WorldWideScience

Sample records for bonded silicon nitride

  1. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 15000C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE)

  2. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim;

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...... and thin-film glasses were used in the bonding experiments. Bond quality was evaluated using a tensile test on structured dies. The effect of oxygen-based pre-treatments of the nitride surface on the bond quality has been evaluated. Bond strengths up to 35 Nrmm2 and yields up to 100% were obtained....

  3. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain;

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...

  4. Molecular dynamics studies of the bonding properties of amorphous silicon nitride coatings on crystalline silicon

    OpenAIRE

    Butler, K.T.; Lamers, M.P.W.E.; Weeber, A. W.; Harding, J. H.

    2011-01-01

    In this paper we present molecular dynamics simulations of silicon nitride, both in bulk and as an interface to crystalline silicon. We investigate, in particular, the bonding structure of the silicon nitride and analyze the simulations to search for de- fective geometries which have been identified as potential charge carrier traps when silicon nitride forms an interface with silicon semiconductors. The simulations reveal how the bonding patterns in silicon nitride are dependent upon the sto...

  5. Microstructural characterisation of silicon nitride-bonded silicon carbide

    International Nuclear Information System (INIS)

    The microstructure of a commercial silicon nitride-bonded silicon carbide ceramic composite, formed via the nitridation of Si powder-SiC preforms, has been characterised by transmission electron microscopy. A mechanism combining reaction bonding and liquid-phase sintering is proposed to describe the development and observed morphology of the microstructure of the bonding matrix, which comprises predominantly phases based on Si2N2O and β-Si3N4 and an amorphous phase. Qualitative microanalysis of amorphous matrix regions has revealed significant concentrations of oxygen, aluminium and calcium, with Al also being detected in both of the surrounding cyrstalline phases. It is thus suggested that the principal constituents of the matrix are in fact O' and β' sialons. (orig.)

  6. Wetting and infiltration of nitride bonded silicon nitride by liquid silicon

    Science.gov (United States)

    Schneider, V.; Reimann, C.; Friedrich, J.

    2016-04-01

    Nitride bonded silicon nitride (NBSN) is a promising crucible material for the repeated use in the directional solidification of multicrystalline (mc) silicon ingots for photovoltaic applications. Due to wetting and infiltration, however, silicon nitride in its initial state does not offer the desired reusability. In this work the sessile drop method is used to systematically study the wetting and infiltration behavior of NBSN after applying different oxidation procedures. It is found that the wetting of the NBSN crucible by liquid silicon can be prevented by the oxidation of the geometrical surface. The infiltration of liquid silicon into the porous crucible can be suppressed by oxygen enrichment within the volume of the NBSN, i.e. at the pore walls of the crucibles. The realized reusability of the NBSN is demonstrated by reusing a NBSN crucible six times for the directional solidification of undoped multicrystalline silicon ingots.

  7. MEASUREMENT OF THERMAL DIFFUSIVITY OF REACTION BONDED SILICON NITRIDE

    OpenAIRE

    Serra, J.-J.; Jaymes, M.; Cantarel, M.

    1986-01-01

    The thermal diffusivity of samples of reaction bonded silicon nitride from different sources, was measured using the ETCA solar furnace. Two measurement methods, suitable for use with this type of equipment, allowed the different material origins to be determined. This installation accepts relatively large samples which are therefore representative of the bulk material.

  8. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    Science.gov (United States)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  9. Reaction sintering of a clay-containing silicon nitride bonded silicon carbide refractory

    International Nuclear Information System (INIS)

    Aspects of the reaction sequence for the reaction bonding of a cast refractory, which in the green state was composed of 79 wt-% SiC grit, 16 wt-% Si powder and 5 wt-% clay were established. As it was fired up to 1600 deg C in flowing N2(g), weight gains were noted and phase evolution was monitored by X-ray diffraction. However, details of the reaction sequence were not determined directly from this material because several reaction-bonding processes occurred simultaneously. Reaction features were ascertained by contrasting the weight changes and phase evolution in the refractory with those observed during reaction-bonding of (a) Si and clay without the SiC and (b) SiC and clay without the Si. In addition to silicon nitridation and the development of sialon phases by silicothermal and carbothermal reduction-nitridation processes, indirect evidence suggested that α-Si3N4 formed by the carbothermal reduction-nitridation (CRN) of SiO(g). Copyright (1998) Australasian Ceramic Society

  10. Geometrical Deviation and Residual Strain in Novel Silicon-on-Aluminium-Nitride Bonded Wafers

    Institute of Scientific and Technical Information of China (English)

    门传玲; 徐政; 吴雁军; 安正华; 谢欣云; 林成鲁

    2002-01-01

    Aluminium nitride (AlN), with much higher thermal conductivity, is considered to be an excellent alternative to the SiO2 layer in traditional silicon-on-insulator (SOI) materials. The silicon-on-aluminium-nitride (SOAN) structure was fabricated by the smart-cut process to alleviate the self-heating effects for traditional SOI. The convergent beam Kikuchi line diffraction pattern results show that some rotational misalignment exists when two wafers are bonded, which is about 3°. The high-resolution x-ray diffraction result indicates that, before annealing at high temperature, the residual lattice strain in the top silicon layer is tensile. After annealing at 1100° C for an hour, the strain in the top Si decreases greatly and reverses from tensile to slightly compressive as a result of viscous flow of AlN.

  11. Effect of hot isostatic pressing on reaction-bonded silicon nitride

    Science.gov (United States)

    Watson, G. K.; Moore, T. J.; Millard, M. L.

    1984-01-01

    Specimens of nearly theoretical density have been obtained through the isostatic hot pressing of reaction-bonded silicon nitride under 138 MPa of pressure for two hours at 1850, 1950, and 2050 C. An amorphous phase that is introduced by the hot isostatic pressing partly accounts for the fact that while room temperature flexural strength more than doubles, the 1200 C flexural strength increases significantly only after pressing at 2050 C.

  12. Formation of porous surface layers in reaction bonded silicon nitride during processing

    Science.gov (United States)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  13. Effect of mineralizer on the nitridation of sialon-bonded silicon carbide products

    International Nuclear Information System (INIS)

    The effect of a mineralizer, magnesium silicate, on the nitridation of compacts consisting of silicon, clay, silica and silicon carbide was examined in terms of their reaction depth, density, porosity, phase composition and microstructure. It was found that addition of mineralizer slowed down the nitridation significantly. The kinetic process of isothermal nitridation in the presence of magnesium silicate obeys a parabolic rate law. Otherwise it obeys a linear rate law. The results suggest that nitrogen transportation is the limiting step during nitridation when mineralizer is added. The mechanism of nitridation is discussed in terms of phase composition and microstructure. Copyright (2000) The Australian Ceramic Society

  14. Effect of Pore-forming Agent on Porous Reaction-bonded Silicon Nitride Ceramics

    International Nuclear Information System (INIS)

    Porous reaction-bonded silicon nitride(RBSN) ceramics were fabricated by using potassium chloride(KCl) and urea(CO(NH2)2) as pore-forming agent, respectively. Green bodies with 30% in mass KCl were subjected to presinter in Ar atmosphere at 1200deg. C and then reaction-sintered. The properties of porous silicon nitride ceramics adding different pore-forming agent were explored. And the influence of presintering on apparent porosity, bulk density and bending strength of porous ceramics were investigated. The results indicated that the porosity of Si3N4 ceramics showed a nearly linear increase as the content of KCl increasing, but urea was not. And after presintering, the porosity had small decrease, but bending strength increased obviously. Low bulk density with about 58.6% porosity Si3N4 ceramic was prepared by adding 50wt% KCl, and the main phase composition of porous ceramic was α-Si3N4. Lots of needle-liked α-Si3N4, especially in the pores, could be observed.

  15. Effect of Pore-forming Agent on Porous Reaction-bonded Silicon Nitride Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Lei; Yu Jingkun [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Zhang Shaowei, E-mail: quainty@126.com [Department of Engineering Materials, Mappin Street, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2011-10-29

    Porous reaction-bonded silicon nitride(RBSN) ceramics were fabricated by using potassium chloride(KCl) and urea(CO(NH{sub 2}){sub 2}) as pore-forming agent, respectively. Green bodies with 30% in mass KCl were subjected to presinter in Ar atmosphere at 1200deg. C and then reaction-sintered. The properties of porous silicon nitride ceramics adding different pore-forming agent were explored. And the influence of presintering on apparent porosity, bulk density and bending strength of porous ceramics were investigated. The results indicated that the porosity of Si{sub 3}N{sub 4} ceramics showed a nearly linear increase as the content of KCl increasing, but urea was not. And after presintering, the porosity had small decrease, but bending strength increased obviously. Low bulk density with about 58.6% porosity Si{sub 3}N{sub 4} ceramic was prepared by adding 50wt% KCl, and the main phase composition of porous ceramic was {alpha}-Si{sub 3}N{sub 4}. Lots of needle-liked {alpha}-Si3N4, especially in the pores, could be observed.

  16. Continuous SiC-fiber reinforcement of reaction bonded silicon nitride (RBSN)

    International Nuclear Information System (INIS)

    This report describes the reinforcement of RBSN by carbon-coated SiC continous fibers (SCS-6, Textron). The comparison of conventional long-time nitridation with a newly developed short-time nitridation procedure shows that the former procedure causes partial fiber degradation whereas the fibers of the latter remain stable. Composites produced via short-time nitridation exhibit favourable stress-strain behaviour due to optimized fiber/matrix bonding. Stress values corresponding to the failure of short-time nitridized composites increased linearly with the fiber content up to about 850 MPa at of 19 vol.%. (orig.)

  17. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  18. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder Effects on the Sinterability and Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sea-Hoon [Korea Institute of Materials Science; Cho, Chun-Rae [Korea Institute of Materials Science; Park, Young-Jo [Korea Institute of Materials Science; Ko, Jae-Woong [Korea Institute of Materials Science; Kim, Hai-Doo [Korea Institute of Materials Science; Lin, Hua-Tay [ORNL; Becher, Paul F [ORNL

    2013-01-01

    The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain Lu2O3-SiO2 additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at 1850oC through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at 1950oC. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine Si3N4 particles after nitridation and sintering at and above 1600oC. The amount of residual SiO2 within the specimens was not strongly affected by adding fine Si powder because most of the SiO2 layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and 8.0 MPa m1/2, respectively.

  19. Cold spray and presureless sintering of zirconium phosphate bonded silicon nitride ceramics with porous gradient structure

    International Nuclear Information System (INIS)

    In the present study, silicon nitride (Si3N4) electromagnetic wave transparent ceramics with high porosity and porous gradient structure are prepared by cold spray and pressureless sintering technique. Zirconium phosphate solution is used as a binder material instead of the traditional organic materials, in order to prevent the residual carbon which is severe to the dielectric properties of the Si3N4 porous ceramics. Firstly, Si3N4 ceramic slurries with different phosphorus acid and pore-forming agent contents are prepared. Then the Si3N4 slurries are cold sprayed layer by layer to achieve a porous gradient structure, and finally the samples are presurelessly sintered at 1000 °C in a nitrogen atmosphere. The results show that the porosity of the obtained Si3N4 ceramics is 20∼70 % and the Si3N4 ceramics exhibits a good porous graded structure from high to low porosity.

  20. Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite

    Indian Academy of Sciences (India)

    J Rakshit; P K Das

    2002-10-01

    Four compositions of nitride bonded SiC were fabricated with varying particle size of SiC of ∼ 9.67, ∼ 13.79, ∼ 60 and their mixture with Si of ∼ 4.83 particle size. The green density and hence the open porosity of the shapes were varied between 1.83 to 2.09 g/cc and 33.3 to 26.8 vol.%, respectively. The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front. Formation of Si3N4 whisker was also observed. The strength of the mixture composition was maximum.

  1. Sintering silicon nitride

    Science.gov (United States)

    Bansal, Narottam P. (Inventor); Levine, Stanley R. (Inventor); Sanders, William A. (Inventor)

    1993-01-01

    Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.

  2. Contact damage of silicon nitride whisker-silicon nitride composites

    International Nuclear Information System (INIS)

    The influence of β-silicon nitride whiskers content on Hertzian contact damage in silicon nitride matrix prepared by tape casting and gas pressure sintering (GPS) is discussed. Hertzian indentations with different loads were applied to follow the evolution of damage in these whisker-reinforced composites. The morphology of contact damage was investigated by using optical microscopy, as well as electron microscopy. With increasing β-silicon nitride whiskers content in α-silicon nitride, the porosity of materials increased and the micro structure of matrix became finer. With decreasing grain size, the subsurface contact damage increased by increasing crack length. The samples with 2 mass % β-silicon nitride addition had showed shallow ring crack and quasi-plastic deformation. On the other hand, for sample with 10 mass % β-silicon nitride whisker added sample and coarse microstructures subsurface deformation was not observed. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  3. Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding

    International Nuclear Information System (INIS)

    Pole tip recession (PTR) is one of the major issues faced in magnetic tape storage technology, which causes an increase in the magnetic spacing and hence signal loss during data readback. Despite efforts to reduce the magnetic spacing, PTR, and surface wear on the heads by using protective overcoats, most of them either employ complex fabrication processes and approaches do not provide adequate protection to the head or are too thick (∼10–20 nm), especially for future high density tape storage. In this work, we discuss an approach to reduce the PTR and surface wear at the head by developing an ultrathin ∼7 nm bilayer overcoat of silicon/silicon nitride (Si/SiNx) and carbon (C), which is totally fabricated by a cost-effective and industrial-friendly magnetron sputtering process. When compared with a monolithic C overcoat of similar thickness, the electrically insulating Si/SiNx/C bilayer overcoat was found to provide better wear protection for commercial tape heads, as demonstrated by Auger electron spectroscopic analyses after wear tests with commercial tape media. Although the microstructures of carbon in the monolithic and bilayer overcoats were similar, the improved wear durability of the bilayer overcoat was attributed to the creation of extensive interfacial bonding of Si and N with the C overcoat and the alumina-titanium carbide composite head substrate, as predicted by time-of-flight secondary ion mass spectrometry and confirmed by in-depth X-ray photoelectron spectroscopy analyses. This study highlights the pivotal role of enhanced interfaces and interfacial bonding in developing ultrathin yet wear-durable overcoats for tape heads

  4. Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding

    Science.gov (United States)

    Yeo, Reuben J.; Dwivedi, Neeraj; Zhang, Lu; Zhang, Zheng; Lim, Christina Y. H.; Tripathy, S.; Bhatia, Charanjit S.

    2015-01-01

    Pole tip recession (PTR) is one of the major issues faced in magnetic tape storage technology, which causes an increase in the magnetic spacing and hence signal loss during data readback. Despite efforts to reduce the magnetic spacing, PTR, and surface wear on the heads by using protective overcoats, most of them either employ complex fabrication processes and approaches do not provide adequate protection to the head or are too thick (˜10-20 nm), especially for future high density tape storage. In this work, we discuss an approach to reduce the PTR and surface wear at the head by developing an ultrathin ˜7 nm bilayer overcoat of silicon/silicon nitride (Si/SiNx) and carbon (C), which is totally fabricated by a cost-effective and industrial-friendly magnetron sputtering process. When compared with a monolithic C overcoat of similar thickness, the electrically insulating Si/SiNx/C bilayer overcoat was found to provide better wear protection for commercial tape heads, as demonstrated by Auger electron spectroscopic analyses after wear tests with commercial tape media. Although the microstructures of carbon in the monolithic and bilayer overcoats were similar, the improved wear durability of the bilayer overcoat was attributed to the creation of extensive interfacial bonding of Si and N with the C overcoat and the alumina-titanium carbide composite head substrate, as predicted by time-of-flight secondary ion mass spectrometry and confirmed by in-depth X-ray photoelectron spectroscopy analyses. This study highlights the pivotal role of enhanced interfaces and interfacial bonding in developing ultrathin yet wear-durable overcoats for tape heads.

  5. Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Reuben J.; Dwivedi, Neeraj; Bhatia, Charanjit S., E-mail: elebcs@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117583 (Singapore); Zhang, Lu [Institute of Microelectronics (IME), A*STAR (Agency for Science, Technology, and Research), 11 Science Park Road, Singapore Science Park II, Singapore, Singapore 117685 (Singapore); Zhang, Zheng; Tripathy, S. [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore, Singapore 117602 (Singapore); Lim, Christina Y. H. [Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore 117575 (Singapore)

    2015-01-28

    Pole tip recession (PTR) is one of the major issues faced in magnetic tape storage technology, which causes an increase in the magnetic spacing and hence signal loss during data readback. Despite efforts to reduce the magnetic spacing, PTR, and surface wear on the heads by using protective overcoats, most of them either employ complex fabrication processes and approaches do not provide adequate protection to the head or are too thick (∼10–20 nm), especially for future high density tape storage. In this work, we discuss an approach to reduce the PTR and surface wear at the head by developing an ultrathin ∼7 nm bilayer overcoat of silicon/silicon nitride (Si/SiN{sub x}) and carbon (C), which is totally fabricated by a cost-effective and industrial-friendly magnetron sputtering process. When compared with a monolithic C overcoat of similar thickness, the electrically insulating Si/SiN{sub x}/C bilayer overcoat was found to provide better wear protection for commercial tape heads, as demonstrated by Auger electron spectroscopic analyses after wear tests with commercial tape media. Although the microstructures of carbon in the monolithic and bilayer overcoats were similar, the improved wear durability of the bilayer overcoat was attributed to the creation of extensive interfacial bonding of Si and N with the C overcoat and the alumina-titanium carbide composite head substrate, as predicted by time-of-flight secondary ion mass spectrometry and confirmed by in-depth X-ray photoelectron spectroscopy analyses. This study highlights the pivotal role of enhanced interfaces and interfacial bonding in developing ultrathin yet wear-durable overcoats for tape heads.

  6. Role of interfacial carbon layer in the thermal diffusivity/conductivity of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, Hemanshu; Donaldson, Kimberly Y.; Hasselman, D. P. H.; Bhatt, Ramakrishna T.

    1992-01-01

    Experiments were carried out on samples of reaction-bonded silicon nitride uniaxially reinforced by SiC monofilaments with and without a 3-micron-thick carbon-rich coating. It is found that a combination of a carbon coatings on the fibers and an interfacial gap due to the thermal expansion mismatch in the composite can significantly (by a factor of 2) lower the effective thermal diffusivity in the direction transverse to the fiber. At atmospheric pressure, gaseous conduction across the interfacial gap makes a significant contribution to the heat transfer across the interface, indicated by significantly lower values of the effective thermal diffusivity under vacuum than in nitrogen or helium at atmospheric pressure.

  7. Role of the interfacial thermal barrier in the effective thermal diffusivity/conductivity of SiC-fiber-reinforced reaction-bonded silicon nitride

    Science.gov (United States)

    Bhatt, Hemanshu; Donaldson, Kimberly Y.; Hasselman, D. P. H.; Bhatt, R. T.

    1990-01-01

    Experimental thermal diffusivity data transverse to the fiber direction for composites composed of a reaction bonded silicon nitride matrix reinforced with uniaxially aligned carbon-coated silicon carbide fibers indicate the existence of a significant thermal barrier at the matrix-fiber interface. Calculations of the interfacial thermal conductances indicate that at 300 C and 1-atm N2, more than 90 percent of the heat conduction across the interface occurs by gaseous conduction. Good agreement is obtained between thermal conductance values for the oxidized composite at 1 atm calculated from the thermal conductivity of the N2 gas and those inferred from the data for the effective composite thermal conductivity.

  8. The role of N-Si-O bonding configurations in tunable photoluminescence of oxygenated amorphous silicon nitride films

    Science.gov (United States)

    Zhang, Pengzhan; Chen, Kunji; Lin, Zewen; Dong, Hengping; Li, Wei; Xu, Jun; Huang, Xinfan

    2015-06-01

    Last year, we have reported that the internal quantum efficiency of photoluminescence (PL) from amorphous silicon oxynitride (a-SiNxOy) films has been achieved as high as 60%. The present work intensively investigated the mechanisms for tunable PL in the 2.05-2.95 eV range from our a-SiNx:O films, by using a combination of optical characterizations, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) measurements. The results of XPS, EPR, and photoluminescence excited measurements indicated that the incorporation of oxygen atoms into silicon nitride (a-SiNx) networks not only reduced the band tail structure disorder (Urbach tail width EU) but also created N-Si-O (Nx) defect states in the band gap. We have discovered the distinctive PL characteristics from a-SiNx:O films with various NH3/SiH4 ratios. The PL peak energy (EPL) is independent of the excitation energy (Eexc) and the PL intensity (IPL) is regardless of the optical band gap (Eopt) but is proportional to the Nx defects concentration, both of which are completely different from the PL characteristics by band tail states recombination mechanism, in which the EPL is proportional to Eexc (when Eexc ≤ Eopt) and the IPL is dependent on the relative position of Eexc and Eopt. Based on the N-Si-O bonding configurations and the distinctive PL characteristics, the radiative recombination mechanism through the N-Si-O defect states has been proposed, by which the performance of stimulated emission may be realized in this kind of a-SiNx:O films.

  9. Silicon nitride coating on titanium to enable titanium-ceramic bonding.

    Science.gov (United States)

    Wang, R R; Welsch, G E; Monteiro, O

    1999-08-01

    Failures that occur in titanium-ceramic restorations are of concern to clinicians. The formation of poorly adhering oxide on titanium at dental porcelain sintering temperatures causes adherence problems between titanium and porcelain, which is the main limiting factor in the fabrication of titanium-ceramic restorations. To overcome this problem a 1-microm thick Si3N4 coating was applied to a titanium surface using a plasma-immersion implantation and deposition method. Such a coating serves as an oxygen diffusion barrier on titanium during the porcelain firings. The protective coating was characterized in the as-deposited condition and after thermal cycling. Cross sections of Ti/Si3N4-porcelain interface regions were examined by various electron microscopy methods and by energy dispersive analysis of X-rays to study the Si3N4 film's effectiveness in preventing titanium oxidation and in forming a bond with porcelain. The experiments have shown that this Si3N4 coating enables significant improvement in Ti-ceramic bonding. PMID:10380005

  10. Bonding silicones with epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Tira, J.S.

    1980-01-01

    It is shown that silicones, both room temperature vulcanizing (RTV) and millable rubber (press cured) can be successfully bonded to other materials using plasma treatment and epoxy adhesives. The plasma treatment using dry air atmosphere increases the surface energy of the silicone and thus provides a lower water contact angle. This phenomenon allows the epoxy adhesive to wet the silicone surface and ultimately bond. Bond strengths are sufficiently high to result in failures in the silicone materials rather than the adhesive bond.

  11. Effects of the amorphous oxide intergranular layer structure and bonding on the fracture toughness of a high purity silicon nitride

    OpenAIRE

    Ziegler, A.; Kisielowski, C.; Hoffmann, M. J.; Ritchie, R. O.

    2002-01-01

    The microstructural evolution and structural characteristics and transitions in the thin grain-boundary oxide films in a silicon nitride ceramic, specifically between two adjacent grains and not the triple junctions, are investigated to find their effect on the macroscopic fracture properties. It is found that by heat treating a model Si3N4-2wt percent Y2O3 ceramic for ~;200 hr at 1400 degrees C in air, the fracture toughness can be increased by ~;100 percent, coincident with a change i...

  12. A high Tc superconductor bolometer on a silicon nitride membrane

    OpenAIRE

    Sanchez, Stefan; Elwenspoek, Miko; Gui, Chengqun; Nivelle, de, M.J.M.E.; De, Vries; Korte, de, N.; Bruijn, Marcel P.; Wijnbergen, Jan J.; Michalke, Wolfgang; Steinbeiss, Erwin; Heidenblut, Torsten; Schwierzi, Bernard

    1998-01-01

    In this paper, we describe the design, fabrication, and performance of a high-Tc GdBa2Cu3O7-¿ superconductor bolometer positioned on a 2× 2-mm2 1-¿m-thick silicon nitride membrane. The bolometer structure has an effective area of 0.64 mm2 and was grown on a specially developed silicon-on-nitride (SON) layer. This layer was made by direct bonding of silicon nitride to silicon after chemical mechanical polishing. The operation temperature of the bolometer is 85 K. A thermal conductance G=3.3·10...

  13. The compression creep behaviour of silicon nitride ceramics

    International Nuclear Information System (INIS)

    A comparison has been made of the compression creep characteristics of samples of reaction-bonded and hot-pressed silicon nitride, a sialon and silicon carbide. In addition, the effects of factors such as oxide additions and fabrication variables on the creep resistance of reaction-bonded material and the influence of dispersions of SiC particles on the creep properties of hot-pressed silicon nitride have been considered. For the entire range of materials examined, the creep behaviour appears to be determined primarily by the rate at which the development of grain boundary microcracks allows relative movement of the crystals to take place. (author)

  14. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  15. Development of high-thermal-conductivity silicon nitride ceramics

    OpenAIRE

    You Zhou; Hideki Hyuga; Dai Kusano; Yu-ichi Yoshizawa; Tatsuki Ohji; Kiyoshi Hirao

    2015-01-01

    Silicon nitride (Si3N4) with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN) method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional ga...

  16. Silicon nitride for photovoltaic application

    Directory of Open Access Journals (Sweden)

    M. Lipiński

    2010-12-01

    Full Text Available Purpose: of this paper is to present the research results of silicon nitride SiNx films used for industrial silicon solar cells and for third generation solar cells.Design/methodology/approach: The SiNx films were deposited using RF- and LF-PECVD methods. The optical and structural properties were investigated by spectroscopic ellipsometry, XPS, FTIR spectroscopy and X-Ray reflectometry. The passivation properties were investigated by carriers lifetime measurements using a photoconductance decay (PCD technique. For the photovoltaics of third generation the multilayer structures of SiNx were deposited and annealed in order to obtain the silicon quantum superlattices. These structure were characterized by high-resolution TEM, GI-XRD, photoluminescence, Raman and SPV spectroscopy.Findings: It is shown that the layers deposited by LF PECVD have more profitable optical and electrical properties for industrial silicon solar cells than those deposited by RF PECVD. The other finding is that multi-layer structure of SiNx annealed at high temperature shows the properties of the new semiconductor with the gap energy broader then the gap of the silicon.Research limitations/implications: The maximal density of SiNx layers is equal to 2.6 g/cm3. It is too low to obtain high efficiency mc-Si cells. The deposition process should be further optimized. The other limitation is obtaining a regular structure of quantum superlattice composed of quantum dots with defined diameter and density which is a very difficult technological task. This work should be continued in the future.Practical implications: The results of SiNx investigation can be used to increase the efficiency of mc-Si solar cells. The results of multilayer SiNx investigations may be applied to a solar cells based on silicon QDs superlatice.

  17. Investigations of the properties of thin-layer silicon nitride

    International Nuclear Information System (INIS)

    The plasma-induced deposition of silicon nitride films from a gas mixture of ammonia, silane and argon leads to the incorporation of considerable amounts of hydrogen that can be bonded to both silicon and nitrogen. The amount of hydrogen and its chemical bond is essentially determined by the deposition temperature and the concentration ratio of the reactants. Qualitative and quantitative analyses of hydrogen were performed by IR spectroscopy and secondary mass ion spectroscopy. In addition, the passivation behavior of Sisub(x)Nsub(y)Hsub(z) films towards sodium was investigated by a tracer method using 22Na. (author)

  18. Highly porous silicon membranes fabricated from silicon nitride/silicon stacks.

    Science.gov (United States)

    Qi, Chengzhu; Striemer, Christopher C; Gaborski, Thomas R; McGrath, James L; Fauchet, Philippe M

    2014-07-23

    Nanopore formation in silicon films has previously been demonstrated using rapid thermal crystallization of ultrathin (15 nm) amorphous Si films sandwiched between nm-thick SiO2 layers. In this work, the silicon dioxide barrier layers are replaced with silicon nitride, resulting in nanoporous silicon films with unprecedented pore density and novel morphology. Four different thin film stack systems including silicon nitride/silicon/silicon nitride (NSN), silicon dioxide/silicon/silicon nitride (OSN), silicon nitride/silicon/silicon dioxide (NSO), and silicon dioxide/silicon/silicon dioxide (OSO) are tested under different annealing temperatures. Generally the pore size, pore density, and porosity positively correlate with the annealing temperature for all four systems. The NSN system yields substantially higher porosity and pore density than the OSO system, with the OSN and NSO stack characteristics fallings between these extremes. The higher porosity of the Si membrane in the NSN stack is primarily due to the pore formation enhancement in the Si film. It is hypothesized that this could result from the interfacial energy difference between the silicon/silicon nitride and silicon/silicon dioxide, which influences the Si crystallization process. PMID:24623562

  19. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration.......An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  20. Modelling structure and properties of amorphous silicon boron nitride ceramics

    OpenAIRE

    Johann Christian Schön; Alexander Hannemann; Guneet Sethi; Ilya Vladimirovich Pentin; Martin Jansen

    2011-01-01

    Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that th...

  1. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  2. Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent

    International Nuclear Information System (INIS)

    This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 degrees C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains. (authors)

  3. Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs.

    Science.gov (United States)

    Kue, R; Sohrabi, A; Nagle, D; Frondoza, C; Hungerford, D

    1999-07-01

    The biocompatibility of silicon nitride (Si3N4) was assessed in an in vitro model using the human osteoblast-like MG-63 cell line. Cells were propagated on the surface of: reaction-bonded silicon nitride discs, sintered after reaction-bonded silicon nitride discs or control polystyrene surface for 48 h. Compared to cells propagated on polystyrene surface, cells grown on the surface of unpolished silicon nitride discs had significantly lower cell yield and decreased osteocalcin production. In contrast, cells on the surface of polished silicon nitride discs showed similar proliferative capacity to control cells propagated on polystyrene surface. Cells propagated on polished discs also produced higher levels of osteocalcin than cells on unpolished discs. SEM analysis showed cells with well-delineated morphology and cytoplasmic extensions when propagated on polished sintered after reaction-bonded discs. Cells appeared more spherical, when grown on polished reaction-bonded discs. The results of this study suggest that silicon nitride is a non-toxic, biocompatible ceramic surface for the propagation of functional human bone cells in vitro. Its high wear resistance and ability to support bone cell growth and metabolism make silicone nitride an attractive candidate for clinical application. Further studies are needed to explore the feasibility of using silicon nitride clinically as an orthopedic biomaterial. PMID:10395388

  4. MECHANICAL PROPERTIES OF MACROPOROUS SILICON NITRIDE-BASED CERAMICS DESIGNED FOR BONE SUBSTITUTES

    OpenAIRE

    Katarina Bodisova; Monika Kasiarova; Vilcekova Zuzana; Domanicka Magdalena; Lences Zoltan; Hnatko Miroslav; Gromosova Silvia; Sajgalik Pavol

    2014-01-01

    Porous silicon nitride preforms designed for bone substitutes were prepared by two different forming methods: by introduction of semolina as pore forming agent and by template method with polyurethane sponge. Silicon nitride-based green bodies were sintered in air at two different temperatures, while the Si + 20 % Si3N4 samples were sintered by reaction bonding process in nitrogen. Template method yields samples with interconnected macroporous structure comparable to the bone structu...

  5. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  6. Annealing and deposition effects of the chemical composition of silicon rich nitride

    DEFF Research Database (Denmark)

    Andersen, Karin Nordström; Svendsen, Winnie Edith; Stimpel-Lindner, T.;

    2005-01-01

    Silicon-rich nitride, deposited by LPCVD, is a low stress amorphous material with a high refractive index. After deposition the silicon-rich nitride thin film is annealed at temperatures above 1100 oC to break N-H bonds, which have absorption peaks in the wavelength band important for optical...... optical waveguides. This means that the annealing temperature must be high enough to break the N-H bonds, but no so high as to produce clusters. Therefore, the process window for an annealing step lies between 1100 and 1150 oC. The chemical composition of amorphous silicon-rich nitride has been...... telecommunication. However, silicon clustering appears in the thin films when annealing above 1150 oC. Clustering is undesirable in waveguide materials because the localized variations of the refractive index associated with the clusters lead to Raleigh scattering, which can cause significant propagation loss in...

  7. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  8. Silicon nitride passivated bifacial Cz-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, L. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Solland Solar Cells GmbH, Bohr 12, 52072 Aachen (Germany); Windgassen, H.; Baetzner, D.L. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Bitnar, B.; Neuhaus, H. [Deutsche Cell GmbH, Berthelsdorfer Str. 111a, 09599 Freiberg (Germany)

    2009-08-15

    A new process for all silicon nitride passivated silicon solar cells with screen printed contacts is analysed in detail. Since the contacts are fired through the silicon nitride layers on both sides, the process is easy to adapt to industrial production. The potential and limits of the presented bifacial design are simulated and discussed. The effectiveness of the presented process depends strongly on the base doping of the substrate, but only the open circuit voltage is affected. The current is mainly determined by the rear surface passivation properties. Thus, using a low resistivity (<1.5{omega}cm) base material higher efficiencies compared to an aluminium back surface field can be achieved. (author)

  9. Characterization of nitrided silicon-silicon dioxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Polignano, M.L.; Alessandri, M.; Brazzelli, D. [and others

    2000-07-01

    A newly-developed technique for the simultaneous characterization of the oxide-silicon interface properties and of bulk impurities was used for a systematic study of the nitridation process of thin oxides. This technique is based upon surface recombination velocity measurements, and does not require the formation of a capacitor structure, so it is very suitable for the characterization of as-grown interfaces. Oxides grown both in dry and in wet environments were considered, and nitridation processes in N{sub 2}O and in NO were compared to N{sub 2} annealing processes. The effect of nitridation temperature and duration were also studied, and RTO/RTN processes were compared to conventional furnace nitridation processes. Surface recombination velocity was correlated with nitrogen concentration at the oxide-silicon interface obtained by Secondary Ion Mass Spectroscopy (SIMS) measurements. Surface recombination velocity (hence surface state density) decreases with increasing nitrogen pile-up at the oxide-silicon interface, indicating that in nitrided interfaces surface state density is limited by nitridation. NO treatments are much more effective than N{sub 2}O treatments in the formation of nitrogen-rich interface layer and, as a consequence, in surface state reduction. Surface state density was measured in fully processed wafers before and after constant current stress. After a complete device process surface states are annealed out by hydrogen passivation, however they are reactivated by the electrical stress, and surface state results after stress were compared with data of surface recombination velocity in as-processed wafers.

  10. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    material is in a state of internal tension. The viscoelastic relaxation process for temperatures above 700 °C is dominated by the relaxation of this internal tension. A linear relation between the refractive index and material density is determined for silicon oxy-nitride with a nitrogen concentration......Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found. This...

  11. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua; Oxenløwe, Leif Katsuo; Frandsen, Lars Hagedorn

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  12. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  13. Wide-bandwidth silicon nitride membrane microphones

    Science.gov (United States)

    Cunningham, Brian T.; Bernstein, Jonathan J.

    1997-09-01

    Small, low cost microphones with high sensitivity at frequencies greater than 20 KHz are desired for applications such as ultrasonic imaging and communication links. To minimize stray capacitance between the microphone and its amplifier circuit, process compatibility between the microphone and on-chip circuitry is also desired to facilitate integration. In this work, we have demonstrated micromachined microphones packaged with hybrid JFET amplifier circuitry with frequency response extending to 100 KHz, and voltage sensitivity of approximately 2.0 mV/Pa from 100 Hz to 10 KHz, and 16.5 mV/Pa at 30 KHz with a bias voltage of 8.0 V. The microphones are fabricated with membranes and fixed backplates made of low temperature plasma-enhanced chemical vapor deposited (PECVD) silicon nitride. Because the maximum temperature of the fabrication process is 300 degrees Celsius, microphones may be built on silicon wafers from any commercial CMOS foundry without affecting transistor characteristics, allowing integration with sophisticated amplifier circuitry. Low stress silicon nitride deposition was used to produce membranes up to 2.0 mm diameter and 0.5 micrometer thickness with plus or minus 0.10 micrometer flatness. The excellent planarity of both the diaphragm and the backplate, combined with a narrow sense gap (approximately 2 micrometers) results in high output capacitance (up to 6.0 pF). The high output capacitance results in noise spectral density which is approximately 3x lower than silicon diaphragms microphones previously fabricated by the authors. Diaphragms with corrugations were fabricated to relive tensile stress, to increase deflection per unit pressure and to increase deflection linearity with pressure.

  14. Indentation fatigue in silicon nitride, alumina and silicon carbide ceramics

    Indian Academy of Sciences (India)

    A K Mukhopadhyay

    2001-04-01

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker’s microhardness tester at various loads in the range 1–20 N. Subsequently, the gradual evolution of the damage was characterized using an optical microscope in conjunction with the image analysing technique. The materials were classified in the order of the decreasing resistance against repeated indentation fatigue at the highest applied load of 20 N. It was further shown that there was a strong influence of grain size on the development of resistance against repeated indentation fatigue on the same spot. Finally, the poor performance of the sintered silicon carbide was found out to be linked to its previous thermal history.

  15. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  16. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Photoluminescence and carrier transport mechanisms of silicon-rich silicon nitride light emitting device

    International Nuclear Information System (INIS)

    Highlights: • Amorphous silicon quantum dots (a-Si QDs) embedded in silicon nitride were fabricated using plasma-enhanced chemical vapor deposition (PECVD). • Two different excitation sources were used to investigate the PL mechanisms. • Light emitting diode (LED) with ITO/SiNx/p-Si/Al structure was fabricated and the carrier transport mechanisms were investigated. - Abstract: Silicon-rich silicon nitride (SRSN) films were prepared on p-type silicon substrates using plasma-enhanced chemical vapor deposition (PECVD). Small size (∼3 nm) amorphous silicon quantum dots (a-Si QDs) were obtained after 1100 °C annealing. Two different excitation sources, namely 325 nm and 532 nm lasers, were introduced to investigate the photoluminescence (PL) properties. The PL bands pumped by 325 nm laser at ∼2.90 eV and ∼1.80 eV were contributed to the radiative centers from N dangling bonds (DBs), while the dominant PL bands at 2.10 eV were ascribed to the instinct PL centers in the nitride matrix. However, PL emissions from band tail luminescence and quantum confined effect (QCE) in a-Si QDs were found under the excitation of 532 nm laser. Light emitting diode (LED) with ITO/SiNx/p-Si/Al structure was fabricated. Intensely red light emission was observed by naked eyes at room temperature under forward 20 V. Three different carrier transport mechanisms, namely Poole–Frenkel (P–F) tunneling, Fowler–Nordheim (F–N) tunneling and space charge limited current (SCLC), were found to fit different electric field regions. These results help to understand the PL mechanisms and to optimize the fabrication of a-Si QD LED

  18. Study on coefficient of thermal conductivity of silicon carbide material bonded with silicon nitride determined with laser flash method%激光闪射法测试氮化硅结合碳化硅材料导热系数的研究

    Institute of Scientific and Technical Information of China (English)

    王东; 刘宗奎; 张斌; 赵维平

    2012-01-01

    Laser flash method is widely studied and applied in the aspect of determination of coefficient of thermal conductivity of materials.The thermal conductivity of silicon carbide material bonded with silicon nitride is determined with laser flash method,the factors that have influence on accuracy are analyzed and the corresponding measures are put forward.%激光闪射法在材料导热系数的测量方面已得到广泛研究和应用。利用激光闪射法测试了氮化硅结合碳化硅材料的导热系数,分析了影响结果准确性的因素,并提出了相应措施。

  19. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    Science.gov (United States)

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses coating planar, curved, and line-of-sight-obscured silicon nitride surfaces. PMID:24999923

  20. Fabrication of silicon nitride-silicon carbide nanocomposite ceramics

    International Nuclear Information System (INIS)

    Silicon nitride-silicon carbide nanocomposites have so far been fabricated by hot-pressing fine amorphous Si-C-N powder produced by CVD. This composite exhibited excellent strength and fracture toughness and maintained high strength to temperatures above 1200 C. The current work deals with the fabrication of nanocomposites produced using mixtures of Si3N4 and nanosize SiC powders. Conventional processing techniques were used to optimise the dispersion of the SiC particles. Densification was achieved by pressureless sintering, gas pressure sintering and sinter/HIPping. Mechanical properties such as hardness, fracture toughness and strength at room temperature were assessed. The nanocomposites produced were compared with composites produced using alternative starting materials. (orig.)

  1. Thermal tuners on a Silicon Nitride platform

    CERN Document Server

    Pérez, Daniel; Baños, Rocío; Doménech, José David; Sánchez, Ana M; Cirera, Josep M; Mas, Roser; Sánchez, Javier; Durán, Sara; Pardo, Emilio; Domínguez, Carlos; Pastor, Daniel; Capmany, José; Muñoz, Pascual

    2016-01-01

    In this paper, the design trade-offs for the implementation of small footprint thermal tuners on silicon nitride are presented, and explored through measurements and supporting simulations of a photonic chip based on Mach-Zehnder Interferometers. Firstly, the electrical properties of the tuners are assessed, showing a compromise between compactness and deterioration. Secondly, the different variables involved in the thermal efficiency, switching power and heater dimensions, are analysed. Finally, with focus on exploring the limits of this compact tuners with regards to on chip component density, the thermal-cross talk is also investigated. Tuners with footprint of 270x5 {\\mu}m 2 and switching power of 350 mW are reported, with thermal-cross talk, in terms of induced phase change in adjacent devices of less than one order of magnitude at distances over 20 {\\mu}m. Paths for the improvement of thermal efficiency, power consumption and resilience of the devices are also outlined

  2. Numerical investigation of silicon nitride trench waveguide

    Science.gov (United States)

    Zhao, Qiancheng; Huang, Yuewang; Torun, Rasul; Rahman, Shah; Atasever, Tuva C.; Boyraz, Ozdal

    2015-08-01

    We numerically investigated optical properties, including evanescent intensity ratio (EIR), effective refractive index (Neff), dispersion coefficient (D), and mode area (Aeff) of the silicon nitride trench waveguides fabricated by using conventional lithography. The waveguides are etched 3 μm deep with potassium hydroxide for triangle and trapezoidal waveguides, which is then followed by 3 μm thermal oxidation and 725 nm silicon nitride deposition. The waveguide with 725 nm thickness has an EIR peak of 0.025 when its bottom width Wbtm equals 0.65 μm. A thinner waveguide has higher evanescent intensity ratio, which can be used in sensing applications. The locations of EIR peaks correspond to the quasi-TM and TE mode boundary. Narrower waveguides mainly support quasi-TM modes, whereas wider waveguides can support only TE modes. As the waveguide width increases, higher orders of TE modes emerge. In addition, a boundary of TE single mode and multimode can also be linearly curve fitted, according to the starting points of TE higher modes, in order to provide the single mode condition of the waveguide. The waveguide dispersion can be engineered to be in the anomalous region while at the same time remain close to zero. The waveguide with 725 nm thickness and 0.2 μm bottom width has its anomalous dispersion region between the wavelength of 1356 nm and 1462 nm. The mode area decreases with increasing waveguide width. This is the first time we have studied the mode properties of trench waveguides systematically. The waveguide will find more applications in sensing and nonlinear fields with the help of this mode analysis.

  3. Synchrotron irradiation study of hydrogenated silicon nitride film

    International Nuclear Information System (INIS)

    In the present study, the modifications in hydrogenated silicon nitride film upon synchrotron radiation (SR) illumination (using white light) are investigated by in situ soft x-ray reflectivity (XRR) measurements at Indus-l SR source. The illumination experiments are performed at 10 deg incidence angle at which the majority of incident radiation are restricted to ∼80 A depth. Due to irradiation the hydrogen bonds which are responsible for voids and network deformation, are more likely to break and pave the path for the formation of compact Si3N4 network. An increase in the film density and decrease in the film thickness is observed. In addition, the surface morphology changed significantly. Atomic force microscopy confirms the surface deformation. Out diffusion of hydrogen near the surface may be responsible for the surface modifications. (author)

  4. Effect of silicon nitride layers on the minority carrier diffusion length in c-Si wafers

    International Nuclear Information System (INIS)

    Silicon nitride layers prepared from silane and ammonia based gases by microwave assisted plasma enhanced chemical vapor deposition (PECVD) and by low pressure chemical vapor deposition (LPCVD) techniques on p-type c-silicon substrates were studied via the methods of surface photovoltage (SPV), Fourier transform infrared (FTIR), and secondary-ion-mass spectroscopy (SIMS). The effective diffusion length in silicon was evaluated by the SPV method, and it was strongly influenced by the deposited SiNx layer. The FTIR spectra show the form of chemical bond of hydrogen in the layer. Two absorption bands belonging to Si-H and N-H groups and their modification after temperature treatment were found in the spectra of PECVD samples, while in the spectra of LPCVD samples only N-H bonds were recognized. Transport of H from PECVD silicon nitride into Si subsurface layer during the annealing process is shown by SIMS profiles of hydrogen. Positive influence of the penetrated H manifests in passivation of defects in the subsurface Si layer and, consequently, in better operation of the space charge region below the nitride and in longer effective diffusion length of minority carriers in the Si bulk. The average value of the diffusion length in the Si samples with the LPCVD nitride was shorter and dependent on the location of wafers in the reactor

  5. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one. PMID:21105726

  6. Cryostable lightweight frit bonded silicon mirror

    Science.gov (United States)

    Anthony, F.; McCarter, D.; Tangedahl, M.; Content, D.

    The excellent polishability, low density and relatively high stiffness of silicon make it an attractive candidate for optical applications that require superior performance. Assembly of silicon details by means of glass frit bonding permits significant light weighting thus enhancing the benefit of silicon mirrors. To demonstrate the performance potential, a small lightweight glass frit bonded silicon mirror was fabricated and tested for cryoability. The test mirror was 12.5cm in diameter with a 60cm spherical radius and a maximum thickness, at the perimeter, of 2.5cm. A machined silicon core was used to stiffen the two face sheets of the silicon sandwich. These three elements were assembled, by glass frit bonding, to form the substrate that was polished. The experimental evaluation in a liquid nitrogen cryostat, demonstrated cryostability performance significantly better than required by the mirror specification. Key WordsCryostable, Lightweight, Silicon, Frit Bond, Spherical, Mirror

  7. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  8. Silicon-to-silicon wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Lindahl, M.

    Anodic bending of silicon to silicon 4-in. wafers using an electron-beam evaporated glass (Schott 8329) was performed successfully in air at temperatures ranging from 200 degrees C to 450 degrees C. The composition of the deposited glass is enriched in sodium as compared to the target material. The...... silicon/glass structures in air around 340 degrees C for 15 min leads to stress-free structures. Bonded wafer pairs, however, show no reduction in stress and always exhibit compressive stress. The bond yield is larger than 95% for bonding temperatures around 350 degrees C and is above 80% for bonding...... from 25 N/mm(2) to 0 N/mm(2) at 200 degrees C. A weak dependence on feature size was observed. For bonding temperatures higher than 300 degrees C fracture occurs randomly in the bulk of the silicon, whereas for bonding temperatures lower than 300 degrees C fracture always occurs at the bonding...

  9. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  10. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    quality, etch rate. The response of these parameters to high temperature anneals were correlated with structural changes in the silicon nitride films as measured by using the hydrogen bond concentration. Plasma enhanced chemical vapour deposition allows continuous variation in nearly all deposition parameters. The parameters studied in this work are the gas flow ratios and excitation power. In both direct and remote deposition systems, the increase in deposition power density lead to higher activation of ammonia which in turn lead to augmented incorporation of nitrogen into the films and thus lower refractive index. For a direct system, the same parameter change lead to a drastic fall in passivation quality of Czochralski silicon attributed to an increase in ion bombardment as well as the general observation that as deposited passivation tends to increase with refractive index. Silicon nitride films with variations in refractive index were also made by varying the silane-to-ammonia gas flow ratio. This simple parameter adjustment makes plasma enhanced chemical vapour deposited silicon nitride applicable to double layer anti-reflective coatings simulated in this work. The films were found to have an etch rate in 5% hydrofluoric acid that decreased with increasing refractive index. This behaviour is attributed to the decreasing concentration of nitrogen-to-hydrogen bonds in the films. Such bonds at the surface of silicon nitride have been suggested to be involved in the main reaction mechanism when etching silicon nitride in hydrofluoric acid. Annealing the films lead to a drastic fall in etch rates and was linked to the release of hydrogen from the nitrogen-hydrogen bonds. (author). 115 refs., 35 figs., 6 tabs

  11. Cytotoxic evaluation of silicon nitride-based ceramics

    International Nuclear Information System (INIS)

    Silicon nitride-based ceramics are potential candidates as materials for orthopedic implants due to their chemical stability associated with suitable fracture toughness and propitious tribologic characteristics. Therefore, in this work, dense silicon nitride components are investigated considering their suitability as biomaterials. Initially, two different compositions of silicon nitride were considered, using ytterbium, yttrium and aluminum oxides as sintering aids. The materials were sintered in a carbon resistance furnace under nitrogen atmosphere and were analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to characterize the microstructure. Indentation method was applied in order to obtain hardness and fracture toughness measurements, and in vitro test of cytotoxicity was performed for a preliminary biological evaluation. A microstructure composed of grains of beta-silicon nitride distributed in a secondary phase was observed. The samples achieved fracture toughness values of 5 MPa m1/2 and Vickers hardness values of 13 GPa. Since a nontoxic behavior has been observed during the cytotoxicity tests with the samples, this finding suggests that silicon nitride-based ceramic can be used as a material for clinical applications

  12. Gas phase separation of silicon carbide and silicon nitride

    International Nuclear Information System (INIS)

    Pure silicon carbide and silicon nitride in compact, pore-free form have valuable properties which only could never be fully utilized so far. The two compounds cannot be melted or sintered in their pure form, additives are required for hot-pressing or pressureless sintering, and only porous material is obtained by reaction sintering, where only Si and C or Si and N are used. - The new technique of chemical gas phase separation might help to overcome the drawbacks of present techniques. In the new technique SiC is produced e.g., by pyrolysis of CH3SiCl3 and Si3N4, e.g. by reacting SiCl4 with NH3. With this techniques, the pores in SiC and Si3N4 bodies can be filled later (gas phase impregnation), very fine SiC and Si3N4 powders can be produced as well as SiC monofilaments suitable as components for SiC compound bodies. In addition fibre compound bodies can be obtained by gas phase impregnation. (orig.)

  13. Optomechanical and crystallization phenomena visualized with 4D electron microscopy: interfacial carbon nanotubes on silicon nitride.

    Science.gov (United States)

    Flannigan, David J; Zewail, Ahmed H

    2010-05-12

    With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 degrees C when exposed to a train of laser pulses. Under such condition, 4D visualization of the optomechanical motion of the specimen was followed by quantifying the change in diffraction contrast of crystalline silicon nitride, to which the nanotube network is bonded. The direction of the motion was established from a tilt series correlating the change in displacement with both the tilt angle and the response time. Correlation of nanoscopic motion with the picosecond atomic-scale dynamics suggests that electronic processes initiated in the nanotubes are responsible for the initial ultrafast optomechanical motion. The time scales accessible to UEM are 12 orders of magnitude shorter than those traditionally used to study the optomechanical motion of carbon nanotube networks, thus allowing for distinctions between the different electronic and thermal mechanisms to be made. PMID:20377202

  14. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).

  15. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, Jeroen; Berenschot, Erwin; Maury, Pascale; Jansen, Henri

    2005-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7-20 nm wide, 40-100 nm high and centimeters long. All dimensions are easily a

  16. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask

    NARCIS (Netherlands)

    Haneveld, Jeroen; Berenschot, Erwin; Maury, Pascale; Jansen, Henri

    2006-01-01

    A method to fabricate nano-ridges over a full wafer is presented. The fabrication method uses local oxidation of silicon, with silicon nitride as a mask, and wet anisotropic etching of silicon. The realized structures are 7–20 nm wide, 40–100 nm high and centimeters long. All dimensions are easily a

  17. Ceramics based on titanium nitride and silicon nitride sintered by SPS-method

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu; Evdokimov, A. A.

    2015-10-01

    The dependences of the microstructure and physical and mechanical properties of ceramic mixtures Si3N4/TiN in the full range of mass ratios of the components. Was also investigated directly, and the process of sintering occurring during a physical or chemical processes, in particular, has been obtained and the hardness of the material density on the ratio of the conductive titanium nitride phase and a silicon nitride insulating phase with values above and below the percolation threshold. Also obtained was pure ceramics based on titanium nitride with high physical-mechanical characteristics (H = 21.5 GPa).

  18. Cryostable lightweight frit-bonded silicon mirror

    Science.gov (United States)

    Anthony, Frank M.; McCarter, Douglas R.; Tangedahl, Matt; Content, David A.

    2002-11-01

    The excellent polishability, low density and relatively high stiffness of silicon make it an attractive candidate for optical applications that require superior performance. Assembly of silicon details by means of glass frit bonding permits significant weight reduction thus enhancing the benefit of silicon mirrors. To demonstrate the performance potential, a small lightweight glass frit bonded silicon mirror was fabricated and tested for cryostability. The test mirror was 12.5cm in diameter with a 60cm spherical radius and a maximum thickness, at the perimeter, of 2.5cm. A machined silicon core was used to stiffen the two face sheets of the silicon sandwich. These three elements were assembled, by glass frit bonding, to form the substrate that was polished. The experimental evaluation, in a liquid nitrogen cryostat, demonstrated cryostability performance significantly better than required by the mirror specification.

  19. Silicon nitride ceramics for bio-structural applications

    OpenAIRE

    Bellosi, Alida

    2009-01-01

    Notwithstanding the good combination of mechanical and tribological properties, the suitability of silicon nitride for application as prosthesis in bone substitution is still controversial. This study aims to design and produce different silicon nitride-based ceramics. (two monolithics 90.0 vol% Si3N4 + 10.0 vol% bioglass, and 91.3vol%Si3N4 + 8.7vol%MgO, and a composite 65.0 vol% (93wt% Si3N4 + 2 wt%Al2O3+5wt%Y2O3) + 35.0vol%TiN ) and to test the materials. Besides microstructure and mechanic...

  20. Fabrication of sinterable silicon nitride by injection molding

    Science.gov (United States)

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  1. Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor.

    Science.gov (United States)

    Park, Jae-Min; Jang, Se Jin; Yusup, Luchana L; Lee, Won-Jun; Lee, Sang-Ick

    2016-08-17

    We report the plasma-enhanced atomic layer deposition (PEALD) of silicon nitride thin film using a silylamine compound as the silicon precursor. A series of silylamine compounds were designed by replacing SiH3 groups in trisilylamine by dimethylaminomethylsilyl or trimethylsilyl groups to obtain sufficient thermal stability. The silylamine compounds were synthesized through redistribution, amino-substitution, lithiation, and silylation reactions. Among them, bis(dimethylaminomethylsilyl)trimethylsilyl amine (C9H29N3Si3, DTDN2-H2) was selected as the silicon precursor because of the lowest bond dissociation energy and sufficient vapor pressures. The energies for adsorption and reaction of DTDN2-H2 with the silicon nitride surface were also calculated by density functional theory. PEALD silicon nitride thin films were prepared using DTDN2-H2 and N2 plasma. The PEALD process window was between 250 and 400 °C with a growth rate of 0.36 Å/cycle. The best film quality was obtained at 400 °C with a RF power of 100 W. The PEALD film prepared showed good bottom and sidewall coverages of ∼80% and ∼73%, respectively, on a trench-patterned wafer with an aspect ratio of 5.5. PMID:27447839

  2. Nitridation of silicon /111/ - Auger and LEED results

    Science.gov (United States)

    Delord, J. F.; Schrott, A. G.; Fain, S. C., Jr.

    1980-01-01

    Clean silicon (111) (7x7) surfaces at up to 1050 C have been reacted with nitrogen ions and neutrals produced by a low energy ion gun. The LEED patterns observed are similar to those previously reported for reaction of silicon (111) (7x7) with NH3. The nitrogen KLL peak exhibits no shift or change in shape with nitride growth. At the same time the magnitude of the elemental silicon LVV peak at 92 eV decreases progressively as a new peak at 84 eV increases. The position of both peaks appears to be independent of the degree of nitridation. Since the Auger spectra are free of oxygen and other impurities, these features can be attributed only to silicon, nitrogen, and their reaction products. Characteristic features of the Auger spectra are related to LEED observations and to the growth of microcrystals of Si3N4.

  3. Silicon Nitride Windows for Electron Microscopy of Whole Cells

    OpenAIRE

    Ring, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; de Jonge, N.

    2011-01-01

    Silicon microchips with thin electron transparent silicon nitride windows provide a sample support that accommodates both light-, and electron microscopy of whole eukaryotic cells in vacuum or liquid, with minimum sample preparation steps. The windows are robust enough that cellular samples can be cultured directly onto them, with no addition of a supporting film, and no need to embed or section the sample, as is typically required in electron microscopy. By combining two microchips, a microf...

  4. Organometallic chemical vapor deposition of silicon nitride films enhanced by atomic nitrogen generated from surface-wave plasma

    International Nuclear Information System (INIS)

    Organometallic chemical vapor deposition of silicon nitride films enhanced by atomic nitrogen generated from surface-wave plasma is investigated. Feasibility of precursors of triethylsilane (TES) and bis(dimethylamino)dimethylsilane (BDMADMS) is discussed based on a calculation of bond energies by computer simulation. Refractive indices of 1.81 and 1.71 are obtained for deposited films with TES and BDMADMS, respectively. X-ray photoelectron spectroscopy (XPS) analysis of the deposited film revealed that TES-based film coincides with the stoichiometric thermal silicon nitride

  5. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; De Groot, R.A.; De Wijs, G.A.; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principle

  6. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principle

  7. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.;

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...

  8. Dispersion engineering silicon nitride waveguides for broadband nonlinear frequency conversion

    NARCIS (Netherlands)

    Epping, J.P.

    2015-01-01

    In this thesis, we investigated nonlinear frequency conversion of optical wavelengths using integrated silicon nitride (Si3N4) waveguides. Two nonlinear conversion schemes were considered: seeded four-wave mixing and supercontinuum generation. The first—seeded four-wave mixing—is investigated by a n

  9. Compressibility and thermal expansion of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lindelov, H.; Gerward, Leif;

    2002-01-01

    The compressibility and thermal expansion of the cubic silicon nitride (c-Si3N4) phase have been investigated by performing in situ x-ray powder-diffraction measurements using synchrotron radiation, complemented with computer simulations by means of first-principles calculations. The bulk...

  10. The design, fabrication, and testing of corrugated silicon nitride diaphragms

    NARCIS (Netherlands)

    Scheeper, Patrick R.; Olthuis, Wouter; Bergveld, Piet

    1994-01-01

    Silicon nitride corrugated diaphragms of 2 mm×2 mm×1 ¿m have been fabricated with 8 circular corrugations, having depths of 4, 10, or 14 ¿m. The diaphragms with 4-¿m-deep corrugations show a measured mechanical sensitivity (increase in the deflection over the increase in the applied pressure) which

  11. Proceedings of the symposium on silicon nitride and silicon dioxide thin insulating films

    International Nuclear Information System (INIS)

    This symposium volume is divided into five sections: Charge trapping in multilayer insulating films; New applications of insulating films: neural networks; silicon dioxide and silicon nitride films; Processing and radiation damage; and Hot carrier phenomena. A central theme of the symposium was the combined use of silicon nitride and silicon dioxide as a dielectric system. Silicon nitride often contains other species,such as oxygen, which form oxynitrides, and this leads to a wide variety of process recipes. A variety of standard applications are discussed, such as gate dielectrics in nonvolatile memory devices, interpoly dielectrics, and ultra-thin gate dielectrics for the next generation of devices. New applications are introduced, such as long time constant devices for new information processing circuits known as neural networks

  12. Silicon nitride Micromesh Bolometer Array for Submillimeter Astrophysics.

    Science.gov (United States)

    Turner, A D; Bock, J J; Beeman, J W; Glenn, J; Hargrave, P C; Hristov, V V; Nguyen, H T; Rahman, F; Sethuraman, S; Woodcraft, A L

    2001-10-01

    We present the design and performance of a feedhorn-coupled bolometer array intended for a sensitive 350-mum photometer camera. Silicon nitride micromesh absorbers minimize the suspended mass and heat capacity of the bolometers. The temperature transducers, neutron-transmutation-doped Ge thermistors, are attached to the absorber with In bump bonds. Vapor-deposited electrical leads address the thermistors and determine the thermal conductance of the bolometers. The bolometer array demonstrates a dark noise-equivalent power of 2.9 x 10(-17) W/ radicalHz and a mean heat capacity of 1.3 pJ/K at 390 mK. We measure the optical efficiency of the bolometer and feedhorn to be 0.45-0.65 by comparing the response to blackbody calibration sources. The bolometer array demonstrates theoretical noise performance arising from the photon and the phonon and Johnson noise, with photon noise dominant under the design background conditions. We measure the ratio of total noise to photon noise to be 1.21 under an absorbed optical power of 2.4 pW. Excess noise is negligible for audio frequencies as low as 30 mHz. We summarize the trade-offs between bare and feedhorn-coupled detectors and discuss the estimated performance limits of micromesh bolometers. The bolometer array demonstrates the sensitivity required for photon noise-limited performance from a spaceborne, passively cooled telescope. PMID:18364768

  13. Elastic properties of tensile nitrogen-plasma-treated multilayer silicon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Braccini, M., E-mail: muriel.braccini@simap.grenoble-inp.fr [SIMaP, Grenoble-INP/CNRS/UJF, BP 75, 38402 St Martin d' Hères cedex (France); Volpi, F. [SIMaP, Grenoble-INP/CNRS/UJF, BP 75, 38402 St Martin d' Hères cedex (France); Devos, A. [IEMN, UMR8250 CNRS, avenue Poincaré, BP 69, 59652 Villeneuve d' Ascq cedex (France); Raymond, G. [SIMaP, Grenoble-INP/CNRS/UJF, BP 75, 38402 St Martin d' Hères cedex (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles cedex (France); Benoit, D. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles cedex (France); Morin, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles cedex (France); STMicroelectronics, Nanotech Center, 257 Fuller Road, 12208 Albany, NY (United States)

    2014-01-31

    Highly stressed silicon nitride thin films are used in gate first complementary metal oxide semiconductors to improve mobility in the silicon channel. Compressive stresses improve hole mobility in p-type MOS transistors while tensile stresses increase electron mobility in n-type MOS devices. High levels of compressive stress are easily reached in plasma enhanced chemical vapor deposited films by using the plasma power setting at a temperature compatible with the integration flow. Tensile stresses are more difficult to obtain with a plasma process because of the low temperatures required. Nevertheless, some post-treatments have been developed based on desorption of hydrogen that has been incorporated during the deposition step. The present study concerns one of those treatments consisting in a sequential deposition/nitrogen plasma treatment of elementary layers. Both nano-indentation and picosecond ultrasonic methods are used to measure the Young's modulus of the obtained silicon nitride thin films. The effect of the plasma treatment on the change in elastic modulus is investigated through the relationship with other properties like mass density and the concentration of Si-N bonds. - Highlights: • A picosecond ultrasonic method is used to measure the Young's modulus in thin films. • The Young's modulus is related to the silicon nitride film structure and chemistry. • A simple model allows describing the Young's modulus increase during N2 plasma treatment.

  14. Elastic properties of tensile nitrogen-plasma-treated multilayer silicon nitride films

    International Nuclear Information System (INIS)

    Highly stressed silicon nitride thin films are used in gate first complementary metal oxide semiconductors to improve mobility in the silicon channel. Compressive stresses improve hole mobility in p-type MOS transistors while tensile stresses increase electron mobility in n-type MOS devices. High levels of compressive stress are easily reached in plasma enhanced chemical vapor deposited films by using the plasma power setting at a temperature compatible with the integration flow. Tensile stresses are more difficult to obtain with a plasma process because of the low temperatures required. Nevertheless, some post-treatments have been developed based on desorption of hydrogen that has been incorporated during the deposition step. The present study concerns one of those treatments consisting in a sequential deposition/nitrogen plasma treatment of elementary layers. Both nano-indentation and picosecond ultrasonic methods are used to measure the Young's modulus of the obtained silicon nitride thin films. The effect of the plasma treatment on the change in elastic modulus is investigated through the relationship with other properties like mass density and the concentration of Si-N bonds. - Highlights: • A picosecond ultrasonic method is used to measure the Young's modulus in thin films. • The Young's modulus is related to the silicon nitride film structure and chemistry. • A simple model allows describing the Young's modulus increase during N2 plasma treatment

  15. Avoiding silicon/glass bonding damage with fusion bonding method

    Institute of Scientific and Technical Information of China (English)

    Daohong Yang(杨道虹); Chen Xu(徐晨); Guangdi Shen(沈光地)

    2004-01-01

    A novel fusion bonding method between silicon and glass with Nd:YAG laser is described.This method overcomes the movable mechanical parts damage caused by the electrostatics force in micro-electronic machine-system(MEMS)device during the anodic bonding. The diameter of laser spot is 300 μm,the power of laser is 100 W,the laser velocity for bonding is 0.05 m/s,the average bonding tension is 6.3 MPa.It could distinctly reduce and eliminate the defects and damage,especially in movable sensitive mechanical parts of MEMS device.

  16. Development of a continuous spinning process for producing silicon carbide - silicon nitride precursor fibers

    Science.gov (United States)

    1985-01-01

    An apparatus was designed for the continuous production of silicon carbide - silicon nitride precursor fibers. The precursor polymer can be fiberized, crosslined and pyrolyzed. The product is a metallic black fiber with the composition of the type C sub x Si sub y n sub z. Little, other than the tensile strength and modulus of elasticity, is known of the physical properties.

  17. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith;

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss. A...

  18. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated memb

  19. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 107 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si3N4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si3N4 are compared to results on similar devices with SiO2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  20. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  1. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications, phase 2

    Science.gov (United States)

    Sundberg, G. J.; Vartabedian, A. M.; Wade, J. A.; White, C. S.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP'ed Si3N4 with 4wt% Y2O3 (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  2. Preparation and evaluation of silicon nitride matrices for silicon nitride-SiC fiber composites. M.S. Thesis Final Technical Report

    Science.gov (United States)

    Axelson, Scott R.

    1988-01-01

    Continuous silicon carbide (SiC) fiber was added to three types of silicon nitride (Si3N4) matrices. Efforts were aimed at producing a dense Si3N4 matrix from reaction-bonded silicon nitride (RBSN) by hot-isostatic-pressing (HIP) and pressureless sintering, and from Si3N4 powder by hot-pressing. The sintering additives utilized were chosen to allow for densification, while not causing severe degradation of the fiber. The ceramic microstructures were evaluated using scanning optical microscopy. Vickers indentation was used to determine the microhardness and fracture toughness values of the matrices. The RBSN matrices in this study did not reach more than 80 percent of theoretical density after sintering at various temperatures, pressures, and additive levels. Hot-pressing Si3N4 powder produced the highest density matrices; hardness and toughness values were within an order of magnitude of the best literature values. The best sintering aid composition chosen included Y2O3, SiO2, and Al2O3 or AlN. Photomicrographs demonstrate a significant reduction of fiber attack by this additive composition.

  3. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    OpenAIRE

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated membranes-“microsieves”) or for the coating of the exposed surfaces of sensors (field-effect transistors, waveguide optical detectors). To a more limited extent, silicon carbide (SiC) can find similar ...

  4. Electrical Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells

    OpenAIRE

    Helland, Susanne

    2011-01-01

    High quality surface passivation is important for the reduction of recombination losses in solar cells. In this work, the passivation properties of amorphous hydrogenated silicon nitride for crystalline silicon solar cells were investigated, using electrical characterization, lifetime measurements and spectroscopic ellipsometry. Thin films of varying composition were deposited on p-type monocrystalline silicon wafers by plasma enhanced chemical vapor deposition (PECVD). Highest quality surfac...

  5. Silicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications

    CERN Document Server

    Zhao, Qiancheng; Huang, Yuewang; Capolino, Filippo; Boyraz, Ozdal

    2015-01-01

    We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguide together. Analyte contained in the trapezoidal trench channel can interact with the evanescent field from the waveguide beneath. The evanescent field can be further enhanced by plasmonic nanostructures. With the help of gold nano bowtie antennas, the studied waveguide shows outstanding trapping capability on 10 nm polystyrene nanoparticles. We show that the bowtie antennas can lead to 60-fold enhancement of electric field in the antenna gap. The optical trapping force on a nanoparticle is boosted by three orders of magnitude. A strong tendency shows the nanoparticle is likely to move to the high field strength region,...

  6. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn2+ and Mn3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN)x(SiMn0.25NyOz)1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn2+ and Mn3+. • Oxygen incorporation is

  7. Optomechanical and Crystallization Phenomena Visualized with 4D Electron Microscopy: Interfacial Carbon Nanotubes on Silicon Nitride

    OpenAIRE

    Flannigan, David J.; Zewail, Ahmed H.

    2010-01-01

    With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 °C when exposed to a train of laser pulse...

  8. Research on Abrasives in the Chemical Mechanical Polishing Process for Silicon Nitride Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Silicon nitride (Si 3N 4) has been the main material for balls in ceramic ball bearings, for its lower density, high strength, high hardness, fine thermal stability and anticorrosive, and is widely used in various fields, such as high speed and high temperature areojet engines, precision machine tools and chemical engineer machines. Silicon nitride ceramics is a kind of brittle and hard material that is difficult to machining. In the traditional finishing process of silicon nitride balls, balls are lapped...

  9. Development of the microstructure of the silicon nitride based ceramics

    OpenAIRE

    Bressiani J. C.; Izhevskyi V.; Bressiani Ana H. A.

    1999-01-01

    Basic regularities of silicon nitride based materials microstructure formation and development in interrelation with processing conditions, type of sintering additives, and starting powders properties are discussed. Models of abnormal or exaggerated grain growth are critically reassessed. Results of several model experiments conducted in order to determine the most important factors directing the microstructure formation processes in RE-fluxed Si3N4 ceramics are reviewed. Existing data on the...

  10. Corrosion of silicon nitride in high temperature alkaline solutions

    Science.gov (United States)

    Qiu, Liyan; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si3N4) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si3N4 experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  11. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver;

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides to...

  12. High-Index Contrast Silicon Rich Silicon Nitride Optical Waveguides and Devices

    DEFF Research Database (Denmark)

    Philipp, Hugh Taylor

    2004-01-01

    This research focused on the realization of high-density integrated optical devices made with high-index contrast waveguides. The material platform used for to develop these devices was modeled after standard silicon on silicon technology. The high-index waveguide core material was silicon rich...... silicon nitride. This provided a sharp contrast with silica and made low-loss waveguide bending radii less than 25mm possible. An immediate consequence of such small bending radii is the ability to make practical ring resonator based devices with a large free spectral range. Several ring resonator based...

  13. Deep-UV nitride-on-silicon microdisk lasers

    Science.gov (United States)

    Sellés, J.; Brimont, C.; Cassabois, G.; Valvin, P.; Guillet, T.; Roland, I.; Zeng, Y.; Checoury, X.; Boucaud, P.; Mexis, M.; Semond, F.; Gayral, B.

    2016-02-01

    Deep ultra-violet semiconductor lasers have numerous applications for optical storage and biochemistry. Many strategies based on nitride heterostructures and adapted substrates have been investigated to develop efficient active layers in this spectral range, starting with AlGaN quantum wells on AlN substrates and more recently sapphire and SiC substrates. Here we report an efficient and simple solution relying on binary GaN/AlN quantum wells grown on a thin AlN buffer layer on a silicon substrate. This active region is embedded in microdisk photonic resonators of high quality factors and allows the demonstration of a deep ultra-violet microlaser operating at 275 nm at room temperature under optical pumping, with a spontaneous emission coupling factor β = (4 ± 2) 10-4. The ability of the active layer to be released from the silicon substrate and to be grown on silicon-on-insulator substrates opens the way to future developments of nitride nanophotonic platforms on silicon.

  14. Behavior of incorporated nitrogen in plasma-nitrided silicon oxide formed by chemical vapor deposition

    Science.gov (United States)

    Shinoda, Nao; Itokawa, Hiroshi; Fujitsuka, Ryota; Sekine, Katsuyuki; Onoue, Seiji; Tonotani, Junichi

    2016-04-01

    The behavior of nitrogen (N) atoms in plasma-nitrided silicon oxide (SiO2) formed by chemical vapor deposition (CVD) was characterized by physical analysis and from electrical properties. The changes in the chemical bonding and distribution of N in plasma-nitrided SiO2 were investigated for different subsequent processes. N-Si3, N-Si2O, and N2 are formed in a SiO2 film by plasma nitridation. N2 molecules diffuse out during annealing at temperatures higher than 900 °C. NH species are generated from N2 molecules and H in the SiO2 film with subsequent oxide deposition using O3 as an oxidant. The capacitance-voltage (C-V) curves of metal-oxide-semiconductor (MOS) capacitors are obtained. The negative shift of the C-V curve is caused by the increase in the density of positive fix charge traps in CVD-SiO2 induced by plasma nitridation. The C-V curve of plasma-nitrided SiO2 subjected to annealing shifts to the positive direction and that subjected to the subsequent oxide deposition shifts markedly to the negative direction. It is clarified that the density of positive charge fixed traps in plasma-nitrided SiO2 films decrease because the amount of N2 molecules is decreased by annealing, and that the density of traps increases because NH species are generated and move to the interface between SiO2 and the Si substrate with the subsequent oxide deposition.

  15. Numerical modeling and experimental investigation of laser-assisted machining of silicon nitride ceramics

    Science.gov (United States)

    Shen, Xinwei

    Laser-assisted machining (LAM) is a promising non-conventional machining technique for advanced ceramics. However, the fundamental machining mechanism which governs the LAM process is not well understood so far. Hence, the main objective of this study is to explore the machining mechanism and provide guidance for future LAM operations. In this study, laser-assisted milling (LAMill) of silicon nitride ceramics is focused. Experimental experience reveals that workpiece temperature in LAM of silicon nitride ceramics determines the surface quality of the machined workpiece. Thus, in order to know the thermal features of the workpiece in LAM, the laser-silicon nitride interaction mechanism is investigated via heating experiments. The trends of temperature affected by the key parameters (laser power, laser beam diameter, feed rate, and preheat time) are obtained through a parametric study. Experimental results show that high operating temperature leads to low cutting force, good surface finish, small edge chipping, and low residual stress. The temperature range for brittle-to-ductile transition should be avoided due to the rapid increase of fracture toughness. In order to know the temperature distribution at the cutting zone in the workpiece, a transient three-dimensional thermal model is developed using finite element analysis (FEA) and validated through experiments. Heat generation associated with machining is considered and demonstrated to have little impact on LAM. The model indicates that laser power is one critical parameter for successful operation of LAM. Feed and cutting speed can indirectly affect the operating temperatures. Furthermore, a machining model is established with the distinct element method (or discrete element method, DEM) to simulate the dynamic process of LAM. In the microstructural modeling of a beta-type silicon nitride ceramic, clusters are used to simulate the rod-like grains of the silicon nitride ceramic and parallel bonds act as the

  16. The Silicon-To-Silicon Anodic Bonding Using Sputter Deposited Intermediate Glass Layer

    OpenAIRE

    TIWARI, R; Chandra, S.

    2011-01-01

    Glass-to-silicon anodic bonding is an attractive process for packaging of microelectronics devices and Micro-electro-mechanical Systems (MEMS). Silicon to silicon anodic bonding can also be accomplished by incorporating an intermediate glass layer. In the present work, silicon-to-silicon anodic bonding has been studied with an intermediate borosilicate glass layer deposited by RF magnetron sputtering process. The bonding was carried out at low dc voltage of about 48 V at 400 °C. Surface rough...

  17. Study on plasma-spraying coating bioactive ceramics onto silicon nitride surface as composite endosteal implants.

    Science.gov (United States)

    Xu, L L; Shi, S J

    1997-01-01

    The successful key of endosteal implants depends on the properties of implant materials which are very important for oral implantology at the present. Because silicon nitride has high strength and hydroxylapatite (HA) and flourapatite (FA) have good biocompatibility. In this paper, we apply silicon nitride as base material. Plasma spray HA, FA onto its surface as composite endosteal implants. Physical and chemical properties test, includes X-ray diffraction (XRD), scanning electronic microscope (SEM), EDAX and bonding strength test (push-out test). The results indicate: after plasma-spraying coating, crystalline phase of HA and FA unchanged and form a lot of pores among the crystal particles. Those pores benefit bone growing into them. It is very important for implants to be fixed in bone for long time, Ca/P ratio has no significant change. Bonding strength test results indicate: Si3N4-HA 23.6MPa, Si3N4-FA 27.12 MPa are higher than that of Ti-HA 15.07 MPa. On the basis of these studies, they are kinds of ideal implant materials. PMID:9731426

  18. Nanostructured silicon nitride from wheat and rice husks

    Science.gov (United States)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.

    2016-04-01

    Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.

  19. Tensile creep behavior in an advanced silicon nitride

    International Nuclear Information System (INIS)

    Tensile creep behavior and changes in the microstructure of the advanced silicon nitride, SN 88M, were studied at temperatures from 1250 to 1400 C to reveal the creep resistance and lifetime-controlling processes. Assuming power law dependence of the minimum strain rate on stress, stress exponents from 6 to 8 and an apparent activation energy of 780 kJ/mol were obtained. Extensive electron microscopy observations revealed significant changes in the crystalline secondary phases and creep damage development. Creep damage was classified in two groups: 'inter-granular' defects in the amorphous boundary phases, and 'intra-granular' defects in silicon nitride grains. The inter-granular defects involved multigrain junction cavities, two-grain junction cavities, microcracks and cracks. The intra-granular defects included broken large grains, small symmetrical and asymmetrical cavities, and crack-like intragranular cavities. Cavities are generated continuously during the whole deformation starting from the threshold strain of ∝0.1%, and they contribute linearly to the tensile strain. Cavities produce more than 90% of the total tensile strain, and it is concluded that cavitation is the main creep mechanism in silicon nitride ceramics. The multigrain junction cavities are considered to be the most important for generating new volume and producing tensile strain. The Luecke and Wiederhorn (L and W) creep model, based on cavitation at multigrain junctions according to an exponential law, was proven to correspond to the stress dependence of the minimum strain rate. A qualitative model based on the L and W model was suggested and expanded to include intragranular cavitation. The basic mechanisms involve a repeating of the sequence grain boundary sliding (GBS) => cavitation at multigrain junctions => viscous flow and dissolution-precipitation. (orig.)

  20. MICROSTRUCTURE AND DENSIFICATION BEHAVIOUR OF SURFACE­ COATED SILICON NITRIDE POWDER

    OpenAIRE

    Tatlı, Zafer

    2002-01-01

    For better control of the mechanical properties of Si3N4 ceramics, it is necessary to generate homogeneous nıicrostructures, and for this purpose, chemical heterogeneities must be minimised, by careful control of pO\\\\'der processing and the subsequent consolidation steps. Coating of the starting silicon nitride po"7der is a convenient '\\-vay of incorporating a liquid forming sintering aid more homogeneously than can be achieved by current commercial methods such as ball-milling. Thin layers o...

  1. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    OpenAIRE

    Jarolimek, K.; de Groot, R. A.; de Wijs, G. A.; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principles molecular-dynamics within density-functional theory the models were generated by cooling from the liquid. Where both models have a short-range order resembling that of crystalline Si3N4 because o...

  2. Development of the microstructure of the silicon nitride based ceramics

    Directory of Open Access Journals (Sweden)

    Bressiani J.C.

    1999-01-01

    Full Text Available Basic regularities of silicon nitride based materials microstructure formation and development in interrelation with processing conditions, type of sintering additives, and starting powders properties are discussed. Models of abnormal or exaggerated grain growth are critically reassessed. Results of several model experiments conducted in order to determine the most important factors directing the microstructure formation processes in RE-fluxed Si3N4 ceramics are reviewed. Existing data on the mechanisms governing the microstructure development of Si3N4-based ceramics are analyzed and several principles of microstructure tailoring are formulated.

  3. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  4. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Ramírez, C.; Koller, M.; Sedlák, Petr; Landa, Michal; Miranzo, P.; Belmonte, M.; Osendí, M. I.

    2015-01-01

    Roč. 87, December (2015), s. 675-680. ISSN 0261-3069 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : multilayer graphene * graphene oxide (GO) * silicon nitride * elastic constants * elastic modulus * shear modulus Subject RIV: JI - Composite Materials Impact factor: 3.501, year: 2014 http://www.sciencedirect.com/science/article/pii/S0264127515302938/pdfft?md5=571e00fd7f976e9b66ed789ae2a868b2&pid=1-s2.0-S0264127515302938-main.pdf

  5. Processing and testing of high toughness silicon nitride ceramics

    Science.gov (United States)

    Tikare, Veena; Sanders, William A.; Choi, Sung R.

    1993-01-01

    High toughness silicon nitride ceramics were processed with the addition of small quantities of beta-Si3N4 whiskers in a commercially available alpha-Si3N4 powder. These whiskers grew preferentially during sintering resulting in large, elongated beta-grains, which acted to toughen the matrix by crack deflection and grain pullout. The fracture toughness of these samples seeded with beta-Si3N4 whiskers ranged from 8.7 to 9.5 MPa m(exp 0.5) depending on the sintering additives.

  6. Functionality diagrams for hybrid mechanical seals with silicon nitride rings

    OpenAIRE

    Carrapichano, J. M.; Oliveira, F. J.; Silva, R F; Gomes, J. R.

    2005-01-01

    Ring-on-ring tribological experiments were performed with hybrid mechanical seals with silicon nitride (Si3N4) rings. The K x PV product, where K is the wear coefficient, P the sealing pressure, and V the linear speed, is proposed as a novel parameter to characterize the total working range of a mechanical seal system, with the advantage of directly indicating the thickness reduction for a certain time of service. The KxPV criterion is represented in a map form called ‘‘functionality diagram.’...

  7. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si3N4 and SiO2

    Science.gov (United States)

    Liu, Li-Hong; Michalak, David J.; Chopra, Tatiana P.; Pujari, Sidharam P.; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D.; Zuilhof, Han; Chabal, Yves J.

    2016-03-01

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).

  8. An Electromagnetically Excited Silicon Nitride Beam Resonant Accelerometer

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available A resonant microbeam accelerometer of a novel highly symmetric structure based on MEMS bulk-silicon technology is proposed and some numerical modeling results for this scheme are presented. The accelerometer consists of two proof masses, four supporting hinges, two anchors, and a vibrating triple beam, which is clamped at both ends to the two proof masses. LPCVD silicon rich nitride is chosen as the resonant triple beam material, and parameter optimization of the triple-beam structure has been performed. The triple beam is excited and sensed electromagnetically by film electrodes located on the upper surface of the beam. Both simulation and experimental results show that the novel structure increases the scale factor of the resonant accelerometer, and ameliorates other performance issues such as cross axis sensitivity of insensitive input acceleration, etc.

  9. Mechanical properties measurement of silicon nitride thin films using the bulge test

    Science.gov (United States)

    Lee, Hun Kee; Ko, Seong Hyun; Han, Jun Soo; Park, HyunChul

    2007-12-01

    The mechanical properties of silicon nitride films are investigated. Freestanding films of silicon nitride are fabricated using the MEMS technique. The films were deposited onto (100) silicon wafers by LPCVD (Low Pressure Chemical Vapor Deposition). Square and rectangular membranes are made by anisotropic etching of the silicon substrates. Then the bulge test for silicon nitride film was carried out. The thickness of specimens was 0.5, 0.75 and 1μm respectively. By testing both square and rectangular membranes, the reliability and valiant-ness of bulge test with regard to the shape of specimens was investigated. Also considering residual stress in the films, one can evaluate the Young's modulus from experimental load-deflection curves. Young's modulus of the silicon nitride films was about 232GPa. The residual stress is below 100MPa.

  10. Field Emission from Amorphous carbon Nitride Films Deposited on silicon Tip Arrays

    Institute of Scientific and Technical Information of China (English)

    李俊杰; 郑伟涛; 孙龙; 卞海蛟; 金曾孙; 赵海峰; 宋航; 孟松鹤; 赫晓东; 韩杰才

    2003-01-01

    Amorphous carbon nitride films (a-CNx) were deposited on silicon tip arrays by rf magnetron sputtering in pure nitrogen atmosphere. The field emission property of carbon nitride films on Si tips was compared with that of carbon nitride on silicon wafer. The results show that field emission property of carbon nitride films deposited on silicon tips can be improved significantly in contrast with that on wafer. It can be explained that field emission is sensitive to the local curvature and geometry, thus silicon tips can effectively promote field emission property of a-CNx films. In addition, the films deposited on silicon tips have a smaller effective work function ( F = 0.024 eV)of electron field emission than that on silicon wafer ( F = 0.060 e V), which indicates a significant enhancement of the ability of electron field emission from a-CNx films.

  11. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    In this work, the thermal shock properties of commercial reaction-bonded Si3N4 quality material (RBSN), of commercial hot-pressed Si3N4 (HPSN) and of different laboratory grades of hot-pressed Si3N4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 7300C and over 14000C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si3N4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.)

  12. The development of a porous silicon nitride crossflow filter; Final report, September 1988--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    This report summarizes the work performed in developing a permeable form of silicon nitride for application to ceramic crossflow filters for use in advanced coal-fired electric power plants. The program was sponsored by the Department of Energy Morgantown Energy Technology Center and consisted of a design analysis and material development phase and a filter manufacture and demonstration phase. The crossflow filter design and operating requirements were defined. A filter design meeting the requirements was developed and thermal and stress analyses were performed. Material development efforts focused initially on reaction-bonded silicon nitride material. This approach was not successful, and the materials effort was refocused on the development of a permeable form of sintered silicon nitride (SSN). This effort was successful. The SSN material was used for the second phase of the program, filter manufacture and evaluation. Four half-scale SAN filter modules were fabricated. Three of the modules were qualified for filter performance tests. Tests were performed on two of the three qualified modules in the High-Temperature, High-Pressure facility at the Westinghouse Science and Technology Center. The first module failed on test when it expanded into the clamping device, causing dust leakage through the filter. The second module performed well for a cumulative 150-hr test. It displayed excellent filtration capability during the test. The blowback pulse cleaning was highly effective, and the module apparently withstood the stresses induced by the periodic pulse cleaning. Testing of the module resumed, and when the flow of combustion gas through the filter was doubled, cracks developed and the test was concluded.

  13. Optimization of time–temperature schedule for nitridation of silicon compact on the basis of silicon and nitrogen reaction kinetics

    Indian Academy of Sciences (India)

    J Rakshit; P K Das

    2000-08-01

    A time–temperature schedule for formation of silicon–nitride by direct nitridation of silicon compact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C, 1300°C, 1350°C and 1400°C). From kinetic study, three different temperature schedules were selected each of duration 20 h in the temperature range 1250°–1450°C, for complete nitridation. Theoretically full nitridation (100% i.e. 66.7% weight gain) was not achieved in the product having no unreacted silicon in the matrix, because impurities in Si powder and loss of material during nitridation would result in 5–10% reduction of weight gain. Green compact of density < 66% was fully nitrided by any one of the three schedules. For compact of density > 66%, the nitridation schedule was maneuvered for complete nitridation. Iron promotes nitridation reaction. Higher weight loss during nitridation of iron doped compact is the main cause of lower nitridation gain compared to undoped compact in the same firing schedule. Iron also enhances the amount of -Si3N4 phase by formation of low melting FeSi phase.

  14. MICROSTRUCTURE AND DENSIFICATION BEHAVIOUR OF SURFACE­ COATED SILICON NITRIDE POWDER

    Directory of Open Access Journals (Sweden)

    Zafer Tatlı

    2002-09-01

    Full Text Available For better control of the mechanical properties of Si3N4 ceramics, it is necessary to generate homogeneous nıicrostructures, and for this purpose, chemical heterogeneities must be minimised, by careful control of pO\\\\'der processing and the subsequent consolidation steps. Coating of the starting silicon nitride po"7der is a convenient '\\-vay of incorporating a liquid forming sintering aid more homogeneously than can be achieved by current commercial methods such as ball-milling. Thin layers of oxides, corresponding to additions of 5 w/o MgO have been deposited on the surface of grains of a commercial silicon nitride powder using alcoholic solutions containing appropriate amounts of the metal alkoxide. The resulting powders have been densified by pressurelesss sintering techniques, and their sintering characteristics identified in comparison with equivalent materials produced by adding the oxide in particulate form. In every case, a better sintering performance was observed at lower temperatures for the oxide-coated materials, with fully dense pressureless-sintered materials being obtained at temperatures as low as 1525 °C. Microstructures were observed using a s ... 2400 Hitachi Scanning Electron Microscope (SEM. and final microstructure was more uniform than that obtained by conventional method

  15. Advanced optical modelling of dynamically deposited silicon nitride layers

    Science.gov (United States)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  16. Electrical and optical properties of amorphous silicon carbide, silicon nitride and germanium carbide prepared by the glow discharge technique

    International Nuclear Information System (INIS)

    Amorphous specimens of silicon carbide, silicon nitride and germanium carbide have been prepared by decomposition of suitable gaseous mixtures in a r.f. glow discharge. Substrates were held at a temperature Tsub(d) between 400 and 800 K during deposition. In all three of the above materials the results of optical absorption and of d.c. conductivity measurements show a systematic variation with Tsub(d) and with the volume ratio of the gases used. Electron microprobe results on silicon carbide specimens indicate that a wide range of film compositions can be prepared. The optical gap has a pronounced maximum at the composition Sisub(0.32)Csub(0.68) where it is 2.8 eV for a sample deposited at Tsub(d) = 500 K, but shifts to lower energies with increasing Tsub(d). The conductivity above about 400 K has a single activation energy approximately equal to half the optical gap and extended state conduction predominates if the silicon content exceeds 32%. If the latter is reduced, hopping transport takes over and it is suggested that the excess carbon in the network tends to bond in three-fold graphic coordination. Absence of any obvious feature in the electronic properties at the stoichiometric composition SiC implies that there is little tendency towards compound formation in the glow discharge films. The present results are discussed in relation to measurements on specimens prepared by different methods. (author)

  17. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    International Nuclear Information System (INIS)

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp2-bonded boron nitride (sp2BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp2BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 104 at ±10 V of biasing with increasing the sp2BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation of the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp2BN thickness. The forward current follows the Frenkel-Poole emission model in the sp2BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp2BN interlayer, while that of the major carriers for forward current is much less affected

  18. Effect of the hexagonal phase interlayer on rectification properties of boron nitride heterojunctions to silicon

    Energy Technology Data Exchange (ETDEWEB)

    Teii, K., E-mail: teii@asem.kyushu-u.ac.jp; Ito, H.; Katayama, N. [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Matsumoto, S. [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-02-07

    Rectification properties of boron nitride/silicon p-n heterojunction diodes fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition are studied in terms of the resistive sp{sup 2}-bonded boron nitride (sp{sup 2}BN) interlayer. A two-step biasing technique is developed to control the fraction of cubic boron nitride (cBN) phase and, hence, the thickness of the sp{sup 2}BN interlayer in the films. The rectification ratio at room temperature is increased up to the order of 10{sup 4} at ±10 V of biasing with increasing the sp{sup 2}BN thickness up to around 130 nm due to suppression of the reverse leakage current. The variation of the ideality factor in the low bias region is related to the interface disorders and defects, not to the sp{sup 2}BN thickness. The forward current follows the Frenkel-Poole emission model in the sp{sup 2}BN interlayer at relatively high fields when the anomalous effect is assumed. The transport of the minority carriers for reverse current is strongly limited by the high bulk resistance of the thick sp{sup 2}BN interlayer, while that of the major carriers for forward current is much less affected.

  19. Nitride Bonded Refractory Products and Their Matching Mortars GB/T 23293-2009

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui

    2009-01-01

    @@ 1 Scope This standard specifies the definition, classification, brand, shape, dimension, technical requirements, test methods, quality appraisal procedures, packing, marking, storage, transportation and quality certificate of nitride bonded refractory products and their matching mortars.

  20. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    OpenAIRE

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; J.K. Rath; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted, as well as thin film silicon single junction and multijunction junction solar cells. The application of HW-SiNx at a deposition rate of 3 nm/s to polycrystalline Si wafer solar cells has led to cell...

  1. Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon

    Science.gov (United States)

    Zhang; Suenaga; Colliex; Iijima

    1998-08-14

    Multielement nanotubes comprising multiple phases, with diameters of a few tens of nanometers and lengths up to 50 micrometers, were successfully synthesized by means of reactive laser ablation. The experimentally determined structure consists of a beta-phase silicon carbide core, an amorphous silicon oxide intermediate layer, and graphitic outer shells made of boron nitride and carbon layers separated in the radial direction. The structure resembles a coaxial nanocable with a semiconductor-insulator-metal (or semiconductor-insulator-semiconductor) geometry and suggests applications in nanoscale electronic devices that take advantage of this self-organization mechanism for multielement nanotube formation. PMID:9703508

  2. Degradation of a tantalum filament during the hot-wire CVD of silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oliphant, C.J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Arendse, C.J., E-mail: cjarendse@uwc.ac.za [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muller, T.F.G. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Jordaan, W.A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Knoesen, D. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-01-30

    Electron backscatter diffraction revealed that during the hot-wire deposition of silicon nitride, a tantalum filament partially transformed to some of its nitrides and silicides. The deposition of an encapsulating silicon nitride layer occurred at the cooler filament ends. Time-of-flight secondary ion mass spectroscopy disclosed the presence of hydrogen, nitrogen and silicon containing ions within the aged filament bulk. Hardness measurements revealed that the recrystallized tantalum core experienced significant hardening, whereas the silicides and nitrides were harder but more brittle. Crack growth, porosity and the different thermal expansion amongst the various phases are all enhanced at the hotter centre regions, which resulted in failure at these areas. - Highlights: • Tantalum filament degrades and fails during hot-wire CVD of silicon nitride thin films. • An encapsulating silicon nitride layer is deposited at the cooler ends. • Electron backscatter diffraction reveals Ta-silicides and -nitrides with a Ta core. • Filament failure occurs at hot centre regions due to different mechanical properties of Ta, its silicides and nitrides.

  3. Degradation of a tantalum filament during the hot-wire CVD of silicon nitride thin films

    International Nuclear Information System (INIS)

    Electron backscatter diffraction revealed that during the hot-wire deposition of silicon nitride, a tantalum filament partially transformed to some of its nitrides and silicides. The deposition of an encapsulating silicon nitride layer occurred at the cooler filament ends. Time-of-flight secondary ion mass spectroscopy disclosed the presence of hydrogen, nitrogen and silicon containing ions within the aged filament bulk. Hardness measurements revealed that the recrystallized tantalum core experienced significant hardening, whereas the silicides and nitrides were harder but more brittle. Crack growth, porosity and the different thermal expansion amongst the various phases are all enhanced at the hotter centre regions, which resulted in failure at these areas. - Highlights: • Tantalum filament degrades and fails during hot-wire CVD of silicon nitride thin films. • An encapsulating silicon nitride layer is deposited at the cooler ends. • Electron backscatter diffraction reveals Ta-silicides and -nitrides with a Ta core. • Filament failure occurs at hot centre regions due to different mechanical properties of Ta, its silicides and nitrides

  4. Experimental Research on Residual Stress in Surface of Silicon Nitride Ceramic Balls

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ...

  5. C60 bonding to graphite and boron nitride surfaces

    Science.gov (United States)

    Reinke, P.; Feldermann, H.; Oelhafen, P.

    2003-12-01

    The present study focuses on the interaction of C60 with the surfaces of highly oriented pyrolitic graphite (HOPG) and sp2-bonded boron nitride (BN). The nanocrystalline BN film was deposited by mass selected ion beams and features an sp2-bonded surface layer, which covers a cubic phase BN film. The first part of the experiment is the sequential deposition of C60, which is monitored by photoelectron spectroscopy in the x-ray (XPS) and ultraviolet (UPS) regime. The growth of the C60 layer on HOPG is close to a layer-by-layer growth mode, but on the BN surface island growth is favored. No charge transfer or chemical reaction (e.g., carbide formation) between the fullerene layer, and the underlying substrate is observed in either case. In the second part of the experiment the samples are heated at a rate of 10 K/min while simultaneously recording the UPS VB spectra. The complete desorption of C60 from the HOPG surface occurs in a small temperature interval between 510-530 K. For the sp2 BN surface the majority of C60 desorbs around 493 K, about half a monolayer (ML) remains, and the C60 concentration decreases gradually with increasing temperature; less than a tenth of a ML can be detected even at 1000 K. The first desorption event at 493 K is attributable to the multilayer desorption from islands. The remaining C60 directly in contact with the BN surface is then removed in a large temperature interval between 500 and 1000 K which indicates the presence of a multitude of adsorption sites. The presence of C60 on the BN film surface also induces a band bending and related B 1s and N 1s core level shifts. An upward band bending is present in the C60 overlayer, which indicates that defects are responsible for the pinning of the Fermi level at the interface.

  6. Single-layer graphene on silicon nitride micromembrane resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  7. Microstructural evolution in annealed and crept silicon nitride

    International Nuclear Information System (INIS)

    The microstructure of a commercial sintered silicon nitride has been examined in the as-sintered condition, after annealing to a stable microstructure in either air or argon, and after creep deformation. Both as-sintered material and material annealed to a stable microstructure were crept. Extensive analytical electron microscopy has been used to determine the composition of the intergranular material (amorphous and crystalline). The as-sintered material contains an amorphous intergranular phase which partially devitrifies upon exposure to high temperatures. The residual intergranular glass is homogeneous throughout the samples (even though different crystalline products form near the surface and in the center of samples annealed in air) and stable. Creep deformation does not affect the microstructural evolution. It is, however, responsible for internal strain and some cavitation in the material

  8. Supersonic jet epitaxy of aluminum nitride on silicon (100)

    Science.gov (United States)

    Brown, Kyle A.; Ustin, S. A.; Lauhon, L.; Ho, W.

    1996-05-01

    Single phase aluminum nitride (0001) has been grown on atomically clean silicon (100) substrates (720 °C≥Ts≥620 °C) with dual supersonic molecular beam gas sources. The precursors used were triethylaluminum [TEA; Al(C2H5)3] and ammonia (NH3). The maximum growth rate obtained was 0.1 μm/h. The growth rate was found to depend strongly on the kinetic energy of the incident precursors. Single phase films were grown 200-400 nm thick. Structural x-ray studies reveal 2θ full widths at half-maxima between 0.20° and 0.35° for the AlN (0002) peak.

  9. Single-layer graphene on silicon nitride micromembrane resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil;

    2014-01-01

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospe...... new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene....... for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling...... of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of...

  10. Evaluation of Silicon Nitride for Brayton Turbine Wheel Application

    Science.gov (United States)

    Freedman, Marc R.

    2008-01-01

    Silicon nitride (Si3N4) is being evaluated as a risk-reduction alternative for a Jupiter Icy Moons Orbiter Brayton turbine wheel in the event that the Prometheus program design requirements exceed the creep strength of the baseline metallic superalloys. Five Si3N4 ceramics, each processed by a different method, were screened based on the Weibull distribution of bend strength at 1700 F (927 C). Three of the Si3N4 ceramics, Honeywell AS800, Kyocera SN282, and Saint-Gobain NT154, had bend strengths in excess of 87 ksi (600 MPa) at 1700 F (927 C). These were chosen for further assessment and consideration for future subcomponent and component fabrication and testing.

  11. Improved performance of silicon nitride-based high temperature ceramics

    Science.gov (United States)

    Ashbrook, R. L.

    1977-01-01

    Recent progress in the production of Si3N4 based ceramics is reviewed: (1) high temperature strength and toughness of hot pressed Si3N4 were improved by using high purity powder and a stabilized ZrO2 additive, (2) impact resistance of hot pressed Si3N4 was increased by the use of a crushable energy absorbing layer, (3) the oxidation resistance and strength of reaction sintered Si3N4 were increased by impregnating reaction sintered silicon nitride with solutions that oxidize to Al2O3 or ZrO2, (4) beta prime SiA1ON compositions and sintering aids were developed for improved oxidation resistance or improved high temperature strength.

  12. Conductivity of materials made of aluminum nitride and silicon nitride mixtures

    Science.gov (United States)

    Gorbatov, A. G.; Kamyshov, V. M.

    1978-01-01

    To establish the possible mechanism for conductivity in aluminum nitride a study was made of the electric conductivity of pure AlN and its mixtures with silicon nitride at different temperatures and partial pressures of nitrogen in the gas phase. The thermoelectromotive force was also measured. The experiments used polycrystalline samples of cylindrical shape 18 mm in diameter made of powders by hot pressing in graphite press molds at a temperature of 1973-2273 K and pressure 1,470,000 n/sqm. The items obtained by this method had porosity not over 5%. After pressing, the samples were machined to remove carbon from the surface, and were annealed in a stream of dry ammonia for 10 h at a temperature of 1273-1373 K. Electric conductivity was measured according to the bridge scheme on an alternating current of frequency 10 kHz. In order to guarantee close contact of the platinum electrodes with the surface of the samples, a thin layer of platinum was sprayed on them. Experiments were conducted in the temperature interval 1273-1573 K with a half hour delay at each assigned temperature with heating and cooling.

  13. Manufacture of nonvolatile memories by depositing silicon nitride films on silicon oxide

    International Nuclear Information System (INIS)

    This paper reviews the characteristics and applications of a new memory structure. The element is an insulated gate field effect transistor, the silicon dioxide gate insulator of which being replaced by a double insulator (typically a 20 - 30 A layer of SiO2 and a layer of silicon nitride (Si3N4) about 600 A). A high electrical field modifies the charges at the dielectric interface and consequently the value of the threshold voltage. The variations of the threshold voltage are observed as a function of the height and the duration of the writing pulse between metallic and silicon electrodes, for several oxide thicknesses. The loss of the information, after the writing pulse is reduced to zero, is observed as a function of a DC bias, for several values of the initial threshold voltage and as a function of the oxide thickness. All the characteristics are practically independent of the temperature. Experimental devices allow to store two values of the threshold voltage separated by 3 - 5 V after a one year (or more) storage time. The experimental results are explained owing to a transport of electrons (holes) from the silicon conduction (valence) band to the nitride conduction (valence) band. This model can explain the variations of the threshold voltage as a function of the different parameters. Particular problems of the utilization of this devices for random access memories were studied. A nonvolatile integrated in several organizations was observed. The experimental results allow the development of read mostly memories. (author)

  14. Ultra Low-Friction Characteristics of Nanostructured Surfaces on Silicon Nitride in Aqueous Medium

    OpenAIRE

    Özmen, Yılmaz; Jahanmir, Said

    2015-01-01

    Even though studies have shown unequivocally that the coefficient of friction of self-mated silicon nitride can be quite low in water, the basic phenomena responsible for such a low friction is still controversial. In this investigation the effects of load, speed, and surface roughness on the duration of the run-in period for self-mated silicon nitride in water was studied. Although the results are consistent with proposed mechanisms involving mixed hydrodynamic lubrication by water and bound...

  15. Nanomodeling of Nonlinear Thermoelastic Behavior of AA5454/ Silicon Nitride Nanoparticulate Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Chennakesava R Alavala

    2016-01-01

    Full Text Available The aim of the present work was to estimate non-linear thermoelastic behavior of three-phase AA5454/silicon nitride nanoparticle metal matrix composites. The thermal loading was varied from subzero temperature to under recrystallization temperature. The RVE models were used to analyze thermo-elastic behavior. The AA5454/silicon nitride nanoparticle metal matrix composites have gained the elastic modulus below 0oC and lost at high temperatures.

  16. Bio-functionalization of silicon nitride-based piezo-resistive microcantilevers

    Indian Academy of Sciences (India)

    Nitin S Kale; Manoj Joshi; P Nageswara Rao; S Mukherji; V Ramgopal Rao

    2009-08-01

    Methods of bio-functionalize silicon nitride involve process steps to convert it into an oxynitride via plasma implantation techniques. Such methods can potentially damage microstructures such as cantilevers. In this paper, we report successful bio-functionalization of Hotwire CVD silicon nitride-based piezo-resistive cantilevers without any oxygen plasma treatment. Process to fabricate such structures and to bio-functionalize them is discussed in detail.

  17. The influence of heterogenous porosity on silicon nitride/steel wear in lubricated rolling contact

    OpenAIRE

    KANG, J; Hadfield, M

    2000-01-01

    Heterogeneous porosity is detected on the surface and subsurface of hot isostatically pressed (HIPed) silicon nitride spherical rolling elements. The extent of the localised porosity accounts for an area of 6% of the rolling element surface and 4% of the material volume. An experimental investigation using a rotary tribometer is described to compare the lubricated rolling wear mechanisms and performance of HIPed silicon nitride with heterogeneous porosity defect in contact with steel. A brief...

  18. Fabrication of silicon nitride nanoceramics—Powder preparation and sintering: A review

    OpenAIRE

    Toshiyuki Nishimura et al

    2007-01-01

    Fine-grained silicon nitride ceramics were investigated mainly for their high-strain-rate plasticity. The preparation and densification of fine silicon nitride powder were reviewed. Commercial sub-micrometer powder was used as raw powder in the "as-received" state and then used after being ground and undergoing classification operation. Chemical vapor deposition and plasma processes were used for fabricating nanopowder because a further reduction in grain size caused by grinding had limitatio...

  19. Silicon nitride thin-films by RF sputtering : application on solid state lithium batteries

    OpenAIRE

    Sousa, R.; Ribeiro, J. F.; Sousa, J. A.; Montenegro, R. T.; L.M. Gonçalves; Correia, J.H.

    2013-01-01

    Silicon nitride is the most common barrier material to protect microsystems from atmosphere, usually deposited through CVD techniques. In this paper our aim is to highlight the advantages brought by using PVD techniques, namely RF sputtering, to deposit silicon nitride thin-films. In particular, we intend to protect microsystems fabricated only by PVD techniques and avoid the necessity of a second CVD chamber to do the microsystem coating. The influence of gases (Ar/N2) during deposition was ...

  20. Characteristics of Disorder and Defect in Hydrogenated Amorphous Silicon Nitride Thin Films Containing Silicon Nanograins

    Institute of Scientific and Technical Information of China (English)

    DING Wen-ge; YU Wei; ZHANG Jiang-yong; HAN Li; FU Guang-sheng

    2006-01-01

    The hydrogenated amorphous silicon nitride (SiNx) thin films embedded with nano-structural silicon were prepared and the microstructures at the interface of silicon nano-grains/SiNx were identified by the optical absorption and Raman scattering measurements. Characterized by the exponential tail of optical absorption and the band-width of the Raman scattering TO mode, the disorder in the interface region increases with the gas flow ratio increasing. Besides, as reflected by the sub-gap absorption coefficients, the density of interface defect states decreases, which can be attributed to the structural mismatch in the interface region and also the changes of hydrogen content in the deposited films. Additional annealing treatment results in a significant increase of defects and degree of disorder, for which the hydrogen out-diffusion in the annealing process would be responsible.

  1. Properties of epitaxial silicon layers on buried silicon nitride produced by ion implantation

    International Nuclear Information System (INIS)

    Buried silicon nitride layers were produced in silicon substrates by implanting 330 keV, 14N+ ions with doses in the range 0.8-1.2 x 1018 cm-2 at target temperatures of 5000C. The substrates were then annealed by furnace and flash lamp and epitaxial silicon layers were grown. Crystal defects of the epitaxial layers are dislocations with a density of approx. 108 cm-2 as revealed by cross-sectional TEM. No influence of the defects on the electrical properties of the SiO2-Si interface of MOS capacitors was found. Despite of the high defect density the generation lifetime of the minority carriers is relatively high and in the range 20-200μs. These values are at least one order of magnitude higher as compared to other SOI technologies. (author)

  2. Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique

    Indian Academy of Sciences (India)

    S Mahendra Kumar; K Murugan; S B Chandrasekhar; Neha Hebalkar; M Krishna; B S Satyanarayana; Giridhar Madras

    2012-05-01

    We have demonstrated a simple, scalable and inexpensive method based on microwave plasma for synthesizing 5 to 10 g/h of nanomaterials. Luminescent nano silicon particles were synthesized by homogenous nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor. The synthesized nano silicon and titanium nitride powders were characterized by XRD, XPS, TEM, SEM and BET. The characterization techniques indicated that the synthesized powders were indeed crystalline nanomaterials.

  3. An examination of the reactive sputtering of silicon nitride on to gallium arsenide

    International Nuclear Information System (INIS)

    The deposition of silicon nitride thin films by the reactive sputtering of elemental silicon in a nitrogen/argon plasma has been investigated. The composition of the films has been examined using infra-red reflectance, X-ray photoelectron and Auger electron spectroscopies and spark source mass spectrometry. Oxygen has been found to be a major contaminant in these sputter deposited films, the oxygen concentration depending on the ambient gas pressure. The use of the silicon oxy-nitride films as annealing encapsulants for the activation of silicon ion implanted semi-insulating gallium arsenide has also been investigated. (author)

  4. High temperature mechanical performance of a hot isostatically pressed silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others

    1996-01-01

    Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

  5. Silicon-Nitride Platform for Narrowband Entangled Photon Generation

    CERN Document Server

    Ramelow, Sven; Clemmen, Stéphane; Orquiza, Daniel; Luke, Kevin; Lipson, Michal; Gaeta, Alexander L

    2015-01-01

    CMOS-compatible photonic chips are highly desirable for real-world quantum optics devices due to their scalability, robustness, and integration with electronics. Despite impressive advances using Silicon nanostructures, challenges remain in reducing their linear and nonlinear losses and in creating narrowband photons necessary for interfacing with quantum memories. Here we demonstrate the potential of the silicon nitride (Si3N4) platform by realizing an ultracompact, bright, entangled photon-pair source with selectable photon bandwidths down to 30 MHz, which is unprecedented for an integrated source. Leveraging Si3N4's moderate thermal expansion, simple temperature control of the chip enables precise wavelength stabilization and tunability without active control. Single-mode photon pairs at 1550 nm are generated at rates exceeding 107 s-1 with mW's of pump power and are used to produce time-bin entanglement. Moreover, Si3N4 allows for operation from the visible to the mid-IR, which make it highly promising fo...

  6. Fabrication of porous silicon nitride ceramics using binder jetting technology

    Science.gov (United States)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  7. Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics

    International Nuclear Information System (INIS)

    We investigate the nonlinear optical properties of Si-rich silicon oxide (SRO) and Si-rich silicon nitride (SRN) samples as a function of silicon content, annealing temperature, and excitation wavelength. Using the Z-scan technique, we measure the non-linear refractive index n2 and the nonlinear absorption coefficient β for a large number of samples fabricated by reactive co-sputtering. Moreover, we characterize the nonlinear optical parameters of SRN in the broad spectral region 1100-1500 nm and show the strongest nonlinearity at 1500 nm. These results demonstrate the potential of the SRN matrix for the engineering of compact devices with enhanced Kerr nonlinearities for silicon photonics applications.

  8. Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, S. [Photonics Center, Boston University, 8 Saint Mary' s street, Boston, Massachusetts 02215-2421 (United States) and Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States); Yerci, S. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215-2421 (United States); Dal Negro, L. [Photonics Center, Boston University, 8 Saint Mary' s street, Boston, Massachusetts 02215-2421 (United States) and Division of Materials Science and Engineering, Boston University, 15 Saint Mary' s Street, Brookline, Massachusetts 02446 (United States); Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215-2421 (United States)

    2012-01-09

    We investigate the nonlinear optical properties of Si-rich silicon oxide (SRO) and Si-rich silicon nitride (SRN) samples as a function of silicon content, annealing temperature, and excitation wavelength. Using the Z-scan technique, we measure the non-linear refractive index n{sub 2} and the nonlinear absorption coefficient {beta} for a large number of samples fabricated by reactive co-sputtering. Moreover, we characterize the nonlinear optical parameters of SRN in the broad spectral region 1100-1500 nm and show the strongest nonlinearity at 1500 nm. These results demonstrate the potential of the SRN matrix for the engineering of compact devices with enhanced Kerr nonlinearities for silicon photonics applications.

  9. Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride

    International Nuclear Information System (INIS)

    Plasma-enhanced chemical vapor deposition (PECVD) is used for the deposition of a silicon nitride anti-reflection coating (ARC) onto 10 x 10 cm2 Wacker Silso polycrystalline silicon solar cells. It is found that the short-circuit current Isc is improved by 7 to 10% in comparison to reference cells with a standard screenprinted Ta2O5 coating. Part of the increase in Isc is because of a smaller reflectivity of the silicon nitride ARC. The other part of the improvement comes from an enhanced average minority-carrier diffusion length (Lmin). The increase in Lmin results from hydrogen passivation, and is attributed to the generation of hydrogen ions during PECVD of Si3N4. Furthermore it is shown that the passivation effect by PECVD of Si3N4 is comparable to that obtained with a 1/2 hour hydrogen plasma treatment, and that it is stable during a 1 hour anneal at 700 degrees C. The authors did not observe a significant influence of the substrate temperature during Si3N4 deposition in the range of 350 to 450 degrees C

  10. Study of stress in tensile nitrogen-plasma-treated multilayer silicon nitride films

    International Nuclear Information System (INIS)

    The authors conducted a physico-chemical analysis of tensile sequential-nitrogen-plasma-treated silicon nitride films, which function as stressor liners in complementary metal oxide semiconductor (CMOS) technologies. These films are made of stacked nanometer-thick, plasma-enhanced, chemical vapor-deposited layers which were individually treated with N2-plasma, to increase stress. This study allowed us to monitor the evolution of the films' chemical composition and stress as a function of process parameters such as deposition and post-N2-plasma duration. Consistent with secondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM) and other physico-chemical analysis results, it was shown that the elementary component of the films can be modeled with a bi-layer consisting of an untreated slice at the bottom that is covered by a more tensile post-treated film. In addition, we observed that longer plasma treatments increase residual stress, SiN bond concentration and layer density, while reducing hydrogen content. The stress increase induced by the plasma treatment was shown to correlate with the increase in SiN bonds following a percolation mechanism that is linked to hydrogen dissociation. Kinetics laws describing both SiN bond generation and stress increase are proposed and it is demonstrated that stress increase follows first-order kinetics.

  11. Improved multicrystalline silicon ingot quality using single layer silicon beads coated with silicon nitride as seed layer

    Science.gov (United States)

    babu, G. Anandha; Takahashi, Isao; Matsushima, Satoru; Usami, Noritaka

    2016-05-01

    We propose to utilize single layer silicon beads (SLSB) coated with silicon nitride as cost-effective seed layer to grow high-quality multicrystalline silicon (mc-Si) ingot. The texture structure of silicon nitride provides a large number of nucleation sites for the fine grain formation at the bottom of the crucible. No special care is needed to prevent seed melting, which would lead to decrease of red zone owing to decrease of feedstock melting time. As we expected, mc-Si ingot seeded with SLSB was found to consist of small, different grain orientations, more uniform grain distribution, high percentage of random grain boundaries, less twin boundaries, and low density of dislocation clusters compared with conventional mc-Si ingot grown under identical growth conditions. These results show that the SLSB seeded mc-Si ingot has enhanced ingot quality. The correlation between grain boundary structure and defect structure as well as the reason responsible for dislocation clusters reduction in SLSB seeded mc-Si wafer are also discussed.

  12. Ag doped silicon nitride nanocomposites for embedded plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, M.; Bonafos, C., E-mail: bonafos@cemes.fr; Benzo, P.; Benassayag, G.; Pécassou, B.; Carles, R. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse, Cedex 04 (France); Khomenkova, L.; Gourbilleau, F. [CIMAP, CNRS/CEA/ENSICAEN/UCBN, 6 Boulevard Maréchal Juin, 14050 Caen, Cedex 4 (France)

    2015-09-07

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiN{sub x}) matrices. By coupling the high refractive index of SiN{sub x} to the relevant choice of dielectric thickness in a SiN{sub x}/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiN{sub x} matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  13. Ag doped silicon nitride nanocomposites for embedded plasmonics

    Science.gov (United States)

    Bayle, M.; Bonafos, C.; Benzo, P.; Benassayag, G.; Pécassou, B.; Khomenkova, L.; Gourbilleau, F.; Carles, R.

    2015-09-01

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiNx) matrices. By coupling the high refractive index of SiNx to the relevant choice of dielectric thickness in a SiNx/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiNx matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime.

  14. Ag doped silicon nitride nanocomposites for embedded plasmonics

    International Nuclear Information System (INIS)

    The localized surface plasmon-polariton resonance (LSPR) of noble metal nanoparticles (NPs) is widely exploited for enhanced optical spectroscopies of molecules, nonlinear optics, photothermal therapy, photovoltaics, or more recently in plasmoelectronics and photocatalysis. The LSPR frequency depends not only of the noble metal NP material, shape, and size but also of its environment, i.e., of the embedding matrix. In this paper, Ag-NPs have been fabricated by low energy ion beam synthesis in silicon nitride (SiNx) matrices. By coupling the high refractive index of SiNx to the relevant choice of dielectric thickness in a SiNx/Si bilayer for an optimum antireflective effect, a very sharp plasmonic optical interference is obtained in mid-range of the visible spectrum (2.6 eV). The diffusion barrier property of the host SiNx matrix allows for the introduction of a high amount of Ag and the formation of a high density of Ag-NPs that nucleate during the implantation process. Under specific implantation conditions, in-plane self-organization effects are obtained in this matrix that could be the result of a metastable coarsening regime

  15. Quality factor improvement of silicon nitride micro string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Malm, Bjarke; Boisen, Anja

    Resonant micro and nano strings are of interest for sensor applications due to their extraordinary high quality factors, low mass and tunable resonant frequency. It has been found that the quality factor of strings is usually limited by clamping loss. In this work, clamping loss has been addresse...... factor values in air were measured for the shortest strings with the highest resonant frequency having an optimal width to height ratio.......Resonant micro and nano strings are of interest for sensor applications due to their extraordinary high quality factors, low mass and tunable resonant frequency. It has been found that the quality factor of strings is usually limited by clamping loss. In this work, clamping loss has been addressed...... by varying the clamping design and string geometry. We present silicon nitride micro strings with quality factors (Q) of up to 4 million in high vacuum achieved by minimizing clamping loss. For applications such as for chemical sensing, strings need to vibrate at atmospheric pressure. Maximal quality...

  16. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    International Nuclear Information System (INIS)

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiNx) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiNx using neopentasilane [NPS, (SiH3)4Si] in a plasma enhanced atomic layer deposition process with a direct N2 plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH3)3 N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed

  17. Behavior of cyclic fatigue cracks in monolithic silicon nitride

    International Nuclear Information System (INIS)

    Cyclic fatigue-crack propagation behavior in monolithic silicon nitride is characterized in light of current fatigue-crack growth models for ceramics toughened by grain-bridging mechanisms, with specific emphasis on the role of load ratio. Such models are based on diminished crack-tip shielding in the crack wave under cyclic loads due to frictional-wear degradation of the grain-bridging zone. The notion of cyclic crack growth promoted by diminished shielding is seen to be consistent with measured (long-crack) growth rates, fractography, in situ crack-profile analyses, and measurements of back-face strain compliance. Growth rates are found to display a much larger dependence on the maximum applied stress intensity, Kmax, than on the applied stress-intensity range, ΔK, with behavior described by the relationship da/dN ∝ Kmax29 ΔK. Fatigue thresholds similarly exhibit a marked dependence on the load ratio, R = Kmin/Kmax; such effects are shown to be inconsistent with traditional models of fatigue-crack closure. In particular, when characterized in terms of Kmax, growth rates below ∼ 10-9 m/cycle exhibit an inverse dependence on load ratio, an observation which is consistent with the grain-bridging phenomenon; specifically, with increasing R, the sliding distance between the grain bridges is decreased, leading to less frictional wear, and hence less degradation in shielding, per loading cycle. The microstructural origins of such behavior are discussed

  18. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Stephen, E-mail: Stephen.Weeks@intermolecular.com; Nowling, Greg; Fuchigami, Nobi; Bowes, Michael; Littau, Karl [Intermolecular, 3011 North 1st Street, San Jose, California 95134 (United States)

    2016-01-15

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiN{sub x}) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiN{sub x} using neopentasilane [NPS, (SiH{sub 3}){sub 4}Si] in a plasma enhanced atomic layer deposition process with a direct N{sub 2} plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH{sub 3}){sub 3 }N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed.

  19. Fabrication and properties of graphene reinforced silicon nitride composite materials

    International Nuclear Information System (INIS)

    Silicon nitride (Si3N4) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si3N4 ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si3N4 ceramic matrix. β-Si3N4, O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si3N4, Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods

  20. Formation of silicon nitride nanopillars in dual-frequency capacitively coupled plasma and their application to Si nanopillar etching

    International Nuclear Information System (INIS)

    During the etching process of a silicon nitride layer in CH2F2/H2/Ar dual-frequency superimposed capacitively coupled plasmas, CHxFy polymer nanodots were formed on the silicon nitride surface and, as a result, silicon nitride nanopillars were fabricated. The H2 and low frequency power (PLF) were found to play a critical role in determining the density and diameters of the pillars due to the change in the degree of hydrofluorocarbon polymerization. Silicon nitride nanopillars with a diameter as small as congruent with 25 nm and an aspect ratio as large as congruent with 3.2 were formed, and silicon nanopillars could also be fabricated by the inductively coupled Cl2/Ar plasma etching of a Si substrate using the silicon nitride nanopillars as a hard mask

  1. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    International Nuclear Information System (INIS)

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH3) gas source molecular beam epitaxy (NH3-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (3-GSMBE conditions of 10−5–10−4 Torr NH3 and 800–1050 °C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(√3 × √3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200 nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3 × 3) and 3C-SiC (100)-(3 × 2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(√3 × √3)R30° and 2H-GaN (0001)-(1 × 1) epilayer surfaces exhibited hexagonal (1 × 1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ω-2θ rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047 arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ≈15° to the [0001] direction of the 6H-SiC (0001) substrate. In-situ reflection electron energy loss spectroscopy measurements determined the band-gap for

  2. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-11-01

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH{sub 3}) gas source molecular beam epitaxy (NH{sub 3}-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (<3% mismatch). Based on a thermodynamic analysis of the ScN phase stability window, NH{sub 3}-GSMBE conditions of 10{sup −5}–10{sup −4} Torr NH{sub 3} and 800–1050 °C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(√3 × √3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200 nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3 × 3) and 3C-SiC (100)-(3 × 2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(√3 × √3)R30° and 2H-GaN (0001)-(1 × 1) epilayer surfaces exhibited hexagonal (1 × 1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ω-2θ rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047 arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ≈15° to the [0001] direction of the

  3. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Science.gov (United States)

    Wan, Yimao; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-01

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiNx) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiNx stack, recombination current density J0 values of 9, 11, 47, and 87 fA/cm2 are obtained on 10 Ω.cm n-type, 0.8 Ω.cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J0 on n-type 10 Ω.cm wafers is further reduced to 2.5 ± 0.5 fA/cm2 when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiNx stack is thermally stable at 400 °C in N2 for 60 min on all four c-Si surfaces. Capacitance-voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiNx stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  4. Thermal stability of boron nitride/silicon p-n heterojunction diodes

    Science.gov (United States)

    Teii, Kungen; Mizusako, Yusei; Hori, Takuro; Matsumoto, Seiichiro

    2015-10-01

    Heterojunctions of p-type cubic boron nitride (cBN) and n-type silicon with sp2-bonded BN (sp2BN) interlayers are fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition, and their rectification properties are studied at temperatures up to 573 K. The rectification ratio is increased up to the order of 105 at room temperature by optimizing the thickness of the sp2BN interlayer and the cBN fraction for suppressing the reverse leakage current. A highly rectifying p-type cBN/thick sp2BN/n-type silicon junction diode shows irreversible rectification properties mainly characterized by a marked decrease in reverse current by an order of magnitude in an initial temperature ramp/down cycle. This irreversible behavior is much more reduced by conducting the cycle twice or more. The temperature-dependent properties confirm an overall increase in effective barrier heights for carrier injection and conduction by biasing at high temperatures, which consequently increases the thermal stability of the diode performance.

  5. Enhanced deposition of cubic boron nitride films on roughened silicon and tungsten carbide-cobalt surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Teii, K., E-mail: teii@asem.kyushu-u.ac.j [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Hori, T. [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Matsumoto, S. [Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ceramic Forum Co. Ltd., 1-6-6 Taitoh, Taitoh-ku, Tokyo 110-0016 (Japan)

    2011-01-03

    We report the influence of substrate surface roughness on cubic boron nitride (cBN) film deposition under low-energy ion bombardment in an inductively coupled plasma. Silicon and cemented tungsten carbide-cobalt (WC-Co) surfaces are roughened by low-energy ion-assisted etching in a hydrogen plasma, followed by deposition in a fluorine-containing plasma. Infrared absorption coefficients are measured to be 22,000 cm{sup -1} and 17,000 cm{sup -1} for sp{sup 2}-bonded BN and cBN phases, respectively, for our films. For the silicon substrates, the film growth rate and the cBN content in the film increase with increasing the surface roughness, while the amount of sp{sup 2}BN phase in the film shows only a small increase. A larger surface roughness of the substrate results in a smaller contact angle of water, indicating that a higher surface free energy of the substrate contributes to enhancing growth of the cBN film. For the WC-Co substrates, the film growth rate and the cBN content in the film increase similarly by roughening the surface.

  6. Enhanced deposition of cubic boron nitride films on roughened silicon and tungsten carbide-cobalt surfaces

    International Nuclear Information System (INIS)

    We report the influence of substrate surface roughness on cubic boron nitride (cBN) film deposition under low-energy ion bombardment in an inductively coupled plasma. Silicon and cemented tungsten carbide-cobalt (WC-Co) surfaces are roughened by low-energy ion-assisted etching in a hydrogen plasma, followed by deposition in a fluorine-containing plasma. Infrared absorption coefficients are measured to be 22,000 cm-1 and 17,000 cm-1 for sp2-bonded BN and cBN phases, respectively, for our films. For the silicon substrates, the film growth rate and the cBN content in the film increase with increasing the surface roughness, while the amount of sp2BN phase in the film shows only a small increase. A larger surface roughness of the substrate results in a smaller contact angle of water, indicating that a higher surface free energy of the substrate contributes to enhancing growth of the cBN film. For the WC-Co substrates, the film growth rate and the cBN content in the film increase similarly by roughening the surface.

  7. Detection of antibody-antigen reaction by silicon nitride slot-ring biosensors using protein G

    Science.gov (United States)

    Taniguchi, Tomoya; Hirowatari, Anna; Ikeda, Takeshi; Fukuyama, Masataka; Amemiya, Yoshiteru; Kuroda, Akio; Yokoyama, Shin

    2016-04-01

    Biosensors using ring resonators with silicon nitride (SiN) slot waveguides have been fabricated. The temperature coefficient of the resonance wavelength of the SiN resonator is 0.006 nm/°C, which is one order of magnitude smaller than that of Si. The sensitivity of the biosensor has been improved by using slot waveguide together with Si-binding protein (designated as Si-tag), which bonds to SiN or SiO2 surface, as an anchoring molecule to immobilize bioreceptors on the SiN rings in an oriented manner. Furthermore, the protein G, which strongly bonds to many kinds of mammalian antibodies only by mixing the antibody solution, is used to efficiently immobilize the antigen on the sensor surface. By means of these devises the sensitivity of the biosensor has been improved by factor of 10-100 compared with that of normal Si ring resonator sensors without slot. Then the detection of prostate specific antigen (PSA) with the sensitivity of ~1×10-8 g/ml, which is the concentration of strongly suspicious for the prostate cancer, has been achieved.

  8. PECVD low stress silicon nitride analysis and optimization for the fabrication of CMUT devices

    International Nuclear Information System (INIS)

    Two technological options to achieve a high deposition rate, low stress plasma-enhanced chemical vapor deposition (PECVD) silicon nitride to be used in capacitive micromachined ultrasonic transducers (CMUT) fabrication are investigated and presented. Both options are developed and implemented on standard production line PECVD equipment in the framework of a CMUT technology transfer from R and D to production. A tradeoff between deposition rate, residual stress and electrical properties is showed. The first option consists in a double layer of silicon nitride with a relatively high deposition rate of ∼100 nm min−1 and low compressive residual stress, which is suitable for the fabrication of the thick nitride layer used as a mechanical support of the CMUTs. The second option involves the use of a mixed frequency low-stress silicon nitride with outstanding electrical insulation capability, providing improved mechanical and electrical integrity of the CMUT active layers. The behavior of the nitride is analyzed as a function of deposition parameters and subsequent annealing. The nitride layer characterization is reported in terms of interfaces density influence on residual stress, refractive index, deposition rate, and thickness variation both as deposited and after thermal treatment. A sweet spot for stress stability is identified at an interfaces density of 0.1 nm−1, yielding 87 MPa residual stress after annealing. A complete CMUT device fabrication is reported using the optimized nitrides. The CMUT performance is tested, demonstrating full functionality in ultrasound imaging applications and an overall performance improvement with respect to previous devices fabricated with non-optimized silicon nitride. (paper)

  9. The Effects of Silicone Contamination on Bond Performance of Various Bond Systems

    Science.gov (United States)

    Anderson, G. L.; Stanley, S. D.; Young, G. L.; Brown, R. A.; Evans, K. B.; Wurth, L. A.

    2012-01-01

    The sensitivity to silicone contamination of a wide variety of adhesive bond systems is discussed. Generalizations regarding factors that make some bond systems more sensitive to contamination than others are inferred and discussed. The effect of silane adhesion promoting primer on the contamination sensitivity of two epoxy/steel bond systems is also discussed.

  10. Low temperature synthesis of silicon nitride thin films deposited by VHF/RF PECVD for gas barrier application

    Science.gov (United States)

    Lee, Jun S.; Shin, Kyung S.; Sahu, B. B.; Han, Jeon G.

    2015-09-01

    In this work, silicon nitride (SiNx) thin films were deposited on polyethylene terephthalate (PET) substrates as barrier layers by plasma enhanced chemical vapor deposition (PECVD) system. Utilizing a combination of very high-frequency (VHF 40.68 MHz) and radio-frequency (RF 13.56 MHz) plasmas it was possible to adopt PECVD deposition at low-temperature using the precursors: Hexamethyldisilazane (HMDSN) and nitrogen. To investigate relationship between film properties and plasma properties, plasma diagnostic using optical emission spectroscopy (OES) was performed along with the film analysis using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). OES measurements show that there is dominance of the excited N2 and N2+ emissions with increase in N2 dilution, which has a significant impact on the film properties. It was seen that all the deposited films contains mainly silicon nitride with a small content of carbon and no signature of oxygen. Interestingly, upon air exposure, films have shown the formation of Si-O bonds in addition to the Si-N bonds. Measurements and analysis reveals that SiNx films deposited with high content of nitrogen with HMDSN plasma can have lower gas barrier properties as low as 7 . 3 ×10-3 g/m2/day. Also at Chiang Mai University.

  11. Tensile test of pressureless-sintered silicon nitride at elevated temperature

    Science.gov (United States)

    Matsusue, K.; Fujisawa, Y.; Takahara, K.

    1985-01-01

    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

  12. Influence of slurry flocculation on the character and compaction of spray-dried silicon nitride granules

    International Nuclear Information System (INIS)

    The effect of slurry flocculation on the characteristics of silicon nitride granules prepared by the spray drying process is investigated. The flocculation state of an aqueous silicon nitride slurry is controlled by adding nitric acid and evaluated as a function of pH. Dense and hard silicon nitride granules result from a well-dispersed slurry having a high pH (e.g., 10.8). These hard granules retain their shape in green compacts and form detrimental defects. Lowering the pH of the slurry to a certain value (e.g., pH 7.9) results in slurry flocculation. Granules prepared from this flocculated slurry have low density and low diametral compression strength and contribute to the elimination large pores in green compacts

  13. Influence of strain on thermal conductivity of silicon nitride thin films

    International Nuclear Information System (INIS)

    We present a micro-electro-mechanical system-based experimental technique to measure thermal conductivity of freestanding ultra-thin films of amorphous silicon nitride (Si3N4) as a function of mechanical strain. Using a combination of infrared thermal micrography and multi-physics simulation, we measured thermal conductivity of 50 nm thick silicon nitride films to observe it decrease from 2.7 W (m K)−1 at zero strain to 0.34 W (m K)−1 at about 2.4% tensile strain. We propose that such strong strain–thermal conductivity coupling is due to strain effects on fraction–phonon interaction that decreases the dominant hopping mode conduction in the amorphous silicon nitride specimens. (paper)

  14. Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities

    CERN Document Server

    Puckett, Matthew W; Lin, Hung-Hsi; Yang, Muhan; Vallini, Felipe; Fainman, Yeshaiahu

    2016-01-01

    We present experimental results on the observation of a bulk second-order nonlinear susceptibility derived from both free-space and integrated measurements in silicon nitride. Phase-matching is achieved through dispersion engineering of the waveguide cross-section, independently revealing multiple components of the nonlinear susceptibility, namely X(2)yyy and X(2)xxy. Additionally, we show how the generated second-harmonic signal may be actively tuned through the application of bias voltages across silicon nitride. The nonlinear material properties measured here are anticipated to allow for the practical realization of new nanophotonic devices in CMOS-compatible silicon nitride waveguides, adding to their viability for telecommunication, data communication, and optical signal processing applications.

  15. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    Science.gov (United States)

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting. PMID:25294975

  16. Processing and mechanical properties of silicon nitride/silicon carbide ceramic nanocomposites derived from polymer precursors

    Science.gov (United States)

    Gasch, Matthew Jeremy

    Creep deformation of silicon nitride and silicon carbide ceramics is dominated by a solution-precipitation process through the glassy interface phase at grain boundary regions, which is formed by the reaction of oxide additives with the silicon oxide surface layer of the ceramic powder particles during liquid phase sintering. The ultimate approach to increase the creep resistance of these materials is to decrease the oxide content at the grain boundaries, rendering the solution-precipitation process non-effective. This research presents a new method of enhancing the creep properties of silicon nitride/silicon carbide composites by forming micro-nano and nano-nano microstructures during sintering. Starting from amorphous Si-C-N powders of micrometric size particles, powders were consolidated in three ways: (1) Consolidation of pyrolyzed powders without additives, (2) Electric Field Assisted Sintering (EFAS) of pyrolyzed powders with and without additives and (3) High pressure sintering. In all three cases, nanocomposites with varied grain size were achieved. High temperature mechanical creep testing was performed on the samples sintered by EFAS. Creep rates ranged from 1 x 10-8/s to 1 x 10-11/s depending on method in which powders were prepared and total oxide additive amount. For samples with high oxide contents the stress exponent was found to be n ˜ 2 with an activation energy of Q ˜ 600kJ/mol*K, indicating the typical solution precipitation process of deformation. But for the nano-nano composites sintered with little to none oxide additive, the stress exponent was found to be n ˜ 1 with and activation energy of Q ˜ 200kJ/mol*K, hinting at a diffusion controlled mechanism of creep deformation. For the nano-nano composites sintered without oxide additives, oxygen was found in the microstructure. However, oxygen contamination was found to distribute at grain boundary regions especially triple junctions. It is suggested that this highly dispersed distribution of

  17. Si quantum dots in silicon nitride: Quantum confinement and defects

    Energy Technology Data Exchange (ETDEWEB)

    Goncharova, L. V., E-mail: lgonchar@uwo.ca; Karner, V. L.; D' Ortenzio, R.; Chaudhary, S.; Mokry, C. R.; Simpson, P. J. [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Nguyen, P. H. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-14

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiN{sub x}:H) matrix was examined over a broad range of stoichiometries from Si{sub 3}N{sub 2.08} to Si{sub 3}N{sub 4.14}, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiN{sub x} films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH{sub 4} and NH{sub 3} gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si{sub 3}N{sub x} compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si{sub 3}N{sub 3.15}) in which the maximum of light emission is observed.

  18. Si quantum dots in silicon nitride: Quantum confinement and defects

    International Nuclear Information System (INIS)

    Luminescence of amorphous Si quantum dots (Si QDs) in a hydrogenated silicon nitride (SiNx:H) matrix was examined over a broad range of stoichiometries from Si3N2.08 to Si3N4.14, to optimize light emission. Plasma-enhanced chemical vapor deposition was used to deposit hydrogenated SiNx films with excess Si on Si (001) substrates, with stoichiometry controlled by variation of the gas flow rates of SiH4 and NH3 gases. The compositional and optical properties were analyzed by Rutherford backscattering spectroscopy, elastic recoil detection, spectroscopic ellipsometry, photoluminescence (PL), time-resolved PL, and energy-filtered transmission electron microscopy. Ultraviolet-laser-excited PL spectra show multiple emission bands from 400 nm (3.1 eV) to 850 nm (1.45 eV) for different Si3Nx compositions. There is a red-shift of the measured peaks from ∼2.3 eV to ∼1.45 eV as Si content increases, which provides evidence for quantum confinement. Higher N content samples show additional peaks in their PL spectra at higher energies, which we attribute to defects. We observed three different ranges of composition where Tauc band gaps, PL, and PL lifetimes change systematically. There is an interesting interplay of defect luminescence and, possibly, small Si QD luminescence observed in the intermediate range of compositions (∼Si3N3.15) in which the maximum of light emission is observed

  19. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide.

    Science.gov (United States)

    Liu, Xing; Pu, Minhao; Zhou, Binbin; Krückel, Clemens J; Fülöp, Attila; Torres-Company, Victor; Bache, Morten

    2016-06-15

    We experimentally show octave-spanning supercontinuum generation in a nonstoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides, but our material platform is simpler to manufacture. We also observe wave-breaking supercontinuum generation by using orthogonal pumping in the same waveguide. Additional analysis reveals that the waveguide height is a powerful tuning parameter for generating mid-infrared dispersive waves while keeping the pump in the telecom band. PMID:27304272

  20. Silicon nitride layers on tool steel produced by ion beam mixing and ion beam assisted deposition

    International Nuclear Information System (INIS)

    Silicon nitride layers on tool steel are produced both, by Kr+ implantation into reactively sputtered Si3N4 on steel (ion beam mixing) and N2+ implantation into evaporated Si on steel (ion beam assisted deposition). Atomic concentration profiles of Fe and Si measured by RBS and XPS show interface mixing. After ion beam assisted deposition complete Si-N compound formation takes place as shown by XPS. Ion beam mixing of Si3N4/steel decreases the etch rate in hydrochloric acid by 50% with respect to uncovered steel. After flash lamp annealing the ion irradiated silicon nitride layer becomes stable against the aggressive acid used. (author)

  1. Fabrication and characterization of on-chip silicon nitride microdisk integrated with colloidal quantum dots.

    Science.gov (United States)

    Xie, Weiqiang; Zhu, Yunpeng; Aubert, Tangi; Hens, Zeger; Brainis, Edouard; Van Thourhout, Dries

    2016-01-25

    We designed and fabricated free-standing, waveguide-coupled silicon nitride microdisks hybridly integrated with embedded colloidal quantum dots. An efficient coupling of quantum dot emission to resonant disk modes and eventually to the access waveguides is demonstrated. The amount of light coupled out to the access waveguide can be tuned by controlling its dimensions and offset with the disk edge. These devices open up new opportunities for both on-chip silicon nitride integrated photonics and novel optoelectronic devices with quantum dots. PMID:26832565

  2. Processing study of injection molding of silicon nitride for engine applications

    Science.gov (United States)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  3. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

    CERN Document Server

    Liu, Xing; Zhou, Binbin; Krückel, Clemens J; Fülöp, Attila; Torres-Company, Victor; Bache, Morten

    2016-01-01

    We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides, but our material platform is simpler to manufacture. We also observe wave-breaking supercontinuum generation by using orthogonal pumping in the same waveguide. Additional analysis reveals that the waveguide height is a powerful tuning parameter for generating mid-infrared dispersive waves while keeping the pump in the telecom band.

  4. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

    DEFF Research Database (Denmark)

    Liu, Xing; Zhou, Binbin; Bache, Morten;

    2016-01-01

    We generate supercontinuum (817 – 2250 nm at -30dB) in a dispersion-engineered silicon-rich nitride waveguide by pumping fs pulses with 82 pJ from an erbium-fiber oscillator. Spectral broadening mechanisms include soliton fission and dispersive wave generation.......We generate supercontinuum (817 – 2250 nm at -30dB) in a dispersion-engineered silicon-rich nitride waveguide by pumping fs pulses with 82 pJ from an erbium-fiber oscillator. Spectral broadening mechanisms include soliton fission and dispersive wave generation....

  5. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

    Science.gov (United States)

    Liu, Xing; Pu, Minhao; Zhou, Binbin; Krückel, Clemens J.; Fülöp, Attila; Torres-Company, Victor; Bache, Morten

    2016-06-01

    We experimentally show octave-spanning supercontinuum generation in a non-stoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides, but our material platform is simpler to manufacture. We also observe wave-breaking supercontinuum generation by using orthogonal pumping in the same waveguide. Additional analysis reveals that the waveguide height is a powerful tuning parameter for generating mid-infrared dispersive waves while keeping the pump in the telecom band.

  6. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide

    DEFF Research Database (Denmark)

    Liu, Xing; Pu, Minhao; Zhou, Binbin;

    2016-01-01

    We experimentally show octave-spanning supercontinuum generation in a nonstoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides, but...... our material platform is simpler to manufacture. We also observe wave-breaking supercontinuum generation by using orthogonal pumping in the same waveguide. Additional analysis reveals that the waveguide height is a powerful tuning parameter for generating mid-infrared dispersive waves while keeping...

  7. Atomic-resolution scanning transmission electron microscopy through 50-nm-thick silicon nitride membranes

    OpenAIRE

    Ramachandra, Ranjan; Demers, Hendrix; de Jonge, Niels

    2011-01-01

    Silicon nitride membranes can be used for windows of environmental chambers for in situ electron microscopy. We report that aberration corrected scanning transmission electron microscopy (STEM) achieved atomic resolution on gold nanoparticles placed on both sides of a 50-nm-thick silicon nitride membrane at 200 keV electron beam energy. Spatial frequencies of 1∕1.2 Å were visible for a beam semi-angle of 26.5 mrad. Imaging though a 100-nm-thick membrane was also tested. The achieved imaging c...

  8. Hot isostatic pressing of silicon nitride Sisub3n4 containing zircon, or zirconia and silica

    Science.gov (United States)

    Somiya, S.; Yoshimura, M.; Suzuki, T.; Nishimura, H.

    1980-01-01

    A hydrothermal synthesis apparatus with a 10 KB cylinder was used to obtain a sintered body of silicon nitride. The sintering auxiliary agents used were zircon (ZrSiO4) and a mixture of zirconia (ZrO2) and silica (SiO2). Experiments were conducted with the amounts of ZrSi04 or ArO2 and SiO2 varying over a wide range and the results compared to discover the quantity of additive which produced sintering in silicon nitride by the hot pressing method.

  9. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  10. Silicon carbide wafer bonding by modified surface activated bonding method

    Science.gov (United States)

    Suga, Tadatomo; Mu, Fengwen; Fujino, Masahisa; Takahashi, Yoshikazu; Nakazawa, Haruo; Iguchi, Kenichi

    2015-03-01

    4H-SiC wafer bonding has been achieved by the modified surface activated bonding (SAB) method without any chemical-clean treatment and high temperature annealing. Strong bonding between the SiC wafers with tensile strength greater than 32 MPa was demonstrated at room temperature under 5 kN force for 300 s. Almost the entire wafer has been bonded very well except a small peripheral region and few voids. The interface structure was analyzed to verify the bonding mechanism. It was found an amorphous layer existed as an intermediate layer at the interface. After annealing at 1273 K in vacuum for 1 h, the bonding tensile strength was still higher than 32 MPa. The interface changes after annealing were also studied. The results show that the thickness of the amorphous layer was reduced to half after annealing.

  11. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres [Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  12. Flux stabilization of silicon nitride microsieves by backpulsing and surface modification with PEG moieties.

    Science.gov (United States)

    Gironès, M; Bolhuis-Versteeg, L A M; Lammertink, R G H; Wessling, M

    2006-07-15

    The influence of the surface properties of chemically modified silicon nitride microsieves on the filtration of protein solutions and defatted milk is described in this research. Prior to membrane filtrations, an antifouling polymer based on poly(ethylene glycol), poly(TMSMA-r-PEGMA) was synthesized and applied on silicon-based surfaces like silicon, silicon nitride, and glass. The ability of such coating to repel proteins like bovine serum albumin (BSA) was confirmed by ellipsometry and confocal fluorescence microscopy. In BSA and skimmed milk filtrations no differences could be seen between unmodified and PEG-coated membranes (decreasing permeability in time). On the other hand, reduced fouling was observed with PEG-modified microsieves in combination with backpulsing and air sparging. PMID:16603173

  13. Review: Silicon-based oxynitride and nitride phosphors for white LEDs

    Directory of Open Access Journals (Sweden)

    Rong-Jun Xie and Naoto Hirosaki

    2007-01-01

    Full Text Available As a novel class of inorganic phosphors, oxynitride and nitride luminescent materials have received considerable attention because of their potential applications in solid-state lightings and displays. In this review we focus on recent developments in the preparation, crystal structure, luminescence and applications of silicon-based oxynitride and nitride phosphors for white light-emitting diodes (LEDs. The structures of silicon-based oxynitrides and nitrides (i.e., nitridosilicates, nitridoaluminosilicates, oxonitridosilicates, oxonitridoaluminosilicates, and sialons are generally built up of networks of crosslinking SiN4 tetrahedra. This is anticipated to significantly lower the excited state of the 5d electrons of doped rare-earth elements due to large crystal-field splitting and a strong nephelauxetic effect. This enables the silicon-based oxynitride and nitride phosphors to have a broad excitation band extending from the ultraviolet to visible-light range, and thus strongly absorb blue-to-green light. The structural versatility of oxynitride and nitride phosphors makes it possible to attain all the emission colors of blue, green, yellow, and red; thus, they are suitable for use in white LEDs. This novel class of phosphors has demonstrated its superior suitability for use in white LEDs and can be used in bichromatic or multichromatic LEDs with excellent properties of high luminous efficacy, high chromatic stability, a wide range of white light with adjustable correlated color temperatures (CCTs, and brilliant color-rendering properties.

  14. Dislocation emission at the Silicon/Silicon nitride interface: A million atom molecular dynamics simulation on parallel computers

    Science.gov (United States)

    Bachlechner; Omeltchenko; Nakano; Kalia; Vashishta; Ebbsjo; Madhukar

    2000-01-10

    Mechanical behavior of the Si(111)/Si(3)N4(0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1; 1;1) plane of the silicon substrate with a speed of 500 (+/-100) m/s. Time evolution of the dislocation emission and nature of defects is studied. PMID:11015901

  15. Dislocation Emission at the Silicon/Silicon Nitride Interface: A Million Atom Molecular Dynamics Simulation on Parallel Computers

    International Nuclear Information System (INIS)

    Mechanical behavior of the Si(111)/Si3N4 (0001) interface is studied using million atom molecular dynamics simulations. At a critical value of applied strain parallel to the interface, a crack forms on the silicon nitride surface and moves toward the interface. The crack does not propagate into the silicon substrate; instead, dislocations are emitted when the crack reaches the interface. The dislocation loop propagates in the (1 11) plane of the silicon substrate with a speed of 500 (±100) m/s . Time evolution of the dislocation emission and nature of defects is studied. (c) 2000 The American Physical Society

  16. The influence of Cu-doping on aluminum nitride, silicon carbide and boron nitride nanotubes’ ability to detect carbon dioxide; DFT study

    Science.gov (United States)

    Mahdavifar, Zabiollah; Abbasi, Nasibeh

    2014-02-01

    In this research, the potential use of Cu-functionalized [4,4] silicon carbide (SiC), aluminum nitride (AlN) and boron nitride (BN) single-walled nanotubes as nanodevices for CO2 monitoring is investigated. It is found that Cu-doping the different sites of the considered nanotubes and combining these nanotubes with CO2 gas molecules are both exothermic processes, and the relaxed geometries are stable. Our results reveal that the CO2 gas molecules can be strongly physisorbed on the Cu-doped nanotubes, accompanied by large adsorption energy. Compared with the weak adsorption of CO2 molecule onto pristine BNNT and SiCNT, the CO2 molecule tends to be strongly physisorbed onto Cu-decorated BNNT and SiCNT with an appreciable adsorption energy. Furthermore, the results indicate that Cu-functionalized SiCNT is more favorable than Cu-doped BNNT and AlNNT structures for CO2 adsorption. Natural bond orbital analysis indicates that the adsorption of a CO2 molecule onto Cu-doped nanotubes is influenced by the electronic conductance and mechanical properties of the nanotube, which could serve as a signal for a gas sensor. It appears that the considerable charge transfer from the Cu-doped nanotubes to a CO2 molecule reduces the energy gap. These observations suggest that the Cu-doped-SiCNT, -BNNT and -AlNNT can be introduced as promising candidates for gas sensor devices that detect CO2 molecules.

  17. Silicon-to-silicon wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Lindahl, M.

    1998-01-01

    Anodic bending of silicon to silicon 4-in. wafers using an electron-beam evaporated glass (Schott 8329) was performed successfully in air at temperatures ranging from 200 degrees C to 450 degrees C. The composition of the deposited glass is enriched in sodium as compared to the target material. The...

  18. Sol-gel preparation of low oxygen content, high surface area silicon nitride and imidonitride materials.

    Science.gov (United States)

    Sardar, Kripasindhu; Bounds, Richard; Carravetta, Marina; Cutts, Geoffrey; Hargreaves, Justin S J; Hector, Andrew L; Hriljac, Joseph A; Levason, William; Wilson, Felix

    2016-04-01

    Reactions of Si(NHMe)4 with ammonia are effectively catalysed by small ammonium triflate concentrations, and can be used to produce free-standing silicon imide gels. Firing at various temperatures produces amorphous or partially crystallised silicon imidonitride/nitride samples with high surface areas and low oxygen contents. The crystalline phase is entirely α-Si3N4 and structural similarities are observed between the amorphous and crystallised materials. PMID:26931152

  19. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    OpenAIRE

    S. Reboh; Morin, P.; Hÿtch, M. J.; Houdellier, F.; Claverie, A

    2013-01-01

    To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate ...

  20. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  1. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    Science.gov (United States)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  2. Reactive ion etching of PECVD silicon nitride in SF6 plasma

    International Nuclear Information System (INIS)

    The reactive ion etching of PECVD silicon nitride thin films has been investigated using SF6 plasma. Effects of variations of process parameters such as pressure (50-350 mTorr), RF power (50-250 W), gas flow rate (3-130 sccm) and additions of O2 and He (0-50%) in SF6, on the PECVD silicon nitride etch rate and selectivity to the AZ 1350J photoresist were examined. An etch rate of 1 μm/min has been obtained under the condition of 150 mTorr, 100 W and 60 sccm. Experimental results also indicated a maximum etch rate at approximately 30% O2 while addition of He showed only dilution effect. A nitride/photoresist selectivity ranging from 1 to 3:1 has been obtained. (orig.)

  3. Nano-structure and tribological properties of B+ and Ti+ co-implanted silicon nitride

    International Nuclear Information System (INIS)

    Silicon nitride ceramics have been co-implanted with boron and titanium ions at a fluence of 2 x 1017 ions/cm2 and an energy of 200 keV. TEM results indicated that the boron and titanium-implanted layers were amorphized separately and titanium nitride nano-crystallites were formed in the titanium-implanted layer. XPS results indicated that the implantation profile varied a little depending on the ion implantation sequence of boron and titanium ions, with the boron implantation peak shifting to a shallower position when implanted after Ti+-implantation. Wear tests of these ion-implanted materials were carried out using a block-on-ring wear tester under non-lubricated conditions against commercially available silicon nitride materials. The specific wear rate was reduced by ion implantation and showed that the specific wear rate of Ti+-implanted sample was the lowest, followed by B+, Ti+ co-implanted and B+-implanted samples

  4. Nano-structure and tribological properties of B + and Ti + co-implanted silicon nitride

    Science.gov (United States)

    Nakamura, Naoki; Noda, Katsutoshi; Yamauchi, Yukihiko

    2005-01-01

    Silicon nitride ceramics have been co-implanted with boron and titanium ions at a fluence of 2 × 1017 ions/cm2 and an energy of 200 keV. TEM results indicated that the boron and titanium-implanted layers were amorphized separately and titanium nitride nano-crystallites were formed in the titanium-implanted layer. XPS results indicated that the implantation profile varied a little depending on the ion implantation sequence of boron and titanium ions, with the boron implantation peak shifting to a shallower position when implanted after Ti+-implantation. Wear tests of these ion-implanted materials were carried out using a block-on-ring wear tester under non-lubricated conditions against commercially available silicon nitride materials. The specific wear rate was reduced by ion implantation and showed that the specific wear rate of Ti+-implanted sample was the lowest, followed by B+, Ti+ co-implanted and B+-implanted samples.

  5. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  6. Bond strength between acrylic resin and maxillofacial silicone

    Directory of Open Access Journals (Sweden)

    Marcela Filié Haddad

    2012-12-01

    Full Text Available The development of implant dentistry improved the possibilities of rehabilitation with maxillofacial prosthesis. However, clinically it is difficult to bond the silicone to the attachment system. OBJECTIVES: This study aimed to evaluate the effect of an adhesive system on the bond strength between acrylic resin and facial silicone. MATERIAL AND METHODS: A total of 120 samples were fabricated with auto-polymerized acrylic resin and MDX 4-4210 facial silicone. Both materials were bonded through mechanical retentions and/or application of primers (DC 1205 primer and Sofreliner primer S and adhesive (Silastic Medical Adhesive Type A or not (control group. Samples were divided into 12 groups according to the method used to attach the silicone to the acrylic resin. All samples were subjected to a T-peel test in a universal testing machine. Failures were classified as adhesive, cohesive or mixed. The data were evaluated by the analysis of variance (ANOVA and the Tukey's HSD test (α=.05. RESULTS: The highest bond strength values (5.95 N/mm; 3.07 N/mm; 4.75 N/mm were recorded for the samples that received a Sofreliner primer application. These values were significantly higher when the samples had no scratches and did not receive the application of Silastic Medical Adhesive Type A. CONCLUSIONS: The most common type of failure was adhesive. The use of Sofreliner primer increased the bond strength between the auto-polymerized acrylic resin and the Silastic MDX 4-4210 facial silicone.

  7. Microstructure, fracture and damage mechanisms in rare-earth doped silicon nitride ceramics

    Czech Academy of Sciences Publication Activity Database

    Tatarko, P.; Chlup, Zdeněk; Dusza, J.

    2011-01-01

    Roč. 465, - (2011), s. 93-96. ISSN 1013-9826. [MSMF-6: Materials Structure and Micromechanics of Fracture VI. Brno, 28.06.2010-30.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : rare- earth element * silicon nitride * composite * fracture * mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8

    NARCIS (Netherlands)

    Yuan, M.; Cohen, M.A.; Steele, G.A.

    2015-01-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14 mK using a three-dimensional optomechanical cavity. Below 200 mK, high-Q modes of the membranes show a diverging increase of Q with

  9. The stopping power and energy straggling of heavy ions in silicon nitride and polypropylene

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Hnatowicz, Vladimír; Macková, Anna; Malinský, Petr; Slepička, P.

    2015-01-01

    Roč. 354, JUL (2015), s. 205-209. ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : stopping power * heavy ions * polypropylene * silicon nitride Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  10. On the intrinsic moisture permeation rate of remote microwave plasma-deposited silicon nitride layers

    NARCIS (Netherlands)

    Assche, F.J.H. Van; Unnikrishnan, S.; Michels, J.J.; Mol, A.M.B. van; Weijer, P. van de; Sanden, M.C.M. van de; Creatore, M.

    2014-01-01

    We report on a low substrate temperature (110°C) remote microwave plasma-enhanced chemical vapor deposition (PECVD) process of silicon nitride barrier layers against moisture permeation for organic light emitting diodes (OLEDs) and other moisture sensitive devices such as organic photovoltaic cells

  11. Damage initiation and evolution in silicon nitride under unlubricated and lubricated rolling contact fatigue

    Czech Academy of Sciences Publication Activity Database

    Raga, R.; Khader, I.; Chlup, Zdeněk; Kailer, A.

    Toledo : ECERS, 2015. ISBN 978-84-606-9257-7. [ECERS 14 - International Conference of the European Ceramic Society /14./. 21.06.2015-25.06.2015, Toledo] Institutional support: RVO:68081723 Keywords : silicon nitride * rolling contact fatigue * damage initiation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Voldrich, W. [Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  13. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Science.gov (United States)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  14. Experimental and theoretical evaluation of the laser-assisted machining of silicon nitride

    Science.gov (United States)

    Rozzi, Jay Christopher

    This study focused on the experimental and theoretical evaluation of the laser assisted machining (LAM) of silicon nitride ceramics. A laser assisted machining facility was constructed whose main components consist of a COsb2 laser and a CNC lathe. Surface temperature histories were first measured and compared to a transient, three-dimensional numerical simulation for a rotating silicon nitride workpiece heated by a translating laser for ranges of the workpiece rotational and laser-translation speeds, as well as the laser beam diameter and power. Excellent agreement was obtained between the experimental and predicted temperature histories. Laser assisted machining experiments on silicon nitride ceramic workpieces were completed for a wide range of operating conditions. Data for cutting forces and surface temperature histories illustrated that the lower bound for the avoidance of cutting tool and/or workpiece fracture for LAM is defined by the YSiAlON glass transition temperature (920-970sp°C). As temperatures near the cutting tool increase to values above the glass transition temperature range, the glassy phase softened, facilitating plastic deformation and, correspondingly, the production of semi-continuous or continuous chips. The silicon nitride machined workpiece surface roughness (Rsb{a}=0.39\\ mum) for LAM at the nominal operating condition was nearly equivalent to a value associated with the grinding of silicon nitride using a diamond wheel (Rsb{a}=0.2\\ mum). By examining the machined surfaces and chips, it was shown that LAM does not produce detectable sub-surface cracking or significant silicon nitride microstructure alteration, respectively. A transient, three-dimensional numerical heat transfer model of laser assisted machining was constructed, which includes a preheat phase and material removal, with the associated changes in the workplace geometry. Excellent agreement was obtained between the measured and predicted temperature histories. The strong

  15. Thermal conductivity of PECVD silicon-rich silicon nitride films measured with a SiO2/SixNy bimaterial microbridge test structure

    International Nuclear Information System (INIS)

    In order to balance the compressive stress of a silicon dioxide film and compose a steady MEMS structure, a silicon-rich silicon nitride film with tensile stress is deposited by plasma enhanced chemical vapor deposition process. Accurately measuring the thermal conductivity of the film is highly desirable in order to design, simulate and optimize MEMS devices. In this paper, a SiO2/SixNy bimaterial microbridge structure is presented to measure the thermal conductivity of the silicon-rich silicon nitride film by single steady-state measurement. The thermal conductivity is extracted as 3.25 W/(m·K). Low thermal conductivity indicates that the silicon-rich silicon nitride film can still be utilized as thermally insulating material in thermal sensors although its thermal conductivity is slightly larger than the values reported in literature. (semiconductor technology)

  16. Ultra-short pulsed laser ablation of silicon nitride layers: Investigation near threshold fluence

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Gerrit, E-mail: gheinrich@cismst.de [CIS Forschungsinstititut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Straße 14, Erfurt 99099 (Germany); Technische Universität Ilmenau, Institut für Physik, Weimarer Str. 32, Ilmenau 98693 (Germany); Wollgarten, Markus [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Bereich Solarenergieforschung, Institut für Technologie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Bähr, Mario; Lawerenz, Alexander [CIS Forschungsinstititut für Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Straße 14, Erfurt 99099 (Germany)

    2013-08-01

    In this work, silicon nitride (SiN{sub x}) layers, deposited on a planar silicon wafer are locally irradiated by ultra short laser pulses with fluences near the threshold fluence. The irradiated areas are investigated by SEM and TEM in order to analyze the laser influence to silicon and to the SiN{sub x} layer. Thereby, a lift-off process is observed for this SiN{sub x} layer. The silicon absorbs the laser pulse energy. For low fluences, crystalline silicon is disordered below the SiN{sub x} layer. For high fluences, silicon evaporates below the SiN{sub x} layer and bulge the SiN{sub x} layer. If the pressure within the bulge is high enough, the SiN{sub x} layer will break down due to high mechanical stress.

  17. Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters

    Directory of Open Access Journals (Sweden)

    Normand Elise

    2011-01-01

    Full Text Available Abstract Silicon nanoclusters (Si-ncs embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

  18. Bulk-Micromachined Optical Filter Based on Guided-Mode Resonance in Silicon-Nitride Membrane

    Science.gov (United States)

    Hsu, Che-Lung; Liu, Yung-Chih; Wang, Chih-Ming; Wu, Mount-Learn; Tsai, Ya-Lun; Chou, Yue-Hong; Lee, Chien-Chieh; Chang, Jenq-Yang

    2006-04-01

    In this paper, a single-layer guided-mode resonance (GMR) filter based on a free-standing silicon-nitride membrane suspended on a silicon substrate is achieved by using bulk-micromachining technology. Both of grating and waveguide structures without a lower-cladding layer, i.e., substrate, are fabricated simultaneously on a silicon-nitride membrane. The device can be used as a transmission bandstop filter with the advantages of simple structure, high efficiency, and feasibility to integrate with other optoelectronic elements into a microsystem chip. The design consideration, fabrication procedures, and measured spectral response are shown in this paper. Moreover, by stacking two proposed devices, Δλ of the stopband at a transmission below 10% is 5.06 nm.

  19. High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies

    Science.gov (United States)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Hayden Breckenridge, M.; Hernandez-Balderrama, Luis H.; Haidet, Brian B.; Alden, Dorian; Franke, Alexander; Sarkar, Biplab; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2016-04-01

    In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on AlxGa1-xN (of varying Al composition "x") via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where Eg(AlGaN) > Eg(Si3N4). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ˜1 eV in comparison to that at free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si0/-1) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si3N4/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si3N4/n-GaN to the valence band in Si3N4/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.

  20. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films

    International Nuclear Information System (INIS)

    The photoelectrochemical behaviour of p-Si(100) single crystal electrodes in aqueous solution, covered with a very thin nitride film, was studied. The silicon surface nitridation was achieved in a N2-H2 plasma at floating potential. The as-grown insulating Si3N4 layers, with thickness inferior to 3.1 nm, allow the electrons to tunnel in the presence of an electric field by the Fowler-Nordheim tunnelling mechanism. However, the p-Si(100)/Si3N4-electrolyte interface generated lower photocurrent densities than those generated by naked p-Si(100) electrodes. In contrast, the nitridated silicon surface displayed a significant stability improvement in aqueous electrolyte (neutral pH). An overvoltage higher than 0.6 V for water oxidation on a p-Si(100) covered with a 2.4 nm Si3N4 layer was measured. The results show that silicon covered with a nitridated thin film may be useful to stabilize electrodes in photoelectrochemical applications

  1. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Lana-Villarreal, T. [Laboratory of Electrocatalysis, UMR 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Departament de Quimica Fisica and Institut Universitari d' Electroquimica, Universitat d' Alacant, Ap. 99, E-03080 Alacant (Spain); Straboni, A. [Laboratoire de Metallurgie Physique, UMR 6630, SP2MI, Universite de Poitiers, Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil Cedex (France); Pichon, Luc [Laboratoire de Metallurgie Physique, UMR 6630, SP2MI, Universite de Poitiers, Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil Cedex (France); Alonso-Vante, N. [Laboratory of Electrocatalysis, UMR 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)]. E-mail: nicolas.alonso.vante@univ-poitiers.fr

    2007-06-25

    The photoelectrochemical behaviour of p-Si(100) single crystal electrodes in aqueous solution, covered with a very thin nitride film, was studied. The silicon surface nitridation was achieved in a N{sub 2}-H{sub 2} plasma at floating potential. The as-grown insulating Si{sub 3}N{sub 4} layers, with thickness inferior to 3.1 nm, allow the electrons to tunnel in the presence of an electric field by the Fowler-Nordheim tunnelling mechanism. However, the p-Si(100)/Si{sub 3}N{sub 4}-electrolyte interface generated lower photocurrent densities than those generated by naked p-Si(100) electrodes. In contrast, the nitridated silicon surface displayed a significant stability improvement in aqueous electrolyte (neutral pH). An overvoltage higher than 0.6 V for water oxidation on a p-Si(100) covered with a 2.4 nm Si{sub 3}N{sub 4} layer was measured. The results show that silicon covered with a nitridated thin film may be useful to stabilize electrodes in photoelectrochemical applications.

  2. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma

    International Nuclear Information System (INIS)

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 oC according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 1012-101'3 cm-3. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind of plasma. Diborane dissociation

  3. Bonding and Integration Technologies for Silicon Carbide Based Injector Components

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding, titanium interlayers (PVD and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness (10, 20, and 50 microns), processing time and temperature, and cooling rates were investigated. Microprobe analysis was used to identify the phases in the bonded region. For bonds that were not fully reacted an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner titanium interlayers and/or longer processing times resulted in stable and compatible phases that did not contribute to microcracking and resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Non-destructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  4. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    International Nuclear Information System (INIS)

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  5. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Boucaud, P., E-mail: philippe.boucaud@ief.u-psud.fr [Institut d' Electronique Fondamentale, CNRS - Univ. Paris Sud 11, Bâtiment 220, F-91405 Orsay (France); Gayral, B. [Univ. Grenoble Alpes, INAC-SP2M, CEA-CNRS group “Nanophysique et Semiconducteurs,” F-38000 Grenoble (France); CEA, INAC-SP2M, CEA-CNRS group “Nanophysique et Semiconducteurs,” F-38000 Grenoble (France); Brimont, C.; Guillet, T. [Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34905 Montpellier (France); Semond, F. [CRHEA-CNRS, Rue Bernard Grégory, F-06560 Valbonne (France)

    2014-07-07

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  6. A comparative study of three silicon nitride powders, obtained by three different syntheses

    International Nuclear Information System (INIS)

    Three silicon nitride powders are compared. The powder from H.C. Starck is produced by the direct nitridation, the UBE powder by the diimde and the A-L powder by the carbothermal process. The differences between the powders are related to the differences in syntheses. We looked at powder characterisation, mixing with sintering and organic additives, shaping, phase transformation, sintering, microstructure and some related properties of the sintered material. The UBE and A-L powder show similar behaviour. The H.C. Starck powder behaved different, which could be related to the broad particle size distribution, including particles > 0,5 μm. (orig.)

  7. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  8. Pused CO2 laser driven production of ultrafine Silicon, Silicon carbide, Silicon nitrides oxynitride powders

    International Nuclear Information System (INIS)

    Ultrafine Si, Si3N4, SiC and silicon oxynitride powders have been produced by irradiating gas-phase reactants by means of a CO2 laser. The mechanism of SiH4 CO2 laser induced absorption and dissociation is discussed on the basis of the results of the spectral and time resolved measurement of fragment chemiluminescence. The role played by the SiH2 radical in the powder formation is investigated. The quality of Si, Si3N4, SiC and silicon oxynitride powders is checked by means of several off-line diagnostics (IR spectroscopy, X-Ray diffraction at wide and small angle, BET analysis). The possibility of controlling powder stoichiometry and doping from the gas-phase reactant concetration is discussed

  9. Plasma enhanced deposition of 'silicon nitride' for use as an encapsulant for silicon ion-implanted gallium arsenide

    International Nuclear Information System (INIS)

    Silicon nitride films have been produced by plasma enhanced chemical vapour deposition using silane and ammonia as the reactant gases in a Plasma-Therm PK1250PD machine. The compositions of the films have been investigated as a function of the silane to ammonia flow rate ratio used for deposition, using infra-red transmission and Auger electron spectroscopies. These techniques indicated that the plasma deposited films were silicon-rich and contained hydrogen. The oxygen content of the films was below the detection limit of Auger electron spectroscopy implying that it was less than 1%. Silicon ion-implanted semi-insulating gallium arsenide has been annealed using an approximately 1000 A thick film of plasma deposited silicon nitride as an encapsulant. This capped annealing technique has achieved 70% activations of 4 x 1012 cm-2, 200 keV silicon implants with sheet Hall mobilities of 4000 cm2 V-1 s-1 at room temperature. Free carrier concentration and Hall mobility profiles are presented. Unimplanted semi-insulating gallium arsenide samples have also been capped annealed in the same manner and maintained a sheet resistivity of greater than 107 Ω/square after annealing. (author)

  10. Effect of helium ion beam treatment on the etching rate of silicon nitride

    International Nuclear Information System (INIS)

    We investigated the effect of the helium ion implantation on the etching rate of silicon nitride in hydrofluoric acid. 30 keV helium ions were implanted into a 500-nm-thick silicon nitride film on silicon. Ion fluences from 1015 to 1017 cm−2 were used. Etching was performed in a hydrofluoric acid solution. All samples were investigated with a scanning electron microscope and atomic force microscope. It was found that helium ion implantation can increase the etching rate by a factor of three. This results in the formation of a well in the implanted area after etching. The maximum depth of the well is about 180 nm and is limited by the penetration depth of 30 keV helium ions. Two possible reasons for enhanced etching are suggested: enhancement by ion-induced defects and electrostatic interaction of ions of the etchant with ion-induced space charge of silicon nitride. The recombination of ion-induced defects is also discussed

  11. Kinetic study on the direct nitridation of silicon powders diluted with α-Si3N4 at normal pressure

    Science.gov (United States)

    Yin, Shao-wu; Wang, Li; Tong, Li-ge; Yang, Fu-ming; Li, Yan-hui

    2013-05-01

    Silicon nitride (Si3N4) powders were prepared by the direct nitridation of silicon powders diluted with α-Si3N4 at normal pressure. Silicon powders of 2.2 μm in average diameter were used as the raw materials. The nitriding temperature was from 1623 to 1823 K, and the reaction time ranged from 0 to 20 min. The phase compositions and morphologies of the products were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The effects of nitriding temperature and reaction time on the conversion rate of silicon were determined. Based on the shrinking core model as well as the relationship between the conversion rate of silicon and the reaction time at different temperatures, a simple model was derived to describe the reaction between silicon and nitrogen. The model revealed an asymptotic exponential trend of the silicon conversion rate with time. Three kinetic parameters of silicon nitridation at atmospheric pressure were calculated, including the pre-exponential factor (2.27 cm·s-1) in the Arrhenius equation, activation energy (114 kJ·mol-1), and effective diffusion coefficient (6.2×10-8 cm2·s-1). A formula was also derived to calculate the reaction rate constant.

  12. Plasma etching of virtually stress-free stacked silicon nitride films

    International Nuclear Information System (INIS)

    Stacked silicon nitride films for use in manufacturing of surface micromachined membranes were deposited using custom made plasma-enhanced chemical vapor deposition instrument with silane (SiH4) and ammonia (NH3) gas mixture as deposition precursor. Deposition conditions were adjusted by varying substrate temperature and SiH4 to NH3 flow ratio and temperature to obtain the required stress related and electrical properties of the membranes. Transmission Fourier transformed infrared spectroscopy and scanning electron microscopy were used to investigate the chemical composition and morphology of the stacked film components. An increase in the SiH4 to NH3 flow ratio and a decrease in temperature resulted in a silicon-rich silicon nitride film, as well as an increased silicon oxide concentration. To avoid underetch and sidewall defects, the plasma power density during the plasma etching was changed from 0.5 W/cm2 during the etching of both top and bottom layers in a stacked film, to 1.0 W/cm2 during the etching of the middle both silicon and silicon oxide rich film. This resulted in an improved overall stacked film sidewall quality and reduced the unwanted underetch.

  13. Blue-to-Orange Tunable Luminescence from Europium Doped Yt trium-Silicon-Oxide-Nitride Phosphors

    Institute of Scientific and Technical Information of China (English)

    YANG Hu-Cheng; LI Cheng-Yu; PANG Ran; G. Lakshminarayana; ZHOU Shi-Feng; TENG Yu; QIU Jian-Rong

    2008-01-01

    Europium-doped yttrium-silicon-oxide-nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2 O7 to nitride YSi3N5state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465 nm with 300 nm excitation and a characteristic red emission of Eu3+ at 612 nm with 230 nm excitation. The YSi3N5 :Eu phosphor shows a broad emission band centred at 595 nm with some sharp peaks of Eu3+ with 325 nm excitation. The absorption of the studied phosphors increases from 450 to 700 nm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390 nm excitation.

  14. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Science.gov (United States)

    Mutch, Michael J.; Lenahan, Patrick M.; King, Sean W.

    2016-08-01

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  15. Corrosion behavior of silicon nitride, magnesium oxide, and several metals in molten calcium chloride with chlorine

    International Nuclear Information System (INIS)

    In this paper corrosion studies are described in a molten calcium chloride environment sparged with chlorine gas at 850 degrees C, both in the melt and in the gas phase above the salt, in support of efforts at Westinghouse Savannah River Company to develop more resistant materials of construction for molten salt processing of plutonium. Corrosion rates and electron microscope analyses are reported for Inconel alloys 601 and 617, tantalum, tungsten, magnesium oxide, and silicon nitride. Silicon nitride exhibited the greatest resistance, showing 2 · h loss in both melt and vapor None of the metallic coupons withstood the chlorine vapor environment, although Inconel indicated resistance immersed in the melt if protected from chlorine gas

  16. Practical application of silicon nitride ceramics for sliding parts of rotary engine

    International Nuclear Information System (INIS)

    Research on ceramic substitutes for the apex seals of the rotary engine have been carrying out. The aim of the substitution of apex seals, the development of high strength silicon nitride ceramics, and the application of the ceramic to the apex seals are described. The properties of silicon nitride ceramics used as apex seals in rotary engines for racing cars are presented. The apex seals were recovered from the rotary engines of racing cars in the 1989 and 1990 Le Mans 24-hour Grand Prix races, and the damage of the seals was investigated and analyzed in detail. One problem was the adhesion to the seals of the hardened chromium plating detached from the inside surface of the rotor housing. The adhesion of chromium caused the fine cracking and subsequent chipping of the apex seals. (orig.)

  17. Effect of Additives on the Sintering of Amorphous Nano-sized Silicon Nitride Powders

    Institute of Scientific and Technical Information of China (English)

    LUO Junting; LIU Riping

    2009-01-01

    Amorphous nano-sized silicon nitride powders were sintered by liquid phase sin-tering.The influences of the additives of Y_2O_3 and Al_2O_3 prepared by two different ways,the poly-acrylamide gel method and the precipitation method,were investigated.The grain sizes of the additives prepared by the first method were finer than those of prepared by the latter method.When sintered at the same temperature,1700℃,the average grain size of the silicon nitride is 0.3 μm for the sample with the former additives,which is much finer than the one with the latter additives.The density of additives prepared by precipitation method is clearly lower than those of prepared by polyacrylamide gel method.

  18. Using fuzzy sets in the prediction of flexural strength and density of silicon nitride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cios, K.J.; Baaklini, G.Y.; Vary, A. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Sztandera, L.M. (Univ. of Toledo, OH (United States))

    1994-05-01

    In this work the authors use fuzzy sets theory to evaluate and predict flexural strength and density of NASA 6Y silicon nitride ceramic. Processing variables of milling time, sintering time, and sintering nitrogen pressure are used as an input to the fuzzy system. Flexural strength and density are the output parameters of the system. Data from 273 silicon nitride modulus of rupture bars tested at room temperature and 135 bars tested at 1,370 C (2,500 F) are used in this study. Generalized mean operator and Hamming distance are used to construct the fuzzy predictive model. The maximum test error for density does not exceed 3.3 percent, and for flexural strength 7.1 percent. These results demonstrate that fuzzy sets theory can be incorporated into the process of designing materials such as ceramics, especially for assessing more complex relationships between the processing variables and parameters like strength, which are governed by randomness of manufacturing processes.

  19. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 3000C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO2 interface is not clear at this point

  20. Performance of Kerr bistable memory in silicon nitride microring and silica microtoroid

    Science.gov (United States)

    Yoshiki, Wataru; Tanabe, Takasumi

    2014-12-01

    We quantitatively analyze the performance of optical memories based on Kerr bistability in microcavites. We model a silicon nitride microring and a silica toroid microcavity, and examine the performances of these cavities in an actual situation where there is a thermo-optic effect. Numerical simulations based on coupled mode theory and the thermal diffusion equation reveal that an input power of 1.8 W is necessary to achieve a Kerr bistable memory in a silicon nitride microring, while that of only 1.7 mW is necessary in a silica toroid microcavity. This result shows that the use of silica toroid microcavity is advantageous when we want to demonstrate a Kerr bistable memory operation with a reasonably low input power. In addition, we quantitatively investigate the trade-off between the required input power and the response speed of the device.

  1. Laser-assisted turning of components made of silicon-nitride ceramics

    International Nuclear Information System (INIS)

    The manufacture of high-precision parts made of silicon-nitride ceramic, such as roller bearing rings or valves, currently involves finishing in the form of time and cost intensive grinding operations. This has resulted in demands for the development of more efficient machining techniques and for the subsequent provision of these within a manufacturing environment. A prototype of a precision lathe with an integrated high power diode laser for laser-assisted turning has been developed at the Fraunhofer IPT in close co-operation with industrial partners. When the workpiece is heated continuously by the laser, the resultant localized material softening enables the ceramic to be machined using a defined cutting edge. The application of this technique allows complex silicon nitride ceramic parts with surface qualities of up to Ra = 0.3 μm to be produced considerably more flexibly than before, with no requirement for cooling lubricant. (author)

  2. Diffraction-plane dependence of elastic constants of silicon nitride for X-ray stress measurement

    International Nuclear Information System (INIS)

    X-ray elastic constants of two kinds of silicon nitride, gas-pressure sintered (EC141) and pressureless sintered (SN1), were experimentally determined for ten different diffractions by using Kα radiations of Cu, Co, Fe, Cr and V. For the stress measurement with high precision, 323 reflection by Cu-Kα1 radiation, 251 and 232 reflections by Fe-Kα radiation, and 411 reflection V-Kα radiation are recommended. The X-ray compliances, (1+ν)/E and ν/E (E=Young's modulus, ν=Poisson's ratio), change as a second power function of cos2φ (φ=angle between the diffraction plan normal and the c-axis of hexagonal crystal) for both kinds of silicon nitride. (author)

  3. Nitridation of silicon. M.S. Thesis Case Western Reserve Univ.

    Science.gov (United States)

    Shaw, N. J.

    1981-01-01

    Silicon powders with three levels of impurities, principally Fe, were sintered in He or H2. Non-densifying mechanisms of material transport were dominant in all cases. High purity Si showed coarsening in He while particle growth was suppressed in H2. Lower purity powder coarsened in both He and H2. The same three Si powders and Si /111/ single crystal wafers were nitrided in both N2 and N2/H2 atmospheres. Hydrogen increased the degree of nitridation of all three powders and the alpha/beta ratio of the lower purity powder. Some Si3N4 whiskers and open channels through the surface nitride layer were observed in the presence of Fe, correlating with the nitridation-enhancing effects of Fe. Thermodynamic calculations showed that when SiO2 is present on the Si, addition of H2 to the nitriding atmosphere decreases the amount of SiO2 and increases the partial pressure of Si-containing vapor species, that is, Si and SiO. Large amounts of NH3 and SiH4 were also predicted to form.

  4. Robust Environmental Barrier Coatings for Silicon Nitride Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon based ceramics are the leading candidates for the high temperature structural components of the advanced propulsion engines. For such applications, one key...

  5. Dynamic material properties and terminal ballistic behaviour of shock-loaded silicon-nitride ceramics

    International Nuclear Information System (INIS)

    The dynamic properties and microscopic material structure of shock loaded Silicon-Nitride ceramics of two different densities have been investigated by means of the planar plate impact and VISAR technique. In addition the terminal ballistic behaviour of both ceramics has been determined. The combined results of the tests performed suggest an important influence of the microstructure on the terminal ballistic behaviour and thus on the ceramics protection capability against impact processes. (orig.)

  6. Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides

    Science.gov (United States)

    Zhang, Xiang; Zhang, Yanbing; Xiong, Chunle; Eggleton, Benjamin J.

    2016-07-01

    We demonstrate correlated photon pair generation via spontaneous four-wave mixing in a low-loss double-stripe silicon nitride waveguide with a coincidence-to-accidental ratio over 10. The coincidence-to-accidental ratio is limited by spontaneous Raman scattering, which can be mitigated by cooling in the future. This demonstration suggests that this waveguide structure is a potential platform to develop integrated quantum photonic chips for quantum information processing.

  7. Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides

    OpenAIRE

    Zhang, Xiang; Zhang, Yanbing; Xiong, Chunle; Eggleton, Benjamin J.

    2016-01-01

    We demonstrate correlated photon pair generation via spontaneous four-wave mixing in a low-loss double-stripe silicon nitride waveguide with a coincidence-to-accidental ratio over 10. The coincidence-to-accidental ratio is limited by spontaneous Raman scattering, which can be mitigated by cooling in the future. This demonstration suggests that this waveguide structure is a potential platform to develop integrated quantum photonic chips for quantum information processing.

  8. Comparison of fracture toughness measuring methods applied on silicon nitride ceramics

    OpenAIRE

    RudnayovÁ, E.; Dusza, J.; KupkovÁ, M.

    1993-01-01

    Different fracture toughness testing methods on unreinforced and with Si3N4 whiskers reinforced silicon nitride ceramics were compared. The results revealed that in the reinforced ceramics the KIC rises with the increasing of the crack size, which indicates a rising R-curve behaviour in this system. Using IF testing method equations given by Niihara and by Shetty proved to have the nearest values to these achieved using SENB in both investigated systems.

  9. Generic technological platform for microfabricating silicon nitride micro- and nanopipette arrays

    OpenAIRE

    Guenat, Olivier T.; Generelli, Silvia; Dadras, Mohammad-Mehdi; Berdondini, L.; De Rooij, Nicolaas F; Koudelka-Hep, Milena

    2007-01-01

    In this paper, the design and the characterization of batch fabricated SixNy micropipette arrays with diameters ranging from 6 µm down to 250 nm are described. The process used to fabricate the micromachined pipettes includes a deep reactive ion etching step, followed by the deposition of two successive layers, a thermal oxide layer and a low stress, low pressure chemical vapor deposited silicon nitride layer, respectively. The diameter of the micropipettes could be modulated simply by choosi...

  10. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    OpenAIRE

    Navarro-Urrios, Daniel; Ramirez, Joan Manel; Capuj, Nestor E.; Berencen, Yonder; Garrido, Blas; Tredicucci, Alessandro

    2015-01-01

    We demonstrate the integration of Nd3+ doped Barium-Titanium-Silicate microsphere lasers with a Silicon Nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical ...

  11. CVD diamond coated silicon nitride self-mated systems : tribological behaviour under high loads

    OpenAIRE

    Abreu, C. S.; Oliveira, F. J.; Belmonte, M.; Fernandes, A. J. S.; Gomes, J. R.; Silva, R. F.

    2006-01-01

    Friction and wear behaviour of self-mated chemical vapour deposited (CVD) diamond films coating silicon nitride ceramics (Si3N4) were investigated in ambient atmosphere. The tribological tests were conducted in a reciprocal motion ball-on-flat type tribometer under applied normal loads up to 80 N (~10 GPa). Several characterisation techniques - including scanning electron microscopy (SEM), atomic force microscopy (AFM) and micro-Raman studies - were used in order to assess the quality, stress s...

  12. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  13. Analysis of the effective thermoelastic properties and stress fields in silicon nitride based on EBSD data

    Czech Academy of Sciences Publication Activity Database

    Othmani, Y.; Böhlke, T.; Lube, T.; Fellmeth, A.; Chlup, Zdeněk; Colonna, F.; Hashibon, A.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 1109-1125. ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 263476 Institutional support: RVO:68081723 Keywords : Silicon nitride * EBSD data * Hashin-Shtrikman bounds * Finite element analysis Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  14. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire

    OpenAIRE

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. W...

  15. Niobium nitride-niobium Josephson tunnel junctions with sputtered amorphous silicon barriers

    International Nuclear Information System (INIS)

    Niobium nitride-niobium Josephson tunnel junctions with sputtered amorphous silicon barriers (NbN-αSi-Nb) have been prepared using processing that is fully compatible with integrated circuit fabrication. These junctions are of suitable quality and uniformity for digital circuit and S-I-S detector applications. The junction quality depends critically upon the properties of the NbN surface, and seems to correlate well with the UV/visible reflectivity of this surface

  16. Atomic-Resolution Observations of Semi-Crystalline Integranular Thin Films in Silicon Nitride

    OpenAIRE

    Ziegler, Alexander; Idrobo, Juan C.; Cinibulk, Michael K.; Kisielowski, Christian; Nigel D. Browning; Ritchie, Robert O.

    2005-01-01

    The thin intergranular phase in a silicon nitride (Si3N4) ceramic, which has been regarded for decades as having an entirely amorphous morphology, is shown to have a semi-crystalline structure. Using two different but complementary high-resolution electron microscopy methods, the intergranular atomic structure was directly imaged at the atomic level. These high-resolution images show that the atomic arrangement of the dopand element cerium takes very periodic positions not only along the...

  17. Dispersion engineered high-Q silicon Nitride Ring-Resonators via Atomic Layer Deposition

    CERN Document Server

    Riemensberger, Johann; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-01-01

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition (ALD). Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. All results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  18. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Energy Technology Data Exchange (ETDEWEB)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Padipatvuthikul, P, E-mail: raayaa_chula@hotmail.com [Faculty of Dentistry, Srinakharinwirot University, Bangkok (Thailand)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si{sub 3}N{sub 4} ceramic as a dental core material. The white Si{sub 3}N{sub 4} was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si{sub 3}N{sub 4} ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si{sub 3}N{sub 4} specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y{sub 2}O{sub 3} - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si{sub 3}N{sub 4} specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10{sup -6} deg. C{sup -1}, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  19. Silicon nitride nanoparticles for surface-assisted laser desorption/ionization of small molecules

    International Nuclear Information System (INIS)

    Conventional matrix-assisted laser desorption/ionization mass spectrometry is limited to analyses of higher molecular weight compounds due to high background noise generated by the matrix in the lower mass region. Surface-assisted laser desorption/ionization (SALDI) mass spectrometry is an alternative solution to this problem. Nanoparticles, structured silicon surfaces and carbon allotropes are commonly used as SALDI surfaces. Here, for the first time, we demonstrate the application of silicon nitride nanoparticles as a suitable medium for laser desorption/ionization of small drug molecules.

  20. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    Directory of Open Access Journals (Sweden)

    S. Reboh

    2013-10-01

    Full Text Available To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  1. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    Science.gov (United States)

    Reboh, S.; Morin, P.; Hytch, M. J.; Houdellier, F.; Claverie, A.

    2013-10-01

    To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  2. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  3. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    International Nuclear Information System (INIS)

    Highlights: ► An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. ► Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. ► Silicon nitride offers multiple advantages compared to other common materials. ► The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si3N4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si3N4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO2/Si3N4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10−13–10−7 M were detected, showing a sensitivity of 0.128 Ω μM−1 and a limit of detection of 10−14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically

  4. Indentation and oxidation studies on silicon nitride joints

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, M.; De Jonghe, L.C.; Thomas, G. [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

    1996-05-01

    Si nitride ceramics have been joined with a Y oxide-SiO{sub 2} interlayer. A 1:2 molar ratio of Y{sub 2}O{sub 3} to SiO{sub 2} was chosen to obtain the desired Y{sub 2}Si{sub 2}O{sub 7} stoichiometry, which should give the interlayer better oxidation resistance compared to other interlayer materials. Mechanical characterization of the joints performed by indentation shows it to have good room temperature strength.

  5. Fabrication of silicon nitride nanoceramics—Powder preparation and sintering: A review

    Directory of Open Access Journals (Sweden)

    Toshiyuki Nishimura et al

    2007-01-01

    Full Text Available Fine-grained silicon nitride ceramics were investigated mainly for their high-strain-rate plasticity. The preparation and densification of fine silicon nitride powder were reviewed. Commercial sub-micrometer powder was used as raw powder in the "as-received" state and then used after being ground and undergoing classification operation. Chemical vapor deposition and plasma processes were used for fabricating nanopowder because a further reduction in grain size caused by grinding had limitations. More recently, nanopowder has also been obtained by high-energy milling. This process in principle is the same as conventional planetary milling. For densification, primarily hot pressing was performed, although a similar process known as spark plasma sintering (SPS has also recently been used. One of the advantages of SPS is its high heating rate. The high heating rate is advantageous because it reduces sintering time, achieving densification without grain growth. We prepared silicon nitride nanopowder by high-energy milling and then obtained nanoceramics by densifying the nanopowder by SPS.

  6. Protein-repellent silicon nitride surfaces: UV-induced formation of oligoethylene oxide monolayers.

    Science.gov (United States)

    Rosso, Michel; Nguyen, Ai T; de Jong, Ed; Baggerman, Jacob; Paulusse, Jos M J; Giesbers, Marcel; Fokkink, Remko G; Norde, Willem; Schroën, Karin; van Rijn, Cees J M; Zuilhof, Han

    2011-03-01

    The grafting of polymers and oligomers of ethylene oxide onto surfaces is widely used to prevent nonspecific adsorption of biological material on sensors and membrane surfaces. In this report, we show for the first time the robust covalent attachment of short oligoethylene oxide-terminated alkenes (CH(3)O(CH(2)CH(2)O)(3)(CH(2))(11)-(CH═CH(2)) [EO(3)] and CH(3)O(CH(2)CH(2)O)(6)(CH(2))(11)-(CH═CH(2)) [EO(6)]) from the reaction of alkenes onto silicon-rich silicon nitride surfaces at room temperature using UV light. Reflectometry is used to monitor in situ the nonspecific adsorption of bovine serum albumin (BSA) and fibrinogen (FIB) onto oligoethylene oxide coated silicon-rich silicon nitride surfaces (EO(n)-Si(x)N(4), x > 3) in comparison with plasma-oxidized silicon-rich silicon nitride surfaces (SiO(y)-Si(x)N(4)) and hexadecane-coated Si(x)N(4) surfaces (C(16)-Si(x)N(4)). A significant reduction in protein adsorption on EO(n)-Si(x)N(4) surfaces was achieved, adsorption onto EO(3)-Si(x)N(4) and EO(6)-Si(x)N(4) were 0.22 mg m(-2) and 0.08 mg m(-2), respectively. The performance of the obtained EO(3) and EO(6) layers is comparable to those of similar, highly protein-repellent monolayers formed on gold and silver surfaces. EO(6)-Si(x)N(4) surfaces prevented significantly the adsorption of BSA (0.08 mg m(-2)). Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray reflectivity and static water contact angle measurements were employed to characterize the modified surfaces. In addition, the stability of EO(6)-Si(x)N(4) surfaces in phosphate-buffered saline solution (PBS) and alkaline condition (pH 10) was studied. Prolonged exposure of the surfaces to PBS solution for 1 week or alkaline condition for 2 h resulted in only minor degradation of the ethylene oxide moieties and no oxidation of the Si(x)N(4) substrates was observed. Highly stable antifouling coatings on Si(x)N(4) surfaces significantly broaden the application potential of silicon

  7. Effect of Hydrogen Dilution on Growth of Silicon Nanocrystals Embedded in Silicon Nitride Thin Film bv Plasma-Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    DING Wenge; ZHEN Lanfang; ZHANG Jiangyong; LI Yachao; YU Wei; FU Guangsheng

    2007-01-01

    An investigation was conducted into the effect of hydrogen dilution on the mi-crostructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.

  8. Effect of alumina on silicon carbide bodies with clay bonding

    International Nuclear Information System (INIS)

    Components made of silicon carbide are very important ceramic products due to their good resistance against thermal shocks. Home made of such products having silicate bonding usually have various defects in their structures. In this research effects of alumina addition on the components made of silicon carbide with clay bonding have been investigated, in order to see its effects on mechanical and structural properties such as blistering. Addition of up to 15 weights %. Al2O3 improved thermal shock resistance and increased bending strength from 25 MPa to 32 MPa due to Al2O3 transformation to mullite. However, when the amounts of alumina exceed 15 weights % mechanical strength as well as resistance to thermal shock reduced due to reman ing of Al2O3 in the components after sintering

  9. Electrochemical characteristics of ternary and quadruple lithium silicon nitrides as anode material for lithium ion batteries: the influence of precursors

    Institute of Scientific and Technical Information of China (English)

    WEN Zhongsheng; TIAN Feng; SUN Juncai; JI Shijun; XIE Jingying

    2008-01-01

    Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling.High capacity and excellent cyclability were obtained.The influence of precursor introduction on the electrochemical performance of products was investigated.This research reveals that the electrochemical performance of lithium silicon hiaide can be enhanced significantly by doping O.The cyclability of quadruple lithium silicon nitride can be optimized remarkably by controlling the introduction quantity of the precursors.It is possible for the composite to be used as a capacity compensator within a wide voltage cut-off window.

  10. Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated

    Science.gov (United States)

    Bhatt, Ramakrishna T.

    2001-01-01

    Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without

  11. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Volpi, F., E-mail: fabien.volpi@simap.grenoble-inp.fr; Braccini, M.; Pasturel, A. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Devos, A. [IEMN, UMR 8520 CNRS, Avenue Poincarré - CS 60069 - 59652 Villeneuve d' Ascq Cedex (France); Raymond, G. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Morin, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France)

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films

  12. Numerical study of self-heating effects of small-size MOSFETs fabricated on silicon-on-aluminum nitride substrate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Compared with bulk-silicon technology, silicon-on-insulator (SOI) technology possesses many advantages but it is inevitable that the buried silicon dioxide layer also thermally insulates the metal-oxide-silicon field-effect transistors (MOSFETs) from the bulk due to the low thermal conductivity. One of the alternative insulator to replace the buried oxide layer is aluminum nitride (MN), which has a thermal conductivity that is about 200 times small-size MOSFETs fabricated on silicon-on-aluminum nitride (SOAN) substrate, a two-dimensional numerical analysis is performed by using a device simulator called MEDICI run on a Solaris workstation to simulate the electrical characteristics and temperature distribution by comparing with those of bulk and standard SOI MOSFETs. Our study suggests that AlN is a suitable alternative to silicon dioxide as a buried dielectric in SOI and expands the applications of SOI to high temperature conditions.

  13. Bond strengths of New Carbon-nitride-Related material C2N2(CH2)

    International Nuclear Information System (INIS)

    A new carbon-nitride-related material C2N2(CH2) nanopletelet was synthesized by subjecting a precursor C3N4HxOy+Au in a laser-heating diamond anvil cell (LHDAC) to the pressure of 40 GPa and the temperature of 1200-2000 K. The synthesized C2N2(CH2) was accordingly found to be an orthorhombic unit cell of the space group Cmc21 with lattice constants a = 7.625Å, b = 4.490Å, and c = 4.047Å. The bulk modulus B0 was determined to be B0 = 258 ± 3.4 GPa, only the 60 % that of the diamond. C2N2(CH2) consists of the tetrahedrally coordinated C with three C-N single bond and the one C-C single bond, and the bridging carbon with the C-CH2-C bond. The C-N single bond length of the tetrahedron ranges from 1.444 to 1.503 Å. This bond length is close to the C-N single bond of 1.447 to 1.458 Å in the superhard β-C3N4. The compressibility of the C-N and C-C single bond of C2N2(CH2) ranges from 0.976 to 0.982 with the pressure of 30 GPa. These values are very close to the compressibility of the C-N and C-C single bond of 0.978 to 0.982 in β-C3N4, cubic-C3N4, and diamond.

  14. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    International Nuclear Information System (INIS)

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CNx:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CNx:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films (∼40 at. %) was rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed

  15. Nanoscale structure and superhydrophobicity of sp(2)-bonded boron nitride aerogels.

    Science.gov (United States)

    Pham, Thang; Goldstein, Anna P; Lewicki, James P; Kucheyev, Sergei O; Wang, Cheng; Russell, Thomas P; Worsley, Marcus A; Woo, Leta; Mickelson, William; Zettl, Alex

    2015-06-21

    Aerogels have much potential in both research and industrial applications due to their high surface area, low density, and fine pore size distribution. Here we report a thorough structural study of three-dimensional aerogels composed of highly crystalline sp(2)-bonded boron nitride (BN) layers synthesized by a carbothermic reduction process. The structure, crystallinity and bonding of the as-prepared BN aerogels are elucidated by X-ray diffraction, (11)B nuclear magnetic resonance, transmission electron microscopy, and resonant soft X-ray scattering. The macroscopic roughness of the aerogel's surface causes it to be superhydrophobic with a contact angle of ∼155° and exhibit high oil uptake capacity (up to 1500 wt%). The oil can be removed from the BN aerogel by oxidizing in air without damaging the crystalline porous structure of the aerogel or diminishing its oil absorption capacity. PMID:26007693

  16. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  17. Kinetics of formation and properties of silicon and silicon-germanium-alloy-based insulators grown using low-energy ion beam nitridation

    International Nuclear Information System (INIS)

    Growth of thin films of nitrides of silicon, germanium and silicon-germanium alloys using low energy ion beam nitridation is reported. This work includes the growth of thin nitride films, materials characterization, modeling of the mechanisms of the thin film growth and the relation of materials properties to processing parameters controlled during the thin-film growth. The key advantage of low energy ion beam processing is the ability to synthesize films at low temperatures, thereby reducing the thermal budget for processing metastable materials structures. This makes low energy ion beam processing compatible with metastable or unstable materials, which would be degraded by a higher temperature process. Three processing parameters relevant to Ion Beam Nitridation (IBN), ion energy, ion dose, and substrate temperature, are studied for their effect on the growth of these films and their resulting properties. The thickness, stress, stoichiometry and structure of IBN-fabricated thin films are examined as a function of these three parameters

  18. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P., E-mail: philippe.boucaud@ief.u-psud.fr [Institut d' Electronique Fondamentale, CNRS - Univ. Paris Sud 11, Bâtiment 220, F-91405 Orsay (France); Gayral, B. [Univ. Grenoble Alpes, INAC-SP2M, CEA-CNRS group Nanophysique et Semiconducteurs, F-38000 Grenoble (France); CEA, INAC-SP2M, CEA-CNRS group Nanophysique et Semiconducteurs, F-38000 Grenoble (France); Brimont, C.; Guillet, T. [Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34905 Montpellier (France); Mexis, M.; Semond, F. [CRHEA-CNRS, Rue Bernard Grégory, F-06560 Valbonne (France)

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  19. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    International Nuclear Information System (INIS)

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χzxx(2), χzyy(2) and the electric fields of the fundamental cavity mode

  20. Enhancement of polycrystalline silicon solar cells efficiency using indium nitride particles

    International Nuclear Information System (INIS)

    In this work, we present a hybrid indium nitride particle/polycrystalline silicon solar cell based on 230 nm size indium nitride particles (InN-Ps) obtained through laser ablation. The solar cell performance measurements indicate that there is an absolute 1.5% increase (Δη) in the overall solar cell efficiency due to the presence of InN-Ps. Within the spectral range 300–1100 nm, improvements of up to 8.26% are observed in the external quantum efficiency (EQE) and increases of up to 8.75% are observed in the internal quantum efficiency (IQE) values of the corresponding solar cell. The enhancement in power performance is due to the down-shifting properties of the InN-Ps. The electrical measurements are supplemented by TEM, Raman, UV/VIS and PL spectroscopy of the InN-Ps. (paper)

  1. Effects of heat treatment in vacuum on the physical properties of thermal nitrided silicon dioxide gate on 4H-silicon carbide

    International Nuclear Information System (INIS)

    Nitrided SiO2 has been thermally grown on n-type 4H silicon carbide substrate. The effects of post deposition annealing temperature (650 to 950 deg. C) in vacuum on physical properties of the oxides have been reported. Based on Fourier transform infra-red analysis, Si-O-Si bonding of the oxide has been weakened as the annealing temperature has been increased. The increment in annealing temperature has caused the increment in oxide thickness. Refractive index has been measured via Filmetric system and the index has been gradually reduced as a function of annealing temperature. This reduction trend is also being observed in the calculated values of film density and dielectric constant. In contrast, an increment trend has been recorded in film porosity as the annealing temperature increased. These observations may be attributed to the weakening of Si-O-Si bonding in the bulk oxide and roughening of the oxide surface, which has been demonstrated by atomic force microscopy

  2. Novel junctionless silicon-oxide-nitride-oxide-silicon memory devices with field-enhanced poly-Si nanowire structure

    Science.gov (United States)

    Chou, Chia-Hsin; Chan, Wei-Sheng; Wu, Chun-Yu; Lee, I.-Che; Liao, Ta-Chuan; Wang, Chao-Lung; Wang, Kuang-Yu; Cheng, Huang-Chung

    2015-08-01

    In this work, a novel gate-all-around (GAA) low-temperature poly-Si (LTPS) junctionless (JL) silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory device with a field-enhanced nanowire (NW) structure has been proposed to improve the programing/erasing (P/E) performance. Each nanowire has three sharp corners fabricated by a sidewall spacer formation technique to obtain high local electrical fields. Owing to the higher carrier concentration in the channel and the high local electrical field from the three sharp corners, such a JL SONOS memory device exhibits a significantly enhanced P/E speed, a larger memory window, and better data retention properties than a conventional inversion mode NW-channel memory device.

  3. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  4. Atomic structures of a liquid-phase bonded metal/nitride heterointerface

    Science.gov (United States)

    Kumamoto, Akihito; Shibata, Naoya; Nayuki, Kei-Ichiro; Tohei, Tetsuya; Terasaki, Nobuyuki; Nagatomo, Yoshiyuki; Nagase, Toshiyuki; Akiyama, Kazuhiro; Kuromitsu, Yoshirou; Ikuhara, Yuichi

    2016-03-01

    Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices.

  5. Atomic structures of a liquid-phase bonded metal/nitride heterointerface.

    Science.gov (United States)

    Kumamoto, Akihito; Shibata, Naoya; Nayuki, Kei-Ichiro; Tohei, Tetsuya; Terasaki, Nobuyuki; Nagatomo, Yoshiyuki; Nagase, Toshiyuki; Akiyama, Kazuhiro; Kuromitsu, Yoshirou; Ikuhara, Yuichi

    2016-01-01

    Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices. PMID:26961157

  6. Estimation of crack closure stresses for in situ toughened silicon nitride with 8 wt pct scandia

    Science.gov (United States)

    Choi, Sung R.; Salem, Jonathan A.; Sanders, William A.

    1992-01-01

    An 8-wt pct-scandia silicon nitride with an elongated grain structure was fabricated. The material exhibited high fracture toughness and a rising R-curve as measured by the indentation strength technique. The 'toughening' exponent m was found to be m about 0.1. The high fracture toughness and R-curve behavior was attributed mainly to bridging of the crack faces by the elongated grains. The crack closure (bridging) stress distribution in the wake region of the crack tip was estimated as a function of crack size from the R-curve data, with an arbitrarily assumed distribution function.

  7. Microstructure and Phase Composition of Cold Isostatically Pressed and Pressureless Sintered Silicon Nitride

    OpenAIRE

    Lukianova, O. A.; Krasilnikov, V. V.; Parkhomenko, A. A.; Sirota, V. V.

    2016-01-01

    The microstructure and physical properties of new Y2O3 and Al2O3 oxide-doped silicon nitride ceramics fabricated by cold isostatic pressing and free sintering were investigated. The phase composition of produced material was also studied by X-ray diffraction at room and elevated temperature. The fabricated ceramics featured a microstructure of Si5AlON7 grains with a fine-grained α-Si3N4 with a small amount of Y2SiAlON5. Described ceramics is attractive for many high-temperature structural app...

  8. Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics

    OpenAIRE

    Abreu, C. S.; M. Amaral; Fernandes, A. J. S.; Oliveira, F. J.; R.F. Silva; Gomes, J. R.

    2006-01-01

    Silicon nitride (Si3N4) ceramics were selected as substrates due to their thermal and chemical compatibility to diamond that ensure the adequate NCD adhesion for mechanical purposes. NCD deposition was performed by hot-filament chemical vapour method (HFCVD) using Ar/H2/CH4 gas mixtures. The tribological assessment of homologous pairs of NCD films was accomplished using reciprocating ball-on-flat tests using NCD coated Si3N4 plates and balls. The friction evolution is characterized by an init...

  9. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator

    CERN Document Server

    Okawachi, Yoshitomo; Luke, Kevin; Carvalho, Daniel O; Ramelow, Sven; Farsi, Alessandro; Lipson, Michal; Gaeta, Alexander L

    2015-01-01

    We demonstrate a degenerate parametric oscillator in a silicon-nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the \\c{hi}(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator.

  10. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8

    OpenAIRE

    Yuan, M; Cohen, M A; G. A. Steele

    2015-01-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14 mK using a three-dimensional optomechanical cavity. Below 200 mK, high-Q modes of the membranes show a diverging increase of Q with decreasing temperature, reaching Q=1.27×108Q=1.27×108 at 14 mK, an order of magnitude higher than that reported before. The ultra-low dissipation makes the membranes highly attractive for the study...

  11. Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

    CERN Document Server

    Darvishzadeh-Varcheie, Mahsa; Ragan, Regina; Boyraz, Ozdal; Capolino, Filippo

    2016-01-01

    We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitride waveguide. Simulations show that 100 fold electric field enhancement builds up in the dimer gap as compared to the waveguide evanescent field amplitude at the same location. We investigate how the field enhancement depends on dimer location, orientation, distance and excited waveguide modes.

  12. Silicon-nitride photonic circuits interfaced with monolayer MoS2

    International Nuclear Information System (INIS)

    We report on the integration of monolayer molybdenum disulphide with silicon nitride microresonators assembled by visco-elastic layer transfer techniques. Evanescent coupling from the resonator mode to the monolayer is confirmed through measurements of cavity transmission. The absorption of the monolayer semiconductor flakes in this geometry is determined to be 850 dB/cm, which is larger than that of graphene and black phosphorus with the same thickness. This technique can be applied to diverse monolayer semiconductors for assembling hybrid optoelectronic devices such as photodetectors and modulators operating over a wide spectral range

  13. The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers

    OpenAIRE

    Majee, Subimal; Cerqueira, M. F.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y.; Alpuim, P.; Bourée, J. E.

    2013-01-01

    In this work we produce and study silicon nitride (SiNx) thin films deposited by Hot Wire Chemical Vapor Depo- sition (HW-CVD) to be used as encapsulation barriers for flexible organic photovoltaic cells fabricated on poly- ethylene terephthalate (PET) substrates in order to increase their shelf lifetime. We report on the results of SiNx double-layers and on the equivalent double-layer stack where an Ar-plasma surface treatment was performed on the first SiNx layer. The Ar-plasma treatment ma...

  14. Observation of Transparency of Erbium-doped Silicon nitride in photonic crystal nanobeam cavities

    CERN Document Server

    Gong, Yiyang; Yerci, Selcuk; Li, Rui; Stevens, Martin J; Baek, Burm; Nam, Sae Woo; Negro, Luca Dal; Vuckovic, Jelena

    2010-01-01

    One-dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 um is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time-resolved measurements. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and the onset of stimulated emission in the material at both 5.5 K and room temperature. We estimate from the cavity linewidths that Er has been pumped to transparency at the cavity resonance wavelength.

  15. Structural Analysis of a Magnetically Actuated Silicon Nitride Micro-Shutter for Space Applications

    Science.gov (United States)

    Loughlin, James P.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Mott, D. Brent; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Finite element models have been created to simulate the electrostatic and electromagnetic actuation of a 0.5gm silicon nitride micro-shutter for use in a spacebased Multi-object Spectrometer (MOS). The micro-shutter uses a torsion hinge to go from the closed, 0 degree, position, to the open, 90 degree position. Stresses in the torsion hinge are determined with a large deformation nonlinear finite element model. The simulation results are compared to experimental measurements of fabricated micro-shutter devices.

  16. Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.; Breder, K.

    2000-02-01

    The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

  17. Optical and structural characterization of rapid thermal annealed non-stoichiometric silicon nitride film

    International Nuclear Information System (INIS)

    A detailed optical and structural characterization is carried out of a silicon nitride film deposited by a Hg-sensitized photo-CVD technique and subsequently subjected to rapid thermal annealing (RTA). An attempt has been made to correlate ellipsometry data with x-ray reflectivity (XRR) and x-ray diffraction data. Both the optical constants and density of the film were found to increase after thermal treatment. RTA treatment resulted in substantial change in the refractive index with more compaction of the film. This is explained in terms of hydrogen terminated defects/voids created due to predominant out-diffusion of hydrogen with RTA treatment

  18. On the temperature dependence of the photoconductivity of amorphous silicon nitride (a-Si Nx: H)

    International Nuclear Information System (INIS)

    Experimental results on the photoconducticity of amorphous hydrogenated silicon nitride a-SiNx: H prepared from plasma decomposition of a gaseus mixture of silane and nitrogen ([Si H4]/[N2] ∼ 0.33) are presented. The material is deposited in a capacitively coupled glow discharge system and nitrogen content was continuously increased by increasing the RF power dissipated in the plasma. Studies of the photocurrent as a function of temperature as a function of temperature and lig ht intensities are reported. (Author)

  19. Mechanistic studies of the CVD of silicon nitride from SiF4 and NH3

    International Nuclear Information System (INIS)

    An industrial process for the CVD of silicon nitride from SiF4 and NH3 was studied with a wide variety of techniques, ranging from numerical models of the coupled chemistry and fluid mechanics to experimental studies of chemical reactions. The latter includes a set of molecular beam experiments that probed the temperature and flux dependencies of the reaction of SiF4 and NH3 at the surface. These experiments showed that the CVD reactor chemistry was dominated by surface kinetics rather than gas-phase decomposition

  20. Enhancement of oxidation resistance of NBD 200 silicon nitride ceramics by aluminum implantation

    Science.gov (United States)

    Mukundhan, Priya

    Silicon nitride (Si3N4) ceramics are leading candidates for high temperature structural applications. They have already demonstrated functional capabilities well beyond the limits of conventional metals and alloys in advanced diesel and turbine engines. However, the practical exploitation of these benefits is limited by their oxidation and associated degradation processes in chemically aggressive environments. Additives and impurities in Si3N4 segregate to the surface of Si3N 4 and accelerate its high temperature oxidation process. This study aims to investigate the oxidation behavior of Norton NBD 200 silicon nitride (hot isostatically pressed with ˜1 wt.% MgO) and its modification by aluminum surface alloying. NBD 200 samples tribochemically polished to a mirror finish (10 nm) were implanted with 5, 10, 20 and 30 at.% aluminum at multienergies and multi-doses to achieve a uniform implant depth distribution to 200 nm. Unimplanted and aluminum-implanted samples were oxidized at 800°--1100°C in 1 atm O2 for 0.5--10 hours. Oxidation kinetics was determined using profilometry in conjunction with etch patterning. The morphological, structural and chemical characteristics of the oxide were characterized by various analytical techniques such as scanning electron microscope and energy dispersive x-ray analysis, secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Oxidation of NBD 200 follows parabolic kinetics in the temperature range investigated and the process is diffusion-controlled. The oxide layers are enriched with sodium and magnesium from the bulk of the Si3N 4. The much higher oxidation rate for NBD 200 silicon nitride than for other silicon nitride ceramics with a similar amount of MgO is attributed to the presence of sodium. The rate-controlling mechanism is the outward diffusion of Mg2+ from the grain boundaries to the oxide scale. Aluminum implantation alleviates the detrimental effects of Na+ and Mg2+; not only is the rate of oxidation

  1. Growth and properties of LPCVD titanium nitride as a diffusion barrier for silicon device technology

    International Nuclear Information System (INIS)

    Chemical vapor deposition has been used to deposit titanium nitride (TiN) on silicon wafers at low pressures in a cold-wall single-wafer reactor. Experiments are reported for pressures in the range of 100-300 mtorr and temperatures between 450 degrees-700 degrees C, with titanium tetrachloride and ammonia as reactants. Both hydrogen and nitrogen are evaluated as diluents. Deposition rates as high as 1000 angstrom/min have been achieved. The chemical nature of the films are evaluated by Auger and RBS techniques, while the morphology is depicted by SEM. For the most part, the films are stoichiometric and contain small quantities of oxygen, chlorine, and hydrogen

  2. Low temperature NbSi thin film thermometers on Silicon Nitride membranes for bolometer applications

    International Nuclear Information System (INIS)

    We report the design of amorphous NbSi thin film bolometer thermometers on Silicon Nitride membranes. Due to the low-thermal conductivity of Si3N4, this material has several applications in millimeter wavelength bolometers and microcalorimetry. Compared to NTD-Ge thermometers, similar sensitivities are obtained with a 50 times lesser volume. The smallest realized films have a rectangular surface (100x400 μm2) and are 100 nm thick. Optimization of the thermometer shape, NbSi composition and electrical material contact is discussed. The goal of this development is to manufacture a complete array of bolometers by photolithography techniques

  3. Characterization of hydrogen-plasma interactions with photoresist, silicon, and silicon nitride surfaces

    International Nuclear Information System (INIS)

    For the 45 nm technology node and beyond, a major challenge is to achieve reasonably high photoresist ash rates while minimizing the loss of the silicon (Si) substrate and its nitride (Si3N4). Accordingly, an objective of this work is to characterize the photoresist strip rate under varying conditions of H2 plasma and the effects of these conditions on Si and Si3N4 etch rates. In addition, we discuss in detail the fundamental mechanisms of the reactions between H atoms and the above substrates and successfully reconcile the process trends obtained with the reaction mechanisms. In this work, photoresist, Si, and Si3N4 films were exposed to downstream pure-H2 discharges and their removal rates were characterized by ellipsometry as a function of the following parameters: substrate temperature, reactor pressure, H2 flow rate, and source power. The authors found that the H2-based dry ash and Si3N4 etch are both thermally activated reactions, evidenced by the steady increase in etch rate as a function of temperature, with activation energies of ∼5.0 and ∼2.7 kcal/mol, respectively. The Si substrate exhibits a rather unique behavior where the etch rate increases initially to a maximum, which occurs at ∼40 deg. C, and then decreases upon a further increase in temperature. The decrease in the Si etch rate at higher temperatures is attributed to the activation of competing side reactions that consume the chemisorbed H atoms on the Si surface, which then suppresses the Si-etch step. The photoresist and Si3N4 removal rates increase initially with increasing pressure, reaching maxima at ∼800 and 2000 mTorr, respectively, beyond which the removal rates drop with increasing pressure. The initial increase in removal rate at the low-pressure regime is attributed to the increased atomic-hydrogen density, whereas the decrease in ash rate at the high-pressure regime could be attributed to the recombination of H atoms that could occur by various mechanisms. At temperatures

  4. Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Lin Men-Ku

    2009-01-01

    Full Text Available Abstract We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR coatings and SWS and a 0.8% improvement in efficiency has been seen.

  5. Observation of different interfaces in silicon nitride by HRTEM. Influence of the microstructure on the creep properties

    Energy Technology Data Exchange (ETDEWEB)

    Bernard-Granger, G.; Cales, B. [Saint-Gobain Ceramiques Industrielles, Evreux (France). Centre de Recherches de Norton Desmarquest Fine Ceramics; Duclos, R.; Crampon, J. [Saint-Gobain Ceramiques Industrielles, Evreux (France). Centre de Recherches de Norton Desmarquest Fine Ceramics]|[LSPES, Univ. des Sciences et Technologies de Lille, Villeneuve d`Ascq (France)

    1997-12-31

    A new kind of silicon nitride ceramic has been prepared by mixing {alpha}-Si{sub 3}N{sub 4} and {alpha}-YSiAlON powders without sintering additives. Complete densification employing gas pressure sintering (GPS) has been achieved. Using high resolution transmission electronic microscopy (HRTEM) it is not possible to detect the presence of residual amorphous thin films at the different crystalline interfaces like conventionally reported for silicon nitride. This unique type of microstructure is probably at the origin of the very impressive creep performances measured for this ceramic.(orig.) 9 refs.

  6. The selection of phase composition of silicon nitride ceramics for shaping with the use of EDM machining

    OpenAIRE

    P. Putyra; J. Laszkiewicz-Łukasik; P. Wyżga; M. Podsiadło; B. Smuk

    2011-01-01

    Purpose: The purpose of this study is the selection of phase composition of Si3N4 matrix ceramics with the addition of conducting phases so as to make shaping of those materials possible by means of electro discharge machining (EDM). Silicon nitride matrix materials with the addition of oxide phases (Al2O3, MgO, ZrO2) and conducting phases (TiB2, TiN) were sintered by the method of SPS (Spark Plasma Sintering). Additionally the effect of oxide phases on silicon nitride sintering capacity, the...

  7. Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy

    International Nuclear Information System (INIS)

    This study presents the surface adhesion between hexagonal boron nitride nanotube (BNNT) and silicon based on lateral manipulation in an atomic force microscope (AFM). The BNNT was mechanically manipulated by the lateral force of an AFM pyramidal silicon probe using the scan mechanism in the imaging mode. With a controlled normal force of the AFM probe and the lateral motion, the lateral force applied to the BNNT could overcome the surface adhesion between BNNT and silicon surface. The individual BNNT is forced to slide and rotate on the silicon surface. Based on the recorded force curve, the calculated shear stress due to surface adhesion is 0.5 GPa. And the specific sliding energy loss is 0.2 J/m2. Comparing BNNTs and carbon nanotube (CNT), the shear stress and specific sliding energy loss of BNNT are an order of magnitude larger than that of CNT. Therefore, the results show that the surface adhesion between BNNT and silicon surface is higher than that of CNT.

  8. Crack propagation in micro-chevron-test samples of direct bonded silicon-silicon wafers

    Directory of Open Access Journals (Sweden)

    Detlef Billep

    2011-01-01

    Full Text Available Wafer bonding describes all technologies for joining two or more substrates directly or using certain intermediate layers. Current investigations are focused on so-called low temperature bonding as a special direct bonding technology. It is carried out without intermediate layers and at temperatures below 400 °C. In addition to the wafer materials, the toughness of the bonded interface also depends on the bonding process itself. It can vary for different pre-treatments. Furthermore, an increase of the annealing temperature leads to a higher toughness of the bonded interface.The fracture toughness is a suitable value to describe the damage behaviour of the bonded interface. Based on a micro-chevron-specimen, the fracture toughness can be determined either numerically or by combining numerical analysis with experimental measurement of the maximum force. The maximum force is measured during a micro-chevron-test using a Mode I loading. The minimum of the stress intensity coefficient can be determined by a FE-simulation only. One possibility to estimate the stress intensity coefficient is the compliance method. The compliance of the whole specimen increases with a growing crack. The stress intensity coefficient can be directly derived from the simulated compliance and the crack length itself.The paper is focused on the micro-chevron-test for direct bonded silicon-silicon wafers. Additional to the estimation of dimensionless stress intensity coefficient as a function of geometry, the influence of different pre-treatments and annealing temperatures on the measured maximum force are analysed and discussed.

  9. Design, analysis, and characterization of stress-engineered 3D microstructures comprised of PECVD silicon oxide and nitride

    Science.gov (United States)

    Pi, Chia-Hsing; Turner, Kevin T.

    2016-06-01

    Microelectromechanical systems (MEMS) are typically 2D or quasi-3D structures fabricated using surface and bulk micromachining processes. In this work, an approach for 3D structure fabrication based on stress engineering is demonstrated. Specifically, sub-mm 3D spherical cage-like structures are realized through the deformation of bilayers of residually-stressed silicon oxide and silicon nitride with micrometer-scale thicknesses. Analytical and finite models to predict the shape of stress-engineered structures based on geometry and residual stress are described and used for structure design. A systematic experimental study was performed to quantify residual stresses in silicon nitride films made by plasma-enhanced chemical vapor deposition (PECVD). The measurements show that the residual stress of PECVD silicon nitride can be tuned over a wide range of tensile stresses through the control of deposition parameters, such as flow rate and power. Stress engineered 3D cage-like structures comprised of PECVD silicon nitride and oxide films were fabricated. 3D structures with a range of curvatures were demonstrated. The measured geometry of the fabricated structures are in good agreement with predictions from analytical and finite element models.

  10. Density functional study of the bonding in small silicon clusters

    International Nuclear Information System (INIS)

    We report the ground electronic state, equilibrium geometry, vibrational frequencies, and binding energy for various isomers of Sin(n = 2--8) obtained with the linear combination of atomic orbitals-density functional method. We used both a local density approximation approach and one with gradient corrections. Our local density approximation results concerning the relative stability of electronic states and isomers are in agreement with Hartree--Fock and Moller--Plesset (MP2) calculations [K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. The binding energies calculated with the gradient corrected functional are in good agreement with experiment (Si2 and Si3) and with the best theoretical estimates. Our analysis of the bonding reveals two limiting modes of bonding and classes of silicon clusters. One class of clusters is characterized by relatively large s atomic populations and a large number of weak bonds, while the other class of clusters is characterized by relatively small s atomic populations and a small number of strong bonds

  11. Silicon-on-nitride structures for mid-infrared gap-plasmon waveguiding

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Jianwei, E-mail: mujw@mit.edu, E-mail: soref@rcn.com; Kimerling, Lionel C.; Michel, Jurgen [Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Soref, Richard, E-mail: mujw@mit.edu, E-mail: soref@rcn.com [Department of Physics and the Engineering Program, University of Massachusetts at Boston, Boston, Massachusetts 02125 (United States)

    2014-01-20

    Silicon-on-nitride (SON) is a convenient, low-loss platform for mid-infrared group IV plasmonics and photonics. We have designed 5-layer SON channel-waveguides and slab-waveguides for the 2.0 to 5.4 μm wavelength range and have simulated the resulting three-dimensional (3D) and two-dimensional (2D) SON gap-plasmon modes. Our simulations show propagation lengths of ∼60 μm for 3D gap-strip modes having a 0.003 λ{sup 2} cross-section. Because the ∼50-nm SON (Si{sub 3}N{sub 4}) mode region is also a gate insulator between silver (Ag) and n-doped Silicon (Si), metal-oxide-semiconductor accumulation gating is available for electro-optical loss modulation of the gap-confined mode.

  12. Flexible band gap tuning of hexagonal boron nitride sheets interconnected by acetylenic bonds.

    Science.gov (United States)

    Zhang, Hongyu; Luo, Youhua; Feng, Xiaojuan; Zhao, Lixia; Zhang, Meng

    2015-08-21

    The energetic and electronic properties of acetylenic-bond-interconnected hexagonal boron nitride sheets (BNyne), in which the number of rows of BN hexagonal rings (denoted as BN width) between neighboring arrays of acetylenic linkages increases consecutively, have been explored using first-principles calculations. Depending on the spatial position of B/N atoms with respect to the acetylenic linkages, there are two different types of configurations. The band structure features and band gap evolutions of BNyne structures as a function of the BN width can be categorized into two families, corresponding to two distinct types of configurations. In particular, for both types of BNyne structures, the band gap variations exhibit odd-even oscillating behavior depending on the BN width, which is related to the different symmetries of acetylenic chains in the unit cell. These results suggest that the embedded linear acetylenic chains can provide more flexibility for manipulation of the atomic and electronic properties of hexagonal boron nitride. These sp-sp(2) hybrid structures might promise importantly potential applications for developing nanoscale electronic and optoelectronic devices. PMID:26194068

  13. Metalorganic chemical vapor deposition of few-layer sp2 bonded boron nitride films

    Science.gov (United States)

    Paduano, Qing; Snure, Michael; Weyburne, David; Kiefer, Arnold; Siegel, Gene; Hu, Jianjun

    2016-09-01

    A systematic study of the growth of atomically smooth few-layer sp2 bonded BN on 50 mm sapphire substrates by metalorganic chemical vapor deposition (MOCVD) using Triethylboron (TEB) and NH3 as precursors is described. Based on the experimental results obtained using Raman spectroscopy, atomic force microscopy (AFM), X-ray reflectance measurements and transmission electron microscopy, we explored the growth parameter space and identified three different growth modes: random three-dimensional (3D) growth, a self-terminating few-layer growth mode, and a very slow layer-by-layer mode. The growth mode depends on the temperature, pressure, V/III ratio, and surface nitridation conditions, as follows: 3D island growth is dominant in the low V/III range and is characterized by a decreasing growth rate with increasing deposition temperature. When the V/III ratio is increased this 3D island growth mode transitions to a self-terminating few-layer growth mode. An additional transition from self-terminating growth to 3D growth occurs when the growth pressure is increased. Very slow layer by layer growth is found at high temperature and low pressure. Finally, substrate surface nitridation promotes self-terminating growth that results in atomically smooth films.

  14. Structural stability, elastic constants, bonding characteristics and thermal properties of zincblende, rocksalt and fluorite phases in copper nitrides: plane-wave pseudo-potential ab initio calculations

    OpenAIRE

    KANOUN-BOUAYED, Nawel; Kanoun, Mohammed Benali; Goumri-Said, Souraya

    2011-01-01

    We report plane-wave pseudo-potential ab initio calculations using density functional theory in order to investigate the structural parameters, elastic constants, bonding properties and polycrystalline parameters of copper nitrides in zincblende, rocksalt and fluorite structures. Total and partial densities of states indicate a metallic character of these copper nitrides. We estimate bond strengths and types of atomic bonds using Mulliken charge density population analysis and by calculating ...

  15. Effect of applied dc bias voltage on composition, chemical bonding and mechanical properties of carbon nitride films prepared by PECVD

    Institute of Scientific and Technical Information of China (English)

    LI Hong-xuan; XU Tao; HAO Jun-ying; CHEN Jian-min; ZHOU Hui-di; XUE Qun-ji; LIU Hui-wen

    2004-01-01

    Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.

  16. Synthesis of Silicon Nitride and Silicon Carbide Nanocomposites through High Energy Milling of Waste Silica Fume for Structural Applications

    Science.gov (United States)

    Suri, Jyothi

    Nanocomposites have been widely used in a multitude of applications in electronics and structural components because of their improved mechanical, electrical, and magnetic properties. Silicon nitride/Silicon carbide (Si 3N4/SiC) nanocomposites have been studied intensively for low and high temperature structural applications, such as turbine and automobile engine components, ball bearings, turbochargers, as well as energy applications due to their superior wear resistance, high temperature strength, high oxidation resistance and good creep resistance. Silica fume is the waste material produced during the manufacture of silicon and ferro-silicon alloys, and contains 94 to 97 wt.% SiO2. In the present dissertation, the feasibility of using waste silica fume as the raw material was investigated to synthesize (I) advanced nanocomposites of Si3N4/SiC, and (2) porous silicon carbide (SiC) for membrane applications. The processing approach used to convert the waste material to advanced ceramic materials was based on a novel process called, integrated mechanical and thermal activation process (IMTA) process. In the first part of the dissertation, the effect of parameters such as carbothermic nitridation and reduction temperature and the graphite concentration in the starting silica fume plus graphite mixture, were explored to synthesize nanocomposite powders with tailored amounts of Si3N4 and SiC phases. An effective way to synthesize carbon-free Si3N 4/SiC composite powders was studied to provide a clear pathway and fundamental understanding of the reaction mechanisms. Si3N4/SiC nanocomposite powders were then sintered using two different approaches, based on liquid phase sintering and spark plasma sintering processes, with Al 2O3 and Y2O3 as the sintering aids. The nanocomposites were investigated for their densification behavior, microstructure, and mechanical properties. Si3N4/SiC nanocomposites thus obtained were found to possess superior mechanical properties at much

  17. Friction and wear of plasma-deposited amorphous hydrogenated films on silicon nitride

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1991-01-01

    An investigation was conducted to examine the friction and wear behavior of amorphous hydrogenated carbon (a-C:H) films in sliding contact with silicon nitride pins in both dry nitrogen and humid air environments. Amorphous hydrogenated carbon films approximately 0.06 micron thick were deposited on silicon nitride flat substrates by using the 30 kHz ac glow discharge of a planar plasma reactor. The results indicate that an increase in plasma deposition power gives an increase in film density and hardness. The high-density a-C:H films deposited behaved tribologically much like bulk diamond. In the dry nitrogen environment, a tribochemical reaction produced a substance, probably a hydrocarbon-rich layer, that decreased the coefficient of friction. In the humid air environment, tribochemical interactions drastically reduced the wear life of a-C:H films and water vapor greatly increased the friction. Even in humid air, effective lubrication is possible with vacuum-annealed a-C:H films. The vacuum-annealed high-density a-C:H film formed an outermost superficial graphitic layer, which behaved like graphite, on the bulk a-C:H film. Like graphite, the annealed a-C:H film with the superficial graphitic layer showed low friction when adsorbed water vapor was present.

  18. Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride

    Science.gov (United States)

    Schuon, S.

    1980-01-01

    The effect of tungsten and tungsten carbide contamination on the oxidation and cracking in air of yttria-doped silicon nitride ceramics is investigated. Silicon nitride powder containing 8 wt % Y2O3 was doped with 2 wt % W, 4 wt % W, 2 wt % WC or left undoped, and sintered in order to simulate contamination during milling, and specimens were exposed in air to 500, 750 and 1350 C for various lengths of time. Scanning electron and optical microscopy and X-ray diffraction of the specimens in the as-sintered state reveals that the addition of W or WC does not affect the phase relationships in the system, composed of alpha and beta Si3N4, melilite and an amorphous phase. Catastrophic oxidation is observed at 750 C in specimens containing 2 and 4 wt % W, accompanied by the disappearance of alpha Si3N4 and melilite from the structure. At 1350 C, the formation of a protective glassy oxide layer was observed on all specimens without catastrophic oxidation, and it is found that pre-oxidation at 1350 C also improved the oxidation resistance at 750 C of bars doped with 4 wt % W. It is suggested that tungsten contamination from WC grinding balls may be the major cause of the intermediate-temperature cracking and instability frequently observed in Si3N4-8Y2O3.

  19. Dispersion mechanisms of aqueous silicon nitride suspensions at high solid loading

    International Nuclear Information System (INIS)

    A poly(acrylic acid) ammonium was used as dispersant for highly concentrated aqueous silicon nitride suspensions. The aim was to increase the stabilization efficiency of the dispersants at normal processing conditions (pH 10-11) through rheological and sediment measurements, and to correlate this to stabilizing mechanisms by means of ζ-potential and X-ray photoelectron energy spectrometer measurements. Rheological properties of suspensions stabilized with poly(acrylic acid) ammonium were optimized by using the wetting reagent PEG400, especially at solids loadings above 50 vol.%. XPS measurements showed 39% of SiO2 existed in Si3N4 particles would contribute to the wetting ability and dispersibility of the powder in aqueous solvent. Zeta-potential and sedimentation character show that the dispersant adsorbed on silicon nitride for efficient stabilization at high solids loadings. Efficient wetting ability was obtained for highly concentrated Si3N4 suspensions of up to 60 vol.% solids loadings with the PEG400 as wetting reagent. Finally the shrinkage and strength of green bodies formed by different solid loading slurry were characterized and the feature of the green bodies was shown out

  20. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure

  1. Review of corrosion behavior of ceramic heat exchanger materals: Corrosion characteristics of silicon carbide and silicon nitride. Final report, September 11, 1992--March 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Munro, R.G.; Dapkunas, S.J.

    1993-09-01

    The present work is a review of the substantial effort that has been made to measure and understand the effects of corrosion with respect to the properties, performance, and durability of various forms of silicon carbide and silicon nitride. The review encompasses corrosion in diverse environments, usually at temperatures of 1000C or higher. The environments include dry and moist oxygen, mixtures of hot gaseous vapors, molten salts, molten metals, and complex environments pertaining to coal ashes and slags.

  2. Recombination and thin film properties of silicon nitride and amorphous silicon passivated c-Si following ammonia plasma exposure

    International Nuclear Information System (INIS)

    Recombination at silicon nitride (SiNx) and amorphous silicon (a-Si) passivated crystalline silicon (c-Si) surfaces is shown to increase significantly following an ammonia (NH3) plasma exposure at room temperature. The effect of plasma exposure on chemical structure, refractive index, permittivity, and electronic properties of the thin films is also investigated. It is found that the NH3 plasma exposure causes (i) an increase in the density of Si≡N3 groups in both SiNx and a-Si films, (ii) a reduction in refractive index and permittivity, (iii) an increase in the density of defects at the SiNx/c-Si interface, and (iv) a reduction in the density of positive charge in SiNx. The changes in recombination and thin film properties are likely due to an insertion of N–H radicals into the bulk of SiNx or a-Si. It is therefore important for device performance to minimize NH3 plasma exposure of SiNx or a-Si passivating films during subsequent fabrication steps

  3. Nanoscale structure and superhydrophobicity of sp2-bonded boron nitride aerogels

    Science.gov (United States)

    Pham, Thang; Goldstein, Anna P.; Lewicki, James P.; Kucheyev, Sergei O.; Wang, Cheng; Russell, Thomas P.; Worsley, Marcus A.; Woo, Leta; Mickelson, William; Zettl, Alex

    2015-06-01

    Aerogels have much potential in both research and industrial applications due to their high surface area, low density, and fine pore size distribution. Here we report a thorough structural study of three-dimensional aerogels composed of highly crystalline sp2-bonded boron nitride (BN) layers synthesized by a carbothermic reduction process. The structure, crystallinity and bonding of the as-prepared BN aerogels are elucidated by X-ray diffraction, 11B nuclear magnetic resonance, transmission electron microscopy, and resonant soft X-ray scattering. The macroscopic roughness of the aerogel's surface causes it to be superhydrophobic with a contact angle of ~155° and exhibit high oil uptake capacity (up to 1500 wt%). The oil can be removed from the BN aerogel by oxidizing in air without damaging the crystalline porous structure of the aerogel or diminishing its oil absorption capacity.Aerogels have much potential in both research and industrial applications due to their high surface area, low density, and fine pore size distribution. Here we report a thorough structural study of three-dimensional aerogels composed of highly crystalline sp2-bonded boron nitride (BN) layers synthesized by a carbothermic reduction process. The structure, crystallinity and bonding of the as-prepared BN aerogels are elucidated by X-ray diffraction, 11B nuclear magnetic resonance, transmission electron microscopy, and resonant soft X-ray scattering. The macroscopic roughness of the aerogel's surface causes it to be superhydrophobic with a contact angle of ~155° and exhibit high oil uptake capacity (up to 1500 wt%). The oil can be removed from the BN aerogel by oxidizing in air without damaging the crystalline porous structure of the aerogel or diminishing its oil absorption capacity. Electronic supplementary information (ESI) available: High resolution TEM images of different portions of sample, photos of aerogels in oil bath over time, thermal gravimetric analysis data of the aerogels, and

  4. Demonstration of a silicon nitride attrition mill for production of fine pure Si and Si3N4 powders

    Science.gov (United States)

    Herbell, T. P.; Glasgow, T. K.; Orth, N. W.

    1984-01-01

    To avoid metallic impurities normally introduced by milling ceramic powders in conventional steel hardware, an attrition mill (high-energy stirred ball mill) was constructed with the wearing parts (mill body, stirring arms, and media) made from silicon nitride. Commercial silicon and Si3N4 powders were milled to fine uniform particles with only minimal contamination - primarily from wear of the sintered Si3N4 media.

  5. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    Science.gov (United States)

    Ghulinyan, M.; Bernard, M.; Bartali, R.; Pucker, G.

    2015-12-01

    In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  6. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    Directory of Open Access Journals (Sweden)

    Johan Jaime Medina Benavente

    Full Text Available Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  7. Application of FTIR spectrometry to determine the atomic composition of submicron silicon nitride layers HxSirNzHy

    International Nuclear Information System (INIS)

    Authors presents the developed software that allows to use the data from Fourier transform infrared spectrometry to calculate atomic composition in the silicon nitride HxSirNzHy layers of the submicron thickness. Autonomous and rapid method for the quantitative analysis of the IR spectra does not require prior measurement of thickness and density of the layers

  8. Role of GB chemistry of silicon nitride based ceramics with respect to the mechanical properties - experimental and theoretical approach

    Czech Academy of Sciences Publication Activity Database

    Šajgalík, P.; Hnatko, M.; Gall, M.; Dusza, J.; Tatarko, P.; Chlup, Zdeněk

    Toledo: ECERS, 2015. ISBN 978-84-606-9257-7. [ECERS 14 - International Conference of the European Ceramic Society /14./. 21.06.2015-25.06.2015, Toledo] Institutional support: RVO:68081723 Keywords : silicon nitride * mechanical properties * GB chemistry Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, I.; Jankowski, A.F.; Terminello, L.J. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Boron nitride is an interesting material for technological applications and for fundamental solid state physics investigations. It is a compound isoelectronic with carbon and, like carbon can possess sp{sup 2} and sp{sup 3} bonded phases resembling graphite and diamond. BN crystallizes in the sp{sup 2}-bonded hexagonal (h-BN), rhombohedral (r-BN) and turbostratic phases, and in the sp{sup 3}-bonded cubic (c-BN) and wurtzite (w-BN) phases. A new family of materials is obtained when replacing C-C pairs in graphite with isoelectronic B-N pairs, resulting in C{sub 2}BN compounds. Regarding other boron compounds, BN is exceptional in the sense that it has standard two-center bonds with conventional coordination numbers, while other boron compounds (e.g. B{sub 4}C) are based on the boron icosahedron unit with three-center bonds and high coordination numbers. The existence of several allotropic forms and fullerene-like structures for BN suggests a rich variety of local bonding and poses the questions of how this affects the local electronic structure and how the material accommodates the stress induced in the transition regions between different phases. One would expect point defects to play a crucial role in stress accommodation, but these must also have a strong influence in the electronic structure, since the B-N bond is polar and a point defect will thus be a charged structure. The study of point defects in relationship to the electronic structure is of fundamental interest in these materials. Recently, the authors have shown that Near-Edge X-ray Absorption Fine Structure (NEXAFS) is sensitive to point defects in h-BN, and to the formation of metastable phases even in amorphous materials. This is significant since other phase identification techniques like vibrational spectroscopies or x-ray diffraction yield ambiguous results for nanocrystalline and amorphous samples. Serendipitously, NEXAFS also combines chemical selectivity with point defect sensitivity.

  10. Network compaction and surface deformation in the hydrogenated silicon nitride film upon soft x-ray/VUV illumination

    International Nuclear Information System (INIS)

    In the present study, modifications in a hydrogenated silicon nitride film by soft x-ray/VUV (vacuum ultra violet) radiations are investigated using in situ soft x-ray reflectivity measurements at Indus-1 synchrotron source. The illumination experiments are performed at 10 deg. grazing incidence angle at which the majority of incident radiation (belonging to 10 eV-250 eV) are restricted to ∼8.0 nm depth, except near the Si-L absorption edge (100 eV) where photons penetrate much deeper into the film and initiate photochemical changes. Resultantly, the film density has increased along with a change in surface morphology. Due to illuminations, hydrogen bonds responsible for voids and network deformation are more likely to break and pave the path for the formation of more compact Si3N4 network. Evolution of hydrogen changes the surface morphology significantly. Atomic force microscopy confirms the formation of nano clusters at the surface. The out diffusion of hydrogen near the surface is responsible for surface deformation. Probable mechanism of surface modification and network compaction is discussed

  11. Formation of Silicon/Carbon Core-Shell Nanowires Using Carbon Nitride Nanorods Template and Gold Catalyst

    Directory of Open Access Journals (Sweden)

    Ilyani Putri Jamal

    2013-01-01

    Full Text Available In this experiment, silicon/carbon (Si/C core-shell nanowires (NWs were synthesized using gold nanoparticles (Au NPs coated carbon nitride nanorods (CN NRs as a template. To begin with, the Au NPs coated CN NRs were prepared by using plasma-enhanced chemical vapor deposition assisted with hot-wire evaporation technique. Fourier transform infrared spectrum confirms the C–N bonding of the CN NRs, while X-ray diffraction pattern indicates the crystalline structure of the Au NPs and amorphous structure of the CN NRs. The Au NPs coated CN NRs were thermally annealed at temperature of 800°C in nitrogen ambient for one hour to induce the growth of Si/C core-shell NWs. The growth mechanism for the Si/C core-shell NWs is related to the nitrogen evolution and solid-liquid-solid growth process which is a result of the thermal annealing. The formation of Si/C core-shell NWs is confirmed by electron spectroscopic imaging analysis.

  12. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R

    2002-01-01

    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  13. Fabrication of a full-size EUV pellicle based on silicon nitride

    Science.gov (United States)

    Goldfarb, Dario L.

    2015-10-01

    In this paper, the fabrication and initial characterization of an unsupported membrane composed of a single ultrathin silicon nitride (SiNx) layer with potential application as a EUV pellicle is described in detail. A full size free-standing pellicle with inner film area equal to 113x145mm and champion EUV transparency equal to 89.5% (single pass) is demonstrated utilizing the methodology presented in this study. The exemplary EUV transparency of the reported pellicle was achieved by limiting the membrane thickness to 16nm, while the intrinsic mechanical stability for the silicon nitride film was realized by adjusting the Si:N ratio to provide a non-stoichiometric layer featuring low tensile stress. The pellicle thickness, elemental composition and mass density were used to calculate the expected EUV transparency, which was found to be in good agreement with experimental EUV transmission measurements. Additionally, careful consideration was given to process-induced mechanical instabilities exerted on the ultrathin pellicle during the wet etch, rinsing and drying fabrication steps, and a unique yet simple set of ancillary hardware, materials and processing techniques was introduced to minimize such disturbances and yield large-area pellicles that are free of visible defects and wrinkles. In the absence of commercially available actinic inspection tools, a distinctive advantage of the SiNx membrane versus a Silicon-based EUV pellicle solution is the demonstrated ArF transmission, making it attractive for through-pellicle mask defect inspection and advanced metrology work utilizing available 193nm excimer laser and detection systems. A preliminary heat load test indicates that the SiNx-based EUV pellicle would be marginally compatible with an equivalent 80W EUV source.

  14. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  15. Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    OpenAIRE

    Okada, J. T.; Sit, P. H. -L.; Watanabe, Y; Wang, Y. J.; Barbiellini, B.; Itou, M.; Sakurai, Y.; Bansil, A.; Ishikawa, R.; Hamaishi, M.; Masaki, T; Paradis, P. -F.; Kimura, K.; Ishikawa, T.; Nanao, S.

    2012-01-01

    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-l...

  16. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    Science.gov (United States)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  17. Research on the direct doping effect of silicon on cubic boron nitride ceramics by UV-VIS diffuse reflectance

    International Nuclear Information System (INIS)

    Cubic boron nitride (cBN) micro-powders mixed with 1 wt% silicon were sintered at 1450 deg. C under a pressure of 5.0 GPa. The grain boundaries and silicon distribution in Si-cBN ceramics were studied by scanning electronic microscope (SEM) and energy-dispersive spectrometer (EDS). Optical properties of the ceramics were investigated by UV-VIS diffuse reflectance and photoluminescence spectra at room temperature. Some important parameters of studied ceramics such as absorption coefficient and defect levels were identified from reflection spectra by intercept method. The experimental results indicated the direct n-doped effect of silicon on cubic boron nitride ceramics. With a direct forbidden transition characteristic, the donor energy level of Si in forbidden zone of cBN ceramics was found to be 2.82 eV. The phonon energy related to the direct forbidden transition was 0.235 eV.

  18. Microstructure and Phase Composition of Cold Isostatically Pressed and Pressureless Sintered Silicon Nitride.

    Science.gov (United States)

    Lukianova, O A; Krasilnikov, V V; Parkhomenko, A A; Sirota, V V

    2016-12-01

    The microstructure and physical properties of new Y2O3 and Al2O3 oxide-doped silicon nitride ceramics fabricated by cold isostatic pressing and free sintering were investigated. The phase composition of produced material was also studied by X-ray diffraction at room and elevated temperature. The fabricated ceramics featured a microstructure of Si5AlON7 grains with a fine-grained α-Si3N4 with a small amount of Y2SiAlON5. Described ceramics is attractive for many high-temperature structural applications due to beneficial combination of fine-grained structure with improved mechanical properties and small weight loss. PMID:26979726

  19. Electromagnetically induced transparency and wide-band wavelength conversion in silicon nitride microdisk optomechanical resonators

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2013-01-01

    We demonstrate optomechanically-mediated electromagnetically-induced transparency and wavelength conversion in silicon nitride (Si3N4) microdisk resonators. Fabricated devices support whispering gallery optical modes with a quality factor (Q) of 10^6, and radial breathing mechanical modes with a Q=10^4 and a resonance frequency of 625 MHz, so that the system is in the resolved sideband regime. Placing a strong optical control field on the red (blue) detuned sideband of the optical mode produces coherent interference with a resonant probe beam, inducing a transparency (absorption) window for the probe. This is observed for multiple optical modes of the device, all of which couple to the same mechanical mode, and which can be widely separated in wavelength due to the large bandgap of Si3N4. These properties are exploited to demonstrate frequency upconversion and downconversion of optical signals between the 1300 nm and 980 nm bands.

  20. Magnetic-field tunable transmittance in a ferrofluid-filled silicon nitride photonic crystal slab

    International Nuclear Information System (INIS)

    A numerical simulation was performed to demonstrate the active manipulation of the transmittance spectra in a ferrofluid-filled silicon nitride (SiN) photonic crystal slab (PCS) with magnetic field applied perpendicularly to the plane. Many sharp transmittance resonances were found to be correlated with the modes extracted from band structure calculations, where they show red-shift and mutual approach as the external magnetic field increases. By changing the angle of the incident light, we found strong coupling modes because of their asymmetric electric field distributions. This in situ control of transmittance properties of ferrofluid-filled SiN PCS should open up new applications for designing filters, mirrors and displacement sensors in compact optical devices.

  1. Integrated CARS Source based on Seeded Four-wave Mixing in Silicon Nitride

    CERN Document Server

    Epping, Jörn P; van der Slot, Peter J M; Lee, Chris J; Fallnich, Carsten; Boller, Klaus-J

    2013-01-01

    We present a theoretical investigation of an integrated nonlinear light source for coherent anti-Stokes Raman scattering (CARS) based on silicon nitride waveguides. Wavelength tunable and temporally synchronized signal and idler pulses are obtained by using seeded four-wave mixing. We find that the calculated input pump power needed for nonlinear wavelength generation is more than one order of magnitude lower than in previously reported approaches based on optical fibers. The tuning range of the wavelength conversion was calculated to be 1418 nm to 1518 nm (idler) and 788 nm to 857 nm (signal), which corresponds to a coverage of vibrational transitions from 2350 cm$^{-1}$ to 2810 cm$^{-1}$. A maximum conversion efficiency of 19.1% at a peak pump power of 300 W was obtained.

  2. Tunable Squeezing Using Coupled Ring Resonators on a Silicon Nitride Chip

    CERN Document Server

    Dutt, Avik; Luke, Kevin; Cardenas, Jaime; Gaeta, Alexander L; Nussenzveig, Paulo; Lipson, Michal

    2016-01-01

    We demonstrate continuous tuning of the squeezing level generated in a double-ring optical parametric oscillator by externally controlling the coupling condition using electrically controlled integrated microheaters. We accomplish this by utilizing the avoided crossing exhibited by a pair of coupled silicon nitride microring resonators. We directly detect a change in the squeezing level from 0.5 dB in the undercoupled regime to 2 dB in the overcoupled regime, which corresponds to a change in the generated on-chip squeezing factor from 0.9 dB to 3.9 dB. Such wide tunability in the squeezing level can be harnessed for on-chip quantum enhanced sensing protocols which require an optimal degree of squeezing.

  3. Design Evaluation Using Finite Element Analysis of Cooled Silicon Nitride Plates for a Turbine Blade Application

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Two- and three-dimensional finite element analyses were performed on uncoated and thermal barrier coated (TBC) silicon nitride plates with and without internal cooling by air. Steady-state heat-transfer analyses were done to optimize the size and the geometry of the cooling channels to reduce thermal stresses, and to evaluate the thermal environment experienced by the plate during burner rig testing. The limited experimental data available were used to model the thermal profile exerted by the flame on the plate. Thermal stress analyses were performed to assess the stress response due to thermal loading. Contours for the temperature and the representative stresses for the plates were generated and presented for different cooling hole sizes and shapes. Analysis indicates that the TBC experienced higher stresses, and the temperature gradient was much reduced when the plate was internally cooled by air. The advantages and disadvantages of several cooling channel layouts were evaluated.

  4. Observation of ultraslow stress release in silicon nitride films on CaF2

    International Nuclear Information System (INIS)

    Silicon nitride thin films are deposited by plasma-enhanced chemical vapor deposition on (100) and (111) CaF2 crystalline substrates. Delaminated wavy buckles formed during the release of internal compressive stress in the films and the stress releasing processes are observed macroscopically and microscopically. The stress release patterns start from the substrate edges and propagate to the center along defined directions aligned with the crystallographic orientations of the substrate. The stress releasing velocity of SiNx film on (111) CaF2 is larger than that of SiNx film with the same thickness on (100) CaF2. The velocities of SiNx film on both (100) and (111) CaF2 increase with the film thickness. The stress releasing process is initiated when the films are exposed to atmosphere, but it is not a chemical change from x-ray photoelectron spectroscopy

  5. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    CERN Document Server

    Navarro-Urrios, Daniel; Capuj, Nestor E; Berencen, Yonder; Garrido, Blas; Tredicucci, Alessandro

    2015-01-01

    We demonstrate the integration of Nd3+ doped Barium-Titanium-Silicate microsphere lasers with a Silicon Nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity=0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On th...

  6. Preparation and Properties of Macroporous Silicon Nitride Ceramics by Gelcasting and Carbonthermal Reaction

    Institute of Scientific and Technical Information of China (English)

    Wen ZHANG; Hongjie WANG; Zhihao JIN

    2005-01-01

    Macroporous silicon nitride (Si3N4) ceramics with high strength, uniform structure and relatively high porosity were obtained by gelcasting and carbonthermal reaction in a two-step sintering technique. Microstructure and composition were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD). Open porosity, pore size distribution and basic mechanical performance were measured by Archimedes method,mercury intrusion porosimetry and three-point bending methods, respectively. SEM and TEM results revealed that pores were formed by elongated β-Si3N4. SADP measurement proved the formation of SiC particles. The SiC granules were beneficial for the formation of high ratio elongated β-Si3N4, and at proper amount, they also acted as reinforcement phase. Thermodynamic analysis indicated that the mechanisms of the reactions were mainly associated with liquid-solid reaction and gas-liquid reaction.

  7. MgB2 thin films on silicon nitride substrates prepared by an in situ method

    International Nuclear Information System (INIS)

    Large-area MgB2 thin films were deposited on silicon nitride and sapphire substrates by co-deposition of Mg and B. After a post-annealing in Ar atmosphere at temperatures between 773 and 1173 K depending on the substrate, the films showed a critical temperature higher than 35 K with a transition width less than 0.5 K. The x-ray diffraction pattern suggested a c-axis preferential orientation in films deposited on amorphous substrate. The smooth surface and the good structural properties of these MgB2 films allowed their reproducible patterning by a standard photolithographic process down to dimensions of the order of 10 μm and without a considerable degradation of the superconducting properties

  8. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes

    International Nuclear Information System (INIS)

    This study presents the superior structural versatility of strained silicon nitride (SiNx) membranes as a platform for three-dimensional (3D) hierarchical tubular architectures. The effects of compressive and tensile stressed SiNx layer thickness on the self-rolled-up tube curvature, the sacrificial layer etching anisotropy on rolling direction and chirality, and stress engineering by localized thickness control or thermal treatment, are explored systematically. Using strained SiNx membranes as an electrically insulating and optically transparent mechanical support, compact 3D hierarchical architectures involving carbon nanotube arrays and passive electronic components are demonstrated by releasing the functional structures deposited and patterned in 2D. These examples highlight the uniqueness of this platform that exploits 2D processing and self-assembly to achieve highly functional 3D structures. (paper)

  9. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    Science.gov (United States)

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications. PMID:24664026

  10. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide.

    Science.gov (United States)

    Johnson, Adrea R; Mayer, Aline S; Klenner, Alexander; Luke, Kevin; Lamb, Erin S; Lamont, Michael R E; Joshi, Chaitanya; Okawachi, Yoshitomo; Wise, Frank W; Lipson, Michal; Keller, Ursula; Gaeta, Alexander L

    2015-11-01

    We demonstrate the generation of a supercontinuum spanning more than 1.4 octaves in a silicon nitride waveguide using sub-100-fs pulses at 1 μm generated by either a 53-MHz, diode-pumped ytterbium (Yb) fiber laser or a 1-GHz, Yb:CaAlGdO(4) (Yb:CALGO) laser. Our numerical simulations show that the broadband supercontinuum is fully coherent, and a spectral interference measurement is used to verify that the supercontinuum generated with the Yb:CALGO laser possesses a high degree of coherence over the majority of its spectral bandwidth. This coherent spectrum may be utilized for optical coherence tomography, spectroscopy, and frequency metrology. PMID:26512533

  11. Behavior of joining interface between thin film metallic glass and silicon nitride at heating

    International Nuclear Information System (INIS)

    Thin film metallic glass is usually deposited directly on a substrate. The strength of the adhesive join between the substrate surface and the thin film metallic glass is important for fabrication of micro- and/or nano-electromechanical systems. The strength of the join is especially affected by the stresses at the interface, created by the thermal history during the fabrication process and/or during use. In the present study, a bimetallic cantilever of silicon nitride film with a Pd-based thin film metallic glass was fabricated and heated under vacuum in order to generate high stresses at the joining interface. The behavior at the interface were observed and analyzed in terms of the projected length of the cantilever

  12. Microstructure and Phase Composition of Cold Isostatically Pressed and Pressureless Sintered Silicon Nitride

    Science.gov (United States)

    Lukianova, O. A.; Krasilnikov, V. V.; Parkhomenko, A. A.; Sirota, V. V.

    2016-03-01

    The microstructure and physical properties of new Y2O3 and Al2O3 oxide-doped silicon nitride ceramics fabricated by cold isostatic pressing and free sintering were investigated. The phase composition of produced material was also studied by X-ray diffraction at room and elevated temperature. The fabricated ceramics featured a microstructure of Si5AlON7 grains with a fine-grained α-Si3N4 with a small amount of Y2SiAlON5. Described ceramics is attractive for many high-temperature structural applications due to beneficial combination of fine-grained structure with improved mechanical properties and small weight loss.

  13. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  14. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  15. Silicon Nitride Plates for Turbine Blade Application: FEA and NDE Assessment

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Engine manufacturers are continually attempting to improve the performance and the overall efficiency of internal combustion engines. The thermal efficiency is typically improved by raising the operating temperature of essential engine components in the combustion area. This reduces the heat loss to a cooling system and allows a greater portion of the heat to be used for propulsion. Further improvements can be achieved by diverting part of the air from the compressor, which would have been used in the combustor for combustion purposes, into the turbine components. Such a process is called active cooling. Increasing the operating temperature, decreasing the cooling air, or both can improve the efficiency of the engine. Furthermore, lightweight, strong, tough hightemperature materials are required to complement efficiency improvement for nextgeneration gas turbine engines that can operate with minimum cooling. Because of their low-density, high-temperature strength, and thermal conductivity, ceramics are being investigated as potential materials for replacing ordinary metals that are currently used for engine hot section components. Ceramic structures can withstand higher operating temperatures and other harsh environmental factors. In addition, their low densities relative to metals helps condense component mass (ref. 1). The objectives of this program at the NASA Glenn Research Center are to develop manufacturing technology, a thermal barrier coating/environmental barrier coating (TBC/EBC), and an analytical modeling capability to predict thermomechanical stresses, and to do minimal burner rig tests of silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Furthermore, and in support of the latter objectives, an optimization exercise using finite element analysis and nondestructive evaluation (NDE) was carried out to characterize and evaluate silicon nitride plates with cooling channels.

  16. Formation of Silicon-Gold Eutectic Bond Using Localized Heating Method

    Science.gov (United States)

    Lin, Liwei; Cheng, Yu-Ting; Najafi, Khalil

    1998-11-01

    A new bonding technique is proposed by using localized heating to supplythe bonding energy.Heating is achieved by applying a dc current through micromachined heaters made of gold which serves as both the heating and bonding material.At the interface of silicon and gold, the formation of eutectic bond takes place in about 5 minutes.Assembly of two substrates in microfabrication processescan be achieved by using this method.In this paper the following important results are obtained:1) Gold diffuses into silicon to form a strong eutectic bond by means of localized heating.2) The bonding strength reaches the fracture toughness of the bulk silicon.3) This bonding technique greatly simplifies device fabrication andassembly processes.

  17. Low-temperature strength tests and SEM imaging of hydroxide catalysis bonds in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beveridge, N L; Van Veggel, A A; Hendry, M; Murray, P; Montgomery, R A; Scott, J; Cunningham, L; Hough, J; Nawrodt, R; Reid, S; Rowan, S [School of Physics and Astronomy, SUPA Institute for Gravitational Research, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Jesse, E [Embry-Riddle Aeronautical University, 3700 Willow Creek Road, Prescott, AZ 86301-3720 (United States); Bezensek, R B, E-mail: n.beveridge@physics.gla.ac.uk [Hunting Energy Services, Aberdeen, AB12 4YB (United Kingdom)

    2011-04-21

    Silicon is under consideration as a substrate material for the test masses and suspension elements of gravitational wave detectors of improved sensitivity. Hydroxide catalysis bonding is a candidate technique for jointing silicon elements with the potential for both high strength and low mechanical loss. A future detector with quasi-monolithic silicon final stages may operate at cryogenic temperatures. Here we present the first studies of the strength of silicon-silicon bonds at 77 K (liquid nitrogen temperature) and show characteristic strengths of {approx}44 MPa. When comparing cryogenic to room temperature results, no significant difference is apparent in the strength. We also show that a minimum thickness of oxide layer of 50 nm is desirable to achieve reliably strong bonds. Bonds averaging 47 nm in thickness are achieved for oxide thicknesses greater than 50 nm.

  18. Final report. Fabrication of silicon carbide/silicon nitride nanocomposite materials and characterization of their performance; Herstellung von Siliciumcarbid/Siliciumnitrid-Nanocomposite-Werkstoffen und Charakterisierung ihrer Leistungsfaehigkeit. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R.; Woetting, G.; Schmitz, H.W.

    1998-07-01

    The presented activities were initiated by the well known publications of Niihara and Ishizaki. There, the strengthening and toughening of silicon nitride by nanoscaled silicon carbide particles are described. Both authors have used expensive powder production routes to achieve the optimum mechanical properties. However, for a commercial purpose these routes are not applicable due to their high cost and low reproducibility. The production route chosen by H.C. Starck together with CFI and the Fraunhofer-Institute is a powder synthesis based on the carbothermal reaction of silicon nitride as a low cost synthesis method. The investigations were performed for materials made from synthesis powders and other reference materials. The materials were densified with relatively high amounts of conventional sintering additives by gas pressure sintering. It is shown, that the postulated maxima of strength and fracture toughness behaviour at room temperature with maxima at about 5% to 25% nanoscaled SiC cannot be achieved. However, the mechanical high temperature material behaviour is as good as the behaviour of highly developed silicon nitride materials, which are produced by HIP or by consequent minimisation of the additive content with the well known difficulties to densify these materials. An overview will be given here on the powder production route and their specific problems, the mechanical properties, the microstructure and the possible effects of the microstructure, which result in an improvement of the creep resistance. (orig.)

  19. Chemical bonding in hard and elastic amorphous carbon-nitride films

    Science.gov (United States)

    Gammon, Wesley Jason

    In this study, the chemical bonding in hard and elastic amorphous carbon nitride (a-CNx) films is investigated with x-ray photoelectron spectroscopy (XPS) and 15N, 13C, and 1H nuclear magnetic resonance (NMR) spectroscopy. The films were deposited by DC Magnetron sputtering in a pure nitrogen discharge on Si(001) substrates at 300--400°C. Nanoindentation measurements reveal an elastic modulus of ˜50 GPa and a hardness of ˜5 GPa, thus confirming our films are highly elastic but resist plastic deformation. Our 13C NMR study demonstrates the absence of sp 3-bonded carbon in this material. Collectively, our N(1s) XPS, 13C NMR, and 15N NMR data suggest a film-bonding model that has an aromatic carbon structure with sp2-hybridized nitrogen incorporated in heterocyclic rings. We demonstrate that the nitrogen bonding is predominantly in configurations similar to those in pyridine and pyrrole. In addition, the data indicate that the a-CNx films prepared for this study have low hydrogen content, but are hydrophilic. Specifically, results from 15N and 13C cross polarization (CP) and 1H magic angle spinning (MAS) NMR experiments suggest that nitrogen sites are susceptible to protonation from water absorbed during sample preparation for the NMR experiments. The sensitivity of the surface of a-CNx to water absorption may impact tribological applications for this material. In accord with our XPS and NMR spectroscopic studies on a-CN x films, we propose a film-structure model consisting of buckled graphitic planes that are cross-linked together by sp2 hybridized carbons. The curvature and cross-linking is attributed to a type of compound defect, which is formed by placing a pentagon next to single-atom vacancy in a graphite layer. Our proposed film structure is called the pentagon-with-vacancy-defect (5VD) model. Using Hartree-Fock calculations, we show that the 5VD, film-structure model is compatible with our XPS, NMR, and nanoindentation measurements and with previous

  20. Study on dielectric charging in low-stress silicon nitride with the MIS structure for reliable MEMS applications

    International Nuclear Information System (INIS)

    Charge-induced failure has been recognized as a primary reliability issue in capacitive micro-actuators. In this paper, we present a simple method to assess the effect of dielectric charging on reliability of a capacitive micro-actuator. By capacitance–voltage measurements for a metal–insulator–semiconductor (MIS) structure, the characteristics of dielectric charging can be investigated, and the obtained results can be used to study the charging behavior of a capacitive micro-actuator. An analytical model based on this method has been established. The silicon-rich nitride film was deposited by low-pressure chemical vapor deposition on silicon substrate. The current–voltage and capacitance–voltage measurements exhibit an asymmetric electrical characteristic under different polarity of stress voltage. The charging parameters of the silicon-rich nitride were extracted by the stretched exponential curve fitting method. This charging behavior suggests that silicon-rich nitride can be negatively or positively charged, and the injection and transport of holes are more favored than the injection and transport of electrons. The charge injection from movable electrode plays a dominant role in the dielectric charging of a capacitive micro-actuator. It is expected that the charge accumulation in dielectrics can be eliminated by employing the bipolar square-wave voltage to actuate a capacitive micro-actuator.

  1. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    International Nuclear Information System (INIS)

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH3/SiH4 ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH3/SiH4 ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects

  2. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Casas Espinola, J.L. [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Vergara Hernandez, E. [UPIITA—Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Khomenkova, L., E-mail: khomen@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv (Ukraine); Delachat, F.; Slaoui, A. [ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 (France)

    2015-04-30

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH{sub 3}/SiH{sub 4} ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH{sub 3}/SiH{sub 4} ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects.

  3. Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon

    Energy Technology Data Exchange (ETDEWEB)

    Van Veggel, A A; Scott, J; Skinner, D A; Cunningham, W; Hough, J; Martin, I; Murray, P; Reid, S; Rowan, S [Department of Physics and Astronomy, SUPA Institute for Gravitational Research, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bezensek, B, E-mail: m.veggel@physics.gla.ac.u [Materials Group, Department of Mechanical Engineering, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2009-09-07

    Silicon is under consideration as a substrate material for the mirror masses and quasi-monolithic suspension stages of 'third generation' gravitational wave detectors. Identifying a jointing technique to attach the silicon suspension elements to the optics with repeatable high strength and low mechanical loss is critical. Hydroxide-catalysis bonding is the method of choice for current quasi-monolithic silica suspensions. Here we present measurements of the shear strength of hydroxide-catalysis bonds between silicon samples. Strengths of approximately 3.9 N mm{sup -2} are found, comparable to strengths found for silica to silica bonds. Scanning electron microscope imaging shows that the bonds between two silicon parts with thermally grown SiO{sub 2} layers are wedged with bond thicknesses varying from 30 nm to several micrometres. We suggest a possible explanation for this observation.

  4. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels

    International Nuclear Information System (INIS)

    Highlights: • Bisphenol-F based boron-phenolic resins (B-BPF) with B−O bonds were synthesized. • The modified silicon nitride (m-SiN) was well dispersed and adhered in the B-BPF. • B-BPF/m-SiN composites have good thermal resistance and mechanical properties. • The grinding wheels bound by B-BPF/m-SiN have excellent grinding quality. - Abstract: In this study, phenolic resins based on bisphenol-F (BPF) were synthesized. Besides, ammonium borate was added in the synthesis process of BPF to form the bisphenol-F based boron-phenolic resins (B-BPF). The glass transition temperature, thermal resistance, flexural strength and hardness of B-BPF are respectively higher than those of BPF. This is due to the presence of new cross-link B−O bonds in the B-BPF. In addition, the 3-aminopropyltriethoxysilane modified silicon nitride powders (m-SiN) were fully mixed with B-BPF to form the B-BPF/m-SiN composites. The thermal resistance and mechanical properties of the B-BPF/m-SiN are promoted by the well-dispersed and well-adhered m-SiN in these novel polymer/ceramics composites. The results of grinding experiments indicate that the grinding wheels bound by the B-BPF/m-SiN have better grinding quality than those bound by the BPF. Thus the B-BPF/m-SiN composites are better binding media than the BPF resins

  5. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Te [Department of Polymer Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei 106, Taiwan (China); Lee, Hsun-Tsing [Department of Materials Science and Engineering, Vanung University, Chung-Li, Tao-Yuan, Taiwan (China); Chen, Jem-Kun, E-mail: jkchen@mail.ntust.edu.tw [Department of Polymer Engineering, National Taiwan University of Science and Technology, 43, Sec 4, Keelung Rd, Taipei 106, Taiwan (China)

    2015-03-01

    Highlights: • Bisphenol-F based boron-phenolic resins (B-BPF) with B−O bonds were synthesized. • The modified silicon nitride (m-SiN) was well dispersed and adhered in the B-BPF. • B-BPF/m-SiN composites have good thermal resistance and mechanical properties. • The grinding wheels bound by B-BPF/m-SiN have excellent grinding quality. - Abstract: In this study, phenolic resins based on bisphenol-F (BPF) were synthesized. Besides, ammonium borate was added in the synthesis process of BPF to form the bisphenol-F based boron-phenolic resins (B-BPF). The glass transition temperature, thermal resistance, flexural strength and hardness of B-BPF are respectively higher than those of BPF. This is due to the presence of new cross-link B−O bonds in the B-BPF. In addition, the 3-aminopropyltriethoxysilane modified silicon nitride powders (m-SiN) were fully mixed with B-BPF to form the B-BPF/m-SiN composites. The thermal resistance and mechanical properties of the B-BPF/m-SiN are promoted by the well-dispersed and well-adhered m-SiN in these novel polymer/ceramics composites. The results of grinding experiments indicate that the grinding wheels bound by the B-BPF/m-SiN have better grinding quality than those bound by the BPF. Thus the B-BPF/m-SiN composites are better binding media than the BPF resins.

  6. Design and fabrication of in-plane AFM probes with sharp silicon nitride tips based on refilling of anisotropically etched silicon moulds

    International Nuclear Information System (INIS)

    In this paper a micromachining method for batch fabrication of in-plane atomic force microscope (AFM) probes that consist of a sharp silicon nitride tip on a monocrystalline silicon cantilever is presented. The tips are realized by conformal deposition of silicon nitride inside an anisotropically etched cavity inside a silicon wafer. The best measured radius of the sharp tips was 8 nm. Our fabrication method is fully compatible with silicon-on-insulator (SOI) micromachining, allowing a straightforward monolithic integration of the AFM probes with high-aspect-ratio monocrystalline silicon MEMS. The fabrication method allows for lateral cantilevers, which oscillate in the plane of the fabrication wafer. This allows for simple integration of micromechanical transducers, opening the way towards dedicated probes for high speed AFMs. To demonstrate the innovation potential of this method, three different probe designs were fabricated: a plane passive AFM probe, a probe with integrated electrostatic actuator, and a probe which allows scanning on vertical sidewalls. The passive probes were successfully tested in a commercial AFM set-up. Correct operation of the probes with integrated actuator was demonstrated by actuation under a laser vibrometer. (paper)

  7. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride

    Science.gov (United States)

    Gao, Yufei; Zhang, Xiaoliang; Jing, Yuhang; Hu, Ming

    2015-04-01

    Hexagonal boron nitride (BN) and its bilayer form are very fascinating two-dimensional materials that have attracted tremendous interest recently. Their realistic applications in emerging nanoelectronics usually quest for manipulating the thermal transport properties in a precise manner. Using nonequilibrium molecular dynamics simulations, we herein studied the effect of inter-layer covalent bonding on the thermal conductivity of bilayered BN. We found that the in-plane thermal conductivity of bilayered BN, which can be largely tuned by introducing covalent bonding between the two BN layers, depends not only on the inter-layer bonding density, but also on the detailed topological configuration of the inter-layer bonds. For randomly distributed inter-layer bonding the thermal conductivity of bilayered BN decreases monotonically with inter-layer bonding density, the same behavior already found for bilayered graphene. However, for regularly arranged inter-layer bonding the thermal conductivity of bilayered BN surprisingly possesses a non-monotonic dependence on the inter-layer bonding density. This non-intuitive non-monotonic dependence is further explained by performing spectral energy density analysis, where the peak and valley values of the thermal conductivity are governed by different mechanisms. These results suggest the application of inter-layer covalent bonding in designing nanoscale devices with precisely tunable thermal conductivities.

  8. Bands, bonds, and polarizations in nitrides - from electronic orbitals to electronic devices

    International Nuclear Information System (INIS)

    A key property of the nitrides is the fact that they posses large spontaneous and piezoelectric polarization fields that allow a significant tailoring of the carrier dynamics and optical properties of nitride devices. In this paper, based on first-principle calculations of structural and electronic properties of bulk nitrides and their heterostructure, we investigate the potential of this novel material class for modern device applications by performing self-consistent Monte Carlo simulations. Our studies reveal that the nitride based electronic devices have characteristics that predispose them for high power and high frequency applications. We demonstrate also that transistor characteristics are favourably influenced by the internal polarization induced electric field. (author)

  9. Electronic properties of interfaces produced by silicon wafer hydrophilic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Trushin, Maxim

    2011-07-15

    The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. A new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle ({proportional_to}0.5 ), but with four different twist misorientation angles Atw (being of < , 3 , 6 and 30 , respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1 and 3 , whereas the prevalent deep levels - in LA-samples with Atw of 6 and 30 . The critical twist

  10. Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure

    International Nuclear Information System (INIS)

    Silicon nitride films were deposited using an atmospheric pressure plasma source. The discharge was produced by flowing nitrogen and helium through two perforated metal electrodes that were driven by 13.56 MHz radio frequency power. Deposition occurred by mixing the plasma effluent with silane and directing the flow onto a rotating silicon wafer heated to between 100 deg. C and 500 deg. C. Film growth rates ranged from 90±10 to 1300±130 A min-1. Varying the N2/SiH4 feed ratio from 55.0 to 5.5 caused the film stoichiometry to shift from SiN1.45 to SiN1.2. Minimum impurity concentrations of 0.04% carbon, 3.6% oxygen and 13.6% hydrogen were achieved at 500 deg. C, and an N2/SiH4 feed ratio of 22.0. The growth rate increased with increasing silane and nitrogen partial pressures, but was invariant with respect to substrate temperature and rotational speed. The deposition rate also decreased sharply with distance from the plasma. These results combined with emission spectra taken of the afterglow suggest that gas-phase reactions between nitrogen atoms and silane play an important role in this process

  11. Competitive precipitation of amorphous and crystalline silicon nitride in ferrite: Interaction between structure, morphology, and stress relaxation

    International Nuclear Information System (INIS)

    We present a detailed analysis based on both experimental and modeling approaches of the unique silicon nitride precipitation sequence recently observed in ferritic Fe–Si alloys upon nitriding. At 570 °C, silicon nitride forms as an amorphous phase of size-dependent cuboidal morphology which results from the symmetry of matrix crystal structure. These amorphous precipitates are stable over remarkably long treatment durations. However, we demonstrate here that it is possible to trigger a transition to the precipitation of a crystalline modification of Si3N4 by switching to a denitriding medium at the same temperature. This change in structure is associated with a change from the cube-like morphology to a hexagonal prism shape. This unique phenomenon, driven by a classical nucleation and growth process, can be explained by the shift of stress-relief mechanism related to the change of atmosphere. The plentiful availability of nitrogen atoms during nitriding allows a strong relaxation of the precipitation-induced stress, which is energetically more favorable to the amorphous phase. Upon annealing in a low nitrogen activity medium, nitrogen in solid solution diffuses outward and no longer relieves the precipitation-induced stress. In that configuration, the crystalline modification of Si3N4 becomes more stable owing to its lower associated stress. It precipitates in a hexagonal prism shape, which is the equilibrium shape dictated by the crystal symmetries of both the matrix and the precipitates

  12. The effect of pressureless densification on mechanical and tribological properties of fine-grained silicon nitride ceramics

    International Nuclear Information System (INIS)

    The paper presents a new economic method of silicon nitride ceramic preparation for high wear resistant applications as sealing valves or the brake pad lining. The excellent mechanical properties and wear resistance of the resultant ceramic were improved by reduction of silicon nitride grain size to the one-two micrometer level as a result of mechanochemical processing and special procedure of compact densification. All experiments were conducted on specimens prepared from α-Si3N4-AlN-Y2O3 powders with application of mechanochemical processing (MCP). The chosen specimens were tested for hardness, elastic modulus, bending strength and wear resistance. The results showed mechanical properties in the range of hot-pressed ceramics and superior wear resistance due to micrometer-sized β-Si3N4 grains.

  13. Characterization of Strain Induced by PECVD Silicon Nitride Films in Transistor Channels

    Science.gov (United States)

    Thomas, R.; Benoit, D.; Clément, L.; Morin, P.; Cooper, D.; Bertin, F.

    2011-11-01

    In order to reach high levels of transistor performance, it is desirable to increase electrical conductivity of the device. An efficient way to enhance carrier mobility in the conduction channel is to generate strain in the structure using process-induced stress. To achieve that, stress engineering of the contact etch stop layer (CESL), an amorphous hydrogenated silicon nitride film deposited by plasma enhanced chemical vapour deposition on top of the metal oxide semiconductor assembly, is widely used since it is a low-cost technique. Indeed, this film possesses an intrinsic stress that can be set from tensile (σ = 1.6 GPa) to compressive (σ = -3.0 GPa) depending on deposition conditions. From an electrical point of view, strain induced in the silicon channel can lead to an increase of carrier mobility as high as 8-10% which in turn increases Ion/Ioff and decreases switching time of the transistor. Usually, strain induced in the channel is very low (0.1-0.3%), making quantitative measurements challenging. Moreover, stress transmission mechanisms are not fully understood at the nano-metre scale. To evaluate stress transmission in the silicon channel, we used dark-field electron holography characterization technique operating on both the Titan and Tecnai F20 transmission electron microscopes. Strain maps with nanometre spatial resolution, high sensitivity (Δɛ≈10-3%) and large field of view (400-500 nm2) have been obtained on CESL strained devices. In order to understand stress transfer mechanisms, we have analysed structures with varying spacing between patterns. The experimental results are compared to those obtained by 2-D finite elements analysis simulation.

  14. Influence of additive system (Al2O3-RE2O3 , RE = Y, La, Nd, Dy, Yb) on microstructure and mechanical properties of silicon nitride-based ceramics

    OpenAIRE

    Juliana Marchi; Cecilia Chaves Guedes e Silva; Bruno Batista Silva; José Carlos Bressiani; Ana Helena de Almeida Bressiani

    2009-01-01

    Silicon nitride based ceramics have been widely used as structural ceramics, due mainly to their thermo-mechanical properties such as high density, high thermal shock resistance, corrosion resistance and chemical stability. The aim of this study was to determine the influence of rare earth and aluminum oxide additions as sintering aids on densification, microstructure and mechanical properties of silicon nitride. Silicon nitride mixtures with 91 wt. (%) Si3N4 and 9% wt. (%) additives were pre...

  15. Extending the emission wavelength of Ge nanopillars to 2.25 μm using silicon nitride stressors

    OpenAIRE

    Millar, R.W.; Gallacher, K.; Samarelli, A.; Frigerio, J.; Chrastina, D.; Isella, G.; Dieing, T.; Paul, D. J.

    2015-01-01

    The room temperature photoluminescence from Ge nanopillars has been extended from 1.6 μm to above 2.25 μm wavelength through the application of tensile stress from silicon nitride stressors deposited by inductively-coupled-plasma plasma-enhanced chemical-vapour-deposition. Photoluminescence measurements demonstrate biaxial equivalent tensile strains of up to ~ 1.35% in square topped nanopillars with side lengths of 200 nm. Biaxial equivalent strains of 0.9% are observed in 3...

  16. Role of silicon hydride bonding environment in alpha-silicon:hydrogen films for c-silicon surface passivation

    Science.gov (United States)

    Burrows, Michael Z.

    High efficiency silicon solar cells achieve greater than 700 mV open circuit voltage through excellent surface passivation of the monocyrstalline absorber. This work studies the bifacial plasma enhanced chemical vapor deposited (PECVD) intrinsic amorphous silicon ((i) alpha-Si:H) passivation structure. To enable the correct interpretation of FTIR detected vibrational modes a model of the layered substructure of ultra-thin (i) alpha-Si:H is constructed. A high fraction of di-hydride bonding is associated with defective, low density amorphous film, and control of this parameter is established by varying hydrogen dilution ratio. The hypothesis that a high fraction of di-hydride bonding over mono-hydride within the film would lead to a poor passivation layer is tested and shown to be false. This is due to the bulk layer within the model defining the di-hydride fraction and indicates that the interface layer plays the more dominant role. A comparison between rf plasma PECVD deposited films and dc plasma shows that upon 30 min, 285°C annealing, large improvements in passivation occur when dc plasma was used with gains in minority carrier effective lifetimes over 1 msec possible. The passivation quality of rf generated films is less effected by annealing. rf plasma films show detectable mono-, di-, and tri-hydride high-potential modes in the as-deposited condition that are removed upon annealing. The finite loss of bulk mono-hydride and these interfacial hydrides do not have a strong impact on film passivation quality. It is concluded that the film has reached an equilibrium level of interfacial defect density which is unaffected by the limited loss of hydride bonding observed. dc plasma films undergo large improvements in passivation quality upon annealing. An increase in mono-hydride bonding at the internal surfaces of nanometer sized voids is detected. It is proposed that this mono-hydride bonding is reducing the density of unsaturated bonds, lowering the interfacial

  17. Improved memory performance of metal—oxide—nitride—oxide—silicon by annealing the SiO2 tunnel layer in different nitridation atmospheres

    International Nuclear Information System (INIS)

    Metal—oxide—nitride—oxide—silicon (MONOS) capacitors with thermally grown SiO2 as the tunnel layer are fabricated, and the effects of different ambient nitridation (NH3, NO and N2O) on the characteristics of the memory capacitors are investigated. The experimental results indicate that the device with tunnel oxide annealed in NO ambient exhibits excellent memory characteristics, i.e. a large memory window, high program/erase speed, and good endurance and retention performance (the charge loss rate is 14.5% after 10 years). The mechanism involved is that much more nitrogen is incorporated into the tunnel oxide during NO annealing, resulting in a lower tunneling barrier height and smaller interface state density. Thus, there is a higher tunneling rate under a high electric field and a lower probability of trap-assisted tunneling during retention, as compared to N2O annealing. Furthermore, compared with the NH3-annealed device, no weak Si—H bonds and electron traps related to the hydrogen are introduced for the NO-annealed devices, giving a high-quality and high-reliability SiON tunneling layer and SiON/Si interface due to the suitable nitridation and oxidation roles of NO. (semiconductor devices)

  18. A high-Tc superconductor bolometer on a silicon nitridemembrane

    OpenAIRE

    Sanchez, S.; Elwenspoek, M.C.; Gui, C; Nivelle, de, M.J.M.E.; De, Vries; Korte, de, N.; Bruijn, M.P.; Schwierzi, B.

    1997-01-01

    In this paper we describe the design, fabrication and performance of a high-Tc GdBa2Cu3O7-δ superconductor bolometer positioned on a 2×2 mm2, 1 μm thick silicon nitride membrane. The bolometer structure has an effective area of 0.64 mm2 and was grown on a specially developed silicon-on-nitride layer. This layer was made by direct bonding of silicon nitride to silicon after chemical mechanical polishing. The operation temperature of the bolometer is 85 K. A thermal conductance G=3.3·10-5 W/K w...

  19. Development of an aluminum nitride-silicon carbide material set for high-temperature sensor applications

    Science.gov (United States)

    Griffin, Benjamin A.; Habermehl, Scott D.; Clews, Peggy J.

    2014-06-01

    A number of important energy and defense-related applications would benefit from sensors capable of withstanding extreme temperatures (>300°C). Examples include sensors for automobile engines, gas turbines, nuclear and coal power plants, and petroleum and geothermal well drilling. Military applications, such as hypersonic flight research, would also benefit from sensors capable of 1000°C. Silicon carbide (SiC) has long been recognized as a promising material for harsh environment sensors and electronics because it has the highest mechanical strength of semiconductors with the exception of diamond and its upper temperature limit exceeds 2500°C, where it sublimates rather than melts. Yet today, many advanced SiC MEMS are limited to lower temperatures because they are made from SiC films deposited on silicon wafers. Other limitations arise from sensor transduction by measuring changes in capacitance or resistance, which require biasing or modulation schemes that can with- stand elevated temperatures. We are circumventing these issues by developing sensing structures directly on SiC wafers using SiC and piezoelectric aluminum nitride (AlN) thin films. SiC and AlN are a promising material combination due to their high thermal, electrical, and mechanical strength and closely matched coefficients of thermal expansion. AlN is also a non-ferroelectric piezoelectric material, enabling piezoelectric transduction at temperatures exceeding 1000°C. In this paper, the challenges of incorporating these two materials into a compatible MEMS fabrication process are presented. The current progress and initial measurements of the fabrication process are shown. The future direction and the need for further investigation of the material set are addressed.

  20. Theoretical study of charge trapping levels in silicon nitride using the LDA-1/2 self-energy correction scheme for excited states

    International Nuclear Information System (INIS)

    Silicon nitride, with a permittivity mid-way between SiO2 and common high-k materials such as HfO2, is widely used in microelectronics as an insulating layer on top of oxides where it serves as an impurity barrier with the positive side effect of increasing the dielectric constant of the insulator when it is SiO2. It is also employed as charge storage in nonvolatile memory devices thanks to its high concentration of charge traps. However, in the case of memories, it is still unclear which defects are responsible for charge trapping and what is the impact of defect concentration on the structural and electronic properties of SiNx. Indeed, for the amorphous phase the band gap was measured in the range 5.1–5.5 eV, with long tails in the density of states penetrating the gap region. It is still not clear which defects are responsible for the tails. On the other hand, the K-center defects have been associated with charge trapping, though its origin is assigned to one Si back bond. To investigate the contribution of defect states to the band edge tails and band gap states, we adopted the β phase of stoichiometric silicon nitride (β-Si3N4) as our model material and calculated its electronic properties employing ab initio DFT/LDA simulations with self-energy correction to improve the location of defect states in the SiNx band gap through the correction of the band gap underestimation typical of DFT/LDA. We considered some important defects in SiNx, as the Si anti-site and the N vacancy with H saturation, in two defect concentrations. The location of our calculated defect levels in the band gap correlates well with the available experimental data, offering a structural explanation to the measured band edge tails and charge trapping characteristics.

  1. Evaluation of Bonding Orbitals in Amorphous Silicon by Means of the Chemical Pseudopotential Method

    OpenAIRE

    Grado Caffaro, M. A.; Grado Caffaro, M.

    1994-01-01

    The chemical pseudopotential method has been used by a number of workers in order to study the valence bands of amorphous tetrahedrally bonded semiconductors. However, various problems related to this method are unsolved. In this paper, a theoretical formulation tending to clarify some of these. problems is presented. This formulation concerns bonding orbitals and is valid, in principle, for amorphous silicon.

  2. Synchrotron radiation studies of local structure and bonding in transition metal aluminides and rare earth transition metal magnetic nitrides. Final report, August 1, 1990--July 14, 1993

    International Nuclear Information System (INIS)

    The following areas of study are reported on: bonding and near neighbor force constants in NiAl, CoAl, FeAl via temperature dependent EXAFS; alloys formed when Fe or Ga is microalloyed into a NiAl matrix; EXAFS studies of nitrided versus non nitrided Y2Fe17; and transition metal x-ray spectra as related to magnetic moments

  3. Thermal annealing effect on ultraviolet-light-induced leakage current in low-pressure chemical vapor deposited silicon nitride films

    International Nuclear Information System (INIS)

    We report the effects of isothermal annealing on the current component, the paramagnetic K0 centers, and charge accumulation, induced by exposing silicon nitride films and silicon nitride–silicon dioxide double-layer films to 4.9-eV ultraviolet (UV) illumination. The UV-induced current component decayed as a result of the isothermal annealing at temperatures ranging from 27 °C to 240 °C, and was induced once again by UV exposure following the annealing. The density of the current component showed a close correlation with the density of the K0 centers. Based on detailed analysis, we show that electron–hole pair generation in the bulk of the silicon nitride film is the possible source of the UV-induced current component. - Highlights: • We report the thermal stability of the UV-light-induced current in Si3N4 films. • The UV-induced current component decayed as a result of the thermal annealing. • The UV-induced current showed a high correlation with K0 center density. • We claim that electron–hole pair generation is the source of the current component

  4. Correlation between photo response and nanostructures of silicon quantum dots in annealed Si-rich nitride films

    International Nuclear Information System (INIS)

    Synthesis and characterization of silicon quantum dots (Si QDs) materials are carried out. The Si QDs were prepared from a hydrogenated silicon rich nitride film that is deposited by the plasma enhanced chemical vapor deposition process with a gas mixture of SiH4 and NH3 at flow ratios from 0.5 to 2. The Si QDs can be precipitated from the hydrogenated silicon rich nitride film by a high temperature annealing. The optimum density of the Si QDs precipitated amounts to 6.4 × 1012 cm−2, as calculated from transmission electron microscope images, for flow ratio of SiH4 versus NH3 at 2, and particle sizes less than 6 nm. The dots density within the film becomes concentrated when the flow ratio of SiH4 versus NH3 increases. The intensity of photo response increases drastically when the dots density becomes large. - Highlights: ► Silicon quantum dots (Si QDs) precipitated from deposited films were identified. ► All Si QDs obtained exhibit similar sizes but different densities. ► Correlation between photo response and amount of Si QDs was established. ► The photo response increases with increasing density of Si QDs in the film

  5. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    Science.gov (United States)

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance. PMID:27505739

  6. Ultra-thin superconducting film coated silicon nitride nanowire resonators for low-temperature applications

    Science.gov (United States)

    Sebastian, Abhilash; Zhelev, Nikolay; de Alba, Roberto; Parpia, Jeevak

    We demonstrate fabrication of high stress silicon nitride nanowire resonators with a thickness and width of less than 50 nm intended to be used as probes for the study of superfluid 3He. The resonators are fabricated as doubly-clamped wires/beams using a combination of electron-beam lithography and wet/dry etching techniques. We demonstrate the ability to suspend (over a trench of depth ~8 µm) wires with a cross section as small as 30 nm, covered with a 20 nm superconducting film, and having lengths up to 50 µm. Room temperature resonance measurements were carried out by driving the devices using a piezo stage and detecting the motion using an optical interferometer. The results show that metalizing nano-mechanical resonators not only affects their resonant frequencies but significantly reduce their quality factor (Q). The devices are parametrically pumped by modulating the system at twice its fundamental resonant frequency, which results in observed amplification of the signal. The wires show self-oscillation with increasing modulation strength. The fabricated nanowire resonators are intended to be immersed in the superfluid 3He. By tracking the resonant frequency and the Q of the various modes of the wire versus temperature, we aim to probe the superfluid gap structure.

  7. Multi-element characterization of silicon nitride powders by instrumental and radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Franek, M.; Krivan, V. (Ulm Univ. (Germany). Sektion Analytik und Hoechstreinigung)

    1992-07-15

    An optimized instrumental neutron activation analysis method was applied to the comprehensive trace characterization of good- and high- purity silicon nitride powders of different origins. Experimental modes are given for 55 elements leading to limits of detection below 1 ng g[sup -] [sup 1] for 28 elements, between 1 and 100 ng g[sup -1] for 19 elements and higher than 100 ng g[sup -1] for 8 elements. For the removal of the radionuclides [sup 140]La, [sup 182]Ta and [sup 187]W, which cause the major activity in certain types of materials, radiochemical procedures based in cation exchange from 2 M HCl and anion exchange from 2 M HF were developed. [sup 64]Cu was selectively extracted with dithizone from 10 M HF for counting the 511-keV line. By radiochemical neutron activation analysis, the limits of detection were improved by up to three orders of magnitude. Comparison with results obtained by inductively coupled plasma (ICP) atomic emission spectrometry and ICP mass spectrometry shows satisfactory agreement and demonstrates the advantages of neutron activation analysis especially when low elements contents are to be determined. (author). 30 refs.; 2 figs.; 6 tabs.

  8. Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media

    Science.gov (United States)

    Smietana, M.; Bock, W. J.; Mikulic, P.

    2011-11-01

    This paper presents the temperature sensing properties of a silicon nitride (SiNx) nanocoated long-period grating (LPG). A high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited SiNx nanocoating was applied to tune the external refractive index (RI) sensitivity of LPGs written with UV and electric arc techniques in boron co-doped and standard germanium doped fibers, respectively. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as are required for optical sensors. Thanks to the high-RI SiNx nanocoating, which is less than 90 nm thick, it is possible to reduce RI sensitivity over a wide range (from nD = 1.333 to 1.479), simultaneously decreasing its cross-sensitivity to temperature. For the presented nanocoated LPGs, the temperature effect on resonance wavelength is linear and slightly dependent on the thermo-optic coefficient of the surrounding liquid. The other advantage of the nanocoating is that it makes the resonance clearly visible in the whole investigated external RI range. To the best of our knowledge, this work presents for the first time a nanocoating able to simultaneously tune the RI sensitivity and enable temperature measurements in high-RI liquids applied to LPGs.

  9. Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media

    International Nuclear Information System (INIS)

    This paper presents the temperature sensing properties of a silicon nitride (SiNx) nanocoated long-period grating (LPG). A high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited SiNx nanocoating was applied to tune the external refractive index (RI) sensitivity of LPGs written with UV and electric arc techniques in boron co-doped and standard germanium doped fibers, respectively. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as are required for optical sensors. Thanks to the high-RI SiNx nanocoating, which is less than 90 nm thick, it is possible to reduce RI sensitivity over a wide range (from nD = 1.333 to 1.479), simultaneously decreasing its cross-sensitivity to temperature. For the presented nanocoated LPGs, the temperature effect on resonance wavelength is linear and slightly dependent on the thermo-optic coefficient of the surrounding liquid. The other advantage of the nanocoating is that it makes the resonance clearly visible in the whole investigated external RI range. To the best of our knowledge, this work presents for the first time a nanocoating able to simultaneously tune the RI sensitivity and enable temperature measurements in high-RI liquids applied to LPGs

  10. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    International Nuclear Information System (INIS)

    We demonstrate the integration of Nd3+ doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration

  11. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    Science.gov (United States)

    Navarro-Urrios, D.; Ramírez, J. M.; Capuj, N. E.; Berencén, Y.; Garrido, B.; Tredicucci, A.

    2015-09-01

    We demonstrate the integration of Nd3+ doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration.

  12. Atomic-Resolution Observations of Semi-Crystalline IntegranularThin Films in Silicon Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Alexander; Idrobo, Juan C.; Cinibulk, Michael K.; Kisielowski, Christian; Browning, Nigel D.; Ritchie, Robert O.

    2005-08-01

    The thin intergranular phase in a silicon nitride (Si3N4)ceramic, which has been regarded for decades as having an entirely amorphous morphology, is shown to have a semi-crystalline structure. Using two different but complementary high-resolution electron microscopy methods, the intergranular atomic structure was directly imaged at the atomic level. These high-resolution images show that the atomic arrangement of the dopand element cerium takes very periodic positions not only along the interface between the intergranular phase and the Si3N4 matrix grains, but it arranges in a semi-crystalline structure that spans the entire width of the intergranular phase between two adjacent matrix grains, in principle connecting the two separate matrix grains. The result will have implications on the approach of understanding the materials properties of ceramics, most significantly on the mechanical properties and the associated computational modeling of the atomic structure of the thin intergranular phase in Si3N4 ceramics.

  13. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit

    CERN Document Server

    Shiue, Ren-Jye; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dimitri; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-01-01

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cut-off at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photorespo...

  14. Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates

    International Nuclear Information System (INIS)

    Silver precursor ink was synthesised by a simple and environmentally friendly method based on chemical reduction. The stability, particle size, viscosity and surface tension of the ink were adjusted by adding polyvinylpyrrolidone (PVP) and ethylene glycol (EG). The silver patterns were fabricated on the silicon nitride substrate and were characterised by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrical measurements. The thickness of the sample printed three times was approximately 0.66 μm, and it increased to 2.43 μm after 12 printings. The ink-jet-printed silver patterns exhibited good conductivity when the samples were sintered at temperatures above 200 °C. The resistivity value was observed to decrease to 3.1 μΩ cm after sintering at 500 °C for 60 min, twice the value of bulk silver (1.6 μΩ cm). The low resistivity of silver patterns suggests applications for ink-jet printing of electronics devices.

  15. High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit.

    Science.gov (United States)

    Shiue, Ren-Jye; Gao, Yuanda; Wang, Yifei; Peng, Cheng; Robertson, Alexander D; Efetov, Dmitri K; Assefa, Solomon; Koppens, Frank H L; Hone, James; Englund, Dirk

    2015-11-11

    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cutoff at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers. PMID:26372880

  16. Indentation strength of silicon nitride ceramics processed by spark plasma sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Azeggagh, N. [Université de Lyon, INSA-Lyon, LaMCoS CNRS UMR5259, F-69621 Villeurbanne (France); Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Tohoku University, 6-6-11, Aza-Aoba, Aramaki, Aobaku, Sendai 980-8579 (Japan); Joly-Pottuz, L., E-mail: lucile.joly-pottuz@insa-lyon.fr [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Chevalier, J. [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Omori, M.; Hashida, T. [Tohoku University, 6-6-11, Aza-Aoba, Aramaki, Aobaku, Sendai 980-8579 (Japan); Nélias, D. [Université de Lyon, INSA-Lyon, LaMCoS CNRS UMR5259, F-69621 Villeurbanne (France)

    2015-09-17

    We investigated the influence of the microstructure on the true stress–strain curve of silicon nitride based ceramics. The materials were processed by spark plasma sintering technique. Si{sub 3}N{sub 4} with fine, average and coarse microstructures were obtained. Load versus displacement curves (P–h) were obtained by means of instrumented indentation technique using diamond coni-spherical tip. The experimental data were coupled with a minimization method based on the Levenberg–Marquardt algorithm and the non-linear part of the mechanical response was identified. Based on the obtained stress–strain curves, rolling contact simulations were performed. In addition, the nature of Hertzian contact damage was examined in the material with coarse microstructure using diamond indenters of radii 0.2 and 1 mm. The surface damage was observed under optical microscopy while Focused Ion Beam Sectioning technique permitted to image the subsurface damage. An evident size effect was noticed: fracture consisting of classical ring cracks dominated at large scale while distributed microcracks beneath the indent dominated at small scale.

  17. Fuzzy sets predict flexural strength and density of silicon nitride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Cios, K.J.; Sztandera, L.M.; Baaklini, G.Y.; Vary, A.

    1993-05-01

    In this work, the authors utilize fuzzy sets theory to evaluate and make predictions of flexural strength and density of NASA 6Y silicon nitride ceramic. Processing variables of milling time, sintering time, and sintering nitrogen pressure are used as an input to the fuzzy system. Flexural strength and density are the output parameters of the system. Data from 273 Si3N4 modulus of rupture bars tested at room temperature and 135 bars tested at 1370 C are used in this study. Generalized mean operator and Hamming distance are utilized to build the fuzzy predictive model. The maximum test error for density does not exceed 3.3 percent, and for flexural strength 7.1 percent, as compared with the errors of 1.72 percent and 11.34 percent obtained by using neural networks, respectively. These results demonstrate that fuzzy sets theory can be incorporated into the process of designing materials, such as ceramics, especially for assessing more complex relationships between the processing variables and parameters, like strength, which are governed by randomness of manufacturing processes.

  18. Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters

    International Nuclear Information System (INIS)

    This paper describes the Laser Assisted Machining (LAM) that cuts and removes softened parts by locally heating the ceramic with laser. Silicon nitride ceramics can be machined with general machining tools as well, because YSiAlON, which was made up ceramics, is soften at about 1,000 .deg. C. In particular, the laser, which concentrates on highly dense energy, can locally heat materials and very effectively control the temperature of the heated part of specimen. Therefore, this paper intends to propose an efficient machining method of ceramic by deducing the machining governing factors of laser assisted machining and understanding its mechanism. While laser power is the machining factor that controls the temperature, the CBN cutting tool could cut the material more easily as the material gets deteriorated from the temperature increase by increasing the laser power, but excessive oxidation can negatively affect the quality of the material surface after machining. As the feed rate and cutting depth increase, the cutting force increases and tool lifespan decreases, but surface oxidation also decreases. In this experiment, the material can be cut to 3 mm of cutting depth. And based on the results of the experiment, the laser assisted machining mechanism is clarified

  19. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Directory of Open Access Journals (Sweden)

    Shouleh Nikzad

    2016-06-01

    Full Text Available Ultraviolet (UV studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  20. Vertical coupling of laser glass microspheres to buried silicon nitride ellipses and waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Urrios, D., E-mail: daniel.navarrourrios@nano.cnr.it [NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa I-56127 (Italy); Ramírez, J. M.; Berencén, Y.; Garrido, B. [Departament d' Electrònica, Universitat de Barcelona, Barcelona 08028 (Spain); Capuj, N. E. [Depto. Física, Universidad de la Laguna, 38206, La Laguna (Spain); Tredicucci, A. [NEST, Istituto Nanoscienze and Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, Pisa I-56127 (Italy)

    2015-09-07

    We demonstrate the integration of Nd{sup 3+} doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration.

  1. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores.

    Science.gov (United States)

    Assad, Ossama N; Di Fiori, Nicolas; Squires, Allison H; Meller, Amit

    2015-01-14

    Optical sensing of solid-state nanopores is a relatively new approach that can enable high-throughput, multicolor readout from a collection of nanopores. It is therefore highly attractive for applications such as nanopore-based DNA sequencing and genotyping using DNA barcodes. However, to date optical readout has been plagued by the need to achieve sufficiently high signal-to-noise ratio (SNR) for single fluorophore sensing, while still maintaining millisecond resolution. One of the main factors degrading the optical SNR in solid-state nanopores is the high photoluminescence (PL) background emanating from the silicon nitride (SiNx) membrane in which pores are commonly fabricated. Focusing on the optical properties of SiNx nanopores we show that the local membrane PL intensity is substantially reduced, and its spectrum is shifted toward shorter wavelengths with increasing e-beam dose. This phenomenon, which is correlated with a marked photocurrent enhancement in these nanopores, is utilized to perform for the first time single molecule fluorescence detection using both green and red laser excitations. Specifically, the reduction in PL and the concurrent measurement of the nanopore photocurrent enhancement allow us to maximize the background suppression and to detect a dual color, five-unit DNA barcode with high SNR levels. PMID:25522780

  2. The stopping power and energy straggling of heavy ions in silicon nitride and polypropylene

    International Nuclear Information System (INIS)

    The stopping power and energy straggling of 12C3+ and 16O3+ ions with energies between 4.5 and 7.8 MeV in a 0.166-μm-thin silicon nitride and in 4-μm-thin polypropylene foils were measured by means of an indirect transmission method using a half-covered PIPS detector. Ions scattered from a thin gold layer under a scattering angle of 150° were used. The energy spectra of back-scattered and decelerated ions were registered and evaluated simultaneously. The measured stopping powers were compared with the theoretical predictions simulated by SRIM-2008 and MSTAR codes. SRIM prediction of energy stopping is reasonably close to the experimentally obtained values comparing to MSTAR values. Better agreement between experimental and predicted data was observed for C3+ ion energy losses comparing to O3+ ions. The experimental data from Paul’s database and our previous experimental data were also discussed. The obtained experimental energy-straggling data were compared to those calculated by using Bohr’s, Yang’s models etc. The predictions by Yang are in good agreement with our experiment within a frame of uncertainty of 25%

  3. Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization

    CERN Document Server

    Boggio, J M Chavez; Fremberg, T; Haynes, R; Roth, M M; Eisermann, R; Lisker, M; Zimmermann, L; Boehm, M

    2014-01-01

    Dispersion engineering in silicon nitride (SiX NY ) waveguides is investigated through the optimization of the waveguide transversal dimensions and refractive indices in a multi-cladding arrangement. Ultra-flat dispersion of -84.0 +/- 0.5 ps/nm/km between 1700 and 2440 nm and 1.5 +/- 3 ps/nm/km between 1670 and 2500 nm is numerically demonstrated. It is shown that typical refractive index fluctuations as well as dimension fluctuations during the fabrication of the SiX NY waveguides are a limitation for obtaining ultra-flat dispersion profiles. Single- and multi-cladding waveguides are fabricated and their dispersion profiles measured (over nearly 1000 nm) using a low-coherence frequency domain interferometric technique. By appropriate thickness optimization, the zero-dispersion wavelength is tuned over a large spectral range in both single-cladding waveguides and multi-cladding waveguides with small refractive index contrast (3 %). A flat dispersion profile with 3.2 ps/nm/km variation over 500 nm is obtained ...

  4. Joining and Integration of Silicon Nitride Ceramics for Aerospace and Energy Systems

    Science.gov (United States)

    Singh, M.; Asthana, R.

    2009-01-01

    Light-weight, creep-resistant silicon nitride ceramics possess excellent high-temperature strength and are projected to significantly raise engine efficiency and performance when used as turbine components in the next-generation turbo-shaft engines without the extensive cooling that is needed for metallic parts. One key aspect of Si3N4 utilization in such applications is its joining response to diverse materials. In an ongoing research program, the joining and integration of Si3N4 ceramics with metallic, ceramic, and composite materials using braze interlayers with the liquidus temperature in the range 750-1240C is being explored. In this paper, the self-joining behavior of Kyocera Si3N4 and St. Gobain Si3N4 using a ductile Cu-based active braze (Cu-ABA) containing Ti will be presented. Joint microstructure, composition, hardness, and strength as revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Knoop microhardness test, and offset compression shear test will be presented. Additionally, microstructure, composition, and joint strength of Si3N4/Inconel 625 joints made using Cu-ABA, will be presented. The results will be discussed with reference to the role of chemical reactions, wetting behavior, and residual stresses in joints.

  5. Fuzzy sets predict flexural strength and density of silicon nitride ceramics

    Science.gov (United States)

    Cios, Krzysztof J.; Sztandera, Leszek M.; Baaklini, George Y.; Vary, Alex

    1993-01-01

    In this work, we utilize fuzzy sets theory to evaluate and make predictions of flexural strength and density of NASA 6Y silicon nitride ceramic. Processing variables of milling time, sintering time, and sintering nitrogen pressure are used as an input to the fuzzy system. Flexural strength and density are the output parameters of the system. Data from 273 Si3N4 modulus of rupture bars tested at room temperature and 135 bars tested at 1370 C are used in this study. Generalized mean operator and Hamming distance are utilized to build the fuzzy predictive model. The maximum test error for density does not exceed 3.3 percent, and for flexural strength 7.1 percent, as compared with the errors of 1.72 percent and 11.34 percent obtained by using neural networks, respectively. These results demonstrate that fuzzy sets theory can be incorporated into the process of designing materials, such as ceramics, especially for assessing more complex relationships between the processing variables and parameters, like strength, which are governed by randomness of manufacturing processes.

  6. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions.

    Science.gov (United States)

    Shibata, Naoya; Pennycook, Stephen J; Gosnell, Tim R; Painter, Gayle S; Shelton, William A; Becher, Paul F

    2004-04-15

    Silicon nitride (Si3N4) ceramics are used in numerous applications because of their superior mechanical properties. Their intrinsically brittle nature is a critical issue, but can be overcome by introducing whisker-like microstructural features. However, the formation of such anisotropic grains is very sensitive to the type of cations used as the sintering additives. Understanding the origin of dopant effects, central to the design of high-performance Si3N4 ceramics, has been sought for many years. Here we show direct images of dopant atoms (La) within the nanometre-scale intergranular amorphous films typically found at grain boundaries, using aberration corrected Z-contrast scanning transmission electron microscopy. It is clearly shown that the La atoms preferentially segregate to the amorphous/crystal interfaces. First-principles calculations confirm the strong preference of La for the crystalline surfaces, which is essential for forming elongated grains and a toughened microstructure. Whereas principles of micrometre-scale structural design are currently used to improve the mechanical properties of ceramics, this work represents a step towards the atomic-level structural engineering required for the next generation of ceramics. PMID:15085126

  7. Study of silicon nitride sintering with additions of lanthanum, gadolinium and aluminium oxides

    International Nuclear Information System (INIS)

    Rare earth oxides have been employed as sintering aids of silicon nitride in order to form high dense materials with refractory phases at grain boundary. In this work, various compositions with lanthanum, gadolinium and aluminum oxides were investigated to determine the efficiency of a pure oxide or mixture of oxides. Samples were sintered at 1750 deg C for 1 hour in a carbon resistance furnace under normal nitrogen atmosphere. Some of them were submitted to hot isostatic pressing to remove all close-porosity. A detailed study of densification was performed by dilatometric analysis. Shape and grain size, formed phases and their distribution and composition were evaluated by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Hardness and fracture toughness values were determined by using the indentation method. Oxidation tests were conducted under static air at 1400 deg C for 64 hours into a tubular furnace. The results showed that samples with gadolinium oxide additions and mixture of oxides achieved higher fracture toughness values and greater oxidation resistance, although these specimens had reached lower densification than those with lanthanum oxide additions. Hot isostatic pressing increased the hardness but decreased the fracture toughness of the material. (author)

  8. Formation of ion tracks in amorphous silicon nitride films with MeV C60 ions

    International Nuclear Information System (INIS)

    Amorphous silicon nitride (a-SiN) films (thickness 5–100 nm) were irradiated with 0.12–5 MeV C60, 100 MeV Xe, 200 MeV Kr, and 200 and 420 MeV Au ions. Ion tracks were clearly observed using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) except for 100 MeV Xe and 200 MeV Kr. The observed HAADF-STEM images showed that the ion tracks consist of a low density core (0.5–2 nm in radius) and a high density shell (several nm in radius). The observed core and shell radii are not simply correlated with the electronic energy loss indicating that the nuclear energy loss plays an important role in the both core and shell formations. The observed track radii were well reproduced by the unified thermal spike model with two thresholds for shell and core formations

  9. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    Science.gov (United States)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  10. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    International Nuclear Information System (INIS)

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min−1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s

  11. Bonding distances as Exact Sums of the Radii of the Constituent Atoms in Nanomaterials - Boron Nitride and Coronene

    CERN Document Server

    Heyrovska, Raji

    2010-01-01

    This paper presents for the first time the exact structures at the atomic level of two important nanomaterials, boron nitride and coronene. Both these compounds are hexagonal layer structures similar to graphene in two dimensions and to graphite in three-dimensions. However, they have very different properties: whereas graphene is a conductor, h-BN is an electrical insulator and coronene is a polycyclic aromatic hydrocarbon of cosmological interest. The atomic structures presented here are based on bond lengths as the sums of the atomic radii.

  12. Electrical properties of laser-bonded Silicon-On-Diamond samples

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, S., E-mail: silvio.sciortino@gmail.com [National Institute for Nuclear Physics, INFN, Florence (Italy); Department of Physics and Astronomy, University of Florence (Italy); Brandi, F.; Carzino, R. [Nanophysics, Istituto Italiano di Tecnologia, Genova (Italy); Citroni, M. [European Laboratory for Non-Linear Spectroscopy, LENS, Florence (Italy); De Sio, A. [Department of Physics and Astronomy, University of Florence (Italy); Fanetti, S. [European Laboratory for Non-Linear Spectroscopy, LENS, Florence (Italy); Lagomarsino, S. [National Institute for Nuclear Physics, INFN, Florence (Italy); Department of Physics and Astronomy, University of Florence (Italy); Pace, E. [Department of Physics and Astronomy, University of Florence (Italy); Parrini, G. [National Institute for Nuclear Physics, INFN, Florence (Italy); Department of Physics and Astronomy, University of Florence (Italy); Passeri, D.; Scorzoni, A.; Servoli, L. [Dipartimento di Ingegneria Elettronica e della Informazione and INFN Sez. Perugia, Perugia (Italy); Tozzetti, L. [Department of Physics and Astronomy, University of Florence (Italy)

    2013-12-01

    In this work we report preliminary tests aimed at the implementation of a Silicon-On-Diamond (SOD) radiation sensor. SOD materials have been prepared by continuously scanning a 20 ps pulsed 355 nm laser beam on the silicon–diamond interface. A pixel monolithic sensor has also been bonded to diamond with the same technique and tested to show that a complex electronic chip can undergo the process without any damage. Through silicon vias have been fabricated by laser drilling on the silicon side of the SOD samples and their insulation from the silicon bulk has been tested. The charge collection efficiency of a diamond sensor with laser-written graphitic contacts has been measured, to demonstrate a reliable and simple way to fabricate ohmic contacts on the diamond side of the SOD devices. Finally, a SOD material with electric contacts on the silicon and on the diamond sides has been tested as a particle sensor to demonstrate the electrical continuity of the silicon–diamond interface after the bonding. -- Highlights: •The steps necessary to fabricate a monolithic Silicon-On-Diamond detector have been carried out. •These steps involve the bonding, by a laser technique, of an electronic chip on diamond without damage, the growth of insulated Through Silicon Vias in silicon, the fabrication of ohmic contacts by laser graphitization. •In conclusion: the feasibility of a SOD detector with the readout silicon electronics bonded to the diamond sensitive volume has been demonstrated. •Graphitic contacts compare favorably with standard metallic ones. •Charge is collected by a SOD material. That is, the silicon–diamond bonding interface does not prevent charge collection.

  13. Wafer-level packaging and direct interconnection technology based on hybrid bonding and through silicon vias

    International Nuclear Information System (INIS)

    The presented wafer-level packaging technology enables the direct integration of electrical interconnects during low-temperature wafer bonding of a cap substrate featuring through silicon vias (TSVs) onto a MEMS device wafer. The hybrid bonding process is based on hydrophilic direct bonding of plasma-activated Si/SiO2 surfaces and the simultaneous interconnection of the device metallization layers with Cu TSVs by transient liquid phase (TLP) bonding of ultra-thin AuSn connects. The direct bond enables precise geometry definition between device and cap substrate, whereas the TLP bonding does not require a planarization of the interconnect metallization before bonding. The complete process flow is successfully validated and the fabricated devices' characterization evidenced ohmic interconnects without interfacial voids in the TLP bond

  14. Valence and conduction band offsets at amorphous hexagonal boron nitride interfaces with silicon network dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Brockman, Justin; Bielefeld, Jeff; French, Marc; Kuhn, Markus [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Paquette, Michelle M.; Otto, Joseph W.; Caruso, A. N. [Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); French, Benjamin [Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248 (United States)

    2014-03-10

    To facilitate the design of heterostructure devices employing hexagonal/sp{sup 2} boron nitride, x-ray photoelectron spectroscopy has been utilized in conjunction with prior reflection electron energy loss spectroscopy measurements to determine the valence and conduction band offsets (VBOs and CBOs) present at interfaces formed between amorphous hydrogenated sp{sup 2} boron nitride (a-BN:H) and various low- and high-dielectric-constant (k) amorphous hydrogenated silicon network dielectric materials (a-SiX:H, X = O, N, C). For a-BN:H interfaces formed with wide-band-gap a-SiO{sub 2} and low-k a-SiOC:H materials (E{sub g} ≅ 8.2−8.8 eV), a type I band alignment was observed where the a-BN:H band gap (E{sub g} = 5.5 ± 0.2 eV) was bracketed by a relatively large VBO and CBO of ∼1.9 and 1.2 eV, respectively. Similarly, a type I alignment was observed between a-BN:H and high-k a-SiC:H where the a-SiC:H band gap (E{sub g} = 2.6 ± 0.2 eV) was bracketed by a-BN:H with VBO and CBO of 1.0 ± 0.1 and 1.9 ± 0.2 eV, respectively. The addition of O or N to a-SiC:H was observed to decrease the VBO and increase the CBO with a-BN:H. For high-k a-SiN:H (E{sub g} = 3.3 ± 0.2 eV) interfaces with a-BN:H, a slightly staggered type II band alignment was observed with VBO and CBO of 0.1 ± 0.1 and −2.3 ± 0.2 eV, respectively. The measured a-BN:H VBOs were found to be consistent with those deduced via application of the commutative and transitive rules to VBOs reported for a-BN:H, a-SiC:H, a-SiN:H, and a-SiO{sub 2} interfaces with Si (100)

  15. TMAH wet etching of silicon micro- and nano-fins for selective sidewall epitaxy of III-Nitride semiconductors

    Science.gov (United States)

    Liu, Lianci; Myasishchev, Denis; Kuryatkov, Vladimir; Nikishin, Sergey; Holtz, Mark; Harris, Rusty

    2011-10-01

    We describe formation of silicon micro- and nano-fins, with (111)-plane sidewall facets, for selective sidewall epitaxy of III-Nitride semiconductors. The fins are produced by wet etching (110)-oriented silicon wafers. Silicon dioxide is deposited using plasma enhanced chemical vapor deposition for producing a hard mask. The silicon dioxide is patterned using photo- and electron-beam lithography for micro- and nano-fins, respectively, followed by wet etching in hydrofluoric acid. Wet etching to produce the silicon fins is carried out using tetramethyl ammonium hydroxide (TMAH) diluted with isopropyl alcohol (IPA). Atomic force microscopy and scanning electron microscopy are used to determine morphology including the surface roughness of the area between fins and the etching rate of silicon. We tune the etching time, temperature, and percentage of IPA in order to get the best surface on both (111) and (110) planes. Adding IPA is found to alter the etch rate and improve the surface between the fins without adversely affecting the sidewall morphology.

  16. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Silicon nitride (SiN x) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H2, SiH4 and N2 or NH3. A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  17. An aluminum-germanium eutectic structure for silicon wafer bonding technology

    Science.gov (United States)

    Perez-Quintana, I.; Ottaviani, G.; Tonini, R.; Felisari, L.; Garavaglia, M.; Oggioni, L.; Morin, D.

    2005-08-01

    An aluminum-germanium eutectic bonding technology has been used to uniformly bond two silicon wafers for MEMS packaging at temperatures as low as 450 °C, well below the aluminum-silicon eutectic temperature (577 °C). A device silicon wafer has been put in contact with a cap wafer where an aluminum film covered by a germanium film has been thermally evaporated. The annealing has been performed in a vacuum furnace under uniaxial pressure variable from 1.8 up to 30 kbar. The samples have been analyzed with various analytical techniques. 4He+ MeV Rutherford Backscattering Spectrometry (RBS) has been used to measure the thicknesses of the deposited films and to follow the aluminum-germanium intermixing, Scanning Acoustic Microscope (SAM) to control the uniformity of the bonding, Scanning Electron Microscope (SEM) associated with electron induced X-ray fluorescence to analyze composition, morphology and elements distribution in the film between the two bonded wafers. The temperatures for the annealing were selected above and below the Ge-Al the eutectic temperature. At temperatures below the eutectic no-bonding has been obtained for any applied pressure. Above the eutectic bonding occurs. The formation of a liquid film is mandatory to obtain a reproducible and robust bonding. The pressure is necessary to improve the contacts between the two wafers; its role in the metallurgy of the bonding needs to be explored.

  18. Tribological and cutting behavior of silicon nitride tools coated with monolayer- and multilayer-microcrystalline HFCVD diamond films

    Science.gov (United States)

    Chen, Naichao; Shen, Bin; Yang, Guodong; Sun, Fanghong

    2013-01-01

    Monolayer-micrometric (MN-MCD), monolayer-submicrometric (MN-SMCD) and multilayer-micrometric (MT-MCD) diamond films are grown on silicon nitride substrates by hot filament chemical vapor deposition (HFCVD) technique. The as-deposited diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectrometer (EDS), Raman spectrum and 3D surface topography. Tribological properties are assessed by the sliding tests using a reciprocal motion ball-on-flat (BOF) configuration. The friction coefficients are measured as 0.126 for the MN-MCD films, 0.076 for the MN-SMCD films and 0.071 for the MT-MCD films during dry sliding against silicon nitride counterface. The different carbon content of the films may result in the visible diminution of friction coefficient for the MT-MCD films relative to the MN-MCD films. The results show that the MN-MCD and MT-MCD films present the much higher wear resistance than the MN-SMCD films. Meanwhile, the cutting performances of as-deposited diamond films are evaluated by machining aluminum-silicon alloy material. The experimental results show that the MT-MCD insert presents the best behavior regarding the tool wear.

  19. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Science.gov (United States)

    Broas, M.; Liu, X.; Ge, Y.; Mattila, T. T.; Paulasto-Kröckel, M.

    2015-06-01

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiNx thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiNx part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiNx. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ˜100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  20. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  1. A nanoporous silicon nitride membrane using a two-step lift-off pattern transfer with thermal nanoimprint lithography

    Science.gov (United States)

    Nabar, Bhargav P.; Çelik-Butler, Zeynep; Dennis, Brian H.; Billo, Richard E.

    2012-04-01

    Nanoimprint lithography is emerging as a viable contender for fabrication of large-scale arrays of 5-500 nm features. A fabrication process for the realization of thin nanoporous membranes using thermal nanoimprint lithography is presented. Suspended silicon nitride membranes were fabricated by low-pressure chemical vapor deposition (LPCVD) in conjunction with a potassium hydroxide-based bulk micromachining process. Nanoscale features were imprinted into a commercially available thermoplastic polymer resist using a prefabricated silicon mold. The pattern was reversed and transferred to a thin aluminum oxide layer by means of a novel two-stage lift-off technique. The patterned aluminum oxide was used as an etch mask in a CHF3/He-based reactive ion etch process to transfer the pattern to silicon nitride. Highly directional etch profiles with near vertical sidewalls and excellent Si3N4/Al2O3 etch selectivity were observed. One micrometer thick porous membranes with varying dimensions of 250 × 250 µm2 to 450 × 450 µm2 and a pore diameter of 400 nm have been engineered and evaluated. Results indicate that the membranes have consistent nanopore dimensions and precisely defined porosity, which makes them ideal as gas exchange interfaces in blood oxygenation systems as well as other applications such as dialysis.

  2. A nanoporous silicon nitride membrane using a two-step lift-off pattern transfer with thermal nanoimprint lithography

    International Nuclear Information System (INIS)

    Nanoimprint lithography is emerging as a viable contender for fabrication of large-scale arrays of 5–500 nm features. A fabrication process for the realization of thin nanoporous membranes using thermal nanoimprint lithography is presented. Suspended silicon nitride membranes were fabricated by low-pressure chemical vapor deposition (LPCVD) in conjunction with a potassium hydroxide-based bulk micromachining process. Nanoscale features were imprinted into a commercially available thermoplastic polymer resist using a prefabricated silicon mold. The pattern was reversed and transferred to a thin aluminum oxide layer by means of a novel two-stage lift-off technique. The patterned aluminum oxide was used as an etch mask in a CHF3/He-based reactive ion etch process to transfer the pattern to silicon nitride. Highly directional etch profiles with near vertical sidewalls and excellent Si3N4/Al2O3 etch selectivity were observed. One micrometer thick porous membranes with varying dimensions of 250 × 250 µm2 to 450 × 450 µm2 and a pore diameter of 400 nm have been engineered and evaluated. Results indicate that the membranes have consistent nanopore dimensions and precisely defined porosity, which makes them ideal as gas exchange interfaces in blood oxygenation systems as well as other applications such as dialysis. (paper)

  3. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    International Nuclear Information System (INIS)

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness. - Highlights: • Measurements of wet-ability of liquid drops on a 30 nm Si3N4 film were performed. • Chemical composition was investigated by X-ray Photoelectron Spectroscopy (XPS). • Surface morphology was tested by Atomic Force Microscopy (AFM). • Ar+ bombardment increases the contact angle, oxygen content and surface roughness

  4. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    International Nuclear Information System (INIS)

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiNx thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiNx part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiNx. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests

  5. The selection of phase composition of silicon nitride ceramics for shaping with the use of EDM machining

    Directory of Open Access Journals (Sweden)

    P. Putyra

    2011-09-01

    Full Text Available Purpose: The purpose of this study is the selection of phase composition of Si3N4 matrix ceramics with the addition of conducting phases so as to make shaping of those materials possible by means of electro discharge machining (EDM. Silicon nitride matrix materials with the addition of oxide phases (Al2O3, MgO, ZrO2 and conducting phases (TiB2, TiN were sintered by the method of SPS (Spark Plasma Sintering. Additionally the effect of oxide phases on silicon nitride sintering capacity, the value of electric resistance of nitride ceramics depending on the addition of a conducting phase and the effect of sintering parameters on selected features of produced materials were determined.Design/methodology/approach: Materials were sintered with the use of a SPS device marked with FCT-HP D 5. Apparent density ρp was measured by the hydrostatic method. Hardness was determined by the Vicker’s method at the load of 980.7 mN with the use of a Future Tech Corp digital hardness tester FM7. For the purpose of those tests a surface was prepared with the use of a Struers cutting grinder ACUTOM. Measurements of Young’s modulus for sintered samples were carried out using a ultrasonic method of transverse and longitudinal wave speed measurement with the use of a Panametrics Epoch III detector. Resistance measurement was done with the use of Wheatstone and Thomson technical bridges.Findings: The addition of titanium nitride had no effect on the reduction of electric resistance of Si3N4 matrix ceramics. The lack of electric conductivity of those materials is the result of used additions influencing sintering capacity, mainly magnesium oxide. Si3N4 matrix materials with the addition of titanium diboride are characterised by low electrical resistance with high physical and mechanical features maintained. Electric conductivity of those materials and the initial electro discharge cutting attempts prove that it is possible to shape Si3N4 matrix ceramic materials with

  6. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ciniculk, M.K. (California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  7. Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed

    Science.gov (United States)

    Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna

    2003-01-01

    Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.

  8. The effect of dielectric properties of sintering additives on microwave sintered silicon nitride ceramics.

    Science.gov (United States)

    Chockalingam, Sreekumar; George, Jacob; Earl, David; Amarakoon, Vasantha R W

    2008-01-01

    Silicon nitride requires the use of susceptive additives for microwave liquid phase sintering due to the material's low dielectric loss. In this article, we report the effect of complex dielectric properties of two compositions of sintering aids on 2.45 GHz microwave sintered Si3N4 with respect to power absorption, temperature distribution and densification behavior. The temperature dependent dielectric properties were measured from 25 degrees C to 1400 degrees C using a conventional cavity perturbation technique. Finite Difference Time Domain (FDTD) electromagnetic simulations coupled with a thermal solver was used to predict the microwave power absorption and the corresponding temperature evolution inside the samples. The additive with higher dielectric loss (4 wt% MgO, 6 wt% Y2O3 and 2.5 wt% ZrO2) produces a greater sintered density than the lower loss additive (4 wt% MgO and 6 wt% Y2O3) or pure Si3N4. Although microwave loss at temperatures below 600 degrees C is insignificant with or without the additives, the loss begins to increase at higher temperatures when the additives are present and has a strong upward trend above 1000 degrees C. Above 1200 degrees C the sample containing ZrO2 exhibited the greatest loss. Numerical simulations at the peak sintering temperature show greater microwave power absorption and higher temperature in the sample with the highest loss additive. The simulation results correlate to the difference in densification behavior observed. The simulation was also useful because the material temperature was not accurately provided by optical pyrometer measurements of the crucible sample holder. PMID:19227072

  9. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    Science.gov (United States)

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %). PMID:27128407

  10. Pressure Sensing in High-Refractive-Index Liquids Using Long-Period Gratings Nanocoated with Silicon Nitride

    OpenAIRE

    Jiahua Chen; Mateusz Smietana; Predrag Mikulic; Bock, Wojtek J.

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of ...

  11. Microstructure and properties of an ultra-fine grained reaction-bonded β-silicon carbide

    International Nuclear Information System (INIS)

    Very fine β-silicon carbide powder has been fabricated into dense reaction-bonded material by mixing with fine carbon powder and siliconising. The product has a very small (approximately 0.5 μm) grain size although much larger grains are sometimes observed which appear to have formed through discontinuous grain growth. The microhardness behaviour of the material differs from that of a REFEL silicon carbide containing 10 μm α-silicon carbide grains in that it exhibits higher hardness at low indentation loads, a greater dependence of hardness on load and, most significantly, far less tendency to microcracking at high loads. Possible reasons for this behaviour are discussed. Provided that proper control of density and microstructure is exercised, then high strength levels may be attained. The new material should represent a useful complement to more conventional reaction-bonded silicon carbide. (author)

  12. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    Science.gov (United States)

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  13. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  14. The structure and bonding of iron-acceptor pairs in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  15. Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method

    OpenAIRE

    Hennig, R. G.; Fedders, P. A.; Carlsson, A. E.

    2002-01-01

    A structural model of hydrogenated amorphous silicon containing an isolated dangling bond is used to investigate the effects of electron interactions on the electronic level splittings, localization of charge and spin, and fluctuations in charge and spin. These properties are calculated with a recently developed density-matrix correlation-energy functional applied to a generalized Anderson Hamiltonian, consisting of tight-binding one-electron terms parametrizing hydrogenated amorphous silicon...

  16. Dangling bond electron spin-lattice relaxation in rf-sputtered hydrogenated amorphous silicon and silicon carbide

    International Nuclear Information System (INIS)

    Electron spin resonance methods have been used to measure the temperature dependence of the spin-lattice relaxation time T1 of dangling bond electrons in hydrogenated amorphous silicon and silicon carbide samples prepared by radio frequency sputtering. The T1 measurements were made by a combination of continuous-wave absorption mode saturation and periodic adiabatic passage methods over the temperature range 100--400 K, yielding T/sup -1/1proportionalT2 behavior consistent with relaxation by two-level systems

  17. Bonding of the Inner Tracker Silicon Microstrip Modules

    CERN Document Server

    Bosi, Filippo; Brianzi, Mirko; Cariola, P; Costa, Salvatore; Demaria, Natale; Dumitrache, Floarea; Farano, R; Fiore, Luigi; Galet, G; Giudice, Nunzio; Kaminski, A; Mammini, Paolo; Manolescu, Florentina; Pantano, Devis; Profeti, Alessandro; Raimondo, F S; Saizu, Mirela Angela; Scarlini, Enrico; Tempesta, Paolo; Tessaro, Mario

    2008-01-01

    Microbonding of the CMS Tracker Inner Barrel (TIB) and Tracker Inner Disks (TID) modules was shared among six different Italian Institutes. The organization devised and the infrastructure deployed to handle this task is illustrated. Microbonding specifications and procedures for the different types of TIB and TID modules are given. The tooling specially designed and developed for these types of modules is described. Experience of production is presented. Attained production rates are given. An analysis of the microbonding quality achieved is presented, based on bond strengths measured in sample bond pull tests as well as on rates of bonding failures. Italian Bonding Centers routinely performed well above minimum specifications and a very low global introduced failure rate, at the strip level, of only $\\sim$0.015 \\% is observed.

  18. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    Science.gov (United States)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  19. Simultaneous measurement of wafer curvature and true temperature during metalorganic growth of group-III nitrides on silicon and sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Krost, A.; Schulze, F.; Dadgar, A.; Strassburger, G. [Institut fuer Experimentelle Physik, Otto-von-Guericke-Universitaet Magdeburg (Germany); Haberland, K.; Zettler, T. [LayTec Gesellschaft fuer in-situ und Nano-Sensorik mbH, Helmholtzstr. 13-14, 10587 Berlin (Germany)

    2005-11-01

    We present an in situ method for the simultaneous determination of wafer curvature and true growth temperature during metalorganic vapor phase epitaxy of group-III-nitrides on silicon. The measurement configuration allows determining the wafer curvature by the reflections of parallel laser beams, and at the same time, the wafer temperature is measured by emissivity-corrected pyrometry. The bending of the substrates due to strained layers and unequal thermal expansions coefficients causes a change in the surface temperature of the wafer, although the monitored process temperature is constant. Thereby both kinds of curvatures, concave and convex, lead to an opposed temperature variation. Thus, by growing LED structures on silicon a temperature shift up to 45 K with respect to the susceptor was observed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Role of fluorine atoms in the oxidation-hydrolysis process of plasma assisted chemical vapor deposition fluorinated silicon nitride film

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O.; Gomez-Aleixandre, C.; Palacio, C. (Universidad Autonoma de Madrid (Spain))

    The oxidation and/or hydrolysis of a plasma assisted chemical vapor deposition fluorinated silicon nitride film in a moisture atmosphere has been studied. The film presents fluorine atoms incorporated as -SiF, -SiF[sub 2], -SiF[sub 3], and [-SiF[sub 2]-][sub n] groups. The open structure of the film, due to the high fluorine content as [-SiF[sub 2]-][sub n], favors the penetration of oxygen and water molecules in the network. The evolution of the film has been explained by the different reactivity of the silicon atoms depending on their chemical environment. The role of fluorine atoms incorporated into the film has been established. 12 refs., 3 figs., 1 tab.

  1. Diffusion Bonding of Silicon Carbide for a Micro-Electro-Mechanical Systems Lean Direct Injector

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust approaches for joining silicon carbide (SiC) to silicon carbide sub-elements have been developed for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to form a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. Previous bonding technology relied upon silicate glass interlayers that were not uniform or leak free. In a newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials during hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

  2. Feasibility of preparing of silicon nitride ceramics components by aqueous tape casting in combination with laminated object manufacturing

    International Nuclear Information System (INIS)

    Highlights: • Aqueous tape casting was employed to fabricate silicon nitride green tapes. • Complex shaped Si3N4 components were prepared by laminated object manufacturing process. • Si3N4 components with complex shapes possessed good strength (∼475 MPa). • High density of Si3N4 components with complex shapes was observed (∼94.3%). - Abstract: Homogeneous green silicon nitride sheets consisting of 48.7 vol.% ceramic particles were prepared by tape casting. The slurry, used to prepared green tapes, own obvious shear-thinning behavior. No noticeable precipitation during tape casting process was found revealed by the result of energy dispersion spectrum analysis. Components with complex shapes were fabricated by stacking layer by layer of the green sheets and a subsequent pressureless sintering at 1800 °C for 1 h. All α-Si3N4 has transformed into β-Si3N4 indicated by the result of X-ray diffraction. Due to the high homogeneous packing of the ceramic particles in the green bodies, the ceramic components could be sintered to full density with no noticeable distortions. Good flexural strength for the ceramic samples was observed

  3. Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications

    International Nuclear Information System (INIS)

    Nonvolatile memory (NVM) devices with a nitride–nitride–oxynitride stack structure on a rough poly-silicon (poly-Si) surface were fabricated using a low-temperature poly-Si (LTPS) thin film transistor technology on glass substrates for application of flat panel display (FPD). The plasma-assisted oxidation/nitridation method is used to form a uniform oxynitride with an ultrathin tunneling layer on a rough LTPS surface. The NVMs, using a Si-rich silicon nitride film as a charge-trapping layer, were proposed as one of the solutions for the improvement of device performance such as the program/erase speed, the memory window and the charge retention characteristics. To further improve the vertical scaling and charge retention characteristics of NVM devices, the high-κ high-density N-rich SiNx films are used as a blocking layer. The fabricated NVM devices have outstanding electrical properties, such as a low threshold voltage, a high ON/OFF current ratio, a low subthreshold swing, a low operating voltage of less than ±9 V and a large memory window of 3.7 V, which remained about 1.9 V over a period of 10 years. These characteristics are suitable for electrical switching and data storage with in FPD application

  4. Role of GaAs surface clearing in plasma deposition of silicon nitride films for encapsulated annealing

    Science.gov (United States)

    Valco, G. J.; Kapoor, V. J.

    1985-01-01

    The role of GaAs surface cleaning and plasma reactor cleaning prior to deposition of silicon nitride films for encapsulated annealing has been investigated. X-ray photoelectron spectroscopy was employed to determine the surface characteristics of GaAs treated with HCl, HF, and NH4OH solutions preceded by a degreasing procedure. The HCl clean left the least amount of oxygen on the surface. Fluorine contamination resulting from the CF4 plasma used to clean the reactor was found to be located at the film-substrate interface by Auger electron spectroscopy with argon-ion sputtering. A modified deposition procedure was developed to eliminate the fluorine contamination. Plasma deposition of silicon nitride encapsulating films was found to modify the I-V characteristics of Schottky diodes subsequently formed on GaAs surface. The reverse current of the diodes was slightly reduced. Substrates implanted with Si at 100 keV and a dose of 5 x 10 to the 12th/sq cm showed a peak electron concentration of 1.7 x 10 to the 17th/cu cm at a depth of 0.1-micron with 60 percent activation after encapsulation and annealing at 800 C for 7 min.

  5. First-principles study of bonding mechanisms in the series of Ti, V, Cr, Mo, and their carbides and nitrides

    International Nuclear Information System (INIS)

    The electronic structure and chemical bonding mechanism in the series of transition metals, those formed with 3d metals (Ti, V, Cr), and 4d metal (Mo), and their carbides and nitrides in the rocksalt structure are studied by means of a first-principles full potential linearized augmented plane waves method within the local density approximation (LDA). Results are given for lattice constant, bulk modulus, charge density and total and partial density of states. Our calculations demonstrate that increasing the number of valence d electrons in the core lead to larger (B) and the relativistic effects on the structural and electronic properties of MoC and MoN, if qualitatively not unexpected, are, however, surprisingly large, despite the relatively light atoms (C and N)

  6. First-principles study of bonding mechanisms in the series of Ti, V, Cr, Mo, and their carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Zaoui, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 24 med bouzidi, 22000 Sidi Bel-Abbes (Algeria)]. E-mail: ali_zaoui@yahoo.fr; Kacimi, S. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 24 med bouzidi, 22000 Sidi Bel-Abbes (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, 24 med bouzidi, 22000 Sidi Bel-Abbes (Algeria); Roula, A. [Laboratoire d' etude sur les interactions materiaux-environnements, Universite de Jijel, 18000 Jijel, Algerie (Algeria)

    2005-04-15

    The electronic structure and chemical bonding mechanism in the series of transition metals, those formed with 3d metals (Ti, V, Cr), and 4d metal (Mo), and their carbides and nitrides in the rocksalt structure are studied by means of a first-principles full potential linearized augmented plane waves method within the local density approximation (LDA). Results are given for lattice constant, bulk modulus, charge density and total and partial density of states. Our calculations demonstrate that increasing the number of valence d electrons in the core lead to larger (B) and the relativistic effects on the structural and electronic properties of MoC and MoN, if qualitatively not unexpected, are, however, surprisingly large, despite the relatively light atoms (C and N)

  7. Creep of heat treated silicon nitride with neodymium and yttrium oxides additions

    International Nuclear Information System (INIS)

    Research highlights: → In all cases, microstructural examination of crept samples showed that existing phases at grain boundaries were associated to the deformation processes. This highlights the importance of the presence and the amount of grain boundary glass. → Crystallization of the remnant phase during heat treatment in nitrogen atmosphere gives rise to further crystallization of the new phases in the Nd-Si-O-N system such as Nd4Si3O12 and Nd2Si3O3N4. A consequence of this crystallization is a significant reduction in stress exponents and creep rates for the heat treated samples. → Diffusional creep may prevail for lower temperatures, low glass content and stresses. Cavitation would start to operate and become increasingly prevalent with increase in stress, temperature and decrease in crystallinity of the grain boundary phase. - Abstract: At the present work, samples of silicon nitride with 12 wt% of yttrium/neodymium oxides mixture were formed by gas-pressure sintering. Pos sintering heat treatments in nitrogen with a stepwise temperature variation were performed in some samples. The short term compressive creep tests were undertaken in an argon atmosphere, over a stress range of 50-300 MPa and temperature range of 1200-1400 deg. C. Values of stress exponents near unity for (i) low temperature testing in all materials and (ii) all temperatures for heat treated samples suggest diffusion accommodation processes, involving ambipolar diffusion of ionic species in the grain boundary phases. Crystallization of the remnant phase during heat treatment in a nitrogen atmosphere gives rise to further formation of new phases in the Nd-Si-O-N system such as Nd4Si3O12 and Nd2Si3O3N4. A consequence of this crystallization is a significant reduction in stress exponents and creep rates for the heat treated samples. The wedge crack observed after creep testing at specimens in its as-sintered condition may be related to the increased probability of cavitation in the

  8. Creep of heat treated silicon nitride with neodymium and yttrium oxides additions

    Energy Technology Data Exchange (ETDEWEB)

    Moreira da Silva, Cosme Roberto, E-mail: cosmeroberto@gmail.com [Universidade de Brasilia, UNB, Brasilia-DF 70910-900 (Brazil); Aparecida Pereira Reis, Danieli [Instituto Tecnologico de Aeronautica - Sao Jose dos Campos CEP (Brazil); Santos, Claudinei dos [Faculdade de Engenharia Quimica de Lorena, DEMAR, Lorena 12600-000 (Brazil)

    2010-10-15

    Research highlights: {yields} In all cases, microstructural examination of crept samples showed that existing phases at grain boundaries were associated to the deformation processes. This highlights the importance of the presence and the amount of grain boundary glass. {yields} Crystallization of the remnant phase during heat treatment in nitrogen atmosphere gives rise to further crystallization of the new phases in the Nd-Si-O-N system such as Nd{sub 4}Si{sub 3}O{sub 12} and Nd{sub 2}Si{sub 3}O{sub 3}N{sub 4}. A consequence of this crystallization is a significant reduction in stress exponents and creep rates for the heat treated samples. {yields} Diffusional creep may prevail for lower temperatures, low glass content and stresses. Cavitation would start to operate and become increasingly prevalent with increase in stress, temperature and decrease in crystallinity of the grain boundary phase. - Abstract: At the present work, samples of silicon nitride with 12 wt% of yttrium/neodymium oxides mixture were formed by gas-pressure sintering. Pos sintering heat treatments in nitrogen with a stepwise temperature variation were performed in some samples. The short term compressive creep tests were undertaken in an argon atmosphere, over a stress range of 50-300 MPa and temperature range of 1200-1400 deg. C. Values of stress exponents near unity for (i) low temperature testing in all materials and (ii) all temperatures for heat treated samples suggest diffusion accommodation processes, involving ambipolar diffusion of ionic species in the grain boundary phases. Crystallization of the remnant phase during heat treatment in a nitrogen atmosphere gives rise to further formation of new phases in the Nd-Si-O-N system such as Nd{sub 4}Si{sub 3}O{sub 12} and Nd{sub 2}Si{sub 3}O{sub 3}N{sub 4}. A consequence of this crystallization is a significant reduction in stress exponents and creep rates for the heat treated samples. The wedge crack observed after creep testing at specimens

  9. Influence of Cooling Channel Geometry on the Thermal Response in Silicon Nitride Plates Studied

    Science.gov (United States)

    Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Baaklini, George Y.

    2002-01-01

    Engine manufacturers are continually attempting to improve the performance and efficiency of internal combustion engines. Usually they raise the operating temperature or reduce the cooling air requirement for the hot section turbine components. However, the success of these attempts depends on finding materials that are lightweight, are strong, and can withstand high temperatures. Ceramics are among the top candidate materials considered for such harsh applications. They hold low-density, high-temperature strength, and thermal conductivity, and they are undergoing investigation as potential materials for replacing nickel-base alloys and superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass. The long-term objectives of the High Temperature Propulsion Components (HOTPC) Project are to develop manufacturing technology, thermal and environmental barrier coatings (TBC/EBC), and the analytical modeling capability to predict thermomechanical stresses in minimally cooled silicon nitride turbine nozzle vanes under simulated engine conditions. Two- and three-dimensional finite element analyses with TBC were conducted at the NASA Glenn Research Center. Nondestructive evaluation was used to determine processing defects. The study included conducting preliminary parametric analytical runs of heat transfer and stress analyses under steady-state conditions to demonstrate the feasibility of using cooled Si3N4 parts for turbine applications. The influence of cooling-channel shapes (such as circular, square, and ascending-order cooling channels) on cooling efficiency and thermal stresses was investigated. Temperature distributions were generated for all cases considered under both cooling and no-cooling conditions, with air being the cooling medium. The table shows the magnitude of the

  10. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  11. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    OpenAIRE

    Silvestrelli, P.-L.; Alavi, A; Parrinello, M.; Frenkel, D

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting transition to a metallic state. We studied several structural, dynamical, electronic, and bonding properties of this phase of silicon. In contrast to ordinary liquid silicon, this liquid is characte...

  12. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hainan [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Nae Yoon, E-mail: nylee@gachon.ac.kr [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 (Korea, Republic of)

    2015-02-01

    Graphical abstract: Low-molecular-weight PDMS coating on the surfaces of non-silicon substrates such as thermoplastics ensures permanent sealing with a silicone elastomer, PDMS, simply by surface oxidization followed by ambient condition bonding, mediated by a robust siloxane bond formation at the interface. - Highlights: • Non-silicon thermoplastic was bonded with poly(dimethylsiloxane) silicone elastomer. • Low-molecular-weight PDMS interfacial layer was chemically coated on thermoplastic. • Bonding was realized by corona treatment and physical contact under ambient condition. • Bonding is universally applicable regardless of thermoplastic type and property. • Homogeneous PDMS-like microchannel was obtained inside the thermoplastic-PDMS microdevice. - Abstract: In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic–plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such

  13. Material properties of low pressure chemical vapor deposited silicon nitride for modeling and calibrating the simulation of advanced isolation structures

    Science.gov (United States)

    Smeys, Peter I. L.; Griffin, Peter B.; Saraswat, Krishna C.

    1995-08-01

    The increasing cost and complexity of semiconductor process development has lead to the widespread use of multidimensional semiconductor process simulators. The success of a program like SUPREM-IV is primarily due to the fact that it is based on physical models, rather than empirical equations. This is in contrast to the first generation of process simulators, which calculated impurity profiles and oxide thickness in one dimension based on semiempirical approaches. SUPREM-IV incorporates two-dimensional coupled stress-dependent oxidation and impurity diffusion, which allows the accurate simulations of state-of-the-art integrated processes, provided that accurate model parameter sets are available. In this article we present an improved calibration methodology for simulation of advanced isolation technologies using SUPREM-IV, based on the experimental determination of the material properties of silicon nitride. The proposed strategy is applicable not only to SUPREM-IV but to any numerical simulator that uses the stress-dependent oxidation models to calculate oxide growth. In order to simulate experimental isolation boundary shapes, the oxidation models in SUPREM-IV must be calibrated. This requires a set of five fitting parameters, i.e., the material viscosities and activation volumes for stress-dependent diffusion, reaction rate, and critical stress. These parameters form a quintuplet but are not unique. Multiplying the viscosity values and dividing the activation volumes by a constant will yield exactly the same isolation structure boundary shape. The calculated stresses in the substrate however do not remain constant when different quintuplets are used. This has serious implications since isolation structures require the stress levels in the silicon substrate to remain well below the yield stress of silicon. If a nonoptimal parameter set is used, incorrect designs will result. Based on the experimental extraction of the silicon nitride viscosity by measuring the

  14. A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing

    Directory of Open Access Journals (Sweden)

    Ivo Rendina

    2006-06-01

    Full Text Available We have recently presented an integrated silicon-glass opto-chemical sensor forlab-on-chip applications, based on porous silicon and anodic bonding technologies. In thiswork, we have optically characterized the sensor response on exposure to vapors of severalorganic compounds by means of reflectivity measurements. The interaction between theporous silicon, which acts as transducer layer, and the organic vapors fluxed into the glasssealed microchamber, is preserved by the fabrication process, resulting in optical pathincrease, due to the capillary condensation of the vapors into the pores. Using theBruggemann theory, we have calculated the filled pores volume for each substance. Thesensor dynamic has been described by time-resolved measurements: due to the analysischamber miniaturization, the response time is only of 2 s. All these results have beencompared with data acquired on the same PSi structure before the anodic bonding process.

  15. Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    This work presents a novel characterization methodology for the dielectric charging phenomenon in electrostatically driven MEMS devices using Kelvin probe force microscopy (KPFM). It has been used to study plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films in view of application in electrostatic capacitive RF MEMS switches. The proposed technique takes the advantage of the atomic force microscope (AFM) tip to simulate charge injection through asperities, and then the induced surface potential is measured. The impact of bias amplitude, bias polarity, and bias duration employed during charge injection has been explored. The influence of various parameters on the charging/discharging processes has been investigated: dielectric film thickness, SiNx material deposition conditions, and under layers. Fourier transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS) material characterization techniques have been used to determine the chemical bonds and compositions, respectively, of the SiNx films being investigated. The required samples for this technique consist only of thin dielectric films deposited over planar substrates, and no photolithography steps are required. Therefore, the proposed methodology provides a low cost and quite fast solution compared to other available characterization techniques of actual MEMS switches. Finally, the comparison between the KPFM results and the discharge current transients (DCT) measurements shows a quite good agreement.

  16. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels

    Science.gov (United States)

    Lin, Chun-Te; Lee, Hsun-Tsing; Chen, Jem-Kun

    2015-03-01

    In this study, phenolic resins based on bisphenol-F (BPF) were synthesized. Besides, ammonium borate was added in the synthesis process of BPF to form the bisphenol-F based boron-phenolic resins (B-BPF). The glass transition temperature, thermal resistance, flexural strength and hardness of B-BPF are respectively higher than those of BPF. This is due to the presence of new cross-link Bsbnd O bonds in the B-BPF. In addition, the 3-aminopropyltriethoxysilane modified silicon nitride powders (m-SiN) were fully mixed with B-BPF to form the B-BPF/m-SiN composites. The thermal resistance and mechanical properties of the B-BPF/m-SiN are promoted by the well-dispersed and well-adhered m-SiN in these novel polymer/ceramics composites. The results of grinding experiments indicate that the grinding wheels bound by the B-BPF/m-SiN have better grinding quality than those bound by the BPF. Thus the B-BPF/m-SiN composites are better binding media than the BPF resins.

  17. A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics

    International Nuclear Information System (INIS)

    We introduce a new low-temperature (280 °C) parylene-to-SiO2 bonding process with high device yield (>90%) for the fabrication and integration of high-pressure-rated microfluidic chips. Pull tests demonstrate a parylene-to-SiO2 bonding strength of 10 ± 3 MPa. We apply this technique for bonding Pyrex and silicon wafers having multiple metal layers to fabricate standard packaged microfluidic devices. By performing electrochemical impedance spectroscopy of electrolyte solutions in such devices, we demonstrate that electrodes remain functional after the etching, bonding and dicing steps. We also develop a high-pressure microfluidic and electrical integration technology, eliminating special fluidic interconnections and wire-bonding steps. The burst pressure of the integrated system is statistically shown to be 7.6 ± 1.3 MPa, with a maximum achieved burst pressure of 11.1 MPa, opening perspectives for high-pressure applications of these types of microfluidic devices.

  18. Tribological and cutting behavior of silicon nitride tools coated with monolayer- and multilayer-microcrystalline HFCVD diamond films

    International Nuclear Information System (INIS)

    Highlights: ► Multilayer-MCD film shows lower friction coefficient compared monolayer-MCD film. ► Multilayer-MCD film is similar in friction coefficient to monolayer-SMCD film. ► Multilayer-MCD film presents the higher wear resistance than monolayer-SMCD film. ► Multilayer-MCD diamond insert presents the perfect behavior regarding tool wear. - Abstract: Monolayer-micrometric (MN-MCD), monolayer-submicrometric (MN-SMCD) and multilayer-micrometric (MT-MCD) diamond films are grown on silicon nitride substrates by hot filament chemical vapor deposition (HFCVD) technique. The as-deposited diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectrometer (EDS), Raman spectrum and 3D surface topography. Tribological properties are assessed by the sliding tests using a reciprocal motion ball-on-flat (BOF) configuration. The friction coefficients are measured as 0.126 for the MN-MCD films, 0.076 for the MN-SMCD films and 0.071 for the MT-MCD films during dry sliding against silicon nitride counterface. The different carbon content of the films may result in the visible diminution of friction coefficient for the MT-MCD films relative to the MN-MCD films. The results show that the MN-MCD and MT-MCD films present the much higher wear resistance than the MN-SMCD films. Meanwhile, the cutting performances of as-deposited diamond films are evaluated by machining aluminum–silicon alloy material. The experimental results show that the MT-MCD insert presents the best behavior regarding the tool wear.

  19. Eutectic bonding of contacts to silicon solar cells

    Science.gov (United States)

    Giuliano, M. N.

    A process of eutectic wetting and bonding of contact preforms is described which can serve as weld points for interconnection of solar cells. The procedure obviates the need for welding too close to the shallow diffused junction of a solar cell and therefore minimizes mechanical or electrical degradation that is likely when welding directly to the cell metallization. In addition, control of welding parameters is simplified because the weld interconnection is now made to a relatively thick metal preform which is firmly attached to the solar cell. Gold clad kovar was used in this preliminary study. Bond strength was excellent and survived temperature cycling to liquid nitrogen temperature. Electrical performance degradation after alloying was erratic and varied from little or no degradation to severe shunting. The reasons for the loss in fill-factor which is frequently encountered with the present process and choice of materials are not clear at this time. Possible explanations and recommendations for future work are discussed.

  20. Silicon dioxide and aluminium nitride as gate dielectric for high temperature and high power silicon carbide MOSFETs

    OpenAIRE

    Zetterling, Carl-Mikael

    1997-01-01

    Silicon carbide (SIC) is a wide bandgap semiconductor thathas been suggested as a replacement for silicon in applicationsusing high voltages, high frequencies, high temperatures orcombinations thereof. Several basic process steps need to bedeveloped for reliable manufacturing of long-term stableelectronic devices. One important process step is the formationof an insulator on the silicon carbide surface that may be usedas a) a gate dielectric, b) for device isolation or c) forpassivation of th...

  1. Optical properties, structural parameters, and bonding of highly textured rocksalt tantalum nitride films

    Science.gov (United States)

    Matenoglou, G. M.; Koutsokeras, L. E.; Lekka, Ch. E.; Abadias, G.; Camelio, S.; Evangelakis, G. A.; Kosmidis, C.; Patsalas, P.

    2008-12-01

    Tantalum nitride is an interesting solid with exceptional properties and it might be considered as a representative model system of the d3s2 transition metal nitrides. In this work highly textured, stoichiometric, rocksalt TaN(111) films have been grown on Si(100) by pulsed laser deposition. The films were under a triaxial stress, which has been determined by the sin2 ψ method. The stress-free lattice parameter was found to be 0.433±0.001 nm, a value which has been also determined by ab initio calculations within the local spin density approximation. The optical properties of TaN have been studied using spectroscopic ellipsometry and detailed band structure calculations. The electron conductivity of TaN is due to the Ta 5dt2g band that intercepts the Fermi level and is the source of intraband absorption. The plasma energies of fully dense rocksalt TaN were found to be 9.45 and 9.7 eV based on the experimental results and ab initio calculations, respectively. Additional optical absorption bands were also observed around 1.9 and 7.3 eV and attributed to be due to crystal field splitting of the Ta 5d band (t2g→eg transition) and the N p→Ta d interband transition, respectively.

  2. Optical properties, structural parameters, and bonding of highly textured rocksalt tantalum nitride films

    International Nuclear Information System (INIS)

    Tantalum nitride is an interesting solid with exceptional properties and it might be considered as a representative model system of the d3s2 transition metal nitrides. In this work highly textured, stoichiometric, rocksalt TaN(111) films have been grown on Si(100) by pulsed laser deposition. The films were under a triaxial stress, which has been determined by the sin2 ψ method. The stress-free lattice parameter was found to be 0.433±0.001 nm, a value which has been also determined by ab initio calculations within the local spin density approximation. The optical properties of TaN have been studied using spectroscopic ellipsometry and detailed band structure calculations. The electron conductivity of TaN is due to the Ta 5dt2g band that intercepts the Fermi level and is the source of intraband absorption. The plasma energies of fully dense rocksalt TaN were found to be 9.45 and 9.7 eV based on the experimental results and ab initio calculations, respectively. Additional optical absorption bands were also observed around 1.9 and 7.3 eV and attributed to be due to crystal field splitting of the Ta 5d band (t2g→eg transition) and the N p→Ta d interband transition, respectively

  3. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  4. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite

    Science.gov (United States)

    Chiu, Hsien Tang; Sukachonmakul, Tanapon; Kuo, Ming Tai; Wang, Yu Hsiang; Wattanakul, Karnthidaporn

    2014-02-01

    Polysilazane (PSZ) and its polymer-derived amorphous silicon oxycarbide (SiOC) ceramic were coated on aluminum nitride (AlN) by using a dip-coating method to allow moisture-crosslinking of PSZ on AlN, followed by heat treatment at 700 °C in air to convert PSZ into SiOC on AlN. The results from FTIR, XPS and SEM indicated that the surface of AlN was successfully coated by PSZ and SiOC film. It was found that the introduction of PSZ and SiOC film help improve in the interfacial adhesion between the modified AlN (PSZ/AlN and SiOC/AlN) and silicone rubber lead to the increase in the thermal conductivity of the composites since the thermal boundary resistance at the filler-matrix interface was decreased. However, the introduction of SiOC as an intermediate layer between AlN and silicone rubber could help increase the thermal energy transport at the filler-matrix interface rather than using PSZ. This result was due to the decrease in the surface roughness and thickness of SiOC film after heat treatment at 700 °C in air. Thus, in the present work, a SiOC ceramic coating could provide a new surface modification for the improvement of the interfacial adhesion between the thermally conductive filler and the matrix in which can enhance the thermal conductivity of the composites.

  5. Functionalization and bioimmobilization of silicon surfaces with Si–N bonded monolayer

    International Nuclear Information System (INIS)

    Highlights: • Chemistry of Ethylene diamine (EDA) studied by X-ray photoelectron spectroscopy (XPS) on hydrogen terminated Si (1 1 1) surface under UV-irradiation. • Fast, efficient and selective surface modification via symmetric functional molecule. • Do not involve protection and deprotection steps which deteoriate the monolayer integrity, time consuming and expensive. • Si–N bond remain intact on sub-oxidized silicon surface. • Free amine groups availability for bioimmobilization. • Selectivity and sensitivity was demonstrated by SEM, fluorscence and electrochemical (C–V) measurements. - Abstract: A new method for selective surface functionalization of silicon with a silicon–nitrogen bonded (Si–N) monolayer and subsequent bioimmobilization is presented. The Si–N monolayer was studied using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), fluorescence spectroscopy, and capacitance–voltage (C–V) measurements using an electrolyte insulator semiconductor (EIS) sensor. A symmetric ethylene diamine (EDA, C2H4 (NH2)2) molecule was used as a precursor compound for monolayer formation in an inert environment in the liquid phase. XPS results show the attachment of EDA molecules proceeds via dissociative and dative bond formation whereas free amine groups on the surface were used for further immobilization of biomolecules. SEM shows selective functionalization and bioimmobilization on a patterned surface such as a silicon nanowire on silicon oxide substrate. Biosensing experiments with bioimmobilized surfaces were carried out in aqueous buffer and show high sensitivity for biosensing

  6. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing

    CERN Document Server

    Xiong, Chi; Tang, Hong X

    2014-01-01

    Photonic miniaturization requires seamless integration of linear and nonlinear optical components to achieve passive and active functions simultaneously. Among the available material systems, silicon photonics holds immense promise for optical signal processing and on-chip optical networks. However, silicon is limited to wavelengths above 1100 nm and does not provide the desired lowest order optical nonlinearity for active signal processing. Here we report the integration of aluminum nitride (AlN) films on silicon substrates to bring active functionalities to chip-scale photonics. Using CMOS-compatible sputtered thin films we fabricate AlN-on-insulator waveguides that exhibit low propagation loss (0.6 dB/cm). Exploiting AlN's inherent Pockels effect we demonstrate electro-optic modulation up to 4.5 Gb/s with very low energy consumption (down to 10 fJ/bit). The ultra-wide transparency window of AlN devices also enables high speed modulation at visible wavelengths. Our low cost, wideband, carrier-free photonic ...

  7. A theoretical study of silicon-doped boron nitride nanotubes serving as a potential chemical sensor for hydrogen cyanide

    International Nuclear Information System (INIS)

    In order to search for a novel sensor to detect and control exposure to hydrogen cyanide (HCN) pollutant molecule in environments, the reactivities of pristine and silicon-doped (Si-doped) (8, 0) single-walled boron nitride nanotubes (BNNTs) towards the HCN molecule are investigated by performing density functional theory (DFT) calculations. The HCN molecule presents strong chemisorption on both the silicon-substituted boron defect site and the silicon-substituted nitrogen defect site of the BNNT, which is in sharp contrast to its weak physisorption on pristine BNNT. A remarkable charge transfer occurs between the HCN molecule and the Si-doped BNNT as proved by the electronic charge densities. The calculated data for the electronic density of states (DOSs) further indicate that the doping of the Si atom improves the electronic transport property of the BNNT, and increases its adsorption sensitivity towards the HCN molecule. Based on calculated results, the Si-doped BNNT is expected to be a potential resource for detecting the presence of toxic HCN.

  8. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric.

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-01-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator. PMID:27325155

  9. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    International Nuclear Information System (INIS)

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN film grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.

  10. Characterization of CVD Mullite + CVD Alumina Coatings on Silicon Nitride Vanes in an Industrial Gas Turbine Engine Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, James A [ORNL; Lin, Hua-Tay [ORNL; Ferber, Mattison K [ORNL; Zemskova, S. M. [Caterpillar Technical Center

    2006-01-01

    Silicon nitride ceramic vanes coated with chemical vapor-deposited (CVD) mullite, CVD alumina, and plasma-sprayed tantalum oxide were exposed to field tests in an industrial gas turbine engine. Results varied due to expected non-uniformities in the CVD coating microstructures, but dense CVD mullite/alumina showed excellent stability and protective capacity after 1148 h of engine testing. Surfaces without CVD coatings experienced massive intragranular subsurface oxidation and/or rapid recession of the ceramic substrate due to volatilization of silica species formed by oxidation. These results suggest that thin (<5 {micro}m), dense, high-purity CVD mullite and CVD alumina are viable components for an environmental barrier coating system to protect structural ceramics in combustion environments.

  11. Compressive creep and stress relaxation kinetics in a high purity silicon nitride ceramics in the 1400-1650 C range

    Energy Technology Data Exchange (ETDEWEB)

    Testu, S.; Besson, J.L. [ENSCI, Limoges (France); Rouxel, T. [Rennes-1 Univ. (France). Lab. Verres et Ceramiques; Granger, G.B. [Ceramiques Techniques Desmarquest, Saint-Gobain, Evreux (France)

    2000-07-01

    The paper presents the study of the mechanical behaviour at high temperature under compressive stresses of a gas pressure sintered silicon nitride. It is the last generation of Si{sub 3}N{sub 4} materials with elongated grains and a very few amount of glassy phase that explains a strong creep resistance up to 1400 C. Stress relaxation and creep tests were achieved in the 1400-1650 C temperature range. The Kolhraush-Williams-Watt empirical expression is used to fit the stress relaxation curves. The primary creep could be modelled as a delayed deformation ending by a plateau dependent on temperature. Both creep and stress relaxation curves parameters suggest the existence of strong microstructural changes during testing above 1450 C. (orig.)

  12. Fabrication and characterization of high performance AIGaN/GaN HEMTs on sapphire with silicon nitride passivation

    Institute of Scientific and Technical Information of China (English)

    Zhang Renping; Yan Wei; Wang Xiaoliang; Yang Fuhua

    2011-01-01

    AIGaN/GaN high electron mobility transistors (HEMTs) with high performance were fabricated and characterized. A variety of techniques were used to improve device performance, such as AIN interlayer, silicon nitride passivation, high aspect ratio T-shaped gate, Iow resistance ohmic contact and short drain-source distance.DC and RF performances of as-fabricated HEMTs were characterized by utilizing a semiconductor characterization system and a vector network analyzer, respectively. As-fabricated devices exhibited a maximum drain current density of 1.41 A/mm and a maximum peak extrinsic transconductance of 317 mS/mm. The obtained current density is larger than those reported in the literature to date, implemented with a domestic wafer and processes. Furthermore, a unity current gain cut-off frequency of 74.3 GHz and a maximum oscillation frequency of 112.4 GHz were obtained on a device with an 80 nm gate length.

  13. The synthesis of a high quality, low cost silicon nitride powder by the carbothermal reduction of silica

    International Nuclear Information System (INIS)

    The development and emergence of silicon nitride in the marketplace depends on the availability of a high quality, low cost powder which meets or exceeds the requirements for the customer's part application. The Dow Chemical Company, funded by the United States Department of Energy Oak Ridge National Laboratory, is engaged in developing a process which will economically synthesize commercial quantities of such a high quality powder. The Dow Chemical Company's approach is based on the carbothermal reduction of silica and has been shown to produce a sub-micron, equi-axed powder with high alpha content (> 95%), low oxygen (< 2%), and minimal carbon and impurities. This paper will review The Dow Chemical Company program and present preliminary results of the synthesis and powder processing efforts. (orig.)

  14. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    International Nuclear Information System (INIS)

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N2/NH3 environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces

  15. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon-Hye [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Han, Woong [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Lee, Hae-seong [Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Min, Byung-Gak [Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Kim, Byung-Joo, E-mail: ap2-kbj@hanmail.net [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of)

    2015-10-15

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N{sub 2}/NH{sub 3} environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces.

  16. An Experimental Investigation of Silicone-to-Metal Bond Strength in Composite Space Docking System Seals

    Science.gov (United States)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing a new universal docking mechanism for future space exploration missions called the Low Impact Docking System (LIDS). A candidate LIDS main interface seal design is a composite assembly of silicone elastomer seals vacuum molded into grooves in an electroless nickel plated aluminum retainer. The strength of the silicone-tometal bond is a critical consideration for the new system, especially due to the presence of small areas of disbond created during the molding process. In the work presented herein, seal-to-retainer bonds of subscale seal specimens with different sizes of intentional disbond were destructively tensile tested. Nominal specimens without intentional disbonds were also tested. Tension was applied either uniformly on the entire seal circumference or locally in one short circumferential length. Bond failure due to uniform tension produced a wide scatter of observable failure modes and measured load-displacement behaviors. Although the preferable failure mode for the seal-to-retainer bond is cohesive failure of the elastomer material, the dominant observed failure mode under the uniform loading condition was found to be the less desirable adhesive failure of the bond in question. The uniform tension case results did not show a correlation between disbond size and bond strength. Localized tension was found to produce failure either as immediate tearing of the elastomer material outside the bond region or as complete peel-out of the seal in one piece. The obtained results represent a valuable benchmark for comparison in the future between adhesion loads under various separation conditions and composite seal bond strength.

  17. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics....

  18. Hydrogen-induced rupture of strained Si─O bonds in amorphous silicon dioxide

    OpenAIRE

    El-Sayed, Al-Moatasem; Watkins, Matthew B.; Grasser, Tibor; Afanas'ev, Valery; Shluger, Alexander L

    2015-01-01

    Using ab initio modeling we demonstrate that H atoms can break strained Si─O bonds in continuous amorphous silicon dioxide (a-SiO(2)) networks, resulting in a new defect consisting of a threefold-coordinated Si atom with an unpaired electron facing a hydroxyl group, adding to the density of dangling bond defects, such as E' centers. The energy barriers to form this defect from interstitial H atoms range between 0.5 and 1.3 eV. This discovery of unexpected reactivity of atomic hydrogen may hav...

  19. Fabrication of a high aspect ratio thick silicon wafer mold and electroplating using flipchip bonding for MEMS applications

    Science.gov (United States)

    Kim, Bong-Hwan; Kim, Jong-Bok

    2009-06-01

    We have developed a microfabrication process for high aspect ratio thick silicon wafer molds and electroplating using flipchip bonding with THB 151N negative photoresist (JSR micro). This fabrication technique includes large area and high thickness silicon wafer mold electroplating. The process consists of silicon deep reactive ion etching (RIE) of the silicon wafer mold, photoresist bonding between the silicon mold and the substrate, nickel electroplating and a silicon removal process. High thickness silicon wafer molds were made by deep RIE and flipchip bonding. In addition, nickel electroplating was developed. Dry film resist (ORDYL MP112, TOK) and thick negative-tone photoresist (THB 151N, JSR micro) were used as bonding materials. In order to measure the bonding strength, the surface energy was calculated using a blade test. The surface energy of the bonding wafers was found to be 0.36-25.49 J m-2 at 60-180 °C for the dry film resist and 0.4-1.9 J m-2 for THB 151N in the same temperature range. Even though ORDYL MP112 has a better value of surface energy than THB 151N, it has a critical disadvantage when it comes to removing residue after electroplating. The proposed process can be applied to high aspect ratio MEMS structures, such as air gap inductors or vertical MEMS probe tips.

  20. Fabrication of a high aspect ratio thick silicon wafer mold and electroplating using flipchip bonding for MEMS applications

    International Nuclear Information System (INIS)

    We have developed a microfabrication process for high aspect ratio thick silicon wafer molds and electroplating using flipchip bonding with THB 151N negative photoresist (JSR micro). This fabrication technique includes large area and high thickness silicon wafer mold electroplating. The process consists of silicon deep reactive ion etching (RIE) of the silicon wafer mold, photoresist bonding between the silicon mold and the substrate, nickel electroplating and a silicon removal process. High thickness silicon wafer molds were made by deep RIE and flipchip bonding. In addition, nickel electroplating was developed. Dry film resist (ORDYL MP112, TOK) and thick negative-tone photoresist (THB 151N, JSR micro) were used as bonding materials. In order to measure the bonding strength, the surface energy was calculated using a blade test. The surface energy of the bonding wafers was found to be 0.36–25.49 J m−2 at 60–180 °C for the dry film resist and 0.4–1.9 J m−2 for THB 151N in the same temperature range. Even though ORDYL MP112 has a better value of surface energy than THB 151N, it has a critical disadvantage when it comes to removing residue after electroplating. The proposed process can be applied to high aspect ratio MEMS structures, such as air gap inductors or vertical MEMS probe tips