysis. Whereas the amorphous Fe-B-Si interlayer leads to a completion of the bonding process over the whole bonding area, the bond performed using a Cu interlayer achieved the completion of the bonding process only partially. As the Cu is a cementite promoter, the amount of cementite coexisting with ferrite grains is higher in the joint region (JR) – corresponding to the higher concentration of Cu – as compared with the heat affected zone (HAZ) and the base metal (BM). An opposite effect is observed when using Fe-B-Si interlayers due to the fact that the cementite is unable to form in Si enriched zones – the microstructure at the JR presents only ferrite grains. Tensile tests show that the joined tubes using Cu or Fe–B–Si interlayers failed away from the bond, at the HAZ, attaining almost the same ultimate tensile strength of the BM, in the as-received condition. Hardness

  11. Cut-and-join operators and N=4 super Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W. [DESY, Hamburg (Germany). Theory Group

    2010-02-15

    We show which multi-trace structures are compatible with the symmetrisation of local operators in N=4 super Yang-Mills when they are organised into representations of the global symmetry group. Cut-and-join operators give the non-planar expansion of correlation functions of these operators in the free theory. Using these techniques we find the 1/N corrections to the quarter-BPS operators which remain protected at weak coupling. We also present a new way of counting these chiral ring operators using the Weyl group S{sub N}. (orig.)

  12. Cut-and-join operators and N=4 super Yang-Mills

    International Nuclear Information System (INIS)

    We show which multi-trace structures are compatible with the symmetrisation of local operators in N=4 super Yang-Mills when they are organised into representations of the global symmetry group. Cut-and-join operators give the non-planar expansion of correlation functions of these operators in the free theory. Using these techniques we find the 1/N corrections to the quarter-BPS operators which remain protected at weak coupling. We also present a new way of counting these chiral ring operators using the Weyl group SN. (orig.)

  13. Cut-and-join operators and N=4 super Yang-Mills

    CERN Document Server

    Brown, T W

    2010-01-01

    We show which multi-trace structures are compatible with the symmetrisation of local operators in \\cN=4 super Yang-Mills when they are organised into representations of the global symmetry group. Cut-and-join operators give the non-planar expansion of correlation functions of these operators in the free theory. Using these techniques we find the 1/N corrections to the quarter-BPS operators which remain protected at weak coupling. We also present a new way of counting these chiral ring operators using the Weyl group S_N.

  14. Bonds and bands in semiconductors

    CERN Document Server

    Phillips, Jim

    2009-01-01

    This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s

  15. Bond Valuation for Colleges and Universities.

    Science.gov (United States)

    National Association of College and University Business Officers, Washington, DC.

    Bond valuation is examined to provide college administrators a more thorough understanding of the process to help them in developing their market values, or to help them in moving to a market valuation on bond holdings. Two methods presently used to value bonds, a matrix system and a trader quotation method, are described. An overview of bond…

  16. Bond Length and Bond Order in One of the Shortest Cr-Cr Bonds

    OpenAIRE

    La Macchia, Giovanni; Aquilante, Francesco; Veryazov, Valera; Roos, Bjorn O.; Gagliardi, Laura

    2008-01-01

    Multiconfigurational quantum chemical calculations on the R-diimines dichromium compound confirm that the Cr-Cr bond, 1.80 A, is among the shortest Cr (I)-Cr (I) bonds. However, the bond between the two Cr atoms is only a quadruple bond rather than a quintuple bond. The reason why the bond is so short has to be attributed to the strain in the NCCN ligand moieties.

  17. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one. PMID:21105726

  18. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bimal Kad

    2011-12-31

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep

  19. Microstructural and Mechanical Evaluation of a Cu-Based Active Braze Alloy to Join Silicon Nitride Ceramics

    Science.gov (United States)

    Singh, M.; Asthana, Rajiv; Varela, F. M.; Martinez-Fernandez, J.

    2010-01-01

    Self-joining of St. Gobain Si3N4 (NT-154) using a ductile Cu-Al-Si-Ti active braze (Cu-ABA) was demonstrated. A reaction zone approx.2.5-3.5 microns thick) developed at the interface after 30 min brazing at 1317 K. The interface was enriched in Ti and Si. The room temperature compressive shear strengths of Si3N4/Si3N4 and Inconel/Inconel joints (the latter created to access baseline data for use with the proposed Si3N4/Inconel joints) were 140+/-49MPa and 207+/-12MPa, respectively. High-temperature shear tests were performed at 1023K and 1073 K, and the strength of the Si3N4/Si3N4 and Inconel/Inconel joints were determined. The joints were metallurgically well-bonded for temperatures above 2/3 of the braze solidus. Scanning and transmission electron microscopy studies revealed a fine grain microstructure in the reaction layer, and large grains in the inner part of the joint with interfaces being crack-free. The observed formation of Ti5Si3 and AlN at the joint interface during brazing is discussed.

  20. Copper Wire Bonding Concerns and Best Practices

    Science.gov (United States)

    Chauhan, Preeti; Zhong, Z. W.; Pecht, Michael

    2013-08-01

    Copper wire bonding of microelectronic parts has developed as a means to cut the costs of using the more mature technology of gold wire bonding. However, with this new technology, changes in the bonding processes as well as bonding metallurgy can affect product reliability. This paper discusses the challenges associated with copper wire bonding and the solutions that the industry has been implementing. The paper also provides information to enable customers to conduct qualification and reliability tests on microelectronic packages to facilitate adoption in their target applications.

  1. Lif1 SUMOylation and its role in non-homologous end-joining

    OpenAIRE

    Vigasova, Dana; Sarangi, Prabha; Kolesar, Peter; Vlasáková, Danuša; Slezakova, Zuzana; Altmannova, Veronika; Nikulenkov, Fedor; Anrather, Dorothea; Gith, Rainer; Zhao, Xiaolan; Chovanec, Miroslav; Krejci, Lumir

    2013-01-01

    Non-homologous end-joining (NHEJ) repairs DNA double-strand breaks by tethering and ligating the two DNA ends. The mechanisms regulating NHEJ efficiency and interplay between its components are not fully understood. Here, we identify and characterize the SUMOylation of budding yeast Lif1 protein, which is required for the ligation step in NHEJ. We show that Lif1 SUMOylation occurs throughout the cell cycle and requires the Siz SUMO ligases. Single-strand DNA, but not double-strand DNA or the ...

  2. Emergence and oscillation of cosmic space by joining M1-branes

    OpenAIRE

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh(Department of Mathematics, Institute of Applied Sciences & Humanities, GLA University, Mathura, U.P., 281 406, India)

    2016-01-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises, how this model could explain the oscillation of universe between contraction and expansion branches? We try to address this issue in the framework of BIonic system. In this model, $M0$-branes join to each other and give rise to a pair of $M...

  3. Equivalence, reversibility and symmetry properties in fork/join queueing networks with blocking

    OpenAIRE

    Dallery, Yves; Liu, Zhen; Towsley, Don

    1990-01-01

    In this paper we study quantitative as well as qualitative properties of Fork/Join queueing networks with blocking (FJQN/B's). Specifically, we prove theorems regarding the equivalence of the behavior of a FJQN/B and that of its duals of a circuit-free FJQN/B, and a strongly connected marked graph. In addition, we obtain general conditions that must be satisfied by the service times to guarantee the existence of a long term throughput and its independence on the initial configuration. We also...

  4. Joining Forces

    DEFF Research Database (Denmark)

    Christiansen, Anne Mette

    2013-01-01

    The interest in Corporate Social Responsibility (CSR) has grown dramatically over the last three years in Greenland. A vast geographical area with a tiny population, Greenland has recently obtained self-government status and is going through a rapid development economically and socially as the...

  5. Joining Forces

    Science.gov (United States)

    Sawchuk, Stephen; Sparks, Sarah D.; Cavanagh, Sean; Samuels, Christina A.

    2011-01-01

    A mantra in recent years has been to blame the teachers' unions for many of the problems that beset public education. Americans only need look at Wisconsin, where the governor and lawmakers pushed through legislation curtailing the collective bargaining rights of teachers and other public employees. This special report examines the attempts by a…

  6. Mean sojourn time in two-queue fork-join systems: bounds and approximations

    OpenAIRE

    Kemper, B; Mandjes, M.

    2011-01-01

    This paper considers a fork-join system (or: parallel queue), which is a two-queue network in which any arrival generates jobs at both queues and the jobs synchronize before they leave the system. The focus is on methods to quantify the mean value of the ‘system’s sojourn time’ S: with S i denoting a job’s sojourn time in queue i, S is defined as max{S 1, S 2}. Earlier work has revealed that this class of models is notoriously hard to analyze. In this paper, we focus on the homogeneous case, ...

  7. Systems of joining undefitting in range of temperature 73 K-543 K between treated PTFE with metallic sodium and metals

    International Nuclear Information System (INIS)

    The systems of joining undefitting of the pieces of PTFE (Teflon) with the metals and the method of their achievement are described. These consist in joining through soldering with adhesive X60 or EP 310, made by HBM-Germany. This adhesive is coated on joining surface of the pieces, processed at a certain roughness in a layer of a calculated thickness. To achieve this joining the PTFE surface was subjected to a special treatment, which was achieved with metallic sodium. Following the joining by specific procedures of soldering, concomitant with plastic deformation of the metal, undefitting systems with unique characteristics and properties have resulted. The tests to which these systems were subjected have shown the tightness of the joining to high vacuum (∼ 10-9 torr) in conditions of repeated thermal shocks, in the temperature range of 73 K - 543 K. Superior mechanical characteristics were obtained and by the tests achieved according with the specific ASTM and DIN standards. Special characteristics of these systems made it possible their using in high technology: cryogenics, physics of the low temperatures, cosmic space, nuclear power plants, electrotechnology, chemical industry, the high vacuum technique, superinsulation, car industry and so on. (authors)

  8. FMEA and FTA Analyses of the Adhesive Joining Process using Electrically Conductive Adhesives

    Directory of Open Access Journals (Sweden)

    E. Povolotskaya

    2012-01-01

    Full Text Available This paper introduces a formulation of appropriate risk estimation methods that can be used for improving of processes in the electronics area. Two risk assessment methods have been chosen with regard to the specifics of adhesive joining based on electrically conductive adhesives. The paper provides a combination of a failure mode and effect analysis (FMEA and fault tree analysis (FTA for optimizing of the joining process. Typical features and failures of the process are identified. Critical operations are found and actions for avoiding failures in these actions are proposed. A fault treehas been applied to the process in order to get more precise information about the steps and operations in the process, and the relations between these operations. The fault tree identifies potential failures of the process. Then the effects of the failures have been estimated by the failure mode and effect analysis method. All major differences between failure mode and effect analysis and fault tree analysis are defined and there is a discussion about how to use the two techniquescomplement each other and achieve more efficient results.

  9. Hermetic glass frit packaging in air and vacuum with localized laser joining

    Science.gov (United States)

    Lorenz, N.; Millar, S.; Desmulliez, M.; Hand, D. P.

    2011-04-01

    Glass frit packaging is a simple and robust method used for hermetic sealing of micro-devices. Conventional glass frit packaging processes rely on furnace heating where the entire package is heated to elevated temperatures, hence restricting the use of temperature-sensitive materials inside the package and generating problems in multi-stage packaging processes. The use of a laser as an alternative heat source offers the possibility of highly localized heating where the heat-input can be restricted to the joining area only. In this paper the clear benefits of combining glass frit packaging and localized laser heating are demonstrated. Two novel laser-based glass frit packaging processes for sealing of leadless chip carrier (LCC) packages in both air and vacuum have been developed. Full hermetic seals according to MIL-STD-883G are achieved in high yield processes where the temperature in the centre of the device is kept at least 230 °C below the temperature in the joining region.

  10. Joining of AZ31 and AZ91 Mg alloys by friction stir welding

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2015-12-01

    Full Text Available Two dissimilar magnesium (Mg alloy sheets, one with low aluminium (AZ31 and another with high aluminium (AZ91 content, were successfully joined by friction stir welding (FSW. The effect of process parameters on the formation of hot cracks was investigated. A sound metallurgical joint was obtained at optimized process parameters (1400 rpm with 25 mm/min feed which contained fine grains and distributed β (Mg17Al12 phase within the nugget zone. An increasing trend in the hardness measurements has also confirmed more amount of dissolution of aluminium within the nugget zone. A sharp interface between nugget zone and thermo mechanical affected zone (TMAZ was clearly noticed at the AZ31 Mg alloy side (advancing but not on the AZ91 Mg alloy side (retreating. From the results it can be concluded that FSW can be effectively used to join dissimilar metals, particularly difficult to process metals such as Mg alloys, and hot cracking can be completely eliminated by choosing appropriate process parameters to achieve sound joint.

  11. Hermetic glass frit packaging in air and vacuum with localized laser joining

    International Nuclear Information System (INIS)

    Glass frit packaging is a simple and robust method used for hermetic sealing of micro-devices. Conventional glass frit packaging processes rely on furnace heating where the entire package is heated to elevated temperatures, hence restricting the use of temperature-sensitive materials inside the package and generating problems in multi-stage packaging processes. The use of a laser as an alternative heat source offers the possibility of highly localized heating where the heat-input can be restricted to the joining area only. In this paper the clear benefits of combining glass frit packaging and localized laser heating are demonstrated. Two novel laser-based glass frit packaging processes for sealing of leadless chip carrier (LCC) packages in both air and vacuum have been developed. Full hermetic seals according to MIL-STD-883G are achieved in high yield processes where the temperature in the centre of the device is kept at least 230 °C below the temperature in the joining region.

  12. Main Chain Noncentrosymmetric Hydrogen Bonded Macromolecules Incorporating Aniline, Alkanol, and Alkanoic Acid Hydrogen Bond Donors

    OpenAIRE

    Jeremy R. Wolf

    2014-01-01

    The syntheses and characterization of three noncentrosymmetric main chain hydrogen bonded macromolecules which incorporate aniline, alkanoic acid, and alkanol hydrogen bond donor units are reported. These macromolecules participate in weak intermolecular hydrogen bonding as demonstrated using attenuated total reflectance (ATR) FTIR. The phase transitions of these macromolecules depend on the identity of the hydrogen bond donor.

  13. Fracture strength of different soldered and welded orthodontic joining configurations with and without filling material

    Directory of Open Access Journals (Sweden)

    Jens Johannes Bock

    2008-10-01

    Full Text Available The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005. Data were analyzed by ANOVA (p=0.05 and Bonferroni post hoc test (p=0.05. In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N. Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N. Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test. In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band.

  14. Ligation of oligonucleotides to nucleic acids or proteins via disulfide bonds.

    OpenAIRE

    Chu, B C; Orgel, L E

    1988-01-01

    We have developed general methods for joining together, via cleavable disulfide bonds, either two unprotected polynucleotides or a polynucleotide and a peptide or protein. To join two oligonucleotides, each is first converted to an adduct in which cystamine is joined to the 5'-terminal phosphate of the oligonucleotide by a phosphoramidate bond. The adducts are mixed and reduced with dithiothreitol. The dithiothreitol is then removed by dialysis. Oxidation by atmospheric oxygen occurs to yield...

  15. Three dimensional geometrical and material nonlinear finite element analysis of adhesively bonded joints for marine structures

    OpenAIRE

    Sampathkumar, Narasimhan

    2005-01-01

    The use of adhesive bonding as a structural joining method has been gaining recognition in marine industry in recent years, though it has been widely adopted in other fields such as aerospace, automobiles, trains and in civil constructions. The type of materials used and design practices followed in marine structures are different from what is applied in other disciplines. Therefore new research approaches are required and recent novel ideas are ex- plored in the context of app...

  16. Perspectives on bond lending and specialness

    OpenAIRE

    Hansen, Lars Jul; Hesselberg, Stig; Mogensen, Louise

    2005-01-01

    This working paper provides a basic introduction to bond lending and reviews the main results from the academic literature. These results are compared with actual price data on bond lending from the US and European markets for the period from 3 March 2003 to 14 May 2004. Three specific issues regarding bond lending are subsequently discussed. Firstly, the differences between the markets for securities lending in the US and in Europe are explored and a number of factors that explain this diffe...

  17. Intramolecular and intermolecular hydrogen bonds in aminophenols

    International Nuclear Information System (INIS)

    IR-Fourier spectroscopy methods are adopted to study intramolecular and intermolecular hydrogen bonds that form in CCl4 solutions of aminophenol derivatives and in a solid phase of these compounds pressed in KBr. If a hydroxyl group is present in the molecule in the ortho-position to an amino group, then intramolecular interactions between OH and NH groups will take place in aminophenol solutions. Intramolecular O-HO=S=O and N-H...O=S=O hydrogen bonds are found in solutions of compounds containing a sulfonamide fragment. Additional acylation of the amino group causes an intramolecular O-H...O=C hydrogen bond to form in solutions. Functional groups OH, NH, SO2, and C=O interact with one another in various ways in the solid phase to form intermolecular hydrogen bonds in aminophenols. (authors) Keywords aminophenol - IR spectrum - intramolecular hydrogen bond - intermolecular hydrogen bond

  18. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    Science.gov (United States)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  19. Zero Steric Potential and bond order

    Science.gov (United States)

    Ghasemi, S.; Noorizadeh, S.

    2016-05-01

    The variation of Zero Steric Potential (ZSP) through a C-C bond shows two maximums, which their values depend on the bond order (BO). A good relationship (R2 = 1) is observed between the mean values of maximum ZSPs and the bond orders of C-C bonds in ethane, ethylene and acetylene, as reference molecules (Ln BO = 1.956ZSP‾max - 0.898). The obtained equation is used to predict the C-C bond orders of more than twenty aromatic and aliphatic hydrocarbons. The results show that the obtained bond orders from ZSP‾max are more reliable than those which are evaluated using NBO and Laplacian methods.

  20. Decomposing European bond and equity volatility

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    The paper investigates volatility spillover from US and aggregate European asset markets into European national asset markets. A main contribution is that bond and equity volatilities are analyzed simultaneously. A new model belonging to the "volatilityspillover" family is suggested: The...... conditional variance of e.g. the unexpected German stock return is divided into separate effects from the contemporaneous idiosyncratic variance of US bonds, US stocks, European bonds, European stocks, German bonds, and German stocks. Significant volatility-spillover effects are found. The national bond...... (stock) volatilities are mainly influenced by bond (stock) effects. Global, regional, and local volatility effects are all important. The introduction of the euro is associated with a structural break....

  1. Bond between concrete and reinforcing steel

    OpenAIRE

    Dežman, Andraž

    2015-01-01

    This thesis researches bond characteristics between the 12mm steel reinforcing bar and various types of concrete. Standard Eurocode 2 and FIB Model Code 2010 define ultimate bond stress, which acts like shear stress around the reinforcing bar. In correlation with bond, high strength concrete is poorly represented, furthermore, research and information on fibre concrete are lacking. Therefore, a series of pull-out tests, based on standard SIST EN 10080:2005, have been conducted....

  2. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    Science.gov (United States)

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  3. Diffusion bonding

    Science.gov (United States)

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  4. Sunspots and Inflation-indexed Bonds

    OpenAIRE

    Minwook KANG

    2014-01-01

    An economy with incomplete ?nancial markets, as described by Cass (1989), typically has in?ation volatility driven by sunspots. The purpose of this paper is to investigate how the introduction of in?ation- indexed bonds to the ?Cass?economy in?uences a monetary market, an indexed bond market, and welfare. The introduction of indexed bonds is considered a sunspot-stabilizing policy. However, this introduction unrealistically causes the complete shutdown of monetary markets. This problem can be...

  5. Benchmarking spatial joins à la carte

    OpenAIRE

    Günther, Oliver; Oria, Vincent; Picouet, Philippe; Saglio, Jean-Marc; Scholl, Michel

    1997-01-01

    Spatial joins are join operations that involve spatial data types and operators. Spatial access methods are often used to speed up the computation of spatial joins. This paper addresses the issue of benchmarking spatial join operations. For this purpose, we first present a WWW-based tool to produce sets of rectangles. Experimentators can use a standard Web browser to specify the number of rectangles, as well as the statistical distributions of their sizes, shapes, and locations. Second, using...

  6. Interfacial microstructure and properties of dissimilar steels joined by high energy beam melting processes

    Science.gov (United States)

    Carbucicchio, M.; Palombarini, G.; Ciprian, R.; Tosto, S.; Rateo, M.; Sambogna, G.

    2009-06-01

    Junctions between austenitic and ferritic steels were produced using two different processes involving melting at the contact surfaces: electron beam cladding designed to improve the corrosion resistance of the joined component, and laser beam welding carried out to obtain mechanically resistant joints. Different processing conditions were adopted in order to determine the beam irradiation parameters, such as incident power density and beam translation speed, suitable for any specific application. Solidified and thermally altered zones were investigated by means of different and complementary techniques: X-ray diffraction, Mössbauer spectroscopy, electron probe microanalysis, metallography and microhardness measurements. The effects of the rapid solidification processes on phase composition, microstructure and properties of clads and welds, are presented and discussed.

  7. Interfacial microstructure and properties of dissimilar steels joined by high energy beam melting processes

    International Nuclear Information System (INIS)

    Junctions between austenitic and ferritic steels were produced using two different processes involving melting at the contact surfaces: electron beam cladding designed to improve the corrosion resistance of the joined component, and laser beam welding carried out to obtain mechanically resistant joints. Different processing conditions were adopted in order to determine the beam irradiation parameters, such as incident power density and beam translation speed, suitable for any specific application. Solidified and thermally altered zones were investigated by means of different and complementary techniques: X-ray diffraction, Moessbauer spectroscopy, electron probe microanalysis, metallography and microhardness measurements. The effects of the rapid solidification processes on phase composition, microstructure and properties of clads and welds, are presented and discussed.

  8. Thermal joining studies of CLIC accelerating structures and Establishment of a test bench and studies of thermomechanical behaviour of a CLIC two beam module

    CERN Document Server

    Rossi, Fabrizio

    2013-01-01

    The assembly procedure of the CLIC accelerating structures is constituted of several steps, involving ultra-precision machining, heating cycles at very high temperatures and many quality controls necessary to fulfil the very tight technical requirements. Diverse issues are related to the diffusion bonding process of CLIC accelerating structures; due to diffusion creep mechanisms occurring at high temperature and low stress, residual deformations might be present at the end of the joining process. A theoretical and experimental approach is presented here in order to understand this issue further and feedback on the design process. As a second issue tackled here, the final alignment of CLIC is also affected by the power dissipation occurring in the module during the normal operation modes and resulting in time-varying non-uniform thermal fields. The thermo-mechanical models of CLIC two-beam modules developed in the past are then useful to predict the structural deformations affecting the final alignment of the ...

  9. Cut-and-join description of generalized Brezin-Gross-Witten model

    CERN Document Server

    Alexandrov, Alexander

    2016-01-01

    We investigate the Brezin-Gross-Witten model, a tau-function of the KdV hierarchy, and its natural one-parameter deformation, the generalized Brezin-Gross-Witten tau-function. In particular, we derive the Virasoro constraints, which completely specify the partition function. We solve them in terms of the cut-and-join operator. The Virasoro constraints lead to the loop equations, which we solve in terms of the correlation functions. Explicit expressions for the coefficients of the tau-function and the free energy are derived, and a compact formula for the genus zero contribution is conjectured. A family of polynomial solutions of the KdV hierarchy, given by the Schur functions, is obtained for the half-integer values of the parameter. The quantum spectral curve and its classical limit are discussed.

  10. Dissimilar Laser Joining of NiTi SMA and MP35N Wires

    Science.gov (United States)

    Panton, Boyd; Pequegnat, Andrew; Zhou, Y. Norman

    2014-07-01

    The laser welding of NiTi alloy wire to MP35N wire was investigated to improve the understanding of dissimilar materials joining of NiTi shape memory alloys (SMAs), facilitating their future application in novel devices. Both positioning of the laser beam with respect to the joint's centerline and laser peak power were found to be critical variables affecting the physical and thermomechanical properties of the welded joint. Positioning of the laser beam was used to control the weld pool composition, while the laser beam intensity affected the pool size and mixing. These variables were shown to greatly affect hardness and susceptibility to cracking in the fusion zone, which heavily impacted the weld strength. With a lower peak power and the laser positioned over the MP35N wire, butt-welded wire joints were achieved with the ultimate load of 66 pct of the NiTi wire breaking load.

  11. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma.

    Science.gov (United States)

    Koschmann, Carl; Calinescu, Anda-Alexandra; Nunez, Felipe J; Mackay, Alan; Fazal-Salom, Janet; Thomas, Daniel; Mendez, Flor; Kamran, Neha; Dzaman, Marta; Mulpuri, Lakshman; Krasinkiewicz, Johnathon; Doherty, Robert; Lemons, Rosemary; Brosnan-Cashman, Jacqueline A; Li, Youping; Roh, Soyeon; Zhao, Lili; Appelman, Henry; Ferguson, David; Gorbunova, Vera; Meeker, Alan; Jones, Chris; Lowenstein, Pedro R; Castro, Maria G

    2016-03-01

    Recent work in human glioblastoma (GBM) has documented recurrent mutations in the histone chaperone protein ATRX. We developed an animal model of ATRX-deficient GBM and showed that loss of ATRX reduces median survival and increases genetic instability. Further, analysis of genome-wide data for human gliomas showed that ATRX mutation is associated with increased mutation rate at the single-nucleotide variant (SNV) level. In mouse tumors, ATRX deficiency impairs nonhomologous end joining and increases sensitivity to DNA-damaging agents that induce double-stranded DNA breaks. We propose that ATRX loss results in a genetically unstable tumor, which is more aggressive when left untreated but is more responsive to double-stranded DNA-damaging agents, resulting in improved overall survival. PMID:26936505

  12. Fabrication and characterization of the joining of Bi-Pb-Sr-Ca-Cu-O superconductor tape

    International Nuclear Information System (INIS)

    We evaluated the effects of the joining process on the electrical and mechanical properties of Bi-2223 superconductor tape fabricated by the powder-in-tube technique. The joining of tapes was carried out by a lap-joint method. In the process, tapes were masked and etched to expose the superconductor cores in windows located near or at the end of the tape. The exposed cores of the two tapes were brought into contact, uniaxially pressed in the range 140-4000 MPa and sintered. The current carrying capacity of the jointed tape was evaluated as a function of uniaxial pressure and the shape of windows. It was observed that the current carrying capacity was reduced in the transition region of the jointed tape because of the non-uniform microstructure during the pressing. In addition, the current carrying capacity was significantly dependent on the uniaxial pressure. The highest current carrying capacity was obtained to be ∼90% for the jointed tape to the tape itself by optimizing the window shape and pressure. It is believed that the highest value of current carrying capacity results from improvements in interface uniformity, core density, contacting area and grain alignment. The strain tolerance of the jointed tape was also evaluated, and the irreversible strain was measured to be 0.1%, which is lower than that of the unjointed tape. The decrease in the strain tolerance for jointed tape is believed to be due to the irregular interface and Ag intrusion in the transition region which acts as a stress concentration. (author)

  13. Performance Analysis and Scheduling of Stochastic Fork-Join Jobs in a Multicomputer System

    OpenAIRE

    Kumar, Anurag; Shorey, Rajeev

    1993-01-01

    We model a parallel processing system comprising several homogeneous computers interconnected by a communication network. Jobs arriving to this system have a linear fork-join structure. Each fork of the job gives rise to a random number of tasks that can be processed independently on any of the computers. Since exact analysis of fork-join models is known to be intractable, we resort to obtaining analytical bounds to the mean job response time of the fork-join job. For jobs with a single fork-...

  14. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  15. Embedded Heaters for Joining or Separating Plastic Parts

    Science.gov (United States)

    Bryant, Melvin A., III

    2004-01-01

    A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.

  16. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  17. Green and social bonds - A promising tool

    International Nuclear Information System (INIS)

    Issues of green bonds, socially responsible bonds and climate bonds are on the rise. Novethic estimates that some Euro 5 billion in such bonds has been issued since the start of 2013 by development banks, the main issuers of this type of debt. The figure is equal to over half of their total issues since 2007. Including local authorities, corporations and banks, a total Euro 8 billion of these bonds has been issued thus far in 2013. Given the size of the bond market, which the OECD estimated at Euro 95,000 billion in 2011, green and social bonds are still something of a niche but have strong growth potential. A number of large issues, from Euro 500 million to Euro 1 billion, were announced at the end of the year. Unlike conventional bonds, green and social bonds are not intended to finance all the activities of the issuer or refinance its debt. They serve instead to finance specific projects, such as producing renewable energy or adapting to climate change, the risk of which is shouldered by the issuer. This makes them an innovative instrument, used to earmark investments in projects with a direct environmental or social benefit rather than simply on the basis of the issuer's sustainable development policy. With financing being sought for the ecological transition, green and social bonds are promising instruments, sketching out at global level the shape of tools adapted to the financing of a green economy. On the strength of these advantages, the interest of responsible investors - the main target of green and social bond issuers - is growing fast. Judging by issuer press releases and the most commonly used currencies, the main subscribers today are US investors, among them CalSTRS and fund managers like Calvert Investment Management and Trillium Asset Management. European asset owners are also starting to focus on green and social bonds. A Novethic survey shows that 13% of them have already subscribed to such an issue or plan to do so. The present study

  18. Convertible Bonds: Default Risk and Uncertain Volatility

    OpenAIRE

    Huang, Haishi

    2009-01-01

    Within a default intensity approach we discuss the optimal exercise of the callable and convertible bonds. Pricing bounds for convertible bonds are derived in an uncertain volatility model, i.e. when the volatility of the stock price process lies between two extreme values.

  19. Halogen bonding origin properties and applications

    International Nuclear Information System (INIS)

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well

  20. Halogen bonding origin properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hobza, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 77146 Olomouc (Czech Republic)

    2015-12-31

    σ-hole bonding represents an unusual and novel type of noncovalent interactions in which atom with σ- hole interacts with Lewis base such as an electronegative atom (oxygen, nitrogen, …) or aromatic systems. This bonding is of electrostatic nature since the σ-hole bears a positive charge. Dispersion energy forms equally important energy term what is due to the fact that two heavy atoms (e.g. halogen and oxygen) having high polarizability lie close together (the respective distance is typically shorter than the sum of van der Waals radii). Among different types of σ-hole bondings the halogen bonding is by far the most known but chalcogen and pnictogen bondings are important as well.

  1. On the Performance and Pruning Power of Different Join Enumeration Strategies

    OpenAIRE

    Viktor Leis

    2016-01-01

    To find the optimal join order two different generative join enumeration strategies have been proposed. The most commonly used one is dynamic programming which proceeds bottom-up. The alternative is top down enumeration with memoization. For both strategies algorithms exist that enumerate only solutions without cartesian products, which is a commonly used heuristics. With top-down enumeration it is possible to further improve optimization time by pruning the search space while still obtaining...

  2. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    International Nuclear Information System (INIS)

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation

  3. Chapter VI. The joined production account, taking and balances of the electric energy, mass remote control and consulting

    International Nuclear Information System (INIS)

    In this paper the joined production account (1949-1991), production, taking and balances of the electric energy (production in nuclear power plants are includes), mass remote control and consulting of the Slovak Power-stations, j.s.c. are reviewed

  4. Joining of Cast ZE41A Mg to Wrought 6061 Al by the Cold Spray Process and Friction Stir Welding

    Science.gov (United States)

    Champagne, Victor Kenneth; West, Michael K.; Reza Rokni, M.; Curtis, Todd; Champagne, Victor; McNally, Baillie

    2016-01-01

    This paper presents a novel method for joining cast ZE41A-T5 Mg to wrought 6061-T6 Al, without forming deleterious, coarse intermetallic compounds, which is not currently possible with conventional technologies. The novel aspect of the process includes the development of a joint design using cold spray (CS) as the enabling technology, to produce a transitional layer onto which a conventional welding technique can be employed to join the two dissimilar materials. The emphasis in this study will be on the CS transitional layer (T-layer) which enables the joining of cast ZE41A-T5 magnesium (Mg) and wrought 6061-T6 aluminum (Al) by friction-stir welding and the subsequent materials characterization to show the structural integrity of the entire joint. In order to join Mg and Al plates by this method, a transitional layer of CS Al is first deposited along the edge of cast ZE41A Mg plate. The CS Al T-layer enables the Mg to be friction stir welded to a plate of wrought 6061 Al, thereby completing the Mg plate to Al plate joint. Friction stir welding was chosen in this study to join the CS Al T-layer to the wrought Al plate; however, other conventional welding techniques could also be employed for joining Mg to Al in this manner. The CS Al T-layer is compatible to the wrought 6061 Al plate and serves as an insulating layer that prevents heat generated during the friction stir welding process from extending into the magnesium, thus preventing the formation of intermetallics. In this study, two sets of samples were produced joining cast ZE41A-T5 magnesium (Mg) and wrought 6061-T6 aluminum: one set using CS 6061 Al as the transition material between the ZE41A Mg plate and 6061 Al plate and the other set using CS 5056 Al as the transition material. Microstructural analysis by scanning and transmission electron microscopy and optical microscopy, along with mechanical test results including triple lug shear, tension, and micro hardness will be presented. Comparisons will be

  5. The Nature of the Hydrogen Bond Outline of a Comprehensive Hydrogen Bond Theory

    CERN Document Server

    Gilli, Gastone

    2009-01-01

    Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies andgeometries.New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: cha

  6. Why Children Join and Stay in Sports Clubs: Case Studies in Australian, French and German Swimming Clubs

    Science.gov (United States)

    Light, Richard L.; Harvey, Stephen; Memmert, Daniel

    2013-01-01

    This article builds upon research on youth sport clubs conducted from a socio-cultural perspective by reporting on a study that inquired into the reasons why children aged 9-12 joined swimming clubs in France, Germany and Australia. Comprising three case studies it employed a mixed method approach with results considered within the framework of…

  7. Laser-Based Hot-Melt Bonding of Thermosetting GFRP

    Science.gov (United States)

    Amend, P.; Pillach, B.; Frick, T.; Schmidt, M.

    In the future the use of tailored multi-material components will increase because of lightweight constructions. However for an optimal integration of different materials suitable joining techniques are necessary. This paper presents results of joining thermosetting composites to thermoplastics by means of laser-based hot-melt bonding. First the joining process of glass fiber reinforced plastics (GFRP) to thermoplastics is analyzed with regard to appropriate material selection of the thermoplastic joining partner. Then experiments are performed to join two thermosetting GFRP composites using a thermoplastic interlayer. All joined specimens are characterized by tensile shear tests whereby the influences of the used peel ply and the thermoplastic joining partner on the tensile shear strength are analyzed. Finally climate tests are performed to investigate the long-term durability of the joint connections.

  8. Overlapping functions between XLF repair protein and 53BP1 DNA damage response factor in end joining and lymphocyte development.

    Science.gov (United States)

    Liu, Xiangyu; Jiang, Wenxia; Dubois, Richard L; Yamamoto, Kenta; Wolner, Zachary; Zha, Shan

    2012-03-01

    Nonhomologous end joining (NHEJ), a major pathway of DNA double-strand break (DSB) repair, is required during lymphocyte development to resolve the programmed DSBs generated during Variable, Diverse, and Joining [V(D)J] recombination. XRCC4-like factor (XLF) (also called Cernunnos or NHEJ1) is a unique component of the NHEJ pathway. Although germ-line mutations of other NHEJ factors abrogate lymphocyte development and lead to severe combined immunodeficiency (SCID), XLF mutations cause a progressive lymphocytopenia that is generally less severe than SCID. Accordingly, XLF-deficient murine lymphocytes show no measurable defects in V(D)J recombination. We reported earlier that ATM kinase and its substrate histone H2AX are both essential for V(D)J recombination in XLF-deficient lymphocytes, despite moderate role in V(D)J recombination in WT cells. p53-binding protein 1 (53BP1) is another substrate of ATM. 53BP1 deficiency led to small reduction of peripheral lymphocyte number by compromising both synapse and end-joining at modest level during V(D)J recombination. Here, we report that 53BP1/XLF double deficiency blocks lymphocyte development at early progenitor stages, owing to severe defects in end joining during chromosomal V(D)J recombination. The unrepaired DNA ends are rapidly degraded in 53BP1(-/-)XLF(-/-) cells, as reported for H2AX(-/-)XLF(-/-) cells, revealing an end protection role for 53BP1 reminiscent of H2AX. In contrast to the early embryonic lethality of H2AX(-/-)XLF(-/-) mice, 53BP1(-/-)XLF(-/-) mice are born alive and develop thymic lymphomas with translocations involving the T-cell receptor loci. Together, our findings identify a unique function for 53BP1 in end-joining and tumor suppression. PMID:22355127

  9. Analytical and experimental evaluation of joining ceramic oxides to ceramic oxides and ceramic oxides to metal for advanced heat engine applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Majumdar, B.; Rosenfield, A.R.; Swartz, S.L.; Cawley, J.; Park, E.; Hauser, D.; Hopper, A.T. [Battelle Columbus Labs., OH (United States)

    1992-04-01

    The problem of designing reliable, high strength zirconia-to-zirconia and zirconia-to-nodular cast iron joints is addressed by developing a general joint design and assessment methodology. A joint`s load carrying capability is predicted in terms of its material strength and fracture toughness characteristics. The effects of joint constituent properties and joining process variables are included. The methodology is verified in a two step process by applying it first to notched bend bars and then to a notched disk specimen loaded in compression. Key technical accomplishments in the program include the development of a joint design and assessment methodology which predicts failure based on a combination of strength and toughness, the development of a new method of hot forging magnesia partially stabilized zirconia to itself, and the development of a bimaterial disk-shaped specimen notched along the diametral bond line and compressively loaded to generate both shear and tensile loadings on the bond line. Mechanical and thermal characterization of joints, adherents, and interlayer materials were performed to provide data for input to the design methodology. Results from over 150 room temperature tests and 30 high temperature tests are reported. Extensive comparisons of experimental results are made with model predictions of failure load. The joint design and assessment model, as applied to the materials and test specimens of this program, has been programmed for a PC and is available to interested researchers.

  10. Analytical and experimental evaluation of joining ceramic oxides to ceramic oxides and ceramic oxides to metal for advanced heat engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Majumdar, B.; Rosenfield, A.R.; Swartz, S.L.; Cawley, J.; Park, E.; Hauser, D.; Hopper, A.T. (Battelle Columbus Labs., OH (United States))

    1992-04-01

    The problem of designing reliable, high strength zirconia-to-zirconia and zirconia-to-nodular cast iron joints is addressed by developing a general joint design and assessment methodology. A joint's load carrying capability is predicted in terms of its material strength and fracture toughness characteristics. The effects of joint constituent properties and joining process variables are included. The methodology is verified in a two step process by applying it first to notched bend bars and then to a notched disk specimen loaded in compression. Key technical accomplishments in the program include the development of a joint design and assessment methodology which predicts failure based on a combination of strength and toughness, the development of a new method of hot forging magnesia partially stabilized zirconia to itself, and the development of a bimaterial disk-shaped specimen notched along the diametral bond line and compressively loaded to generate both shear and tensile loadings on the bond line. Mechanical and thermal characterization of joints, adherents, and interlayer materials were performed to provide data for input to the design methodology. Results from over 150 room temperature tests and 30 high temperature tests are reported. Extensive comparisons of experimental results are made with model predictions of failure load. The joint design and assessment model, as applied to the materials and test specimens of this program, has been programmed for a PC and is available to interested researchers.

  11. Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding

    International Nuclear Information System (INIS)

    The study of the interface of ceramic/metal alloy friction welded components is essential for understanding of the quality of bonding between two dissimilar materials. In the present study, optical and electron microscopy as well as four-point bending strength and microhardness measurements were used to evaluate the quality of bonding of alumina and 6061 aluminum alloy joints produced by friction welding. The joints were also examined with EDX (energy dispersive X-ray) in order to determine the phases formed during welding. The bonded alumina-6061 aluminum samples were produced by varying the rotational speed but keeping constant the friction pressure and friction time. The experimental results showed that the effect of rotation speed and degree of deformation appears to be high on the 6061 Al alloy than on the alumina part. It is discovered that the weld interface formed included three different regions: unaffected zone (UZ), deformed zone (DZ), as well as transformed and recrystallized fully deformed zone (FPDZ). Therefore, when rotational speed increases, the thickness of full plastic deformed zone (FPDZ) at the interface increases as a result of more mass discarded from the welding interface. It was also observed that rotational speed of 2500 rpm can produce a very good joint and microhardness with good microstructure as compared to the other experimental rotational speeds.

  12. Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology

    International Nuclear Information System (INIS)

    Reactive bonding is a still new low-temperature joining process that is based on reactive nanoscale multilayer systems. The heat required for the bonding process is generated by a self-propagating exothermic reaction within the multilayer system while the adhesive interconnect is supported by solder films. For microsystem applications, the approach is particularly useful if temperature-sensitive components and materials with high differences in coefficient of thermal expansion have to be joined. In this paper, this is successfully demonstrated for bonding a quartz strain gauge onto a stainless steel membrane and an IR-emitter onto a covar socket by using commercially available nickel/aluminum NanoFoils©. The quality of the bond interface of both demonstrators was investigated by scanning electron microscopy and the strength was determined by a tensile test. On the other hand, integrated microsystem applications beyond die attachment require patterned bond structures, e.g. to form bond frames. Thus, alternative materials were additionally considered that can be directly deposited on silicon substrates by magnetron sputtering, such as aluminum/titanium as well as titanium/amorphous silicon (Ti/a-Si) bilayer systems. The properties of these basic multilayer systems and their reaction products were characterized by differential scanning calorimetry and high-resolution electron microscopy. It is shown that specifically the Ti/a-Si system has substantial potential for direct microsystem technology integration provided the remaining open technological issues can be addressed during future research. In general, the results obtained in this study demonstrate the high potential of the reactive bonding process as a new advantageous assembly technology for the fabrication of future microsystems.

  13. Shear bond strength of different retainer wires and bonding adhesives in consideration of the pretreatment process

    OpenAIRE

    Reicheneder, C. (Claudia); Hofrichter, B. (Bernd); Faltermeier, A. (Andreas); P. Proff; Lippold, C. (Carsten); Kirschneck, C.J. (Christian)

    2015-01-01

    Introduction: We aimed to compare the shear bond strength (SBS) of three different retainer wires and three different bonding adhesives in consideration of the pretreatment process of enamel surface sandblasting. Methods: 400 extracted bovine incisors were divided into 10 groups of 20 paired specimens each. 10 specimens of each group were pretreated by enamel sandblasting. The retainer wires Bond-A-Braid™, GAC-Wildcat®-Twistflex and everStick®ORTHO were bonded to the teeth with the adhesives ...

  14. Postpartum bonding: the role of perinatal depression, anxiety and maternal-fetal bonding during pregnancy.

    Science.gov (United States)

    Dubber, S; Reck, C; Müller, M; Gawlik, S

    2015-04-01

    Adverse effects of perinatal depression on the mother-child interaction are well documented; however, the influence of maternal-fetal bonding during pregnancy on postpartum bonding has not been clearly identified. The subject of this study was to investigate prospectively the influence of maternal-fetal bonding and perinatal symptoms of anxiety and depression on postpartum mother-infant bonding. Data from 80 women were analyzed for associations of symptoms of depression and anxiety as well as maternal bonding during pregnancy to maternal bonding in the postpartum period using the Edinburgh Postnatal Depression Scale (EPDS), the State-Trait Anxiety Inventory (STAI), the Pregnancy Related Anxiety Questionnaire (PRAQ-R), the Maternal-Fetal Attachment Scale (MFAS) and the Postpartum Bonding Questionnaire (PBQ-16). Maternal education, MFAS, PRAQ-R, EPDS and STAI-T significantly correlated with the PBQ-16. In the final regression model, MFAS and EPDS postpartum remained significant predictors of postpartum bonding and explained 20.8 % of the variance. The results support the hypothesized negative relationship between maternal-fetal bonding and postpartum maternal bonding impairment as well as the role of postpartum depressive symptoms. Early identification of bonding impairment during pregnancy and postpartum depression in mothers plays an important role for the prevention of potential bonding impairment in the early postpartum period. PMID:25088531

  15. HYDROGEN BONDING IN POLYMERIC ADSORBENTS BASED ADSORPTION AND SEPARATION

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  16. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951 through June 1987

    International Nuclear Information System (INIS)

    This document contains a listing of the written scientific information originating in the Materials Joining Group (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1987. It is a registry of about 400 documents as nearly as possible in the order in which they were issued

  17. APLF promotes the assembly and activity of non-homologous end joining protein complexes.

    Science.gov (United States)

    Grundy, Gabrielle J; Rulten, Stuart L; Zeng, Zhihong; Arribas-Bosacoma, Raquel; Iles, Natasha; Manley, Katie; Oliver, Antony; Caldecott, Keith W

    2013-01-01

    Non-homologous end joining (NHEJ) is critical for the maintenance of genetic integrity and DNA double-strand break (DSB) repair. NHEJ is regulated by a series of interactions between core components of the pathway, including Ku heterodimer, XLF/Cernunnos, and XRCC4/DNA Ligase 4 (Lig4). However, the mechanisms by which these proteins assemble into functional protein-DNA complexes are not fully understood. Here, we show that the von Willebrand (vWA) domain of Ku80 fulfills a critical role in this process by recruiting Aprataxin-and-PNK-Like Factor (APLF) into Ku-DNA complexes. APLF, in turn, functions as a scaffold protein and promotes the recruitment and/or retention of XRCC4-Lig4 and XLF, thereby assembling multi-protein Ku complexes capable of efficient DNA ligation in vitro and in cells. Disruption of the interactions between APLF and either Ku80 or XRCC4-Lig4 disrupts the assembly and activity of Ku complexes, and confers cellular hypersensitivity and reduced rates of chromosomal DSB repair in avian and human cells, respectively. Collectively, these data identify a role for the vWA domain of Ku80 and a molecular mechanism by which DNA ligase proficient complexes are assembled during NHEJ in mammalian cells, and reveal APLF to be a structural component of this critical DSB repair pathway. PMID:23178593

  18. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Bond graphs are especially well-suited for mechatronic systems, as engineering system modeling is best handled using a multidisciplinary approach. Bond graphing permits one to see the separate components of an engineering system as a unified whole, and allows these components to be categorized under a few generalized elements, even when they come from different disciplines. In addition to those advantages, the bond graph offers a visual representation of a system from which derivation of the governing equations is algorithmic. This makes the design process accessible to beginning readers, prov

  19. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates.

    Directory of Open Access Journals (Sweden)

    Katja Paul

    Full Text Available Biochemical and genetic studies suggest that vertebrates remove double-strand breaks (DSBs from their genomes predominantly by two non-homologous end joining (NHEJ pathways. While canonical NHEJ depends on the well characterized activities of DNA-dependent protein kinase (DNA-PK and LIG4/XRCC4/XLF complexes, the activities and the mechanisms of the alternative, backup NHEJ are less well characterized. Notably, the contribution of LIG1 to alternative NHEJ remains conjectural and although biochemical, cytogenetic and genetic experiments implicate LIG3, this contribution has not been formally demonstrated. Here, we take advantage of the powerful genetics of the DT40 chicken B-cell system to delineate the roles of LIG1 and LIG3 in alternative NHEJ. Our results expand the functions of LIG1 to alternative NHEJ and demonstrate a remarkable ability for LIG3 to backup DSB repair by NHEJ in addition to its essential function in the mitochondria. Together with results on DNA replication, these observations uncover a remarkable and previously unappreciated functional flexibility and interchangeability between LIG1 and LIG3.

  20. Paying clinicians to join clinical trials: a review of guidelines and interview study of trialists

    Science.gov (United States)

    Raftery, James; Kerr, Christine; Hawker, Sheila; Powell, John

    2009-01-01

    Background The motivations of clinicians to participate in clinical trials have been little studied. This project explored the potential role of payment for participation in publicly funded clinical trials in the UK. The aims were to review relevant guidelines and to collate and analyse views of clinical trialists on the role of payments and other factors that motivated clinicians to join clinical trials. Methods Review of guidelines governing payments to clinicians for recruitment to trials. Semi-structured interviews with a range of NHS clinical trial leaders, analysed using qualititative methods. Results While UK guidelines had little to say specifically on payments linked to recruitment, all payments have become highly regulated and increasingly transparent. Interview participants believed that expenses arising from research should be covered. Payments in excess of expenses were seen as likely to increase participation but with the risk of reducing quality. Motivations such as interest in the topic, the scope for patients to benefit and intellectual curiosity were considered more important. Barriers to involvement included bureaucracy and lack of time. Discussion Limited scope exists for paying clinicians over-and-above the cost of their time to be involved in research. Most trialists favour full payment of all expenses related to research. Conclusion Payment of clinicians beyond expenses is perceived to be a less important motivating factor than researching important, salient questions, and facilitating research by reducing bureaucracy and delay. PMID:19272166

  1. Paying clinicians to join clinical trials: a review of guidelines and interview study of trialists

    Directory of Open Access Journals (Sweden)

    Hawker Sheila

    2009-03-01

    Full Text Available Abstract Background The motivations of clinicians to participate in clinical trials have been little studied. This project explored the potential role of payment for participation in publicly funded clinical trials in the UK. The aims were to review relevant guidelines and to collate and analyse views of clinical trialists on the role of payments and other factors that motivated clinicians to join clinical trials. Methods Review of guidelines governing payments to clinicians for recruitment to trials. Semi-structured interviews with a range of NHS clinical trial leaders, analysed using qualititative methods. Results While UK guidelines had little to say specifically on payments linked to recruitment, all payments have become highly regulated and increasingly transparent. Interview participants believed that expenses arising from research should be covered. Payments in excess of expenses were seen as likely to increase participation but with the risk of reducing quality. Motivations such as interest in the topic, the scope for patients to benefit and intellectual curiosity were considered more important. Barriers to involvement included bureaucracy and lack of time. Discussion Limited scope exists for paying clinicians over-and-above the cost of their time to be involved in research. Most trialists favour full payment of all expenses related to research. Conclusion Payment of clinicians beyond expenses is perceived to be a less important motivating factor than researching important, salient questions, and facilitating research by reducing bureaucracy and delay.

  2. The mining industry and the community: Joining forces for sustainable social development

    International Nuclear Information System (INIS)

    This article joins the continuing policy debate over the social responsibility of corporations, particularly in the mining industry. The author argues that the 'old school mining orthodoxy' - approaching the exploitation of mineral deposits solely from the technical and economic points of view-is long dead. Mining companies must also encompass the social dimension. New policies for the mining industry are discussed in terms of recent worldwide trends and movements, e.g. globalization, economic interdependence and decentralization of governmental authority, and the rise of civil society as a political factor. These trends, together with the United Nations policies in quest of sustainable development and the consensus expressed at international conferences during the last decade, have deepened social awareness and set the stage for enhanced social responsiveness from the private sector. Socially responsible corporate policies include decentralization of decision-making to the field level, reaching out to stake holders and shareholders, supporting governments which provide official development assistance for good governance and building broad partnerships to reduce social exposures. (author)

  3. Credit unions and the common bond

    OpenAIRE

    William R. Emmons; Frank A. Schmid

    1998-01-01

    A distinguishing feature of credit unions is the legal requirement that members share a common bond. This organizing principle recently became the focus of national attention when the Supreme Court and the U.S. Congress took opposite sides in a controversy regarding the number of common bonds (fields of membership) that could coexist within a single credit union. In this article, Emmons and Schmid develop and simulate a model of credit-union formation and consolidation to examine the effects ...

  4. Can Taxes and Bonds Finance Government Spending?

    OpenAIRE

    Stephanie Bell

    1998-01-01

    This paper investigates the commonly held belief that government spending is normally financed through a combination of taxes and bond sales. The argument is a technical one and requires a detailed analysis of reserve accounting at the central bank. After carefully considering the complexities of reserve accounting, it is argued that the proceeds from taxation and bond sales are technically incapable of financing government spending and that modern governments actually finance all of their sp...

  5. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    International Nuclear Information System (INIS)

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used

  6. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    Science.gov (United States)

    Mathe, Zoltan; Charpentier, Philippe

    2014-06-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.

  7. Emergence and oscillation of cosmic space by joining M1-branes

    CERN Document Server

    Sepehri, Alireza; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    2016-01-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises, how this model could explain the oscillation of universe between contraction and expansion branches? We try to address this issue in the framework of BIonic system. In this model, $M0$-branes join to each other and give rise to a pair of $M1$-anti-$M1$-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of $M1$ and the bulk leading to an expansion of $M1$-branes. When $M1$-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To removes these states, $M1$...

  8. Danes join SCOAP3

    CERN Multimedia

    2007-01-01

    The Danish Library Agency is joining CERN 's SCOAP3 project (Sponsoring Consortium for Open Access Publishing in Particle Physics). From the December 20 announcement : The Danish Library Agency is pleased to announce, that it has signed an Expression of interest to join SCOAP3.

  9. Selecting One of Several Mating Types through Gene Segment Joining and Deletion in Tetrahymena thermophila

    Science.gov (United States)

    Cervantes, Marcella D.; Hamilton, Eileen P.; Xiong, Jie; Lawson, Michael J.; Yuan, Dongxia; Hadjithomas, Michalis; Miao, Wei; Orias, Eduardo

    2013-01-01

    The unicellular eukaryote Tetrahymena thermophila has seven mating types. Cells can mate only when they recognize cells of a different mating type as non-self. As a ciliate, Tetrahymena separates its germline and soma into two nuclei. During growth the somatic nucleus is responsible for all gene transcription while the germline nucleus remains silent. During mating, a new somatic nucleus is differentiated from a germline nucleus and mating type is decided by a stochastic process. We report here that the somatic mating type locus contains a pair of genes arranged head-to-head. Each gene encodes a mating type-specific segment and a transmembrane domain that is shared by all mating types. Somatic gene knockouts showed both genes are required for efficient non-self recognition and successful mating, as assessed by pair formation and progeny production. The germline mating type locus consists of a tandem array of incomplete gene pairs representing each potential mating type. During mating, a complete new gene pair is assembled at the somatic mating type locus; the incomplete genes of one gene pair are completed by joining to gene segments at each end of germline array. All other germline gene pairs are deleted in the process. These programmed DNA rearrangements make this a fascinating system of mating type determination. PMID:23555191

  10. Method of joining nuclear fuel rod end caps and nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    A method of joining fuel rod end caps and cladding tubes by resistance pressure welding within a welding chamber is described. A welding device is brought into engagement with an end portion of a rigidly mounted cladding tube. An opening chuck as well as a divided welding electrode, both of which are mounted at one side of the welding chamber, are shifted along a predetermined length of the cladding tube end portion. The chuck and the divided welding electrode are brought into contact with the cladding tube end portion. Another welding electrode carrying an end cap is thrust into the welding chamber from the other side thereof so that the end cap is fed to the open end of the cladding tube end portion. The welding chamber is sealed by sealing members sealingly engaging the cladding tube end portion and the other welding electrode and then the interior of the welding chamber is evacuated and filled with protective gas. The end cap is pressed onto the open end of the cladding tube end portion. A welding current is passed through the welding electrodes so as to weld the end cap to the end of the cladding tube end portion

  11. Explaining arbitrage of CDS and Bond markets

    OpenAIRE

    Mishyn, Maksym Kostyantynovich

    2014-01-01

    The focus of this paper is the theoretical arbitrage relationship between the Credit Default Swaps and Corporate Bonds. We find that the arbitrage relationship tends to be violated, creating short term opportunities for traders. Results of VECM suggest that the difference in price of credit risk persists over time. This violation is explained by three sets of factors: 1) firm-specific credit risk proxies, 2) bond and CDS liquidity and 3) overall market conditions. Variables gai...

  12. Stock vs. Bond Yields, and Demographic Fluctuations

    DEFF Research Database (Denmark)

    Gozluklu, Arie; Morin, Annaïg

    that the slow-evolving time-series covariation due to changing population age structure accounts for the equilibrium relation between stock and bond markets. As a result, by exploiting the demographic information into distant future, the forecasting performance of evaluation models improves. Finally, using...... a cross-country panel, we document the cross-sectional variation of the demographic effect and explain the cross-country differences in comovement between stock and bond markets....

  13. Surface Modification and Direct Bonding of Different Materials Irradiated H2O Ion

    Science.gov (United States)

    Nishimoto, Kazufumi; Ishizawa, Naoya; Ueda, Hiroyasu; Noda, Daiji; Hattori, Tadashi

    Reliable joining technologies are essential for fabrication of microstructures such as micro-machines, and particularly technologies that are capable of jointing different types of materials. However, these technologies cannot be used for materials that have different rates of thermal expansion or in cases where the adhesives have an effect on the properties of the component materials. Our research focused on developing a direct jointing technology which employs hydrogen bonding. In this technology, OH radicals are absorbed into the surface of the material to be bonded by modifying its surface properties by ion irradiation. We studied the modification of the surface properties of two resins, (SU-8 and PMMA) by H2O ion irradiation and Ar cleaning. It was confirmed that the presence of H2O ions on the surface of these resins improved their hydrophilic properties and also the peel strengths of Cu membrane s deposited onto both resins. Based on the results of these studies, a series of experiments were conducted in which two different materials, (copper plus one or other of the resins) were joined directly and the results were evaluated. Each of the resins could be joined to copper by heating to a temperature of 100°C and pressurizing to 10 MPa. This jointing technology will now be applied to the fabrication of the tilt sensors that we are currently developing.

  14. GDP-linked bonds and sovereign default

    OpenAIRE

    Barr, David; Bush, Oliver; Pienkowski, Alex

    2014-01-01

    Using a calibrated model of endogenous sovereign default, we explore how GDP-linked bonds can raise the maximum sustainable debt level of a government, and substantially reduce the incidence of default. The model explores both the costs (in particular the GDP risk premium) and the benefits of issuing GDP-linked bonds. It concludes that significant welfare gains can be achieved by indexing debt to GDP.

  15. Glass-Metal Joining in Nuclear Environment: the State of the Art

    International Nuclear Information System (INIS)

    Full text of publication follows: In the ITER fusion machine and in material testing fission reactors, it is not possible to avoid the use of non-metallic materials like glass for example. There is therefore a need to apply metal to glass joints. This problem arose already at the beginning of the 19. century when the electric light bulb was invented. Nowadays this type of glass-metal joint is very successful and widely used in the electronic industry. In the case of ITER and material testing reactors, glass-metal joints are necessary for the fixation of the optical windows and optical fibres to a metal structure to perform diagnostics. These types of joints are still difficult to make and their behaviour is not fully understood. A joint between glass and metal for a nuclear or fusion application has indeed to resist high temperatures and high neutron fluences, while keeping a good mechanical strength and remaining leak tight. These characteristics are difficult to obtain under these severe conditions. This paper presents an overview of the different joining technologies that can be used to join glass to metal in a severe nuclear environment. The working mechanism of the technologies are explained, together with their respective advantages and drawbacks. Three different types of joining are discussed: fastening, liquid phase joining and solid phase joining. Fastening is a mechanical attachment technique, not achieving easily hermetic seals. Liquid and solid phase joining on the other hand form a real bond, what makes the joint much stronger. The most important technologies using liquid phase joining are adhesive bonding, fusion welding and brazing. In the case of the solid phase joining the choices are ultrasonic torsion welding, diffusion bonding and electrostatic bonding. If it is usually not possible to join the glass directly to the metal, an interlayer must be used. One speaks then of indirect joining. The paper will conclude with a discussion on the best

  16. Equity Volatility and Corporate Bond Yields

    OpenAIRE

    Campbell, John; Taksler, Glen

    2002-01-01

    This paper explores the effect of equity volatility on corporate bond yields. Panel data for the late 1990s show that idiosyncratic firm-level volatility can explain as much cross-sectional variation in yields as can credit ratings. This finding, together with the upward trend in idiosyncratic equity volatility documented by Campbell, Lettau, Malkiel, and Xu (2001), helps to explain recent increases in corporate bond yields. The definitive version is available at www.blackwell-synergy.com.

  17. Convertible Bonds: Risks and Optimal Strategies

    OpenAIRE

    Huang, Haishi

    2009-01-01

    Within the structural approach for credit risk models we discuss the optimal exercise of the callable and convertible bonds. The Vasi˘cek–model is applied to incorporate interest rate risk into the firm’s value process which follows a geometric Brownian motion. Finally, we derive pricing bounds for convertible bonds in an uncertain volatility model, i.e. when the volatility of the firm value process lies between two extreme values.

  18. Efficient Privacy Preserving Protocols for Similarity Join

    Directory of Open Access Journals (Sweden)

    Bilal Hawashin

    2012-04-01

    Full Text Available During the similarity join process, one or more sources may not allow sharing its data with other sources. In this case, a privacy preserving similarity join is required. We showed in our previous work [4] that using long attributes, such as paper abstracts, movie summaries, product descriptions, and user feedbacks, could improve the similarity join accuracy using supervised learning. However, the existing secure protocols for similarity join methods can not be used to join sources using these long attributes. Moreover, the majority of the existing privacy‐preserving protocols do not consider the semantic similarities during the similarity join process. In this paper, we introduce a secure efficient protocol to semantically join sources when the join attributes are long attributes. We provide two secure protocols for both scenarios when a training set exists and when there is no available training set. Furthermore, we introduced the multi‐label supervised secure protocol and the expandable supervised secure protocol. Results show that our protocols can efficiently join sources using the long attributes by considering the semantic relationships among the long string values. Therefore, it improves the overall secure similarity join performance.

  19. Comparison of scaffold-enhanced albumin and n-butyl-cyanoacrylate adhesives for joining of tissue in a porcine model

    Science.gov (United States)

    McNally-Heintzelman, Karen M.; Riley, Jill N.; Heintzelman, Douglas L.

    2003-06-01

    An ex vivo study was conducted to compare the tensile strength of tissue samples repaired using three different techniques: (i) application of a scaffold-enhanced light-activated albumin protein solder, (ii) application of a scaffold-enhanced n-butyl-cyanoacrylate adhesive, and (iii) repair via conventional suture technique. Biodegradable polymer scaffolds of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) and salt particles using a solvent-casting and particulate-leaching technique. Group I porous scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. Group II scaffolds were doped with n-butyl-cyanoacrylate, and required no light-activation. No stay sutures were required for Group I or II experiments. Group III repairs were performed using a single 4-0 suture. Thirteen organs were tested ranging from skin to liver to the small intestine, as well as the coronary, pulmonary, carotid, femoral and splenic arteries. Acute breaking strengths were measured and the data were analyzed by Student"s T-test. Using the protein solder of Group I, repairs formed on the ureter were most successful followed by small intestine, sciatic nerve, spleen, atrium, kidney, muscle, skin and ventricle. The strongest vascular repairs were achieved in the carotid artery and femoral artery. Overall, the tensile strength of Group III repairs performed via suture techniques were equivalent in magnitude to that of Group I repairs, however, a larger variance was observed in the suture repair group. Group II repairs utilizing the cyanoacrylate-doped scaffold all performed extremely well. Bonds formed using the Group II adhesive were approximately 30% stronger than Group I and III organ repairs and approximately 20% stronger than Group I and III vascular repairs. Application of the polymer scaffold assists in tissue alignment and reduces

  20. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications.

    Science.gov (United States)

    Numan, Michael; Young, Larry J

    2016-01-01

    This article is part of a Special Issue "Parental Care". Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occur in ~5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin actions within NA appear to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans. PMID:26062432

  1. Definition and Application of Topological Index Based on Bond Connectivity

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-dong; YANG Feng; YANG Hai-lang; LUO Ming-dao; QU Song-sheng

    2003-01-01

    Bond connectivity topological index Si based on chemical bonds was defined by using a matrix method.And Si is formed by atomic parameters such as the number of valence electrons,the number of the highest main quantum of atoms and the bonding electrons and bond parameters such as the length of bonds,the electronegativity difference of bonding atoms.The molecular bond connectivity topological index S is composed of Si.The thermodynamic properties of saturated hydrocarbons,unsaturated hydrocarbons,oxygen organic,methane halide and transitional element compounds and the molecular bond connectivity topological index S have an optimal correlative relationship.

  2. A review of joining techniques for SiCf/SiC composites for first wall applications

    International Nuclear Information System (INIS)

    Many methods for joining monolithic and composite silicon carbide are available. Three techniques are candidates for use in fusion energy systems: in-situ displacement reactions, pre-ceramic polymer adhesives, and reaction bonding. None of the methods are currently developed enough to satisfy all of the criteria required, i.e., low temperature fabrication, high strength, and radiation stability. 58 refs

  3. Emergence and oscillation of cosmic space by joining M1-branes

    Science.gov (United States)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    2016-05-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti- M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti- M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands.

  4. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  5. Reinforced direct bonding of optical materials by femtosecond laser welding.

    Science.gov (United States)

    Hélie, David; Bégin, Michael; Lacroix, Fabrice; Vallée, Réal

    2012-04-20

    A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes. PMID:22534922

  6. Influence of Water Storage and Bonding Material on Bond Strength of Metallic Brackets to Ceramic.

    Science.gov (United States)

    Costa, Ana Rosa; Correr, Américo Bortolazzo; Consani, Simonides; Giorgi, Maria Cecília Caldas; Vedovello, Silvia Amélia; Vedovello Filho, Mário; Santos, Eduardo Cesar Almada; Correr-Sobrinho, Lourenço

    2015-10-01

    This study investigated the influence of water storage (24 h and 6 months), and Transbond XT and Fuji Ortho LC bonding materials on the bond strength of metallic brackets bonded to feldspathic ceramic. Four cylinders of feldspathic ceramic were etched with 10% hydrofluoric acid for 60 s. Each cylinder received two layers of silane. Metallic brackets were bonded to the cylinders using Transbond XT or Fuji Ortho LC. Light-activation was carried out with 40 s total exposure time using Bluephase G2. Half the specimens for each bonding materials (n=20) were stored in distilled water at 37 °C for 24 h and the other half for 6 months. Shear bond strength testing was performed after storage times at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was used to evaluate the amount of adhesive remaining on the ceramic surface at ×8 magnification. Data were subjected to two-way ANOVA and Tukey's test (p<0.05). Transbond XT showed significantly higher bond strength (p<0.05) than Fuji Ortho LC. Significant differences in bond strength (p<0.05) were found when 24 h and 6 months storage times were compared between materials. ARI showed a predominance of score 0 for all groups, and higher scores at 1, 2 and 3 for 24 h storage time. In conclusion, storage time and bonding materials showed significant influence on the bond strength of brackets to ceramic. PMID:26647936

  7. Joining of Tungsten Armor Using Functional Gradients

    International Nuclear Information System (INIS)

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  8. Ancient and recent adaptive evolution of primate non-homologous end joining genes.

    Directory of Open Access Journals (Sweden)

    Ann Demogines

    2010-10-01

    Full Text Available In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes.

  9. Application of Filters to Multiway Joins in MapReduce

    Directory of Open Access Journals (Sweden)

    Taewhi Lee

    2014-01-01

    be replicated, so multiple sets of filters need to be created, which depend on the number of join attributes. The experimental results showed that our approach outperformed a cascade of two-way joins and basic multiway joins in cases where small portions of input datasets were joined.

  10. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled to...... limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  11. Diffusionless bonding of aluminum to type 304 stainless steel

    International Nuclear Information System (INIS)

    High strength diffusionless bonds can be produced between 1S aluminum and oxidized 304 stainless steel by hot pressing and extrusion bonding. Both the hot pressing and extrusion bonding techniques have been developed to a point where consistently good bonds can be obtained. Although the bonding is performed at elevated temperatures (about 510oC) a protective atmosphere is not required to produce strong bonds. The aluminum-stainless steel bonded specimens can be used to join aluminum and stainless steel by conventional welding. Welding close to the bond zone does not appear to affect the integrity of the bond. The extrusion bonding technique is covered by Canadian patent 702,438 January 26, 1965 and the hot press bonding technique by Canadian patent application 904,548 June 6, 1964. (author)

  12. Generalized join-hemimorphisms on Boolean algebras

    OpenAIRE

    Sergio Celani

    2003-01-01

    We introduce the notions of generalized join-hemimorphism and generalized Boolean relation as an extension of the notions of join-hemimorphism and Boolean relation, respectively. We prove a duality between these two notions. We will also define a generalization of the notion of Boolean algebra with operators by considering a finite family of Boolean algebras endowed with a generalized join-hemimorphism. Finally, we define suitable notions of subalgebra, congruences, Boole...

  13. Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes

    OpenAIRE

    Ann Demogines; Alysia M East; Ji-Hoon Lee; Grossman, Sharon R.; Sabeti, Pardis C.; Paull, Tanya T.; Sawyer, Sara L.

    2010-01-01

    In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to...

  14. Bonding theory for metals and alloys

    CERN Document Server

    Wang, Frederick E

    2005-01-01

    Bonding Theory for Metals and Alloys exhorts the potential existence of covalent bonding in metals and alloys. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. The physical phenomena of metals and alloys covered in this book are: Miscibility Gap between two liquid metals; Phase Equilibrium Diagrams; Phenomenon of Melting. Superconductivity; Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid Metal Embrittlement; Superplasticity; Corrosion; The author introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. This new approach not only explains the many observations made on the phenomenon of superconductivity but also makes predictions that ha...

  15. Speeding Up Neighbour-Joining Tree Construction

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Mailund, Thomas;

    A widely used method for constructing phylogenetic trees is the neighbour-joining method of Saitou and Nei. We develope heuristics for speeding up the neighbour-joining method which generate the same phylogenetic trees as the original method. All heuristics are based on using a quad-tree to guide...... of alignments, and compare the running time with that of the QuickTree tool, a well-known and widely used implementation of the standard neighbour-joining method. The results show that the presented heuristics can give a significant speed-up over the standard neighbour-joining method, already for...

  16. Bond strength, bond stress and spallation mechanisms of thermal barrier coatings

    International Nuclear Information System (INIS)

    Five production thermal barrier coatings were thermally cycled between room temperature and 1121 C (2050 F) to determine relative spallation life. Bond strength measurements were made using a modified ASTM direct pull-test. Bond stress measurements were made in the thermally grown oxide using a laser photoluminescence technique. Bond strength and bond stress measurements were conducted on two electron beam physical vapor deposition coatings as a function of thermal cycling. Each coating showed characteristic values of as-coated strength and stress and changes in strength and stress with thermal cycling. These variations in strength and stress with thermal cycling are related to oxidation and micro-debonding effects. (orig.)

  17. Physical linkage of a human immunoglobulin heavy chain variable region gene segment to diversity and joining region elements

    International Nuclear Information System (INIS)

    Antibody genes are assembled from a series of germ-line gene segments that are juxtaposed during the maturation of B lymphocytes. Although diversification of the adult antibody repertoire results in large part from the combinatorial joining of these gene segments, a restricted set of antibody heavy chain variable (VH), diversity (DH), and joining (JH) region gene segments appears preferentially in the human fetal repertoire. The authors report here that one of these early-expressed VH elements (termed VH6) is the most 3' VH gene segment, positioned 77 kilobases on the 5' side of the JH locus and immediately adjacent to a set of previously described DH sequences. In addition to providing a physical map linking human VH, DH, and JH elements, these results support the view that the programmed development of the antibody VH repertoire is determined in part by the chromosomal position of these gene segments

  18. Deformation and Failure of Polymer Bonded Explosives

    Institute of Scientific and Technical Information of China (English)

    陈鹏万; 黄风雷; 丁雁生

    2004-01-01

    The deformation and failure of pressed polymer bonded explosives under different types of loads including tension, compression and low velocity impact are presented. Brazilian test is used to study the tensile properties. The microstructure of polymer bonded explosives and its evolution are studied by use of scanning electronic microscopy and polarized light microscopy. Polishing techniques have been developed to prepare samples for microscopic examination. The failure mechanisms of polymer bonded explosives under different loads are analyzed. The results show that interfacial debonding is the predominant failure mode in quasi-static tension, while extensive crystal fractures are induced in compression. With the increase of strain rate, more crystal fractures occur. Low velocity impact also induces extensive crystal fractures.

  19. Symmetry in bonding and spectra an introduction

    CERN Document Server

    Douglas, Bodie E

    1985-01-01

    Many courses dealing with the material in this text are called ""Applications of Group Theory."" Emphasizing the central role and primary importance of symmetry in the applications, Symmetry in Bonding and Spectra enables students to handle applications, particularly applications to chemical bonding and spectroscopy. It contains the essential background in vectors and matrices for the applications, along with concise reviews of simple molecular orbital theory, ligand field theory, and treatments of molecular shapes, as well as some quantum mechanics. Solved examples in the text illustra

  20. Comparative evaluation of the bonding efficacy of sixth and seventh generation bonding agents: An In-Vitro study

    OpenAIRE

    Nair, Manuja; Paul, Joseph; Kumar, Satheesh; Chakravarthy, Yadav; Krishna, Vel; Shivaprasad

    2014-01-01

    Aims: To compare the shear bond strength of sixth generation and seventh generation bonding agents to dentin. Materials and Methods: Eighty human maxillary premolars were reduced to expose flat surface of dentin and divided into four equal groups, which were bonded using following bonding agents: Sixth generation bonding agents, Adper SE Plus and Xeno III and Seventh generation bonding agents, Adper Easy One and Xeno V. Composite cylinders were then built using a plastic mould on these prepar...

  1. Comparative evaluation of the bonding efficacy of sixth and seventh generation bonding agents: An In-Vitro study

    OpenAIRE

    Manuja Nair; Joseph Paul; Satheesh Kumar; Yadav Chakravarthy; Vel Krishna; Shivaprasad

    2014-01-01

    Aims: To compare the shear bond strength of sixth generation and seventh generation bonding agents to dentin. Materials and Methods: Eighty human maxillary premolars were reduced to expose flat surface of dentin and divided into four equal groups, which were bonded using following bonding agents: Sixth generation bonding agents, Adper SE Plus and Xeno III and Seventh generation bonding agents, Adper Easy One and Xeno V. Composite cylinders were then built using a plastic mould on these pr...

  2. Comparison of Bond Character in Hydrocarbons and Fullerenes

    OpenAIRE

    Snoke, D. W.; Cardona, M.; Sanguinetti, S.; Benedek, G

    1996-01-01

    We present a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two different models for the fullerene Raman spectrum and the results of Raman measurements on ethane and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well, while the double bonds in fullerenes have greater polarizability than in ethylene.

  3. INTEREST RATES AND CURRENCIES EFFECTS ON ISLAMIC AND CONVENTIONAL BONDS

    Directory of Open Access Journals (Sweden)

    Ghazali Syamni

    2011-09-01

    Full Text Available Bond markets have not been well developed in emerging countries. Realizing its important role, especially after the 1997 crises and the islamic economics development, emerging countries have started to develop such markets. This research examines the effect of interest rates and currencies on Islamic and conventional bonds in Bursa Malaysia. The analysis on Islamic bonds shows that interest rates and currencies do not influence Islamic bonds, which supports the prohibition of interest in Islam. The analysis on conventional bonds finds evidence that both interest rates and currencies affect conventional bond. It also finds evidence of a negative association between interest rates and a conventional bond. Keywords: Interest rate, currency, conventional bond, Islamic bond JEL classification numbers: G11, G12, G15

  4. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding.

    Directory of Open Access Journals (Sweden)

    Soghra Yassaei

    2014-06-01

    Full Text Available The aim of this study was to compare the shear bond strength (SBS of resin modified glass ionomer (RMGI and composite resin for bonding metal and ceramic brackets.Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22. In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT, respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan. After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°. The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA.RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI scores between the groups indicated that the bracket failure mode was significantly different among groups (P<0.001 with more adhesive remaining on the teeth bonded with composite resin.RMGIs have significantly lower SBS compared to composite resin for orthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range.

  5. Nonhomologous DNA end joining and chromosome aberrations in human embryonic lung fibroblasts treated with environmental pollutants

    International Nuclear Information System (INIS)

    Highlights: • We analyzed the effect of air pollutants on NHEJ and chromosome aberrations. • In HEL12469 cells B[a]P and extractable organic matter induced DSBs. • The compounds induced XRCC4 expression and a weak Ku70/80 response. • We found increased frequency of aberrations of chromosomes 1, 2, 4, 5, 7 and 17. • The tested compounds preferentially affected chromosome 7. - Abstract: In order to evaluate the ability of a representative polycyclic aromatic hydrocarbon (PAH) and PAH-containing complex mixtures to induce double strand DNA breaks (DSBs) and repair of damaged DNA in human embryonic lung fibroblasts (HEL12469 cells), we investigated the effect of benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 μm (PM2.5) on nonhomologous DNA end joining (NHEJ) and induction of stable chromosome aberrations (CAs). PM2.5 was collected in winter and summer 2011 in two Czech cities differing in levels and sources of air pollutants. The cells were treated for 24 h with the following concentrations of tested chemicals: B[a]P: 1 μM, 10 μM, 25 μM; EOMs: 1 μg/ml, 10 μg/ml, 25 μg/ml. We tested several endpoints representing key steps leading from DSBs to the formation of CAs including histone H2AX phosphorylation, levels of proteins Ku70, Ku80 and XRCC4 participating in NHEJ, in vitro ligation activity of nuclear extracts of the HEL12469 cells and the frequency of stable CAs assessed by whole chromosome painting of chromosomes 1, 2, 4, 5, 7 and 17 using fluorescence in situ hybridization. Our results show that 25 μM of B[a]P and most of the tested doses of EOMs induced DSBs as indicated by H2AX phosphorylation. DNA damage was accompanied by induction of XRCC4 expression and an increased frequency of CAs. Translocations most frequently affected chromosome 7. We observed only a weak induction of Ku70/80 expression as well as ligation activity of nuclear extracts. In summary, our data suggest the induction of DSBs and

  6. Continuing Relationships with the Deceased: Disentangling Bonds and Grief

    Science.gov (United States)

    Schut, Henk A. W.; Stroebe, Margaret S.; Boelen, Paul A.; Zijerveld, Annemieke M.

    2006-01-01

    Some studies of the relationship between continuing bonds and grief intensity have claimed that continuing bonds lead to poor adaptation to bereavement. However, operationalizations of continuing bonds and grief intensity appear to overlap conceptually. Thus, it is still unclear what character the connection between continuing bonds and grief…

  7. Proceedings of the Symposium on Welding, Bonding, and Fastening. [production engineering for aircraft and spacecraft structures

    Science.gov (United States)

    Stein, B. A. (Compiler); Buckley, J. D. (Compiler)

    1972-01-01

    Various technological processes to achieve lightweight reliable joining systems for structural elements of aircraft and spacecraft are considered. Joining methods, combinations of them, and nondestructive evaluation and quality assurance are emphasized.

  8. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Noh, Sanghoon; Kim, Jun Hwan; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    martensite, and the oxide particles are uniformly distributed as the mechanical alloying (MA) process. FSW was successfully applied for joining of tube and end-plug.

  9. Dissimilar Joining of ODS and F/M Steel Tube by Friction Stir Welding

    International Nuclear Information System (INIS)

    martensite, and the oxide particles are uniformly distributed as the mechanical alloying (MA) process. FSW was successfully applied for joining of tube and end-plug

  10. In vitro bond strengths and SEM evaluation of dentin bonding systems to different dentin substrates

    OpenAIRE

    Perdigão, J.; Swift, E. J.; Denehy, G. E.; Wefel, J S; Donly, K.J.

    1994-01-01

    In comparison to enamel, bonding to normal dentin is a greater challenge because of its organic constituents, fluid-filed tubules, and variations in intrinsic composition. Bonding to sclerotic dentin is even more difficult. To evaluate the shear bond strengths of four adhesive systems to dentin substrates with different levels of mineralization, 120 extracted human teeth were randomly assigned to three groups (n = 40). After mid-coronal dentin was exposed, groups of specimens were artificiall...

  11. Fork-join and data-driven execution models on multi-core architectures: Case study of the FMM

    KAUST Repository

    Amer, Abdelhalim

    2013-01-01

    Extracting maximum performance of multi-core architectures is a difficult task primarily due to bandwidth limitations of the memory subsystem and its complex hierarchy. In this work, we study the implications of fork-join and data-driven execution models on this type of architecture at the level of task parallelism. For this purpose, we use a highly optimized fork-join based implementation of the FMM and extend it to a data-driven implementation using a distributed task scheduling approach. This study exposes some limitations of the conventional fork-join implementation in terms of synchronization overheads. We find that these are not negligible and their elimination by the data-driven method, with a careful data locality strategy, was beneficial. Experimental evaluation of both methods on state-of-the-art multi-socket multi-core architectures showed up to 22% speed-ups of the data-driven approach compared to the original method. We demonstrate that a data-driven execution of FMM not only improves performance by avoiding global synchronization overheads but also reduces the memory-bandwidth pressure caused by memory-intensive computations. © 2013 Springer-Verlag.

  12. 46 CFR Sec. 6 - Surety and form of bond.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by an authorized surety appearing on the...

  13. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining.

    Science.gov (United States)

    Lu, Guangqing; Duan, Jinzhi; Shu, Sheng; Wang, Xuxiang; Gao, Linlin; Guo, Jing; Zhang, Yu

    2016-02-01

    In eukaryotes, DNA double-strand breaks (DSBs), one of the most harmful types of DNA damage, are repaired by homologous repair (HR) and nonhomologous end-joining (NHEJ). Surprisingly, in cells deficient for core classic NHEJ factors such as DNA ligase IV (Lig4), substantial end-joining activities have been observed in various situations, suggesting the existence of alternative end-joining (A-EJ) activities. Several putative A-EJ factors have been proposed, although results are mostly controversial. By using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, we generated mouse CH12F3 cell lines in which, in addition to Lig4, either Lig1 or nuclear Lig3, representing the cells containing a single DNA ligase (Lig3 or Lig1, respectively) in their nucleus, was completely ablated. Surprisingly, we found that both Lig1- and Lig3-containing complexes could efficiently catalyze A-EJ for class switching recombination (CSR) in the IgH locus and chromosomal deletions between DSBs generated by CRISPR/Cas9 in cis-chromosomes. However, only deletion of nuclear Lig3, but not Lig1, could significantly reduce the interchromosomal translocations in Lig4(-/-) cells, suggesting the unique role of Lig3 in catalyzing chromosome translocation. Additional sequence analysis of chromosome translocation junction microhomology revealed the specificity of different ligase-containing complexes. The data suggested the existence of multiple DNA ligase-containing complexes in A-EJ. PMID:26787905

  14. Expected Business Conditions and Bond Risk Premia

    DEFF Research Database (Denmark)

    Eriksen, Jonas Nygaard

    2015-01-01

    This paper studies the predictability of bond risk premia by means of expectations to future business conditions using survey forecasts from the Survey of Professional Forecasters. We show that expected business conditions consistently affect excess bond returns and that the inclusion of expected...... business conditions in standard predictive regressions improve forecast performance relative to models using information derived from the current term structure or macroeconomic variables. The results are confirmed in a real-time out-of-sample exercise, where the models predictive accuracy are evaluated...

  15. Expected Business Conditions and Bond Risk Premia

    DEFF Research Database (Denmark)

    Eriksen, Jonas Nygaard

    This paper studies the predictability of bond risk premia by means of expectations to future business conditions using survey forecasts from the Survey of Professional Forecasters. We show that expected business conditions consistently affect excess bond returns and that the inclusion of expected...... business conditions in standard predictive regressions improve forecast performance relative to models using information derived from the current term structure or macroeconomic variables. The results are confirmed in a real-time out-of-sample exercise, where the predictive accuracy of the models...

  16. Hybrid layer difference between sixth and seventh generation bonding agent

    Directory of Open Access Journals (Sweden)

    Grace Syavira Suryabrata

    2006-03-01

    Full Text Available Since etching is completed at the same stage as priming and bonding, when applying the sixth and seventh generation bonding, the exposed smear layers are constantly surrounded by primer and bonding and cannot collapse. The smear layer and the depth of penetration of resin bonding in dentinal tubules are completely integrated into hybrid layer. The purpose of this laboratory research was to study the penetration depth of two self etching adhesive. Fourteen samples of human extracted teeth were divided into two groups. Each groups consisted of seven samples, each of them was treated with sixth generation bonding agent and the other was treated with seventh generation bonding agent. The results disclosed that the penetration into dentinal tubules of seventh generation bonding agent was deeper than sixth generation bonding agent. Conclusion: bond strength will improve due to the increasing of penetration depth of resin bonding in dentinal tubules.

  17. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    Science.gov (United States)

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  18. Joining, Leaving, and Staying in the American Indian/Alaska Native Race Category Between 2000 and 2010.

    Science.gov (United States)

    Liebler, Carolyn A; Bhaskar, Renuka; Porter, Sonya R

    2016-04-01

    Conceptualizing and operationalizing American Indian populations is challenging. Each census for decades has seen the American Indian population increase substantially more than expected, with indirect and qualitative evidence that this is due to changes in individuals' race responses. We apply uniquely suited (but not nationally representative) linked data from the 2000 and 2010 decennial censuses (N = 3.1 million) and the 2006-2010 American Community Survey (N = 188,131) to address three research questions. First, to what extent do American Indian people have different race responses across data sources? We find considerable race response change, especially among multiple-race and/or Hispanic American Indians. Second, how are people who change responses different from or similar to those who do not? We find three sets of American Indians: those who (1) had the same race and Hispanic responses in 2000 and 2010, (2) moved between single-race and multiple-race American Indian responses, and (3) added or dropped the American Indian response, thus joining or leaving the enumerated American Indian population. People in groups (1) and (2) were relatively likely to report a tribe, live in an American Indian area, report American Indian ancestry, and live in the West. Third, how are people who join a group different from or similar to those who leave it? Multivariate models show general similarity between joiners and leavers in group (1) and in group (2). Population turnover is hidden in cross-sectional comparisons; people joining each subpopulation of American Indians are similar in number and characteristics to those who leave it. PMID:26988712

  19. Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases lambda and mu for nonhomologous end joining in human whole-cell extracts.

    Science.gov (United States)

    Akopiants, Konstantin; Zhou, Rui-Zhe; Mohapatra, Susovan; Valerie, Kristoffer; Lees-Miller, Susan P; Lee, Kyung-Jong; Chen, David J; Revy, Patrick; de Villartay, Jean-Pierre; Povirk, Lawrence F

    2009-07-01

    XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex. PMID:19420065

  20. Development and applications of rectangular box-type explosively bonded structures for high-heat-load beamline components

    International Nuclear Information System (INIS)

    Explosive bonding technology is a good choice to join dissimilar materials, such as 304L stainless steel and GlidCop AL-15, and is used extensively in making the advanced photon source (APS) high-heat-load beamline and front-end components. It is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. In recent years, special explosive bonding units with rectangular box-type joints were developed for the APS new high-heat-load beamline components. Based on this new technique, the box form of the component could be built in two halves first, then welded together. Therefore, beamline designers have more freedom to optimize the cooling surface geometry

  1. The Join-Up Meeting

    Science.gov (United States)

    Cameron, W. Scott

    2002-01-01

    I recently took on a new assignment and, as is my norm, I scheduled a series of one-hour, 1:1 join-up meetings with the various lead personnel on the team and their hierarchy. During one of these meetings, the person I was meeting with informed me how pleasantly surprised she was that I had scheduled this meeting as very few individuals took the time anymore to have them. I was shocked. I was taught that establishing a 1:1 relationship with the people on your team is critical to the project's success. This was the first time I'd heard anything like this about join-up meetings. I filed this feedback away. Later I was talking to my project manager-mentor, and he indicated he had finished his join-up meetings with every person in his new organization. He also indicated his predecessor had conducted few, if any, join-up meetings. Again, I was shocked. When I reflected on these two experiences, I realized a very negative trend might be emerging in our fast-paced, schedule-driven, 500-e-mail-per-day, cell-phone -ringing, 24/7 -communication, multi-tasking work lives: NO FACE TIME! Face time is what you spend with people to talk about the project you are working on, their expectations of you, your expectations of them, your hierarchy's expectations about each of you, and/or-last but certainly not least-what each of you plans on achieving during the project. A 1:1, face-to-face, join-up meeting is the only way I know to build solid trust between the project manager and the team members and their hierarchy.

  2. Ultrasonic power features of wire bonding and thermosonic flip chip bonding in microelectronics packaging

    Institute of Scientific and Technical Information of China (English)

    LI Jun-hui; HAN Lei; ZHONG Jue

    2008-01-01

    The driving voltage and current signals of piezoeeramie transducer (PZT) were measured directly by designing circuits from ultrasonic generator and using a data acquisition software system. The input impedance and power of PZT were investigated by using root mean square (RMS) calculation. The vibration driven by high frequency was tested by laser Doppler vibrometer (PSV-400-M2). And the thermosonic bonding features were observed by scanning electron microscope (JSM-6360LV). The results show that the input power of bonding is lower than that of no load. The input impedance of bonding is greater than that of no load.Nonlinear phase, plastic flow and expansion period, and strengthening bonding process are shown in the impedance and power curves. The ultrasonic power is in direct proportion to the vibration displacement driven by the power, and greater displacements driven by high power (5W) result in welding failure phenomena, such as crack, break, and peeling off in wedge bonding. For thermosonic flip chip bonding, the high power decreases position precision of bonding or results in slippage and rotation phenomena of bumps. To improve reliability and precision of thermosonic bonding, the low ultrasonic power (about 1-5W) should be chosen.

  3. Effect of bonding time on joint properties of vacuum brazed WC - Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.B.; Jung, S.B. [Sungkyunkwan Univ., Dept. of Advanced Materials Engineering, Suwon, Kyounggi-do (Korea); Kwon, B.D. [Seoul Technical High School, Dept. of Metallurgy, Seoul (Korea)

    2004-11-15

    Hard metal WC - Co and carbon steel were successfully joined using double layered Cu alloy and amorphous Ni alloy as inert metal and an oil cooling method after brazing. Defects such as cracks and voids were not formed near the bonded zone. This result means that double layered insert metals and oil cooling minimised the residual stress near the bonded zone after brazing. The shear strength of the joints decreased with increasing bond time. The reasons why the shear strength decreased as bond time increased could be many, including shape of the interface, formation and growth of brittle intermetallic compounds, and coarsening of WC particles near the bond zone. The maximum shear strength of the joints was 310 MPa under conditions 0.6 ks bond time and 8 wt-%Co content in the WC hard alloy. (Author)

  4. A novel bonding method for fabrication of PET planar nanofluidic chip with low dimension loss and high bonding strength

    International Nuclear Information System (INIS)

    Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O2 plasma and ethanol treatment was proposed. With the assistance of O2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels. (paper)

  5. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=Ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j)Ssub(ij)=Vsub(i) and Σsub(i)Ssub(ij)=Vsub(j), where Vsub(i) and Vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. In this paper, this method of interpretation is used to interpret and systematize the experimental results on bond lengths in oxides, halides and oxy-halides of the 5f elements. (Auth.)

  6. Laser assisted and hermetic room temperature bonding based on direct bonding technology

    Science.gov (United States)

    Haneveld, Jeroen; Tijssen, Peter; Oonk, Johannes; Olde Riekerink, Mark; Tigelaar, Hildebrand; van't Oever, Ronny; Blom, Marko

    2014-03-01

    A novel method for laser assisted room temperature bonding of two substrates is presented. The method enables the packaging of delicate (bio)structures and/or finished (MEMS) devices, as there is no need for a high temperature annealing process. This also allows the bonding of two substrates with non-matching thermal expansion coefficients. The basis of the presented technology is the ability to create a direct pre-bond between two substrates. These can be two glass substrates, of which one has a thin film metal coating (e.g. Cr. Ti, Ta, Au…), or a silicon-glass combination. After (aligned) pre-bonding of the two wafers, a laser (e.g. a Nd:YAG laser) is used to form a permanent bond line on the bond interface, using the metal layer as a light absorber (or the silicon, in the case of a glass-silicon combination). The permanent bond line width is in the order of 10-50μm. The use of a laser to form the permanent bond ensures a hermetic sealing of the total package; a distinctive advantage over other, more conventional methods of room temperature bonding (e.g. adhesive bonding). He-leak testing showed leak rates in the order of 10-9 mbar l/s. This meets the failure criteria of the MIL-STD-883H standard of 5x10-8 mbar l/s. An added functionality of the proposed method is the possibility to create electrical circuitry on the bond interface, using the laser to modify the metal interlayer, rendering it electrically non-conductive. Biocompatible packages are also possible, by choosing the appropriate interlayer material. This would allow for the fabrication of implantable packages.

  7. Special event launches new partnership. IAEA and NFCR join forces to fight cancer in developing world

    International Nuclear Information System (INIS)

    Full text: IAEA Director General and Nobel Laureate Mohamed ElBaradei will join more than 100 leading public figures, philanthropists and cancer experts at the United Nations Headquarters in New York on 29 October to mark the launch of a new partnership between the IAEA and the US based National Foundation for Cancer Research (NFCR). Through this partnership, and the endowment fund called the PACT Fund at NFCR, Americans can support the IAEA and its partners in helping poor countries to combat the looming cancer epidemic. 'The IAEA has long provided radiotherapy machines and expertise to developing countries, but the growing cancer crisis cannot be fought with radiotherapy alone,' says Mohamed ElBaradei. 'Our Programme of Action for Cancer Therapy (PACT), which draws on the Agency's long experience in radiation therapy, is building international partnerships to assist in cancer prevention, early detection, treatment and palliative care. Now, through the PACT Fund at NFCR, Americans have the opportunity to support these efforts and bring hope to millions of cancer patients in developing nations.' According to the World Health Organization (WHO), the world is on the brink of a cancer crisis. New cases are expected to double to more than 16 million a year by 2020, unless action is taken now. Hardest hit will be low-income countries, whose health systems are already overburdened by infectious diseases such as HIV/AIDS, Tuberculosis and Malaria. PACT, which was created within the IAEA in 2004, is forging international partnerships with other cancer organizations in both the public and private sectors. Together with partners such as WHO, the American Cancer Society (ACS), the National Cancer Institute (NCI) and the International Agency for Research on Cancer (IARC), it has established pilot projects called Model Demonstration Sites (PMDS) in six countries (Albania, Nicaragua, Sri Lanka, Tanzania, Vietnam and Yemen) to develop and implement comprehensive, integrated

  8. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such

  9. INTEREST RATES AND CURRENCIES EFFECTS ON ISLAMIC AND CONVENTIONAL BONDS

    OpenAIRE

    Ghazali Syamni; Husaini Husaini

    2011-01-01

    Bond markets have not been well developed in emerging countries. Realizing its important role, especially after the 1997 crises and the islamic economics development, emerging countries have started to develop such markets. This research examines the effect of interest rates and currencies on Islamic and conventional bonds in Bursa Malaysia. The analysis on Islamic bonds shows that interest rates and currencies do not influence Islamic bonds, which supports the prohibition of interest in Isla...

  10. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si3N4-Mo-Si3N4. These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si3N4-Si3N4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  11. Efficient Joins with Compressed Bitmap Indexes

    Energy Technology Data Exchange (ETDEWEB)

    Computational Research Division; Madduri, Kamesh; Wu, Kesheng

    2009-08-19

    We present a new class of adaptive algorithms that use compressed bitmap indexes to speed up evaluation of the range join query in relational databases. We determine the best strategy to process a join query based on a fast sub-linear time computation of the join selectivity (the ratio of the number of tuples in the result to the total number of possible tuples). In addition, we use compressed bitmaps to represent the join output compactly: the space requirement for storing the tuples representing the join of two relations is asymptotically bounded by min(h; n . cb), where h is the number of tuple pairs in the result relation, n is the number of tuples in the smaller of the two relations, and cb is the cardinality of the larger column being joined. We present a theoretical analysis of our algorithms, as well as experimental results on large-scale synthetic and real data sets. Our implementations are efficient, and consistently outperform well-known approaches for a range of join selectivity factors. For instance, our count-only algorithm is up to three orders of magnitude faster than the sort-merge approach, and our best bitmap index-based algorithm is 1.2x-80x faster than the sort-merge algorithm, for various query instances. We achieve these speedups by exploiting several inherent performance advantages of compressed bitmap indexes for join processing: an implicit partitioning of the attributes, space-efficiency, and tolerance of high-cardinality relations.

  12. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    International Nuclear Information System (INIS)

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m2. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating

  13. Authenticated join processing in outsourced databases

    KAUST Repository

    Yang, Yin

    2009-01-01

    Database outsourcing requires that a query server constructs a proof of result correctness, which can be verified by the client using the data owner\\'s signature. Previous authentication techniques deal with range queries on a single relation using an authenticated data structure (ADS). On the other hand, authenticated join processing is inherently more complex than ranges since only the base relations (but not their combination) are signed by the owner. In this paper, we present three novel join algorithms depending on the ADS availability: (i) Authenticated Indexed Sort Merge Join (AISM), which utilizes a single ADS on the join attribute, (ii) Authenticated Index Merge Join (AIM) that requires an ADS (on the join attribute) for both relations, and (iii) Authenticated Sort Merge Join (ASM), which does not rely on any ADS. We experimentally demonstrate that the proposed methods outperform two benchmark algorithms, often by several orders of magnitude, on all performance metrics, and effectively shift the workload to the outsourcing service. Finally, we extend our techniques to complex queries that combine multi-way joins with selections and projections. ©2009 ACM.

  14. A new approach to joining of bulk copper using microwave energy

    International Nuclear Information System (INIS)

    Research highlights: → Joining of bulk copper with a sandwich layer using 2.45 GHz microwaves at 900 W. → Melting of sandwich layer and metallurgical bonding with bulk surfaces. → Mechanism of joining using microwave hybrid heating is explained. → Tensile strength and elongation of microwave induced joints are monitored. → Failure mechanisms of microwave induced joints are studied. -- Abstract: Metallurgical joining of high thermal conductivity materials like copper has been technically challenging. This paper illustrates a novel method for joining of bulk metallic materials through microwave heating. Joining of copper in bulk form has been carried out using microwave energy in a multimode applicator at 2.45 GHz and 900 W. Charcoal was used as susceptor material to facilitate microwave hybrid heating (MHH). Copper in coin and plate forms have been successfully joined through microwave heating within 900 s of exposure time. A sandwich layer of copper powder with approximately 0.5 mm thickness was introduced between the two candidate surfaces. Near complete melting of the powder particles in the sandwich layer does take place during the microwave exposure leading to metallurgical bonding of the bulk surfaces. Characterisation of the joints has been carried out through microstructure study, elemental analysis, phase analysis, microhardness survey, porosity measurement and tensile strength testing. X-ray diffraction (XRD) pattern indicates that some copper powder particles got transformed into copper oxides. XRD analysis also reveals that the dominant orientation (3 1 1) in starting copper powder got transformed into a preferential orientation (1 1 1) in the joint. A dense uniform microstructure with good metallurgical bonds between the sandwich layer and the interface was obtained. The hardness of the joint area was observed to be 78 ± 7 Hv, while the porosity in the joint was observed to be 1.92%. Strength character of the copper joints shows approximately

  15. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  16. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  17. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  18. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  19. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair.

    Science.gov (United States)

    Almohaini, Mohammed; Chalasani, Sri Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Yannone, Steven M; Ramsden, Dale A; Hartman, Matthew C T; Povirk, Lawrence F

    2016-05-01

    DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. PMID:27049455

  20. Ownership of Australian Equities and Corporate Bonds

    OpenAIRE

    Susan Black; Joshua Kirkwood

    2010-01-01

    Australian financial and non-financial companies tap capital markets – particularly equity and bond markets – to source funds from households, foreign investors and domestic institutional investors. Foreign investors supply around half of these funds, with institutional investors providing most of the remainder; households’ direct holdings are comparatively modest. During the financial crisis, foreign investors’ appetite for Australian assets remained strong, underpinned by the streng...

  1. Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel

    Science.gov (United States)

    Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding

    2014-09-01

    Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme

  2. Effect of clearfil protect bond and transbond plus self-etch primer on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    S Hamid Raji

    2011-01-01

    Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel.

  3. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    Energy Technology Data Exchange (ETDEWEB)

    MJ Lambert

    2005-11-18

    noticeable reaction layer. T-111 was found to have a small reaction layer at the interface with deposited Hastelloy X. Mar M-247 had a reaction layer larger than T-111. Hastelloy X joined well with a substrate of the same alloy, and throughout the experiments was found to have a density of {approx}99%, based on metallographic observations of porosity in the deposit. Of the three joining methods tested, inertial welding of bar stock appears to be the most mature at this time. MPW may be an attractive alternative due to the potential for high bond integrity, similar to that seen in explosion bonding. However, all three joining methods used in this work will require adaptation in order to join piping and tubing. Further investigations into the change in mechanical properties of these joints with time, temperature, irradiation, and the use of interlayers between the two materials must also be performed.

  4. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    International Nuclear Information System (INIS)

    noticeable reaction layer. T-111 was found to have a small reaction layer at the interface with deposited Hastelloy X. Mar M-247 had a reaction layer larger than T-111. Hastelloy X joined well with a substrate of the same alloy, and throughout the experiments was found to have a density of ∼99%, based on metallographic observations of porosity in the deposit. Of the three joining methods tested, inertial welding of bar stock appears to be the most mature at this time. MPW may be an attractive alternative due to the potential for high bond integrity, similar to that seen in explosion bonding. However, all three joining methods used in this work will require adaptation in order to join piping and tubing. Further investigations into the change in mechanical properties of these joints with time, temperature, irradiation, and the use of interlayers between the two materials must also be performed

  5. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  6. Halogen Bonding Origin Properties and Applications

    Czech Academy of Sciences Publication Activity Database

    Hobza, Pavel

    Melville: AIP Publishing, 2015 - (Simos, T.; Kalogiratou, Z.; Monovasilis, T.), s. 090018. (AIP Conference Proceedings. 1702). ISBN 978-0-7354-1349-8. ISSN 0094-243X. [International Conference of Computational Methods in Sciences and Engineering /11./ (ICCMSE 2015). Athens (GR), 20.03.2015-23.03.2015] Institutional support: RVO:61388963 Keywords : sigma-hole bonding * quantum chemical and molecular mechanincs calculations Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Partial Transient Liquid-Phase Bonding, Part II: A Filtering Routine for Determining All Possible Interlayer Combinations

    Science.gov (United States)

    Cook, Grant O.; Sorensen, Carl D.

    2013-12-01

    Partial transient liquid-phase (PTLP) bonding is currently an esoteric joining process with limited applications. However, it has preferable advantages compared with typical joining techniques and is the best joining technique for certain applications. Specifically, it can bond hard-to-join materials as well as dissimilar material types, and bonding is performed at comparatively low temperatures. Part of the difficulty in applying PTLP bonding is finding suitable interlayer combinations (ICs). A novel interlayer selection procedure has been developed to facilitate the identification of ICs that will create successful PTLP bonds and is explained in a companion article. An integral part of the selection procedure is a filtering routine that identifies all possible ICs for a given application. This routine utilizes a set of customizable parameters that are based on key characteristics of PTLP bonding. These parameters include important design considerations such as bonding temperature, target remelting temperature, bond solid type, and interlayer thicknesses. The output from this routine provides a detailed view of each candidate IC along with a broad view of the entire candidate set, greatly facilitating the selection of ideal ICs. This routine provides a new perspective on the PTLP bonding process. In addition, the use of this routine, by way of the accompanying selection procedure, will expand PTLP bonding as a viable joining process.

  8. Strength and leak testing of plasma activated bonded interfaces

    DEFF Research Database (Denmark)

    Visser, M.M.; Weichel, Steen; Reus, Roger De;

    2002-01-01

    Bond strength and hermeticity of plasma activated bonded (PAB) Si-Si interfaces are reported. Bonding of 100 mm Si(1 0 0) wafers was performed. An average bond strength of 9.0+/-3.9 MPa was achieved without performing any annealing steps. Cavities bonded in vacuum were found to be hermetic based on...... detection of changes in membrane deflections. The detection limit for leak was 8E-13 mbar l/s. For comparison, strength and leak tests were also performed with regular fusion bonded wafers annealed at 1100 degreesC. The PAB was found to withstand post-processing steps such as RCA cleaning, 24 h in de...

  9. Grandmothering life histories and human pair bonding.

    Science.gov (United States)

    Coxworth, James E; Kim, Peter S; McQueen, John S; Hawkes, Kristen

    2015-09-22

    The evolution of distinctively human life history and social organization is generally attributed to paternal provisioning based on pair bonds. Here we develop an alternative argument that connects the evolution of human pair bonds to the male-biased mating sex ratios that accompanied the evolution of human life history. We simulate an agent-based model of the grandmother hypothesis, compare simulated sex ratios to data on great apes and human hunter-gatherers, and note associations between a preponderance of males and mate guarding across taxa. Then we explore a recent model that highlights the importance of mating sex ratios for differences between birds and mammals and conclude that lessons for human evolution cannot ignore mammalian reproductive constraints. In contradiction to our claim that male-biased sex ratios are characteristically human, female-biased ratios are reported in some populations. We consider the likelihood that fertile men are undercounted and conclude that the mate-guarding hypothesis for human pair bonds gains strength from explicit links with our grandmothering life history. PMID:26351687

  10. Electronic Structure and Bonding in Complex Biomolecule

    Science.gov (United States)

    Ouyang, Lizhi

    2005-03-01

    For over a century vitamin B12 and its enzyme cofactor derivates have persistently attracted research efforts for their vital biological role, unique Co-C bonding, rich red-ox chemistry, and recently their candidacies as drug delivery vehicles etc. However, our understanding of this complex metalorganic molecule's efficient enzyme activated catalytic power is still controversial. We have for the first time calculated the electronic structure, Mulliken effective charge and bonding of a whole Vitamin B12 molecule without any structural simplification by first- principles approaches based on density functional theory using structures determined by high resolution X-ray diffraction. A partial density of states analysis shows excellent agreement with X-ray absorption data and has been used successfully to interpret measured optical absorption spectra. Mulliken bonding analysis of B12 and its derivatives reveal noticeable correlations between the two axial ligands which could be exploited by the enzyme to control the catalytic process. Our calculated X-ray near edge structure of B12 and its derivates using Slater's transition state theory are also in good agreement with experiments. The same approach has been applied to other B12 derivatives, ferrocene peptides, and recently DNA molecules.

  11. Multiple Potential Payers and Sovereign Bond Prices

    OpenAIRE

    Oosterlinck, Kim; Ureche-Rangau, Loredana

    2008-01-01

    Sovereign bonds are usually priced under the assumption that only the sovereign issuer may be responsible of their repayment. In some cases however, bondholders may legitimately expect to be repaid by more than one agent. For example, when a country breaks-up, successor states may agree to recognize their responsibility for part of the debt. Other extreme events, such as repudiations, may lead (and have led) bondholders to consider several bailout candidates at the same point in time. This pa...

  12. Issuer Quality and Corporate Bond Returns

    OpenAIRE

    Greenwood, Robin Marc; Hanson, Samuel Gregory

    2013-01-01

    We show that the credit quality of corporate debt issuers deteriorates during credit booms, and that this deterioration forecasts low excess returns to corporate bondholders. The key insight is that changes in the pricing of credit risk disproportionately affect the financing costs faced by low quality firms, so the debt issuance of low quality firms is particularly useful for forecasting bond returns. We show that a significant decline in issuer quality is a more reliable signal of credit ma...

  13. New gravitational formula as a bridge to join the modern physics and the classical physics

    Science.gov (United States)

    Chen, Shao-Guang

    measuring value of one-way velocity of light (H05-0020-08) to replace the infinity value of light speed measured by Galileo in 1607, thereby the mass m in NM will become variable m. Or else, the energy of electron in accelerator should not larger than 0.51Mev which conflict with the experimental fact. According to the variable mass and the definition of force we again get Eq.(1) from NM without hypothesis, i.e., NM is generalized in which Galileo coordinates transformation and the action at a distance will be of no effect. Eq.(1) has more reliable experimental base and generalized NM may be applied to the high-speed and the microscopic conditions. Because of the result of a test of GR with use of a hydrogen-maser frequency standard in a spacecraft launched nearly vertically upward to 10000 km (R. F. C. Vessot et.al., Phys. Rev. Lett. 45, 2081 (1980)), the isotropy of one-way velocity of light had been validated at the 1*10 (-10) level (D2.4-0030-12, H0.1-0009-12, H0.2-0008-12). Again from the Lorentz transformation (H01-0006-08) and the uncertainty principle (H05-0036-10) deduced from the metrical results of Doppler effects, SR and QM, thereby QFT and GR, all become the inferential theorems from generalized NM. Formula (1) is as a bridge to join the modern physics and classical physics. The inertial system (IS) is defined as a linear coordinate system with equal speed, for to judge it yes or not IS we again must measure in a linear coordinate system with equal speed. At the acceleration coordinate to judge IS will make a mistake. So that IS in a logic cycle with self to judge itself. In other words, to determine an IS need another IS, how to judge the first IS? In present measuring precision, we would not find a real IS, Galileo ship concept became as history. The definition of IS in NM had been inherited by SR, GR, QM and QFT, in GR the IS become the local IS. The logic cycle of IS will be a collective problem of the modern physics and the classical physics, and leads to

  14. The Influences of Overlap Length, Bond Line Thickness and Pretreatmant on the Mechanical Properties of Adhesives: Focussing on Bonding Glass

    OpenAIRE

    Vervloed, J.; Kwakernaak, A.; Poulis, H.

    2008-01-01

    This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap length of the epoxy adhesive results in the highest maximum bond stress. However, there is nosignificant difference in maximum bond stresses due to different overlap lengths of the MS polymer. When...

  15. Join-Graph Propagation Algorithms

    OpenAIRE

    Mateescu, Robert; Kask, Kalev; Gogate, Vibhav; Dechter, Rina

    2014-01-01

    The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with a...

  16. Reactive Diffusion Bonding of SiCp/Al Composites by Insert Powder Layers with Eutectic Composition

    Institute of Scientific and Technical Information of China (English)

    Jihua HUANG; Yueling DONG; Jiangang ZHANG; Yun WAN; Guoan ZHOU

    2005-01-01

    Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).

  17. What caused the hikes and dips of government bond yields during the Sovereign Bond crisis?

    OpenAIRE

    Václavíček, Tomáš

    2014-01-01

    This study examines the determinants of government bond spreads vis-a-vis Germany for eleven EMU member countries in the period 2000Q1 to 2013Q3 with a special focus on the European Debt Crisis. The aim of the thesis is to test whether selected financial, fiscal and macroeconomic variables have an impact on government bond spreads. A novel contribution is testing whether there has been a significant change of government bond spread determinants following the ECB interventions in summer 2012. ...

  18. Interfiber bonding and fiber segment activation in paper

    OpenAIRE

    Hannu Paulapuro; Anna K. Vainio

    2007-01-01

    Bonding and activation in paper were studied with the help of laboratory test sheets and common paper strength tests. Different papermaking furnishes and raw material treatments were used to examine the effects they have on bonding and activation. Furthermore, various boundary conditions during drying were included to single out the influence of bonding and activation on paper properties. It was found that bonding is clearly increased by beating of kraft pulp, starch addition, and thermomecha...

  19. Detecting variable (V, diversity (D and joining (J gene segment recombination using a two-colour fluorescence system

    Directory of Open Access Journals (Sweden)

    Scott Gina B

    2010-03-01

    Full Text Available Abstract Background Diversity of immunoglobulins and the T cell antigen receptors is achieved via the recombination activating gene (RAG-mediated rearrangement of variable (V, diversity (D and joining (J gene segments, and this underpins the efficient recognition of a seemingly limitless array of antigens. Analysis of V(DJ recombination activity is typically performed using extrachromosomal recombination substrates that are recovered from transfected cells and selected using bacterial transformation. We have developed a two-colour fluorescence-based system that simplifies detection of both deletion and inversion joining events mediated by RAG proteins. Results This system employs two fluorescent reporter genes that differentially mark unrearranged substrates and those that have undergone RAG-mediated deletion or inversion events. The recombination products bear the hallmarks of true V(DJ recombination and activity can be detected using fluorescence microscopy or flow cytometry. Recombination events can be detected without the need for cytotoxic selection of recombination products and the system allows analysis of recombination activity using substrates integrated into the genome. Conclusions This system will be useful in the analysis and exploitation of the V(DJ recombination machinery and suggests that similar approaches could be used to replace expression of one gene with another during lymphocyte development.

  20. Exchange Rate Policy and Sovereign Bond Spreads in Developing Countries

    OpenAIRE

    Zhanwei Z. Yue; Samir Jahjah

    2004-01-01

    We test the hypothesis of a link between exchange rate policy and sovereign bonds. We analyze the effect of exchange rate policies on supply and credit spreads of sovereign bonds issued by developing countries. An exchange rate policy is captured by the de facto exchange rate regime and the real exchange rate misalignment. The main findings are: (1) real exchange rate overvaluation significantly increases sovereign bond issue probability and raises bond spreads; (2) spreads and the likelihood...

  1. Bond order potentials for fracture, wear, and plasticity

    OpenAIRE

    Pastewka, L.; Mrovec, M.; Moseler, M.; Gumbsch, P.

    2012-01-01

    Coulson's bond order is a chemically intuitive quantity that measures the difference in the occupation of bonding and anti-bonding orbitals. Both empirical and rigorously derived bond order expressions have evolved in the course of time and proven very useful for atomistic modeling of materials. The latest generation of empirical formulations has recently been augmented by screening-function approaches. Using friction and wear of diamond and diamond-like carbon as examples, we demonstrate tha...

  2. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    CERN Document Server

    Amor, Benjamin R C; Yaliraki, Sophia N; Barahona, Mauricio

    2016-01-01

    Allosteric regulation is central to many biochemical processes. Allosteric sites provide a target to fine-tune protein activity, yet we lack computational methods to predict them. Here, we present an efficient graph-theoretical approach for identifying allosteric sites and the mediating interactions that connect them to the active site. Using an atomistic graph with edges weighted by covalent and non-covalent bond energies, we obtain a bond-to-bond propensity that quantifies the effect of instantaneous bond fluctuations propagating through the protein. We use this propensity to detect the sites and communication pathways most strongly linked to the active site, assessing their significance through quantile regression and comparison against a reference set of 100 generic proteins. We exemplify our method in detail with three well-studied allosteric proteins: caspase-1, CheY, and h-Ras, correctly predicting the location of the allosteric site and identifying key allosteric interactions. Consistent prediction of...

  3. Shear bond strength, failure modes, and confocal microscopy of bonded amalgam restorations.

    Science.gov (United States)

    Cianconi, Luigi; Conte, Gabriele; Mancini, Manuele

    2011-01-01

    This study evaluated the shear bond strength, failure modes, and confocal microscopy of two different amalgam alloy restorations lined with five adhesive systems. Two regular-set high-copper dental amalgam alloys, Amalcap Plus and Valiant Ph.D, and five commercially available adhesive systems were selected. One hundred and twenty freshly-extracted human third molars were used for the study. The results were statistically evaluated using two-factor analysis of variance (ANOVA). The shear bond strength (SBS) of amalgam to dentin was significantly affected by both the adhesive (pValiant Ph.D, 31 of 50 exhibited adhesive failure, and 19 displayed mixed failure. Laser optical microscopy (OM) of the bonded interface revealed the presence of a good hybrid layer was evident in all experimental groups. Higher bond strengths were measured for four of the five adhesives when used in combination with the spherical alloy. PMID:21383518

  4. Bayesian field theoretic reconstruction of bond potential and bond mobility in single molecule force spectroscopy

    CERN Document Server

    Chang, Joshua C; Chou, Tom

    2015-01-01

    Quantifying the forces between and within macromolecules is a necessary first step in understanding the mechanics of molecular structure, protein folding, and enzyme function and performance. In such macromolecular settings, dynamic single-molecule force spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, have been used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complex-shaped bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to...

  5. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  6. Comparison of Shear Bond Strength between Composite Resin and Porcelain Using Different Bonding Systems

    Directory of Open Access Journals (Sweden)

    E.Yassini

    2005-03-01

    Full Text Available Statement of Problem: Ceramics as in ceramo-metallic and all ceramic tooth restorations have grown popular owing to their high tissue compatibility and esthetic advantages. Such restorations have the capability to deliver valuable services over a long period of time; however, failures under intraoral conditions are not unanticipated.Purpose: The purpose of this in-vitro study was to investigate the shear bond strength of composite resin to porcelain using different bonding system materials.Materials and Methods: In this experimental study forty porcelain blocks were prepared and randomly divided into four equal groups. The porcelain surfaces were then etched with HF for 2 minutes, washed with water for 2 minutes and treated with a silane layer. The silane treated porcelain surfaces were left for one minute and then the specimens were bonded to composite resin as follow:Group 1 (control group, hybrid composite Z100 was applied and light cured from four directions for 20 seconds. Group 2, flowable composite was applied and light cured for 20 seconds. Group 3, unfilled resin was used and photo cured for 20 seconds. Group 4,(Dentin bonding agent adhesive resin was used followed by 20 seconds photo curing.Hybrid composite resin Z100 was subsequently applied on all porcelain surfaces of groups 2, 3 and 4, and light cured for 20 seconds from four directions. Specimens were then subjected to thermocycling 1000 times. Shear bond strength was determined by a Universal testing machine. The data obtained was subjected to a one-way ANOVA test.Results: The results indicate that there is a statistically significant difference between adhesive group and the other three groups of hybrid, flowable and unfilled resin (P<0.05.Conclusion: The results from this study showed that the shear bond strength of composite resin to porcelain was significantly higher for porcelain bonded surfaces using a dentin bonding agent than that of other materials tested.

  7. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends.

    Science.gov (United States)

    Bombarde, Oriane; Boby, Céline; Gomez, Dennis; Frit, Philippe; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Salles, Bernard; Calsou, Patrick

    2010-05-01

    DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells. PMID:20407424

  8. Evaluation of Shear Bond Strength of Newer Bonding Systems on Superficial and Deep Dentin

    OpenAIRE

    Kumari, R Veena; Siddaraju, Kishore; Nagaraj, Hema; Poluri, Ramya Krishna

    2015-01-01

    Background: The purpose of this study was to compare the shear bond strength of nanocomposite resin to superficial dentin and deep dentin using two different dentin bonding systems. Materials and Methods: All teeth were sectioned at various levels (superficial dentin: Dentin within 0.5-1 mm of dentinoenamel junction; deep dentin: Dentin within 0.5 mm of the highest pulp horn) using a Carborundum Disc and embedded in acrylic block of specific size. Selected specimens (60 premolar teeth) were g...

  9. Preliminary results for explosion bonding of beryllium to copper

    Energy Technology Data Exchange (ETDEWEB)

    Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  10. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations.

    Science.gov (United States)

    Lieber, Michael R; Yu, Kefei; Raghavan, Sathees C

    2006-09-01

    When a single double-strand break arises in the genome, nonhomologous DNA end joining (NHEJ) is a major pathway for its repair. When double-strand breaks arise at two nonhomologous sites in the genome, NHEJ also appears to be a major pathway by which the translocated ends are joined. The mechanism of NHEJ is briefly summarized, and alternative enzymes are also discussed. V(D)J recombination and class switch recombination are specialized processes designed to create double-strand DNA breaks at specific locations in the genomes of lymphoid cells. Sporadic Burkitt's lymphoma and myelomas can arise due to translocation of the c-myc gene into the Ig heavy chain locus during class switch recombination. In other lymphoid neoplasms, the RAG complex can create double-strand breaks that result in a translocation. Such RAG-generated breaks occur at very specific nucleotides that are directly adjacent to sequences that resemble canonical heptamer/nonamer sequences characteristic of normal V(D)J recombination. This occurs in some T cell leukemias and lymphomas. The RAG complex also appears capable of recognizing regions for their altered DNA structure rather than their primary sequence, and this may account for the action by RAGs at some chromosomal translocation sites, such as at the bcl-2 major breakpoint region in the follicular lymphomas that arise in B lymphocytes. PMID:16793349

  11. A review of joining techniques for SiC{sub f}/SiC composites for first wall applications

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, C.A.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-09-01

    Many methods for joining monolithic and composite silicon carbide are available. Three techniques are candidates for use in fusion energy systems: in-situ displacement reactions, pre-ceramic polymer adhesives, and reaction bonding. None of the methods are currently developed enough to satisfy all of the criteria required, i.e., low temperature fabrication, high strength, and radiation stability. 58 refs.

  12. Investigating the joining of PMMA plastic to steel by Nd:YAG laser

    Directory of Open Access Journals (Sweden)

    Andor Bauernhuber

    2012-09-01

    Full Text Available Due to the effort of weight reduction in the manufacturing of vehicles, the application and therefore the joining of different materials such as plastics and metals play more and more important role in the development of the joining processes nowadays. In this research work, the joining of PMMA plastic sheets and unalloyed steel pins was investigated. The authors applied Nd:YAG laser beam to create the bond, and tensile tests were carried out to analyse how the strength of the joint is influenced by the heating time, the penetration depth of the steel workpieces in the plastic and the surface roughness of steel. The observed bubble formation and the tearing characteristics were also studied.

  13. INVESTIGATING THE JOINING OF PMMA PLASTIC TO STEEL BY Nd:YAG LASER

    Directory of Open Access Journals (Sweden)

    Tamás Markovits

    2012-10-01

    Full Text Available Due to the effort of weight reduction in the manufacturing of vehicles, the application and therefore the joining of different materials such as plastics and metals plays more and more important role in the development of the joining processes nowadays. In this research work, the joining of PMMA plastic sheets and unalloyed steel pins was investigated. The authors applied Nd:YAG laser beam to create the bond, and tensile tests were carried out to analyse how the strength of the joint is influenced by the heating time, the penetration depth of the steel workpieces in the plastic and the surface roughness of steel. The observed bubble formation and the tearing characteristics were also studied.

  14. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    Science.gov (United States)

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-01

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR. PMID:26787901

  15. Residual stresses generated during joining of dissimilar alumina-zirconia composites by plastic deformation and its implications on mechanical properties

    International Nuclear Information System (INIS)

    Ceramic bars of zirconia toughened-alumina composites were fabricated by pressureless sintering in air at 1450 deg. C for 4 h. Composite samples were fabricated with two different compositions: zirconia with 60 vol.% alumina (ZT60A) and zirconia with 40 vol.% alumina (ZT40A). Average four-point-bend strengths for the ZT40A and ZT60A were 480 ± 45 MPa and 410 ± 120 MPa, respectively. Three-layered sandwich structures were fabricated by joining two bars of sintered ZT60A with a sintered ZT40A bar. High-temperature plastic joining was accomplished at 1350 deg. C at a strain rate of 5 x 10-6 s-1 and a compressive stress ranging from 30-40 MPa. Bend tests conducted on the layered structure exhibited average strengths of 707 ± 81 MPa. Strength enhancements for the multilayered structure were higher than those predicted by stress analysis. Stress enhancements were compared with the residual stresses measured in the layered sample using X-ray micro-diffraction at the Advance Photon Source (APS). Scanning electron microscopy (SEM) was also conducted to identify the location of failure causing flaws.

  16. DISULFIND: A DISULFIDE BONDING STATE AND CYSTEINE CONNECTIVITY PREDICTION SERVER

    OpenAIRE

    Ceroni, A; Passerini, A.; Vullo,A; Frasconi, P.

    2006-01-01

    DISULFIND is a server for predicting the disulfide bonding state of cysteines and their disulfide connectivity starting from sequence alone. Optionally, disulfide connectivity can be predicted from sequence and a bonding state assignment given as input. The output is a simple visualization of the assigned bonding state (with confidence degrees) and the most likely connectivity patterns. The server is available at .

  17. Comparison of shear bond strength of amalgam bonded to primary and permanent dentin

    OpenAIRE

    Mahdi S; Bahman S; Arghavan A; Fatemeh M

    2008-01-01

    Amalgam′s non-adhesive characteristics necessitate cavity preparations incorporating retentive features, which often require the removal of non-carious tooth structure. Use of adhesives beneath amalgam restorations, would be helpful to overcome this disadvantage. This study was undertaken to compare the mean shear bond strength of amalgam bonded to primary and permanent dentin, to evaluate the efficacy of amalgam adhesives in pediatric dentistry.27 primary and 28 permanent posterior te...

  18. Bond markets and banking crises in emerging market economies: The role of institutions

    Directory of Open Access Journals (Sweden)

    Boukhatem Jamel

    2012-01-01

    Full Text Available This paper deals with the question of knowing if countries whose activity of financing is mainly bank based face crises more expensive than those where the bond markets are broader and more developed. The results of the empirical tests on a panel of emerging countries suggest that bank based financial systems are associated with crises slightly more expensive, whereas the relationship between the bond markets and the crises’ costs is fragile. Moreover, financial systems where bond markets play an important role are associated with a higher growth of the production, and this, independently of the presence or not of crises. The consideration of the combined effect of financial liberalization and institutional framework on the bond markets development shows the importance of the direction of the financial liberalization. We join in this case one of the most significant aspects of the “sequencing” theorized by McKinnon (1973. Finally, an effective prudential regulation tends to reduce significantly the probability of occurrence of banking crises.

  19. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion

    International Nuclear Information System (INIS)

    The primary objective of this study is to develop a technique for joining a commercially available Silicon Carbide that gives good room temperature strength and the potential for good high temperature strength. One secondary objective is that the joining technique be adaptable to SiCf/SiC composites and/or Nickel based superalloys, and another secondary objective is that the materials provide good neutron irradiation resistance and low activation for potential application inside nuclear fusion reactors. The joining techniques studied here are: (1) reaction bonding with Al-Si/Si/SiC/C; (2) reaction/infiltration with calcium aluminum silicate; (3) ion exchange mechanism to form calcium hexaluminate (a refractory cement); and (4) oxide frit brazing with cordierite

  20. Cooperative effects between tetrel bond and other σ-hole bond interactions: a comparative investigation

    Science.gov (United States)

    Esrafili, Mehdi D.; Nurazar, Roghaye; Mohammadian-Sabet, Fariba

    2015-12-01

    Covalently bonded atoms of Groups IV-VII tend to have anisotropic charge distributions, the electronic densities being less on the extensions of the bonds (σ-holes) than in the intervening regions. These σ-holes often give rise to positive electrostatic potentials through which the atom can interact attractively and highly directionally with negative sites. In this work, cooperative effects between tetrel bond and halogen/chalcogen/pnicogen bond interactions are studied in multi-component YH3M...NCX...NH3 complexes, where Y = F, CN; M = C, Si and X = Cl, SH and PH2. These effects are analysed in detail in terms of the structural, energetic, charge-transfer and electron density properties of the complexes. The nature of the σ-hole bonds is unveiled by quantum theory of atoms in molecules and natural bond orbital theory. A favourable cooperativity is found with values that range between -0.34 and -1.15 kcal/mol. Many-body decomposition of interaction energies indicate that two-body energy term is the most important source of the attraction, which its contribution accounts for 87%-96% of the total interaction energy.

  1. 40 CFR 35.6590 - Bonding and insurance.

    Science.gov (United States)

    2010-07-01

    ... Actions Procurement Requirements Under A Cooperative Agreement § 35.6590 Bonding and insurance. (a) General. The recipient must meet the requirements regarding bonding described in 40 CFR 31.36(h). The... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Bonding and insurance. 35.6590...

  2. Continuing relationships with the deceased : disentangling bonds and grief

    NARCIS (Netherlands)

    Schut, Henk A W; Stroebe, Margaret S; Boelen, Paul A; Zijerveld, Annemieke M

    2006-01-01

    Some studies of the relationship between continuing bonds and grief intensity have claimed that continuing bonds lead to poor adaptation to bereavement. However, operationalizations of continuing bonds and grief intensity appear to overlap conceptually. Thus, it is still unclear what character the c

  3. Helical Oligoenes: Conformations, Bond Alternation, and Competing Through-Bond and Through-Space Transmission.

    Science.gov (United States)

    Tsuji, Yuta; Hoffmann, Roald

    2016-03-24

    There is a consensus that long-range electron transfer/transport occurs by a through-bond rather than through-space mechanism. In helical all-Z, all-s-cis oligoenes, one can set up an interesting competition in the medium-separation regime between a closer (in distance) through-space path and a more distant through-bond one. Although such oligoene conformations/isomers are unstable (by around 4 kcal mol(-1) per double bond relative to all-E, all-s-trans isomers), recent synthetic efforts on truncated helicenes and oligothiophenes have provided related molecules. On the way to transmission calculations with electrodes attached to the termini of helical oligoenes, we uncover an interesting conformational ambiguity in all-Z, all-s-cis oligoenes, the existence of a broad conformational minimum for helical compression, with hints of end-to-end frontier-orbital-caused stabilization. There is relationship between helical oligoene structures and the corresponding substructure of a helicene, but there are also significant differences in the number of olefin subunits per helix turn. In Hückel transport calculations, the role of TB or TS mechanisms is obscured to an extent by variations in bond alternation and dihedral angle along the oligomer chain. However, the operation of a dominant through bond mechanism emerges clearly in local transmission plots. In moving the electrodes to carbon position related by quantum interference, it is possible to uncover a through space mechanism. PMID:26890266

  4. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States)] [and others

    1997-04-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on identification of the most effective joining methods for scale-up to large tube assemblies, including joining using SiC produced in situ from chemical precursors. During FY 1996, a new microwave applicator was designed, fabricated and tested that provides the capability for vacuum baking of the specimens and insulation and for processing under inert environment. This applicator was used to join continuous fiber-reinforced (CFCC) SiC/SiC composites using a polymer precursor to form a SiC interlayer in situ.

  5. Various Carbon to Carbon Bond Lengths Inter-related via the Golden Ratio, and their Linear Dependence on Bond Energies

    CERN Document Server

    Heyrovska, Raji

    2008-01-01

    This work presents the relations between the carbon to carbon bond lengths in the single, double and triple bonds and in graphite, butadiene and benzene. The Golden ratio, which was shown to divide the Bohr radius into two parts pertaining to the charged particles, the electron and proton, and to divide inter-atomic distances into their cationic and anionic radii, also plays a role in the carbon-carbon bonds and in the ionic/polar character of those in graphite, butadiene and benzene. Further, the bond energies of the various CC bonds are shown to vary linearly with the bond lengths.

  6. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.;

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. The...... overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation...

  7. Students' Perceptions of Parental Bonding Styles and Their Academic Burnout

    Science.gov (United States)

    Shin, Hyojung; Lee, Jayoung; Kim, Boyoung; Lee, Sang Min

    2012-01-01

    This study investigated how parental bonding style affects academic burnout in Korean adolescents. Participants were 447 middle school students, who completed the Parental Bonding Instrument and the Maslach Burnout Inventory-Student Survey. MANCOVA results confirmed that adolescents reporting the optimal bonding parental style, for both mother and…

  8. Low temperature GRISM direct bonding

    Science.gov (United States)

    Kalkowski, Gerhard; Harnisch, Gerd; Grabowski, Kevin; Benkenstein, Tino; Ehrhardt, Sascha; Zeitner, Uwe; Risse, Stefan

    2015-09-01

    For spectroscopy in space, GRISM elements -obtained by patterning gratings on a prism surface - are gaining increasing interest. Originally developed as dispersive elements for insertion into an imaging light path without deflecting the beam, they are progressively found in sophisticated multi stage dispersion optics. We report on GRISM manufacturing by joining the individual functional elements -prisms and gratings - to suitable components. Fused silica was used as glass material and the gratings were realized by e-beam lithography und dry etching. Alignment of the grating dispersion direction to the prism angle was realized by passive adjustment. Materials adapted bonds of high transmission, stiffness and strength were obtained at temperatures of about 200°C in vacuum by hydrophilic direct bonding. Examples for bonding uncoated as well as coated fused silica surfaces are given. The results illustrate the great potential of hydrophilic glass direct bonding for manufacturing transmission optics to be used under highly demanding environmental conditions, as typical in space.

  9. The chemical bond structure and dynamics

    CERN Document Server

    Zewail, Ahmed

    1992-01-01

    This inspired book by some of the most influential scientists of our time--including six Nobel laureates--chronicles our emerging understanding of the chemical bond through the last nine decades and into the future. From Pauling's early structural work using x-ray and electron diffraction to Zewail's femtosecond lasers that probe molecular dynamics in real time; from Crick's molecular biology to Rich's molecular recognition, this book explores a rich tradition of scientific heritage and accomplishment. The perspectives given by Pauling, Perutz, Rich, Crick, Porter, Polanyi, Herschbach, Zewail,

  10. Surface plasmon resonance assisted rapid laser joining of glass

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  11. Surface plasmon resonance assisted rapid laser joining of glass

    International Nuclear Information System (INIS)

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm2 and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices

  12. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  13. Theoretical study for Bond between Reinforcement steel and Concrete

    Directory of Open Access Journals (Sweden)

    usama mostafa mahran

    2013-04-01

    Full Text Available The behavior and load carrying behavior of reinforced concrete structures is influence by the interaction between the concrete and reinforcement. The stress transfer between reinforcement and concrete in the longitudinal direction of the bars is called bond. An essential feature of reinforced concrete is the bond between steel and concrete. Anchorage of reinforcement depends on the bond between steel and concrete, crack width and crack spacing are mainly governed by it. So, stiffness, deformation and dynamic behavior are influenced by it, and in reverse loading damping and energy dissipation is a function of bond. This is one of the reasons why bond has been, and still is, a topic of fundamental and applied research. Bond stress is the equivalent unit shear stress acting in parallel to the reinforcing bar on the interface between reinforcing steel bar and concrete. Due to the transfer of forces through bond stress, between the reinforcing rebar and concrete, the force in the reinforcing bar changes along its length. Because bond stress is thought of as stress per unit area of bar surface, it is related to the rate of change of steel stress. Consequently, to have bond stress it is necessary to have a changing steel stress. In cases of high stress at the contact interface, near cracks or end anchorages, the bond stresses are related to relative displacements between concrete and steel. These relative displacements, which are caused by different average strains in the concrete and the steel, are usually called bond-slip (t-d.

  14. Carbonate clumped isotope bond reordering and geospeedometry

    Science.gov (United States)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  15. An investigation on microstructure evolution and mechanical properties during liquid state diffusion bonding of Al2024 to Ti–6Al–4V

    International Nuclear Information System (INIS)

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 °C under vacuum of 7.5 × 10−5 Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion process led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: • Liquid state diffusion bonding of Al2024 to Ti–6Al–4V was performed successfully. • Diffusion of the elements caused the formation of various intermetallics at the interface. • Microhardness and shear strength values have a straight relation with bonding time. • The maximum shear strength reached to 36 MPa in 60 min bonding time

  16. Tetrahedrality and hydrogen bonds in water

    Science.gov (United States)

    Székely, Eszter; Varga, Imre K.; Baranyai, András

    2016-06-01

    We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.

  17. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  18. Development of fricriveting as a new joining technique for polymer and lightweight alloys; Entwicklung des Reibnietens als neues Fuegeverfahren fuer Kunststoff und Leichtbaulegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Amancio-Filho, S.T.; Santos, J.F. dos [GKSS Forschungszentrum GmbH, Institut fuer Werkstoffforschung, Werkstoffmechanik, Geesthacht (Germany)

    2008-11-15

    The increasing demand on environmental consciousness, cost savings and high performance end products has been guiding scientists and engineers to a constant development of new materials and technologies. This class of lightweight structures are specially used in industrial fields such as transportation and modern civil engineering. Currently available joining methods for polymer-metal structures (adhesive bonding and mechanical fastening) are usually application-specific, presenting high operational costs, limited mechanical performance or are not environmental friendly. A new Friction Riveting technique for polymeric-metallic joints was developed, demonstrated and characterized in this work, as an alternative, reliable, environmental compatible and economically viable spot joining process. In the simplest process variant a rotating cylindrical metallic rivet is inserted in one or more thermoplastic base plates. The high rotation speed and pressure increase friction and heat is generated. When the preset time is achieved the temperature highly increases and the rivet tip plasticizes. At this point rotation is decelerated and the axial pressure increased, so the plasticized rivet tip becomes deformed; after cooling it becomes anchored in the polymeric base plate. In this work case-study joints on commercially available polyetherimide (PEI) and aluminium 2024-T351 (Al-Cu-Mg alloy) were chosen for demonstrating proposed theories and mechanisms of FricRiveting. Sound friction riveted point-on-plate and single-rivet overlap joints with elevated joint efficiencies in terms of base materials strength were obtained (tensile joint efficiencies of about 97 % of the rivet strength and shear joint efficiencies of about 70 % of the polymer strength) through tensile and lap shear testing at room temperature. Finally, the microstructural changes and properties were described for this case-study joint. The feasibility of FricRiveting was demonstrated in this work by the presented

  19. Optimization of Laser Transmission Joining Process Parameters on Joint Strength of PET and 316 L Stainless Steel Joint Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Shashi Prakash Dwivedi

    2014-01-01

    Full Text Available The objective of the present work is to study the effects of laser power, joining speed, and stand-off distance on the joint strength of PET and 316 L stainless steel joint. The process parameters were optimized using response methodology for achieving good joint strength. The central composite design (CCD has been utilized to plan the experiments and response surface methodology (RSM is employed to develop mathematical model between laser transmission joining parameters and desired response (joint strength. From the ANOVA (analysis of variance, it was concluded that laser power is contributing more and it is followed by joining speed and stand-off distance. In the range of process parameters, the result shows that laser power increases and joint strength increases. Whereas joining speed increases, joint strength increases. The joint strength increases with the increase of the stand-off distance until it reaches the center value; the joint strength then starts to decrease with the increase of stand-off distance beyond the center limit. Optimum values of laser power, joining speed, and stand-off distance were found to be 18 watt, 100 mm/min, and 2 mm to get the maximum joint strength (predicted: 88.48 MPa. There was approximately 3.37% error in the experimental and modeled results of joint strength.

  20. Joint attention, shared goals, and social bonding.

    Science.gov (United States)

    Wolf, Wouter; Launay, Jacques; Dunbar, Robin I M

    2016-05-01

    There has recently been interest in the ways in which coordinated movements encourage coactors to feel socially closer to one another, but this has generally overlooked the importance of necessary precursors to this joint action. Here we target two low-level behaviours involved in social coordination that may mediate a relationship between joint actions and social bonding, namely joint attention and shared goals. Participants engaged in a simple reaction time task while sitting next to a partner performing the same task. In a joint attention condition, both participants attended to stimuli presented on the same half of a computer screen, while in a control condition, they attended to opposite sides of the computer screen. Shared goals were manipulated by giving participants the instruction to keep below a threshold score for both individual response times and accuracy (individual goal), or their joint mean response time and accuracy (i.e., averaging their mean response time and accuracy with that of their partner: shared goal). Attending to the same side of the screen led to higher ratings on a composite social bonding index directed towards a partner, while shared goals did not cause any effects on partner ratings. Joint attention was sufficient to encourage social closeness with an interaction partner, which suggests that any activities which encourage attending to the same point in space could have some influence on how connected coactors feel about one another. PMID:26256821

  1. Bond portfolio's duration and investment term-structure management problem

    Directory of Open Access Journals (Sweden)

    Daobai Liu

    2006-05-01

    Full Text Available In the considered bond market, there are N zero-coupon bonds transacted continuously, which will mature at equally spaced dates. A duration of bond portfolios under stochastic interest rate model is introduced, which provides a measurement for the interest rate risk. Then we consider an optimal bond investment term-structure management problem using this duration as a performance index, and with the short-term interest rate process satisfying some stochastic differential equation. Under some technique conditions, an optimal bond portfolio process is obtained.

  2. Chemical bond approach to metals and alloys

    International Nuclear Information System (INIS)

    The BCS theory of superconductivity was extended to the transition elements and their alloys by a chemical bond approach based on the electronic configurations of the Engel-- Brewer theory of alloys. The net attractive potential between electrons in Cooper pairs, V/sub BCS/, for the late transition series elements and alloys is shown to arise mainly from a generalized electron--electron interaction related to bonding of electrons on the d level alone, the phonon-induced attraction being nearly zero. A mechanism is proposed in which a scattering of superconducting d electrons into nonsuperconducting s and p states is responsible for a predictable reduction in V/sub BCS/. The electron-per-atom ratio and a new chemical parameter, the average atomic radius for coordination twelve, were applied successfully to the prediction of the maximum energy product of multiphase commercial permanent magnets. The correlations developed for the maximum energy product with these two parameters can be applied to optimize the compositions of existing permanent magnets or suggest hypothetical alloy mixtures of possibly better magnetic properties. Heats of reaction of the

  3. Simulation of mechanical joining for automotive applications

    OpenAIRE

    Gårdstam, Johannes

    2006-01-01

    Regarding the use of material, modern lightweight car bodies are becoming more and more complex than previous constructions. The materials nowadays are used for a more specific field of application and more high strength steels are used and also other materials like aluminium, stainless steel, reinforced polymers are used more frequent. The joining of these materials often requires new or modified joining processes. The aim with this thesis is concerned with the development of simulation mode...

  4. Evaluation of bond strength of different adhesive systems: Shear and Microtensile Bond Strength Test

    Science.gov (United States)

    GALLUSI, G.; GALEANO, P.; LIBONATI, A.; GIUCA, M.R.; CAMPANELLA, V.

    2010-01-01

    SUMMARY Objectives. Aim of this work is the in vitro bond strength evaluation of three bonding agents comparing the results of two kinds of test, Microtensile Bond Strength Test and a Shear Bond Strength Test. Bond strength tests have been used to test both direct and indirect restorative techniques to investigate if methods could give different results. Methods 72 human third molars have been collected and stored in physiological solution. Three kinds of test were conducted: 1- SB, 2- “Slice” preparation μTBS1, 3- “Stick” preparation μTBS2. We tested three different adhesive systems (Groups 1-2-3 n=24), two restorative techniques (subgroup A–B n=12). The tested adhesives were: Optibond FL (OFL) (Group 1), Optibond Solo Plus (OSP) (Group 2), Optibond Solo Plus Self-Etch (OSSE) (Group 3). For all tests was used a universal load machine Instron Machine. Results. Best values were found for Optibond FL with mean values of 45–50 MPa. Optibond Solo Plus resulted in values very similar and in some cases almost identical to FL. Optibond Solo Self Etch showed poorer adhesion in both direct and indirect restorative techniques. The parametric and non parametric statistical variance analysis pointed out the absence of significant differences between OFL and OSP, and demonstrated a significant difference for OSSE adhesive. Significance. The results confirm that a total etch two-step adhesive is the best compromise between easiness and effectiveness. PMID:23285371

  5. A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder

    International Nuclear Information System (INIS)

    As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from 155 degrees C to 165 degrees C in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  6. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  7. Laser Assisted Joining of Hybrid Polyamide-aluminum Structures

    Science.gov (United States)

    Lamberti, Christian; Solchenbach, Tobias; Plapper, Peter; Possart, Wulff

    The demand for hybrid polymer-metal structures is continuously growing due to their great potential in automotive, aerospace and packaging applications. The expected capabilities are highly diverse and include functional, chemical and mechanical as well as economical and ecological aspects. A novel laser beam joining process for hybrid polyamide-aluminum structures is reported. The spatial and temporal heat input is optimized for optimal bonding quality. At the interface it was proven that the polyamide was not decomposed as a result of excessive thermal stress. It was shown that laser or electro-chemical surface pre-treatment of the aluminum substrate has a distinctive effect on the shear strength of the joint. However, the bond quality does not correspond to a change of surface roughness. Therefore, mechanical interlocking in direct relation to surface topology of the pre-treated substrate is not the principal cause for the bonding phenomenon. Chemical analysis in terms of IR-spectroscopy has shown a physicochemical interaction based on hydrogen bonds.

  8. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining.

    Science.gov (United States)

    Raghavan, Sathees C; Tong, Jiangen; Lieber, Michael R

    2006-02-01

    In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining. PMID:16275127

  9. Interfacial structures and diffusion studies in solid state bonded TZM (Mo-0.5Ti-0.1Zr) specimens using multilayers

    International Nuclear Information System (INIS)

    TZM alloy has excellent high temperature mechanical properties, high recrystallization temperature and good resistance to liquid metals and hence this alloy finds application in missile technology, fusion reactors and also as structural material for high temperature nuclear reactors. Practical application of this alloy requires joining at low temperature. Diffusion bonding technique was used for joining TZM alloy with Ti, Mo and Ta as interlayer and thickness of these foils was in the range of 100 - 200 μm. Specimens were bonded in the temperature range of 900 to 1200 deg C for 2 hrs at a pressure of 50 MPa. The cross-sections of the annealed specimens were characterized using optical microscope, scanning electron microscope (SEM) and electron probe micro analyser (EPMA). The microstructure of the TZM base material consisted of large elongated grains with carbide precipitates along the grain boundaries. All the interlayers Ti, Mo and Ta produced excellent contact at the interface and the microstructure revealed absence of discontinuities or micropores along the interface. A bonding temperature of about 1200 deg C was essential for joining TZM using Ta and Mo interlayers and 1000 deg C was suitable using Ti as an interlayer. The concentration profiles of Ti and Mo for TZM/Ti/TZM specimens joined at 1000 deg C were asymmetric about the Matano Interface and Mo was found to diffuse to about 50-70 μm into Ti and the diffusion of Ti into Mo was generally less than 20 μm. The paper presents details of microstructure, diffusion parameters and the advantages of using Ti as an interlayer for joining TZM alloy. (author)

  10. COMPARATIVE EVALUATION OF THE BONDING EFFICACY OF SIXTH, SEVENTH AND EIGHTH GENERATION BONDING AGENTS: AN IN VITRO STUDY

    OpenAIRE

    Paul Joseph; Chakravarthy Yadav; Kumar Satheesh; Raju Rahna

    2013-01-01

    The aim of the study was to compare In-vitro the micro tensile bond strength of sixth generation (Clearfil SE Bond, Kuraray, Japan), seventh generation (Adper Easy One, 3 M ESPE, Germany) and eighth generation ((Futurabond DC, Voco, Germany) dentin bonding agents. Twenty freshly extracted caries free, unrestored human molars were selected. The occlusal surfaces were ground flat; divided into four groups of five each according to the bonding agent applied and covered with composite resin (10 m...

  11. Microleakage and shear bond strength of orthodontc brackets bonded to hypomineralized enamel following different surface preparations

    Science.gov (United States)

    Shahabi, Mostafa; Mohamadipour, Hamideh; Moosavi, Horieh

    2014-01-01

    Objectives: This study investigated the effects of several conditioning methods on shear bond strength (SBS) and microleakage of orthodontic brackets bonded to demineralized enamel. Study Design: One hundred premolars were selected and immersed in a cariogenic solution for 12 weeks. The teeth were randomly assigned into 5 groups. In groups 1 and 2, the teeth underwent acid etching for 30 and 120 seconds, respectively. In group 3, a combination of laser and acid etching was employed. A self-etch primer (SEP) was applied in group 4 and in group 5, the teeth were exposed to acidulated phosphate fluoride (APF) for 4 minutes before etching. After bracket bonding, the teeth were immersed in methylen blue for 12 hours and then were mounted in acrylic resin. SBS was determined with an Instron Universal Testing Machine and the amount of microleakage under the brackets was assessed under a stereomicroscope. Results: The lowest SBS was related to the SEP group and the highest one was observed in the specimens prepared by APF+acid etching. There was a significant difference in SBS (p=0.009), but not in microleakage (p=0.971) of the study groups. The SBS of the specimens treated with SEP was significantly Lower than the other groups, which were not significantly different from each other. The SEP group displayed a higher frequency of bond failure at the enamel-adhesive interface. Conclusions: Enamel preparation with SEP provided the lowest SBS among the groups. All groups showed some degree of microleakage. There was no significant correlation between SBS and microleakage. Key words:Bond strength, microleakage, bonding, self-etch primer, Er:YAG laser. PMID:24790708

  12. Comparison of the shear bond strength of orthodontic brackets bonded using silorane base and metacrylate base composite

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2015-07-01

    Full Text Available Background and Aims: Orthodontic bracket failure during treatment is a common problem. With the introduction of low shrinkage composites the question is that whether: this sufficient has coefficient bond strength for bonding bracket during orthodontic treatment. The aim of this study was to compare the shear bond strength (SBS of silorane-based and metacrylate-based composites to metal brackets.   Materials and Methods: 30 human premolar teeth were collected and divided into 2 groups. In group 1, 15 orthodontic brackets were bonded using silorane-based composite, in group 2, 15 orthodontic brackets were bonded using metacrylate-based composite. The shear bond strength of each specimen was determined in an Instron machine. Amount of residual adhesive remaining on each tooth was evaluated using a stereomicroscope. Data were analyzed using T-test to compare the shear bond strength between groups and LSD method to compare the Adhesive Remnant Index (ARI scores.   Results: There was significant difference in the SBS between the test groups (P<0.001. The mean bond strength of bonding brackets to silorane-based composite was (42.42 ± 7.03 MPa, and the mean bond strength of bonding brackets metacrylate-based composite was (21.08±2.97 MPa. No significant difference in the ART was found between groups (P=0.66.   Conclusion: Silorane-based composite provided higher bond strength to orthodontic metal brackets.

  13. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  14. Bond Strength of 5(th, 6(th and 7(th Generation Bonding Agents to Intracanal Dentin of Primary Teeth.

    Directory of Open Access Journals (Sweden)

    Hossein Afshar

    2015-04-01

    Full Text Available This in-vitro study sought to assess the push-out bond strength of a total etch and 2 self-etch bonding systems to intracanal dentin of primary anterior teeth (PAT.Thirty-six primary anterior teeth were randomly divided into 3 groups of 5(th generation (Single Bond 2, 6(th generation (Clearfil SE and 7(th generation (Single Bond Universal bonding agents. The canal orifice was restored with composite resin and the push-out test was carried out to assess the bond strength. After applying the push-out load, specimens were evaluated under a light microscope at 40X magnification. One-way ANOVA and log-rank test on Kaplan-Meier curves were applied for the comparison of bond strength among the 3 groups.The mean± standard deviation (SD bond strength was 13.6±5.33 MPa for Single Bond 2, 13.85±5.86 MPa for Clearfil SE and 12.28±5.24 MPa for Single Bond Universal. The differences in bond strength among the 3 groups were not statistically significant (P>0.05.All three bonding agents are recommended for use with composite posts in PAT. However, due to high technical sensitivity of the Total Etch system, single or two-step self etch systems may be preferred for uncooperative children.

  15. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.

    Science.gov (United States)

    Brownridge, Scott; Crawford, Margaret-Jane; Du, Hongbin; Harcourt, Richard D; Knapp, Carsten; Laitinen, Risto S; Passmore, Jack; Rautiainen, J Mikko; Suontamo, Reijo J; Valkonen, Jussi

    2007-02-01

    The bonding in the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I42+ (three sigma + two pi bonds), the Se-I pi-bonded Se2I42+ (four sigma + one pi bonds), and their higher-energy isomers have been studied using modern DFT and ab initio calculations and theoretical analysis methods: atoms in molecules (AIM), molecular orbital (MO), natural bond orbital (NBO), and valence bond (VB) analyses, giving their relative energies, theoretical bond orders, and atomic charges. The aim of this work was to seek theory-based answers to four main questions: (1) Are the previously proposed simple pi*-pi* bonding models valid for S2I42+ and Se2I42+? (2) What accounts for the difference in the structures of S2I42+ and Se2I42+? (3) Why are the classically bonded isolobal P2I4 and As2I4 structures not adopted? (4) Is the high experimentally observed S-S bond order supported by theoretical bond orders, and how does it relate to high bond orders between other heavier main group elements? The AIM analysis confirmed the high bond orders and established that the weak bonds observed in S2I42+ and Se2I42+ are real and the bonding in these cations is covalent in nature. The full MO analysis confirmed that S2I42+ contains three sigma and two pi bonds, that the positive charge is essentially equally distributed over all atoms, that the bonding between S2 and two I2+ units in S2I42+ is best described by two mutually perpendicular 4c2e pi*-pi* bonds, and that in Se2I42+, two SeI2+ moieties are joined by a 6c2e pi*-pi* bond, both in agreement with previously suggested models. The VB treatment provided a complementary approach to MO analysis and provided insight how the formation of the weak bonds affects the other bonds. The NBO analysis and the calculated AIM charges showed that the minimization of the electrostatic repulsion between EI2+ units (E = S, Se) and the delocalization of the positive charge are the main factors that explain why the nonclassical structures are favored for S2I42

  16. Join Operations in Temporal Databases

    DEFF Research Database (Denmark)

    Gao, D.; Jensen, Christian Søndergaard; Snodgrass, R.T.; Soo, M.D.

    2005-01-01

    need for efficient join evaluation in temporal databases. Our purpose is twofold. We first survey all previously proposed temporal join operators. While many temporal join operators have been defined in previous work, this work has been done largely in isolation from competing proposals, with little......Joins are arguably the most important relational operators. Poor implementations are tantamount to computing the Cartesian product of the input relations. In a temporal database, the problem is more acute for two reasons. First, conventional techniques are designed for the evaluation of joins with...... equality predicates rather than the inequality predicates prevalent in valid-time queries. Second, the presence of temporally varying data dramatically increases the size of a database. These factors indicate that specialized techniques are needed to efficiently evaluate temporal joins. We address this...

  17. Expectations, Bond Yields and Monetary Policy

    DEFF Research Database (Denmark)

    Chun, Albert Lee

    2011-01-01

    while accommodating output growth and monetary policy expectations. Forecasted GDP growth plays a significant role in explaining time variation in the market prices of risk. The sensitivity of long yields is linked to the persistence of expected inflation under the risk-neutral measure. Models of this...... type may provide traders and policymakers with a new set of tools for formally assessing the reaction of bond yields to shifts in market expectations......Through explicitly incorporating analysts' forecasts as observable factors in a dynamic arbitrage-free model of the yield curve, this research proposes a framework for studying the impact of shifts in market sentiment on interest rates of all maturities. An empirical examination reveals that survey...

  18. Misleading evidence for covalent bonding from EuIIIX and AmIIIX density functional theory bond lengths

    International Nuclear Information System (INIS)

    Graphical abstract: Density functional calculations are frequently found to yield too long Eu-S bond distances. - Highlights: • Density functional theory provides too long Eu-S bond distances. • Ab initio structure optimizations needed to obtain reliable Eu-S bond distances. • Am-S bonds not necessarily more covalent than Eu-S bonds. - Abstract: In complexes of trivalent Eu and Am standard unrestricted Kohn–Sham density functional calculations tend to yield shorter bond distances for the Am-X than for the Eu-X bonds, especially when X is a so-called soft ligand. Since the ionic radius of AmIII is larger than the one of EuIII the reversed order of the bond distances is sometimes explained by a higher covalency of the Am-X bond compared to the one of the Eu-X bond. A comparison of density functional with wavefunction-based correlated calculations for several model systems reveals, however, that the energetically low-lying and spatially compact 4f shell of EuIII often is erroneously filled with significantly more than 6 electrons at the density functional theory level, thus yielding considerably too long bond distances. Particularly claims based on comparisons of structures optimized at the density functional level that the strong preference of the Cyanex 301 ligand for AmIII over EuIII is due to an increased covalency in the Am-S bonds should be viewed with some reservation

  19. Bond Properties and Experimental Methods of Textile Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Textile reinforced concrete(TRC, for short) allows the low size production and offers a high effectiveness of the reinforcement by using continuous roving instead of short-chopped fibers. However, whether textiles can cooperate with concrete very well depends on the bond between them. In this paper, the bonding mechanism that the stress was transferred from fine concrete to textile was analyzed, and the influences of the initial bond length of textile, the surface treatment of textile, the strength and workability of concrete as well as the level of prestressing force on bond behavior were investigated on the basis of pull-out tests. The results reveal that with initial bond length increasing, the maximum pull force increases, and increasing concrete strength and improving workability of concrete matrix, epoxy resin impregnating and sand covering of textile as well as prestressing textile can obviously increase the bond strength between the textile and concrete.

  20. 27 CFR 19.245 - Bonds and penal sums of bonds.

    Science.gov (United States)

    2010-04-01

    ... bonds. 19.245 Section 19.245 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE...) Distiller The amount of tax on spirits produced during a period of 15 days $5,000 $100,000 (ii) Warehouseman... gallons ......do 5,000 50,000 (iii) Distiller and warehouseman The amount of tax on spirits...

  1. 27 CFR 19.241 - Operations bond-distilled spirits plant and adjacent bonded wine cellar.

    Science.gov (United States)

    2010-04-01

    ... wine cellar. (a) General. A wine cellar under the provisions of 27 CFR part 24 shall be treated as... spirits plant and adjacent bonded wine cellar. 19.241 Section 19.241 Alcohol, Tobacco Products and... subpart G for the production of distilled spirits; and (2) Such wine cellar and distilled spirits...

  2. Childhood exposure to violence and lifelong health: clinical intervention science and stress-biology research join forces.

    Science.gov (United States)

    Moffitt, Terrie E

    2013-11-01

    Many young people who are mistreated by an adult, victimized by bullies, criminally assaulted, or who witness domestic violence react to this violence exposure by developing behavioral, emotional, or learning problems. What is less well known is that adverse experiences like violence exposure can lead to hidden physical alterations inside a child's body, alterations that may have adverse effects on life-long health. We discuss why this is important for the field of developmental psychopathology and for society, and we recommend that stress-biology research and intervention science join forces to tackle the problem. We examine the evidence base in relation to stress-sensitive measures for the body (inflammatory reactions, telomere erosion, epigenetic methylation, and gene expression) and brain (mental disorders, neuroimaging, and neuropsychological testing). We also review promising interventions for families, couples, and children that have been designed to reduce the effects of childhood violence exposure. We invite intervention scientists and stress-biology researchers to collaborate in adding stress-biology measures to randomized clinical trials of interventions intended to reduce effects of violence exposure and other traumas on young people. PMID:24342859

  3. Selective-area laser deposition (SALD) Joining of silicon carbide with silicon carbide filler

    Science.gov (United States)

    Harrison, Shay Llewellyn

    Selective Area Laser Deposition (SALD) is a gas-phase, solid freeform fabrication (SFF) process that utilizes a laser-driven, pyrolytic gas reaction to form a desired solid product. This solid product only forms in the heated zone of the laser beam and thus can be selectively deposited by control of the laser position. SALD Joining employs the SALD method to accomplish 'welding' of ceramic structures together. The solid reaction product serves as a filler material to bond the two parts. The challenges involved with ceramic joining center around the lack of a liquid phase, little plastic deformation and diffusivity and poor surface wetting for many ceramic materials. Due to these properties, traditional metal welding procedures cannot be applied to ceramics. Most alternative ceramic welding techniques use some form of a metal addition to overcome these material limitations. However, the metal possesses a lower ultimate use temperature than the ceramic substrate and therefore it decreases the temperature range over which the joined part can be safely used. SALD Joining enjoys several advantages over these ceramic welding procedures. The solid filler material chemistry can be tailored to match the type of ceramic substrate and therefore fabricate monolithic joints. The SALD filler material bonds directly to the substrate and the joined structure is made in a one step process, without any post-processing. The research documented in this dissertation focused on SALD Joining of silicon carbide structures with silicon carbide filler material. A historical progression of gas-phase SFF research and a literature review of the most prominent ceramic joining techniques are provided. A variety of SiC substrates were examined, as were various conditions of gas precursor pressures and mixtures, laser beam scan speed and joint configuration. The SALD material was characterized for composition and structure by x-ray diffraction, transmission electron microscopy and nuclear magnetic

  4. Grade-12 Students' Misconceptions of Covalent Bonding and Structure.

    Science.gov (United States)

    Peterson, Raymond F.; Treagust, David F.

    1989-01-01

    Describes a multiple choice, pencil and paper, diagnostic instrument used to measure student understanding of covalent bonding and structure concepts. Reports evidence of seven commonly held misconceptions. (MVL)

  5. Anion–arene adducts: C–H hydrogen bonding, anion– interaction, and carbon bonding motifs

    OpenAIRE

    Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2008-01-01

    This article summarizes experimental and theoretical evidence for the existence of four distinct binding modes for complexes of anions with charge-neutral arenes. These include C–H hydrogen bonding and three motifs involving the arene– system—the noncovalent anion– interaction, weakly covalent interaction, and strongly covalent interaction.

  6. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  7. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    International Nuclear Information System (INIS)

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  8. Why join the Staff Association

    CERN Multimedia

    Association du personnel

    2011-01-01

    Becoming a member of the Staff Association (SA) is above all a personal choice, showing that the joining person’s commitment and adherence to values such as solidarity, social cohesion, etc.In September, the SA launches a membership campaign to convince a maximum number to join, to inform, arouse interest and support. Posters, emails and individual contacts are part of the campaign programme, just like this editorial. As far as individual contacts are concerned, we ask you to give time and lend an ear to the delegates of your department in the Staff Council, who will approach you, in order to make an open and constructive discussion possible. Do not hesitate to ask questions and let them know your thoughts about the SA, as (constructive) criticism enables us to progress. The Staff Association and its role of collective representation The Staff Association, via its delegates, represents collectively all staff of the Organization before the Director-General and Member States. To do this, staff rep...

  9. Molecular dynamics simulation of the effect of carbon nanotube chirality on nano-joining with gold particle

    International Nuclear Information System (INIS)

    The behavior of gold atoms depending on the CNT chirality in a nanojoining process is studied by molecular dynamics simulation. The deformation regularity and the diffusing characteristic of the gold particle during the joining process, as well as the C-Au bonds distribution in the final joint are studied. Our results show that when joining with higher spirality CNT, gold particle tends to deform more. With the CNT more similar to armchair type, the gold particle as a whole displaces more. In the final joint, the total bonds number decreases from typical armchair CNT to typical zig-zag CNT. However, the bonds distribution in detail is irregular from joint to joint, which is the consequence of lattice structure of both materials. (author)

  10. Market presence in China strengthened Network growth and Dual-Chinese-Hub Strategy More frequet Flyer Benefit——Air China and shanhai Airlines Join Star Alliance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In the end of 2007, Air China Limited (hereinafter "Air China") and Shanghai Airlines, formally joined Star Alliance at a ceremony held in the new Terminal Three at Beijing Capital International Airport. With the addition of the two Chinese airlines, Star Alliance now has 19 member carriers operating 17,000 daily flights to 897 destinations in 160 countries.

  11. The comovement of US and German bond markets

    DEFF Research Database (Denmark)

    Engsted, Tom; Tanggaard, Carsten

    2007-01-01

    We use a vector-autoregression, with parameter estimates corrected for small-sample bias, to decompose US and German unexpected bond returns into three 'news' components: news about future inflation, news about future real interest rates, and news about future excess bond returns (term premia). We...... future US inflation will increase, there is a tendency that German inflation will also increase. This is regarded bad news for the bond market in both countries whereby bond prices are bid down leading to immediate negative return innovations and changing expectations of future excess bond returns. Thus...... then cross-country correlate these news components to see which component is responsible for the high degree of comovement of US and German bond markets. For the period 1975-2003 we find that inflation news is the main driving force behind this comovement. When news is coming to the US market that...

  12. SPATIO-TEXTUAL SIMILARITY JOIN

    Directory of Open Access Journals (Sweden)

    Ch Shylaja and Supreethi K.P

    2015-07-01

    Full Text Available Data mining is the process of discovering interesting patterns and knowledge from large amounts of data. Spatial databases store large space related data, such as maps, preprocessed remote sensing or medical imaging data. Modern mobile phones and mobile devices are equipped with GPS devices; this is the reason for the Location based services to gain significant attention. These Location based services generate large amounts of spatio- textual data which contain both spatial location and textual description. The spatiotextual objects have different representations because of deviations in GPS or due to different user descriptions. This calls for the need of efficient methods to integrate spatio-textual data. Spatio-textual similarity join meets this need. Spatio-textual similarity join: Given two sets of spatio-textual data, it finds all the similar pairs. Filter and refine framework will be developed to device the algorithms. The prefix filter technique will be extended to generate spatial and textual signatures and inverted indexes will be built on top of these signatures. Candidate pairs will be found using these indexes. Finally the candidate pairs will be refined to get the result. MBR-prefix based signature will be used to prune dissimilar objects. Hybrid signature will be used to support spatial and textual pruning simultaneously.

  13. Bond Lengths and Bond Strengths in Weak and Strong Chemisorption: N2, CO, and CO/H on Nickel Surfaces

    OpenAIRE

    Sayago, David I.; Hoeft, Jon T.; Polcik, Martin; Kittel, Martin; Toomes, Rachel L.; Robinson, J.; Woodruff, David Phillip; Pascal, Mathieu; Lamont, Christine L. A.; Nisbet, Gareth

    2003-01-01

    New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 Å...

  14. The Romanian Municipal Bond Market and the International Financial Crisis

    Directory of Open Access Journals (Sweden)

    VALENTINA VASILE

    2010-06-01

    Full Text Available In Romania, the bond market was set up later, comparatively to the equity market. This market is in a development process, but the international financial crisis has affected even the interest of investors in bonds. The secondary municipal bond market is not a very liquid market because these securities are bought from the primary market and held in portfolios by investors because these bonds have a low risk. The issue of these bonds is correlated with the financial independence and the level of decentralization of the local public authorities. The issuance of these bonds is correlated with financial independence and decentralization level specific to local public authorities. Under crisis conditions, the volatility of this market is more significant, the increasing deficits of local budgets decreasing the interest of the middle-class in investing in such financial instruments.

  15. Flexible Friction Stir Joining Technology

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lim, Yong Chae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mahoney, Murray [MegaStir Technologies LLC, Orem, UT (United States); Sanderson, Samuel [MegaStir Technologies LLC, Orem, UT (United States); Larsen, Steve [MegaStir Technologies LLC, Orem, UT (United States); Steel, Russel [MegaStir Technologies LLC, Orem, UT (United States); Fleck, Dale [MegaStir Technologies LLC, Orem, UT (United States); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC), Houston, TX (United States); Babb, Jon [MegaStir Technologies LLC, Orem, UT (United States); Higgins, Paul [MegaStir Technologies LLC, Orem, UT (United States)

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  16. Interfiber bonding and fiber segment activation in paper

    Directory of Open Access Journals (Sweden)

    Hannu Paulapuro

    2007-01-01

    Full Text Available Bonding and activation in paper were studied with the help of laboratory test sheets and common paper strength tests. Different papermaking furnishes and raw material treatments were used to examine the effects they have on bonding and activation. Furthermore, various boundary conditions during drying were included to single out the influence of bonding and activation on paper properties. It was found that bonding is clearly increased by beating of kraft pulp, starch addition, and thermomechanical pulp fines, whereas activation benefited most from beating and addition of reinforcement fibers to mechanical pulp based furnishes. Subjecting test sheets to increasing amounts of drying stress affected activation positively, and bonding negatively. The increase in activation did not seem to be dependent on the beating degree of chemical pulp fibers. Bonding, on the other hand, deteriorated more significantly in sheets made of extensively beaten kraft fibers, i.e. in sheets where the initial bonding potential was higher. Commonly used paper strength measurements provide dependable and accurate tools for assessing the effect of different variables on both bonding and activation. A short literature survey of bonding and activation is also provided.

  17. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    Science.gov (United States)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  18. Accelerated Bonding of Magnesium and Aluminum with a CuNi/Ag/CuNi Sandwich Interlayer by Plasma-Activated Sintering

    Science.gov (United States)

    Wang, Yiyu; Rao, Mei; Li, Leijun; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2016-02-01

    Plasma-activated sintering (PAS) has been applied, for the first time, to join magnesium and aluminum using a CuNi/Ag/CuNi sandwich structural interlayer. A cleaning effect and high efficient plasma heating mode in PAS have contributed to forming a strong interfacial diffusion bond under low temperature 673 K (400 °C) and short dwell time (0.6 ks). The designed interlayer provides a diffusion barrier effect and an enhanced physical contact between the interfaces. Strong bonding has been achieved without forming the brittle Mg-Al intermetallics.

  19. Bank Debt Regulations Implications for Bank Capital and Bond Risk

    OpenAIRE

    Stig Helberg; Snorre Lindset

    2013-01-01

    We use a structural model of default risk to study how optimal bank capital and bond risk are influenced by deposit insurance, implicit guarantees, depositor preference, asset encumbrance, and bail-in resolution frameworks. We find that these features of bank financing, in addition to having an immediate impact on bond debt risk, also change optimal bank capital, countering the first-order effect on bond debt risk. Bondholders' risk is thereby not materially affected, but shareholder value an...

  20. Carbodiimide Inactivation of MMPs and Effect on Dentin Bonding

    OpenAIRE

    Mazzoni, A.; Apolonio, F.M.; Saboia, V.P.A.; de Santi, S; Angeloni, V; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2014-01-01

    The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zym...

  1. Monetary Policy Drivers of Bond and Equity Risks

    OpenAIRE

    John Y. Campbell; Pflueger, Carolin; Viceira, Luis Manuel

    2014-01-01

    How do monetary policy rules, monetary policy uncertainty, and macroeconomic shocks affect the risk properties of US Treasury bonds? The exposure of US Treasury bonds to the stock market has moved considerably over time. While it was slightly positive on average over the period 1960-2011, it was unusually high in the 1980s, and negative in the 2000s, a period during which Treasury bonds enabled investors to hedge macroeconomic risks. This paper develops a New Keynesian macroeconomic model wit...

  2. Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips

    Science.gov (United States)

    Fromherz, Peter

    2008-09-01

    The direct electrical interfacing of semiconductor chips with individual nerve cells and with brain tissue is considered. At first, the structure of the cell-chip contact is described and then the electrical coupling is characterized between ion channels, the electrical elements of nerve cells, and transistors and capacitors of silicon chips. On that basis, the signal transmission between microelectronics and microionics is implemented in both directions. Simple hybrid systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue on silicon. The application of CMOS chips with capacitively coupled recording sites allows an imaging of neuronal activity with high spatiotemporal resolution. Goal of the work is an integration of neuronal network dynamics and digital electronics on a microscopic level for applications in brain research, medical prosthetics and information technology.

  3. Mechanical properties considerations for use of epoxy insulators and bonded joints in neutral beam ion sources

    International Nuclear Information System (INIS)

    In the Doublet III (D-III) neutral beam injectors, cast, rigid-epoxy insulators are joined to the AISI 304 stainless steel corona rings with semi-rigid epoxy adhesive. Selected mechanical properties of these materials were measured between 110C and 650C, well below the material temperature limits, to identify the trends and to confirm adequate mechanical strength for the insulators. Significant creep deformation was measured at 220C. Empirical relationships were developed to predict long term strain over a range of stress and temperature of design interest. Delayed failure was observed in bonded specimens at stress levels well below the ultimate strength. In order to protect the D-III neutral beam ion source epoxy from elevated temperature effects, a chill was installed in the cooling water circuit. Outgassing measurements of the insulator epoxy were made and found to be low and primarily H2O

  4. Steam turbines of scientific and industrial joining 'Turboatom' , their features and perfecting ways

    International Nuclear Information System (INIS)

    The article deals with the specific features of steam turbines for TPPs and NPPs developed by Turboatom Research and Production Association. Design diagrams of advanced turbines, including modified, are considered. Operation experience of turbines and turbine plants is analysed. 9 refs., 6 figs., 1 tab

  5. Tin-silver and tin-copper alloys for capillarity joining-soft soldering-of copper piping

    International Nuclear Information System (INIS)

    It is studied the influence of the type of alloy used as filling material on the defects of the soldering joints in copper piping installations, which induce the fluid leak of the systems. The different eutectic temperatures and solidus-liquidus ranges of these alloys, require the setting of the soldering heat input in each case to obtain the suitable capillarity features and alloying temperatures to achieve for the correct formation of the bonding. Most defects in the joints are demonstrated to be generated by bad dossification of thermal inputs, which led depending on the filler alloy used to variations in its fluidity that may produce penetration failures in the bonds or insufficient consistency for the filling of the joints. (Author) 7 refs

  6. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  7. COMPARATIVE EVALUATION OF THE BONDING EFFICACY OF SIXTH, SEVENTH AND EIGHTH GENERATION BONDING AGENTS: AN IN VITRO STUDY

    Directory of Open Access Journals (Sweden)

    Paul Joseph

    2013-09-01

    Full Text Available The aim of the study was to compare In-vitro the micro tensile bond strength of sixth generation (Clearfil SE Bond, Kuraray, Japan, seventh generation (Adper Easy One, 3 M ESPE, Germany and eighth generation ((Futurabond DC, Voco, Germany dentin bonding agents. Twenty freshly extracted caries free, unrestored human molars were selected. The occlusal surfaces were ground flat; divided into four groups of five each according to the bonding agent applied and covered with composite resin (10 mm in height. The teeth were sectioned into one mm thick specimens with a cross sectional area of 1 mm square in hard tissue microtome and subjected to tensile force in a universal testing machine. The highest strength was seen in 8th generation bonding agent (Futura bond DC, Voco, Germany 34.9332 MPa followed by 6th generation bonding agent 32.3477 MPa (Clearfil SE Bond, Kuraray dental, Japan and the 7th generation agent 31.8826 MPa (Adper Easy One, 3M ESPE, Germany respectively. The eighth generation dentin bonding agent appeared to be more advantageous in bonding than sixth and seventh generation dentin bonding agents.

  8. Partner Up: Colleges and Businesses Join Forces to Help Students Reach Academic and Career Goals

    Science.gov (United States)

    Boerner, Heather

    2013-01-01

    Whether traditional or nontraditional students, more people are reaching community colleges through workforce and economic development partnerships--and often changing their lives in the process. But it's not just the individuals who stand to benefit, the nation's economy is also reaping its share of the reward. In this article Heather Boerner…

  9. Development of the Bonding Representations Inventory to Identify Student Misconceptions about Covalent and Ionic Bonding Representations

    Science.gov (United States)

    Luxford, Cynthia J.; Bretz, Stacey Lowery

    2014-01-01

    Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…

  10. Interfacial strength and structure of joining between 2024 aluminum alloy and SiCp/2024 Al composite in semi-solid state

    International Nuclear Information System (INIS)

    Highlights: • Joined 2024 aluminum alloy and SiCp/2024 composite in semi-solid status. • The shear strength of interface had reached to that of SiCp/2024 Al composite. • The mechanism of joining in semi-solid was discussed in this paper. - Abstract: Semi-solid joining of 2024 aluminum alloy and SiCp/2024 Al composite was investigated based on the shear strength and microstructure of interface. An as-extruded 2024 aluminum alloy was chosen in this study for its fine crystal grain and higher strain energy, which was beneficial to the preparation of semi-solid billet. Then recrystallisation and partial melting method (RAP) was carried out to prepare semi-solid billet of 2024 aluminum alloy. Then the semi-solid 2024 aluminum alloy was joined with the SiCp/2024 Al composite, which was also in the semi-solid state, at/under different temperatures/pressures. Shear test was performed to measure the interfacial strength. Scanning electron microscope (SEM) was used to observe the microstructure of interface. The results showed that the shear strength of interface had reached to that of SiCp/2024 Al composite. The shear strength increased as the applied pressure increasing, and had a close relationship with temperature. The mechanism of semi-solid joining with pressure was that the mixture of two kinds of base materials, accompanying with the diffusion of atom at high temperatures. It should be pointed out that the microstructure of interface was much finer than that of the substrate, due to the nucleation promotion of SiC particle in the solidification process

  11. Comparison of joining efficiency and residual stresses in laser and laser hybrid welding

    OpenAIRE

    Suder, Wojciech; Ganguly, Supriyo; Williams, Stewart W.; Paradowska, A.M; Colegrove, Paul A.

    2011-01-01

    Laser welding is a high energy density process, which can produce welds with less energy input and thereby lower residual stress generation compared to arc welding processes. However, the narrow beam dimension makes it extremely sensitive in terms of fit up tolerance. This causes a problem in achieving high quality welds. Laser with arc hybrid process overcomes such issues. In this paper, longitudinal residual strains were compared for autogenous laser welding and laser/TIG ...

  12. Sovereign Risk, European Crisis-Resolution Policies, and Bond Spreads

    OpenAIRE

    Juha Kilponen; Helinä Laakkonen; Jouko Vilmunen

    2015-01-01

    We study the effects of a wide range of European crisisresolution policies, including large-scale asset purchase programs of the ECB, on ten-year sovereign bond spreads of seven European countries. Our results based on daily data on bond spreads suggest that policies that are directly geared towards easing the funding strains of the sovereigns and improving market liquidity have been most effective in calming the European sovereign markets. Quantitatively the largest effects on bond spreads a...

  13. Fast and accurate predictions of covalent bonds in chemical space

    OpenAIRE

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2015-01-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated $\\sigma$ bonding to hydrogen, as well as $\\sigma$ and $\\pi$ bonding between main-group elements, occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the $p$-block of the periodic table. Numerical evidence suggests that first order estimates of coval...

  14. Prediction of allosteric sites and mediating interactions through bond-to-bond propensities

    Science.gov (United States)

    Amor, B. R. C.; Schaub, M. T.; Yaliraki, S. N.; Barahona, M.

    2016-01-01

    Allostery is a fundamental mechanism of biological regulation, in which binding of a molecule at a distant location affects the active site of a protein. Allosteric sites provide targets to fine-tune protein activity, yet we lack computational methodologies to predict them. Here we present an efficient graph-theoretical framework to reveal allosteric interactions (atoms and communication pathways strongly coupled to the active site) without a priori information of their location. Using an atomistic graph with energy-weighted covalent and weak bonds, we define a bond-to-bond propensity quantifying the non-local effect of instantaneous bond fluctuations propagating through the protein. Significant interactions are then identified using quantile regression. We exemplify our method with three biologically important proteins: caspase-1, CheY, and h-Ras, correctly predicting key allosteric interactions, whose significance is additionally confirmed against a reference set of 100 proteins. The almost-linear scaling of our method renders it suitable for high-throughput searches for candidate allosteric sites. PMID:27561351

  15. Submap joining smoothing and mapping for camera-based indoor localization and mapping

    Science.gov (United States)

    Bjärkefur, J.; Karlsson, A.; Grönwall, C.; Rydell, J.

    2011-06-01

    Personnel positioning is important for safety in e.g. emergency response operations. In GPS-denied environments, possible positioning solutions include systems based on radio frequency communication, inertial sensors, and cameras. Many camera-based systems create a map and localize themselves relative to that. The computational complexity of most such solutions grows rapidly with the size of the map. One way to reduce the complexity is to divide the visited region into submaps. This paper presents a novel method for merging conditionally independent submaps (generated using e.g. EKF-SLAM) by the use of smoothing. Using this approach it is possible to build large maps in close to linear time. The method is demonstrated in two indoor scenarios, where data was collected with a trolley-mounted stereo vision camera.

  16. Molecular dynamics simulations of the hydration of poly(vinyl methyl ether):Hydrogen bonds and quasi-hydrogen bonds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Atomistic detailed hydration structures of poly(vinyl methyl ether)(PVME) have been investigated by molecular dynamics simulations under 300 K at various concentrations. Both radial distribution functions and the distance distributions between donors and acceptors in hydrogen bonds show that the hydrogen bonds between the polymer and water are shorter by 0.005 nm than those between water molecules. The Quasi-hydrogen bonds take only 7.2% of the van der Waals interaction pairs. It was found the hydrogen bonds are not evenly distributed along the polymer chain,and there still exists a significant amount(10%) of ether oxygen atoms that are not hydrogen bonded to water at a concentration as low as 3.3%. This shows that in polymer solutions close contacts occur not only between polymer chains but also between chain segments within the polymer,which leads to inefficient contacts between ether oxygen atoms and water molecules. Variation of the quasi-hydrogen bonds with the concentration is similar to that of hydrogen bonds,but the ratio of the repeat units forming quasi-hydrogen bonds to those forming hydrogen bonds approaches 0.2. A transition was found in the demixing enthalpy at around 30% measured by dynamic testing differential scanning calorimetry(DTDSC) for aqueous solutions of a mono-dispersed low molecular weight PVME,which can be related to the transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27%. The transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27% can be used to explain the demixing enthalpy transition at 30% at a molecular scale. In addition,at the concentration of 86%,each ether oxygen atom bonded with water is assigned 1.56 water molecules on average,and ’free’ water molecules emerge at the concentration of around 54%.

  17. Development of Be/Glidcop joint obtained by hot isostatic pressing diffusion bonding for high in-service temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Antonin, F.; Bucci, P.; Burlet, H.; Le Marois, G. [CEA Centre d`Etudes de Grenoble, 38 (France); Barberi, D.; Laille, A.

    1998-01-01

    This paper addresses some aspects of the beryllium-Glidcop joining by Hot Isostatic Pressing diffusion Bonding. The quality of a joint is mainly dependent on the interface microstructure. Thus, as Be/copper direct bonding is not recommended, the choice of interlayers is a critical point. The joining process parameters, i.e. temperature, pressure and time, must take into account the in-service requirements, the mechanical and metallurgical properties of each material. The Be/Glidcop joining process developed at CEA/Grenoble is presented here. (author)

  18. Disulfide bonds and glycosylation in fungal peroxidases.

    Science.gov (United States)

    Limongi, P; Kjalke, M; Vind, J; Tams, J W; Johansson, T; Welinder, K G

    1995-01-15

    Four conserved disulfide bonds and N-linked and O-linked glycans of extracellular fungal peroxidases have been identified from studies of a lignin and a manganese peroxidase from Trametes versicolor, and from Coprinus cinereus peroxidase (CIP) and recombinant C. cinereus peroxidase (rCIP) expressed in Aspergillus oryzae. The eight cysteine residues are linked 1-3, 2-7, 4-5 and 6-8, and are located differently from the four conserved disulfide bridges present in the homologous plant peroxidases. CIP and rCIP were identical in their glycosylation pattern, although the extent of glycan chain heterogeneity depended on the fermentation batch. CIP and rCIP have one N-linked glycan composed only of GlcNAc and Man at residue Asn142, and two O-linked glycans near the C-terminus. The major glycoform consists of single Man residues at Thr331 and at Ser338. T. versicolor lignin isoperoxidase TvLP10 contains a single N-linked glycan composed of (GlcNAc)2Man5 bound to Asn103, whereas (GlcNAc)2Man3 was found in T. versicolor manganese isoperoxidase TvMP2 at the same position. In addition, mass spectrometry of the C-terminal peptide of TvMP2 indicated the presence of five Man residues in O-linked glycans. No phosphate was found in these fungal peroxidases. PMID:7851395

  19. Risk and Return: Bonds and Sukuk in Indonesia

    Directory of Open Access Journals (Sweden)

    Ahmad Rodoni

    2016-07-01

    Full Text Available The aim of this research is to compare the degree of risk and return of bonds with sukuk, using several calculations magnitudes, which are, yield to maturity (YTM, Macaulay's duration, and Value at Risk (VaR. The results of this study show that there is no significant difference between the YTM bonds and the YTM of emitted sukuk. Using the Macaulay’s duration formula to evaluate the duration of bonds and sukuk, the research found out that there is no significant difference in the duration of bonds and sukuk. However, the calculation and comparison of the VaR, showed a significant differences between bonds and sukuk , likewise either the comparison of the VaR of a sample group of bonds with a sample group of sukuk using k sample test. But by testing each group of the VaR of bonds sample group and sukuk sample group,the results show no significant differences.DOI: 10.15408/aiq.v8i2.3159

  20. Study of diffusion bonding of Ti-6Al-4V and ZQSn10-10 with metal interlayer

    Institute of Scientific and Technical Information of China (English)

    Zhao Huanling; Zhao He; Feng Jicai; Song Minxia; Zhao Xihua

    2008-01-01

    The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze (ZQSn10-10) with Ni and Ni+Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that when the interlayer is Ni or Ni+Cu transition metals both could effectively prevent the diffusion between Ti and Cu and avoid the formation of the Cu-Ti intermetallic compounds (Cu3Ti, CuTi etc.). But the Ni-Ti intermetallic compounds (NiTi, Ni3Ti) are formed on the Ti-6Al-4V/Ni interface. When the interlayer is Ni, the optimum bonding parameters are 830℃/10 MPa/30min. And when the interlayer is Ni+Cu, the optimum bonding parameters are 850℃/10MPa/20min. With the optimum bonding parameters, the tensile strength of the joints with Ni and Ni+Cu interlayer both are 155.8MPa, which is 65 percent of the strength of ZQSn10-10 base metal.

  1. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  2. Development of beryllium bonds for plasma-facing components

    International Nuclear Information System (INIS)

    This study concerns the techniques of bonding beryllium to both structural material (AISI 316 SS) and heat sink material (copper and DS-copper) plates, and the characterization of the bonding material obtained. Conventional bonding techniques for joining Be to SS and copper using brazing alloys were first investigated. The best result was obtained using a silver-copper eutetic alloy as a brazing alloy. However, the high-temperature capability of the materials prepared by this method is limited by the performance of brazing alloys at the operating temperature. To avoid this problem, we are developing a joining process known as solid-state reaction bonding that improves the capability at the operating temperature. (orig.)

  3. Failure of dissimilar material bonded joints

    Science.gov (United States)

    Konstantakopoulou, M.; Deligianni, A.; Kotsikos, G.

    2016-03-01

    Joining of materials in structural design has always been a challenge for engineers. Bolting and riveting has been used for many years, until the emergence of fusion welding which revolutionised construction in areas such as shipbuilding, automotive, infrastructure and consumer goods. Extensive research in the past 50 years has resulted in better understanding of the process and minimised the occurrence of failures associated with fusion welding such as, residual stress cracking, stress corrosion and corrosion fatigue cracking, localised reduction in mechanical properties due to microstructural changes (heat affected zone) etc. Bonding has been a technique that has been proposed as an alternative because it eliminates several of the problems associated with fusion welding. But, despite some applications it has not seen wide use. There is however a renewed interest in adhesively bonded joints, as designers look for ever more efficient structures which inevitably leads to the use and consequently joining of combinations of lightweight materials, often with fundamentally different mechanical and physical properties. This chapter provides a review of adhesively bonded joints and reports on improvements to bonded joint strength through the introduction of carbon nanotubes at the bond interface. Results from various workers in the field are reported as well as the findings of the authors in this area of research. It is obvious that there are several challenges that need to be addressed to further enhance the strength of bonded joints and worldwide research is currently underway to address those shortcomings and build confidence in the implementation of these new techniques.

  4. Hypophosphataemic rickets join to the X (XLH). Presentation of a family associated with a premature osteoarthritis and also simulating a seronegative spondylarthropathy

    International Nuclear Information System (INIS)

    In this article we present a practical focus for the differential diagnosis of hypophosphataemic disorders inherited join to the osteomalacia induced by tumor (an acquired form); deepening about the x linked hypophosphataemic rickets and we present description of family with the diagnosis

  5. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    International Nuclear Information System (INIS)

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  6. Homologous recombination and non-homologous end-joining repair pathways in bovine embryos with different developmental competence

    Energy Technology Data Exchange (ETDEWEB)

    Henrique Barreta, Marcos [Universidade Federal de Santa Catarina, Campus Universitario de Curitibanos, Curitibanos, SC (Brazil); Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Garziera Gasperin, Bernardo; Braga Rissi, Vitor; Cesaro, Matheus Pedrotti de [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Ferreira, Rogerio [Centro de Educacao Superior do Oeste-Universidade do Estado de Santa Catarina, Chapeco, SC (Brazil); Oliveira, Joao Francisco de; Goncalves, Paulo Bayard Dias [Laboratorio de Biotecnologia e Reproducao Animal-BioRep, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil); Bordignon, Vilceu, E-mail: vilceu.bordignon@mcgill.ca [Department of Animal Science, McGill University, Ste-Anne-De-Bellevue, QC (Canada)

    2012-10-01

    This study investigated the expression of genes controlling homologous recombination (HR), and non-homologous end-joining (NHEJ) DNA-repair pathways in bovine embryos of different developmental potential. It also evaluated whether bovine embryos can respond to DNA double-strand breaks (DSBs) induced with ultraviolet irradiation by regulating expression of genes involved in HR and NHEJ repair pathways. Embryos with high, intermediate or low developmental competence were selected based on the cleavage time after in vitro insemination and were removed from in vitro culture before (36 h), during (72 h) and after (96 h) the expected period of embryonic genome activation. All studied genes were expressed before, during and after the genome activation period regardless the developmental competence of the embryos. Higher mRNA expression of 53BP1 and RAD52 was found before genome activation in embryos with low developmental competence. Expression of 53BP1, RAD51 and KU70 was downregulated at 72 h and upregulated at 168 h post-insemination in response to DSBs induced by ultraviolet irradiation. In conclusion, important genes controlling HR and NHEJ DNA-repair pathways are expressed in bovine embryos, however genes participating in these pathways are only regulated after the period of embryo genome activation in response to ultraviolet-induced DSBs.

  7. 40 CFR 35.936-22 - Bonding and insurance.

    Science.gov (United States)

    2010-07-01

    ... erection of treatment works or sewer system rehabilitation must furnish performance and payment bonds, each... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.936-22 Bonding and insurance. (a) On contracts for the building and erection of treatment works or contracts...

  8. Evolutionary and functional conservation of the DNA non-homologous end-joining protein, XLF/Cernunnos.

    Science.gov (United States)

    Hentges, Pierre; Ahnesorg, Peter; Pitcher, Robert S; Bruce, Chris K; Kysela, Boris; Green, Andrew J; Bianchi, Julie; Wilson, Thomas E; Jackson, Stephen P; Doherty, Aidan J

    2006-12-01

    Non-homologous end-joining is a major pathway of DNA double-strand break repair in mammalian cells, deficiency in which confers radiosensitivity and immune deficiency at the whole organism level. A core protein complex comprising the Ku70/80 heterodimer together with a complex between DNA ligase IV and XRCC4 is conserved throughout eukaryotes and assembles at double-strand breaks to mediate ligation of broken DNA ends. In Saccharomyces cerevisiae an additional NHEJ protein, Nej1p, physically interacts with the ligase IV complex and is required in vivo for ligation of DNA double-strand breaks. Recent studies with cells derived from radiosensitive and immune-deficient patients have identified the human protein, XLF (also named Cernunnos), as a crucial NHEJ protein. Here we show that XLF and Nej1p are members of the same protein superfamily and that this family has members in diverse eukaryotes. Indeed, we show that a member of this family encoded by a previously uncharacterized open-reading frame in the Schizosaccharomyces pombe genome is required for NHEJ in this organism. Furthermore, our data reveal that XLF family proteins can bind to DNA and directly interact with the ligase IV-XRCC4 complex to promote DSB ligation. We therefore conclude that XLF family proteins interact with the ligase IV-XRCC4 complex to constitute the evolutionarily conserved enzymatic core of the NHEJ machinery. PMID:17038309

  9. Interplay between Cernunnos-XLF and nonhomologous end-joining proteins at DNA ends in the cell.

    Science.gov (United States)

    Wu, Peï-Yu; Frit, Philippe; Malivert, Laurent; Revy, Patrick; Biard, Denis; Salles, Bernard; Calsou, Patrick

    2007-11-01

    Cernunnos-XLF is the most recently identified core component in the nonhomologous end-joining (NHEJ) pathway for the repair of DNA double strand breaks (DSBs) in mammals. It associates with the XRCC4/ligase IV ligation complex and stimulates its activity in a still unknown manner. NHEJ also requires the DNA-dependent protein kinase that contains a Ku70/Ku80 heterodimer and the DNA-dependent protein kinase catalytic subunit. To understand the interplay between Cernunnos-XLF and the other proteins implicated in the NHEJ process, we have analyzed the interactions of Cernunnos-XLF and NHEJ proteins in cells after treatment with DNA double strand-breaking agents by means of a detergent-based cellular fractionation protocol. We report that Cernunnos-XLF is corecruited with the core NHEJ components on chromatin damaged with DSBs in human cells and is phosphorylated by the DNA-dependent protein kinase catalytic subunit. Our data show a pivotal role for DNA ligase IV in the NHEJ ligation complex assembly and recruitment to DSBs because the association of Cernunnos-XLF with the XRCC4/ligase IV complex relies primarily on the DNA ligase IV component, and an intact XRCC4/ligase IV complex is necessary for Cernunnos-XLF mobilization to damaged chromatin. Conversely, a Cernunnos-XLF defect has no apparent impact on the XRCC4/ligase IV association and recruitment to the DSBs or on the stimulation of the DNA-dependent protein kinase on DNA ends. PMID:17720816

  10. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties.

    Science.gov (United States)

    Piñol, Rafael; Brites, Carlos D S; Bustamante, Rodney; Martínez, Abelardo; Silva, Nuno J O; Murillo, José L; Cases, Rafael; Carrey, Julian; Estepa, Carlos; Sosa, Cecilia; Palacio, Fernando; Carlos, Luís D; Millán, Angel

    2015-03-24

    Whereas efficient and sensitive nanoheaters and nanothermometers are demanding tools in modern bio- and nanomedicine, joining both features in a single nanoparticle still remains a real challenge, despite the recent progress achieved, most of it within the last year. Here we demonstrate a successful realization of this challenge. The heating is magnetically induced, the temperature readout is optical, and the ratiometric thermometric probes are dual-emissive Eu(3+)/Tb(3+) lanthanide complexes. The low thermometer heat capacitance (0.021·K(-1)) and heater/thermometer resistance (1 K·W(-1)), the high temperature sensitivity (5.8%·K(-1) at 296 K) and uncertainty (0.5 K), the physiological working temperature range (295-315 K), the readout reproducibility (>99.5%), and the fast time response (0.250 s) make the heater/thermometer nanoplatform proposed here unique. Cells were incubated with the nanoparticles, and fluorescence microscopy permits the mapping of the intracellular local temperature using the pixel-by-pixel ratio of the Eu(3+)/Tb(3+) intensities. Time-resolved thermometry under an ac magnetic field evidences the failure of using macroscopic thermal parameters to describe heat diffusion at the nanoscale. PMID:25693033

  11. FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair.

    Science.gov (United States)

    Kais, Zeina; Rondinelli, Beatrice; Holmes, Amie; O'Leary, Colin; Kozono, David; D'Andrea, Alan D; Ceccaldi, Raphael

    2016-06-14

    BRCA1/2 proteins function in homologous recombination (HR)-mediated DNA repair and cooperate with Fanconi anemia (FA) proteins to maintain genomic integrity through replication fork stabilization. Loss of BRCA1/2 proteins results in DNA repair deficiency and replicative stress, leading to genomic instability and enhanced sensitivity to DNA-damaging agents. Recent studies have shown that BRCA1/2-deficient tumors upregulate Polθ-mediated alternative end-joining (alt-EJ) repair as a survival mechanism. Whether other mechanisms maintain genomic integrity upon loss of BRCA1/2 proteins is currently unknown. Here we show that BRCA1/2-deficient tumors also upregulate FANCD2 activity. FANCD2 is required for fork protection and fork restart in BRCA1/2-deficient tumors. Moreover, FANCD2 promotes Polθ recruitment at sites of damage and alt-EJ repair. Finally, loss of FANCD2 in BRCA1/2-deficient tumors enhances cell death. These results reveal a synthetic lethal relationship between FANCD2 and BRCA1/2, and they identify FANCD2 as a central player orchestrating DNA repair pathway choice at the replication fork. PMID:27264184

  12. Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants

    Directory of Open Access Journals (Sweden)

    Qi Jia

    2012-01-01

    Full Text Available In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.

  13. Development of HIP bonding procedure and mechanical properties of HIP bonded joints for reduced activation ferritic steel F-82H

    International Nuclear Information System (INIS)

    Structural materials of blanket components in fusion DEMO reactors will receive a neutron wall load more than 3-5MW/m2 as well as exposed by surface heat flux more than 0.5MW/m2. A reduced activation ferritic steel F-82H has been developed by JAERI in collaboration with NKK from viewpoints of resistance for high temperature and neutron loads and lower radioactivity. This study intends to obtain basic performance of F-82H to establish the fabrication procedure of the first wall and blanket box by using Hot Isostatic Pressing (HIP) bonding. Before HIP bonding tests, effects of heat treatment temperature and surface roughness on mechanical properties of joints were investigated in the heat treatment tests and diffusion bonding tests, respectively. From these results, the optimum HIP bonding conditions and the post heat treatment were selected. Using these conditions, the HIP bonding tests were carried out to evaluate HIP bondability and to obtain mechanical properties of the joints. Sufficient HIP bonding performance was obtained under the temperature of 1040degC, the compressive stress of 150MPa, the holding time of 2h, and the surface roughness ∼μ m. Mechanical properties of HIP bonded joints with these conditions were similar to those of as-received base metal. An oxide formation on the surface to be bonded would need to be avoided for sufficient bonding. The bonding ratio, Charpy impact value and fatigue performance of the joints strongly depended on the HIP conditions, especially temperature, while micro-structure, Vickers hardness and tensile properties had little dependence on the HIP temperature. The surface roughness strongly affected the bonding ratio and would be required to be in the level of a few μ m. In the HIP bonding test of the welded material, the once-melted surface could be jointed by the HIP bonding under the above-mentioned procedure. (J.P.N.)

  14. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  15. Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: a connection between bond length, bond critical point properties, local energy densities, and bonded interactions.

    Science.gov (United States)

    Gibbs, G V; Cox, D F; Rosso, K M; Ross, N L; Downs, R T; Spackman, M A

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, rho(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, rho(rc), the Laplacian, triangle down2rho(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of rho(rc) and triangle down2rho(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of rho(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the high-spin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the rho(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite

  16. Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici.

    Science.gov (United States)

    Sidhu, Y S; Cairns, T C; Chaudhari, Y K; Usher, J; Talbot, N J; Studholme, D J; Csukai, M; Haynes, K

    2015-06-01

    The lack of techniques for rapid assembly of gene deletion vectors, paucity of selectable marker genes available for genetic manipulation and low frequency of homologous recombination are major constraints in construction of gene deletion mutants in Zymoseptoria tritici. To address these issues, we have constructed ternary vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici, which enable the single step assembly of multiple fragments via yeast recombinational cloning. The sulfonylurea resistance gene, which is a mutated allele of the Magnaporthe oryzae ILV2 gene, was established as a new dominant selectable marker for Z. tritici. To increase the frequency of homologous recombination, we have constructed Z. tritici strains deficient in the non-homologous end joining pathway of DNA double stranded break repair by inactivating the KU70 and KU80 genes. Targeted gene deletion frequency increased to more than 85% in both Z. tritici ku70 and ku80 null strains, compared to ⩽10% seen in the wild type parental strain IPO323. The in vitro growth and in planta pathogenicity of the Z. tritici ku70 and ku80 null strains were comparable to strain IPO323. Together these molecular tools add significantly to the platform available for genomic analysis through targeted gene deletion or promoter replacements and will facilitate large-scale functional characterization projects in Z. tritici. PMID:26092796

  17. Fabrication of joint Bi-2223/Ag superconducting tapes with BSCCO superconducting powders by diffusion bonding

    International Nuclear Information System (INIS)

    61-Filaments Bi-2223/Ag superconducting tapes have been successfully joined with BSCCO superconducting powder interlayer by diffusion bonding. The electrical properties of the diffusion bonding joints were tested by standard four probe method and the microstructures of the joints were also examined by SEM. Additionally, the phase constituents of the superconducting powders between the tapes before and after bonding process were evaluated by XRD analysis. The result shows that the diffusion bonding joints are superconductive. The microstructures of the joint display a good bonding with no cracks and discontinuities. The joining zones are mainly composed of Bi-2223 phase, Bi-2212 phase and a small amount of CuO, Ca2PbO4. At last, the phase transformations of the superconducting powders in the bonding process are discussed.

  18. Fabrication of joint Bi-2223/Ag superconducting tapes with BSCCO superconducting powders by diffusion bonding

    Science.gov (United States)

    Guo, Wei; Zou, Guisheng; Wu, Aiping; Zhou, Fangbing; Ren, Jialie

    2010-05-01

    61-Filaments Bi-2223/Ag superconducting tapes have been successfully joined with BSCCO superconducting powder interlayer by diffusion bonding. The electrical properties of the diffusion bonding joints were tested by standard four probe method and the microstructures of the joints were also examined by SEM. Additionally, the phase constituents of the superconducting powders between the tapes before and after bonding process were evaluated by XRD analysis. The result shows that the diffusion bonding joints are superconductive. The microstructures of the joint display a good bonding with no cracks and discontinuities. The joining zones are mainly composed of Bi-2223 phase, Bi-2212 phase and a small amount of CuO, Ca 2PbO 4. At last, the phase transformations of the superconducting powders in the bonding process are discussed.

  19. Nucleosome disassembly during human non-homologous end joining followed by concerted HIRA- and CAF-1-dependent reassembly

    Science.gov (United States)

    Li, Xuan; Tyler, Jessica K

    2016-01-01

    The cell achieves DNA double-strand break (DSB) repair in the context of chromatin structure. However, the mechanisms used to expose DSBs to the repair machinery and to restore the chromatin organization after repair remain elusive. Here we show that induction of a DSB in human cells causes local nucleosome disassembly, apparently independently from DNA end resection. This efficient removal of histone H3 from the genome during non-homologous end joining was promoted by both ATM and the ATP-dependent nucleosome remodeler INO80. Chromatin reassembly during DSB repair was dependent on the HIRA histone chaperone that is specific to the replication-independent histone variant H3.3 and on CAF-1 that is specific to the replication-dependent canonical histones H3.1/H3.2. Our data suggest that the epigenetic information is re-established after DSB repair by the concerted and interdependent action of replication-independent and replication-dependent chromatin assembly pathways. DOI: http://dx.doi.org/10.7554/eLife.15129.001 PMID:27269284

  20. Increasing Database Performance through Optimizing Structure Query Language Join Statement

    Directory of Open Access Journals (Sweden)

    Ossama K. Muslih

    2010-01-01

    Full Text Available Problem statement: A join statement is a select statement with more than table in the FROM clause. A join predicate is a predicate in the WHERE clause that combines the columns of two of the tables in the join. Any database gives you the ability to join various tables together through different types of joins, resulting large number of rows to process. Query language can be used to join these tables and as it is well known query language should be declarative, so we can write alternative formulas to perform join statements. Different formulas provide variation in performance. Approach: This research presented a transparent middle layer between application interface front end and database back end. Results: The responsibilities of this layer were catching the SQL commands sent by application before reaching the database then examining these commands to see if they join more than one table, after that rewriting the SQL command taking into consideration the order of executing join predicates and none join predicates. This research focused on rewriting the SQL commands without application modification. Conclusion: Rewriting stage is the most complex stage because the system will restructure the SQL command with new syntax taking two things in its consideration, the first one was rewriting the command with better performance syntax after getting the help from recommendation dictionary, the second one was resulting the same data (output as previous old command.

  1. The emerging project bond market - covenant provisions and credit spreads

    OpenAIRE

    Dailami, Mansoor; Hauswald, Robert

    2003-01-01

    The emergence in the 1990s of a nascent project bond market to fund long-term infrastructure projects in developing countries merits attention. The authors compile detailed information on a sample of 105 bonds issued between January 1993 and March 2002 for financing infrastructure projects in developing countries, document their contractual covenants, and analyze their pricing determinants...

  2. 45 CFR 1309.23 - Insurance, bonding and maintenance.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Insurance, bonding and maintenance. 1309.23 Section 1309.23 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN... of Federal Interest § 1309.23 Insurance, bonding and maintenance. (a) At the time of acquiring...

  3. Oxytocin and mutual communication in mother-infant bonding

    Directory of Open Access Journals (Sweden)

    Miho eNagasawa

    2012-02-01

    Full Text Available Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a non-genomic transmission of maternal environment, even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships.

  4. Bond-Energy and Surface-Energy Calculations in Metals

    Science.gov (United States)

    Eberhart, James G.; Horner, Steve

    2010-01-01

    A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…

  5. Breastfeeding, Bonding, and the Mother-Infant Relationship.

    Science.gov (United States)

    Else-Quest, Nicole M.; Hyde, Janet Shibley; Clark, Roseanne

    2003-01-01

    Analyzed data from a longitudinal study of 570 mother-infant pairs to test the bonding hypothesis and the good-enough caregiver hypothesis as they relate to breastfeeding with maternal bonding and the mother-infant relationship. Found that breastfeeding dyads tended to show higher-quality relationships at 12 months than did bottle-feeding dyads.…

  6. THE POSITION OF THE RUSSIAN FEDERATION AND FEDERAL REPUBLIC OF GERMANY ON THE BALTIC REPUBLICS’ (LATVIA, LITHUANIA, ESTONIA JOINING THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Mariya Dmitrievna Portnyagina

    2013-10-01

    Full Text Available Enlargement of the EU in 2004 was of great significance not only for the EU members, but for the Russian Federation as the candidates were former USSR republics and countries that had been under the influence of the USSR.  The purpose of this article is to uncover the attitude of Russian and German officials to Latvia, Lithuania and Estonia’s joining the EU. The study uses the methods of historicism and objectivity as its basis. A regional approach that describes the development of the region into global political process is used.The author proves that Russia has underestimated the consequence of Latvia, Lithuania and Estonia’s joining the EU. The Russian Federation made the hasty judgement that the Baltic countries’ joining the EU would automatically solve the bilateral problems in relations between Russia, Latvia, Lithiania and Estonia. Russian politicians failed to detect negative economic consequences, which the Baltic states’ joining the European Union brought about. The position of the German government was ambiguous. It was impacted by the obligations within its role as the ‘motor’ of European integration, but also had to consider the direct interests of the Federal Republic of Germany.  The German ruling coalition by morally supporting the intention of the Baltic Republics to join the EU delegated the role of an ‘advocate’ of newly independent republics to the northern European countries while taking the right to defend primarily national interests of the Federal Republic of Germany.The materials of the study can be used for further research of the history of the Baltic Region, in lectures and special courses.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-32

  7. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    Science.gov (United States)

    Wolcott, Paul J.

    that plastic deformation occurs in the bulk of the foil, while previous studies have only identified microstructural changes to the bond interface region. A methodology for joining aluminum 6061 sheet material 0.076 in. (1.93 mm) thick is proposed based on iterative design studies which identified a scarf joint configuration as viable. Design of experiments studies indicate optimal properties can be achieved using a scarf joint angle of 10SO. Room temperature and elevated temperature tensile, and room temperature fatigue testing exhibit joint mechanical properties similar to solid, homogeneous material. Successful joints were achieved for Al/Ti, aluminum to steel, steel to aluminum, and steel to steel combinations. Mechanical characterization studies of Al/Ti combinations indicate that post-process heat treatments can significantly increase mechanical properties. Microstructural evaluations including electron back scatter diffraction show significant deformation within the softer aluminum layers. Investigations of Al/steel combinations indicate that mostly voidless interfaces occur and that plastic deformation is present in the steel layers only. Steel to steel combinations, while proven possible, require further work to enhance the consistency of the joints and improve the ability to build larger structures.

  8. The coevolution of long-term pair bonds and cooperation.

    Science.gov (United States)

    Song, Z; Feldman, M W

    2013-05-01

    The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. PMID:23496797

  9. Improved stress prediction in adhesive bonded optical components

    OpenAIRE

    Vreugd, J. de; Voert, M.J.A. te; Nijenhuis, J.R.; Pijnenburg, J.A.C.M.; Tabak, E.

    2012-01-01

    Adhesives are widely used in optomechanical structures for bonding optical components to their mounts. The main advantage of using adhesives is the excellent strength to weight ratio. Adhesive bonding is seen as a desirable joining technique as it allows for greater flexibility in design. A disadvantage of adhesives however is the limited dimensional stability and loadability. To design stable optical mounts, accurate prediction of stresses and deformation is therefore needed. Adhesives show ...

  10. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    OpenAIRE

    Bahnasi, Faisal-Ismail; Abd-Rahman, Aida-Nur-Ashikin; Abu-Hassan, Mohamed-Ibrahim

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in...

  11. New Product Development. Engineering and Commerce Students Join Forces with a Corporate Sponsor.

    Science.gov (United States)

    Audet, Josee; Pegna, Joseph

    2001-01-01

    Mechanical engineering and business student teams developed new products using a corporate sponsor's technology in a simulated business setting. Students learned about product development and venture start-up, and the sponsor gained new applications for its patented technology. (SK)

  12. Substituent effects on geometry and bonding properties of asymmetric bifurcated pnicogen bonds: A theoretical study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mohammadian-Sabet, Fariba

    2016-04-01

    We demonstrate for the first time the existence of bifurcated pnicogen bonds (BPBs) interactions formed between PX3 (X = F and Cl) and 1,10 phenanthroline derivatives. The nature of these BPBs interactions is studied by means of molecular electrostatic potential, quantum theory of atoms in molecules and natural bond orbital analysis. The interaction energies of these binary complexes vary in a relatively narrow range, approximately between -8.8 and -10.0 kcal/mol. There is an important charge-transfer interaction associated with each P⋯N interaction. A good linear correlation is found between the interaction energies and shifts in the 14N nuclear quadrupole coupling constants.

  13. Sinopec and CNPC Join Hands to Keep Domestic oil Market Stable

    Institute of Scientific and Technical Information of China (English)

    Yang Xiangfeng

    2003-01-01

    @@ Sinopec and CNPC have recently issued an urgent circular on the joint efforts to stabilize the country's oil products market. The State Development and Reform Committee has lowered the retail median prices of gasoline and diesel by 290 yuan per ton and 260 yuan per ton respectively.

  14. Bond return predictability in expansions and recessions

    DEFF Research Database (Denmark)

    Engsted, Tom; Møller, Stig Vinther; Jensen, Magnus David Sander

    but negative in recessions. The results are also consistent with tests showing that the expectations hypothesis of the term structure holds in recessions but not in expansions. However, the results for bonds are in sharp contrast to results for stocks showing that stock returns are predictable in...

  15. Understanding Sarason's concepts of school cultures and change: joining a community in school improvement efforts.

    Science.gov (United States)

    Lorion, Raymond P

    2011-12-01

    This paper describes an evolving transformative partnership between a large comprehensive university, an urban school system and a predominantly African-American, low-income neighborhood. The partnership's originating intent was to apply an array of university, civic and local resources to improve the academic performance of a neighborhood's schools and the health, welfare and economic well-being of its residents. The extent to which that partnership would precipitate transactional (Sameroff and Fiese, Handbook of early childhood intervention, Cambridge University Press, Cambridge, pp. 119-149 in 1990) synergies among the partners was unanticipated; the long-term implications for each of the partners of such unfamiliar interactional processes remain unclear but are being systematically monitored over time. Evident at this point, however, it that a process has been initiated that has impacted how the university community, the local public school system, city government and the target neighborhood relate to each other, collaborate with each other and are changing each other. The pace of that process has varied over the years and challenged each partners' expectations and assumptions about the nature and consequences of their involvement. With time and perseverance, however, it appears that all are moving toward a sense of mutual learning and trust and toward extending to each other the benefit of the doubt. This paper discusses the evolution of that process and its implications for university-school-community collaborations. PMID:20857327

  16. 12 CFR 563.190 - Bonds for directors, officers, employees, and agents; form of and amount of bonds.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Bonds for directors, officers, employees, and agents; form of and amount of bonds. 563.190 Section 563.190 Banks and Banking OFFICE OF THRIFT... provided by the insurance underwriter industry's standard forms, through the use of endorsements,...

  17. Joining characteristics of titanium-based orthodontic wires connected by laser and electrical welding methods.

    Science.gov (United States)

    Matsunaga, Junko; Watanabe, Ikuya; Nakao, Noriko; Watanabe, Etsuko; Elshahawy, Waleed; Yoshida, Noriaki

    2015-01-01

    This study investigated the possibility of electrical and laser welding to connect titanium-based alloy (beta-titanium and nickel-titanium) wires and stainless-steel or cobalt-chromium alloy wires for fabrication of combination arch-wires. Four kinds of straight orthodontic rectangular wires (0.017 × 0.025 inch) were used: stainless-steel (S-S), cobalt-chromium (Co-Cr), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (15 mm long each) were made by electrical welding and laser welding. Non-welded wires (30 mm long) were also used as a control. Maximum loads at fracture (N) and elongation (%) were measured by conducting tensile test. The data (n = 10) were statistically analyzed using analysis of variance/Tukey test (P < 0.05).The S-S/S-S and Co-Cr/Co-Cr specimens showed significantly higher values of the maximum load (ML) at fracture and elongation (EL) than those of the Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens for electrical welding and those of the S-S/S-S and Co-Cr/Co-Cr specimens welded by laser. On the other hand, the laser-welded Ni-Ti/Ni-Ti and β-Ti/β-Ti specimens exhibited higher values of the ML and EL compared to those of the corresponding specimens welded by electrical method. In the heterogeneously welded combinations, the electrically welded Ni-Ti/S-S, β-Ti/S-S and β-Ti/Co-Cr specimens showed significantly (P < 0.05) higher ML and EL than those of the corresponding specimens welded by laser. Electrical welding exhibited the higher values of maximum load at fracture and elongation for heterogeneously welded combinations than laser-welding. PMID:25595723

  18. Child labour: trends, challenges and policy responses. Joining forces against child labour

    OpenAIRE

    UCW

    2010-01-01

    Much has evolved in terms of our knowledge surrounding the child labour problem and effective strategies for addressing it since the last major conferences on child labour which were held in Amsterdam and Oslo in 1997. This report makes use of advances in research achieved through UCW and other efforts to take stock of the global child labour situation, assess key remaining obstacles to the elimination of child labour and identify strategies for addressing them.The report presents evidence of...

  19. Solid cartridge for a pulse weld forming electrode and method of joining tubular members

    Energy Technology Data Exchange (ETDEWEB)

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas; Dawson, Scott Alwyn; deVries, James

    2016-02-23

    A cartridge assembly is disclosed for a pulse welding a first tube supported on a mandrel to a second tube. An outer tool is assembled over the second tube and a stored charge is discharged in the cartridge assembly. The cartridge comprises an annular conductor and a solid casing enveloping the conductor. The stored charge is electrically connected to the conductor and discharged through the conductor to compress the second tube and pulse weld the second tube to the first tube.

  20. Bonding Energy and Growth Habit of Lithium Niobate Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of crystallographic structure of lithium niobate (LN), the bonding energy was quantitatively calculated by the bond valence sum model, which was employed to investigate the crystal growth. A possible relationship between the crystal growth habit and chemical bonding energy of LN crystals are found. It is found that the higher the bond energy, the slower the growth rate, and the more important the plane. The analytical results indicate that (012) plane is the most influential face for the LN crystal growth, which consists well with the standard card (JCPDS Card: 20-0631) and our previous experimental observation. The current work shows that the chemical bond analysis of LN crystals allows us to predict its growth habit and thus to obtain the expected morphology during the spontaneous growth.