WorldWideScience

Sample records for bond strength materials

  1. Push-out bond strength of bioceramic materials in a synthetic tissue fluid.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2013-12-01

    Full Text Available This study compared the push-out bond strength of EndoSequence Root Repair Material (ERRM and Bioaggregate (BA, new bioceramic materials, to that of mineral trioxide aggregate (MTA after incubation in phosphate-buffered saline (PBS, a synthetic tissue fluid, for either 1 week or 2 months.One-hundred and twenty root sections were filled with ProRoot MTA, BA, or ERRM. Each tested material was then randomly divided into two subgroups (n = 20: root sections were immersed in PBS for 1 week or 2 months. The bond strengths were measured using a universal testing machine. After that, the failure modes were examined with stereomicroscopy and scanning electron microscopy (SEM. The push-out data and failure mode categories were analyzed by two-way ANOVA and chi-square tests, respectively.The bond strength of ERRM was significantly higher than that of BA and MTA at both incubation periods. No significant difference was found between the bond strength of MTA and BA at either 1 week or 2 months. Increasing the incubation time to 2 months resulted in a significant increase in bond strength of all the materials. The failure mode was mainly mixed for MTA and BA, but cohesive for ERRM at both incubation periods.ERRM had significantly higher bond strength to root canal walls compared to MTA and BA. Increasing the incubation time significantly improved the bond strength and bioactive reaction products of all materials.

  2. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials

    Directory of Open Access Journals (Sweden)

    Janaina Barros Cruz

    2012-08-01

    Full Text Available This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva and eroded dentin (pH cycling model - 3× / cola drink for 7 days. Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix, resin-modified glass ionomer cement (VitremerTM or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250. Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×. Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05. Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001. For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  3. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  4. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  5. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  6. Evaluation of the anti-cariogenic potential and bond strength to enamel of different fluoridated materials used for bracket bonding

    OpenAIRE

    SILVA, Sérgio Ricardo da; SILVA, Luciana Alves Herdy da; BASTING, Roberta Tarkany; LIMA-ARSATI, Ynara Bosco de Oliveira

    2017-01-01

    Abstract Objective To evaluate the in vitro and in situ anti-cariogenic potential and bond strength to enamel of materials containing fluoride (F), used for bracket bonding: Transbond XT (GT, negative control), Transbond Plus Color Change (GTF), Transbond-Self-Etching Primer (GSAF) and Vitremer (GV, positive control). Material and method In the in vitro study, the specimens were premolars with bonded brackets (n=12/group). After pH cycling, the F release, bond strength, fracture mode and pr...

  7. Effect of adhesive resin cements on bond strength of ceramic core materials to dentin.

    Science.gov (United States)

    Gundogdu, M; Aladag, L I

    2018-03-01

    The aim of the present study was to evaluate the effects of self-etch and self-adhesive resin cements on the shear bond strength of ceramic core materials bonded to dentin. Extracted, caries-free, human central maxillary incisor teeth were selected, and the vestibule surfaces were cut flat to obtain dentin surfaces. Ceramic core materials (IPS e.max Press and Prettau Zirconia) were luted to the dentin surfaces using three self-etch adhesive systems (Duo-Link, Panavia F 2.0, and RelyX Ultimate Clicker) and two self-adhesive resin systems (RelyX U200 Automix and Maxcem Elite). A shear bond strength test was performed using a universal testing machine. Failure modes were observed under a stereomicroscope, and bonding interfaces between the adhesive resin cements and the teeth were evaluated with a scanning electron microscope. Data were analyzed with Student's t-test and one-way analysis of variance followed by Tukey's test (α = 0.05). The type of adhesive resin cement significantly affected the shear bond strengths of ceramic core materials bonded to dentin (P materials when the specimens were luted with self-adhesive resin cements (P materials.

  8. Evaluation of the anti-cariogenic potential and bond strength to enamel of different fluoridated materials used for bracket bonding

    Directory of Open Access Journals (Sweden)

    Sérgio Ricardo da SILVA

    2017-05-01

    Full Text Available Abstract Objective To evaluate the in vitro and in situ anti-cariogenic potential and bond strength to enamel of materials containing fluoride (F, used for bracket bonding: Transbond XT (GT, negative control, Transbond Plus Color Change (GTF, Transbond-Self-Etching Primer (GSAF and Vitremer (GV, positive control. Material and method In the in vitro study, the specimens were premolars with bonded brackets (n=12/group. After pH cycling, the F release, bond strength, fracture mode and presence of white spot lesions were assessed. In the in situ study, the specimens were enamel fragments with bonded brackets (n=12/group. Twelve volunteers wore palatal appliances in 4 phases, with cariogenic challenge. Bond strength, fracture mode and change in surface hardness (%SH were determined. Result Relative to the in vitro study, F release (ppm was: GT=0.257±0.068c; GTF=0.634±0.100b; GSAF=0.630±0.067b; GV=2.796±1.414a. Only GV showed no white spot lesions. Bond strength values (MPa were GT=7.62±7.18a; GTF=5.15±6.91ab; GSAF=3.42±2.97bc; GV=2.87±2.09c. Adhesive fracture was the most frequent type, except for GTF. In the in situ study, %SH was: GT=-56.0±18.3a; GTF=-57.6±11.9a; GSAF=-57.1±11.3a; GV=-52.4±25.8a. Bond strength values were GT=9.5±4.4a; GTF=11.1±5.9a; GSAF=13.2± 6.6a; GV=6.6±4.0a. Cohesive fracture in material was the most frequent type, except for GTF. Conclusion Vitremer (GV showed the highest anti-cariogenic potential in the in vitro study. However, it was not confirmed by the in situ study. Regarding bond strength values from the in situ study, all materials were shown to be adequate for clinical practice.

  9. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  10. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    Science.gov (United States)

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.

    Science.gov (United States)

    Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  12. Effect of Luting Cements On the Bond Strength to Turkom-Cera All-Ceramic Material

    Science.gov (United States)

    Al–Makramani, Bandar M. A.; Razak, Abdul A. A.; Abu–Hassan, Mohamed I.; Al–Sanabani, Fuad A.; Albakri, Fahad M.

    2018-01-01

    BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations. AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material. MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test. RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05). CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested. PMID:29610618

  13. Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material.

    Science.gov (United States)

    Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu

    2009-07-01

    Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile

  14. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    Directory of Open Access Journals (Sweden)

    Andreas Hellak

    2016-01-01

    Full Text Available Objective. The aim of this in vitro study was to determine the shear bond strength (SBS and adhesive remnant index (ARI score of two self-etching no-mix adhesives (iBond™ and Scotchbond™ on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n=30 were randomly divided into three adhesive groups. In group 1 (control brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2 and Scotchbond Universal adhesive (group 3 were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P≤0.05. Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain, with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  15. In vitro shear bond strength of cementing agents to fixed prosthodontic restorative materials.

    Science.gov (United States)

    Piwowarczyk, Andree; Lauer, Hans-Christoph; Sorensen, John A

    2004-09-01

    Durable bonding to fixed prosthodontic restorations is desirable; however, little information is available on the strength of the bond between different cements and fixed prosthodontic restorative materials. This study determined the shear-bond strength of cementing agents to high-gold-content alloy castings and different dental ceramics: high-strength aluminum oxide (Procera AllCeram), leucite-reinforced (IPS Empress), and lithium disilicate glass-ceramic (IPS Empress 2). Prepolymerized resin composite cylinders (5.5 mm internal diameter, n=20) were bonded to the pretreated surfaces of prosthodontic materials. High-gold-content alloy and high-strength aluminum oxide surfaces were airborne-particle-abraded, and pressable ceramics were hydrofluoric acid-etched and silanized prior to cementing. The cementing agents tested were a zinc-phosphate cement (Fleck's zinc cement), glass ionomer cements (Fuji I, Ketac-Cem), resin-modified glass ionomer cements (Fuji Plus, Fuji Cem, RelyX Luting), resin cements (RelyX ARC, Panavia F, Variolink II, Compolute), and a self-adhesive universal resin cement (RelyX Unicem). Half the specimens (n=10) were tested after 30 minutes; the other half (n=10) were stored in distilled water at 37 degrees C for 14 days and then thermal cycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear-bond strength tests were performed using a universal testing machine at a constant crosshead speed of 0.5 mm/min. Statistical analysis was performed by multifactorial analysis of variance taking interactions between effects into account. For multiple paired comparisons, the Tukey method was used (alpha=.05). In a 3-way ANOVA model, the main factors substrate, cement, time, and all corresponding interactions were statistically significant (all P <.0001). In subsequent separate 1-way or 2-way ANOVA models for each substrate type, significant differences between cement types and polymerizing modes were found (all P <.001). None of the

  16. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  17. The effect of different surface treatments on the bond strength of a gingiva-colored indirect composite veneering material to three implant framework materials.

    Science.gov (United States)

    Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo

    2013-09-01

    To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.

  18. Bond strength and microleakage of current dentin adhesives.

    Science.gov (United States)

    Fortin, D; Swift, E J; Denehy, G E; Reinhardt, J W

    1994-07-01

    The purpose of this in vitro study was to evaluate shear bond strengths and microleakage of seven current-generation dentin adhesive systems. Standard box-type Class V cavity preparations were made at the cemento-enamel junction on the buccal surfaces of eighty extracted human molars. These preparations were restored using a microfill composite following application of either All-Bond 2 (Bisco), Clearfil Liner Bond (Kuraray), Gluma 2000 (Miles), Imperva Bond (Shofu), OptiBond (Kerr), Prisma Universal Bond 3 (Caulk), Scotchbond Multi-Purpose (3M), or Scotchbond Dual-Cure (3M) (control). Lingual dentin of these same teeth was exposed and polished to 600-grit. Adhesives were applied and composite was bonded to the dentin using a gelatin capsule technique. Specimens were thermocycled 500 times. Shear bond strengths were determined using a universal testing machine, and microleakage was evaluated using a standard silver nitrate staining technique. Clearfill Liner Bond and OptiBond, adhesive systems that include low-viscosity, low-modulus intermediate resins, had the highest shear bond strengths (13.3 +/- 2.3 MPa and 12.9 +/- 1.5 MPa, respectively). Along with Prisma Universal Bond 3, they also had the least microleakage at dentin margins of Class V restorations. No statistically significant correlation between shear bond strength and microleakage was observed in this study. Adhesive systems that include a low-viscosity intermediate resin produced the high bond strengths and low microleakage. Similarly, two materials with bond strengths in the intermediate range had significantly increased microleakage, and one material with a bond strength in the low end of the spectrum exhibited microleakage that was statistically greater. Thus, despite the lack of statistical correlation, there were observable trends.

  19. Shear bond strength of bulk-fill and nano-restorative materials to dentin.

    Science.gov (United States)

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal-Wallis and Mann-Whitney U-tests were performed to evaluate the data. The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.

  20. The Effect of Gamma Radiation on the Bond Strength and Micro leakage of Two Aesthetic Restorative Materials

    International Nuclear Information System (INIS)

    Seif, M.B.

    2013-01-01

    To evaluate the effect of gamma radiation on bond strength and micro leakage of nano-composite and nano-glassionomer, and to detect any alterations in their molecular structure due to gamma radiation. Materials and Methods: 80 specimens were used as follow; 40 specimens for shear bond strength evaluation, 20 specimens for micro leakage assessment, while the remaining 20 specimens for deducing the chemical structure. For shear bond strength (SBS) test 2 mm thick wafers of dentine were sectioned and 3 mm diameter holes were drilled through the wafers. 20 specimens were restored with nano-composite and nano-glassionomer without irradiation (Group A1, B1). The remaining 20 specimens were restored with nano-composite and nano-glassionomer (Group A2, B2), then they were irradiated with therapeutic dose of 60 gray for 1 week (3 days/week). For micro leakage, 10 natural teeth with two prepared class V cavities were used. One of the cavities was restored with nano-composite while the other one with nano-glassionomer to be examined before and after gamma radiation. Spectrophotometric analysis was performed for all tested materials before and after radiation to trace any structural changes. Results: Significant increase in SBS of nano-composite after irradiation while nano-glassionomer was insignificantly increased. For micro leakage no significant difference existed between the irradiated and non-irradiated groups of both materials. Conclusion: Therapeutic dose of head and neck gamma radiation had improved dentin shear bond strength of nano-composite. On the other hand, it had not an effect on shear bond strength of nano-glassionomer and the micro leakage of both tested materials. Gamma radiation did not alter the chemical structure of the tested material.

  1. Effect of surface treatments on the bond strength of soft denture lining materials to an acrylic resin denture base.

    Science.gov (United States)

    Gundogdu, Mustafa; Yesil Duymus, Zeynep; Alkurt, Murat

    2014-10-01

    Adhesive failure between acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to evaluate the effect of different surface treatments on the bond strength of 2 different resilient lining materials to an acrylic resin denture base. Ninety-six dumbbell-shaped specimens were fabricated from heat-polymerized acrylic resin, and 3 mm of the material was cut from the thin midsection. The specimens were divided into 6 groups according to their surface treatments: no surface treatment (control group), 36% phosphoric acid etching (acid group), erbium:yttrium-aluminum-garnet (Er:YAG) laser (laser group), airborne-particle abrasion with 50-μm Al2O3 particles (abrasion group), an acid+laser group, and an abrasion+laser group. The specimens in each group were divided into 2 subgroups according to the resilient lining material used: heat-polymerized silicone based resilient liner (Molloplast B) and autopolymerized silicone-based resilient liner (Ufi Gel P). After all of the specimens had been polymerized, they were stored in distilled water at 37°C for 1 week. A tensile bond strength test was then performed. Data were analyzed with a 2-way ANOVA, and the Sidak multiple comparison test was used to identify significant differences (α=.05). The effects of the surface treatments and resilient lining materials on the surface of the denture base resin were examined with scanning electron microscopy. The tensile bond strength was significantly different between Molloplast B and Ufi Gel P (P<.001). The specimens of the acid group had the highest tensile bond strength, whereas those of the abrasion group had the lowest tensile bond strength. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the denture base resin. Molloplast B exhibited significantly higher bond strength than Ufi Gel P. Altering the surface of the acrylic resin denture base with 36

  2. Effect of ultrasonic agitation on push-out bond strength and adaptation of root-end filling materials.

    Science.gov (United States)

    Alcalde, Murilo Priori; Vivan, Rodrigo Ricci; Marciano, Marina Angélica; Duque, Jussaro Alves; Fernandes, Samuel Lucas; Rosseto, Mariana Bailo; Duarte, Marco Antonio Hungaro

    2018-05-01

    This study evaluated the effect of ultrasonic agitation of mineral trioxide aggregate (MTA), calcium silicate-based cement (CSC), and Sealer 26 (S26) on adaptation at the cement/dentin interface and push-out bond strength. Sixty maxillary canines were divided into 6 groups ( n = 10): MTA, S26, and CSC, with or without ultrasonic activation (US). After obturation, the apical portions of the teeth were sectioned, and retrograde cavities were prepared and filled with cement by hand condensation. In the US groups, the cement was activated for 60 seconds: 30 seconds in the mesio-distal direction and 30 seconds in the buccal-lingual direction, using a mini Irrisonic insert coupled with the ultrasound transducer. After the materials set, 1.5-mm thick sections were obtained from the apexes. The presence of gaps and the bond between cement and dentin were analyzed using low-vacuum scanning electron microscopy. Push-out bond strength was measured using a universal testing machine. Ultrasonic agitation increased the interfacial adaptation of the cements. The S26 US group showed a higher adaptation value than MTA ( p < 0.05). US improved the push-out bond strength for all the cements ( p < 0.05). The US of retrograde filling cements enhanced the bond to the dentin wall of the root-end filling materials tested.

  3. The Effect of Food-Simulating Agents on the Bond Strength of Hard Chairside Reline Materials to Denture Base Resin.

    Science.gov (United States)

    Fatemi, Farzaneh Sadat; Vojdani, Mahroo; Khaledi, Amir Ali Reza

    2018-06-08

    To investigate the influence of food-simulating agents on the shear bond strength between direct hard liners and denture base acrylic resin. In addition, mode of failure was evaluated. One hundred fifty cylindrical columns of denture base resin were fabricated and bonded to three types of hard reline materials (Hard GC Reline, Tokuyama Rebase II Fast, TDV Cold Liner Rebase). Specimens of each reline material were divided into five groups (n = 10) to undergo 12-day immersion in distilled water, 0.02 N citric acid aqueous solution, heptane, and 40% ethanol/water solution at 37°C. The control group was not immersed in any solution. The shear bond strength test was performed, and the failure mode was determined. Statistics were analyzed with two-way ANOVA and chi-square test (α = 0.05). Significant interaction was found between the hard liners and food simulating agents (p < 0.001). The shear bond strength of Tokuyama in 40% ethanol and TDV in heptane decreased significantly (p = 0.001, p < 0.001 respectively); however, none of the solutions could significantly affect the shear bond strength of Hard GC Reline (p = 0.208). The mixed failure mode occurred more frequently in Hard GC Reline compared with the other liners (p < 0.001) and was predominant in specimens with higher bond strength values (p = 0.012). Food simulating agents did not adversely affect the shear bond strength of Hard GC Reline; however, ethanol and heptane decreased the bond strength of Tokuyama and TDV, respectively. These findings may provide support to dentists to recommend restricted consumption of some foods and beverages for patients who have to use dentures relined with certain hard liners. © 2018 by the American College of Prosthodontists.

  4. Influence of dentinal regions on bond strengths of different adhesive systems.

    Science.gov (United States)

    Ozer, F; Unlü, N; Sengun, A

    2003-06-01

    This in vitro study assessed comparatively the shear bond strengths of three composite resins, 3M Valux Plus (3MVP), Herculite (H), Clearfil AP-X (CAP-X), a polyacid modified composite resin Dyract (D), and a resin modified glass-ionomer materials Vitremer (V), to cervical and buccal dentine regions of extracted human molar teeth. Four different bonding systems, 3M ScotchBond Multipurpose (SB), Clearfil Liner Bond 2 (LB2), Opti Bond (OB), and Prime & Bond 2.1 (PB 2.1) were used with the manufacturer's respective composite and compomer materials. One hundred freshly extracted mandibular molar teeth were selected for this study. Flat buccal dentine surfaces were created on 50 teeth and cylindrical rods of the five materials were bonded to the dentine surfaces. For assessment of cervical bond strengths, the materials were bonded to mesial and distal enamel bordered occlusal dentinal surfaces of the remaining 50 teeth. The five groups of restorative procedures were applied as follows; Group 1: SB + 3MVP, Group 2: LB2 + CAP-X, Group 3: OB + H, Group 4: PB2.1 + D, Group 5: Vitremer primer (VP) VP + V. Each restorative procedure thus had 20 specimens (10 buccal + 10 cervical). After 24 h of water storage (37 degrees C), the specimens were tested on a Universal Testing machine in shear with a cross head speed of 0.5 mm min-1. The bond strength values were calculated in MPa and the results were evaluated statistically using Kruskal-Wallis one-way/anova and Mann-Whitney U-tests. It was found that the bond strengths of SB + 3MVP, LB2 + CAP-X and VP + V to buccal dentine surfaces were significantly stronger (P 0.05). Vitremer was found the least successful adhesive material in terms of shear bond strength on both buccal and occluso-cervical dentine surfaces.

  5. GROUT-CONCRETE INTERFACE BOND PERFORMANCE: EFFECT OF INTERFACE MOISTURE ON THE TENSILE BOND STRENGTH AND GROUT MICROSTRUCTURE.

    Science.gov (United States)

    De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A

    2018-05-01

    Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond

  6. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  7. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  8. Bond Strength Mechanism of Fly Ash Based Geopolymer Mortars: A Review

    Science.gov (United States)

    Zailani, W. W. A.; Abdullah, M. M. A. B.; Razak, R. A.; Zainol, M. R. R. M. A.; Tahir, M. F. M.

    2017-11-01

    Geopolymer possess many excellent properties such as high compressive and bond strength, long term durability, better acid resistance and also known as a “Sustainable Material” due to its low carbon emission and low energy consumption. Thus, it is a good opportunity to develop and explore not only for cement and concrete but also as geopolymeric repair materials. This reviews showed that good bonding properties between geopolymeric repair material and concrete substrate is important in order to acquire an enhanced resistance against penetration of harmful substances and avoiding respalling of the repair material by understanding the bonding behaviour. Bond strength depends to the properties of the repair materials itself and also the surface preparations of concrete substrate.

  9. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    Science.gov (United States)

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  10. A Unique Method to Describe the Bonding Strength in a Bonded Solid–Solid Interface by Contact Acoustic Nonlinearity

    International Nuclear Information System (INIS)

    Jian-Jun, Chen; De, Zhang; Yi-Wei, Mao; Jian-Chun, Cheng

    2009-01-01

    We present a unique method to describe the bonding strength at a bonded solid–solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid–solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour

  11. Effects of blood contamination on resin-resin bond strength.

    Science.gov (United States)

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (pcontamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  12. Evaluation of bond strength between grooved titanium alloy implant abutments and provisional veneering materials after surface treatment of the abutments: An in vitro study

    Directory of Open Access Journals (Sweden)

    Gowtham Venkat

    2017-01-01

    Full Text Available Introduction: Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. Aim: This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Materials and Methods: Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell–Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman–Keuls post hoc test. Results: The laser-etched samples showed higher bond strength. Conclusion: Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this

  13. Bond strength investigation of two shot moulded polymer

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    This report on the project “Bond strength investigation of two shot moulded polymers” has been submitted for fulfilling the requirements for the course “Experimental Plastic Technology – 42234” at IPL-DTU. Two shot moulding is a classic manufacturing process to combine two different polymers...... in a single product and it is getting more and more importance day by day. One of the biggest challenges of two shot moulding is to achieve a reasonably good bonding between two polymers. The purpose of this project is to investigate the effects of different process, material and machine parameters...... on the bond strength of two shot moulded polymers. For the experiments two engineering polymers (PS and ABS) were used. After all the experimental work, several parameters were found which could effectively control the bond strength of two shot moulded polymers. This report also presents different aspects...

  14. Evaluation of microtensile and tensile bond strength tests ...

    African Journals Online (AJOL)

    Objectives: The aim of the present study was to compare two different bond strength test methods (tensile and microtensile) in investing the influence of erbium, chromium: yttrium‑scandium‑gallium‑garnet (Er, Cr: YSGG) laser pulse frequency on resin‑enamel bonding. Materials and Methods: One‑hundred and twenty‑five ...

  15. Effect of mode of polymerization of bonding agent on shear bond strength of autocured resin composite luting cements.

    Science.gov (United States)

    Dong, Cecilia C S; McComb, Dorothy; Anderson, James D; Tam, Laura E

    2003-04-01

    There have been anecdotal reports of low bond strength with autocured resin composite materials, particularly when light-cured bonding agents that combine primer and adhesive in a 1-bottle preparation are used. The objective of this study was to determine if the mode of polymerization of the bonding agent influences the strength of the attachment of autocured resin composite luting cements to dentin. The shear bond strength of 2 resin luting cements, Calibra and RelyX ARC, polymerized by autocuring, in combination with 4 different bonding agents, Scotchbond Multipurpose Plus, Prime & Bond NT, IntegraBond and Single Bond, polymerized to bovine dentin by light-curing, autocuring or dual-curing, was determined. The pH of each bonding agent and its components was measured. Two-way analysis of variance was used to test the effect of cement and adhesive on shear bond strength. For each bonding agent, the adhesive variable combined the factors product brand and mode of polymerization. With significant interaction among the above variables, the least square means of the 16 combinations of resin cement and adhesive were compared. There was no consistent relationship between shear bond strength and mode of polymerization of the bonding agent. Significant differences in bond strength were specific to the proprietary brand of bonding agent. The pH of the bonding agent depends on the manufacturer's formulation, and low pH may contribute to low bond strength. The low in vitro bond strength occurring with some combinations of bonding agent and resin cement could be clinically significant.

  16. Adhesive bond strength evaluation in composite materials by laser-generated high amplitude ultrasound

    International Nuclear Information System (INIS)

    Perton, M; Blouin, A; Monchalin, J-P

    2011-01-01

    Adhesive bonding of composites laminates is highly efficient but is not used for joining primary aircraft structures, since there is presently no nondestructive inspection technique to ensure the quality of the bond. We are developing a technique based on the propagation of high amplitude ultrasonic waves to evaluate the adhesive bond strength. Large amplitude compression waves are generated by a short pulse powerful laser under water confinement and are converted after reflection by the assembly back surface into tensile waves. The resulting tensile stresses can cause a delamination inside the laminates or at the bond interfaces. The adhesion strength is evaluated by increasing the laser pulse energy until disbond. A good bond is unaffected by a certain level of stress whereas a weaker one is damaged. The method is shown completely non invasive throughout the whole composite assembly. The sample back surface velocity is measured by an optical interferometer and used to estimate stress history inside the sample. The depth and size of the disbonds are revealed by a post-test inspection by the well established laser-ultrasonic technique. Experimental results show that the proposed method is able to differentiate weak bond from strong bonds and to estimate quantitatively their bond strength.

  17. A comparative evaluation of the shear bond strength of five different orthodontic bonding agents polymerized using halogen and light-emitting diode curing lights: An in vitro investigation

    Directory of Open Access Journals (Sweden)

    Sujoy Banerjee

    2011-01-01

    Full Text Available Purpose: With the introduction of photosensitive (light-activated restorative materials in orthodontics, various methods have been suggested to enhance the polymerization of the materials used, including use of more powerful light curing devices. Bond strength is an important property and determines the amount of force delivered and the treatment duration. Many light-cured bonding materials have become popular but it is the need of the hour to determine the bonding agent that is the most efficient and has the desired bond strength. Aim: To evaluate and compare the shear bond strengths of five different orthodontic light cure bonding materials cured with traditional halogen light and low-intensity light-emitting diode (LED light curing unit. Materials and Methods: 100 human maxillary premolar teeth, extracted for orthodontic purpose, were used to prepare the samples. 100 maxillary stainless steel bicuspid brackets of 0.018 slot of Roth prescription, manufactured by D-tech Company, were bonded to the prepared tooth surfaces of the mounted samples using five different orthodontic bracket bonding light-cured materials, namely, Enlight, Fuji Ortho LC (resin-modified glass ionomer cement, Orthobond LC, Relybond, and Transbond XT. The bond strength was tested on an Instron Universal testing machine (model no. 5582. Results: In Group 1 (halogen group, Enlight showed the highest shear bond strength (16.4 MPa and Fuji Ortho LC showed the least bond strength (6.59 MPa (P value 0.000. In Group 2 (LED group, Transbond showed the highest mean shear bond strength (14.6 MPa and Orthobond LC showed the least mean shear bond strength (6.27 MPa (P value 0.000. There was no statistically significant difference in the shear bond strength values of all samples cured using either halogen (mean 11.49 MPa or LED (mean 11.20 MPa, as the P value was 0.713. Conclusion: Polymerization with both halogen and LED resulted in shear bond strength values which were above the

  18. Microtensile bond strength of enamel after bleaching

    Directory of Open Access Journals (Sweden)

    Andréa Dias Neves Lago

    2013-01-01

    Full Text Available Objective: To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Materials and Methods: Twenty bovine teeth were randomly distributed into 4 groups (n = 5, 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control; G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM. Results: There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2. There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive failure in all groups. Conclusion: The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  19. Push-out bond strength of different tricalcium silicate-based filling materials to root dentin

    Directory of Open Access Journals (Sweden)

    Jorge Henrique Stefaneli Marques

    2018-03-01

    Full Text Available Abstract: The aim of this study was to evaluate the bond strength of different triccalcium silicate cements to retrograde cavity using a push out test. Thirty maxillary central incisors were shaped using #80 hand files and sectioned transversally. Root slices were obtained from the apical 4 mm after eliminating the apical extremity. The specimens were embedded in acrylic resin and positioned at 45° to the horizontal plane for preparation of root-end cavities with a diamond ultrasonic retrotip. The samples were divided into three groups according to the root-end filling material (n = 10: MTA Angelus, ProRoot MTA and Biodentine. A gutta-percha cone (#80 was tugged-back at the limit between the canal and the root-end cavity. The root-end cavity was filled and the gutta-percha cone was removed after complete setting of the materials. The specimens were placed in an Instron machine with the root-end filling turned downwards. The push-out shaft was inserted in the space previously occupied by the gutta-percha cone and push out testing was performed at a crosshead speed of 1.0 mm/min. There was no statistically significant difference in resistance to push out by the materials tested (p > 0.01. MTA Angelus and ProRoot MTA showed predominantly mixed failure while Biodentine exhibited mixed and cohesive failures. The tricalcium silicate-based root-end filling materials showed similar bond strength retrograde cavity.

  20. Push-out bond strength of different tricalcium silicate-based filling materials to root dentin.

    Science.gov (United States)

    Stefaneli Marques, Jorge Henrique; Silva-Sousa, Yara Teresinha Corrêa; Rached-Júnior, Fuad Jacob Abi; Macedo, Luciana Martins Domingues de; Mazzi-Chaves, Jardel Francisco; Camilleri, Josette; Sousa-Neto, Manoel Damião

    2018-03-08

    The aim of this study was to evaluate the bond strength of different triccalcium silicate cements to retrograde cavity using a push out test. Thirty maxillary central incisors were shaped using #80 hand files and sectioned transversally. Root slices were obtained from the apical 4 mm after eliminating the apical extremity. The specimens were embedded in acrylic resin and positioned at 45° to the horizontal plane for preparation of root-end cavities with a diamond ultrasonic retrotip. The samples were divided into three groups according to the root-end filling material (n = 10): MTA Angelus, ProRoot MTA and Biodentine. A gutta-percha cone (#80) was tugged-back at the limit between the canal and the root-end cavity. The root-end cavity was filled and the gutta-percha cone was removed after complete setting of the materials. The specimens were placed in an Instron machine with the root-end filling turned downwards. The push-out shaft was inserted in the space previously occupied by the gutta-percha cone and push out testing was performed at a crosshead speed of 1.0 mm/min. There was no statistically significant difference in resistance to push out by the materials tested (p > 0.01). MTA Angelus and ProRoot MTA showed predominantly mixed failure while Biodentine exhibited mixed and cohesive failures. The tricalcium silicate-based root-end filling materials showed similar bond strength retrograde cavity.

  1. ADHESIVE SYSTEM AFFECTS REPAIR BOND STRENGTH OF RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Özgür IRMAK

    2017-10-01

    Full Text Available Purpose: This study evaluated the effects of different adhesive systems on repair bond strength of aged resin composites. Materials and Methods: Ninety composite discs were built and half of them were subjected to thermal aging. Aged and non-aged specimens were repaired with resin composite using three different adhesive systems; a two-step self-etch adhesive, a two-step total-etch adhesive and a one-step self-etch adhesive; then they were subjected to shear forces. Data were analyzed statistically. Results: Adhesive type and aging significantly affected the repair bond strengths (p<0.0001. No statistical difference was found in aged composite groups repaired with two-step self- etch or two-step total-etch adhesive. One-step self-etch adhesive showed lower bond strength values in aged composite repair (p<0.0001. Conclusion: In the repair of aged resin composite, two-step self-etch and two-step total-etch adhesives exhibited higher shear bond strength values than that of one-step self-etch adhesive.

  2. Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials.

    Science.gov (United States)

    Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan

    2018-03-01

    To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.

  3. Evaluation of Bond Strength between Grooved Titanium Alloy Implant Abutments and Provisional Veneering Materials after Surface Treatment of the Abutments: An In vitro Study.

    Science.gov (United States)

    Venkat, Gowtham; Krishnan, Murugesan; Srinivasan, Suganya; Balasubramanian, Muthukumar

    2017-01-01

    Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell-Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman-Keuls post hoc test. The laser-etched samples showed higher bond strength. Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this study confirmed that a combination of surface treatments and bond agents enhances the

  4. Apical adaptation, sealing ability and push-out bond strength of five root-end filling materials

    Directory of Open Access Journals (Sweden)

    Pablo Andrés AMOROSO-SILVA

    2014-08-01

    Full Text Available This study compared the fluid filtration, adaptation to the root canal walls, and the push-out bond strength of two resin-based sealers and three calcium silicate-based retrograde filling materials. Fifty maxillary canines were shaped using manual instruments and the apical portion was sectioned. Retrograde cavities of 3-mm depth were prepared. The specimens were divided into five groups (n = 10: Sealer 26 (S26; MBPc (experimental; MTA; Portland cement with 20% zirconium oxide (PC/ZO, and Portland cement with 20% calcium tungstate (PC/CT. The fluid filtration was measured at 7 and 15 days. To evaluate the interfacial adaptation, sections of the teeth, 1 and 2 mm from the apex, were prepared and the percentage of gaps was calculated. The push-out bond strength at 2 mm from the apex was evaluated. Statistical analysis was performed using the ANOVA/Tukey’s test (p < 0.05. At 7 and 15 days (p = 0.0048, p = 0.006, the PC/CT group showed higher fluid filtration values when compared to other groups. At 1 mm from the apex, no statistical differences in the adaptation were found among the cements (p = 0.44. At 2 mm from the apex, the PC/ZO group presented statistically lower percentage of gaps than S26, MBPc, and MTA (p = 0.0007. The MBPc group showed higher push-out bond strength than other cements evaluated (p = 0.0008. The fluid filtration and interfacial adaptation of the calcium silicate-based cements were similar to those of the resin-based cements. The resinous cement MBPc showed superior push-out bond strength.

  5. SHORT- AND LONG-TERM BOND STRENGTHS OF A GOLD STANDARD

    Directory of Open Access Journals (Sweden)

    Safa TUNCER

    2015-04-01

    Full Text Available Purpose: The aim of this study was to investigate the micro tensile bond strength of a self-etch adhesive system following 1 year storage in water. Materials and Methods: 10 sound human molar teeth were used for micro tensile bond strength test. Twostep self-etch dentin adhesive (Clearfil SE Bond® was applied to the flat dentin surfaces according to the manufacturer’s instructions. Composite blocks (Z- 250; 3M ESPE of 5 mm in height have been prepared by using layering technique. Teeth were stored in water for 24 hours at 37°C and longitudinally sectioned to obtain dentin sticks of 1 mm2.Randomly selected samples from half of the teeth were immediately subjected to micro tensile test and. Remaining specimens were tested after 1 year storage in water. Bond strengths were calculated in megapascal (MPa. Results: Means and standard deviations of the Clearfil SE Bond® micro tensile bond strength values were, respectively, 37.31 ± 13.77 MPa and 24.78 ± 2.99 MPa after 24 h and 1 year of storage in water. The difference was statistically significant (p=0.031. Conclusion: Long-term storage in water decreased the micro tensile bond strength values of the twostep self-etch adhesive which has been accepted as the gold standard in bond strength tests.

  6. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    Science.gov (United States)

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  7. Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.

    Science.gov (United States)

    Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart

    To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p CAD (p = 0.0115), and Lava Ultimate (p CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the

  8. Tensile and shear bond strength of hard and soft denture relining materials to the conventional heat cured acrylic denture base resin: An In-vitro study.

    Science.gov (United States)

    Lau, Mayank; Amarnath, G S; Muddugangadhar, B C; Swetha, M U; Das, Kopal Anshuraj Ashok Kumar

    2014-04-01

    The condition of the denture bearing tissues may be adversely affected by high stress concentration during function. Chairside Denture (Hard and Soft) reliners are used to distribute forces applied to soft tissues during function. Tensile and shear bond strength has been shown to be dependent on their chemical composition. A weak bond could harbor bacteria, promote staining and delamination of the lining material. To investigate tensile and shear bond strength of 4 different commercially available denture relining materials to conventional heat cured acrylic denture base resin. 4 mm sections in the middle of 160 Acrylic cylindrical specimens (20 mm x 8 mm) were removed, packed with test materials (Mollosil, G C Reline Soft, G C Reline Hard (Kooliner) and Ufi Gel Hard and polymerized. Specimens were divided into 8 groups of 20 each. Tensile and shear bond strength to the conventional heat cured acrylic denture base resin were examined by Instron Universal Tensile Testing Machine using the equation F=N/A (F-maximum force exerted on the specimen (Newton) and A-bonding area= 50.24 mm2). One-way ANOVA was used for multiple group comparisons followed by Bonferroni Test and Hsu's MCB for multiple pairwise comparisons to asses any significant differences between the groups. The highest mean Tensile bond strength value was obtained for Ufi Gel Hard (6.49+0.08 MPa) and lowest for G C Reline Soft (0.52+0.01 MPa). The highest mean Shear bond strength value was obtained for Ufi Gel Hard (16.19+0.1 MPa) and lowest for Mollosil (0.59+0.05 MPa). The Benferroni test showed a significant difference in the mean tensile bond strength and the mean shear bond strength when the two denture soft liners were compared as well as when the two denture hard liners were compared. Hsu's MCB implied that Ufi gel hard is better than its other closest competitors. The Tensile and Shear bond strength values of denture soft reliners were significantly lower than denture hard reliners. How to cite the

  9. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    Science.gov (United States)

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (pstrength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations.

    Science.gov (United States)

    Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros

    2014-07-01

    To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α  =  0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.

  11. Shear bond strength of brackets on restorative materials: Comparison on various dental restorative materials using the universal primer Monobond® Plus.

    Science.gov (United States)

    Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian

    2016-03-01

    The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend

  12. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites

    OpenAIRE

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-01-01

    Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel...

  13. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  14. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  15. New endodontic obturation systems and their interfacial bond strength with intraradicular dentine - ex vivo studies.

    Science.gov (United States)

    Pawińska, M; Kierklo, A; Tokajuk, G; Sidun, J

    2011-01-01

    To comparatively evaluate adhesive properties of selected root canal fillings through the measurement of the material-dentine interfacial bond strength. Fifty extracted single-rooted human teeth with one canal each were prepared using Hero instruments to size 30.04. Teeth were divided into four subgroups depending on the root canal filling material and the method of obturation: Resilon/Epiphany - a thermoplastic method (IA), Resilon/Epiphany - a matching single-point method (IB), gutta-percha/Roeko Seal Automix - a thermoplastic method (IIA) and gutta-percha/Roeko Seal Automix - a matching single-point method (IIB). The obturated roots were cut perpendicular to the long axis to create 1.7 mm thick slices. The bond strength was measured for each test slice with push -out testing machine. The highest push-out bond strength was registered in subgroup IB (3.98 ± 1.33 MPa). Significantly lower bond strength was observed in subgroups IA (0.50 ± 0.24 MPa), IIA (0.33 ± 0.18 MPa) and IIB (0.08 ± 0.03 MPa) (pmaterial-dentine interfacial bond strength values were observed between IA and IIA, IA and IIB, IIA and IIB subgroups (p > 0.05). The push-out bond strength of the material-dentine interface was dependent on the type of material used and the root canal filling technique. The R/E system exhibited better adhesion ability to intraradicular dentine than G/RSA. The highest bond strength was observed for Resilon/Epiphany introduced with the single-cone technique.

  16. Shear bond strength of one-step self-etch adhesives: pH influence

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P adhesive systems showed lower shear bond strength values with significant differences between them (P 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  17. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    Science.gov (United States)

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  18. Comparison of shear bond strength between unfilled resin to dry enamel and dentin bonding to moist and dry enamel

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-05-01

    Full Text Available Statement of Problem: The use of dentine bondings on enamel and dentin in total etch protocols has recently become popular. Unfilled resin is hydrophobic and dentin bonding is hydrophilic in nature. This chemical difference could be effective in enamel bonding process. Purpose: The aim of this study was to compare the shear bond strength of unfilled resin to dry enamel and dentin bonding to dry and moist enamel. Materials and Methods: In this experimental study, a total of 30 incisor teeth were used. The specimens were randomly assigned to three groups of 10. 37% phosphoric acid etchant was applied to the enamel surfaces in each group for 15 seconds, rinsed with water for 20 seconds and dried for 20 seconds with compressed air in groups one and two. After conditioning, group 1 received unfilled resin (Margin Bond, Colten and group 2 received dentin bonding (Single Bond, 3M and in group 3 after conditioning and rinsing with water, a layer of dentin bonding (Single Bond was applied on wet enamel. The enamel and dentin bonding were light cured for 20 seconds. A ring mold 3.5 mm in diameter and 2 mm height was placed over the specimens to receive the composite filling material (Z100, 3M. The composite was cured for 40 seconds. The specimens were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. The findings were analyzed by ANOVA One-Way and Tukey HSD tests. Results: Shear bond strength of dentin bonding to dry enamel was significantly less than unfilled resin to dry enamel (P<0.05. There was no significant difference between the bond strength of dentin bonding to moist and dry enamel. In addition bond strength of dentin bonding to wet enamel was not significantly different from unfilled resin to dry enamel. Conclusion: Based on the findings of this study, it is suggested that enamel surface should remain slightly moist after etching before bonding with single bond but when using unfilled resin, the

  19. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  20. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  1. Amalgam shear bond strength to dentin using different bonding agents.

    Science.gov (United States)

    Vargas, M A; Denehy, G E; Ratananakin, T

    1994-01-01

    This study evaluated the shear bond strength of amalgam to dentin using five different bonding agents: Amalgambond Plus, Optibond, Imperva Dual, All-Bond 2, and Clearfil Liner Bond. Flat dentin surfaces obtained by grinding the occlusal portion of 50 human third molars were used for this study. To contain the amalgam on the tooth surface, cylindrical plastic molds were placed on the dentin and secured with sticky wax. The bonding agents were then applied according to the manufacturers' instructions or light activated and Tytin amalgam was condensed into the plastic molds. The samples were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. Analysis by one-way ANOVA indicated significant difference between the five groups (P < 0.05). The bond strength of amalgam to dentin was significantly higher with Amalgambond Plus using the High-Performance Additive than with the other four bonding agents.

  2. Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents

    Science.gov (United States)

    2015-06-30

    and acidic simplified adhesives is a well-studied phenomenon (Kanehira et al., 2006). A chemical incompatibility may occur in the oxygen-inhibited...not completely eliminate this incompatibility (Tay et al., 2003). Recently, new “universal adhesives ” have been introduced. These universal...potential incompatibilities with self-curing resin materials. Low bond strength between self-curing resin materials and acidic simplified adhesives is

  3. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Choi,

    2011-05-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15, according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond and application methods. The adhesive systems were applied on the dentin as follows: 1 The single coating, 2 The double coating, 3 Manual agitation, 4 Ultrasonic agitation. Following the adhesive application, light-cure composite resin was constructed. The restored teeth were stored in distilled water at room temperature for 24 hours, and prepared 15 specimens per groups. Then microtensile bond strength was measured and the failure mode was examined. Results Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength. Conclusions In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.

  4. Effect of Curing Direction on Microtensile Bond Strength of Fifth and Sixth Generation Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ali Nadaf

    2012-09-01

    Full Text Available Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond were used with different light directions.Sixty human incisor teeth were divided into 4 groups (n=15. In groups A and C, Clearfil SE bond with light curing direction from buccal was used for bonding a composite resin to dentin. In groups B and D, Prime & Bond NT with light curing direction from composite was used. After thermocycling the specimens were subjected to tensile force until debonding occurred and values for microtensile bond strength were recorded. The data were analyzed using two-way ANOVA and Tukey post hoc test.Results: The findings showed that the bond strength of Clearfil SE bond was significantly higher than that of Prime&Bond NT (P<0.001. There was no significant difference between light curing directions (P=0.132.Conclusion: Light curing direction did not have significant effect on the bond strength. Sixth generation adhesives was more successful than fifth generation in terms of bond strength to dentin.

  5. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  6. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials.

    Science.gov (United States)

    Çulhaoğlu, Ahmet Kürşat; Özkır, Serhat Emre; Şahin, Volkan; Yılmaz, Burak; Kılıçarslan, Mehmet Ali

    2017-11-13

    ), and silicoated PEEK surfaces (8.07 ± 2.54 MPa). Acetone-treated (5.98 ± 1.54 MPa) and untreated PEEK surfaces (5.09 ± 2.14 MPa) provided the lowest mean shear bond strengths. The highest mean shear bond strengths were observed for acid-etched PEEK surfaces, followed by laser-irradiated, airborne particle abraded, and silicoated PEEK surfaces providing similar mean shear bond strengths. Since shear bond strengths higher than 10 MPa are considered acceptable, acid etching, laser irradiation, and airborne particle abrasion of PEEK surfaces may be considered viable surface treatment modalities for the PEEK material tested. © 2017 by the American College of Prosthodontists.

  7. Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector-electrode interfaces

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, D. N.; Ševeček, O.; Frandsen, L. H.; Dlouhý, Ivo; Molin, S.; Cannio, M.; Hjelm, J.; Hendriksen, P. V.

    2016-01-01

    Roč. 162, č. 1 (2016), s. 250-253 ISSN 0167-577X Institutional support: RVO:68081723 Keywords : Metal-ceramic bond strength * Schwickerath crack-initiation test * SOC interfaces Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.572, year: 2016

  8. Influence of Er,Cr:YSGG Laser Surface Treatments on Micro Push-Out Bond Strength of Fiber Posts to Composite Resin Core Materials

    Directory of Open Access Journals (Sweden)

    Mehrsima Ghavami-Lahiji

    2018-03-01

    Full Text Available Statement of problem: The bonding of fiber post to resin core or root dentin is challenged by limited penetration of resin material to the polymeric matrix of fiber posts. Objectives: The purpose of this study was to investigate the effect of Er,Cr:YSGG on micro push-out bond strength of glass fiber posts to resin core material. Materials and Methods: We used 2 commercially available fiber posts, Exacto (Angelus and White Post DC (FGM, which had similar coronal diameters. Specimens of each fiber post (n=36 were randomly divided into three subgroups (n=12 posts per group according to different surface treatment methods: control (no surface treatment, irradiation by 1W Er,Cr:YSGG, and irradiation by 1.5W Er,Cr:YSGG. A cylindrical plastic tube was placed around the post. Resin core material was filled into the tube and cured. Coronal portions of the posts were sectioned into 1-mm-thick slices. Then, the specimens were subjected to a thermocyling device for 3000 cycles. The micro push-out test was carried out using a Universal Testing Machine. Data were analyzed using one-way ANOVA followed by Tukey’s HSD post hoc test to investigate the effect of different surface treatments on each type of fiber post. Results: The 1.5W Er,Cr:YSGG laser statistically reduced micro push-out bond strength values in the Exacto groups (P0.05. Mode of failure analysis showed that mixed failure was the predominant failure type for all surface treatment groups. Conclusions: The beneficial effect of Er,Cr:YSGG laser application could not be confirmed based on the results of this in vitro study. Er,Cr:YSGG laser could not significantly enhance the bond strength values. However, the 1.5W laser statistically decreased micro push-out bond strength in the Exacto fiber posts.

  9. The Effect on Final Bond Strength of Bracket Manipulation Subsequent To Initial Positioning

    Science.gov (United States)

    Beebe, David A.

    The shear bond strength of light activated orthodontic adhesives varies according to the composition of the material, placement protocol, and time prior to light curing. Manipulating brackets after their initial placement on a tooth can disrupt the adhesive's polymerization and compromise final bond strength. No previous research has investigated how a specific degree of manipulation, and the amount of time elapsed prior to curing, under specific lighting conditions, affects the orthodontic adhesives shear bond strength. Victory SeriesRTM, MBT prescription, premolar (3M Unitek, Monrovia, CA) orthodontic brackets were bonded using three different adhesives to sixty (60) bicuspids and varying the time after bracket manipulation before curing. The shear bond strength was calculated for each specimen. The brackets were debonded and the same teeth were rebonded with new, identical brackets, using the same protocol and under the same conditions. The results showed a statistically significant difference between the shear bond strength of Transbond XT and Grengloo, with Transbond XT having the highest strength. There was also a statistically significance difference in bond strength between the group cured 30 seconds after manipulation and the groups manipulated at different intervals prior to curing, with the 30 second group having the highest bond strength. This study confirms that various orthodontic adhesives have different bond strengths depending on manipulation and varying times prior to curing each adhesive.

  10. Shear bond strength of metallic and ceramic brackets using color change adhesives.

    Science.gov (United States)

    Stumpf, Aisha de Souza Gomes; Bergmann, Carlos; Prietsch, José Renato; Vicenzi, Juliane

    2013-01-01

    To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared, but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  11. Efficacy of microtensile versus microshear bond testing for evaluation of bond strength of dental adhesive systems to enamel

    NARCIS (Netherlands)

    El Zohairy, A.A.; Saber, M.H.; Abdalla, A.I.; Feilzer, A.J.

    2010-01-01

    Objective The aim of the study was to evaluate the efficacy of the microtensile bond test (μTBS) and the microshear bond test (μSBS) in ranking four dental adhesives according to bond strength to enamel and identify the modes of failure involved. Materials and methods Forty-four caries-free human

  12. Comparison of shear bond strength of stainless steel brackets bonded with three light- cured adhesives

    Directory of Open Access Journals (Sweden)

    Zahra Minaei Basharik

    2015-09-01

    Full Text Available Introduction: The bonding process of the brackets to enamel has been a critical issue in orthodontic research. The purpose of this study was to evaluate the shear bond strength of 3 light-cured adhesives (transbond XT, Z250, light bond. Materials &Methods: In this study sixty extracted human premolars were collected and randomly divided into 3 test groups. All teeth were etched by 37% phosphoric acid. In first group brackets were bonded by Transbond XT adhesive, in group two brackets were bonded by Light bond adhesive and in third group were bonded by filtek Z250 composite. All of them were cured with Ortholux xt for 40 seconds.24 hours after thermocycling, Shear Bond Strength (SBS values of these brackets were recorded using a Universal Testing Machine. Adhesive Remnant Index (ARI scores were determined after the failure of the brackets, using Stereo Microscope the data were analyzed using ANOVA and Chi-square tests. Results: Mean shear bond strength of Transbond XT, light bond and Z250 were 28.9±2.25 MPa, 25.06±1.98 MPa and 26.8±2.57 MPa, respectively. No significant difference was observed in the SBS among the groups and a clinically acceptable SBS was found for the three adhesives. ARI scores were not significantly different between the various groups (P>0.05. Conclusion: This study showed that the Z250 can be used as light bond and transbond xt to bond orthodontic brackets and ARI and SBS scores were not significantly different.

  13. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    Science.gov (United States)

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  15. Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.

    Science.gov (United States)

    Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa

    2010-06-01

    To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.

  16. Microtensile bond strength of bulk-fill restorative composites to dentin.

    Science.gov (United States)

    Mandava, Jyothi; Vegesna, Divya-Prasanna; Ravi, Ravichandra; Boddeda, Mohan-Rao; Uppalapati, Lakshman-Varma; Ghazanfaruddin, M D

    2017-08-01

    To facilitate the easier placement of direct resin composite in deeper cavities, bulk fill composites have been introduced. The Mechanical stability of fillings in stress bearing areas restored with bulk-fill resin composites is still open to question, since long term clinical studies are not available so far. Thus, the objective of the study was to evaluate and compare the microtensile bond strength of three bulk-fill restorative composites with a nanohybrid composite. Class I cavities were prepared on sixty extracted mandibular molars. Teeth were divided into 4 groups (n= 15 each) and in group I, the prepared cavities were restored with nanohybrid (Filtek Z250 XT) restorative composite in an incremental manner. In group II, III and IV, the bulk-fill composites (Filtek, Tetric EvoCeram, X-tra fil bulk-fill restoratives) were placed as a 4 mm single increment and light cured. The restored teeth were subjected to thermocycling and bond strength testing was done using instron testing machine. The mode of failure was assessed by scanning electron microscope (SEM). The bond strength values obtained in megapascals (MPa) were subjected to statistical analysis, using SPSS/PC version 20 software.One-way ANOVA was used for groupwise comparison of the bond strength. Tukey's Post Hoc test was used for pairwise comparisons among the groups. The highest mean bond strength was achieved with Filtek bulk-fill restorative showing statistically significant difference with Tetric EvoCeram bulk-fill ( p composites. Adhesive failures are mostly observed with X-tra fil bulk fill composites, whereas mixed failures are more common with other bulk fill composites. Bulk-fill composites exhibited adequate bond strength to dentin and can be considered as restorative material of choice in posterior stress bearing areas. Key words: Bond strength, Bulk-fill restoratives, Configuration factor, Polymerization shrinkage.

  17. Evaluation of a new nano-filled restorative material for bonding orthodontic brackets.

    Science.gov (United States)

    Bishara, Samir E; Ajlouni, Raed; Soliman, Manal M; Oonsombat, Charuphan; Laffoon, John F; Warren, John

    2007-01-01

    To compare the shear bond strength of a nano-hybrid restorative material, Grandio (Voco, Cuxhaven, Germany), to that of a traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) when bonding orthodontic brackets. Forty teeth were randomly divided into 2 groups: 20 teeth were bonded with the Transbond adhesive system and the other 20 teeth with the Grandio restorative system, following manufacturer's instructions. Student t test was used to compare the shear bond strength of the 2 systems. Significance was predetermined at P 5 .05. The t test comparisons (t = 0.55) of the shear bond strength between the 2 adhesives indicated the absence of a significant (P = .585) difference. The mean shear bond strength for Grandio was 4.1 +/- 2.6 MPa and that for Transbond XT was 4.6 +/- 3.2 MPa. During debonding, 3 of 20 brackets (15%) bonded with Grandio failed without registering any force on the Zwick recording. None of the brackets bonded with Transbond XT had a similar failure mode. The newly introduced nano-filled composite materials can potentially be used to bond orthodontic brackets to teeth if its consistency can be more flowable to readily adhere to the bracket base.

  18. Shear bond strength of metallic brackets: influence of saliva contamination

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2009-06-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III on orthodontic metallic brackets bonded to human enamel. MATERIAL AND METHODS: Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer's instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37ºC for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000 running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. RESULTS: The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91 was significantly higher than that of AS (8.58±1.73 and XS (10.39±4.06 groups (p<0.05. Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI used to evaluate the amount of adhesive left on the enamel. CONCLUSIONS: Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets.

  19. Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system.

    Science.gov (United States)

    Shinohara, Ayano; Taira, Yohsuke; Sakihara, Michino; Sawase, Takashi

    2018-01-01

    Objective The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study.

  20. Repair bond strength of nanohybrid composite resins with a universal adhesive.

    Science.gov (United States)

    Altinci, Pinar; Mutluay, Murat; Tezvergil-Mutluay, Arzu

    2018-01-01

    Objective: To investigate the repair bond strength of fresh and aged nanohybrid and hybrid composite resins using a universal adhesive (UA). Materials and methods: Fresh and aged substrates were prepared using two nanohybrid (Venus Pearl, Heraus Kulzer; Filtek Supreme XTE, 3 M ESPE) and one hybrid (Z100, 3 M ESPE) composite resin, and randomly assigned to different surface treatments: (1) no treatment (control), (2) surface roughening with 320-grit (SR), (3) SR + UA (iBOND, Heraus Kulzer), (4) SR + Silane (Signum, Ceramic Bond I, Heraeus Kulzer) + UA, (5) SR + Sandblasting (CoJet, 3 M ESPE) + Silane + UA. After surface treatment, fresh composite resin was added to the substrates at 2 mm layer increments to a height of 5 mm, and light cured. Restored specimens were water-stored for 24 h and sectioned to obtain 1.0 × 1.0 mm beams ( n  = 12), and were either water-stored for 24 h at 37 °C, or water-stored for 24 h, and then thermocycled for 6000 cycles before microtensile bond strength (µTBS) testing. Data were analyzed with ANOVA and Tukey's HSD tests ( p  = .05). Results: Combined treatment of SR, sandblasting, silane and UA provided repair bond strength values comparable to the cohesive strength of each tested resin material ( p  composite resins upto 65% ( p  composite repair. Sandblasting and silane application slightly increases the repair strength for all substrate types.

  1. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis.

    Science.gov (United States)

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Albaladejo, Alberto; Montiel-Company, José María; Bellot-Arcís, Carlos

    2018-01-01

    Lasers have recently been introduced as an alternative means of conditioning dental ceramic surfaces in order to enhance their adhesive strength to cements and other materials. The present systematic review and meta-analysis aimed to review and quantitatively analyze the available literature in order to determine which bond protocols and laser types are the most effective. A search was conducted in the Pubmed, Embase and Scopus databases for papers published up to April 2017. PRISMA guidelines for systematic review and meta-analysis were followed. Fifty-two papers were eligible for inclusion in the review. Twenty-five studies were synthesized quantitatively. Lasers were found to increase bond strength of ceramic surfaces to resin cements and composites when compared with control specimens (p-value < 0.01), whereas no significant differences were found in comparison with air-particle abraded surfaces. High variability can be observed in adhesion values between different analyses, pointing to a need to standardize study protocols and to determine the optimal parameters for each laser type.

  2. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  3. In vitro comparison of the tensile bond strength of denture adhesives on denture bases.

    Science.gov (United States)

    Kore, Doris R; Kattadiyil, Mathew T; Hall, Dan B; Bahjri, Khaled

    2013-12-01

    With several denture adhesives available, it is important for dentists to make appropriate patient recommendations. The purpose of this study was to evaluate the tensile bond strength of denture adhesives on denture base materials at time intervals of up to 24 hours. Fixodent, Super Poligrip, Effergrip, and SeaBond denture adhesives were tested with 3 denture base materials: 2 heat-polymerized (Lucitone 199 and SR Ivocap) and 1 visible-light-polymerized (shade-stable Eclipse). Artificial saliva with mucin was used as a control. Tensile bond strength was tested in accordance with American Dental Association specifications at 5 minutes, 3 hours, 6 hours, 12 hours, and 24 hours after applying the adhesive. Maximum forces before failure were recorded in megapascals (MPa), and the data were subjected to a 2-way analysis of variance (α=.05). All 4 adhesives had greater tensile bond strength than the control. Fixodent, Super Poligrip, and SeaBond had higher tensile bond strength values than Effergrip. All adhesives had the greatest tensile bond strength at 5 minutes and the least at 24 hours. The 3 denture bases produced significantly different results with each adhesive (Padhesives had the greatest tensile bond strength, followed by Ivocap and Eclipse. All 4 adhesives had greater tensile bond strength than the control, and all 4 adhesives were strongest at the 5-minute interval. On all 3 types of denture bases, Effergrip produced significantly lower tensile bond strength, and Fixodent, Super Poligrip, and SeaBond produced significantly higher tensile bond strength. At 24 hours, the adhesive-base combinations with the highest tensile bond strength were Fixodent on Lucitone 199, Fixodent on Eclipse, Fixodent on Ivocap, and Super Poligrip on Ivocap. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    International Nuclear Information System (INIS)

    Vallee, T.; Keller, Th.; Fourestey, G.; Fournier, B.; Correia, J.R.

    2009-01-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  5. Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vallee, T.; Keller, Th. [Ecole Polytech Fed Lausanne, CCLab, CH-1015 Lausanne, (Switzerland); Fourestey, G. [Ecole Polytech Fed Lausanne, IACS, Chair Modeling and Sci Comp, CH-1015 Lausanne, (Switzerland); Fournier, B. [CEA SACLAY ENSMP, DEN, DANS, DMN, SRMA, LC2M, F-91191 Gif Sur Yvette, (France); Correia, J.R. [Univ Tecn Lisbon, Inst Super Tecn, Civil Engn and Architecture Dept, P-1049001 Lisbon, (Portugal)

    2009-07-01

    The Weibull distribution, used to describe the scaling of strength of materials, has been verified on a wide range of materials and geometries: however, the quality of the fitting tended to be less good towards the upper tail. Based on a previously developed probabilistic strength prediction method for adhesively bonded joints composed of pultruded glass fiber-reinforced polymer (GFRP) adherends, where it was verified that a two-parameter Weibull probabilistic distribution was not able to model accurately the upper tail of a material strength distribution, different improved probabilistic distributions were compared to enhance the quality of strength predictions. The following probabilistic distributions were examined: a two-parameter Weibull (as a reference), m-fold Weibull, a Grafted Distribution, a Birnbaum-Saunders Distribution and a Generalized Lambda Distribution. The Generalized Lambda Distribution turned out to be the best analytical approximation for the strength data, providing a good fit to the experimental data, and leading to more accurate joint strength predictions than the original two-parameter Weibull distribution. It was found that a proper modeling of the upper tail leads to a noticeable increase of the quality of the predictions. (authors)

  6. Shear bond strength of metallic and ceramic brackets using color change adhesives

    Directory of Open Access Journals (Sweden)

    Aisha de Souza Gomes Stumpf

    2013-04-01

    Full Text Available OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI. RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  7. Microtensile bond strength to enamel affected by hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Yaman, Batu Can; Ozer, Fusun; Cabukusta, Cigdem Sozen; Eren, Meltem M; Koray, Fatma; Blatz, Markus B

    2014-02-01

    This study compared the microtensile bond strengths (μTBS) of two different self-etching (SE) and etchand- rinse (ER) adhesive systems to enamel affected by hypoplastic amelogenesis imperfecta (HPAI) and analyzed the enamel etching patterns created by the two adhesive systems using scanning electron microscopy (SEM). Sixteen extracted HPAI-affected molars were used for the bond strength tests and 2 molars were examined under SEM for etching patterns. The control groups consisted of 12 healthy third molars for μTBS tests and two molars for SEM. Mesial and distal surfaces of the teeth were slightly ground flat. The adhesive systems and composite resin were applied to the flat enamel surfaces according to the manufacturers' instructions. The tooth slabs containing composite resin material on their mesial and distal surfaces were cut in the mesio-distal direction with a slow-speed diamond saw. The slabs were cut again to obtain square, 1-mm-thick sticks. Finally, each stick was divided into halves and placed in the μTBS tester. Bond strength tests were performed at a speed of 0.5 mm/min. Data were analyzed with two-way ANOVA and Tukey's tests. There was no significant difference between the bond strength values of ER and SE adhesives (p > 0.05). However, significant differences were found between HPAI and control groups (p systems provide similar bond strengths to HPAI-affected enamel surfaces.

  8. Effect of different methods of enamel conditioning on bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Davari AR

    2007-01-01

    Full Text Available Background and Aim: With the introduction of different bondable restorative materials in dentistry, various methods have been suggested to enhance the polymerization and shear bond strength of these materials. The aim of this study was to determine the effects of different methods of enamel conditioning on bond strength of orthodontic brackets and on the bracket/ adhesive failure mode. Materials and Methods: In this experimental in vitro study, brackets were bonded to thirty-six bovine incisor teeth with different protocols according to the manufacturer's instructions as follows: Group 1: conventional multistep adhesive (n=12; Group 2: self-etching primer system (n=12; Group 3: acid+self-etching primer system (n=12. Specimens were loaded in a universal testing machine (Instron, Canton and Mass and the mode of failure was recorded. Data were analyzed by ANOVA and Kruskall-Wallis tests with p<0.05 as the limit of significance. Results: The mean shear bond strength was 11.7 ± 4.2, 10.5 ± 4.4, and 10.9 ± 4.8 MPa for group 1, 2, and 3 respectively. There was no significant difference in bond strength among the three groups (P=0.800. No significant difference was observed among the three groups with respect to residual adhesive on the enamel surfaces (P=0.554. Conclusion: Based on the results of the present study, the use of self-etching primers may be an alternative to conventional phosphoric acid pre-treatment in orthodontic bonding.

  9. The bond of different post materials to a resin composite cement and a resin composite core material.

    Science.gov (United States)

    Stewardson, D; Shortall, A; Marquis, P

    2012-01-01

    To investigate the bond of endodontic post materials, with and without grit blasting, to a resin composite cement and a core material using push-out bond strength tests. Fiber-reinforced composite (FRC) posts containing carbon (C) or glass (A) fiber and a steel (S) post were cemented into cylinders of polymerized restorative composite without surface treatment (as controls) and after grit blasting for 8, 16, and 32 seconds. Additional steel post samples were sputter-coated with gold before cementation to prevent chemical interaction with the cement. Cylindrical composite cores were bonded to other samples. After sectioning into discs, bond strengths were determined using push-out testing. Profilometry and electron microscopy were used to assess the effect of grit blasting on surface topography. Mean (standard deviation) bond strength values (MPa) for untreated posts to resin cement were 8.41 (2.80) for C, 9.61(1.88) for A, and 19.90 (3.61) for S. Prolonged grit blasting increased bond strength for FRC posts but produced only a minimal increase for S. After 32 seconds, mean values were 20.65 (4.91) for C, 20.41 (2.93) for A, and 22.97 (2.87) for S. Gold-coated steel samples produced the lowest bond strength value, 7.84 (1.40). Mean bond strengths for untreated posts bonded to composite cores were 6.19 (0.95) for C, 13.22 (1.61) for A, and 8.82 (1.18) for S, and after 32 seconds of grit blasting the values were 17.30 (2.02) for C, 26.47 (3.09) for A, and 20.61 (2.67) for S. FRC materials recorded higher roughness values before and after grit blasting than S. With prolonged grit blasting, roughness increased for A and C, but not for S. There was no evidence of significant bonding to untreated FRC posts, but significant bonding occurred between untreated steel posts and the resin cement. Increases in the roughness of FRC samples were material dependent and roughening significantly increased bond strength values (p<0.05). Surface roughening of the tested FRC posts is

  10. Factors Affecting the Shear Bond Strength of Orthodontic Brackets - a Review of In Vitro Studies.

    Science.gov (United States)

    Bakhadher, Waleed; Halawany, Hassan; Talic, Nabeel; Abraham, Nimmi; Jacob, Vimal

    2015-01-01

    The adhesive material used to bond orthodontic brackets to teeth should neither fail during the treatment period, resulting in treatment delays, untoward expenses or patient inconvenience nor should it damage the enamel on debonding at the end of the treatment. Although the effectiveness of a bonding system and any unfavorable effects on the enamel may be studied by conducting in-vivo studies, it is nearly impossible to independently analyze different variables that influence a specific bonding system in the oral environment. In-vitro studies, on the other hand, may utilize more standardized protocols for testing different bonding systems and materials available. Thus, the present review focused attention on in-vitro studies and made an attempt to discuss material-related, teeth-related (fluorotic vs non-fluorotic teeth) and other miscellaneous factors that influences the shear bond strength of orthodontic brackets. Within the limitations of this review, using conventional acid-etch technique, ceramic brackets and bonding to non-fluorotic teeth was reported to have a positive influence on the shear bond strength of orthodontic brackets, but higher shear bond strength found on using ceramic brackets can be dangerous for the enamel.

  11. An in vitro Evaluation of Shear Bond Strength of Adhesive Precoated Brackets

    Directory of Open Access Journals (Sweden)

    A S Sibi

    2014-01-01

    Full Text Available Newer materials have been introduced in the field of orthodontics to improve clinical efficacy as well as to simplify the technique. In an effort to reduce the time and steps to bond orthodontic attachments, adhesive precoated (APC brackets were introduced. In this study, an attempt is made to evaluate the shear bond strength (SBS and debonding behavior of APC brackets compared with uncoated ceramic brackets. A total of 60 human premolar teeth were divided into two groups of 30 each, bonded with APC ceramic brackets and uncoated ceramic brackets. Group I bonded with APC brackets as prescribed by the manufacturers and group II was bonded with conventional bonding using Turbobond. After bonding, sthe samples were kept in distilled water at 37°C for 24 hours and a universal testing mechine was used to apply an occlusal shear force at a speed of 0.5 mm/min. The shear bond strength of the groups was compared using Student t-test and the debonding behavior were compared using Mann-Whitney′s U test. Mean shear bond strength and standard deviation of the groups were group I - 9.09 ± 2.5 MPa and group II - 12.95 ± 2.81 MPa. There were significant differences in bond strength observed between the two groups. The debonding behavior showed an adhesive remnant index score of 0.90 ± 0.08 for group I and 1.10 ± 0.04 for group II, which indicates there is significant difference between each other. When considering the values required for optimum bond strength, APC brackets in this study showed adequate bond strength and could be used for routine clinical use.

  12. Effect of a New Surface Treatment Solution on the Bond Strength of Composite to Enamel

    Science.gov (United States)

    2016-06-01

    Bond Strength of Composite to Enamel " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner...Solution on the Bond Strength of Composite to Enamel ABSTRACT Clean & Boost (Apex Dental Materials) is a novel surface treatment solution...designed to be used in place of phosphoric acid to increase the bond strength of self-etch adhesives to enamel and more effectively remove contaminants

  13. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  14. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    Directory of Open Access Journals (Sweden)

    Laura AlveBastos

    2015-02-01

    Full Text Available Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE, the specific self-etching adhesive system (Adhesive System P90, 3M ESPE was used with and without pre-etching (Pre-etching/Silorane and Silorane groups. Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray, with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups, or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE (Three-step/Methacrylate group (n = 6. The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm, and coupled to a universal test machine (0.5 mm/min to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05. However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin.

  15. Shear bond strength of self-etch and total-etch bonding systems at different dentin depths

    Directory of Open Access Journals (Sweden)

    Ana Carolina Maito Villela-Rosa

    2011-04-01

    Full Text Available The purpose of this study was to evaluate the dentin shear bond strength of four adhesive systems (Adper Single Bond 2, Adper Prompt L-Pop, Magic Bond DE and Self Etch Bond in regards to buccal and lingual surfaces and dentin depth. Forty extracted third molars had roots removed and crowns bisected in the mesiodistal direction. The buccal and lingual surfaces were fixed in a PVC/acrylic resin ring and were divided into buccal and lingual groups assigned to each selected adhesive. The same specimens prepared for the evaluation of superficial dentin shear resistance were used to evaluate the different depths of dentin. The specimens were identified and abraded at depths of 0.5, 1.0, 1.5 and 2.0 mm. Each depth was evaluated by ISO TR 11405 using an EMIC-2000 machine regulated at 0.5 mm/min with a 200 Kgf load cell. We performed statistical analyses on the results (ANOVA, Tukey and Scheffé tests. Data revealed statistical differences (p < 0.01 in the adhesive and depth variation as well as adhesive/depth interactions. The Adper Single Bond 2 demonstrated the highest mean values of shear bond strength. The Prompt L-Pop product, a self-etching adhesive, revealed higher mean values compared with Magic Bond DE and Self Etch Bond adhesives, a total and self-etching adhesive respectively. It may be concluded that the shear bond strength of dentin is dependent on material (adhesive system, substrate depth and adhesive/depth interaction.

  16. Influence of increment thickness on dentin bond strength and light transmission of composite base materials.

    Science.gov (United States)

    Omran, Tarek A; Garoushi, Sufyan; Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K

    2017-06-01

    Bulk-fill resin composites (BFCs) are gaining popularity in restorative dentistry due to the reduced chair time and ease of application. This study aimed to evaluate the influence of increment thickness on dentin bond strength and light transmission of different BFCs and a new discontinuous fiber-reinforced composite. One hundred eighty extracted sound human molars were prepared for a shear bond strength (SBS) test. The teeth were divided into four groups (n = 45) according to the resin composite used: regular particulate filler resin composite: (1) G-ænial Anterior [GA] (control); bulk-fill resin composites: (2) Tetric EvoCeram Bulk Fill [TEBF] and (3) SDR; and discontinuous fiber-reinforced composite: (4) everX Posterior [EXP]. Each group was subdivided according to increment thickness (2, 4, and 6 mm). The irradiance power through the material of all groups/subgroups was quantified (MARC® Resin Calibrator; BlueLight Analytics Inc.). Data were analyzed using two-way ANOVA followed by Tukey's post hoc test. SBS and light irradiance decreased as the increment's height increased (p composite used. EXP presented the highest SBS in 2- and 4-mm-thick increments when compared to other composites, although the differences were not statistically significant (p > 0.05). Light irradiance mean values arranged in descending order were (p composites. Discontinuous fiber-reinforced composite showed the highest value of curing light transmission, which was also seen in improved bonding strength to the underlying dentin surface. Discontinuous fiber-reinforced composite can be applied safely in bulks of 4-mm increments same as other bulk-fill composites, although, in 2-mm thickness, the investigated composites showed better performance.

  17. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    Science.gov (United States)

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (pceramics (pceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Enamel and dentin bond strength following gaseous ozone application.

    Science.gov (United States)

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p enamel and dentin bond strength.

  19. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  20. Effect of newer antioxidants on the bond strength of composite on bleached enamel

    Directory of Open Access Journals (Sweden)

    M Manoharan

    2016-01-01

    Full Text Available Aim: The study aims to evaluate the effect of the application of two antioxidants on the bond strength of composite resin to bleached enamel. Materials and Methods: Eighty enamel surfaces were obtained from forty human extracted premolars. Specimens were randomly divided into four groups (n = 20. Group 1: No bleaching (control; Group 2a: Bleaching with 15% carbamide peroxide gel; Group 2b: Bleaching, followed by application of 10% sodium ascorbate gel; Group 2c: Bleaching, followed by application of 5% proanthocyanidin agent. Surfaces were etched followed by application of total etch bonding system, and composite resin cylinders were bonded. Specimens were tested for shear bond strength. Statistical Analysis Used: One-way analysis of variance was used for multiple group comparison and post hoc Tukey′s test for individual group-wise comparison. Results: Significantly higher shear bond strength values were observed in Group 2c and 2b as compared with Group 1 and 2a (P < 0.05. Among the antioxidants, Group 2c showed significantly higher shear bond strength values than Group 2b (P < 0.05. Conclusion: It can be concluded that the use of antioxidant before bonding procedures on bleached enamel completely neutralizes the deleterious effects of bleaching and increases the bond strength significantly.

  1. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    Science.gov (United States)

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P enamel and dentin substrates (P enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  2. Influence of adhesion promoters and curing-light sources on the shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Claudia Tavares Machado

    2012-01-01

    Conclusions: The conventional orthodontic adhesive presented higher bond strength than the nanofilled composite, although both materials interacted similarly to the teeth. The curing-light devices tested did not influence on bond strength of orthodontic brackets.

  3. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin

    2017-01-01

    PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (Pcementation of the novel CAD/CAM restorative materials. PMID:29279763

  4. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis

    Science.gov (United States)

    García-Sanz, Verónica; Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Albaladejo, Alberto; Montiel-Company, José María; Bellot-Arcís, Carlos

    2018-01-01

    Lasers have recently been introduced as an alternative means of conditioning dental ceramic surfaces in order to enhance their adhesive strength to cements and other materials. The present systematic review and meta-analysis aimed to review and quantitatively analyze the available literature in order to determine which bond protocols and laser types are the most effective. A search was conducted in the Pubmed, Embase and Scopus databases for papers published up to April 2017. PRISMA guidelines for systematic review and meta-analysis were followed. Fifty-two papers were eligible for inclusion in the review. Twenty-five studies were synthesized quantitatively. Lasers were found to increase bond strength of ceramic surfaces to resin cements and composites when compared with control specimens (p-value < 0.01), whereas no significant differences were found in comparison with air-particle abraded surfaces. High variability can be observed in adhesion values between different analyses, pointing to a need to standardize study protocols and to determine the optimal parameters for each laser type. PMID:29293633

  5. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    OpenAIRE

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2014-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/S...

  6. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel.

    Science.gov (United States)

    Beltrami, Riccardo; Chiesa, Marco; Scribante, Andrea; Allegretti, Jessica; Poggio, Claudio

    2016-04-06

    The purpose of this study was to evaluate the effect of surface pretreatment with 37% phosphoric acid on the enamel bond strength of different universal adhesives. One hundred and sixty bovine permanent mandibular incisors freshly extracted were used as a substitute for human teeth. The materials tested in this study included 6 universal adhesives, and 2 self-etch adhesives as control. The teeth were assigned into 2 groups: In the first group, etching was performed using 37% phosphoric acid for 30 seconds. In the second group, no pretreatment agent was applied. After adhesive application, a nanohybrid composite resin was inserted into the enamel surface by packing the material into cylindrical-shaped plastic matrices. After storing, the specimens were placed in a universal testing machine. The normality of the data was calculated using the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) was applied to determine whether significant differences in debond strength values existed among the various groups. Groups with phosphoric acid pretreatment showed significantly higher shear bond strength values than groups with no enamel pretreatment (p<0.001). No significant variation in shear strength values was detected when comparing the different adhesive systems applied onto enamel after orthophosphoric acid application (p>0.05). All adhesives provide similar bond strength values when enamel pretreatment is applied even if compositions are different. Bond strength values are lower than promised by manufacturers.

  7. Investigation of the shear bond strength to dentin of universal adhesives applied with two different techniques

    Directory of Open Access Journals (Sweden)

    Elif Yaşa

    2017-09-01

    Full Text Available Objective: The aim of this study was to evaluate the shear bond strength of universal adhesives applied with self-etch and etch&rinse techniques to dentin. Materials and Method: Fourty-eight sound extracted human third molars were used in this study. Occlusal enamel was removed in order to expose the dentinal surface, and the surface was flattened. Specimens were randomly divided into four groups and were sectioned vestibulo-lingually using a diamond disc. The universal adhesives: All Bond Universal (Group 1a and 1b, Gluma Bond Universal (Group 2a and 2b and Single Bond Universal (Group 3a and 3b were applied onto the tooth specimens either with self-etch technique (a or with etch&rinse technique (b according to the manufacturers’ instructions. Clearfil SE Bond (Group 4a; self-etch and Optibond FL (Group 4b; etch&rinse were used as control groups. Then the specimens were restored with a nanohybrid composite resin (Filtek Z550. After thermocycling, shear bond strength test was performed with a universal test machine at a crosshead speed of 0.5 mm/min. Fracture analysis was done under a stereomicroscope (×40 magnification. Data were analyzed using two-way ANOVA and post-hoc Tukey tests. Results: Statistical analysis showed significant differences in shear bond strength values between the universal adhesives (p<0.05. Significantly higher bond strength values were observed in self-etch groups (a in comparison to etch&rinse groups (b (p<0.05. Among all groups, Single Bond Universal showed the greatest shear bond strength values, whereas All Bond Universal showed the lowest shear bond strength values with both application techniques. Conclusion: Dentin bonding strengths of universal adhesives applied with different techniques may vary depending on the adhesive material. For the universal bonding agents tested in this study, the etch&rinse technique negatively affected the bond strength to dentin.

  8. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  9. Experimental investigation of bond strength under high loading rates

    Directory of Open Access Journals (Sweden)

    Michal Mathias

    2015-01-01

    Full Text Available The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw and the Joint Research Centre (JRC in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  10. An Investigation of Bond Strength of Reinforcing Bars in Fly Ash and GGBS Based Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Boopalan C.

    2017-01-01

    Full Text Available Geopolymers are amorphous aluminosilicate materials. Geopolymers are binders formed by alkali activation of Geopolymer Source Materials (GSM using an alkaline activator solution. Concretes made using Geopolymer binders are excellent alternative to the Ordinary Portland Cement concretes from strength, durability, and ecological considerations. Especially, usage of industrial waste materials such as Fly Ash and Slags as GSMs considerably lower the carbon footprint of concrete and mitigate the damage due to the unscientific dumping/disposal of these materials. To use the Geopolymer concrete (GPC for reinforced structural members, the composite action of reinforcing bars with Geopolymer concrete i.e. the bond behaviour should be well understood. This paper describes the bond behaviour of 12mm and 16mm dia. bars embedded in Fly ash and GGBS based Geopolymer concrete and conventional Portland Pozzolana cement concrete specimens investigated using the pull-out tests as per Indian Standard Code IS:2770(Part-I; the bond stresses and corresponding slips were found out. The bond stress increased with increase in compressive strength. The peak bond stress was found to be 4.3 times more than the design bond stress as per IS:456-2000. The Geopolymer concretes possess higher bond strength compared to the conventional cement concretes.

  11. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Directory of Open Access Journals (Sweden)

    An-Na Choi

    2017-10-01

    Full Text Available The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS testing and confocal laser scanning microscopy (CLSM. Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying, 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05. Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p < 0.05. One-way ANOVA showed that All-Bond Universal was the only material influenced by the wetness of the dentin surfaces. Wetness of the dentin surface is a factor influencing the micro-tensile bond strength of universal adhesives.

  12. Investigation of the bond strength between the photo-sensitive polymer SU-8 and Au

    DEFF Research Database (Denmark)

    Nordstrom, Maria; Johansson, Alicia; Sanches-Noguerón, E.

    2004-01-01

    promotors between the SU-8 and Au (ii) the effect of the processing sequence, either keeping SU-8 as bottum layer or Au (iii) varying the UV exposure dosage of the SU-8. For comparison, also the bond strength between SU-8 and other materials was measured. We report on bond strength of 4.8 +/- 1.2 MPa...

  13. Enamel Wetness Effects on Microshear Bond Strength of Different Bonding Agents (Adhesive Systems): An in vitro Comparative Evaluation Study.

    Science.gov (United States)

    Kulkarni, Girish; Mishra, Vinay K

    2016-05-01

    The purpose of this study was to compare the effect of enamel wetness on microshear bond strength using different adhesive systems. To evaluate microshear bond strength of three bonding agents on dry enamel; to evaluate microshear bond strength of three bonding agents on wet enamel; and to compare microshear bond strength of three different bonding agents on dry and wet enamel. Sixty extracted noncarious human premolars were selected for this study. Flat enamel surfaces of approximately 3 mm were obtained by grinding the buccal surfaces of premolars with water-cooled diamond disks. This study evaluated one etch-and-rinse adhesive system (Single Bond 2) and two self-etching adhesive systems (Clearfil SE Bond and Xeno-V). The specimens were divided into two groups (n = 30). Group I (dry) was air-dried for 30 seconds and in group II (wet) surfaces were blotted with absorbent paper to remove excess water. These groups were further divided into six subgroups (n = 10) according to the adhesives used. The resin composite, Filtek Z 250, was bonded to flat enamel surfaces that had been treated with one of the adhesives, following the manufacturer's instructions. After being stored in water at 37°C for 24 hours, bonded specimens were stressed in universal testing machine (Fig. 3) at a crosshead speed of 1 mm/min. The data were evaluated with one-way and two-way analysis of variance (ANOVA), t-test, and Tukey's Multiple Post hoc tests (a = 0.05). The two-way ANOVA and Tukey's Multiple Post hoc tests showed significant differences among adhesive systems, but wetness did not influence microshear bond strength (p = 0.1762). The one-way ANOVA and t-test showed that the all-in-one adhesive (Xeno-V) was the only material influenced by the presence of water on the enamel surface. Xeno-V showed significantly higher microshear bond strength when the enamel was kept wet. Single Bond 2 adhesive showed significantly higher microshear bond strength as compared with Xeno-V adhesive but no

  14. In Vitro Evaluation of Shear Bond Strength of Self Etching Primers to Dentin

    Directory of Open Access Journals (Sweden)

    Reena Vora

    2012-01-01

    Full Text Available Objectives: To evaluate and compare the shear bond strength of four self etching primer adhesives to dentin. Materials & Methods: A total of 75 extracted human maxillary and mandibular molars were selected for the study. The teeth were divided into 5 groups of 15 teeth each, Group A- AdheSE (Ivoclar Vivadent, Group B-Adper prompt (3M ESPE, Group C- i bond (Heraeus-Kulzer, Group D-XenoIII (Dentsply, De Trey Group E-Single bond (3M ESPE was used and served as control. All the adhesives were applied according to the manufacturer′s instructions. Composite post was built on these bonded surfaces using Z-100 hybrid composite. The teeth were subjected to thermocycling for 500 cycles between 5°C to 55°C. The teeth were then mounted on universal testing machine and fractured under a shearing load, applied at a speed of 0.2mm/min. The readings were noted, tabulated and shear bond strength calculated in Mega Pascal (Mpa units. Results: There was significant difference in the mean shear bond strength of the four self etching primers, adhesives tested. Shear strength values were in the range of 16.57 to 21.73 Mpa. Xeno III gave the highest mean of shear bond strength whereas Adhe SE showed the lowest value of shear strength. Conclusion: Based on the results of the study, it can be concluded that contemporary self etching primer adhesives bond successfully to dentin. Moreover the bonding ability of Self Etching Systems seems to be comparable to the conventional Total Etch Systems.

  15. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    Science.gov (United States)

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.

  16. Bond strength to dentin with artificial carious lesions: influence of caries detecting dye.

    Science.gov (United States)

    Palma, R G; Turbino, M L; Matson, E; Powers, J M

    1998-06-01

    To evaluate the influence of dyes for caries detection on tensile bond strength of adhesive materials to artificial carious dentin. Buccal and lingual enamel of human molars were removed leaving intact dentin surfaces. The entire surface of each specimen was covered with nail varnish, keeping a window area of 4 x 4 mm. Artificial carious lesions were induced with acidified gel. Three dyes (0.5% basic fuchsin; Caries Finder and Cari-D-Tect) were used according to manufacturers' recommendations. Specimens were etched with 35% phosphoric acid for 20 s, washed and dried, leaving a wet dentin surface. The adhesive system (Prime & Bond 2.0) was applied in two layers and light-cured. Restorative materials (TPH Spectrum, Dyract, Advance) were bonded using a 3-mm diameter inverted-cone mold. Control groups were made without dye. Eight samples were tested for each group. After 24 hrs of storage in distilled water, the samples were debonded using a testing machine at 0.5 mm/min crosshead speed. ANOVA and Tukey-Kramer test showed that TPH Spectrum (0.73 MPa) and Dyract (0.74 MPa) had similar bond strengths, and both were higher than Advance (0.0 MPa), which was statistically different (P strength for any tested materials.

  17. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  18. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    Science.gov (United States)

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  19. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin.

    Science.gov (United States)

    Fu, Jiale; Saikaew, Pipop; Kawano, Shimpei; Carvalho, Ricardo M; Hannig, Matthias; Sano, Hidehiko; Selimovic, Denis

    2017-08-01

    To evaluate the influence of different air-blowing durations on the micro-tensile bond strength (μTBS) of five current one-step adhesive systems to dentin. One hundred and five caries-free human molars and five current one-step adhesive systems were used: ABU (All Bond Universal, Bisco, Inc.), CUB (CLEARFIL™ Universal Bond, Kuraray), GPB (G-Premio BOND, GC), OBA (OptiBond All-in-one, Kerr) and SBU (Scotchbond Universal, 3M ESPE). The adhesives were applied to 600 SiC paper-flat dentin surfaces according to each manufacturer's instructions and were air-dried with standard, oil-free air pressure of 0.25MPa for either 0s, 5s, 15s or 30s before light-curing. Bond strength to dentin was determined by using μTBS test after 24h of water storage. The fracture pattern on the dentin surface was analyzed by SEM. The resin-dentin interface of untested specimens was visualized by panoramic SEM image. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. air-blowing time), and Games-Howell (a=0.05). Two-way ANOVA revealed a significant effect of materials (p=0.000) and air-blowing time (p=0.000) on bond strength to dentin. The interaction between factors was also significantly different (p=0.000). Maximum bond strength for each system were recorded, OBA/15s (76.34±19.15MPa), SBU/15s (75.18±12.83MPa), CUB/15s (68.23±16.36MPa), GPB/30s (55.82±12.99MPa) and ABU/15s (44.75±8.95MPa). The maximum bond strength of OBA and SUB were significantly higher than that of GPB and ABU (padhesive systems is material-dependent (p=0.000), and was influenced by air-blowing duration (p=0.000). For the current one-step adhesive systems, higher bond strengths could be achieved with prolonged air-blowing duration between 15-30s. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    Science.gov (United States)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  1. Effect of Quaternary Ammonium Salt on Shear Bond Strength of Orthodontic Brackets to Enamel

    Directory of Open Access Journals (Sweden)

    Hannaneh Ghadirian

    2017-10-01

    Full Text Available Objectives: This study sought to assess the effect of quaternary ammonium salt (QAS on shear bond strength of orthodontic brackets to enamel.Materials and Methods: In this in vitro experimental study, 0, 10, 20 and 30% concentrations of QAS were added to Transbond XT primer. Brackets were bonded to 60 premolar teeth using the afore-mentioned adhesive mixtures, and the shear bond strength of the four groups (n=15 was measured using a universal testing machine. After debonding, the adhesive remnant index (ARI score was determined under a stereomicroscope. Data were analyzed using one-way ANOVA.Results: The mean and standard deviation of shear bond strength of the control and 10%, 20% and 30% groups were 23.54±6.31, 21.81±2.82, 20.83±8.35 and 22.91±5.66 MPa, respectively. No significant difference was noted in shear bond strength of the groups (P=0.83. Study groups were not different in terms of ARI scores (P=0.80.Conclusions: The results showed that addition of QAS to Transbond XT primer had no adverse effect on shear bond strength of orthodontic brackets.

  2. Effect of laser welding on the titanium ceramic tensile bond strength

    Directory of Open Access Journals (Sweden)

    Rodrigo Galo

    2011-08-01

    Full Text Available Titanium reacts strongly with elements, mainly oxygen at high temperature. The high temperature of titanium laser welding modifies the surface, and may interfere on the metal-ceramic tensile bond strength. OBJECTIVE: The influence of laser welding on the titanium-ceramic bonding has not yet been established. The purpose of this in vitro study was to analyze the influence of laser welding applied to commercially pure titanium (CpTi substructure on the bond strength of commercial ceramic. The influence of airborne particle abrasion (Al2O3 conditions was also studied. MATERIAL AND METHODS: Forty CpTi cylindrical rods (3 mm x 60 mm were cast and divided into 2 groups: with laser welding (L and without laser welding (WL. Each group was divided in 4 subgroups, according to the size of the particles used in airborne particle abrasion: A - Al2O3 (250 µm; B - Al2O3 (180 µm; C - Al2O3 (110 µm; D - Al2O3 (50 µm. Ceramic rings were fused around the CpTi rods. Specimens were invested and their tensile strength was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 200 kgf load cell. Statistical analysis was carried out with analysis of variance and compared using the independent t test (p<0.05. RESULTS: Significant differences were found among all subgroups (p<0.05. The highest and the lowest bond strength means were recorded in subgroups WLC (52.62 MPa and LD (24.02 MPa, respectively. CONCLUSION: Airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Mechanical retention decreased in the laser-welded specimens, i.e. the metal-ceramic tensile bond strength was lower.

  3. The influence of size and structure of metal orthodontic bracket base on bond strength on tooth enamel

    Directory of Open Access Journals (Sweden)

    Mitić Vladimir

    2009-01-01

    Full Text Available Introduction. The factors which may influence the bond strength of the applied orthodontic brackets on the tooth surface are the size and structure of the bracket base. Objective. The aim of the paper was to investigate the influence of size and shape of different types of brackets on bond strength on the enamel and analyze the remaining quality of adhesive material on the tooth surface after debonding of orthodontic brackets (adhesive remnant index - ARI. Methods. In this study, three types of metal brackets of different sizes and shapes of Dentaurum manufacturer were used (Utratrimm, Equilibrium 2, Discovery, Dentaurum, Inspringen, Germany. The brackets were applied onto the middle part of the anatomic crowns of buccal surfaces of 30 premolars extracted for orthodontic reasons. In addition, the pre-treatment of teeth by 37% orthophosphoric acid and adhesive material System1+ (Dentaurum, Germany were used. Results. The mean value of the bonded brackets bond strength of Discovery type after debonding was 8.67±0.32 MPa, while the value of the bonded brackets bond strength of Equilibrium 2 type amounted to 8.62±0.22 MPa. The value of the bonded brackets bond strength of Ultratrimm type after debonding was 8.22±0.49 MPa. There were no statistical differences in the values of bond strength regarding all three groups of the investigated orthodontic brackets (F=4.56; p<0.05. Conclusion. The base size and design of metal orthodontic brackets did not play a significant role in bond strength, while the values of ARI index were identical in all three investigated groups.

  4. Shear bond strength of a new one-bottle dentin adhesive.

    Science.gov (United States)

    Swift, E J; Bayne, S C

    1997-08-01

    To test the shear bond strength of a new adhesive, 3M Single Bond, to dentin surfaces containing different degrees of moisture. Two commercially available one-bottle adhesives (Prime & Bond, One-Step) and a conventional three-step system (Scotchbond Multi-Purpose Plus) were included for comparison. 120 bovine teeth were embedded in acrylic and the labial surfaces were polished to 600 grit to create standardized dentin surfaces for testing. Resin composite was bonded to dentin using a gelatin capsule technique. Four adhesive systems were evaluated with three different degrees of surface moisture (moist, wet, and overwet). Shear bond strengths of adhesives to dentin were determined using a universal testing machine and analyzed by ANOVA and Tukey's post hoc tests. Single Bond had mean shear bond strengths of 19.2, 23.2 and 20.3 MPa to moist, wet, and overwet dentin, respectively. Bond strengths of the three-component system Scotchbond Multi-Purpose Plus ranged from 23.1 to 25.3 MPa, but were not significantly higher than the values for Single Bond. Prime & Bond had bond strengths similar to those of Single Bond, but One-Step had significantly lower bond strengths (P < 0.05) in the wet and overwet conditions.

  5. Effects of surface treatment of provisional crowns on the shear bond strength of brackets

    Directory of Open Access Journals (Sweden)

    Josiane Xavier de Almeida

    2013-08-01

    Full Text Available OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30 according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.

  6. Shear bond strength of amalgam to dentin using different dentin adhesive systems

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2012-01-01

    Full Text Available Background and Aims: The aim of this in vitro study was to assess the shear bond strength of amalgam to dentin using four dentin adhesive systems.Materials and Methods: One hundred human molars were selected. After enamel removal, a dentin cylinder with 3 mm thickness was prepared. Eighty specimens were resorted with amalgam and four dentin adhesive systems as follows (n=20: group 1, Scotch Bond Multi-Purpose; group 2, One Coat Bond; group 3, PQ1; and group 4, Panavia-F. In group 5, 20 specimens were resorted with amalgam and varnish as control group. The specimens were incubated at 37°C for 24 h. The shear bond strengths were then measured by using push out method. The data were analyzed by one-way ANOVA and post hoc Duncan's tests.Results: Mean values for bond strengths of test groups were as follows: group 1=21.03±8.9, group 2=23.47±9, group 3=13.16±8.8, group 4=20.07±8.9 and group 5=14.15±8.7 MPa±SD. One-way ANOVA showed the statistically significant difference between the bond strengths of five groups (P=0.001. Post hoc Duncan's test showed significant difference between groups 1and 3 (P=0.008, groups 1 and 5 (P=0.019, groups 2 and 5 (P=0.0008, groups 4 and 5 (P=0.042, and groups 3 and 4 (P=0.018.Conclusion: Results of this study showed that the bond strength of amalgam to dentin using One Coat Bond as dentin adhesive system was higher than that observed in other dentin adhesive systems.

  7. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    Science.gov (United States)

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  8. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    Directory of Open Access Journals (Sweden)

    Maria Francesca Sfondrini

    2013-01-01

    Full Text Available Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a dry, (b water contamination, and (c saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values and Chi squared test (ARI Scores. Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

  9. HIP bonding between niobium/copper/stainless steel materials

    International Nuclear Information System (INIS)

    Inoue, Hitoshi; Fujino, Takeo; Hitomi, Nobuteru; Saito, Kenji; Yamada, Masahiro; Shibuya, Junichi; Ota, Tomoko

    2000-01-01

    We have used niobium flanges for the niobium bulk superconducting RF cavities, however, they are expensive. Stainless steel flanges instead of the niobium flanges will be used in the future large scale production of sc cavities like the KEK/JAERI joint project. For a future R and D of the vacuum sealing related to the clean horizontal assembly method or development of cavities welded a helium vessel in the KEK/JAERI joint project, a converter section of niobium material to stainless steel is required. From these requirements we need to develop the converter. We have tried a HIP bonding method between niobium materials and stainless steel or copper material. It was made clear that the technology could offer an enough bonding strength even higher than niobium tensile strength in the joined surface between niobium and stainless steel or copper. (author)

  10. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    Directory of Open Access Journals (Sweden)

    Mehdi Abed Kahnemooyi

    2014-12-01

    Full Text Available Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A‒D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultrastructural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014, with significant differences in shear bond strengths in terms of the adhesive systems (P<0.01. There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01. Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for 10 minutes restored the bond strength in both adhesive systems.

  11. Comparison of shear bond strength of orthodontic brackets bonded using two different hydrophilic primers: An in vitro study

    Directory of Open Access Journals (Sweden)

    M Kumaraswamy Anand

    2014-01-01

    Full Text Available Context: Salivary control and maintenance of a dry operating field is a prime requisite of orthodontic bonding. Moisture insensitive primer (MIP with a clinical significant bond strength values have a better edge over the conventional hydrophobic bonding systems. Aim: The aim of this study is to investigate the effectiveness of two hydrophilic primers with respect to conventional hydrophobic primer by comparing their shear bond strength (SBS and adhesive-failure locations after contamination with saliva and saliva substitute. Materials and Methods: A total of 150 extracted human premolars were randomly divided into five group s ; Group A (Transbond MIP/saliva substitute, Group B (Opal Primo/saliva substitute, Group C (Transbond MIP/natural saliva, Group D (Opal Primo/natural saliva, control group - Group E (Transbond XT/dry, adhesive-Transbond XT used for all five groups and bonded using stainless steel brackets. Shear forces were applied to the samples with a universal testing machine. SBSs was measured in megapascals. The mode of bond failure was determined using the adhesive remnant index (ARI. Results: The mean SBS produced by Transbond MIP was higher than Opal Primo, which was statistically significant according to one-way analysis of variance. Both the tested groups showed lesser bond strength values than Transbond XT (the control. ARI scores revealed that there was no statistically significant difference in the site of bond failure between study groups. ARI scores were found to be lower for study groups suggesting adhesive failure, compared to higher ARI scores for the control group suggesting cohesive failure. Conclusion: Transbond XT adhesive with Transbond MIP or Opal Primo have clinically acceptable bond strength in wet fields. Opal Primo is a viable option to use as a hydrophilic primer clinically.

  12. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic.

    Science.gov (United States)

    Kirmali, Omer; Kapdan, Alper; Harorli, Osman Tolga; Barutcugil, Cagatay; Ozarslan, Mehmet Mustafa

    2015-01-01

    The aim of this study was to evaluate the shear bond strength of composite resin in five different repair systems. Sixty specimens (7 mm in diameter and 3 mm in height) of zirconia ceramic were fabricated. All specimen surfaces were prepared with a 30 µm fine diamond rotary cutting instrument with water irrigation for 10 s and dried with oil-free air. Specimens were then randomly divided into six groups for the following different intra-oral repair systems (n = 10): Group 1, control group; Group 2, Cojet system (3M ESPE, Seefeld, Germany); Group 3, Cimara® System (Voco, Cuxhaven, Germany); Group 4, Z-Prime Plus System (Bisco Inc., Schaumburg, IL); Group 5, Clearfil™ System (Kuraray, Osaka, Japan); and Group 6, Z-Bond System (Danville, CA). After surface conditioning, a composite resin Grandio (Voco, Cuxhaven, Germany) was applied to the zirconia surface using a cylindrical mold (5 mm in diameter and 3 mm in length) and incrementally filled up, according to the manufacturer's instructions of each intra-oral system. Each specimen was subjected to a shear load at a crosshead speed of 1 mm/min until fracture. One-way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the bond strength values. There were significant differences between Groups 2-6 and Group 1. The highest bond strength values were obtained with Group 2 (17.26 ± 3.22) and Group 3 (17.31 ± 3.62), while the lowest values were observed with Group 1 (8.96 ± 1.62) and Group 6 (12.85 ± 3.95). All repair systems tested increased the bond strength values between zirconia and composite resin that used surface grinding with a diamond bur.

  13. Influence of periodontal ligament simulation on bond strength and fracture resistance of roots restored with fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Maria Estivalete MARCHIONATTI

    2014-10-01

    Full Text Available Objective: Considering that periodontal ligament simulation may influence the stress distribution over teeth restored with intraradicular retainers, this study aimed to assess the combined effect of mechanical cycling and periodontal ligament simulation on both the bond strength between fiber posts and root dentin and the fracture resistance of teeth restored using glass fiber posts. Material and Methods: Ninety roots were randomly distributed into 3 groups (n=10 (C-MC: control; P-MC: polyether; AS-MC: addition silicone to test bond strength and 6 groups (n=10 (C: control; P: polyether; AS: addition silicone, without mechanical cycling, and C-MC, P-MC and AS-MC with mechanical cycling to test fracture strength, according to the material used to simulate the periodontal ligament. For the bond strength test, fiber posts were cemented, cores were built, mechanical cycling was applied (2×106 cycles, 88 N, 2.2 Hz, and 45º incline, and the teeth cut into 3 slices (2 mm, which were then subjected to the push-out test at 1 mm/min. For the fracture strength test, fiber posts were cemented, cores were built, and half of the groups received mechanical cycling, followed by the compressive strength (45° to the long axis and 1 mm/min performed on all groups. Results: Periodontal ligament simulation did not affect the bond strength (p=0.244 between post and dentin. Simulation of periodontal ligament (p=0.153 and application of mechanical cycling (p=0.97 did not affect fracture resistance. Conclusions: The materials used to simulate the periodontal ligament did not affect fracture or bond strength, therefore periodontal ligament simulation using the tested materials could be considered optional in the conditions of the study.

  14. Bond strength of a composite resin to glass ionomer cements using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Oliveira BECCI

    2017-08-01

    Full Text Available Abstract Introduction Glass ionomer cements are often used as a base or cavity lining prior to restorative material. Objective To evaluate the bond strength of a composite resin to different glass ionomer cements, when using a two-step conventional and self-etching adhesive systems. Material and method Three glass ionomer cements (Ketac Molar Easymix, Vitremer and Vitrebond, the composite resin Filtek Z350 XT and the adhesive systems Adper Single Bond 2, Clearfil SE Bond and Adper Easy One were used. As negative control, resin was bonded to cement without using an adhesive system. Holes (4 mm diameter, 2 mm deep prepared in acrilic bloks were filled with the glass ionomer cements (n=12/group. On the surface, an area of 1mm in diameter was delimited, the adhesive system was applied, and a specimen of composite resin with 1 mm height was made. After 24 hours storage (37 °C and 100% humidity, the microshear test was performed. Data were analyzed using two-way ANOVA and Tukey test for comparison between groups (α=0.05. Result The adhesive systems significantly improved the bond strenght of composite resin to glass ionomer cements (p≤0.001. There was no significant difference in bond strength when self-etching adhesive systems were compared with the simplified etch-and-rinse adhesive, except for Vitrebond where Clearfil SE Bond determined higher bond strength when compared to Adper Single Bond 2 (p=0.003. Conclusion Self-etching adhesive systems are a good option for establishing the bond between the composite resin and the glass ionomer cement.

  15. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement.

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin; Tulga, Ayça

    2017-12-01

    To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) ( P CAD/CAM restorative materials was modified after treatments. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.

  16. Effect of Water Storage on the Micro-shear Bond Strength of Two Self-etch Adhesives to Enamel and Dentin

    Directory of Open Access Journals (Sweden)

    Z. Jaberi Ansari

    2007-06-01

    Full Text Available Objective: This study evaluated the influence of storage time on micro-shear bond strength of two self-etching materials to enamel and dentin.Materials and Methods: Human third molar teeth were sectioned to 1.5 mm thick beams and randomly divided into 2 groups. In group I, SE Bond and in group II, Tri-S Bond was used to bond a composite rod (AP-X to each treated surface. Specimens were prepared according to manufacturer instructions. Each group was further divided into three subgroups according to water storage time; 1 day, 6 and 12 months. Microshear bond strengths were determined under a crosshead speed of 1mm/min using a universal testing machine and expressed in MPa. Data was statistically analyzed by ANOVA and Dunnett post hoc test.Results: Micro-shear bond strength of two adhesives to enamel and dentin showed a slight but not significant decrease over time (P>0.5. After one day, the mean bond strength of enamel in groups I and II were 39.47 and 34.65 MPa and in dentin were 45.20 and 36.0 MPa respectively. There was no statistically significant differencebetween two materials (P=0.190, P=0.082. After six months the bond strength in group I and II was 35.93 and 35.18 MPa for enamel, and 38.27and 35.19 MPa for dentin respectively, these differences was not statistically significant (P=0.520, P=0.179.After one year, the bond strength of enamel in groups I and II, were 34.47and 29.91MPa, and in dentin were 33.86 and 32.53 MPa respectively which was not statistically significant (P=0.609, P=0.991.Conclusion: The micro-shear bond strength of both adhesives to enamel and dentin decreased slightly over time; however these decreases were not statistically significant.

  17. Microtensile bond strength of enamel after bleaching.

    Science.gov (United States)

    Lago, Andrea Dias Neves; Garone-Netto, Narciso

    2013-01-01

    To evaluate the bond strength of a composite resin to the bovine enamel bleached with 35% hydrogen peroxide. It was used an etching-and-rinse adhesive system employed immediately, 7 and 14 days after the bleaching. Twenty bovine teeth were randomly distributed into 4 groups (n = 5), 3 experimental and 1 control. G1: Unbleached + restoration 14 days after storage in artificial saliva (control); G2: Bleached + restoration immediately after bleaching; G3: Bleached + restoration 7 days after bleaching; G4: Bleached + restoration 14 days after bleaching. Their buccal enamel surfaces were flattened, and a 25 mm² (5 × 5 mm) area from each one of these regions was outlined so as to standardize the experimental region. Universal hybrid composite resin Filtek™Z350 was inserted into four layers of 1 mm each and photo-activated. The bond strength was quantitatively evaluated by a microtensile test (1.0 mm/min) 24 h after the restorative procedures. The failure mode was assessed through scanning electron microscopy (SEM). There was a significant reduction in the bond strength of the restored teeth immediately after the bleaching (G2). There were no significant differences in enamel bond strength between groups G1, G3, and G4. There was a predominance of adhesive and mixed (cohesive + adhesive) failure in all groups. The 7-day-period after the end of the bleaching with 35% hydrogen peroxide was enough to achieve the appropriate values of bond strength to the enamel.

  18. Effect of surface treatment of FRC-Post on bonding strength to resin cements

    Directory of Open Access Journals (Sweden)

    Chan-Hyun Park,

    2011-03-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods Pre-surface treated LuxaPost (DMG, Rely-X Fiber Post (3M ESPE and self adhesive resin cement Rely-X Unicem (3M ESPE, conventional resin cement Rely-X ARC (3M ESPE, and Rely-X Ceramic Primer (3M ESPE were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

  19. Bond strength of compomers to dentin using acidic primers.

    Science.gov (United States)

    Tate, W H; You, C; Powers, J M

    1999-10-01

    To determine the in vitro bond strengths of seven compomer/bonding agent restorative systems to human dentin. Seven compomer/bonding agents were bonded to human dentin, stored in water at 37 degrees C for 24 hours, and debonded in tension. Bonding conditions were with and without phosphoric acid etching, with and without the use of combined primer/bonding agents, and under moist and wet bond interfaces. Without phosphoric acid etching, F2000/F2000 Compomer Primer/Adhesive and F2000/Single Bond Dental Adhesive System were less sensitive to dentin wetness. With moist dentin, bond strengths of Dyract/Prime & Bond 2.1, Dyract AP/Prime & Bond 2.1, Hytac/OSB light-curing, one-component bonding agent, F2000/Single Bond, and Freedom/STAE single component light-cured dentin/enamel adhesive system, were improved with phosphoric acid etching. Also, with moist dentin, the bond strength of F2000/F2000 Compomer Primer/Adhesive in the 3M Clicker dispensing system was higher without phosphoric acid etching, whereas bonds of Compoglass/Syntac Single-component were not affected by phosphoric acid etching. Bonding did not occur without primer/bonding agent, regardless of surface condition or use of phosphoric acid etching.

  20. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems.

    Science.gov (United States)

    Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Berry, Thomas P; Watanabe, Hedehiko; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The purpose of this study was to determine the dentin bonding ability of three new universal adhesive systems under different etching modes using fatigue testing. Prime & Bond elect [PE] (DENTSPLY Caulk), Scotchbond Universal [SU] (3M ESPE), and All Bond Universal [AU] (Bisco) were used in this study. A conventional single-step self-etch adhesive, Clearfil Bond SE ONE [CS] (Kuraray Noritake Dental) was also included as a control. Shear bond strengths (SBS) and shear fatigue strength (SFS) to human dentin were obtained in the total-etch mode and self-etch modes. For each test condition, 15 specimens were prepared for the SBS and 30 specimens for SFS. SEM was used to examine representative de-bonded specimens, treated dentin surfaces and the resin/dentin interface for each test condition. Among the universal adhesives, PE in total-etch mode showed significantly higher SBS and SFS values than in self-etch mode. SU and AU did not show any significant difference in SBS and SFS between the total-etch mode and self-etch mode. However, the single-step self-etch adhesive CS showed significantly lower SBS and SFS values in the etch-and-rinse mode when compared to the self-etch mode. Examining the ratio of SFS/SBS, for PE and AU, the etch-and-rinse mode groups showed higher ratios than the self-etch mode groups. The influence of different etching modes on dentin bond quality of universal adhesives was dependent on the adhesive material. However, for the universal adhesives, using the total-etch mode did not have a negative impact on dentin bond quality. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    Directory of Open Access Journals (Sweden)

    José Aginaldo de Sousa Júnior

    2015-08-01

    Full Text Available Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05. Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05, while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05. Stae showed the lowest bond strength values (p < 0.05, while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  2. Evaluation of microtensile and tensile bond strength tests ...

    African Journals Online (AJOL)

    2015-11-03

    Nov 3, 2015 ... Bond strength tests and Er,Cr:YSGG laser frequency. 586 ... power, 90% air pressure, 75% water pressure, 45 s irradiation ..... geometry on the measurement of the tensile bond strength to dentin. J Dent ... Bur‑cut enamel and.

  3. Bond strength of adhesive resin cement with different adhesive systems

    OpenAIRE

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; S?, Marcus-Vinicius-Reis; Pereira, Jefferson-Ricardo

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder? Scotchbond? Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-s...

  4. Bond strength tests between silicon wafers and duran tubes (fusion bonded fluidic interconnects)

    NARCIS (Netherlands)

    Fazal, I.; Berenschot, Johan W.; de Boer, J.H.; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2005-01-01

    The fusion bond strength of glass tubes with standard silicon wafers is presented. Experiments with plain silicon wafers and those coated with silicon oxide and silicon nitride are presented. Results obtained are discussed in terms of homogeneity and strength of fusion bond. High pressure testing

  5. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination

    Directory of Open Access Journals (Sweden)

    Mashallah Khanehmasjedi

    2017-02-01

    Conclusion: Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions.

  6. Evaluation of bonding strength between yttria coating and vanadium alloys for development of self-cooled blanket

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Hitoshi, E-mail: akamatsu@jupiter.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Sendai 980-8579 (Japan); Satou, Manabu; Sato, Takashi [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Sendai 980-8579 (Japan); Jain, Amit; Gupta, Vijay [Department of Mechanical and Aerospace Engineering, 38-137E, Eng IV Building, University of California, Los Angels, CA 90095-1597 (United States); Hasegawa, Akira [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Sendai 980-8579 (Japan)

    2011-10-01

    A laser spallation technique was utilized for measurement of the bonding strength between yttria coating and vanadium alloys. The bonding strength between the alloys containing small amounts of yttrium made by levitation melting method and the yttria coating prepared by vacuum plasma-spray was evaluated to be about 950 MPa. It was not clearly observed the effects of alloying elements on the bonding strength. The strength varied about 100 MPa by specimens and by alloy compositions. Detailed observation of the failure type at the interface indicated that crack formation in the coating reduced the stress at the interface, so that the evaluation might be overestimated. It was demonstrated that application of the laser spallation technique to measure the bonding strength between ceramics coating and base material was useful for the evaluation of mechanical integrity of the coating.

  7. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives

    Science.gov (United States)

    Sharma, Sudhir; Tandon, Pradeep; Nagar, Amit; Singh, Gyan P; Singh, Alka; Chugh, Vinay K

    2014-01-01

    Objectives: The objective of this study is to compare the shear bond strength (SBS) of stainless steel (SS) orthodontic brackets bonded with four different orthodontic adhesives. Materials and Methods: Eighty newly extracted premolars were bonded to 0.022 SS brackets (Ormco, Scafati, Italy) and equally divided into four groups based on adhesive used: (1) Rely-a-Bond (self-cure adhesive, Reliance Orthodontic Product, Inc., Illinois, USA), (2) Transbond XT (light-cure adhesive, 3M Unitek, CA, USA), (3) Transbond Plus (sixth generation self-etch primer, 3M Unitek, CA, USA) with Transbond XT (4) Xeno V (seventh generation self-etch primer, Dentsply, Konstanz, Germany) with Xeno Ortho (light-cure adhesive, Dentsply, Konstanz, Germany) adhesive. Brackets were debonded with a universal testing machine (Model No. 3382 Instron Corp., Canton, Mass, USA). The adhesive remnant index (ARI) was recordedIn addition, the conditioned enamel surfaces were observed under a scanning electron microscope (SEM). Results: Transbond XT (15.49 MPa) attained the highest bond strength. Self-etching adhesives (Xeno V, 13.51 MPa; Transbond Plus, 11.57 MPa) showed clinically acceptable SBS values and almost clean enamel surface after debonding. The analysis of variance (F = 11.85, P adhesives left on the tooth) to be the most prevalent in Transbond XT (40%), followed by Rely-a-Bond (30%), Transbond Plus with Transbond XT (15%), and Xeno V with Xeno Ortho (10%). Under SEM, enamel surfaces after debonding of the brackets appeared porous when an acid-etching process was performed on the surfaces of Rely-a-Bond and Transbond XT, whereas with self-etching primers enamel presented smooth and almost clean surfaces (Transbond Plus and Xeno V group). Conclusion: All adhesives yielded SBS values higher than the recommended bond strength (5.9-7–8 MPa), Seventh generation self-etching primer Xeno V with Xeno Ortho showed clinically acceptable SBS and the least amount of residual adhesive left on the

  8. Experimental investigation of the factors influencing the polymer-polymer bond strength during two component injection moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2007-01-01

    Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented....... A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can...

  9. Effect of Storage Time on Bond Strength and Nanoleakage Expression of Universal Adhesives Bonded to Dentin and Etched Enamel.

    Science.gov (United States)

    Makishi, P; André, C B; Ayres, Apa; Martins, A L; Giannini, M

    2016-01-01

    To investigate bond strength and nanoleakage expression of universal adhesives (UA) bonded to dentin and etched enamel. Extracted human third molars were sectioned and ground to obtain flat surfaces of dentin (n = 36) and enamel (n = 48). Dentin and etched enamel surfaces were bonded with one of two UAs, All-Bond Universal (ABU) or Scotchbond Universal (SBU); or a two-step self-etching adhesive, Clearfil SE Bond (CSEB). A hydrophobic bonding resin, Adper Scotchbond Multi-Purpose Bond (ASMP Bond) was applied only on etched enamel. Following each bonding procedure, resin composite blocks were built up incrementally. The specimens were sectioned and subjected to microtensile bond strength (MTBS) testing after 24 hours or one year water storage, or immersed into ammoniacal silver nitrate solution after aging with 10,000 thermocycles and observed using scanning electron microscopy. The percentage distribution of silver particles at the adhesive/tooth interface was calculated using digital image-analysis software. The MTBS (CSEB = SBU > ABU, for dentin; and CSEB > ABU = SBU = ASMP Bond, for etched enamel) differed significantly between the adhesives after 24 hours. After one year, MTBS values were reduced significantly within the same adhesive for both substrates (analysis of variance, Bonferroni post hoc, padhesives for etched enamel. Silver particles could be detected within the adhesive/dentin interface of all specimens tested. Kruskal-Wallis mean ranks for nanoleakage in ABU, SBU, and CSEB were 16.9, 18.5 and 11, respectively (p>0.05). In the short term, MTBS values were material and dental-substrate dependent. After aging, a decrease in bonding effectiveness was observed in all materials, with nanoleakage at the adhesive/dentin interface. The bonding of the UAs was equal or inferior to that of the conventional restorative systems when applied to either substrate and after either storage period.

  10. Effect of a whitening agent application on enamel bond strength of self-etching primer systems.

    Science.gov (United States)

    Miyazaki, Masashi; Sato, Hikaru; Sato, Tomomi; Moore, B Keith; Platt, Jeffrey A

    2004-06-01

    Though reduction in bond strength after tooth whitening has been reported, little is known about it's effect on enamel bond strength of two-step bonding systems that exclude phosphoric acid etching prior to bonding agent application. The purpose of this study was to determine the effect of whitening procedure using an in-office whitening agent on enamel bond strength of self-etching primer systems. Three self-etching primer systems, Imperva Fluoro Bond, Mac Bond II, Clearfil SE Bond, and a one-bottle adhesive system Single Bond as a control material, were used. Bovine mandibular incisors were mounted in self-curing resin and the facial enamel or dentin surfaces were ground wet on 600-grit SiC paper. An in-office whitening agent, Hi-Lite was applied on the tooth surface according to the manufacturer's instruction. Bonding procedures were done soon after rinsing off the whitening agent or after 24 hours storage in distilled water. Specimens without whitening procedure were prepared as controls. Fifteen specimens per test group were stored in 37 degrees C distilled water for 24 hours, then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Duncan multiple range test were used for statistical analysis of the results. For the specimens made soon after rinsing off the whitening agent, a significant decrease in enamel bond strength was observed for all the bonding systems used. For the specimens made after 24 hours storage in water, a small decrease in enamel bond strength was observed and no significant differences were found compared to those of controls (without whitening). From the results of this study, enamel bond strengths of the self-etching primer systems might be affected to a lesser degree after rinsing with water followed by 24 hours storage in water.

  11. Effects of etching time on enamel bond strengths.

    Science.gov (United States)

    Triolo, P T; Swift, E J; Mudgil, A; Levine, A

    1993-12-01

    This study evaluated the effects of etching time on bond strengths of composite to enamel. Proximal surfaces of extracted molars were etched with either a conventional etchant (35% phosphoric acid) or one of two dentin/enamel conditioners, 10% maleic acid (Scotchbond Multi-Purpose Etchant), or a solution of oxalic acid, aluminum nitrate, and glycine (Gluma 1 & 2 Conditioner). Each agent was applied for 15, 30, or 60 seconds. Specimens etched with 35% phosphoric acid had the highest mean bond strengths at each etching time. At the manufacturer's recommended application times, the other two agents gave significantly lower shear bond strengths than phosphoric acid.

  12. Enamel Bond Strength of New Universal Adhesive Bonding Agents.

    Science.gov (United States)

    McLean, D E; Meyers, E J; Guillory, V L; Vandewalle, K S

    2015-01-01

    Universal bonding agents have been introduced for use as self-etch or etch-and-rinse adhesives depending on the dental substrate and clinician's preference. The purpose of this study was to evaluate the shear bond strength (SBS) of composite to enamel using universal adhesives compared to a self-etch adhesive when applied in self-etch and etch-and-rinse modes over time. Extracted human third molars were used to create 120 enamel specimens. The specimens were ground flat and randomly divided into three groups: two universal adhesives and one self-etch adhesive. Each group was then subdivided, with half the specimens bonded in self-etch mode and half in etch-and-rinse mode. The adhesives were applied as per manufacturers' instructions, and composite was bonded using a standardized mold and cured incrementally. The groups were further divided into two subgroups with 10 specimens each. One subgroup was stored for 24 hours and the second for six months in 37°C distilled water and tested in shear. Failure mode was also determined for each specimen. A three-way analysis of variance (ANOVA) found a significant difference between groups based on bonding agent (p0.05). Clearfil SE in etch-and-rinse and self-etch modes had more mixed fractures than either universal adhesive in either mode. Etching enamel significantly increased the SBS of composite to enamel. Clearfil SE had significantly greater bond strength to enamel than either universal adhesive, which were not significantly different from each other.

  13. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    Directory of Open Access Journals (Sweden)

    Rene GARCIA-CONTRERAS

    2015-06-01

    Full Text Available The use of nanoparticles (NPs has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC compared to GIC supplemented with titanium dioxide (TiO2 nanopowder at 3% and 5% (w/w. Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc, Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05. In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05, flexural and compressive strength (p<0.05, and antibacterial activity (p<0.001, without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force.

  14. Bond strength of two component injection moulded MID

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    Most products of the future will require industrially adapted, cost effective production processes and on this issue two-component (2K) injection moulding is a potential candidate for MID manufacturing. MID based on 2k injection moulded plastic part with selectively metallised circuit tracks allows...... the two different plastic materials in the MID structure require good bonding between them. This paper finds suitable combinations of materials for MIDs from both bond strength and metallisation view-point. Plastic parts were made by two-shot injection moulding and the effects of some important process...... the integration of electrical and mechanical functionalities in a real 3D structure. If 2k injection moulding is applied with two polymers, of which one is plateable and the other is not, it will be possible to make 3D electrical structures directly on the component. To be applicable in the real engineering field...

  15. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    Zachariasen, W.H.

    1975-01-01

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)

  16. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  17. Desensitizing bioactive agents improves bond strength of indirect resin-cemented restorations: preliminary results

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Panzeri Pires-de-Souza

    2007-04-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. MATERIALS AND METHOD: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5: Group I: acid etching + Prime & Bond NT (Dentsply; Group II: application of a bioactive glass (Biosilicato®+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita; Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer cylinders (6x10mm were fabricated and cemented to the teeth with a dual-cure resin-based cement (Enforce, Dentsply. After cementation, the specimens were stored in artificial saliva at 37ºC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence. RESULTS: Groups I, II and III had statistically similar results (p>0.05. Group IV had statistically significant higher bond strength means (p<0.05 than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. CONCLUSION: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems.

  18. Enamel and dentin bond strengths of a new self-etch adhesive system.

    Science.gov (United States)

    Walter, Ricardo; Swift, Edward J; Boushell, Lee W; Braswell, Krista

    2011-12-01

    statement of problem:  Self-etch adhesives typically are mildly acidic and therefore less effective than etch-and-rinse adhesives for bonding to enamel.   The purpose of this study was to evaluate the enamel and dentin shear bond strengths of a new two-step self-etch adhesive system, OptiBond XTR (Kerr Corporation, Orange, CA, USA).   The labial surfaces of 80 bovine teeth were ground to create flat, 600-grit enamel or dentin surfaces. Composite was bonded to enamel or dentin using the new two-step self-etch system or a three-step etch-and-rinse (OptiBond FL, Kerr), two-step self-etch (Clearfil SE Bond, Kuraray America, Houston, TX, USA), or one-step self-etch adhesive (Xeno IV, Dentsply Caulk, Milford, DE, USA). Following storage in water for 24 hours, shear bond strengths were determined using a universal testing machine. The enamel and dentin data sets were subjected to separate analysis of variance and Tukey's tests. Scanning electron microscopy was used to evaluate the effects of each system on enamel.   Mean shear bond strengths to enamel ranged from 18.1 MPa for Xeno IV to 41.0 MPa for OptiBond FL. On dentin, the means ranged from 33.3 MPa for OptiBond FL to 47.1 MPa for Clearfil SE Bond. OptiBond XTR performed as well as Clearfil SE Bond on dentin and as well as OptiBond FL on enamel. Field emission scanning electron microscope revealed that OptiBond XTR produced an enamel etch pattern that was less defined than that of OptiBond FL (37.5% phosphoric acid) but more defined than that of Clearfil SE Bond or Xeno IV.   The new two-step self-etch adhesive system formed excellent bonds to enamel and dentin in vitro. OptiBond XTR, a new two-step self-etch adhesive system, is a promising material for bonding to enamel as well as to dentin. © 2011 Wiley Periodicals, Inc.

  19. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination.

    Science.gov (United States)

    Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila

    2017-02-01

    This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (pbrackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (pbrackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.

  20. Comparison of Shear Bond Strengths of three resin systems for a Base Metal Alloy bonded to

    Directory of Open Access Journals (Sweden)

    Jlali H

    1999-12-01

    Full Text Available Resin-bonded fixed partial dentures (F.P.D can be used for conservative treatment of partially edentulous"npatients. There are numerous studies regarding the strength of resin composite bond to base meta! alloys. Shear bond"nstrength of three resin systems were invistigated. In this study these systems consisted of: Panavia Ex, Mirage FLC and"nMarathon V. Thirty base metal specimens were prepared from rexillium III alloy and divided into three groups. Then each"ngroup was bonded to enamel of human extracted molar teeth with these systems. All of specimens were stored in water at"n37ac for 48 hours. A shear force was applied to each specimen by the instron universal testing machine. A statistical"nevaluation of the data using one-way analysis of variance showed that there was highly significant difference (P<0.01"nbetween the bond strengths of these three groups."nThe base metal specimens bonded with panavia Ex luting agent, exhibited the highest mean bond strength. Shear bond"nstrength of the specimens bonded to enamel with Mirage F1C showed lower bond strenght than panavia EX. However, the"nlowest bond strength was obtained by the specimens bonded with Marathon V.

  1. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  2. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  3. Technology for bonding silicon nitride ceramics. Heat treatment technology to improve diffusion bonding strength; Chikka keiso ceramics no setsugo gijutsu. Kakusan setsugo kyodo kaizen no tame no metsushori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M.; Shigematsu, K. [National Industrial Research Institute of Nagoya,Nagoya (Japan)

    1999-01-25

    Silicon nitride ceramics is a structural ceramics with excellent high temperature strength and tenacity, being expected of expansion of application as a high temperature material. However, its processibility is poor, and special sintering technique is required to manufacture members of complex shapes. Therefore, development has been made on a technology to manufacture bonded materials with high mechanical strength, by which diffusion bonding in high temperature nitrogen gas and heat treatment are combined, and crystalline structure in the vicinity of bonding interface is controlled. (translated by NEDO)

  4. [Bond strengths of customized titanium brackets manufactured by selective laser melting].

    Science.gov (United States)

    Zou, Dao-xing; Wang, Ze-min; Guo, Hong-ming; Li, Song; Bai, Yu-xing

    2013-07-01

    To investigate the bond strengths of customized titanium bracket manufactured by selective laser melting. Eighty human premolars which had been extracted for orthodontic purpose were collected and divided randomly (by random table) into two groups (customized bracket group and 3M bracket group, 40 molars in each group). The 35% phosphoric acid was used for etching and the brackets were bonded with 3M Unitek bonding adhesive. All bonded specimens were placed in saline for 24 hours at room temperature and were tested on DWD3050 electronic testing machine to determine the shear bond strength and tensile bond strength. After debonding, the adhesive remnant indexes (ARI) were recorded. The shear bond strengths of customized brackets was 6.80 (6.20, 8.32) MPa, which was significantly lower than that of the 3M brackets [10.46 (9.72, 11.48) MPa] (Z = -3.463, P < 0.05). And the tensile bond strengths of customized brackets was (6.93 ± 1.21) MPa, which was significantly higher than that of the 3M brackets [(5.88 ± 1.23) MPa] (t = 2.81, P < 0.05). No significant difference was found in the ARI between two different kinds of the brackets. The shear bond strength and tensile bond strength of both kinds of brackets were enough for clinic application.

  5. Estimation and comparison of tensile bond strengths at resin-dentin ...

    African Journals Online (AJOL)

    Nigerian Dental Journal ... Result: Etch-and-rinse adhesive Adper Single Bond 2 Total Etch® yielded high bond strength ... The self etch systems though convenient to use, do not match the bond strengths of conventional total etch systems.

  6. Strength of bond with Comspan Opaque to three silicoated alloys and titanium.

    Science.gov (United States)

    Hansson, O

    1990-06-01

    In Sweden high-gold alloys or cobalt-chromium alloys are used for resin-bonded prostheses. The bond strength between a resin cement and different sandblasted or silicoated metals were measured before and after thermocycling; in connection with this some rapid thermocycling methods were studied. The effect of different storage times and different protection coatings on bond strength were tested. Finally, the influence of rubbing and contamination with saliva on bond strength were investigated. Silicoating increased the bond strength significantly. The highest bond strengths were these of silicoated Wirobond and titanium, unsusceptible to thermal stress; the bond strengths of the sandblasted metals were the weakest, and sensitive to thermocycling as well. The influence on bond strength for silicoated gold alloys, protected with an unpolymerized composite resin coating, stored in sealed plastic bags up to 7 days, was negligible. Rubbing and contamination with saliva did not influence bond strength. Preferably, silicoated Wirobond and titanium should be used for resin-bonded prostheses, but gold alloys may still be adequate for clinical use. The experimental method described for storing, sealing, and cleaning the silicoated metal surfaces in this article can be recommended for laboratory and clinical use.

  7. Environment-friendly wood fibre composite with high bonding strength and water resistance

    Science.gov (United States)

    Ji, Xiaodi; Dong, Yue; Nguyen, Tat Thang; Chen, Xueqi; Guo, Minghui

    2018-04-01

    With the growing depletion of wood-based materials and concerns over emissions of formaldehyde from traditional wood fibre composites, there is a desire for environment-friendly binders. Herein, we report a green wood fibre composite with specific bonding strength and water resistance that is superior to a commercial system by using wood fibres and chitosan-based adhesives. When the mass ratio of solid content in the adhesive and absolute dry wood fibres was 3%, the bonding strength and water resistance of the wood fibre composite reached the optimal level, which was significantly improved over that of wood fibre composites without adhesive and completely met the requirements of the Chinese national standard GB/T 11718-2009. Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) characterizations revealed that the excellent performance of the binder might partly be due to the amide linkages and hydrogen bonding between wood fibres and the chitosan-based adhesive. We believe that this strategy could open new insights into the design of environment-friendly wood fibre composites with high bonding strength and water resistance for multifunctional applications.

  8. Comparison of shear bond strength of amalgam bonded to primary and permanent dentin

    Directory of Open Access Journals (Sweden)

    Mahdi S

    2008-06-01

    Full Text Available Amalgam′s non-adhesive characteristics necessitate cavity preparations incorporating retentive features, which often require the removal of non-carious tooth structure. Use of adhesives beneath amalgam restorations, would be helpful to overcome this disadvantage. This study was undertaken to compare the mean shear bond strength of amalgam bonded to primary and permanent dentin, to evaluate the efficacy of amalgam adhesives in pediatric dentistry.27 primary and 28 permanent posterior teeth with intact buccal or lingual surfaces were grounded to expose dentin and wet-polished with 400-grit silicone carbide paper. Scotchbond Multi Purpose Plus adhesive system was applied to the dentin surfaces and light cured. Amalgam was condensed onto the treated dentin through a plastic mold.shear bond strength testing was done using an Instron Universal testing machine, at a crosshead speed of 0.5 mm/min.The data were analyzed by independent samples t-test The difference among the two groups was not statistically significant (p>0.05 Bonded amalgam showed the same level of bond strength to primary and permanent dentin; so, application of amalgam bonding agents in pediatric dentistry can be recommended.

  9. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  10. Quantitative evaluation of the mechanical strength of titanium/composite bonding using laser-generated shock waves

    Science.gov (United States)

    Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.

    2018-03-01

    Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.

  11. Evaluating the effect of antioxidant agents on shear bond strength of tooth-colored restorative materials after bleaching: A systematic review.

    Science.gov (United States)

    Feiz, Atiyeh; Mosleh, Hamid; Nazeri, Rahman

    2017-07-01

    The main objective of the present study was to make a systematic review of how antioxidant agents affect shear bond strength of tooth-colored restorative materials after bleaching. Electronic search was used to extract the related articles on the targeted key words such as "antioxidant", "dental bleaching" and "shear bond strength" (SBS) from MeSH, PubMed, Medline, and Cochrane electronic data bases. These articles were all published before 2016. Inclusion criteria were restricted to English journal articles concerning humans, clinical trials, cohorts and case-control studies. Therefore, systematic reviews, case reports, letters to editors, editorials and congress abstracts were excluded from the analysis. Most studies conducted on the issue have produced experimental data which are rather controversial, and there is no general agreement about the reported outcomes. As an illustration, most studies have not considered the relationship between the type of antioxidant materials and the shear bond strength. In point of fact, some researchers (e.g Kimyai et al.) have concluded that antioxidants like gel and solution leave similar effects on SBS. Alternatively, certain studies (e.g., Kunt et al.) have produced inconclusive data regarding the impact of one week postponement of the restorative process on SBS after the bleaching process. The results of the studies evaluating the role of various adhesive systems used after bleaching have demonstrated that regardless of the type of adhesive system used, applying antioxidants before restorative procedures can adversely affect the bleaching agents utilized for SBS. It has also been suggested that the type of the adhesive system used might be correlated with the magnitude of SBS. The results obtained from the systematic review of the articles under investigation reflected that the use of antioxidant agents, regardless of their type, form, concentration and duration of application, can improve SBS after bleaching. Copyright

  12. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Directory of Open Access Journals (Sweden)

    Fernanda de Souza Henkin

    Full Text Available ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM. Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM to 9.871 ± 5.106 MPa (TecnidentTM. The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface.

  13. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Science.gov (United States)

    Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos

    2016-01-01

    ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142

  14. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Science.gov (United States)

    de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda

    2010-01-01

    Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (padhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290

  15. Antibacterial Effect and Tensile Bond Strength of Self-etching Adhesive Resins with and without Methacryloyloxydodecylpyridinium Bromide: An in vitro Study.

    Science.gov (United States)

    Krishnamurthy, Madhuram; Kumar, V Naveen; Leburu, Ashok; Dhanavel, Chakravarthy; Selvendran, Kasiswamy E; Praveen, Nehrudhas

    2018-04-01

    Aim: The aim of the present study was to compare the antibacterial activity of a self-etching primer containing antibacterial monomer methacryloyloxydodecylpyridinium bromide (MDPB) (Clearfil protect bond) with a conventional self-etching primer without MDPB (Clearfil SE bond) against Streptococcus mutans and the effect of incorporation of MDPB on the tensile bond strength of the experimental self-etching primer (Clearfil protect bond). Materials and methods: The antibacterial activity of the self-etching primers was assessed using agar disk diffusion method and the diameters of the zones of inhibition were measured and ranked. For tensile bond strength testing, 20 noncarious human molars were selected and randomly divided into two groups comprising 10 teeth in each group. Group I specimens were treated with Clearfil SE bond (without MDPB). Group II specimens were treated with Clearfil protect bond (with MDPB). Composite material was placed incrementally and cured for 40 seconds in all the specimens. Tensile bond strength was estimated using the Instron Universal testing machine at a crosshead speed of 1 mm/min. Results: The addition of MDPB into a self-etching primer exerts potential antibacterial effect against S. mutans. The tensile bond strength of MDPB containing self-etching primer was slightly lower than that of the conventional self-etching Clearfil protect bond primer, but the difference was not statistically significant. Conclusion: Thus, a self-etching primer containing MDPB will be a boon to adhesive dentistry as it has bactericidal property with adequate tensile bond strength. Clinical significance: The concept of prevention of extension in adhesive dentistry would result in micro/nanoleakage due to the presence of residual bacteria in the cavity. Self-etching primers with MDPB would improve the longevity of such restorations by providing adequate antibacterial activity without compromising the bond strength. Keywords: Antibacterial property

  16. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    Science.gov (United States)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  17. Shear bond strength of three adhesive systems to enamel and dentin of permanent teeth

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2012-01-01

    Full Text Available Background and Aims: The purpose of this experimental study was to investigate the shear bond strength of three new adhesive systems to enamel and dentin of permanent human teeth using three new etch and rinse and self-etch adhesive systems.Materials and Methods: Sixty intact caries-free third molars were selected and randomly divided into 6 groups. Flat buccal and lingual enamel and dentin surfaces were prepared and mounted in the acrylic resin perpendicular to the plan of the horizon. Adhesives used in this study were Tetric N-Bond, AdheSE and AdheSE-One F (Ivoclar/Vivadent, Schaan, Liechtenstein. The adhesives were applied on the surfaces and cured with quartz tungsten halogen curing unit (600 mW/cm2 intensity for 20 s. After attaching composite to the surfaces and thermocycling (500 cycles, 5-55ºC, shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. The failure modes were examined under a stereomicroscope. The data were statistically analyzed using T-test, one-way ANOVA, Tukey and Fisher's exact tests.Results: In enamel, Tetric N-Bond (28.57±4.58 MPa and AdheSE (21.97±7.6 MPa had significantly higher bond strength than AdheSE-One F (7.16±2.09 MPa (P0.05.Conclusion: Shear bond strength to dentin in Tetric N-Bond (etch and rinse system( was higher than self-etch adhesives (AdheSE and AdheSE-One F. The bond strength to enamel and dentin in two-step self-etch (AdheSE was higher than one-step self-etch (AdheSE-One F.

  18. Effect of Nanofiller Addition to an Experimental Dentin Adhesive on Microtensile Bond Strength to Human Dentin

    Directory of Open Access Journals (Sweden)

    SH. Kasraei

    2009-06-01

    Full Text Available Objective: The purpose of the study was to evaluate the influence of adding nanofiller particles to a dentin bonding agent on resin-dentin bond strength.Materials and Methods: Fifty-four human intact premolar teeth were divided in to 6 groups of nine. The teeth were ground on occlusal surfaces and polished with 320 and then 600 grit silicon carbide papers. An experimental bonding system based on acetone/alcoholsolvent was provided with filler contents of 0.0, 0.5, 1.0, 2.5, 5.0, and 10.0 weight percent fumed silica nanofiller. After dentin surface etching, rinsing and blot drying, the experimentalbonding agents were applied to dentin surface. A composite resin was, then,bonded to the dentin on the bonding agent. The specimens were thermocycled for 500 cycles and sectioned in stick form. After two week of storage in distilled water, resin-dentin microtensile bond strength of the specimens was measured. Data were analyzed by one way ANOVA and DunnettT3 tests.Results: Bond strength to dentin was significantly affected by the filler level. Minimum and maximum resin-microtensile bond strength was in the experimental bonding agent with no filler (5.88 MPa and with filler level of 1.0 weight percent (15.15 MPa, respectively,and decreased with the increase of filler content down to 8.95 MPa for the filler level of 10.0 weight percent.Conclusion: Filler content seems to be one of the important factors influencing the bond strength of dental adhesives. Maximum dentin bond strength was obtained with 1% silanized nanofiller silica added to experimental adhesive system.

  19. Relining effects on the push-out shear bond strength of glass fiber posts

    Directory of Open Access Journals (Sweden)

    Adriana Rosado Valente ANDRIOLI

    Full Text Available Abstract Introduction The correct use of glass fiber posts in endodontically treated teeth is essential for the clinical success of restorative treatment. Objective This study evaluated the push-out shear bond strength of relined (R or non-relined (NR glass fiber posts, cemented with self-adhesive resin cement [RelyXTM U100 (U100] and conventional resin cement [RelyXTM ARC (ARC]. Material and method Sixty human single-rooted teeth were endodontically treated and divided into ARC-NR; U100-NR; ARC-R; U100-R groups. The teeth were sectioned into cervical, middle and apical thirds, and subjected to the push-out test. Bond strength was analyzed by the Friedman test; cement and post types were compared by the Mann Whitney test. The pattern of failures was evaluated with digital camera through images at 200x magnification, and was classified as adhesive (at the cement/dentin or cement/post interface, cohesive (cement or post, and mixed failures. Result In ARC-NR, bond strength values were higher in the cervical third; in U100-NR and ARC-R they were similar between the thirds. In U100-R, in the cervical and middle thirds the bond strength values were similar, and there was lower value in the apical third. For non-relined glass fiber posts, the highest mean bond strength values were observed with self-adhesive resin cement. Whereas, relined posts cemented with conventional resin cement had stronger cement layer in comparison with non-relined fiber posts. Conclusion The post relining technique was efficient in ARC-R. ARC-NR and U100-R showed improved bond strength in the cervical region of canal walls. The main failures were adhesive at the cement-post interface.

  20. Bond strength and Raman analysis of the zirconia-feldspathic porcelain interface.

    Science.gov (United States)

    Ramos, Carla Müller; Cesar, Paulo Francisco; Lia Mondelli, Rafael Francisco; Tabata, Americo Sheitiro; de Souza Santos, Juliete; Sanches Borges, Ana Flávia

    2014-10-01

    Zirconia has the best mechanical properties of the available ceramic systems. However, the stability of the zirconia-feldspathic porcelain interface may be jeopardized by the presence of the chipping and debonding of the feldspathic porcelain. The purpose of this study is to evaluate the shear bond strength of 3 cold isostatic pressed zirconia materials and a feldspathic veneer by analyzing their interface with micro-Raman spectroscopy. The test groups were experimental zirconia, Zirkonzahn zirconia, and Schuetz zirconia. Blocks of partially sintered zirconia were cut into disks (n=20) and then veneered with a feldspathic porcelain. Half of the specimens from each group (n=10) were incubated in 37°C water for 24 hours, and the other half were thermocycled. All the specimens were then subjected to shear testing. The fractured areas were analyzed with optical stereomicroscopy and classified as adhesive, cohesive, or an adhesive-cohesive failure. Spectral patterns were examined to detect bands related to the zirconia and feldspathic porcelain phases. The shear strength data were submitted to 2-way ANOVA. No significant differences in shear bond strength were observed among the 3 groups, regardless of whether or not the specimens were thermocycled. Adhesive failures were the most prevalent types of failure (70%). Raman spectra were clearly distinguished for all the materials, which showed the presence of tetragonal and monoclinic phases. The controlled production of the experimental zirconia did not influence the results of the bond strength. Raman analysis suggested a process of interdiffusion by the presence of peaks associated with the zirconia and feldspathic ceramics. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Effect of hydrostatic pressure on regional bond strengths of compomers to dentine.

    Science.gov (United States)

    Zheng, L; Pereira, P N; Somphone, P; Nikaido, T; Tagami, J

    2000-09-01

    The aim of this study was to evaluate the effect of hydrostatic pressure on the regional bond strengths of compomers to dentine. Thirty freshly extracted molars were ground flat to expose the dentine and randomly divided into two groups for bonding: no hydrostatic pressure and hydrostatic pressure of 15cm H(2)O. Xeno CF, Dyract AP and F 2000 were applied to dentine surfaces pretreated by the respective bonding systems following the manufactures' instructions, and then restored with Clearfil AP-X. After 24h storage in water, the teeth were sectioned into 0.7-mm thick slabs and visually divided into three regional subgroups: the region communicating with the pulp through dentinal tubules (pulp horn); the region between the pulp horns (center); and the region between the pulp horn and DEJ (periphery). The specimens were trimmed to a cross-sectional area of 1mm(2) and subjected to the micro-tensile bond test. The data were analyzed by one- and three-way ANOVA, and Fisher's PLSD (p0.05). However, hydrostatic pressure significantly decreased the bond strength of F 2000 to all regions (phydrostatic pressure (p>0.05). For Dyract AP and F 2000, the fracture modes were affected by hydrostatic pressure, while, for Xeno CF, there were no significant differences between the fracture modes with non- or positive hydrostatic pressure. Simulated pulpal pressure of 15cm H(2)O had a greater influence on the bond strengths of compomers to dentine than did dentine regions. Therefore, when measuring the bond strengths of compomers to dentine under the simulated in vivo conditions, the wetness of the dentine surface, as well as the intrinsic properties of each material should be seriously considered.

  2. The effect of air thinning on dentin adhesive bond strength.

    Science.gov (United States)

    Hilton, T J; Schwartz, R S

    1995-01-01

    The purpose of this study was to determine if air thinning three dentin adhesives would affect bond strength to dentin. Ninety human molars were mounted in acrylic and the occlusal surfaces ground to expose a flat dentin surface. Thirty teeth were randomly assigned to one of the following dentin bonding agent/composite combinations: A) Universal Bond 3/TPH (Caulk), B) All-Bond 2/Bis-Fil-P (Bisco), and C) Scotchbond Multi-Purpose/Z-100 (3m). The primers were applied following the manufacturers' instructions. The adhesives were applied by two methods. A thin layer of adhesive was applied with a brush to 15 specimens in each group and light cured. Adhesive was brushed on to the remaining 15 teeth in the group, air thinned for 3 seconds, and then polymerized. The appropriate composite was applied in 2 mm increments and light cured utilizing a 5 mm-in-diameter split Teflon mold. Following 3 months of water storage, all groups were shear tested to failure on an Instron Universal Testing Machine. Bond strength was significantly higher in all groups when the dentin bonding agent was painted on without being air thinned. Scotchbond Multi-Purpose had significantly higher bond strength than All-Bond 2, which had significantly higher bond strength than Universal Bond 3.

  3. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  4. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin

    NARCIS (Netherlands)

    Scholtanus, J.D.; Purwanta, K.; Dogan, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  5. Microtensile Bond Strength of Three Simplified Adhesive Systems to Caries-affected Dentin

    NARCIS (Netherlands)

    Scholtanus, Johannes; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J.; Feilzer, Albert J.

    Purpose: The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Materials and Methods: Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft

  6. Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.

    Science.gov (United States)

    Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P

    2008-05-01

    To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.

  7. Bond strength of composite resin to enamel: assessment of two ethanol wet-bonding techniques.

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-04-01

    Full Text Available Ethanol wet-bonding (EWB technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength.Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control;Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher's exact test (α=0.05.There were no significant differences in bond strength between the groups (P=0.73. However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3.In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel.

  8. Shear strength of a thermal barrier coating parallel to the bond coat

    International Nuclear Information System (INIS)

    Cruse, T.A.; Dommarco, R.C.; Bastias, P.C.

    1998-01-01

    The static and low cycle fatigue strength of an air plasma sprayed (APS) partially stabilized zirconia thermal barrier coating (TBC) is experimentally evaluated. The shear testing utilized the Iosipescu shear test arrangement. Testing was performed parallel to the TBC-substrate interface. The TBC testing required an innovative use of steel extensions with the TBC bonded between the steel extensions to form the standard Iosipescu specimen shape. The test method appears to have been successful. Fracture of the TBC was initiated in shear, although unconstrained specimen fractures propagated at the TBC-bond coat interface. The use of side grooves on the TBC was successful in keeping the failure in the gage section and did not appear to affect the shear strength values that were measured. Low cycle fatigue failures were obtained at high stress levels approaching the ultimate strength of the TBC. The static and fatigue strengths do not appear to be markedly different from tensile properties for comparable TBC material

  9. Effect of intracanal medicament on bond strength of fibre posts

    Directory of Open Access Journals (Sweden)

    Huda Melike Bayram

    2016-07-01

    Full Text Available The aim of this study was to evaluate the effect of calcium hydroxide (CH, triple antibiotic paste (TAP and double antibiotic paste (DAP on the push-out bond strengths of three different self-adhesive resin cements. Forty-eight single-rooted human maxillary central incisors were selected. The crowns were removed and the root canals were performed. After the irrigation protocols, the post space was prepared. The teeth were then randomly divided into a control group (no intracanal medicament and three medicament groups (n = 12 for each group. After three weeks, the medicaments were removed using 17% ethylenediaminetetraacetic acid, 2.5% sodium hypochlorite and EndoActivator agitation. The teeth were divided into three subgroups according to the fibre-post luting cement: Maxcem Elite, RelyX Unicem and BisCem. The specimens were sectioned and the push-out test was performed. One-way analysis of variance and Tukey's post hoc tests were used for statistical analyses. Regarding the type of cement, BisCem had significantly lower bond strength values than Maxcem and RelyX. There was no significant difference between the bond strength values of Maxcem and RelyX (p > 0.05. The TAP-RelyX group had the highest bond strength value and the DAP-BisCem group had the lowest bond strength value. RelyX and Maxcem had higher bond strength to root canal dentin than BisCem. The bond strength of BisCem, RelyX and Maxcem was not negatively affected by the use of DAP, CH and TAP as intracanal medicaments.

  10. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    OpenAIRE

    Yazdi, Fatemeh-Maleknejad; Moosavi, Horieh; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (?SBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% ...

  11. Impairment of resin cement application on the bond strength of indirect composite restorations

    Directory of Open Access Journals (Sweden)

    Jovito Adiel SKUPIEN

    2015-01-01

    Full Text Available The aims of this study were to evaluate the effect of immediate and delayed resin cement application on the microtensile bond strength of indirect composite resin restorations and, to evaluate adhesive strategies (for regular resin cement or humidity parameters for self-adhesive resin cement. Forty-five enamel/dentin discs (0.5 mm height and 10 mm of diameter obtained from bovine teeth were divided into nine groups (n = 5. For regular cement, the variation factors were cementation technique at three levels (immediate cementation, 5 or 30 min after adhesive system application; and type of adhesive system at two levels (three- or two-step. For self-adhesive cement, the dentin moisture was the source of variation at three levels (normal, dry, or wet cementation. The specimens were submitted to microtensile bond strength (μTBS testing using a universal testing machine. Data were analyzed by ANOVA, Tukey’s test, and linear regression. Regular cement and three-step etch-and-rinse adhesive system showed the highest values of bond strength (25.21 MPa–30 min of delay. Only for this condition, three-step adhesive showed higher bond strength than the two-step adhesive. Nevertheless, the linear regression showed that irrespective of the strategy, the use of the two-step approach when compared with three-step adhesive system decreased μTBS (p < 0.001. The failure analysis showed predominant adhesive failures for all tested groups. All groups had comparable values of bond strength to bovine dentin when the same materials were used, even in suboptimal clinical conditions.

  12. Influence of dentin contamination by temporary cements on the bond strength of adhesive systems

    Directory of Open Access Journals (Sweden)

    Josimeri Hebling

    2009-01-01

    Full Text Available Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8, the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA or Cavit (3M ESPE, St. Paul, MN, USA and kept in an oven at 37oC for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan were applied in accordance with the manufacturers’ recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were sub mitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05. Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA, bond strength did not differ statistically (p>0.05 for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan, only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA Group showed significantly lower bond strength (30.1±13.8 MPa in comparison with the other groups; control (38.9±13.5 MPa and Cavit (3M ESPE, St. Paul, MN, USA (42.1±11.0 MPa, which showed no significant difference between them.Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.

  13. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    Directory of Open Access Journals (Sweden)

    Jeong-Il Choi

    2015-09-01

    Full Text Available The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  14. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    Science.gov (United States)

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  15. Effect of simulated pulpal pressure on composite bond strength to ...

    African Journals Online (AJOL)

    Statistical significance was determined by T-test (p < 0.05). There was a statistically significant difference in the mean microtensile bond strengths between the groups (p < 0.0005). Simulated pulpal pressure had a negative effect on microtensile bond strength of laser ablated dentin when Single Bond adhesive system was ...

  16. Effect of Different Anti-Oxidants on Shear Bond Strength of Composite Resins to Bleached Human Enamel

    Science.gov (United States)

    Saladi, Hari Krishna; Bollu, Indira Priyadarshini; Burla, Devipriya; Ballullaya, Srinidhi Vishnu; Devalla, Srihari; Maroli, Sohani; Jayaprakash, Thumu

    2015-01-01

    Introduction The bond strength of the composite to the bleached enamel plays a very important role in the success and longevity of an aesthetic restoration. Aim The aim of this study was to compare and evaluate the effect of Aloe Vera with 10% Sodium Ascorbate on the Shear bond strength of composite resin to bleached human enamel. Materials and Methods Fifty freshly extracted human maxillary central incisors were selected and divided into 5 groups. Group I and V are unbleached and bleached controls groups respectively. Group II, III, IV served as experimental groups. The labial surfaces of groups II, III, IV, V were treated with 35% Carbamide Peroxide for 30mins. Group II specimens were subjected to delayed composite bonding. Group III and IV specimens were subjected to application of 10% Sodium Ascorbate and leaf extract of Aloe Vera following the Carbamide Peroxide bleaching respectively. Specimens were subjected to shear bond strength using universal testing machine and the results were statistically analysed using ANOVA test. Tukey (HSD) Honest Significant Difference test was used to comparatively analyse statistical differences between the groups. A p-value <0.05 is taken as statistically significant. Results The mean shear bond strength values of Group V showed significantly lower bond strengths than Groups I, II, III, IV (p-value <0.05). There was no statistically significant difference between the shear bond strength values of groups I, II, III, IV. Conclusion Treatment of the bleached enamel surface with Aloe Vera and 10% Sodium Ascorbate provided consistently better bond strength. Aloe Vera may be used as an alternative to 10% Sodium Ascorbate. PMID:26674656

  17. Effect of glutaraldehyde and ferric sulfate on shear bond strength of adhesives to primary dentin

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-12-01

    Full Text Available Aim: The present study was undertaken to evaluate the effect of alternative pulpotomy agents such as glutaraldehyde and ferric sulfate on the shear bond strength of self-etch adhesive systems to dentin of primary teeth. Materials and Methods: Eighty human primary molar teeth were sectioned in a mesiodistal direction and divided into experimental and control groups. Lingual dentin specimens in experimental groups were treated with glutaraldehyde and ferric sulfate. Buccal surfaces soaked in water served as control group. Each group was then divided into two groups based on the adhesive system used: Clearfil SE Bond and Adper Prompt L-Pop. A teflon mold was used to build the composite (Filtek Z-250 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. The failure mode analysis was performed with a Scanning Electron Microscope (SEM. Results: The results revealed that glutaraldehyde and ferric sulfate significantly reduced the shear bond strength of the tested adhesive systems to primary dentin. Clearfil SE Bond showed much higher shear bond strength than Adper Prompt L Pop to primary dentin. SEM analysis revealed a predominant cohesive failure mode for both adhesive systems. Conclusion: This study revealed that the pulpotomy medicaments glutaraldehyde and ferric sulfate adversely affected the bonding of self-etch adhesive systems to primary dentin.

  18. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    International Nuclear Information System (INIS)

    Jha, S.C.; Delagi, R.G.; Forster, J.A.; Krotz, P.D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1- to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain (η> 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1- to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb microcomposite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains (η>3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct (η ≅2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η>10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet

  19. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  20. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  1. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  2. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-11-01

    Full Text Available Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness were assigned to 3 groups (n = 15. In control group (CNT no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001. The highest bond strength was recorded in the COL group (p < 0.0001. In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples.

  3. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins

    Directory of Open Access Journals (Sweden)

    Rafael Torres Brum

    2017-01-01

    Full Text Available Background: This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct and nanofilled (Filtek Z350 XT composite resins. Materials and Methods: A total of 120 specimens of each material (7.5 x 4.5 x 3 mm were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment, Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds. The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair were prepared (positive control. The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEM. Results: The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. Conclusion: The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  4. Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.

    Science.gov (United States)

    Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco

    2014-02-01

    The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.

  5. Influence of application methods of one-step self-etching adhesives on microtensile bond strength

    OpenAIRE

    Chul-Kyu Choi,; Sung-Ae Son; Jin-Hee Ha; Bock Hur; Hyeon-Cheol Kim; Yong-Hun Kwon; Jeong-Kil Park

    2011-01-01

    Objectives The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength. Materials and Methods Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (n = 15), according to the three different adhesive systems (Clearfil Tri-S Bond, Adper Prompt L-Pop, G-Bond) and application methods. The adhesive systems were applied on the dentin as follows: 1) T...

  6. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in-vitro Study.

    Science.gov (United States)

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M; Chopra, Saroj

    2013-10-01

    Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from 'drill and fill' to that of 'seal and heal'. The purpose of this in-vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Data were then statistically analysed by using Student t-test for comparison. A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength.

  7. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  8. Effect of organic solvents compared to sandblasting on the repair bond strength of nanohybrid and nanofilled composite resins.

    Science.gov (United States)

    Brum, Rafael Torres; Vieira, Sergio; Freire, Andrea; Mazur, Rui Fernando; De Souza, Evelise Machado; Rached, Rodrigo Nunes

    2017-01-01

    This study evaluated the effect of different surface treatments on the repair bond strength of nanohybrid (Empress Direct) and nanofilled (Filtek Z350 XT) composite resins. A total of 120 specimens of each material (7.5 x 4.5 x 3 mm) were prepared and polished with SiC paper. Half of the specimens were kept in water for seven days and the other half for six months; they were then divided into six groups according to the type of surface treatment: negative control (no treatment), Al2O3sandblasted, liquid acetone, acetone gel, liquid alcohol and alcohol gel. Following application of the silane coupling agent and the adhesive system, composite resin cylinders were fabricated on the specimens and light cured (20 seconds). The same composite resins were used for the repair. Additionally, ten intact specimens of each composite resin (without repair) were prepared (positive control). The specimens were then loaded to failure in the microshear mode. Three additional specimens were fabricated in each group, and the surface treatments were analyzed by atomic force microscopy, energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM). The nanofilled composite resin showed higher cohesive strength and repair bond strength than the nanohybrid composite resin. The aging process affected the repair bond strength of the nanofilled composite resin. Al2O3sandblasting was more efficient for the nanofilled composite resin and promoted greater surface roughness in both materials. The solvents demonstrated higher efficacy for the nanohybrid composite resin. The strengths resulting from the solvents were material dependent, and Al2O3sandblasting resulted in superior repair bond strength in both materials.

  9. Bond strength and morphology of enamel using self-etching adhesive systems with different acidities

    Directory of Open Access Journals (Sweden)

    Sandra Kiss Moura

    2009-08-01

    Full Text Available OBJECTIVES: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. MATERIAL AND METHODS: Composite resin (Filtek Z250 buildups were bonded to untreated (prophylaxis and treated (bur-cut or SiC-paper enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition: Clearfil SE Bond (CSE; OptiBond Solo Plus Self-Etch (OP; AdheSe (AD; Tyrian Self Priming Etching (TY, Adper Scotchbond Multi-Purpose Plus (SBMP and Adper Single Bond (SB. After storage in water (24 h/37°C, the bonded specimens were sectioned into sticks with 0.8 mm² cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa were subjected to two-way ANOVA and Tukey's test (α=0.05. The etching patterns of the adhesive systems were also observed with a scanning electron microscope. RESULTS: The main factor adhesive system was statistically significant (p<0.05. The mean bond strength values (MPa and standard deviations were: CSE (20.5±3.5, OP (11.3±2.3, AD (11.2±2.8, TY (11.1±3.0, SBMP (21.9±4.0 and SB (24.9±3.0. Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. CONCLUSION: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed.

  10. Bonding polycarbonate brackets to ceramic: : Effects of substrate treatment on bond strength

    NARCIS (Netherlands)

    Özcan, Mutlu; Vallittu, Pekka K.; Peltomäki, Timo; Huysmans, Marie-Charlotte; Kalk, Warner

    2004-01-01

    This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were

  11. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  12. In vitro shear bond strength of Y-TZP ceramics to different core materials with the use of three primer/resin cement systems.

    Science.gov (United States)

    Al-Harbi, Fahad A; Ayad, Neveen M; Khan, Zahid A; Mahrous, Amr A; Morgano, Steven M

    2016-01-01

    Durability of the bond between different core materials and zirconia retainers is an important predictor of the success of a dental prosthesis. Nevertheless, because of its polycrystalline structure, zirconia cannot be etched and bonded to a conventional resin cement. The purpose of this in vitro study was to compare the effects of 3 metal primer/resin cement systems on the shear bond strength (SBS) of 3 core materials bonded to yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic retainers. Zirconia ceramic (Cercon) disks (5×3 mm) were airborne-particle abraded, rinsed, and air-dried. Disk-shaped core specimens (7×7 mm) that were prepared of composite resin, Ni-Cr, and zirconia were bonded to the zirconia ceramic disks by using one of 3 metal primer/cement systems: (Z-Prime Plus/BisCem, Zirconia Primer/Multilink Automix, or Clearfil Ceramic Primer/Clearfil SA). SBS was tested in a universal testing machine. Stereomicroscopy was used to evaluate the failure mode of debonded specimens. Data were analyzed using 2-way ANOVA and post hoc analysis using the Scheffe procedure (α=.05). Clearfil SA/Clearfil Ceramic Primer system with an Ni-Cr core yielded the highest SBS value (19.03 MPa), whereas the lowest SBS value was obtained when Multilink Automix/Zirconia Primer system was used with the zirconia core group (4.09 MPa). Differences in mean SBS values among the cement/primer groups were statistically significant, except for Clearfil SA and BisCem with both composite resin and zirconia cores. Differences in mean SBS values among the core subgroups were not statistically significant, except for zirconia core with BisCem, Multilink, and Clearfil SA. The predominant failure mode was adhesive, except for Clearfil SA and BisCem luting agents with composite resin cores, which displayed cohesive failure, and Multilink Automix with a composite resin, core as well as Clearfil SA with Ni-Cr cores, where the debonded specimens of each group displayed a mixed

  13. The Effect of Various Types of Mechanical and Chemical Preconditioning on the Shear Bond Strength of Orthodontic Brackets on Zirconia Restorations

    Directory of Open Access Journals (Sweden)

    Jihun Kim

    2017-01-01

    Full Text Available The purpose of this study was to investigate the combined effect of mechanical and chemical treatments on the shear bond strength (SBS of metal orthodontic brackets on zirconia restoration. The zirconia specimens were randomly divided into 12 groups (n=10 according to three factors: AL (Al2O3 and CO (CoJet™ by sandblasting material; SIL (silane, ZPP (Zirconia Prime Plus, and SBU (Single Bond Universal by primer; and N (not thermocycled and T (thermocycled. The specimens were evaluated for shear bond strength, and the fractured surfaces were observed using a stereomicroscope. Scanning electron microscopy images were also obtained. CO-SBU combination had the highest bond strength after thermocycling (26.2 MPa. CO-SIL showed significantly higher SBS than AL-SIL (p0.05. Modified Adhesive Remnant Index (ARI scoring and SEM figures were consistent with the results of the surface treatments. In conclusion, CO-SBU, which combines the effect of increased surface area and chemical bonding with both 10-MDP and silane, showed the highest SBS. Sandblasting with either material improved the mechanical bonding by increasing the surface area, and all primers showed clinically acceptable increase of shear bond strength for orthodontic treatment.

  14. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  15. The influence of main bar corrosion on bond strength in selfcompacting concrete

    Science.gov (United States)

    Ayop, S. S.; Emhemed, A. N. K.; Jamaluddin, N.; Sadikin, A.

    2017-11-01

    The experimental study was conducted to determine the influence of main bar corrosion on bond strength in self-compacting concrete (SCC). A total 16 tension pullout tests specimens reinforced with 10 mm and 14 mm diameter bar were used for the bond strength test. The properties of SCC were determined from the slump flow, T50cm, V-funnel and L box test. Reinforcing bars in the concrete were submitted to impressed current to accelerate the corrosion of the bar. It was found that the relationship between bond strength and concrete strength in un-corroded specimens differed from that of corroded specimens set in high-strength concrete because of brittleness in the corroded specimens, which caused a sudden loss of bond strength. The results revealed that specimens of un-corroded and corroded showed a higher percentage of bond strength degradation during the pullout tests.

  16. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  17. Shear bond strength of hydrophilic adhesive systems to enamel.

    Science.gov (United States)

    Hara, A T; Amaral, C M; Pimenta, L A; Sinhoreti, M A

    1999-08-01

    To compare the enamel shear bond strength of four hydrophilic adhesive systems: one multiple-bottle (Scotchbond Multi-Purpose Plus), two one-bottle (Stae, Single Bond) and one self-etching (Etch & Prime). 120 bovine incisor teeth were obtained, embedded in polyester resin, polished to 600 grit to form standardized enamel surfaces, and randomly assigned to four groups (n = 30). Each adhesive system was used on enamel according to the manufacturer's instructions, and resin-based composite (Z100) cylinders with 3 mm diameter and 5 mm height were bonded. Specimens were stored in humid environment for 1 week, and bond strength was determined using a universal testing machine, at a crosshead speed of 0.5 mm/minute. The mean shear bond strength values (MPa +/- SD) were: Single Bond: 24.28 +/- 5.27 (a); Scotchbond Multi-Purpose Plus: 21.18 +/- 4.35 (ab); Stae: 19.56 +/- 4.71 (b); Etch & Prime 3.0: 15.13 +/- 4.92 (c). ANOVA revealed significant difference in means (P < 0.01) and Tukey's test showed the statistical differences that are expressed by different letters for each group. It could be concluded that the self-etching adhesive system did not provide as good a bond to enamel surface, as did the one- and multiple-bottle systems.

  18. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser

    International Nuclear Information System (INIS)

    Dall'Magro, Eduardo

    2001-01-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94μm) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin. (author)

  19. The effect of water storage, elapsed time and contaminants on the bond strength and interfacial polymerization of a nanohybrid composite.

    Science.gov (United States)

    Perriard, Jean; Lorente, Maria Cattani; Scherrer, Susanne; Belser, Urs C; Wiskott, H W Anselm

    2009-12-01

    To systematically characterize the effect of time lapse, water storage, and selected contaminants on the bond strength of a nanofilled dental composite. Half-dumbbell-shaped samples were fabricated out of light-polymerizing composite resin. To function as substrates they were aged for 30 days in water. Prior to bonding, the substrates' surfaces were subjected to the following treatments: 1) Removing a 0.2- to 0.4-mm layer using a fluted carbide bur; 2) grit blasting with 50 microm alumina particles; 3) etching with phosphoric acid gel; 4) grit blasting followed by etching; 5) blasting with tribochemical particles followed by silane application; 6) sanding with 400-grit paper, air aging of the adherent half-sample before bonding; 7) surface contamination with saliva; 8) surface contamination with blood. In each group (n = 30), freshly polymerized (except in group 6) adherent half-samples were bonded to the substrate half-samples by a layer of unfilled adhesive resin. Fifteen full dumbbell-shaped specimens were subjected to tensile testing after 1 h and 15 after 7 days water storage. In a positive control group, freshly cured half-samples were bonded shortly after fabrication. The tensile strength was analyzed using Weibull statistics and presented in terms of the material's characteristic strength and shape parameter. Fractographs of the two weakest and strongest samples of each group were produced. The surfaces were searched to locate hackle, wake hackle and the origin of the fracture. Surface roughness and time lapse increased the bond strength of the repaired specimens. All groups in which surface roughness was produced before bonding increased in repair strength. Post-bonding aging improved strength. Fractographs yielded interpretable data whenever larger surfaces of single phase bonding resin were present. 1) Roughening and etching an aged composite's surface prior to applying a coat of unfilled resin and the filled material increases repair bond strength by up

  20. Composite shear bond strength to dry and wet enamel with three self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Shafiee F

    2006-01-01

    Full Text Available Background and Aim: The bonding mechanisms of self etching primers, based upon the simultaneous etching and priming of dentin, simplifies the bonding technique, but the efficiency of these systems is still controversial. This study compared the shear bond strength of three self etch adhesive systems in dry and wet conditions. Materials and Method: In this experimental study, 77 intact bovine lower incisors with flat 600 grit sanded enamel surface were fixed in acrylic molds and divided into 7 groups, of 11 teeth. The enamel surfaces were treated according to a special procedure as follows: Group 1: Prompt L-Pop (PLP in dry condition, Group 2: Prompt L-Pop in wet condition, Group 3: Clearfield SE Bond (CSEB in dry condition, Group 4: Clearfield SE Bond in wet condition, Group 5: iBond (iB in dry condition, Group 6: iBond in wet condition, Group 7: Margin Bond (Control in dry condition. Surfaces were air dried for ten seconds, or blot dried in wet condition. Composite resin was bonded on the enamel and built up by applying a cylindric teflon split mold (4 mm height 2mm diameter. After 24 hours storage in dionized water at room temperature, all specimens were thermocycled and shear bond test was employed by a universal testing machine (Instron with a cross-head speed of 1mm/min. The shear bond strength was recorded in MPa and data were analyzed with ANOVA and Scheffe statistical tests. P<0.05 was considered as statistically significant. The mode of failure was examined under a stereomicroscope. Results: 1- Shear bond strength of CSEB in dry condition (21.5 ± 4.8 MPa was significantly higher than PLP and iB groups (p<0.0001. 2- Shear bond strength of iB and PLP groups in dry condition (9.60 ± 2.2, 9.49 ± 3 MPa were significantly lower than CSEB and control (2.99 ± 5.1 MPa (P<0.0001. 3- There was no significant difference between PLP and iB groups in dry condition (P=1. 4- Shear bond strength of CSEB in wet condition (21.8 ± 3 MPa was

  1. Effects of endodontic tri-antibiotic paste on bond strengths of dentin adhesives to coronal dentin

    Directory of Open Access Journals (Sweden)

    Parvin Mirzakoucheki

    2015-05-01

    Full Text Available Objectives The aim of this study was to evaluate the effects of tri-antibiotic paste (TAP on microtensile bond strengths (MTBS of dental adhesives to dentin. Materials and Methods Sixty extracted molars had their occlusal surfaces flattened to expose dentin. They were divided into two groups, i.e., control group with no dentin treatment and experimental group with dentin treatment with TAP. After 10 days, specimens were bonded using self-etch (Filtek P90 adhesive or etch-and-rinse (Adper Single Bond Plus adhesives and restored with composite resin. Teeth were sectioned into beams, and the specimens were subjected to MTBS test. Data were analyzed using two-way ANOVA and post hoc Tukey tests. Results There was a statistically significant interaction between dentin treatment and adhesive on MTBS to coronal dentin (p = 0.003. Despite a trend towards worse MTBS being noticed in the experimental groups, TAP application showed no significant effect on MTBS (p = 0.064. Conclusions The etch-and-rinse adhesive Adper Single Bond Plus presented higher mean bond strengths than the self-etch adhesive Filtek P90, irrespective of the group. The superior bond performance for Adper Single Bond when compared to Filtek P90 adhesive was confirmed by a fewer number of adhesive failures. The influence of TAP in bond strength is insignificant.

  2. A Comparison of the Shear Bond Strength of Orthodontic Brackets Bonded With Light-Emitting Diode and Halogen Light-Curing Units

    Directory of Open Access Journals (Sweden)

    SM. Abtahi

    2006-09-01

    Full Text Available Statement of the problem: Various methods such as light emitting diode (LED have been used to enhance the polymerization of resin-based orthodontic adhesives. There is a lack of information on the advantages and disadvantages of different light curing systems.Purpose: The aim of this study was to compare the effect of LED and halogen light curing systems on the shear bond strength of orthodontic brackets.Materials and Methods: Forty extracted human premolars were etched with 37% phosphoric acid and cleansed with water spray and air dried. The sealant was applied on the tooth surface and the brackets were bonded using Transbond adhesive (3M Unitek,Monrovia, Calif. Adhesives were cured for 40 and 20 seconds with halogen (Blue Light, APOZA, Taiwan and LED (Blue dent, Smart, Yugoslavia light-curing systems,respectively. Specimens were thermocycled 2500 times (from 5 to 55 °C and the shear bond strength of the adhesive system was evaluated with an Universal testing machine (Zwick GmbH, Ulm, Germany at a crosshead speed of 1 mm/min until the bracketswere detached from the tooth. Adhesive remnant index (ARI scores were determined after bracket failure. The data were submitted to statistical analysis, using Mann-Whitney analysis and t-test.Results: No significant difference was found in bond strength between the LED and halogen groups (P=0.12. A significant difference was not observed in the adhesive remnant index scores between the two groups (P=0.97.Conclusion: Within the limitations of this in vitro study, the shear bond strength of resin-based orthodontic adhesives cured with a LED was statistically equivalent to those cured with a conventional halogen-based unit. LED light-curing units can be suggested for the polymerization of orthodontic bonding adhesives.

  3. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conventional Acid-Etching

    Science.gov (United States)

    Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.

    2012-01-01

    Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098

  4. Experimental investigation of the factors influencing the polymer-polymer bond strength during two-component injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Bondo, Martin

    2010-01-01

    Two-component injection moulding is a commercially important manufacturing process and a key technology for combining different material properties in a single plastic product. It is also one of most industrially adaptive process chain for manufacturing so-called moulded interconnect devices (MIDs......). Many fascinating applications of two-component or multi-component polymer parts are restricted due to the weak interfacial adhesion of the polymers. A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi-component polymer processing. This paper...... investigates the effects of the process conditions and geometrical factors on the bond strength of two-component polymer parts and identifies the factors which can effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength are also investigated...

  5. Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models

    International Nuclear Information System (INIS)

    Bhargava, Kapilesh; Ghosh, A.K.; Mori, Yasuhiro; Ramanujam, S.

    2007-01-01

    The present paper aims to investigate the relationship between the bond strength and the reinforcement corrosion in reinforced concrete (RC). Analytical and empirical models are proposed for the bond strength of corroded reinforcing bars. Analytical model proposed by Cairns.and Abdullah [Cairns, J., Abdullah, R.B., 1996. Bond strength of black and epoxy-coated reinforcement-a theoretical approach. ACI Mater. J. 93 (4), 362-369] for splitting bond failure and later modified by Coronelli [Coronelli, D. 2002. Corrosion cracking and bond strength modeling for corroded bars in reinforced concrete. ACI Struct. J. 99 (3), 267-276] to consider the corroded bars, has been adopted. Estimation of the various parameters in the earlier analytical model has been proposed by the present authors. These parameters include corrosion pressure due to expansive action of corrosion products, modeling of tensile behaviour of cracked concrete and adhesion and friction coefficient between the corroded bar and cracked concrete. Simple empirical models are also proposed to evaluate the reduction in bond strength as a function of reinforcement corrosion in RC specimens. These empirical models are proposed by considering a wide range of published experimental investigations related to the bond degradation in RC specimens due to reinforcement corrosion. It has been found that the proposed analytical and empirical bond models are capable of providing the estimates of predicted bond strength of corroded reinforcement that are in reasonably good agreement with the experimentally observed values and with those of the other reported published data on analytical and empirical predictions. An attempt has also been made to evaluate the flexural strength of RC beams with corroded reinforcement failing in bond. It has also been found that the analytical predictions for the flexural strength of RC beams based on the proposed bond degradation models are in agreement with those of the experimentally

  6. In vitro Comparative Evaluation of Tensile Bond Strength of 6(th), 7(th) and 8(th) Generation Dentin Bonding Agents.

    Science.gov (United States)

    Kamble, Suresh S; Kandasamy, Baburajan; Thillaigovindan, Ranjani; Goyal, Nitin Kumar; Talukdar, Pratim; Seal, Mukut

    2015-05-01

    Newer dentin bonding agents were developed to improve the quality of composite restoration and to reduce time consumption in its application. The aim of the present study was to evaluate tensile bond strength of 6(th), 7(th) and 8(th) generation bonding agents by in vitro method. Selected 60 permanent teeth were assigned into 20 in each group (Group I: 6(th) generation bonding agent-Adper SE plus 3M ESPE, Group II: 7(th) generation bonding agent-G-Bond GC Corp Japan and Group III: 8(th) generation dentin adhesives-FuturaBond, DC, Voco, Germany). With high-speed diamond disc, coronal dentin was exposed, and selected dentin bonding agents were applied, followed by composite restoration. All samples were saved in saline for 24 h and tensile bond strength testing was done using a universal testing machine. The obtained data were tabulated and statistically analyzed using ANOVA test. The tensile bond strength readings for 6(th) generation bonding agent was 32.2465, for 7(th) generation was 31.6734, and for 8(th)-generation dentine bonding agent was 34.74431. The highest tensile bond strength was seen in 8(th) generation bonding agent compared to 6(th) and 7(th) generation bonding agents. From the present study it can be conclude that 8(th) generation dentine adhesive (Futura DC, Voco, Germany) resulted in highest tensile bond strength compared to 6(th) (Adper SE plus, 3M ESPE) and 7(th) generation (G-Bond) dentin bonding agents.

  7. Modification of Bonding Strength Test of WC HVOF Thermal Spray Coating on Rocket Nozzle

    Directory of Open Access Journals (Sweden)

    Bondan Sofyan

    2010-10-01

    Full Text Available One way to reduce structural weight of RX-100 rocket is by modifying the nozzle material and processing. Nozzle is the main target in weight reduction due to the fact that it contributes 30 % to the total weight of the structur. An alternative for this is by substitution of massive graphite, which is currently used as thermal protector in the nozzle, with thin layer of HVOF (High Velocity Oxy-Fuel thermal spray layer. This paper presents the characterization of nozzle base material as well as the modification of bonding strength test, by designing additional jig to facilitate testing processes while maintaining level of test accuracy. The results showed that the material used for  RX-100 rocket nozzle is confirmed to be S45C steel. Modification of the bonding strength test was conducted by utilizing chains, which improve test flexibility and maintains level of accuracy of the test.

  8. Ultrastructural Analysis and Long-term Evaluation of Composite-Zirconia Bond Strength.

    Science.gov (United States)

    Aboushelib, Moustafa N; Ragab, Hala; Arnaot, Mohamed

    2018-01-01

    To evaluate the influence of different aging techniques on zirconia-composite microtensile bond strength using different surface treatments over a 5-year follow-up period. Zirconia disks received three surface treatments: airborne-particle abrasion with 50-μm aluminum oxide particles, selective infiltration etching (SIE), or fusion sputtering (FS). The specimens were bonded to pre-aged composite disks using a composite cement containing phosphate monomers (Panavia F2.0). Bonded specimens were sectioned into microbars (1 x 1 x 6 mm) using a precision cutting machine, and all microbars received thermocycling (15,000 cycles between 5°C and 55°C). Initial microtensile bond strength was evaluated, and the test was repeated after storage in the following media for five years (artificial saliva, 20% ethanol, 5% NaOH, 4% acetic acid, and 5% phosphoric acid). The test was repeated every 12 months for 5 years. Scanning electron microscopic images were used to analyze the zirconia-composite interface. A repeated measures ANOVA and Bonferroni post-hoc tests were used to analyze the data (n = 20, α = 0.05). Significantly higher microtensile bond strength was observed for SIE compared to fusion sputtering and airborne particle abrasion. Five years of artificial aging resulted in significant reduction of zirconia-composite bond strength for all tested specimens. Zirconia-composite bond strength was more sensitive to storage in sodium hydroxide and phosphoric acid, while it was least affected when stored under saliva. These changes were related to the mechanism of ultra-structural interaction between surface treatment and adhesive, as deterioration of the hybrid layer (composite-infiltrated ceramic) was responsible for bond degeneration. Zirconia-composite bond strength was influenced by 5 years of artificial aging.

  9. Dentin-composite bond strength measurement using the Brazilian disk test.

    Science.gov (United States)

    Carrera, Carola A; Chen, Yung-Chung; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2016-09-01

    This study presents a variant of the Brazilian disk test (BDT) for assessing the bond strength between composite resins and dentin. Dentin-composite disks (ϕ 5mm×2mm) were prepared using either Z100 or Z250 (3M ESPE) in combination with one of three adhesives, Adper Easy Bond (EB), Adper Scotchbond Multi-Purpose (MP) and Adper Single Bond (SB), and tested under diametral compression. Acoustic emission (AE) and digital image correlation (DIC) were used to monitor debonding of the composite from the dentin ring. A finite element (FE) model was created to calculate the bond strengths using the failure loads. Fracture modes were examined by scanning electron microscopy (SEM). Most specimens fractured along the dentin-resin composite interface. DIC and AE confirmed interfacial debonding immediately before fracture of the dentin ring. Results showed that the mean bond strength with EB (14.9±1.9MPa) was significantly higher than with MP (13.2±2.4MPa) or SB (12.9±3.0MPa) (p0.05). Z100 (14.5±2.3MPa) showed higher bond strength than Z250 (12.7±2.5MPa) (pstrength between dentin and composite, with zero premature failure, reduced variability in the measurements, and consistent failure at the dentin-composite interface. The new test could help to predict the clinical performance of adhesive systems more effectively and consistently by reducing the coefficient of variation in the measured bond strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of collagen fibrils removal on shear bond strength of total etch and self etch adhesive systems

    Directory of Open Access Journals (Sweden)

    Pishevar L.

    2009-12-01

    Full Text Available "nBackground and Aim: Sodium hypochlorite can remove the organic phase of the demineralized dentin and it produces direct resin bonding with hydroxyapatite crystals. Therefore, the hydrolytic degradation of collagen fibrils which might affect the bonding durability is removed. The aim of this study was to evaluate the effect of collagen fibrils removal by 10% NaOCl on dentin shear bond strength of two total etch and self etch adhesive systems."nMaterials and Methods: Sixty extracted human premolar teeth were used in this study. Buccal surface of teeth were grounded until dentin was exposed. Then teeth were divided into four groups. According to dentin surface treatment, experimental groups were as follows: Group I: Single Bond (3M according to manufacture instruction, Group II: 10% NaOCl+Single bond (3M, Group III: Clearfil SE Bond (Kuraray according to manufacture instruction, and Group IV: Clearfil SE Bond primer. After that, the specimens were immersed in 50% acetone solution for removing extra monomer. Then the specimens were rinsed and dried. 10% NaOCl was applied and finally adhesive was used. Then composite was bonded to the treated surfaces using a 4 2 mm cylindrical plastic mold. Specimens were thermocycled for 500 cycles (5-55ºC. A shear load was employed by a universal testing machine with a cross head speed of 1mm/min. The data were analyzed for statistical significance with One-way ANOVA, Two-way ANOVA and Tukey HSD post-hoc tests."nResults: The mean shear bond strengths of groups were as follows: Single Bond=16.8±4.2, Clearfil SE Bond=23.7±4.07, Single Bond+NaOCl=10.5±4.34, Clearfil SE Bond+NaOCl=23.3±3.65 MPa. Statistical analysis revealed that using 10% NaOCl significantly decreased the shear bond strength in Single Bond group (P=0.00, but caused no significant difference in the shear bond strength in Clearfil SE Bond group (P=0.99."nConclusion: Based on the results of this study, NaOCl treatment did not improve the bond

  11. A novel bonding method for fabrication of PET planar nanofluidic chip with low dimension loss and high bonding strength

    International Nuclear Information System (INIS)

    Yin, Zhifu; Zou, Helin; Sun, Lei; Xu, Shenbo; Qi, Liping

    2015-01-01

    Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O 2 plasma and ethanol treatment was proposed. With the assistance of O 2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O 2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels. (paper)

  12. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    Directory of Open Access Journals (Sweden)

    Andrea Mello de Andrade

    2010-12-01

    Full Text Available OBJECTIVES: The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350 and adhesive system [(Solobond Plus, Futurabond NR (VOCO and Adper Single Bond (3M ESPE] on the microtensile (μTBS and microshear bond strength (μSBS tests on enamel, and to correlate the bond strength means between them. MATERIAL AND METHODS: Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for μTBS and the other one for μSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37(0C/24 h specimens were stressed (0.5 mm/min. Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05. RESULTS: The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05. For both tests only the main factor resin composite was statistically significant (p<0.05. The correlation test detected a positive (r=0.91 and significant (p=0.01 correlation between the tests. CONCLUSIONS: The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions.

  13. Effect of heating palladium-silver alloys on ceramic bond strength.

    Science.gov (United States)

    Li, Jie-yin; Li, Rui-nan; Chang, Shao-hai; Zhuang, Pei-lin; Liao, Juan-kun; Ye, Xiu-hua; Ye, Jian-tao

    2015-11-01

    The effects of different heat treatments on the internal oxidation and metal-ceramic bond in Pd-Ag alloys with different trace elements require further documentation. The purpose of this in vitro study was to determine whether heat treatment affects the metal-ceramic bond strength of 2 Pd-Ag alloys containing different trace elements. Thirteen cast specimens (25×3×0.5 mm) from each of 2 Pd-Ag alloy groups (W-1 and Argelite 61+3) were allocated to heat treatments before porcelain application: heating under reduced atmospheric pressure of 0.0014 MPa and 0.0026 MPa and heating under normal atmospheric pressure. Bond strengths were evaluated using a 3-point bending test according to ISO9693. Results were analyzed using 2-way ANOVA and Tukey HSD test (α=.05). Visual observation was used to determine the failure types of the fractured specimens. Scanning electron microscopy and energy dispersive spectroscopy were used to study morphologies, elemental compositions, and distributions in the specimens. The W-1 group had a mean bond strength significantly higher than that of Argelite 61+3 (PHeating under reduced atmospheric pressures of 0.0014 MPa and 0.0026 MPa resulted in similar bond strengths (P=.331), and both pressures had significantly higher bond strengths than that of heating under normal atmospheric pressure (P=.002, PHeating under different air pressures resulted in Pd-Ag alloys that contained either Sn or In and Ga, with various degrees of internal oxidation and different quantities of metallic nodules. Heating under reduced atmospheric pressure effectively improved the bond strength of the ceramic-to-Pd-Ag alloys. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    Science.gov (United States)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  16. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Namit Nagar

    2013-01-01

    Full Text Available Objectives: To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X MonoTM♦, a restorative resin with the traditional orthodontic composite Transbond XTTM† and to evaluate the site of bond failure using Adhesive Remnant Index. Materials and Methods: Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XTTM† (Group I and Ceram-X MonoTM♦ (Group II according to manufacturer′s protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired ′t′ test and Chi square test. Results: The mean shear bond strength of Group I (Transbond XTTM† was 12.89 MPa ± 2.19 and that of Group II (Ceram-X MonoTM was 7.29 MPa ± 1.76. Unpaired ′t′ test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Conclusions: Ceram-X MonoTM♦ had a lesser mean shear bond strength when compared to Transbond XTTM† which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X MonoTM† and Transbond XTTM† showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  17. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  18. Bond strength of dental adhesive systems irradiated with ionizing radiation.

    Science.gov (United States)

    Dibo da Cruz, Adriana; Goncalves, Luciano de Souza; Rastelli, Alessandra Nara de Souza; Correr-Sobrinho, Lorenco; Bagnato, Vanderlei Salvador; Boscolo, Frab Norberto

    2010-04-01

    The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

  19. An in vitro study to evaluate the effect of two ethanol-based and two acetone-based dental bonding agents on the bond strength of composite to enamel treated with 10% carbamide peroxide

    Directory of Open Access Journals (Sweden)

    Deepa Basavaraj Benni

    2014-01-01

    Full Text Available Background and Objective: Carbamide peroxide bleaching has been implicated in adversely affecting the bond strength of composite to enamel. The objective of this in vitro study was to evaluate the effect of ethanol-based (Clearfil S 3 bond, Kuraray, Adper Single bond 2, 3M ESPE dental products and acetone-based (Prime and Bond NT, Dentsply, One Step, Bisco bonding agents on the shear bond strength of composite to enamel treated with 10% carbamide peroxide bleaching agent. Materials and Methods: A total of 120 extracted human noncarious permanent incisors were randomly divided into two groups (control and experimental. Experimental group specimens were subjected to a bleaching regimen with a 10% carbamide peroxide bleaching system (Opalescence; Ultradent Products Inc, South Jordan, USA. Composite resin cylinders were bonded to the specimens using four bonding agents and shear bond strength was determined with universal testing machine. Results: There was no statistically significant difference in the shear bond strength between control and experimental groups with both ethanol-based (Clearfil S 3 Bond and Adper Single Bond 2 and acetone-based bonding agent (Prime and Bond NT and One Step. Interpretation and Conclusion: The adverse effect of bleaching on bonding composite to enamel can be reduced or eliminated by using either ethanol- or acetone-based bonding agent. Clinical Significances: Immediate bonding following bleaching procedure can be done using ethanol- or acetone-based bonding agent without compromising bond strength.

  20. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  1. In-Vitro Evaluation of the Effect of Herbal Antioxidants on Shear Bond Strength of Composite Resin to Bleached Enamel

    Directory of Open Access Journals (Sweden)

    Zahra Khamverdi

    2016-11-01

    Full Text Available Objectives: A reduction in bond strength of composite to bleached enamel has been reported immediately after bleaching treatment. Application of some antioxidant agents may decrease the adverse effects of whitening agents on bond strength and enhance composite bond to enamel. This study aimed to assess the effect of green tea, sodium ascorbate, sage and grape seed extract on bond strength of composite to bleached enamel.Materials and Methods: In this in-vitro study, 90 human enamel surfaces were randomly divided into six groups as follows (n=15: G1, no bleaching; G2, bleaching with 40% hydrogen peroxide (HP; G3, HP+1000 μmol epigallocatechin gallate (EGCG for 10 minutes; G4, HP+10% sodium ascorbate for 10 minutes; G5, HP+10% sage for 10 minutes and G6, HP+5% grape seed extract for 10 minutes. The specimens were bonded to composite in all groups. The shear bond strength of specimens was measured in Megapascals (MPa. Data were analyzed using one-way ANOVA and Tukey’s HSD test (α=0.05.Results: The highest and the lowest mean shear bond strength values were observed in group 1 (22.61±3.29MPa and group 2 (5.87±1.80MPa, respectively. The reduction in bond strength in group 2 was greater than that in other groups (P<0.001. No significant difference was found among groups 1, 3, 4, 5 and 6 (P>0.05. Conclusions: All the herbal antioxidants used in this study equally compensated for the reduced bond strength of composite to bleached enamel.Keywords: Antioxidants; Tooth Bleaching; Composite Resins; Shear Strength 

  2. Effect of Endodontic Irrigants on Microtensile Bond Strength to Dentin After Thermocycling and Long-Term Water Storage

    Directory of Open Access Journals (Sweden)

    Daniel Galafassi

    2013-01-01

    Full Text Available Objective: The bond strength of adhesives in irrigated dentin behaves differently over time. The aim of this study was to evaluate the influence of long-term water storage and thermocycling on the microtensile bond strength of adhesive systems to dentin irrigated with endodontic solutions.Materials and Methods: Sixty human molars were used after removal of the occlusal portion and exposure of the dentin by grinding. The specimens were irrigated with 2.5% NaOCl for 30 minutes and then 17% EDTA for 5 minutes and assigned to six groups according to the adhesive system (n=10: G1 and G2–Clearfil SE Bond; G3 and G4–Single Bond 2; and G5 and G6–XP Bond. The teeth were restored with composite and were subjected to water storage for different time periods. G1, G3 and G5 were stored for 24 h; G2, G4 and G6 were stored for 6 months and were subjected to thermocycling (12,000 cycles, 5°C to 55°C, 500 cycles per week for 6 months. After storage, the tooth/restoration assembly was sectioned to obtain four sticks of approximately 1 mm2, for microtensile bond strength testing. The results were analyzed by two-way ANOVA and Tukey’s test.Results: Significant differences were observed among the adhesives (p<0.01. No significant differences were observed in the microtensile bond strength between samples after 24 hours of storage without thermocycling and after 6-month storage with 12,000 cycles (p<0.05.Conclusion: The bond strengths of G5 and G6 after irrigation with 2.5% NaOCl and 17% EDTA were significantly different from those of other groups. Long-term water storage/thermocycling had no effect on bond strength to dentin.

  3. Influence of chlorhexidine concentration on microtensile bond strength of contemporary adhesive systems

    Directory of Open Access Journals (Sweden)

    Edson Alves de Campos

    2009-09-01

    Full Text Available The purpose of this study was to investigate the influence of chlorhexidine (CHX concentration on the microtensile bond strength (μTBS of contemporary adhesive systems. Eighty bovine central incisors were used in this study. The facial enamel surface of the crowns was abraded with 600-grit silicon carbide paper to expose flat, mid-coronal dentin surfaces. The tested materials were Scotchbond Multipurpose (SMP, Single-Bond (SB, Clearfil SE Bond (CSEB and Clearfil Tri S Bond (CTSB. All the materials were applied according to manufacturer's instructions and followed by composite application (Z250. The teeth were randomly divided into 16 groups: for the etch-and-rinse adhesives (SMP and SB, 0.12% or 2% CHX was applied prior to or after the acid etching procedure. For the self-etch adhesives (CSEB and CTSB 0.12% or 2% CHX was applied prior to the primer. Control groups for each one of the adhesive systems were also set up. The specimens were immediately submitted to μTBS testing and the data were analyzed using Analysis of Variance and the Tukey post hoc test (alpha = .01. The failure patterns of the specimens were observed using scanning electron microscopy. The effects of 2% CHX were statistically significant (p < 0.01 for the self-etch adhesives but were not significant for the etch-and-rinse adhesive systems. Analysis of the data demonstrated no statistical difference between the etch-and-rinse adhesive systems. CHX-based cavity disinfectants in concentrations higher than 0.12% should be avoided prior to the self-etch adhesive systems evaluated in this study to diminish the possibilities of reduction in bond strength.

  4. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin.

    Science.gov (United States)

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Post-hoc Tukey testing showed that the highest shear strength values (P adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion.

  5. Dentin-Composite Bond Strength Measurement Using the Brazilian Disk Test

    Science.gov (United States)

    Carrera, Carola A.; Chen, Yung-Chung; Li, Yuping; Rudney, Joel; Aparicio, Conrado; Fok, Alex

    2016-01-01

    Objectives This study presents a variant of the Brazilian disk test (BDT) for assessing the bond strength between composite resins and dentin. Methods Dentin-composite disks (φ 5 mm × 2 mm) were prepared using either Z100 or Z250 (3M ESPE) in combination with one of three adhesives, Adper Easy Bond (EB), Adper Scotchbond Multi-Purpose (MP) and Adper Single Bond (SB), and tested under diametral compression. Acoustic emission (AE) and digital image correlation (DIC) were used to monitor debonding of the composite from the dentin ring. A finite element (FE) model was created to calculate the bond strengths using the failure loads. Fracture modes were examined by scanning electron microscopy (SEM). Results Most specimens fractured along the dentin-resin composite interface. DIC and AE confirmed interfacial debonding immediately before fracture of the dentin ring. Results showed that the mean bond strength with EB (14.9±1.9 MPa) was significantly higher than with MP (13.2±2.4 MPa) or SB (12.9±3.0 MPa) (p0.05). Z100 (14.5±2.3 MPa) showed higher bond strength than Z250 (12.7±2.5 MPa) (padhesive failure mode. EB failed mostly at the dentin-adhesive interface, whereas MP at the composite-adhesive interface; specimens with SB failed at the composite-adhesive interface and cohesively in the adhesive. Conclusions The BDT variant showed to be a suitable alternative for measuring the bond strength between dentin and composite, with zero premature failure, reduced variability in the measurements, and consistent failure at the dentin-composite interface. PMID:27395367

  6. Effect of salivary contamination on shear bond strength of two adhesives: An in vitro study

    Directory of Open Access Journals (Sweden)

    Shruti B Patil

    2014-01-01

    Full Text Available Introduction: Composite material used with bonding system are technique sensitive and contamination of an etched surface by saliva or blood plays a key role in bonding efficacy. Achieving good moisture control is a common problem encountered and is of importance while treating a pediatric age group since rubber dam in dental office is commonly applied in fewer than 10% of restorative treatment. Despite the advantage of rubber dam application, usage of rubber dam depends on child′s behavior and its level of co-operation for which pediatric dentists compromise with its usage. This study was conducted to evaluate the effect of salivary contamination of enamel and dentin on bond strength of two adhesives. Materials and Methods: An in vitro study comprised of test group of 112 central incisors divided into 4 groups for testing on enamel and dentin separately. These are Group I: Control group without salivary contamination; Group II: Contaminated with saliva and air-dried; Group III: Contaminated with saliva, rinsed and air-dried; Group IV: Coated with adhesive, light cured and then contaminated. Shear bond strength was calculated using universal testing machine. Results: For testing on enamel and dentin, significantly decreased bond strength was seen with Group II (P 0.05, when compared with control Group I. Conclusion: The decontamination method used in this study by rinsing the contaminated cured adhesive layer that did not reverse the harmful effect of salivary contamination. As most of the children are active and restless with swinging mood, it is important not to negotiate with the procedural steps during treatment.

  7. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature.

    Science.gov (United States)

    Spitznagel, Frank A; Horvath, Sebastian D; Guess, Petra C; Blatz, Markus B

    2014-01-01

    Resin bonding is essential for clinical longevity of indirect restorations. Especially in light of the increasing popularity of computer-aided design/computer-aided manufacturing-fabricated indirect restorations, there is a need to assess optimal bonding protocols for new ceramic/polymer materials and indirect composites. The aim of this article was to review and assess the current scientific evidence on the resin bond to indirect composite and new ceramic/polymer materials. An electronic PubMed database search was conducted from 1966 to September 2013 for in vitro studies pertaining the resin bond to indirect composite and new ceramic/polymer materials. The search revealed 198 titles. Full-text screening was carried out for 43 studies, yielding 18 relevant articles that complied with inclusion criteria. No relevant studies could be identified regarding new ceramic/polymer materials. Most common surface treatments are aluminum-oxide air-abrasion, silane treatment, and hydrofluoric acid-etching for indirect composite restoration. Self-adhesive cements achieve lower bond strengths in comparison with etch-and-rinse systems. Thermocycling has a greater impact on bonding behavior than water storage. Air-particle abrasion and additional silane treatment should be applied to enhance the resin bond to laboratory-processed composites. However, there is an urgent need for in vitro studies that evaluate the bond strength to new ceramic/polymer materials. This article reviews the available dental literature on resin bond of laboratory composites and gives scientifically based guidance for their successful placement. Furthermore, this review demonstrated that future research for new ceramic/polymer materials is required. © 2014 Wiley Periodicals, Inc.

  8. Effect of 10% sodium bicarbonate on bond strength of enamel and dentin after bleaching with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Fernanda Medeiros Darzé

    Full Text Available AbstractIntroductionBy-products of hydrogen peroxide degradation released during dental bleaching influence the polymerization of adhesive systems and composite resins, causing a reduction in shear bond strength to the tooth.Objectivethe aim of this article was to evaluate the effect of 10% sodium bicarbonate (SB, applied for different lengths of time, on the shear bond strength to enamel and dentin after bleaching.Material and methodEnamel and dentin blocks were divided into groups (n=10: (1 control: no bleaching; (2 immediate: bleaching immediately followed by restoration; (3 14-day: bleaching, restoration 14 days later; (4 SB for 10 minutes: bleaching, SB gel for 10 minutes, immediately followed by restoration; (5 SB for 20 minutes: bleaching, SB gel for 20 minutes, immediately followed by restoration. A 38% hydrogen peroxide gel (Opalescence Boost/Ultradent was used. After application of the adhesive system, composite resin cylinders were mounted on the surface of the substrates in order to test shear bond strength. Result: ANOVA and Tukey tests showed significantly higher mean enamel bond strength values for the 14-day follow-up group and without significant differences for control group. Mean bond strength values obtained for the other groups were intermediate. When testing dentin, the Tukey test revealed a significantly higher mean bond strength value for the 14-day follow-up group when compared with application of SB for 20 minutes.ConclusionSB gel applied was unable to reverse the low bond strength to enamel and dentin after bleaching treatment.

  9. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conven-tional Acid-Etching

    Directory of Open Access Journals (Sweden)

    M.H. Hosseini

    2012-01-01

    Full Text Available Introduction: The purpose of this study was to compare shear bond strength (SBS of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching.Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types.Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively.Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning.

  10. In vitro evaluation of influence of salivary contamination on the dentin bond strength of one-bottle adhesive systems

    Directory of Open Access Journals (Sweden)

    Nujella B.P Suryakumari

    2011-01-01

    Full Text Available Aim: To evaluate the effect of salivary contamination on the bond strength of one-bottle adhesive systems - (the V generation at various stages during the bonding procedure and to investigate the effect of the contaminant removing treatments on the recovery of bond strengths. Materials and Methods: In this study the V generation one-bottle system - (Adper Single Bond was tested. Fifty caries-free human molars with flat dentin surfaces were randomly divided into five groups of ten teeth each: Group I had 15 second etching with 35% Ortho Phosphoric acid, 15 second rinse and blot dried (Uncontaminated; Group II contaminated and blot dried; Group III contaminated and completely dried; Group IV contaminated, washed, blot dried; Group V contaminated, retched washed, and blot dried. The bonding agent was applied and resin composite (Z-100 3M ESPE was bonded to the treated surfaces using the Teflon mold. The specimens in each group were then subjected to shear bond strength testing in an Instron Universal testing machine at a crosshead speed of 1 mm / minute and the data were subjected to one way ANOVA for comparison among the groups (P<0.05. Results: There was a significant difference between the group that was dried with strong oil-free air after contamination (Group III and the other groups. When the etched surface was contaminated by saliva, there was no statistical difference between the just blot dry, wash, or the re-etching groups (Groups II, IV, V if the dentin surface was kept wet before priming. When the etched dentin surface was dried (Group III the shear bond strength decreased considerably. Conclusion: The bond strengths to the tooth structure of the recent dentin bonding agents are less sensitive to common forms of contamination than assumed. Re-etching without additional mechanical preparation is sufficient to provide or achieve the expected bond strength.

  11. Pullout bond strength of fiber posts luted to different depths and submitted to artificial aging.

    Science.gov (United States)

    Macedo, V C; Souza, N A Y; Faria e Silva, A L; Cotes, C; da Silva, C; Martinelli, M; Kimpara, E T

    2013-01-01

    The extension of fiber post cementation often does not seem to influence the fracture resistance of restorations. This study evaluated the effects of cementation depths on the retention of fiber posts submitted to artificial aging. One hundred and sixty bovine incisors were selected to assess post retention. Following endodontic treatment, the canals were flared with diamonds burs. Postholes were prepared in lengths of 5 or 10 mm, after which fiber posts were relined with composite resin and luted with RelyX ARC or RelyX Unicem. The samples were then submitted to thermal and/or mechanical cycling before testing their pullout bond strengths. Absence of cycling was used as a control. The results of each cement were submitted to two-way and post hoc Tukey tests (α=0.05). Independent of the aging protocol, a depth of 10 mm showed higher pullout bond strength than did 5 mm, except for RelyX Unicem without cycling. For RelyX ARC, thermomechanical cycling resulted in lower values than in the absence of cycling. Mechanical cycling alone promoted the highest bond strength when the posts were luted with RelyX Unicem. The effect of artificial aging on the pullout bond strength is dependent on the type of material and the depth.

  12. Microtensile bond strength of contemporary adhesives to primary enamel and dentin.

    Science.gov (United States)

    Marquezan, Marcela; da Silveira, Bruno Lopes; Burnett, Luiz Henrique; Rodrigues, Célia Regina Martins Delgado; Kramer, Paulo Floriani

    2008-01-01

    The purpose of this study was to assess bond strength of three self-etching and two total-etch adhesive systems bonded to primary tooth enamel and dentin. Forty extracted primary human molars were selected and abraded in order to create flat buccal enamel and occlusal dentin surfaces. Teeth were assigned to one of the adhesive systems: Adper Scotch Bond Multi Purpose, Adper Single Bond 2, Adper Prompt L-Pop, Clearfil SE Bond and AdheSE. Immediately to adhesive application, a composite resin (Filtek Z250) block was built up. After 3 months of water storage, each sample was sequentially sectioned in order to obtain sticks with a square cross-sectional area of about 0.72 mm2. The specimens were fixed lengthways to a microtensile device and tested using a universal testing machine with a 50-N load cell at a crosshead speed of 0.5 mm/min. Microtensile bond strength values were recorded in MPa and compared by Analysis of Variance and the post hoc Tukey test (a = 0.05). In enamel, Clearfil SE Bond presented the highest values, followed by Adper Single Bond 2, AdheSE and Adper Scotch Bond Multi Purpose, without significant difference. The highest values in dentin were obtained with Adper Scotch Bond Multi Purpose and all other adhesives did not present significant different values from that, except Adper Prompt L-Pop that achieved the lowest bond strength in both substrates. Adper Scotch Bond Multi Purpose and Adper Single Bond 2 presented significantly lower values in enamel than in dentin although all other adhesives presented similar results in both substrates. contemporary adhesive systems present similar behaviors when bonded to primary teeth, with the exception of the one-step self-etching system; and self-etching systems can achieve bond strength values as good in enamel as in dentin of primary teeth.

  13. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    Science.gov (United States)

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.

  14. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  15. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-filled Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the shear bond strength (SBS of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91± 2.13 and Filtek TM Supreme XT (6.04± 2.01. Statistical analysis revealed a significant difference between groups II and III (P 0.05. Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  16. Problems in Standardization of Orthodontic Shear Bond Strength Tests; A Brief Review

    Directory of Open Access Journals (Sweden)

    M.S. A. Akhoundi

    2005-03-01

    Full Text Available Bonding brackets to the enamel surface has gained much popularity today. New adhesive systems have been introduced and marketed and a considerable increase in research regarding bond strength has been published. A considerable amount of these studies deal with shear bond strength of adhesives designed for orthodontic purpose.Previous studies have used variety of test designs. This diversity in test design is due to the fact that there is no standard method for evaluating shear bond strength in orthodontics. Therefore comparison of data obtained from different study is almost impossible.This article tries to briefly discuss the developments occurred in the process of shear bond strength measurement of orthodontic adhesives with an emphasis on the type of test set up and load application.Although the test designs for measuring shear bond strength in orthodontics are still far from ideal, attempts must be made to standardize these tests especially in order to makecomparison of different data easier. It is recommended that test designs be set up in such a manner that better matches with the purpose of the study.

  17. Microtensile bond strength of eleven contemporary adhesives to enamel.

    Science.gov (United States)

    Inoue, Satoshi; Vargas, Marcos A; Abe, Yasuhiko; Yoshida, Yasuhiro; Lambrechts, Paul; Vanherle, Guido; Sano, Hidehiko; Van Meerbeek, Bart

    2003-10-01

    To compare the microtensile bond strength (microTBS) to enamel of 10 contemporary adhesives, including three one-step self-etch systems, four two-step self-etch systems and three two-step total-etch systems, with that of a conventional three-step total-etch adhesive. Resin composite (Z100, 3M) was bonded to flat, #600-grit wet-sanded enamel surfaces of 18 extracted human third molars using the adhesives strictly according to the respective manufacturer's instructions. After storage overnight in 37 degrees C water, the bonded specimens were sectioned into 2-4 thin slabs of approximately 1 mm thickness and 2.5 mm width. They were then trimmed into an hourglass shape with an interface area of approximately 1 mm2, and subsequently subjected to microTBS-testing with a cross-head speed of 1 mm/minute. The microTBS to enamel varied from 3.2 MPa for the experimental one-step self-etch adhesive PQ/Universal (self-etch) to 43.9 MPa for the two-step total-etch adhesive Scotchbond 1. When compared with the conventional three-step total-etch adhesive OptiBond FL, the bond strengths of most adhesives with simplified application procedures were not significantly different, except for two one-step self-etch adhesives, experimental PQ/Universal (self-etch) and One-up Bond F, that showed lower bond strengths. Specimen failures during sample preparation were recorded for the latter adhesives as well.

  18. Effect of composite warming on shear bond strength.

    Science.gov (United States)

    McDaniel, Thomas F; Sigrist, Thomas W; Johnson, Gary M

    2018-01-01

    Several manufacturers produce devices designed to warm composite resins used in restorative dentistry. Previous investigators have examined the effects of heating composite restorative resins prior to placement and polymerization. Heating has been reported to reduce viscosity, improve ease of placement, enhance monomer conversion, and reduce microleakage. The aim of the present study was to compare shear bond strengths of room temperature (22°C) and prewarmed (54°C) restorative composite resin. Extracted bovine mandibular incisors were sectioned sagittally and embedded in acrylic cylinders. Enamel was selectively etched with 37% phosphoric acid, rinsed, and dried. Self-etching primer was applied to both enamel and dentin. Self-etching adhesive was then applied and photopolymerized. Composite resin capsules were then divided into prewarmed and room temperature groups. Fourteen composite specimens prewarmed in an incubator were applied to the prepared enamel and dentin and photopolymerized. Fourteen room temperature composite specimens were likewise placed. After storage in water for 24 hours, all composite specimens were subjected to shear stress testing. The resulting data were analyzed with a t test (P = 0.05). There was no statistically significant difference between the shear bond strengths of the prewarmed and room temperature composite resin specimens. Warming does not appear to affect bond strength of composite resin bonded to both dentin and enamel.

  19. Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin.

    Science.gov (United States)

    Naranjo, Jennifer; Ali, Mohsin; Belles, Donald

    2015-11-01

    Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements

  20. In vitro Evaluation of Effect of Dental Bleaching on the Shear Bond Strength of Sapphire Orthodontics Brackets Bonded with Resin Modified Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Zainab M Kadhom

    2017-11-01

    Full Text Available Aim: This study aimed to assess the effect of various types of bleaching agents on the shear bond strength of sapphire brackets bonded to human maxillary premolar teeth using resin modified glass ionomer cement (RMGIC and to determine the site of bond failure. Materials and Methods: Thirty freshly extracted maxillary human premolars were selected and assigned into three equal groups, ten teeth in each. The first group was the control (unbleached group; the second group comprised teeth bleached with hydrogen peroxide group (HP 37.5% (in-office bleaching while the third group included teeth bleached with carbamide peroxide group (CP 16% (at-home bleaching. The teeth in the experimental groups were bleached and stored in water one day then bonded with sapphire brackets using RMGIC with the control group and left another day. De-bonding was performed using Instron universal testing machine. To determine the site of bond failure, both the enamel surface and bracket base of each tooth were examined under magnifying lens (20X of a stereomicroscope. Results: Results showed statistically highly significant difference in the shear bond strengths between control group and both of bleaching groups being low in the control group. Score III was the predominant site of bond failure in all groups. Conclusions: RMGIC provides adequate bond strength when bonding the sapphire brackets to bleached enamel; this bonding was strong enough to resist both the mechanical and masticatory forces. Most of the adhesive remained on the brackets, so it reduced the time required for removal of the bonding material’s remnants during enamel finishing and polishing.

  1. Microtensile bond strength of three simplified adhesive systems to caries-affected dentin.

    Science.gov (United States)

    Scholtanus, J D; Purwanta, Kenny; Dogan, Nilgun; Kleverlaan, Cees J; Feilzer, Albert J

    2010-08-01

    The purpose of the study was to determine the microtensile bond strength of three different simplified adhesive systems to caries-affected dentin. Fifteen extracted human molars with primary carious lesions were ground flat until dentin was exposed. Soft caries-infected dentin was excavated with the help of caries detector dye. On the remaining hard dentin, a standardized smear layer was created by polishing with 600-grit SiC paper. Teeth were divided into three groups and treated with one of the three tested adhesives: Adper Scotchbond 1 XT (3M ESPE), a 2-step etch-andrinse adhesive, Clearfil S3 Bond (Kuraray), a 1-step self-etching or all-in-one adhesive, and Clearfil SE Bond (Kuraray), a 2-step self-etching adhesive. Five-mm-thick composite buildups (Z-250, 3M ESPE) were built and light cured. After water storage for 24 h at 37ºC, the bonded specimens were sectioned into bars (1.0 x 1.0 mm; n = 20 to 30). Microtensile bond strength of normal dentin specimens and caries-affected dentin specimens was measured in a universal testing machine (crosshead speed = 1 mm/min). Data were analyzed using two-way ANOVA and Tukey's post-hoc test (p adhesives were found. Adper Scotchbond 1 XT and Clearfil S3 Bond showed significantly lower bond strength values to caries-affected dentin. For Clearfil SE Bond, bond strength values to normal and caries-affected dentin were not significantly different. All the tested simplified adhesives showed similar bond strength values to normal dentin. For the tested 2-step etch-and-rinse adhesive and the all-in-one adhesive, the bond strength values to caries-affected dentin were lower than to normal dentin.

  2. Two component injection moulding: an interface quality and bond strength dilemma

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    on quality parameters of the two component parts. Most engineering applications of two component injection moulding calls for high bond strength between the two polymers, on the other hand a sharp and well-defined interface between the two polymers are required for applications like selective metallization...... of polymers, parts for micro applications and also for the aesthetic purpose of the final product. The investigation presented in this paper indicates a dilemma between obtaining reasonably good bond strength and at the same time keeping the interface quality suitable for applications. The required process...... conditions for a sharp and well-defined interface are exactly the opposite of what is congenial for higher bond strength. So in the production of two component injection moulded parts, there is a compromise to make between the interface quality and the bond strength of the two polymers. Also the injection...

  3. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Pooran Samimi

    2016-01-01

    Full Text Available Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB and Prompt L-Pop (PLP adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1 Immediate light-curing, (2 delayed light-curing after 20 min, and (3 self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P 0.05. PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study.

  4. Microshear bond strength of self-etching systems associated with a hydrophobic resin layer.

    Science.gov (United States)

    De Vito Moraes, André Guaraci; Francci, Carlos; Carvalho, Ceci Nunes; Soares, Silvio Peixoto; Braga, Roberto Ruggiero

    2011-08-01

    To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers' instructions, associated or not with a hydrophobic layer of unfilled resin. Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, Ivoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37ºC for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey's post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 ± 7.9; AdheSE: 14.5 ± 7.1; Xeno lll: 12.8 ± 7.7; I Bond: 9.5 ± 5.8; Bond Force: 17.5 ± 4.1; Futurabond: 7.7 ± 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p AdheSE 1.6 ± 1.6; Xeno lll: 9.0 ± 3.8; I Bond: 3.0 ± 1.5; Bond Force: 14 ± 3.9; Futurabond: 8.8 ± 3.8). Failure mode was predominantly adhesive. The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.

  5. Effect of Delayed Bonding and Antioxidant Application on the Bond Strength to Enamel after Internal Bleaching.

    Science.gov (United States)

    Kılınç, Halil İbrahim; Aslan, Tuğrul; Kılıç, Kerem; Er, Özgür; Kurt, Gökmen

    2016-07-01

    This study evaluated the effect of delayed bonding and antioxidant application (AA, 10% sodium ascorbate) after internal bleaching (35% carbamide peroxide) on the shear bond strength of an adhesive cement to enamel. Eighty-four human maxillary central incisors were endodontically treated. The control group remained unbleached with no AA. Experimental groups were all internally bleached. The buccal enamel was finished and polished with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat bonding area. An adhesive cement (Clearfil Esthetic) was placed into a plastic tube with internal diameter of 3 mm and a 3-mm height and cured on the enamel. Bonding occurred either immediately after bleaching (group Im), a 7-day delay (group 7), or a 14-day delay (group 14), and half the specimens were treated with antioxidant application (groups Im-AA, 7-AA, and 14-AA). Shear bond strength testing was performed on a universal testing machine, and data were analyzed with ANOVA and Fisher test (5%). Delaying of bonding is a useful factor for enhancing shear bond strength (p adhesive cementation to enamel is recommended only when delayed 14 days, or delayed 7 days with sodium ascorbate application. © 2015 by the American College of Prosthodontists.

  6. Comparative evaluation of shear bond strength of zirconia restorations cleansed various cleansing protocols bonded with two different resin cements: An In vitro study

    Directory of Open Access Journals (Sweden)

    Sriram Sankar

    2017-01-01

    Full Text Available Context: Yttria partially stabilized tetragonal zirconia polycrystalline restorations have gained widespread use because of its enhanced strength and esthetics. During the try-in process, zirconia is likely to be contaminated with saliva. This contamination leads to a clear weakening of the bond between restorative material and cement. For this reason, zirconia surface should be cleaned before cementation. Hence, the purpose of this study is to compare the shear bond strength of zirconia restorations cleansed with various surface cleansing protocols bonded with two different resin cements. Materials and Methods: Eighty samples of zirconia discs were prepared in the dimensions 2.5 mm diameter and 4.5 mm thickness. They were divided into two groups of each forty samples based on luting cement used. Each group was further subdivided into four subgroups of each (n = 10: Group 1: uncontaminated zirconia blocks, Group 2: saliva-contaminated zirconia blocks and cleaned only with distilled water, Group 3: saliva-contaminated zirconia blocks treated with Ivoclean, and Group 4: saliva-contaminated zirconia blocks were air abraded. Eighty human maxillary premolars were then sectioned to expose dentin and were mounted on an acrylic block. A jig was fabricated to bond zirconia with the tooth using two self-adhesive resin cements. The samples were subjected to shear bond strength testing. The data were analyzed using one-way analysis of variance and Tukey's honest significance difference test with a level of significance set at p < 0.05. Results: The mean shear bond strength values of Group 1 and 2 - subgroup B are 10.3 ± 0.4 and 9.80 ± 0.7 (saliva-contaminated zirconia, cleansed with distilled water only, respectively, were lowest among all test subgroups and were significantly less than mean values of subgroup C, Group 1 - 20.45 ± 0.6 and Group 2 - 20.75 ± 0.4 (Ivoclean group and subgroup D, Group 1 - 20.90 ± 0.3 and Group 2 - 20.60 ± 0.5 (air

  7. Shear Bond Strengths of Different Adhesive Systems to Biodentine

    Science.gov (United States)

    Odabaş, Mesut Enes; Bani, Mehmet; Tirali, Resmiye Ebru

    2013-01-01

    The aim of this study was to measure the shear bond strength of different adhesive systems to Biodentine with different time intervals. Eighty specimens of Biodentine were prepared and divided into 8 groups. After 12 minutes, 40 samples were randomly selected and divided into 4 groups of 10 each: group 1: (etch-and-rinse adhesive system) Prime & Bond NT; group 2: (2-step self-etch adhesive system) Clearfil SE Bond; group 3: (1-step self-etch adhesive systems) Clearfil S3 Bond; group 4: control (no adhesive). After the application of adhesive systems, composite resin was applied over Biodentine. This procedure was repeated 24 hours after mixing additional 40 samples, respectively. Shear bond strengths were measured using a universal testing machine, and the data were subjected to 1-way analysis of variance and Scheffé post hoc test. No significant differences were found between all of the adhesive groups at the same time intervals (12 minutes and 24 hours) (P > .05). Among the two time intervals, the lowest value was obtained for group 1 (etch-and-rinse adhesive) at a 12-minute period, and the highest was obtained for group 2 (two-step self-etch adhesive) at a 24-hour period. The placement of composite resin used with self-etch adhesive systems over Biodentine showed better shear bond strength. PMID:24222742

  8. UV irradiation improves the bond strength of resin cement to fiber posts.

    Science.gov (United States)

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (pUV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  9. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Hossain, S.K.S.; Majh, M.R.

    2017-01-01

    Clay bonded silica refractory was prepared by utilizing agriculture waste called rice husk ash (RHA) and refractory grog. Various samples were prepared with different compositions based upon partial replacement of quartz by RHA. Rectangular samples were prepared by following semi dry process prior to pressing in a uniaxial hydraulic press and sintering at a temperature of 1200°C in air atmosphere. Various physical, mechanical and thermal characterizations were done like X-ray diffraction (XRD), scanning electron microscope (SEM), apparent porosity (AP), bulk density (BD), cold crushing strength (CCS), refractoriness and thermal conductivity measurement. The sample utilizing 30% of RHA was considered most optimum composition which produced cold crushing strength of 38MPa and thermal conductivity of 2.08W/mK at 800°C with a considerable good refractoriness. Enhancement in the mechanical as well as thermal properties may be considered as attributed to the amorphous silica which has reacted more easily and efficiently with other material surrounding giving rise to the densification and produced stable crystalline phase to the refractory material. These promising characteristics suggests that the RHA may lead to be used as a potential material for the preparation of clay bonded high strength silica refractories. [es

  10. The impact of chlorhexidine mouth rinse on the bond strength of polycarbonate orthodontic brackets.

    Science.gov (United States)

    Hussein, Farouk Ahmed; Hashem, Mohammed Ibrahim; Chalisserry, Elna P; Anil, Sukumaran

    2014-11-01

    The purpose of the current in-vivo study was to assess the effect of using 0.12% chlorhexidine (CHX) mouth rinse, before bonding, on shear bond strength of polycarbonate brackets bonded with composite adhesive. Eighteen orthodontic patients with a mean age 21.41 ± 1.2 years, who were scheduled to have 2 or more first premolars extracted, were included in this study. Patients were referred for an oral prophylaxis program which included, in part, the use of a mouth rinse. Patients were divided into 2 groups, a test group of 9 patients who used 0.12% CHX gluconate mouth rinse twice daily and a control group of 9 patients who used a mouth rinse without CHX, but with same color. After 1 week, polycarbonate brackets were bonded to first premolars with Transbond XT composite adhesive. Premolars were extracted after 28 days and tested for shear bond strength on a universal testing machine. Student's t-test was used to compare shear bond strengths of both groups. No statistically significant difference was found in bond strengths' values between both groups. The test group (with CHX) has mean shear bond strength of 14.21 ± 2.42 MPa whereas the control group (without CHX) revealed a mean strength of 14.52 ± 2.31 MPa. The use of 0.12% CHX mouth rinse, for one week before bonding, did not affect the shear bond strength of polycarbonate brackets bonded with Transbond composite. Furthermore, these brackets showed clinically acceptable bond strength.

  11. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    Science.gov (United States)

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  12. Dentin bond strength of two resin-ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials and five cements after six months storage.

    Science.gov (United States)

    Flury, Simon; Schmidt, Stefanie Zita; Peutzfeldt, Anne; Lussi, Adrian

    2016-10-01

    The aim was to investigate dentin bond strength of two resin-ceramic materials and five cements after 24 h and six months storage. Cylinders (n=15/group) of Lava Ultimate (3M ESPE) and VITA ENAMIC (VITA Zahnfabrik) were cemented to mid-coronal dentin of 300 extracted human molars with RelyX Ultimate (3M ESPE), PANAVIA F2.0 (Kuraray), Variolink II (Ivoclar Vivadent), els cem (Saremco Dental), or Ketac Cem Plus (3M ESPE). Shear bond strength (SBS) was measured after 24 h or six months storage (37°C, 100% humidity) and statistically analyzed (significance level: α=0.05). SBS varied markedly between Lava Ultimate and VITA ENAMIC, between the five cements, and between storage of either 24 h or six months. After six months, SBS was highest when Lava Ultimate was cemented with RelyX Ultimate and when VITA ENAMIC was cemented with RelyX Ultimate or with Variolink II. Lava Ultimate was somewhat more sensitive to storage than was VITA ENAMIC.

  13. Bond strength of self-etch adhesives after saliva contamination at different application steps.

    Science.gov (United States)

    Cobanoglu, N; Unlu, N; Ozer, F F; Blatz, M B

    2013-01-01

    This study evaluated and compared the effect of saliva contamination and possible decontamination methods on bond strengths of two self-etching adhesive systems (Clearfil SE Bond [CSE], Optibond Solo Plus SE [OSE]). Flat occlusal dentin surfaces were created on 180 extracted human molar teeth. The two bonding systems and corresponding composite resins (Clearfil AP-X, Kerr Point 4) were bonded to the dentin under six surface conditions (n=15/group): group 1 (control): primer/bonding/composite; group 2: saliva/drying/primer/bonding/composite; group 3: primer/saliva/rinsing/drying/primer/bonding/composite; group 4: primer/saliva/rinsing/drying/bonding/composite; group 5: primer/bonding (cured)/saliva/rinsing/drying/primer/bonding/composite; group 6: primer/bonding (cured)/saliva/removing contaminated layer with a bur/rinsing/drying/primer/bonding/composite. Shear bond strength was tested after specimens were stored in distilled water at 37°C for 24 hours. One-way analysis of variance and Tukey post hoc tests were used for statistical analyses. For CSE, groups 2, 3, and 4 and for OSE, groups 6, 2, and 4 showed significantly lower bond strengths than the control group (pcontamination occurred after light polymerization of the bonding agent, repeating the bonding procedure recovered the bonding capacity of both self-etch adhesives. However, saliva contamination before or after primer application negatively affected their bond strength.

  14. Effects of long-term repeated topical fluoride applications and adhesion promoter on shear bond strengths of orthodontic brackets

    Science.gov (United States)

    Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo

    2014-01-01

    Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720

  15. Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation

    Directory of Open Access Journals (Sweden)

    Manoti Sehgal

    2016-01-01

    Full Text Available A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope analysis were done to estimate the phase transformation (m-phase fraction and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.

  16. Strength of Al and Al-Mg/alumina bonds prepared using ultrahigh vacuum diffusion bonding

    International Nuclear Information System (INIS)

    King, W.E.; Campbell, G.H.; Wien, W.L.; Stoner, S.L.

    1994-01-01

    The authors have measured the cross-breaking strength of Al and Al-Mg alloys bonded with alumina. Diffusion bonding of Al and Al-Mg alloys requires significantly more bonding time than previously thought to obtain complete bonding. In contrast to previous diffusion bonding studies, fracture morphologies are similar to those obtained in bonds formed by liquid phase reaction; i.e., bonds are as strong or stronger than the ceramic; and fracture tends to propagate in the metal for pure Al and near the interface in the ceramic for the alloys. There are indications that the fracture morphology depends on Mg content and therefore on plasticity in the metal

  17. Effect of a re‑wetting agent on bond strength of an adhesive to ...

    African Journals Online (AJOL)

    Objective: This study investigated the effect of a re‑wetting agent on the microtensile bond strengths (μTBS) of primary and permanent dentin after acid or laser etching. Materials and Methods: Twelve permanent and 12 primary molar teeth were ground to expose an occlusal dentin surface. Each group teeth were randomly ...

  18. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  19. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives

    OpenAIRE

    Hosaka, K; Nakajima, M; Monticelli, F; Carrilho, M; Yamauti, M; Aksornmuang, J; Nishitani, Y; Tayh, FR; Pashley, DH; Tagami, J

    2007-01-01

    Purpose: To evaluate the microtensile bond strength (mu TBS) of two all-in-one self-etching adhesive systems and two self etching adhesives with and without simulated hydrostatic pulpal pressure (PP). Materials and Methods: Flat coronal dentin surfaces of extracted human molars were prepared. Two all-in-one self-etching adhesive systems, One-Up Bond F (OBF; Tokuyama) and Clearfil S-3 Bond (Tri-S, Kuraray Medical) and two self-etching primer adhesives, Clearfil Protect Bond (PB; Kuraray) and C...

  20. Comparative in vitro study of the shear bond strength of brackets bonded with restorative and orthodontic resins

    Directory of Open Access Journals (Sweden)

    Hassan Isber

    2011-02-01

    Full Text Available The aim of this study was to evaluate the shear bond strength of brackets bonded with different restorative systems and compare it with that afforded by an established orthodontic bonding system. Seventy human bicuspids were used, divided into five different groups with 14 teeth each. Whereas a specific orthodontic bonding resin (TransbondTM XT was used in the control group, the restorative systems Charisma, Tetric Ceram, TPH Spectrum and Z100 were used in the other four groups. Seven days after bonding the brackets to the samples, shear forces were applied under pressure in a universal testing machine. The data collected was evaluated using the ANOVA test and, when a difference was identified, the Tukey test was applied. A 5% level of significance was adopted. The mean results of the shear bond strength tests were as follows: Group 1 (Charisma, 14.98 MPa; Group 2 (Tetric Ceram, 15.16 MPa; Group 3 (TPH, 17.70 MPa; Group 4 (Z100, 13.91 MPa; and Group 5 or control group (TransbondTM XT, 17.15 MPa. No statistically significant difference was found among the groups. It was concluded that all tested resins have sufficient bond strength to be recommended for bonding orthodontic brackets.

  1. Shear bond strength of orthodontic brackets bonded with different self-etching adhesives.

    Science.gov (United States)

    Scougall Vilchis, Rogelio José; Yamamoto, Seigo; Kitai, Noriyuki; Yamamoto, Kohji

    2009-09-01

    The purpose of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded with 4 self-etching adhesives. A total of 175 extracted premolars were randomly divided into 5 groups (n = 35). Group I was the control, in which the enamel was etched with 37% phosphoric acid, and stainless steel brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif). In the remaining 4 groups, the enamel was conditioned with the following self-etching primers and adhesives: group II, Transbond Plus and Transbond XT (3M Unitek); group III, Clearfil Mega Bond FA and Kurasper F (Kuraray Medical, Tokyo, Japan); group IV, Primers A and B, and BeautyOrtho Bond (Shofu, Kyoto, Japan); and group V, AdheSE and Heliosit Orthodontic (Ivoclar Vivadent AG, Liechtenstein). The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The adhesive remnant index (ARI) including enamel fracture score was also evaluated. Additionally, the conditioned enamel surfaces were observed under a scanning electron microscope. The SBS values of groups I (19.0 +/- 6.7 MPa) and II (16.6 +/- 7.3 MPa) were significantly higher than those of groups III (11.0 +/- 3.9 MPa), IV (10.1 +/- 3.7 MPa), and V (11.8 +/- 3.5 MPa). Fluoride-releasing adhesives (Kurasper F and BeautyOrtho Bond) showed clinically acceptable SBS values. Significant differences were found in the ARI and enamel fracture scores between groups I and II. The 4 self-etching adhesives yielded SBS values higher than the bond strength (5.9 to 7.8 MPa) suggested for routine clinical treatment, indicating that orthodontic brackets can be successfully bonded with any of these self-etching adhesives.

  2. Theoretical and Experimental Evaluation of the Bond Strength Under Peeling Loads

    Science.gov (United States)

    Nayeb-Hashemi, Hamid; Jawad, Oussama Cherkaoui

    1997-01-01

    Reliable applications of adhesively bonded joints require understanding of the stress distribution along the bond-line and the stresses that are responsible for the joint failure. To properly evaluate factors affecting peel strength, effects of defects such as voids on the stress distribution in the overlap region must be understood. In this work, the peel stress distribution in a single lap joint is derived using a strength of materials approach. The bonded joint is modeled as Euler-Bernoulli beams, bonded together with an adhesive. which is modeled as an elastic foundation which can resist both peel and shear stresses. It is found that for certain adhesive and adherend geometries and properties, a central void with the size up to 50 percent of the overlap length has negligible effect on the peak peel and shear stresses. To verify the solutions obtained from the model, the problem is solved again by using the finite element method and by treating the adherends and the adhesive as elastic materials. It is found that the model used in the analysis not only predicts the correct trend for the peel stress distribution but also gives rather surprisingly close results to that of the finite element analysis. It is also found that both shear and peel stresses can be responsible for the joint performance and when a void is introduced, both of these stresses can contribute to the joint failure as the void size increases. Acoustic emission (AE) activities of aluminum-adhesive-aluminum specimens with different void sizes were monitored. The AE ringdown counts and energy were very sensitive and decreased significantly with the void size. It was observed that the AE events were shifting towards the edge of the overlap where the maximum peeling and shearing stresses were occurring as the void size increased.

  3. Evaluation of bond strength of self-etching adhesives having different pH on primary and permanent teeth dentin.

    Science.gov (United States)

    Ozmen, Bilal; Koyuturk, Alp Erdin; Tokay, Ugur; Cortcu, Murat; Sari, Mustafa Erhan

    2015-10-16

    The purpose of this in vitro study was to evaluate the dentin shear bond strength of 4 self-etching adhesives having a different pH on primary and permanent teeth dentin. The occlusal enamel was removed from 60 freshly extracted third molar and 60 primary second molar human teeth, which were randomly separated into 4 groups (n = 15). Four adhesive systems were applied: G-Bond (GC Corporation, Tokyo, Japan, pH: 1.5), Futura Bond M (Voco, Cuxhaver, Germany, pH: 1.4), Adper Prompt L-Pop (3M/ESPE, St Paul, MN, USA, pH: 0.8), and Clearfil S(3) Bond (Kuraray Medical, Tokyo, Japan, pH: 2.7) according to the manufacturer's instructions. After the application of dentin bonding agents, a composite resin material (Z250 Restorative A2, 3M ESPE, St. Paul, MN, USA) for permanent teeth and a compomer resin material (Dyract Extra A2, Dentsply, Konstanz, Germany) for primary teeth was applied onto the prepared dentin surfaces. The data were obtained by using a universal test machine at a crosshead speed of 1 mm/min. The mean values were compared using Tukey's multiple comparison test. Although there was no difference between adhesives on the permanent teeth, Clearfil S3 adhesive showed higher bond (18.07 ± 0.58 MPa) (P>0.05). Lower bond strength values were obtained from primary teeth and especially G-Bond adhesive (9.36 ± 0.48 MPa) (Padhesives with different pH and solvent types can be used successfully for permanent teeth dentin but adhesives with low pH did not provide greater shear bond strength values.

  4. Push-out Bond Strength of Calcium Enriched Mixture Exposed to Alkaline Environment

    Directory of Open Access Journals (Sweden)

    Sobhnamayan F

    2015-09-01

    Full Text Available Statement of Problem: Calcium hydroxide which is commonly used as an intracanal medicament, changes the pH of dentin and periradicular tissues to an alkaline pH. In some clinical situations, endodontic reparative cements like calcium enriched mixture cement are used after calcium hydroxide therapy. However, the alkaline pH may affect the physical properties of this cement. Objectives: This study was designed to evaluate the effect of alkaline pH on the push-out bond strength of calcium enriched mixture. Materials and Methods: 80 root slices were prepared from single-rooted human teeth and their lumens were instrumented to achieve a diameter of 1.3mm. Calcium enriched mixture (CEM was mixed according to the manufacturer’s instruction and introduced into the lumens of root slices. The specimens were then randomly divided into 4 groups (n = 20 and wrapped in pieces of gauze soaked in synthetic tissue fluid (STF buffered in potassium hydroxide at pH values of 7.4, 8.4, 9.4, or 10.4. The samples were incubated for 4 days at 37°C. The push-out bond strengths were then measured using a universal testing machine. Failure modes were examined under a light microscope at ×20 magnification. The data were analyzed using one-way analysis of variance and Tukey’s post hoc tests. Results: The greatest (1.41 ± 0.193 MPa and lowest (0.8 ± 0.06 MPa mean push-out bond strengths were observed after exposure to pH values of 7.4 and 8.4, respectively. There were significant differences between the neutral group and the groups with pH of 8.4 (p = 0.008 and 10.4 (p = 0.022. The bond failure was predominantly of cohesive type for all experimental groups. Conclusions: Under the condition of this study, alkaline pH adversely affected the Push-out bond strength of CEM cement.

  5. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K

    2018-05-31

    This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.

  6. Comparative study to evaluate shear bond strength of RMGIC to composite resin using different adhesive systems

    Directory of Open Access Journals (Sweden)

    Manoj G Chandak

    2012-01-01

    Full Text Available Aim: The aim of the study is to compare and evaluate the role of new dental adhesives to bond composite to the resinmodified glass inomer cement (RMGIC. Materials and Methods: Thirty specimens were prepared on acrylic blocks, with wells prepared in it by drilling holes, to retain the RMGIC. The specimens were randomly divided into three groups of ten specimens each. In Group a thin layer of selfetch adhesive (3M ESPE was applied between the RMGIC and the composite resin FILTEK P60 (3M SPE. In Group II, total etch adhesive (Adeper Scotch bond 2, 3M ESPE was applied, and in Group III, there was no application of any adhesive between RMGIC and the composite resin. After curing all the specimens, the shear bond strength was measured using an Instron universal testing machine. Results: The results were drawn and tabulated using ANOVA-fishers and Dunnet D statistical tests.The maximum shear bond strength values were recorded in Group I specimens with self-etch adhesive showing a mean value of 2.74 when compared to the Group II adhesive (Total etch showing a mean shear strength of value 1.89, where no adhesive was used, showed a minimum mean shear bond strength of 1.42. There was a great and significant difference between Group I and Group II (P value 0.05 whereas, both Group I and Group II showed a vast and significant difference from Group III (P value = 0-001. Conclusion: Hence, this present study concludes that application of self-etch adhesive (3M ESPE, U.S.A in between RMGIC and composite resin increases the shear bond strength between RMGIC and the resin composites, as compared to the total-etch type adhesive (Adeper Scotch bond 2,3M ESPE, U.S.A as well as without application of the adhesive agent.

  7. Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete

    International Nuclear Information System (INIS)

    Wu, Zemei; Khayat, Kamal Henri; Shi, Caijun

    2017-01-01

    Bond properties between fibers and cementitious matrix have significant effect on the mechanical behavior of composite materials. In this study, the development of steel fiber-matrix interfacial bond properties in ultra-high strength concrete (UHSC) proportioned with nano-SiO 2 varying between 0 and 2%, by mass of cementitious materials, was investigated. A statistical model relating either bond strength or pullout energy to curing time and nano-SiO 2 content was proposed by using the response surface methodology. Mercury intrusion porosimetry (MIP) and backscatter scanning electron microscopy (BSEM) were used to characterize the microstructure of the matrix and the fiber-matrix interface, respectively. Micro-hardness around the embedded fiber and hydration products of the matrix were evaluated as well. Test results indicated that the optimal nano-SiO 2 dosage was 1% in terms of the bond properties and the microstructure. The proposed quadratic model efficiently predicted the bond strength and pullout energy with consideration of curing time and nano-SiO 2 content. The improvement in bond properties associated with nano-silica was correlated with denser matrix and/or interface and stronger bond and greater strength of hydration products based on microstructural analysis.

  8. Comparison of two bond strength testing methodologies for bilayered all-ceramics.

    Science.gov (United States)

    Dündar, Mine; Ozcan, Mutlu; Gökçe, Bülent; Cömlekoğlu, Erhan; Leite, Fabiola; Valandro, Luiz Felipe

    2007-05-01

    This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to their respectively corresponding cores, namely leucite-reinforced ceramic ((IPS)Empress, Ivoclar), low leucite-reinforced ceramic (Finesse, Ceramco), glass-infiltrated alumina (In-Ceram Alumina, Vita) and lithium disilicate ((IPS)Empress 2, Ivoclar) were used for SBS and MTBS tests. Ceramic cores (N=40, n=10/group for SBS test method, N=5 blocks/group for MTBS test method) were fabricated according to the manufacturers' instructions (for SBS: thickness, 3mm; diameter, 5mm and for MTBS: 10 mm x 10 mm x 2 mm) and ultrasonically cleaned. The veneering ceramics (thickness: 2mm) were vibrated and condensed in stainless steel moulds and fired onto the core ceramic materials. After trying the specimens in the mould for minor adjustments, they were again ultrasonically cleaned and embedded in PMMA. The specimens were stored in distilled water at 37 degrees C for 1 week and bond strength tests were performed in universal testing machines (cross-head speed: 1mm/min). The bond strengths (MPa+/-S.D.) and modes of failures were recorded. Significant difference between the two test methods and all-ceramic types were observed (P<0.05) (2-way ANOVA, Tukey's test and Bonferroni). The mean SBS values for veneering ceramic to lithium disilicate was significantly higher (41+/-8 MPa) than those to low leucite (28+/-4 MPa), glass-infiltrated (26+/-4 MPa) and leucite-reinforced (23+/-3 MPa) ceramics, while the mean MTBS for low leucite ceramic was significantly higher (15+/-2 MPa) than those of leucite (12+/-2 MPa), glass-infiltrated (9+/-1 MPa) and lithium disilicate ceramic (9+/-1 MPa) (ANOVA, P<0.05). Both the testing methodology and the differences in chemical compositions of the core and veneering ceramics

  9. Effect of light aging on silicone-resin bond strength in maxillofacial prostheses.

    Science.gov (United States)

    Polyzois, Gregory; Pantopoulos, Antonis; Papadopoulos, Triantafillos; Hatamleh, Muhanad

    2015-04-01

    The aim of this study was to investigate the effect of accelerated light aging on bond strength of a silicone elastomer to three types of denture resin. A total of 60 single lap joint specimens were fabricated with auto-, heat-, and photopolymerized (n = 20) resins. An addition-type silicone elastomer (Episil-E) was bonded to resins treated with the same primer (A330-G). Thirty specimens served as controls and were tested after 24 hours, and the remaining were aged under accelerated exposure to daylight for 546 hours (irradiance 765 W/m(2) ). Lap shear joint tests were performed to evaluate bond strength at 50 mm/min crosshead speed. Two-way ANOVA and Tukey's test were carried out to detect statistical significance (p Accelerated light aging for 546 hours affects the bond strength of an addition-type silicone elastomer to three different denture resins. The bond strength significantly increased after aging for photo- and autopolymerized resins. All the bonds failed adhesively. © 2014 by the American College of Prosthodontists.

  10. Micro-computed tomography and bond strength analysis of different root canal filling techniques

    Directory of Open Access Journals (Sweden)

    Juliane Nhata

    2014-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the quality and bond strength of three root filling techniques (lateral compaction, continuous wave of condensation and Tagger′s Hybrid technique [THT] using micro-computed tomography (CT images and push-out tests, respectively. Materials and Methods: Thirty mandibular incisors were prepared using the same protocol and randomly divided into three groups (n = 10: Lateral condensation technique (LCT, continuous wave of condensation technique (CWCT, and THT. All specimens were filled with Gutta-percha (GP cones and AH Plus sealer. Five specimens of each group were randomly chosen for micro-CT analysis and all of them were sectioned into 1 mm slices and subjected to push-out tests. Results: Micro-CT analysis revealed less empty spaces when GP was heated within the root canals in CWCT and THT when compared to LCT. Push-out tests showed that LCT and THT had a significantly higher displacement resistance (P < 0.05 when compared to the CWCT. Bond strength was lower in apical and middle thirds than in the coronal thirds. Conclusions: It can be concluded that LCT and THT were associated with higher bond strengths to intraradicular dentine than CWCT. However, LCT was associated with more empty voids than the other techniques.

  11. Microstructure and bonding strength of Ni-based alloy coating

    Directory of Open Access Journals (Sweden)

    LIU Qing

    2006-05-01

    Full Text Available A Ni-Cr-B-Si coating technique was developed and successfully applied on austenite grey iron substrate in a conventional resistance furnace under graphite powder protection. The microstructure, phase distribution, chemical composition profile and microhardness along the coating layer depth were investigated. Shear strength of the coating was also tested. Microanalysis shows that the coating is consist of γ-Ni solution and γ-Ni+Ni3B lamellar eutectic, as well as small amount of Cr5B3 particles. Diffusion induced metallurgical bonding occurs at the coating/substrate interfaces, and the higher the temperature, the more sufficient elements diffused, the broader interfusion region and the larger bonding strength, but it has an optimum value. And the bonding strength at the interface can be enable to reach 250-270 MPa, which is nearly the same as that of processed by flame spray. The microhardness along the coating layer depth shows a gradient distribution manner.

  12. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  13. The Probable Effect of Irrigation Solution and Time on Bond Strength to Coronal Dentin: An In Vitro Evaluation.

    Science.gov (United States)

    Mokhtari, Fatemeh; Anvar, Ehsan; Mirshahpanah, Mostafa; Hemati, Hamidreza; Danesh Kazemi, Alireza

    2017-01-01

    The aim of this study was to evaluate the effect of root canal irrigants on the microtensile bond strength of 2-step self-etch adhesive to dentin. n this study 36 sound extracted human third molars were used. After grinding 3 mm of occlusal surface, teeth were randomly divided into 6 groups based on irrigation material naming normal saline, 5.25% sodium hypochlorite (NaOCl) and 2% chlorhexidine (CHX) and also irrigation time (5 or 30 min). Next, teeth were restored with Clearfil SE bond adhesive resin system and Z250 composite. The teeth were then thermo cycled by thermo cycling machine, for 500 cycles between 5 º and 55 º C with 60 sec dwell time and 12 sec transfer time. All samples were sectioned into bucco-lingual slabs. The sections were submitted to the micro tensile testing machine at a crosshead speed of 0.5 mm/min until fracture. Data was analyzed using the one-way ANOVA test with the level of significance set at 0.05. Irrigation with normal saline, 5.25% NaOCl and 2% CHX for 5 or 30 min did not significantly change the microtensile bond strength of adhesive to dentin ( P =0.729 for time and P =0.153 for material). However the maximum and minimum microtensile bond strength was attributed to normal saline (44.13 N) and NaOCl (31.29 N) groups, respectively. Iirrigation solution and time have no influence on microtensile bond strength of two-step self-etch adhesive to coronal dentin.

  14. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  15. Comparison of two test designs for evaluating the shear bond strength of resin composite cements.

    Science.gov (United States)

    Hu, M; Weiger, R; Fischer, J

    2016-02-01

    To compare a shear bond strength test for resin composite cements developed in order to better consider the shrinkage stress (here termed "Swiss shear test") with the shear test design according to ISO 29022. Four restorative materials (VITA Enamic (VE), VITA Suprinity (VS), Vitablocs Mark II (VM) and VITA YZ T (YZ)) served as substrate. VE, VS and VM were polished or etched. YZ was polished, sandblasted or etched. Specimens were either bonded according to the Swiss or the ISO shear test. RelyX Unicem 2 Automix, Maxcem Elite and PermaFlo DC were used as cements. Shear bond strength (SBS) was measured. Failure modes (adhesive, cohesive or mixed) were evaluated by means of SEM. Mean SBS values obtained with the Swiss shear test were significantly lower than those obtained with the ISO shear test. VE and VM exhibited similar SBS, values of VS were significantly higher. On etched surfaces VM and VE exhibited primarily cohesive failures, VS primarily adhesive failures. On polished substrates significantly lower bond strength values and exclusively adhesive failures were observed. YZ exhibited solely adhesive failures. Compared to polished YZ, SBS significantly increased after sandblasting and even more after etching. Only for adhesively failed specimens mean SBS values of Swiss and ISO shear test were strongly correlated. Both test designs showed the same ranking of test results. When adhesive failure occurred test results were strongly correlated. When cohesive failure was involved, both test designs did not provide reliable results. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  17. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  18. A Comparison of Shear Bond Strength of Two Different Techniques with that of Initially Bonded Brackets

    Directory of Open Access Journals (Sweden)

    Abdolhamid Zafarmand

    2014-01-01

    Conclusion: However, there was no significant difference in the shear strength responses of three groups. The results of the study showed that both techniques of rebonding of failed brackets can provide effective bonding strengths similar to the primary strength.

  19. Do blood contamination and haemostatic agents affect microtensile bond strength of dual cured resin cement to dentin?

    Directory of Open Access Journals (Sweden)

    Kerem KiLiC

    2013-01-01

    Full Text Available Objective The purpose of this study was to evaluate the effects of blood contamination and haemostatic agents such as Ankaferd Blood Stopper (ABS and hydrogen peroxide (H2O2 on the microtensile bond strength between dual cured resin cement-dentin interface. Material and Methods Twelve pressed lithium disilicate glass ceramics were luted to flat occlusal dentin surfaces with Panavia F under the following conditions: Control Group: no contamination, Group Blood: blood contamination, Group ABS: ABS contamination Group H2O2: H2O2 contamination. The specimens were sectioned to the beams and microtensile testing was carried out. Failure modes were classified under stereomicroscope. Two specimens were randomly selected from each group, and SEM analyses were performed. Results There were significant differences in microtensile bond strengths (µTBS between the control and blood-contaminated groups (p0.05. Conclusions Contamination by blood of dentin surface prior to bonding reduced the bond strength between resin cement and the dentin. Ankaferd Blood Stoper and H2O2 could be used safely as blood stopping agents during cementation of all-ceramics to dentin to prevent bond failure due to blood contamination.

  20. Effect of a New Salivary Contaminant Removal Method on Bond Strength

    Science.gov (United States)

    2014-08-31

    was to evaluate the effect of various salivary- contaminant removal methods on the shear bond strength of resin cement to hydrofluoric-acid (HF) etched...mold (Ultradent) to a height of 3mm and light cured . Specimens were stored for 24 hours in 37°C distilled water and then tested in shear in a... contamination which may compromise the bond strength of the resin cement to the ceramic (Aboush, 1998; van Schalkwyk et al., 2003). Saliva affects bond

  1. Effect of clearfil protect bond and transbond plus self-etch primer on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    S Hamid Raji

    2011-01-01

    Conclusion: The shear bond strength of clearfil protect bond and transbond plus self-etch primer was enough for bonding the orthodontic brackets. The mode of failure of bonded brackets with these two self-etch primers is safe for enamel.

  2. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  3. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    Science.gov (United States)

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  4. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    International Nuclear Information System (INIS)

    Lang, Haojie; Peng, Yitian; Zeng, Xingzhong

    2017-01-01

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  5. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Haojie; Peng, Yitian, E-mail: yitianpeng@dhu.edu.cn; Zeng, Xingzhong

    2017-07-31

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  6. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  7. Tensile strength of structural concrete repaired with hi-bond polymer modified mortar

    International Nuclear Information System (INIS)

    Khaskheli, G.B.

    2009-01-01

    Repair of cracks in concrete is often required to save the concrete structures. Appearance of crack in concrete is bound with the tensile strength of concrete. Recently a cement factory in Sindh has launched a HBPMM (Hi-Bond Polymer Modified Mortar) that can be used as a concrete repairing material instead of normal OPC (Ordinary Portland Cement). It is needed to investigate its performance compared to that of OPC. In total 144 concrete cylinders (150x300mm) having strength of 3000 and 5000 psi were manufactured. These cylinders were then splitted by using a UTM (Universal Testing Machine) and their actual tensile strength was obtained. The concrete cylinders were then repaired with different applications of HBPMM and arc. The repaired samples were again splitted at different curing ages (3, 7 and 28 days) and their tensile strength after repair was obtained. The results show that the concrete cylinders repaired with HBPMM could give better tensile strength than that repaired with arc, the tensile strength of concrete cylinders after repair could increase with increase in the application of repairing material i.e. HBPMM or OPC and with curing time, and HBPMM could remain more effective in case of rich mix concrete than that of normal mix concrete. (author)

  8. Effect of post space treatment with adhesives on the push-out bond strength of fiber posts luted with self-adhesive resin cements

    Directory of Open Access Journals (Sweden)

    Tufan Can Okay

    2017-01-01

    Full Text Available Objective: The aim of this study was to evaluate the push-out bond strength of fiber posts used in the restoration of endodontically-treated teeth with extreme material loss, luted with two different self-adhesive resin cements alone or with the combination of an adhesive. Materials and Method: The post spaces of 80 extracted mandibular first premolar roots were prepared and divided into 4 experimental groups according to fiber post (RelyX Fiber Post luting material. Group 1 was luted with RelyX Unicem, Group 2 was luted with RelyX Unicem + Adper Easy One, Group 3 was luted with Clearfil SA Cement, and Group 4 was luted with Clearfil SA Cement + S3 Bond. After 24 h and 1 month, horizontal sections of 1 mm thickness were made from the coronal, middle and apical root parts of the fiber posts, and push-out tests were performed. Groups were compared by using one way analysis of variance (ANOVA and Tukey’s HSD post hoc tests and storage periods were compared by using independent samples t-test (α=0.05. Results: For both evaluation time periods, RelyX Unicem + Adper Easy One showed the highest bond strength. Regarding the 24 h period, the lowest bond strength values were found for the apical sections followed by middle and coronal sections. One month results revealed similar bond strength values for the middle and apical sections (p>0.05 which were significantly lower than the values found for the coronal sections (p<0.05. RelyX Unicem + Adper Easy One exhibited greater push-out bonding strength compared to other groups in the middle and apical sections (p<0.05. Conclusion: According to the results of this in vitro study it can be concluded that, using an adhesive system in combination with a self-adhesive resin cement during post cementation may improve the bond strength.

  9. Bond strength with various etching times on young permanent teeth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.N.; Lu, T.C. (School of Dentistry, National Defense Medical Center, Taipei, Taiwan (China))

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results of tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.

  10. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  11. Bond strength test of acrylic artificial teeth with prosthetic base

    Directory of Open Access Journals (Sweden)

    Erna Kurnikasari

    2008-07-01

    Full Text Available Denture consists of acrylic artificial teeth and acrylic prothesis base bond chemically with a bond strength of 315 kgF/cm2. Most of the commercial acrylic artificial teeth do not specify their specifications and all of those acrylic artificial teeth do not include mechanical data (bond strength. The aim of this study is to discover which acrylic artificial teeth meet ADA specification no. 15. This study is a descriptive analytic study performed to 5 acrylic artificial teeth posterior brands commonly used by dentists and technicians. From each brand, 3 sample teeth were taken. The acrylic artificial teeth were prepared into a rectangular shape and were attached between acrylic prothesis base simulation and jigs. The sample was given tensile load using a Universal Testing Machine. The amount of force that causes the teeth to be fractured was recorded and the bond strength was calculated. The results of the study show that the average value for the five acrylic artificial teeth for the five brands were as followed: Brand A, 125.993 kgF/cm2; B, 188.457 kgF/cm2; C, 175.880 kgF/cm2; D, 153.373 kgF/cm2; E, 82.839 kgF/cm2. The data can be tested statistically by using One Way ANOVA test and Dunnett test (alpha = 0.05. From the study, it is concluded that the five acrylic artificial teeth have a bond strength below the ADA specification no. 15.

  12. Characterization of Dentine to Assess Bond Strength of Dental Composites

    Directory of Open Access Journals (Sweden)

    Saad Liaqat

    2015-04-01

    Full Text Available This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable “self–bonding” composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively.

  13. Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity

    Directory of Open Access Journals (Sweden)

    Yun-Hee Kim

    2012-11-01

    Full Text Available Objectives This study evaluated the influence of chlorhexidine (CHX on the microtensile bonds strength (µTBS of resin core with two adhesive systems to dentin in endodontic cavities. Materials and Methods Flat dentinal surfaces in 40 molar endodontic cavities were treated with self-etch adhesive system, Contax (DMG and total-etch adhesive system, Adper Single Bond 2 (3M ESPE after the following surface treatments: (1 Priming only (Contax, (2 CHX for 15 sec + rinsing + priming (Contax, (3 Etching with priming (Adper Single Bond 2, (4 Etching + CHX for 15 sec + rinsing + priming (Adper Single Bond 2. Resin composite build-ups were made with LuxaCore (DMG using a bulk method and polymerized for 40 sec. For each condition, half of specimens were submitted to µTBS after 24 hr storage and half of them were submitted to thermocycling of 10,000 cycles between 5℃ and 55℃ before testing. The data were analyzed using ANOVA and independent t-test at a significance level of 95%. Results CHX pre-treatment did not affect the bond strength of specimens tested at the immediate testing period, regardless of dentin surface treatments. However, after 10,000 thermocycling, all groups showed reduced bond strength. The amount of reduction was greater in groups without CHX treatments than groups with CHX treatment. These characteristics were the same in both self-etch adhesive system and total-etch adhesive system. Conclusions 2% CHX application for 15 sec proved to alleviate the decrease of bond strength of dentin bonding systems. No significant difference was shown in µTBS between total-etching system and self-etching system.

  14. Determination of high-strength materials diamond grinding rational modes

    Science.gov (United States)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  15. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems.

    Science.gov (United States)

    Öztürk, Elif; Bolay, Şükran; Hickel, Reinhard; Ilie, Nicoleta

    2013-02-01

    The aim of this study was to evaluate the shear bond strength of porcelain laminate veneers to 3 different surfaces by means of enamel, dentine, and enamel-dentine complex. One hundred thirty-five extracted human maxillary central teeth were used, and the teeth were randomly divided into 9 groups (n=15). The teeth were prepared with 3 different levels for bonding surfaces of enamel (E), dentine (D), and enamel-dentine complex (E-D). Porcelain discs (IPS e.max Press, Ivoclar Vivadent) of 2mm in thickness and 4mm in diameter were luted to the tooth surfaces by using 2 light-curing (RelyX Veneer [RV], 3M ESPE; Variolink Veneer [VV], Ivoclar Vivadent) and a dual-curing (Variolink II [V2], Ivoclar Vivadent) adhesive systems according to the manufacturers' instructions. Shear bond strength test was performed in a universal testing machine at 0.5mm/min until bonding failure. Failure modes were determined under a stereomicroscope, and fracture surfaces were evaluated with a scanning electron microscope. The data were statistically analysed (SPSS 17.0) (p=0.05). Group RV-D exhibited the lowest bond strength value (5.42±6.6MPa). There was statistically no difference among RV-D, V2-D (13.78±8.8MPa) and VV-D (13.84±6.2MPa) groups (p>0.05). Group VV-E exhibited the highest bond strength value (24.76±8.8MPa). The type of tooth structure affected the shear bond strength of the porcelain laminate veneers to the 3 different types of tooth structures (enamel, dentine, and enamel-dentine complex). When dentine exposure is necessary during preparation, enough sound enamel must be protected as much as possible to maintain a good bonding; to obtain maximum bond strength, preparation margins should be on sound enamel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Comparison Of Bond Strength Of Orthodontic Molar Tubes Using Different Enamel Etching Techniques And Their Effect On Enamel

    International Nuclear Information System (INIS)

    Abd el Rahman, H.Y.

    2013-01-01

    In fixed orthodontic treatment, brackets and tubes are used for transferring orthodontic forces to the teeth. Those attachments were welded to cemented bands. Fifty years ago, direct bonding of brackets and other attachments has become a common technique in fixed orthodontic treatment. Orthodontists used to band teeth, especially molars and second premolars, to avoid the need for re bonding accessories in these regions of heavy masticatory forces. However, it is a known fact that direct bonding saves chair time as it does not require prior band selection and fitting, has the ability to maintain good oral hygiene, improve esthetics and make easier attachment to crowded and partially erupted teeth. Moreover, when the banding procedure is not performed with utmost care it can damage periodontal and/or dental tissues. Molar tubes bonding decreases the chance of decalcification caused by leakage beneath the bands. Since molar teeth are subjected to higher masticatory impact, especially lower molars, it would be convenient to devise methods capable of increasing the efficiency of their traditional bonding. These methods may include variation in bond able molar tube material, design, bonding materials and etching techniques. For achieving successful bonding, the bonding agent must penetrate the enamel surface; have easy clinical use, dimensional stability and enough bond strength. Different etching techniques were introduced in literature to increase the bond strength which includes: conventional acid etching, sandblasting and laser etching techniques. The process of conventional acid etching technique was invented In (1955) as the surface of enamel has great potential for bonding by micromechanical retention, to form ‘the mechanical lock‘. The primary effect of enamel etching is to increase the surface area. However, this roughens the enamel microscopically and results in a greater surface area on which to bond. By dissolving minerals in enamel, etchants remove the

  17. Effect of caries-affected dentin on one-step universal and multi-step etch-and-rinse adhesives’ bond strength

    Directory of Open Access Journals (Sweden)

    Clecila MÜLLER

    2017-10-01

    Full Text Available Abstract Objective To evaluate the influence of caries-affected dentin on bond strength of a universal one-step and a multi-step etch-and-rinse adhesive system. Material and method Enamel of 60 third human molars with and without caries was removed to expose dentin. The teeth were randomly assigned to six groups: Single Bond Universal (3M ESPE, St. Paul, MN, USA in etch-and-rinse and in self-etch mode and Prime & Bond NT (Dentsply Co, Konstanz, Germany, all on sound and caries-affected dentin. Smear layer of the 30 sound dentin specimens was standardized by polishing with 600-grit SiC paper under water cooling. Residual infected dentin of the 30 caries-affected specimens was removed with a number 4 CA carbide bur until no caries smooth tissue was detectable by tactile-visual inspection. Cylinders of a light cured composite resin (Filtek Z350 XT, 3M ESPE were built up using starch tubes and microshear test was performed until failure. The data was analyzed by one-way ANOVA and Tukey’s post hoc test. Result Significant differences in microshear bond strength (μSBS were observed for the caries-affected groups, but not for sound dentin. The μSBS of Single Bond Universal were not influenced by the application protocol on sound dentin, however they were lower in the caries-affected group with both application protocols. The μSBS for Prime & Bond NT was not influenced by the dentin conditions. Conclusion Caries-affected dentin decrease in bond strength of Single Bond Universal in comparison to sound dentin. The bond strength of Prime & Bond NT was not altered by substrate conditions.

  18. Water and saliva contamination effect on shear bond strength of brackets bonded with a moisture-tolerant light cure system.

    Science.gov (United States)

    Vicente, Ascensión; Mena, Ana; Ortiz, Antonio José; Bravo, Luis Alberto

    2009-01-01

    To evaluate the effects of water and saliva contamination on shear bond strength of brackets bonded with a moisture-tolerant light cure system. Brackets were bonded to 240 bovine lower incisors divided into 12 groups. Four bonding procedures were evaluated, including (1) TSEP/Transbond XT, (2) TMIP/ Transbond XT, (3) TSEP/Transbond PLUS, and (4) TMIP/Transbond PLUS, each under three different bonding conditions: without contamination, with water contamination, and with saliva contamination. Shear bond strength was measured with a universal testing machine. The adhesive remnant on the teeth was quantified with the use of image analyzing equipment. Without contamination, bond strengths for the four procedures were similar (P > .05). TSEP/Tranbond PLUS and TMIP/Transbond PLUS left significantly less adhesive on the teeth after debonding than TSEP/Transbond XT and TMIP/Transbond XT (P .017), although for TMIP/ Transbond XT, both variables showed significant reductions after contamination (P < .017). TSEP/Transbond PLUS, TMIP/Transbond PLUS, and TSEP/Transbond XT showed greater tolerance to wet conditions than was shown by TMIP/Transbond XT.

  19. Effect of Different Saliva Decontamination Procedures on Bond Strength to Dentin in Single Bottle Systems

    Directory of Open Access Journals (Sweden)

    M. Ghavam

    2004-09-01

    Full Text Available Statement of Problem: Following the increasing use of composites in restoring anterior and posterior teeth, problems due to its technique sensitivity have become a major concern.One of these problems is the possibility of contamination of dentin with saliva, blood and/or gingival fluid in different stages of bonding procedure, even with application of different methods of isolation. However, by introduction of Single-bottle dentin adhesives,the contamination possibility reduced to two stages. Scientific documents show that saliva contamination reduces bond strength of composites to dentin. Application of simple and efficient methods for reducing or eliminating saliva contamination enables clinicians to carry out dental treatment without any concern about deterioration of clinical longevity of restoration.Purpose: This study was designed to compare the effect of different decontamination methods on the shear bond strength of composite to dentin using a “Single-bottle” adhesive.Materials and Methods: Seventy-two extracted sound human molars and premolars were selected. Enamel of buccal surface was ground flat to expose dentin. The teeth were divided into 9 groups of 8 each. In control group (1 the adhesive “Excite” was used according tothe manufacturer, without any contamination. Conditioned and saliva contaminated dentin was (2 rinsed and blot dried, (3 rinsed, dried and re-etched. In groups 4, 5, 6 uncured adhesive was saliva contaminated and then: (4 only blot dried (5 rinsed, blot dried with adhesive reapplication and (6 resurfaced with bur, rinsed, dried and followed by repeating the whole process. In groups 7, 8, 9 cured adhesive was contaminated with saliva and then:(7 rinsed and dried (8 rinsed, blot dried with adhesive reapplication (9 same as group (6.Then “Tetric Ceram” composite cylinders were bonded to dentin surfaces. Samples were thermo cycled in 5°C and 55°C water, 30 seconds in each bath with a dowel time of 10

  20. The Effect of Different Soft Drinks on the Shear Bond Strength of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    M Omid Khoda

    2012-01-01

    Full Text Available Objective: It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets.Materials and Methods: Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA.Results: The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(+_2.95, 13.26(+_4.00, 16.11(+_4.89, 14.73(+_5.10, respectively. There was no statistically significant difference among the groups (P-value= 0.238Conclusion: Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite.

  1. The Effect of Different Soft Drinks on the Shear Bond Strength of Orthodontic Brackets

    Science.gov (United States)

    Omid Khoda, M.; Heravi, F.; Shafaee, H.; Mollahassani, H.

    2012-01-01

    Objective: It is proved that acidic soft drinks that are commonly used, have an adverse effect on dental structures, and may deteriorate oral heath of our patients and orthodontic appliances. The aim of this study was to compare the effect of yoghurt drink with other soft drinks on the shear bond strength of orthodontic brackets. Materials and Methods: Seventy-five first premolar teeth extracted for orthodontic purposes were selected and standard twin metal brackets were bonded on the center of buccal surface with No-Mix composite. The teeth were thermocycled for 625 cycles and randomly divided into five groups of artificial saliva, carbonated yoghurt drink with lactic acid base, non-carbonated yoghurt drink with lactic acid base, 7 up with citric acid base and Pepsi with phosphoric acid base. In all groups, the teeth were immersed in liquid for five-minute sessions three times with equal intervening intervals for 3 months. SBS was measured by a universal testing machine with a speed of 0.5mm/min. Data was analyzed statistically by one-way ANOVA. Results: The results showed that mean values for the shear bond strength of carbonated yoghurt drinks, non-carbonated yoghurt drinks, 7up and Pepsi groups were 12.98(±2.95), 13.26(±4.00), 16.11(±4.89), 14.73(±5.10), respectively. There was no statistically significant difference among the groups (P-value= 0.238) Conclusion: Soft drinks used in this study did not decrease the bond strength of the brackets bonded with this specific type of composite. PMID:23066479

  2. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment

    Directory of Open Access Journals (Sweden)

    Harsimran Kaur

    2015-01-01

    Full Text Available Purpose: To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Materials and Methods: Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P and rest 80 to heat-cured resilient liner (Molloplast B. Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm in the space provided by a spacer of 3 mm, thermocycled (5-55°C for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. Results: One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student′s t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Conclusion: Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  3. Evaluation of bond strength of isothermally aged plasma sprayed thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Song, Sung Jin; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Mun Young [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of)

    2008-07-15

    In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

  4. In-vitro orthodontic bond strength testing : A systematic review and meta-analysis

    NARCIS (Netherlands)

    Finnema, K.J.; Ozcan, M.; Post, W.J.; Ren, Y.J.; Dijkstra, P.U.

    INTRODUCTION: The aims of this study were to systematically review the available literature regarding in-vitro orthodontic shear bond strength testing and to analyze the influence of test conditions on bond strength. METHODS: Our data sources were Embase and Medline. Relevant studies were selected

  5. Influence of bleaching and desensitizing gel on bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Fernanda Alves Rodrigues Britto

    2015-04-01

    Full Text Available OBJECTIVE: The objective of this study was to assess, in vitro, the influence of bleaching gel and the use of desensitizing agent over bond strength of ceramic brackets bonded to bovine enamel. METHODS: One hundred bovine incisors were selected and randomly divided into five groups (n = 20: Group 1, control group (without bleaching; Group 2, bleached with 35% hydrogen peroxide; Group 3, bleached with 35% hydrogen peroxide (three applications, 15 minutes each and desensitizing agent applied for 10 minutes; Group 4, bleached with 35% hydrogen peroxide for 40 minutes; Group 5, bleached with 35% hydrogen peroxide for 40 minutes with desensitizing agent applied for 10 minutes. Brackets were bonded 7 days after bleaching and submitted to shear bond strength test after 24 hours at a compression rate of 1 mm/minute. After fracture, the adhesive remnant index (ARI was assessed under stereoscopic at 40 x magnification. Shear strength data (MPa were submitted to one-way ANOVA and Tukey's test with significance level set at 5%. RESULTS: Group 5 (29.33 MPa showed significantly higher bond strength than Group 1 (19.19 MPa, Group 2 (20.59 MPa and Group 4 (23.25 MPa, but with no difference in comparison to Group 3. There was no significant difference among the other groups. The adhesive remnant index showed predominance of score 3, that is, all resin remained adhered to enamel for all groups. CONCLUSION: Bleaching with 35% hydrogen peroxide with calcium associated with desensitizing agent application produced higher bond strength values of brackets bonded to bovine enamel.

  6. Evaluation of bond strength and load deflection rate of multi-stranded fixed retainer wires: An In-Vitro Study

    Directory of Open Access Journals (Sweden)

    Renu Sarah Samson

    2018-01-01

    Full Text Available Background: Fixed orthodontic retainers must be well retained on the tooth surfaces, allow physiologic movement of teeth and exert minimal forces on the teeth to be retained. Previous studies analyzed the bond strength and amount of deflection caused due to the debonding force but not the magnitude of force needed for unit deformation. Aims: This study aims to evaluate and compare the bond strength and load deflection rate (LDR of three different fixed retainer wires. Materials and Methods: The wires were divided into three Groups: A – three-stranded twisted ligature wire, B – Bond-A-Braid (Reliance Orthodontics, and C – three-stranded twisted lingual retainer wire (3M Unitek. Twenty models were prepared for each group with a passive 15 mm long lingual retainer wire bonded to two lower incisors. An occlusogingival force was applied to the wire until it debonded. For LDR, three-point bending test was done at 0.5 mm deflection. These forces were measured using a Universal Instron Testing Machine. Statistical Analysis: Mean bond strength/LDR and pairwise comparisons were analyzed with one-way ANOVA and Tukey's honest significant difference post hoc test, respectively. Results: Group C exhibited the highest mean bond strength and LDR of 101.17N and 1.84N, respectively. The intergroup comparisons were all statistically significant. Conclusion: Compared to the other two wire types, Group C might be better retained on the teeth due to its higher bond strength. With its relatively higher LDR value, it may resist deformation from occlusal forces, thereby reducing inadvertent tooth movement and yet remain flexible enough to allow physiologic tooth movements.

  7. Bond strength of universal adhesives: A systematic review and meta-analysis.

    Science.gov (United States)

    Rosa, Wellington Luiz de Oliveira da; Piva, Evandro; Silva, Adriana Fernandes da

    2015-07-01

    A systematic review was conducted to determine whether the etch-and-rinse or self-etching mode is the best protocol for dentin and enamel adhesion by universal adhesives. This report followed the PRISMA Statement. A total of 10 articles were included in the meta-analysis. Two reviewers performed a literature search up to October 2014 in eight databases: PubMed, Web of Science, Scopus, BBO, SciELO, LILACS, IBECS and The Cochrane Library. In vitro studies evaluating the bond strength of universal adhesives to dentin and/or enamel by the etch-and-rinse and self-etch strategies were eligible to be selected. Statistical analyses were conducted using RevMan 5.1 (The Cochrane Collaboration, Copenhagen, Denmark). A global comparison was performed with random-effects models at a significance level of puniversal adhesives (p≥0.05). However, for the ultra-mild All-Bond Universal adhesive, the etch-and-rinse strategy was significantly different than the self-etch mode in terms of dentin micro-tensile bond strength, as well as in the global analysis of enamel micro-tensile and micro-shear bond strength (p≤0.05). The enamel bond strength of universal adhesives is improved with prior phosphoric acid etching. However, this effect was not evident for dentin with the use of mild universal adhesives with the etch-and-rinse strategy. Selective enamel etching prior to the application of a mild universal adhesive is an advisable strategy for optimizing bonding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    Science.gov (United States)

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

  10. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    Science.gov (United States)

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  11. The influence of salivary contamination on shear bond strength of dentin adhesive systems.

    Science.gov (United States)

    Park, Jeong-won; Lee, Kyung Chae

    2004-01-01

    This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS

  12. Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold

    DEFF Research Database (Denmark)

    Nordström, Maria; Johansson, Alicia; Sánchez Noguerón, E.

    2005-01-01

    adhesion promotors between the SU-8 and Au; (ii) the influence of the processing sequence, keeping either Au or SU-8 as the bottom layer; (iii) the importance of the UV exposure dosage of the SU-8. For comparison, also the bond strength between SU-8 and other materials was measured. For SU-8 and Au without...

  13. Effect of Pre-heating on Microtensile Bond Strength of Composite Resin to Dentin.

    Directory of Open Access Journals (Sweden)

    Abdolrahim Davari

    2014-10-01

    Full Text Available Direct composite resin restorations are widely used and the impact of different storage temperatures on composites is not well understood. The purpose of this study was to evaluate the microtensile bond strength of composite to dentin after different pre-curing temperatures.Occlusal surfaces of 44 human molars were ground with diamond burs under water coolant and polished with 600 grit silicon carbide papers to obtain flat dentin surfaces. The dentin was etched with 37% phosphoric acid and bonded with Adper Single Bond 2 according to the manufacturer's instructions. The specimens were randomly divided into two groups (n=22 according to the composite resin applied: FiltekP60 and Filtek Z250. Each group included three subgroups of composite resin pre-curing temperatures (4°C, 23°C and 37°C. Composite resins were applied to the dentin surfaces in a plastic mold (8mm in diameter and 4mm in length incrementally and cured. Twenty-two composite-to-dentin hour-glass sticks with one mm(2 cross-sectional area per group were prepared. Microtensile bond strength measurements were made using a universal testing machine at a crosshead speed of one mm/min. For statistical analysis, t-test, one-way and two-way ANOVA were used. The level of significance was set at P<0.05.Filtek P60 pre-heated at 37ºC had significantly higher microtensile bond strength than Filtek Z250 under the same condition. The microtensile bond strengths were not significantly different at 4ºC, 23ºC and 37ºC subgroups of each composite resin group.Filtek P60 and Filtek Z250 did not have significantly different microtensile bond strengths at 4ºC and 23ºC but Filtek P60 had significantly higher microtensile bond strength at 37 ºC. Composite and temperature interactions had significant effects on the bond strength.

  14. Effect of Re-Application of Microbrush on Micro Tensile Bond Strength of an Adhesive to Dentin

    Directory of Open Access Journals (Sweden)

    Seied Majid Mosavi Nasab

    2013-02-01

    Full Text Available Background and Aims: Re-application of microbrush may affect the micro tensile bond strength of adhesives to dentin. The aim of this study was to evaluate the effect of re-application of microbrushes on the micro tensile bond strength of an adhesive to dentin.Materials and Methods: Thirty freshly extracted molars teeth were collected and enamel of occlusal surface were removed to expose superficial dentin. Then superficial dentin was etched, washed and partially air dried.According to the times of application of microbrush, teeth were divided into two test groups. In group 1, newmicrobrushs were used, but in group 2, the ones that were already used for twice were included. Ambar dentin bonding agent (FGM/Brazil was applied to the etched dentin with microbrushes according to the manufacturer’s instructions. Then the crown of teeth was built up with LLiss (FGM/Brazil composite resin. The teeth were sectioned in buccolingual direction to obtain 1mm slabs. Then 50 hourglass- shape samples were made from 30 teeth (25 Specimens per group. The microtensile bond strength of the specimens was tested using MTD500 (SD Mechatronik, Germany. The data were statistically analyzed by T-test.Results: The mean values for the microtensile bond strength were 30.49±7.18 and 23.61±9.06 MPa±SD for the first and second groups, respectively. There was significant difference between the groups (P=0.005.Conclusion: Microbrushes should not be used for more than one cavity preparation.

  15. Effect of ozone gas on the shear bond strength to enamel

    Directory of Open Access Journals (Sweden)

    Patrícia Teixeira Pires

    2013-04-01

    Full Text Available Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Objective: Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Material and Methods: Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15: Group G1 (Excite® with ozone and group G3 (AdheSE® with ozone were prepared with ozone gas from the HealOzone unit (Kavo® for 20 s prior to adhesion, and groups G2 (Excite® and G4 (AdheSE® were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37°C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Results: Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure; G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive; G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive. Conclusions: Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.

  16. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  17. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    Science.gov (United States)

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (Padhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  18. Effect of three porcelain etchants type (HF-APF-PHA on porcelain- composite shear bond strength

    Directory of Open Access Journals (Sweden)

    Kermanshah H.

    2005-05-01

    Full Text Available Statement of Problem: Porcelain restorations are susceptible to fracture and a common method for repairing is the use of silane and composite on etched porcelain. Although HF is very effective in porcelain etching but has detrimental effects on tissues. Purpose: In this study, the effect of APF and PHA was compared with HF in porcelain etching. Also the role of silane, unfilled resin and dentin bonding in bond strength of composite- porcelain was evaluated. Methods and Materials: In this experimental in-vitro study, one-hundred twenty porcelain square blocks (552 mm were prepared and bonding surfaces of each sandblasted. Samples were divided into three groups. The first group (n=40 were etched with buffered HF 9.5% (Ultradent for 1 min., the second group (n=40 were etched with Iranian APF 1.23% (Kimia for 10 minutes and the third group (n=40 were etched with Iranian PHA 37% (Kimia for 1 min. Ultradent silane was applied on the surfaces of half of cases in each group. On the surfaces of half of silane-treated samples unfilled resin was applied and dentin bonding was used on the surfaces of the remaining. Samples without silane were treated in a similar manner. Composite cylinder with 4mm diameter and 2 mm height was bonded to porcelain. Specimens were stored in 37°C distilled water for 24 hours and subjected to 500 cycles. Shear bond strength was measured with an Instron machine and type of fracture was evaluated using a stereomicroscope. Results were analyzed using 3 way ANOVA, Kaplan- Maier and Tukey HSD tests. Results: Findings showed that PHA and APF roughened the porcelain surface without creating retentive micro undercuts but HF etches porcelain and creates retentive microundercuts. Ultradent silane had no significant effect on bond strength of porcelain- composite. Unfilled resin with Ultradent silane compared with dentin bonding with the same silane is more effective in bond strength of composite- porcelain. Conclusion: Based on

  19. Shear bond strength of self-etching adhesive systems with different pH values to bleached and/or CPP-ACP-treated enamel.

    Science.gov (United States)

    Oskoee, Siavash Savadi; Bahari, Mahmoud; Kimyai, Soodabeh; Navimipour, Elmira Jafari; Firouzmandi, Maryam

    2012-08-01

    To compare shear bond strengths of three different self-etching adhesive systems of different pH values to enamel bleached with carbamide peroxide, treated with casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), or treated with CPP-ACP subsequent to bleaching with carbamide peroxide. Thirty-six human third molars were cut into 4 sections and randomly assigned to 4 groups (n = 36): group I: no treatment; group II: bleaching; group III: CPP-ACP; group IV: bleaching and CPP-ACP. After surface treatments, the samples of each group were further divided into three subgroups (n = 12) based on the adhesive used. The adhesives Clearfil SE Bond (CSE), AdhesE (ADE), and Adper SE Plus (ADP) were applied, and resin composite cylinders with a diameter of 2 mm and a height of 4 mm were bonded to the enamel. Then the specimens were subjected to shear bond strength testing. Two-way ANOVA and a post-hoc Tukey's test were used for statistical analysis (α = 0.05). There were significant differences between the adhesive systems (p system showed the highest bond strength, and the bleaching procedure reduced bond strengths (p = 0.001). Furthermore, there were no significant differences in shear bond strength values between the control and CPP groups. However, the differences between other groups were statistically significant (p material dependent.

  20. Shear bond strength of different adhesive systems to normal and caries-affected dentin

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2015-10-01

    Full Text Available BACKGROUND AND AIM: According to the effect of the adhesive and substrate type on the bond strength, examination of the adhesive is required in all aspects. The aim of this study was to evaluate the shear bond strength of different adhesive systems to normal dentin (ND and caries affected dentin (CAD in permanent teeth. METHODS: Thirty extracted molars with small occlusal caries were selected. After preparation and determination of ND and CAD by caries detector, teeth were divided into three groups and treated with one of the two tested adhesives: Single Bond 2 (SB2, Scotchbond Universal with etch (SBU-ER, and Scotchbond Universal without etch (SBU-SE. Then composite (Filtek Z-250 XT were attached to the surfaces and cured. After water storage (24 hours and thermocycling (500 cycles 5-55 °C, bond strength was calculated and failure modes were determined by stereomicroscope. The data were analyzed by one-way ANOVA and post-hoc test [Tukey HSD (honest significant difference] and with P ˂ 0.050 as the level of significance. RESULTS: Only SBU-ER had significantly higher shear bond strength than SBU-SE in ND (P = 0.027 and CAD (P = 0.046. Bond strength in SBU-ER the highest and in SBU-SE had the lowest amounts in CAD and ND. There was no significant difference in each group between ND and CAD. CONCLUSION: The 2-step etch-and-rinse adhesive (SBU-ER had higher bond strength to ND and CAD than the selfetch adhesive (SBU-SE.

  1. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    Science.gov (United States)

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, padhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  2. Experimental analysis of the strength of silver-alumina junction elaborated at solid state bonding

    International Nuclear Information System (INIS)

    Serier, B.; Bachir Bouiadjra, B.; Belhouari, M.; Treheux, D.

    2011-01-01

    Highlights: → The adhesion strength is closely related to the plastic deformation of the metal joint. → It is possible to transform a system with weak energy of adhesion into a system with strong energy. → The adhesion strength depends on Silver diffusion in the ceramic grains boundaries. -- Abstract: The mechanisms of ceramics-metal assemblies, particularly silver and alumina, can be better understood by studying the strength of their adhesion. These two materials are a priori non-reactive, their thermodynamic work of adhesion is low and the difference between their thermal coefficients of expansion in very considerable. In this study, the strength of silver-alumina junctions elaborated at solid state by thermo-compression is tested by an indirect tensile test and shearing one. The effects of several parameters such as: the pressure of bonding, the time of bonding, the temperature, and the oxygen dissolve in metal solid solution on the strength of the junction are analyzed. The obtained results show that the resistance of the junction is affected by all this parameters and it is essential to optimize these different parameters in order to increase the durability of the junction. It was also shown that the diffusion of the silver in alumina could be the cause of the damage of alumina near the interface.

  3. [Bonding strength of resin and tooth enamel after teeth bleaching with cold plasma].

    Science.gov (United States)

    Zhu, Meng-meng; Wang, Guo-min; Sun, Ke; Li, Ying-long; Pan, Jie

    2016-02-18

    To investigate the immediate bond strength and surface structure of resin and the tooth enamel which treated by cold plasma. In the study, 40 bovine incisors were divided into two equal parts. In this sense, all enamel adhesive samples were prepared and then randomly divided into 4 groups (n =20). group 1: acid + single bond 2+resin composite (control group); group 2:beyond bleaching+ acid+single bond 2+resin composite; group 3: treated by cold plasma for 5 minutes+ acid+single bond 2+resin composite; group 4: treated by cold plasma for 5 minutes+single bond 2+resin composite. Single bond 2 bonding system and Filtek Z250 resin were used in this experiment. The shear bond strength was tested by universal testing machine. The surface of the enamel in different processes was observed by scanning electron microscope (SEM). Statistical analyses by the single factor analysis of variance and multiple pairwise comparisons were performed with SPSS 17.0 . The shear bond strength of group 4 (8.60 MPa) was significantly lower than that of the other three groups (Penamel treated by cold plasma had slight molten form, which was different from etched enamel surface.The fractured surface of group 3 was mix fracture, which was similar to the control group (group 1). Compared with the conventional clinic bleaching, immediate bond strength of resin-enamel that treated by cold plasma has not been affected.

  4. Shear Bond Strength of Composite to Nd-YAG Lased Dentin with and without Dye

    Directory of Open Access Journals (Sweden)

    H. Kermanshah

    2004-06-01

    Full Text Available Statement of Problem: The achievement of a good and durable dentin/composite resin bond is an important task in restorative dentistry. The application of acid conditioners and dentin bonding agents is an accepted method to enhance this bond strength. Pretreating of dentin surface by laser irradiation seems to be a supplemental way to obtain better results,since lased dentin is more roughened and has a widest surface area to interact with acidconditioner.Purpose: In this study, the effect of dentin surface pretreating by Nd-YAG laser on dentin/composite shear bond strength was examined. Moreover, the effect of Chinese ink as a surface energy absorber on this value was investigated.Methods and Materials: Thirty-nine freshly extracted human teeth without dentinal caries were collected and their occlusal dentins were exposed using a diamond disk. The collected samples were divided into three identical groups. The dentin surface of the first group was lased by an Nd-YAG pulsed laser (100 mJ, 20 Hz through a 320 mm fiber optic in a swiping movement. In the second group, 10% solution of Chinese ink was applied on the dentinal surface before lasing. The samples of the third group were not lased at all. Thedentinal surface prepared by 35% phosphoric acid and Scotchbond MP primer and adhesive. Then, composite resin was cured on dentinal surface. After incubation, in water at 37°C for 24 hours, the samples were tested by Digital Tritest ELE machine.Results: The values of bond strength were 20.83±3.96 MPa, 17.83±3.63 MPa and 19.38±4.88 MPa for the lased, unlased and dye-enhanced groups, respectively. The results were not significant by ANOVA test (a=0.05. Although in the Weiboul modulus, the lased group offered better bond strength.Conclusion: Further studies are required to determine whether chemical as well as physical alterations to the dentin surface are induced by laser etching, and whether these influence the performance of the range of dentin

  5. INFLUENCE OF SILANE HEAT TREATMENT ON THE TENSILE BOND STRENGTH BETWEEN EX-3 SYNTHETIC VENEERING PORCELAIN AND COMPOSITE RESIN USING FIVE DIFFERENT ACTIVATION TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Spartak Yanakiev

    2017-02-01

    Full Text Available Purpose: The purpose of the present study is to assess the effect of five different silane activation temperatures and eight activation methods on the tensile bond strength between one veneering porcelain and one composite resin material. Material and methods: A total of 81 ceramic rods were made of EX-3 veneering ceramic (Kuraray Noritake Dental, Japan. Sintered ceramic bars were grinded with diamond disks to size 10x2x2mm ± 0,05mm. The front part of each bar was polished. After ultrasonic cleaning in distilled water, the specimens were divided into nine groups. Silane was activated with air at room temperature, 38º С, 50º С, 100º С, 120º С using a custom made blow drier. In a silicone mold, a composite resin Z250 (3М ESPE, St. Paul, USA was condensed toward the bond ceramic surface. A total of 81 specimens approximately 2,0 cm long were prepared for tensile bond testing. One way ANOVA, followed by Bonferroni and Games-Howell tests were used for statistical analysis. Results: The lowest tensile bond strength was observed in the control group (3,51MPa. Group 2 yielded the highest bond strength among all groups (19,54MPa. Silane heat treatment enhanced the bond strength for all treatment methods. Within the polished specimens, the highest bond strength was yielded with warm air at 120ºС (11,31MPa. Conclusion: The most effective method for bonding Z250 composite resin to EX-3 veneering ceramic includes HF etching, silane, and adhesive resin. The most effective heat treatment method for bonding is hot air at 120ºС.

  6. Bond strength of primer/cement systems to zirconia subjected to artificial aging.

    Science.gov (United States)

    Zhao, Li; Jian, Yu-Tao; Wang, Xiao-Dong; Zhao, Ke

    2016-11-01

    Creating reliable and durable adhesion to the nonactive zirconia surface is difficult and has limited zirconia use. The introduction of functional monomers such as 10-methacryloyloxydecyl dihydrogen phosphate (MDP) appears to have enhanced bond strength to zirconia. The purpose of this in vitro study was to evaluate the long-term bond strength of several MDP-containing primer/cement systems to zirconia. Zirconia blocks were divided into 6 groups (n=24) according to the 3 primers/cements to be bonded, as follows: Scotchbond Universal/RelyX Ultimate (SU/RU; consisting of MDP-containing primer/MDP-free cement); Clearfil ceramic primer/Panavia F (CCP/PAN; consisting ofMDP-containing/MDP-containing); and Z-Prime Plus/Duo-Link (ZP/DUO; consisting ofMDP-containing/MDP-free), which were compared with 3 nonprimed groups, RU, PAN, and DUO. After bonding, each group was further divided into 3 subgroups (n=8) according to the level of aging: 24-hour storage in water at 37°C (24H); 30-day storage at 37°C (30D); and 30-day storage at 37°C followed by 3000 thermal cycles (30D/TC). After aging, a shear bond strength test and failure mode analysis were performed. The data were analyzed using 2-way ANOVA (α=.05). After aging, nearly all primer/cement groups presented significantly higher bond strength than the related nonprimed groups for each level of aging (P<.05), except for CCP/PAN versus PAN with 24H (P=.741). SU/RU had the highest bond strength among the groups for all treatments (P<.05), except for CCP/PAN versus SU/RU with 30D/TC (P=.171). Among the nonprimed groups, only RU went through 30D/TC without premature debonding. With 24H and 30D, the failure modes in SU/RU and CCP/PAN were purely mixed, whereas those in the other groups were mainly adhesive, except for RU. The superiority of the initial bond strength in SU/RU may result from some functional components other than MDP. The presence of MDP in the cement did not appear to have a positive effect on long-term bond

  7. Determine bond strength by ultrasonic measurement

    International Nuclear Information System (INIS)

    Brown, C.M.

    1978-01-01

    Application of ultrasonic methods for the evaluation and measurement of bond strength has been the object of numerous investigations in the last fifteen years. Some investigators have reported good success (in limited application) while others have experienced dismal failure. One problem common to all investigations was the difficulty in extracting and isolating the many components which comprise the ultrasonic signal reflected from a bonded interface. Part of this problem was due to manually extracting individual parameters from large volumes of raw data. However, with the vast technology now available in the field of signal analysis and computerized data processing, it is feasible to isolate and analyze individual parameters within the ultrasonic signal for great volumes of raw data

  8. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies.

    Science.gov (United States)

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho; Garcia, Lucas da Fonseca Roberti

    2015-02-01

    The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p adhesive system to dentin.

  9. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  10. The effect of thermocycling on tensile bond strength of two soft liners.

    Science.gov (United States)

    Geramipanah, Farideh; Ghandari, Masoumeh; Zeighami, Somayeh

    2013-09-01

    Failure of soft liners depends mostly on separation from the denture base resin; therefore measurement of the bond strength is very important. The purpose of this study was to compare the tensile bond strength of two soft liners (Acropars, Molloplast-B) to denture base resin before and after thermocycling. Twenty specimens fromeach of the two different soft liners were processed according to the manufacturer's instructions between two polymethyl methacrylate (PMMA) sheets. Ten specimens in each group were maintained in 37°C water for 24 hours and 10 were thermocycled (5000 cycles) among baths of 5° and 55°C. The tensile bond strength was measured using a universal testing machine at a crosshead speed of 5 mm/min. Mode of failure was determined with SEM (magnification ×30). Two-way ANOVA was used to analyze the data. The mean and standard deviation of tensile bond strength of Acropars and Molloplast-B before thermocycling were 6.59±1.85 and1.51±0.22 MPa, respectively and 5.89±1.52 and1.37±0.18 MPa, respectively after thermocycling. There was no significant difference before and after thermocycling. Mode of failure in Acropars and Molloplast-B were adhesive and cohesive, respectivley. The bond strength of Acropars was significantly higher than Molloplast-B (P<0.05).

  11. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  12. Effect of dentin pretreatment with potassium oxalate: analysis of microtensile bond strengths and morphologic aspects.

    Science.gov (United States)

    De Moraes Porto, Isabel Cristina Celerino; De Andrade, Ana Karina Maciel; Alves, Luiz Carlos; Braz, Rodivan

    2012-02-01

    An effective and stable bond is the most desirable characteristic of contemporary adhesive systems. The aim of this study was to evaluate the effect of potassium oxalate on dentin/resin bond strength. Dentin on the occlusal surface of human premolars was exposed and etched with 35% phosphoric acid, to receive 3% monohydrated potassium oxalate and the following adhesive systems: Scotchbond Multipurpose (SMO; 3M/ESPE) and Prime & Bond NT (PBO; Dentsply), followed by the application of resin composite (Z250; 3M/ESPE). The control groups (SM and PB) did not receive potassium oxalate application. The prepared teeth were kept in distilled water at 37°C for 24 h and 12 months. They were then cut longitudinally into sticks with a bond area of ∼0.8 mm(2) for submission to the microtensile bond strength test. The data were analyzed by two-factor ANOVA, Tamhane's paired comparisons, and the Student t-test (α = 0.05). The hybrid layer formed was observed by scanning electron microscopy (SEM). SEM analysis of the surfaces treated with PB revealed shorter resin tags associated with the application of potassium oxalate, whereas SM showed tags similar to those without potassium oxalate. A significant difference was shown between the two storage times for each of the protocols. There was a significant difference among SMO, SM, and PBO (24 h), as well as among SM, SMO, and PBO, and between PB and PBO (12 months). The application of potassium oxalate before conventional adhesive systems may result in alteration of the bond strength between dentin and resin composite, depending on the material. Copyright © 2011 Wiley Periodicals, Inc.

  13. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  14. Effect of Two-minute Application of 35% Sodium Ascorbate on Composite Bond Strength following Bleaching.

    Science.gov (United States)

    Ismail, Eman H; Kilinc, Evren; Hardigan, Patrick C; Rothrock, James K; Thompson, Jeffrey Y; Garcia-Godoy, Cristina

    2017-10-01

    The aim of this study is to assess the effect of 35% sodium ascorbate on microtensile bond strength of dentin immediately after bleaching with 35% hydrogen peroxide. A total of 25 sound human 3 rd molars were collected. Teeth were randomly divided into five groups for different treatments: Group I [bleaching + immediate bonding (i.e., restoration)], group II (bleaching + delayed bonding), group III (bleaching + sodium ascorbate + immediate bonding), group IV (bleaching + sodium ascorbate + delayed bonding), and group V (bonding only). After bleaching, but before bonding, groups II and IV were stored for 1 week in deionized water at 37°C. All samples were bonded using OptiBoned FL (Kerr) and Filtek Supreme (3M/ESPE). Teeth were sectioned into 1 × 1 mm 2 bars, and microtensile bond strength was tested with a universal testing machine (Instron 8841) at a cross-head speed of 0.5 mm/minute. Microtensile bond strength differed significantly across the five groups, with a significant reduction in microtensile bond strength observed for samples in group I relative to samples in any of the other treatment groups (p bleaching on composite bonding strength to dentin. The negative effects of bleaching on composite bonding can be neutralized by the application of the reversing agent sodium ascorbate thus, increasing the efficiency of clinic chair time. This is clinically relevant for those patients requiring restorative treatment immediately after in-office bleaching.

  15. Shear bond strength of orthodontic brackets and disinclusion buttons: effect of water and saliva contamination.

    Science.gov (United States)

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea

    2013-01-01

    The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

  16. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    International Nuclear Information System (INIS)

    Diniz, Alexandre C.; Nascimento, Rubens M.; Souza, Julio C.M.; Henriques, Bruno B.; Carreiro, Adriana F.P.

    2014-01-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  17. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Alexandre C. [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil); Nascimento, Rubens M. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Souza, Julio C.M. [Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Henriques, Bruno B. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Carreiro, Adriana F.P., E-mail: adrianadafonte@hotmail.com [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil)

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  18. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain

    Science.gov (United States)

    Wang, Cong; Zeng, Jishan; Wang, Shaoan; Yang, Zheng; Huang, Qian; Chen, Pixiu; Zhou, Shujuan; Liu, Xiaoqing

    2008-11-01

    The purpose of this study was to investigate the effect of various surface treatments after different storage time and thermocycling on the shear bond strength of orthodontic brackets to the feldspathic porcelain surfaces. 128 disc-shaped porcelain specimens were randomly assigned to the following surface treatments: 9.6% HFA, 9.6% HFA combined with silane, 50 μ aluminum trioxide sandblasting followed by silane and application of silane after 37% phosphoric acid. Metal or ceramic brackets were bonded onto each treated porcelain facet with light cured resin. The samples were stored in 37 °C water 1 day or 7 days, thermocycled 500 times from 5 to 55 °C. The shear bond strengths were measured (1 mm/min), and statistically analyzed. The bond failure sites were classified according to ARI system. The surface of the glazed, sandblasted, hydrofluoric and phosphoric acid etched porcelain were examined with SEM. All groups achieved reasonable bond strengths to withstand the application of orthodontic forces. Water storage for 7 days caused lower shear bond strength than that of 1 day. But there is no statistically significant difference between the two groups. The mean shear bond strength provided by ceramic bracket with mechanical retention had no statistical difference with that of metal bracket. Therefore, the optimal treatment for orthodontic brackets bonding to feldspathic porcelain was to apply phosphoric acid combined with silane.

  20. Papain-based gel for biochemical caries removal: influence on microtensile bond strength to dentin

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-12-01

    Full Text Available This study investigated the influence of a papain-based gel (Papacárie for chemo-mechanical caries removal on bond strength to dentin. Human molars were assigned to the following groups: Group 1: sound teeth were flattened to expose dentin; Group 2: after flattening of surfaces, the papain-based gel was applied on the sound dentin; Group 3: overlying enamel from carious teeth was removed and mechanical excavation of dentin was conducted; Group 4: chemo-mechanical excavation of carious dentin was conducted using the papain-based gel. The Prime&Bond NT or Clearfil SE Bond adhesive systems were used for restorative procedures. A microtensile bond strength test was performed, and the modes of failure were determined under SEM. The data were submitted to two-way ANOVA and Tukey's test (p < 0.05. No significant differences were observed between the sound dentin groups. For both excavation methods, Clearfil presented a significantly higher bond strength than Prime&Bond NT. Also, for Clearfil, the mechanically excavated samples disclosed a significantly higher bond strength than the chemo-mechanically ones. For Prime&Bond NT, no significant differences were detected between the excavation methods. Predominance of mixed failures for the sound substrate and of adhesive failures for the carious dentin one was detected. The bond strength to carious dentin of the self-etching system was negatively affected by chemo-mechanical excavation using the papain-based gel.

  1. Shear Bond Strength of Saliva Contaminated and Re-etched All-in-One Adhesive to Enamel

    Directory of Open Access Journals (Sweden)

    M. Khoroushi

    2008-12-01

    Full Text Available Objective: The aim of this study was to investigate the effect of phosphoric acid re-etching of an enamel surface treated via a one-bottle adhesive system on shear bond strength between resin composite and the enamelsurface in different stages of adhesive application.Materials and Methods: Extracted intact premolars (n=84 were divided into sevengroups (n=12. In the control group 1, the adhesive i-Bond was used according to the manufacturer's instructions, with nocontamination. In groups 2 to 4, the conditioned and saliva, contaminated enamel was blot dried only, rinsed,and blot dried, rinsed blot dried and re-etched, respectively. In groups 5, 6and 7 cured adhesive was contaminated with saliva and then rinsed and blot-dried, blot dried only and rinsed, blot-dried and re-etched respectively. In groups 3, 4, 6 and 7 the adhesive was reapplied. Afterward, Z100 compos-ite cylinders were bonded to the enamel surfaces. The samples were thermocycled (5°C and 55°C, 30 s, dwelling time: 10 s, 500 cycles. Finally, the samples were sheared using Dartec testing machine and shear bond strength data were subjected to one-way ANOVA analysis and Tukey's HSD test.Results: There were statistically significant differences among groups 1 and 5-7. The samples in groups 1 and 4 demonstrated higher bond strengths than those in the other groups.Conclusion: Using phosphoric acid etching may be effective, only where contamination occurs prior to curing of the adhesive. After curing of the adhesive, none of the methods in this study would be preferred.

  2. Can Whitening Strips interfere with the Bond Strength of Composite Resins?

    Science.gov (United States)

    Firoozmand, Leily Macedo; Reis, Washington Luís Machado dos; Vieira, Mercêdes Aroucha; Nunes, Adriana Gomes; Tavarez, Rudys Rodolfo de Jesus; Tonetto, Mateus Rodrigues; Bramante, Fausto Silva; Bhandi, Shilpa H; Roma, Regina Vieira de Oliveira; Bandeca, Matheus Coelho

    2015-04-01

    The aim of this study was to investigate in vitro the bond strength of composite resins on enamel previously treated with whitening strips. A total of 48 bovine incisors were allocated to four experimental groups (n = 12 each): G1 (WSC)- treated with 9.5% hydrogen peroxide whitening strips (3D White Whitestrips® Advanced Vivid/CREST); G2 (WSO)-treated with 10% hydrogen peroxide whitening strips (3D WhiteTM/Oral B); G3 (WG)-treated with 7.5% hydrogen peroxide gel with fluorine, calcium and potassium nitrate (White Class®/FGM); and G4 (C)-control not subjected to bleaching treatment. The specimens were subjected to bleaching over 2 weeks following the manufacturers' instructions. Following the elaboration of the composite resin test specimens, the samples were stored in artificial saliva and subsequently subjected to the micro-shear test using the universal testing machine (EMIC®). The bond strength values were analyzed by one-way ANOVA and Tukey's statistical test (5%). Significant differences were observed among the investigated groups (p enamel-resin interface. The bond strength decreased following 14 days of treatment with bleaching strips, whereas the whitening gel with 7.5% hydrogen peroxide, calcium and fluorine increased the bond strength.

  3. Effect of hot-humid exposure on static strength of adhesive-bonded aluminum alloys

    Directory of Open Access Journals (Sweden)

    Rui Zheng

    2015-09-01

    Full Text Available The effect of hot-humid exposure (i.e., 40 °C and 98% R.H. on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.

  4. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  5. Computational study of the signature of hydrogen-bond strength on the infrared spectra of a hydrogen-bonded complex dissolved in a polar liquid

    International Nuclear Information System (INIS)

    Hanna, Gabriel; Geva, Eitan

    2010-01-01

    The signature of hydrogen-bond strength on the one- and two-dimensional infrared spectra of the hydrogen-stretch in a hydrogen-bonded complex dissolved in a polar liquid was investigated via mixed quantum-classical molecular dynamics simulations. Non-Condon effects were found to intensify with increasing hydrogen-bond strength and to shift oscillator strength from the stable configurations that correspond to the ionic and covalent tautomers into unstable configurations that correspond to the transition-state between them. The transition-state peak is observed to blue shift and increase in intensity with increasing hydrogen-bond strength, and to dominate the spectra in the case of a strong hydrogen-bond. It is argued that the application of multidimensional infrared spectroscopy in the region of the transition-state peak can provide a uniquely direct probe of the molecular events underlying breaking and forming of hydrogen-bonds in the condensed phase.

  6. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  7. Influence of storage times on bond strength of resin cements to root canal

    Directory of Open Access Journals (Sweden)

    Matheus Coêlho Bandéca

    2010-03-01

    Full Text Available The resin cements are responsible to retention of the indirect materials decreasing marginal leakage, increasing failure resistance compared with conventional cementation. The cementation within root canal is very hard due unfavorable conditions regarding the application of adhesive techniques caused by inadequate access. Therefore, considering the possibility to decrease steps of cementation, this study was performed to evaluate the bond strength of self-adhesive resin cement (RelyX TM U100, 3M ESPE and resin cement combined with self-ecthing adhesive system (Panavia® F 2.0, Kuraray light-cured with Quartz Tungsten Halogen (QTH following storage at 37 °C immediately after light-curing, 24 and 48 hours and 7 days. The root canals were prepared to receive the glass fiber post in the depth of 10 mm, irrigated with 17% EDTA and NaOCl, rinsed with distilled water and dried using paper points. The roots were perpendicularly sectioned into approximately 1 mm thick sections, obtaining ninety-six slices (n = 12. The slices were trimmed using a cylindrical diamond bur in the proximal surfaces until it touched the post and attached into a device, which were mounted on a strength tester (Bisco and loaded in tension at a speed of 0.5 mm/min until failure occurred at specimens. The analysis of variance (ANOVA and Tukey's post-hoc tests showed significant statistical differences (P .05. The resin cements 24 and 48 hours after light-curing were statistically similar among themselves (P > .05. The both resin cement showed similar bond strength into root canal on different storage times. The highest bond strength values of the resin cements were showed 7 days after curing.

  8. Effect of saliva contamination on bond strength witha hydrophilic composite resin

    Directory of Open Access Journals (Sweden)

    Mauren Bitencourt Deprá

    2013-02-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on the bond strength of metallic brackets bonded to enamel with hydrophilic resin composite. METHODS: Eighty premolars were randomly divided into 4 groups (n = 20 according to bonding material and contamination: G1 bonded with Transbond XT with no saliva contamination, G2 bonded with Transbond XT with saliva contamination, G3 bonded with Transbond Plus Color Change with no saliva contamination and G4 bonded with Transbond Plus Color Change with saliva contamination. The results were statistically analyzed (ANOVA/Tukey. RESULTS: The means and standard deviations (MPa were: G110.15 ± 3.75; G2 6.8 ± 2.54; G3 9.3 ± 3.36; G4 8.3 ± 2.95. The adhesive remnant index (ARI ranged between 0 and 1 in G1 and G4. In G2 there was a prevalence of score 0 and similar ARI distribution in G3. CONCLUSION: Saliva contamination reduced bond strength when Transbond XT hydrophobic resin composite was used. However, the hydrophilic resin Transbond Plus Color Change was not affected by the contamination.OBJETIVO: avaliar a influência da contaminação por saliva na resistência de união de braquetes metálicos colados ao esmalte com um compósito resinoso hidrofílico. MÉTODOS: oitenta pré-molares foram divididos aleatoriamente em quatro grupos (n=20, de acordo com o material de colagem e a presença de contaminação - G1 colagem com Transbond XT na ausência de contaminação; G2 colagem com Transbond XT na presença de contaminação; G3 colagem com Transbond Plus Color Change na ausência de contaminação; G4 colagem com Transbond Plus Color Change na presença de contaminação. Os resultados foram tratados estatisticamente (ANOVA/Tukey. RESULTADOS: as médias e desvios-padrão (MPa foram G1 = 10,15 ± 3,75; G2 = 6,8 ± 2,54; G3 = 9,3 ± 3,36; G4 = 8,3 ± 2,95. O índice de adesivo remanescente (IAR variou entre 0 e 1 no G1 e no G4; no G2, houve predomínio do escore 0 e distribuição similar no

  9. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  10. Influence of surface treatment on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  11. Influence of Er,Cr: YSGG laser on bond strength of self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Matheus Coelho Bandéca

    2012-08-01

    Full Text Available The purpose of this study was to investigate the bond strength of fiber post previously laser treated root canals. Forty single-rooted bovine teeth were endodontically treated, randomly and equally divided into two main groups according to the type of pretreatment: G1: 2.5% NaOCl (control group; and G2: Er,Cr:YSGG laser. Each group was further subdivided into 2 groups based on the category of adhesive systems/ luting materials used: a: an etch-and-rinse resin cement (Single Bond/RelyX ARC; 3M ESPE, and b: a self-adhesive resin cement (Rely X Unicem; 3M ESPE. Three 1.5 mm thick slabs were obtained per root and the push-out test was performed at a crosshead speed of 0.5 mm/min until post dislodgement occurred. Data were analyzed by ANOVA and post-hoc Tukey's test at a pre-set alpha of 0.05. Analysis of variance showed no statistically significant difference (p > 0.05 among the groups G1a (25.44 ± 2.35 and G1b (23.62 ± 3.48, G2a (11.77 ± 2.67 and G2b (9.93 ± 3.37. Fractures were observed at the interface between the dentin and the resin in all groups. The Er,Cr:YSGG laser irradiation did not influence on the bond strength of the resin cements and the etch-and-rinse resin cement had better results on bond strength than self-adhesive resin cement.

  12. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  13. The Effect of Enamel Sandblasting on Enhancing Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-analysis

    DEFF Research Database (Denmark)

    Baumgartner, Stefan; Koletsi, Despina; Verna, Carlalberta

    2017-01-01

    terms included sandblasting, enamel abrasion, tooth surface, bond strength, bond failure, and adhesive remnant; data were extracted in standardized piloted forms. Risk of bias was assessed using the Cochrane risk of bias tool, adapted for in vitro studies where necessary. RESULTS: Of the 81 articles......PURPOSE: To critically appraise the evidence regarding the effect of enamel sandblasting on the bond strength of orthodontic brackets on either the labial or lingual tooth surface. MATERIALS AND METHODS: An electronic database search of published and unpublished literature was performed. Search...... initially retrieved, 13 were eligible for inclusion in the systematic review. All of the latter were in vitro studies with unclear risk of bias primarily due to unclear reporting of blinding of outcome assessors. Eight studies assessed the combined effect of enamel sandblasting and etching, while only five...

  14. The Influence of No-Primer Adhesives and Anchor Pylons Bracket Bases on Shear Bond Strength of Orthodontic Brackets

    Directory of Open Access Journals (Sweden)

    Andrea Scribante

    2013-01-01

    Full Text Available Objective. The aim of this study was to compare the shear bond strength (SBS and adhesive remnant index (ARI scores of no-primer adhesives tested with two different bracket bases. Materials and Methods. 120 bovine permanent mandibular incisors were divided into 6 groups of 20 specimens. Two brackets (ODP with different bracket bases (anchor pylons and 80-gauge mesh were bonded to the teeth using a conventional adhesive (Transbond XT and two different no-primer adhesive (Ortho Cem; Heliosit systems. Groups were tested using an instron universal testing machine. SBS values were recorded. ARI scores were measured. SEM microphotographs were taken to evaluate the pattern of bracket bases. Statistical analysis was performed. ANOVA and Tukey tests were carried out for SBS values, whereas a chi-squared test was applied for ARI scores. Results. Highest bond strength values were reported with Transbond XT (with both pad designs, Ortho Cem bonded on anchor pylons and Heliosit on 80-gauge mesh. A higher frequency of ARI score of “3” was reported for Transbond XT groups. Other groups showed a higher frequency of ARI score “2” and “1.” Conclusion. Transbond XT showed the highest shear bond strength values with both pad designs.

  15. Effects of replacement of binder content on bond strength of mortars

    Directory of Open Access Journals (Sweden)

    E. B. C. Costa

    Full Text Available The reduction of binder content in cementitious systems is an effective way to mitigate environmental impacts without increasing costs. The main purpose of this study is to evaluate the effect of content binder on bond strength of mortar-brick interface. For thus, it was studied mortars produced with two limestone fines with different particle size distribution. The limestone fines were added at rates of 0% to 60% at increments of 15% as partial volume replacement of binder. Mortars were prepared in proportion of 1:3 (binder + limestone: sand in volume. The water content was kept constant and equal to 18% in relation to total weight of solids. The mechanical property of mortars was evaluated by tensile strength and the performance of interface by bond strength tests at 14 days. Results indicate that is possible make mortars with 45% less than binder without reducing bond strength. Thus, the use of appropriate particles of limestone can produce more environmentally friendly concrete and rendering mortars by reducing its binder factor without affecting its performance.

  16. [Effects of magnetron sputtered ZrN on the bonding strength of titanium porcelain].

    Science.gov (United States)

    Zhou, Shu; Zhang, Wen-yan; Guang, Han-bing; Xia, Yang; Zhang, Fei-min

    2009-04-01

    To investigate the effect of magnetron sputtered ZrN on the bonding strength between a low-fusing porcelain (Ti/Vita titankeramik system) and commercially pure cast titanium. Sixteen specimens were randomly assigned to test group and control group (n=8). The control group received no surface treated. Magnetron sputtered ZrN film was deposited on the surface of specimens in the test group. Then the sixteen titanium-porcelain specimens were prepared in a rectangular shape and went through three-point bending test on a universal test machine. The bond strength of Ti/porcelain was recorded. The phase composition of the specimens was analyzed using X-ray diffraction (XRD). The interface at titanium and porcelain and the titanium surface after debonding were observed with a scanning electron microscopy (SEM) and analyzed using energy depressive spectrum (EDS). New phase of ZrN was found with XRD in the test group. Statistical analysis showed higher bond strength following ZrN surface treatment in the test group [(45.991+/-0.648) MPa] than that in the control group [(29.483+/-1.007) MPa] (P=0.000). Bonded ceramic could be observed in test group, the amount of bonded ceramic was more than that in the control group. No obvious bonded ceramic in control group was found. Magnetron sputtered ZrN can improve bond strength of Ti/Vita titankeramik system significantly.

  17. Microstructure, Tensile Adhesion Strength and Thermal Shock Resistance of TBCs with Different Flame-Sprayed Bond Coat Materials Onto BMI Polyimide Matrix Composite

    Science.gov (United States)

    Abedi, H. R.; Salehi, M.; Shafyei, A.

    2017-10-01

    In this study, thermal barrier coatings (TBCs) composed of different bond coats (Zn, Al, Cu-8Al and Cu-6Sn) with mullite top coats were flame-sprayed and air-plasma-sprayed, respectively, onto bismaleimide matrix composites. These polyimide matrix composites are of interest to replace PMR-15, due to concerns about the toxicity of the MDA monomer from which PMR-15 is made. The results showed that pores and cracks appeared at the bond coat/substrate interface for the Al-bonded TBC because of its high thermal conductivity and diffusivity resulting in transferring of high heat flux and temperature to the polymeric substrate during top coat deposition. The other TBC systems due to the lower conductivity and diffusivity of bonding layers could decrease the adverse thermal effect on the polymer substrate during top coat deposition and exhibited adhesive bond coat/substrate interfaces. The tensile adhesion test showed that the adhesion strength of the coatings to the substrate is inversely proportional to the level of residual stress in the coatings. However, the adhesion strength of Al bond-coated sample decreased strongly after mullite top coat deposition due to thermal damage at the bond coat/substrate interface. TBC system with the Cu-6Sn bond coat exhibited the best thermal shock resistance, while Al-bonded TBC showed the lowest. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.

  18. Comparative evaluation of shear bond strength, between IPS-Empress2 ceramics and three dual-cured resin cements

    Directory of Open Access Journals (Sweden)

    Hajimiragha H

    2006-06-01

    Full Text Available Background and Aim: Cementation is one of the most critical steps of the porcelain restoration technique. However, limited information is available concerning the bond strength of current ceramic bonding systems. The aim of this study was to evaluate the shear bond strength of three dual-cure resin cements to IPS-Empress2 ceramics. Materials and Methods: In this experimental study, 30 pairs of IPS-Empress 2 ceramic discs were fabricated with 10 and 8 mm diameters and 2.5 mm thickness. After sandblasting and ultrasonic cleaning, the surfaces of all specimens were etched with 9% hydrofluoric acid for 60 seconds. Then, the three groups of 10 bonded specimens were prepared ceramic bonding resin systems including Panavia F2, Variolink II and Rely X ARC. After storage in 37±1c water for 24 hours and thermocycling in 5c and 55c water for 500 cycles with 1-minute dwell time, the shear bond strengths were determined using Instron machine at speed of 0.5mm/min. Data were analyzed by One Way ANOVA test. For multiple paired comparisons, the Tukey HSD method was used. The mode of failure was evaluated by scanning electro microscope (SEM. P<0.05 was considered as the limit of significance. Result: Significant differences were found between different cement types (P<0.05. Variolink II provided the highest bonding values with IPS-Empress2. A combination of different modes of failure was observed. Conclusion: Based on the results of this study, according to the highest mode of cohesive failure, Variolink II seems to have the strongest bond with IPS-Empress2 ceramics.

  19. Effect of repeated use on dentin bond strength of two adhesive systems: All-in-one and one-bottle

    Directory of Open Access Journals (Sweden)

    Shafiei Fershteh

    2009-01-01

    Full Text Available Aims: To compare the effects of repeated use of two one-bottle adhesives with that of two all- in- one adhesives (with acetone solvent on bond strength to dentin. Materials and Methods: A flat dentin surface was prepared on 120 bovine incisors using 600- grit abrasive pape. The teeth were randomly assigned into 12 equal groups. The four adhesive systems [Prime and Bond NT (P&B NT, One-Step Plus (OS, iBond (iB, and G-Bond (GB] were used at baseline, after the lid of the container had been opened 30 times, and after it had been opened 60 times. Before each use of the adhesives, the lids of the containers were left open for 1 min. The resin composites were applied on the dentin in a cylindrical split mold. After thermocycling, shear bond strength test was performed with a universal testing machine at 1 mm/min. We used Kruskal-Wallis and Dunn tests for statistical analysis. Results: There was no statistically significant difference among bond strength (MPa of the groups of P&B NT (31.9 ± 4.6, 31.8 ± 6.5, 26.1 ± 6.7 and OS (33.2 ± 5.1, 30.9 ± 7, 29.3 ± 5.9, respectively (P > 0.05. The mean of the bond strength of iB and GB after 60 times (15.3 ± 4.1 and 12.2 ± 3.9, respectively was significantly lower than that of iB and GB at baseline (23.5 ± 4.8 and 22.2 ± 4.5, respectively (P < 0.05. Conclusions: Repeated use (60 times of the all-in-one adhesive led to a decline in the dentin bond strength. To avoid this problem it would be advisable to have containers with smaller amounts of adhesive or perhaps those with only a singe dose.

  20. Are Bonding Agents being Effective on the Shear Bond Strength of Orthodontic Brackets Bonded to the Composite?

    Directory of Open Access Journals (Sweden)

    Fahimeh Farzanegan

    2014-06-01

    Full Text Available Introduction: One of the clinical problems in orthodontics is the bonding of brackets tocomposite restorations. The aim of this study was to evaluate the shear bondstrength of brackets bonded to composite restorations using Excite. Methods:Forty brackets were bonded to composite surfaces, which were embedded inacrylic resin. One of the following four protocols was employed for surfacepreparation of the composite: group 1 37% phosphoric acid for 60 seconds, group2 roughening with a diamond bur plus 37% phosphoric acid for 60 seconds, group3 37% phosphoric acid for 60 seconds and the applying Excite®, group4 roughening with diamond bur plus 37% phosphoric acid for 60 seconds andapplying Excite®. Maxillary central brackets were bonded onto thecomposite prepared samples with Transbond XT. Shear Bond Strength (SBS wasmeasured by a universal testing machine. The ANOVA and Tukey test was utilizedfor data analysis. Results: There was a significant difference betweenthe four groups (P

  1. Amalgam shear bond strength to dentin using single-bottle primer/adhesive systems.

    Science.gov (United States)

    Cobb, D S; Denehy, G E; Vargas, M A

    1999-10-01

    To evaluate the in vitro shear bond strengths (SBS) of a spherical amalgam alloy (Tytin) to dentin using several single-bottle primer/adhesive systems both alone: Single Bond (SB), OptiBond Solo (Sol), Prime & Bond 2.1 (PB), One-Step (OS) and in combination with the manufacturer's supplemental amalgam bonding agent: Single Bond w/3M RelyX ARC (SBX) and Prime & Bond 2.1 w/Amalgam Bonding Accessory Kit (PBA). Two, three-component adhesive systems, Scotchbond Multi-Purpose (SBMP) and Scotchbond Multi-Purpose Plus w/light curing (S + V) and w/o light curing (S+) were used for comparison. One hundred eight extracted human third molars were mounted lengthwise in phenolic rings with acrylic resin. The proximal surfaces were ground to expose a flat dentin surface, then polished to 600 grit silicon carbide paper. The teeth were randomly assigned to 9 groups (n = 12), and dentin surfaces in each group were treated with an adhesive system according to the manufacturer's instructions, except for S + V specimens, where the adhesive was light cured for 10 s before placing the amalgam. Specimens were then secured in a split Teflon mold, having a 3 mm diameter opening and amalgam was triturated and condensed onto the treated dentin surfaces. Twenty minutes after condensation, the split mold was separated. Specimens were placed in distilled water for 24 hrs, then thermocycled (300 cycles, between 5 degrees C and 55 degrees C, with 12 s dwell time). All specimens were stored in 37 degrees C distilled water for 7 days, prior to shear strength testing using a Zwick Universal Testing Machine at a cross-head speed of 0.5 mm/min. The highest to the lowest mean dentin shear bond strength values (MPa) for the adhesive systems tested were: S + V (10.3 +/- 2.3), SBX (10.2 +/- 3.5), PBA, (6.4 +/- 3.6), SOL (5.8 +/- 2.5), SBMP (5.7 +/- 1.8), S+ (4.8 +/- 2.3), PB (2.7 +/- 2.6), SB (2.7 +/- 1.1) and OS (2.5 +/- 1.8). One-way ANOVA and Duncan's Multiple Range Test indicated significant

  2. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques.

    Science.gov (United States)

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz; Faria-E-Silva, André Luis

    2015-08-01

    This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

  3. Bond strength between zirconium ceramic and dual resinous cement

    Directory of Open Access Journals (Sweden)

    João Galan Junior

    2010-04-01

    Full Text Available Objective: To assess the influence of different surface treatments on the bond strength between the resinous cement Panavia F (Kuraray Co. Ltd., Osaka, Japan and the structure of In-Ceram YZ (Vita Zahnfabrik, Bad Säckingen, Germany. Methods: Fifteen ceramic blocks were assessed: Group 1, finishing with abrasive paper; Group 2, finishing, airborne Al2O3 particle abrasion and silanization; Group 3, finishing, airborne particle abrasion, silicatization and silanization. After treatment, the blocks received cementation of resin composite cylinders with Panavia F (Kuraray Co. Ltd., Osaka, Japan and were submitted to the shear bond strength test in a universal testing machine. Results: The results were statistically analyzed (ANOVA and multiple comparison Student-Newman-Keuls test: Group 1 (9.66 ± 1.67 MPa < Group 2 (16.61 ± 3.38 MPa = Group 3 (19.23 ± 5.69 MPa, with p = 0.007. Conclusion: The structures of the In-Ceram YZ system (Vita Zahnfabrik, Bad Säckingen, Germany associated with Panavia F (Kuraray Co. Ltd., Osaka, Japan require previous etching to achieve greater bond strength between the ceramic and cement, and this treatment may be performed with airborne particle abrasion I or traditional silicatization, both followed by silanization.

  4. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  5. Deproteinization of fluorosed enamel with sodium hypochlorite enhances the shear bond strength of orthodontic brackets: An In vitro study

    Directory of Open Access Journals (Sweden)

    Rekha Sharma

    2017-01-01

    Full Text Available Context: Improving bonding strength to fluorosed teeh. Aims: To determine the effect of deproteinization using 5.25% sodium hypochlorite (NaOCl prior to acid etching on shear bond strength of orthodontic brackets bonded to fluorosed teeth. Settings and Design: In vitro experimental study. Methods and Material: Forty freshly extracted human mandibular first premolars with TFI 4 were selected and divided into two groups of 20 each. In Group I the teeth were acid etched with 37% phosphoric acid and bonded with composite. In Group II the teeth were deproteinized with 5.25% NaOCl prior to acid etching with 37% phosphoric acid and were bonded with composite. Samples were then subjected to shear bond test by Instron Universal Testing machine. The sample from each group were selected for the SEM study (prior to bonding to analyze the etching patterns achieved. Statistical Analysis Used: Data was checked for normality by Shapiro Wilk Test, to compare the two groups unpaired t test was used. P value was predetermined at ≤ 0.05. Results: The S BS of Group II (11.75 ± 2.83 MPa was higher than Group I (7.44 ± 2.43 MPa and the difference was statistically significant (P = 0.000. On SEM the etching pattern was more of type 1 and 2 in Group II. Conclusions: Deproteinization using 5.25% NaOCl prior to acid etching significantly increases the shear bond strength of brackets bonded to fluorosed teeth and can be used as a convenient and effective option in orthodontic bonding to fluorosed teeth.

  6. Effect of blood contamination on shear bond strength of orthodontic brackets and disinclusion buttons.

    Science.gov (United States)

    Sfondrini, Maria Francesca; Gatti, Sara; Scribante, Andrea

    2011-07-01

    Our aim was to assess the effect of blood contamination on the shear bonding strength and sites of failure of orthodontic brackets and bondable buttons. We randomly divided 160 bovine permanent mandibular incisors into 8 groups of 20 specimens each. Both orthodontic brackets (Step brackets, Leone, Sesto Fiorentino, Italy) and bondable buttons (Flat orthodontic buttons, Leone, Sesto Fiorentino, Italy) were tested on four different enamel surfaces: dry; contamination with blood before priming; after priming; and before and after priming. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bonding strength and the rate of adhesive failures were recorded. Data were analysed using the analysis of variance (ANOVA), Scheffè tests, and the chi-square test. Uncontaminated enamel surfaces showed the highest bonding strengths for both brackets and buttons. When they were contaminated with blood, orthodontic brackets had significantly lower shear strengths than bondable buttons (P=0.0001). There were significant differences in sites of failure among the groups for the various enamel surfaces (P=0.001). Contamination of enamel by blood during bonding lowers the strength of the bond, more so with orthodontic brackets than with bondable buttons. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel

    Directory of Open Access Journals (Sweden)

    Niloofar Shadman

    2015-01-01

    Full Text Available Background: Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP is applied for remineralization of early caries lesions or tooth sensitivity conditions and may affect subsequent resin bonding. This in vitro study investigated the effect of CPP-ACP on the shear bond strength of dental adhesives to enamel. Materials and Methods: Sixty extracted human molar teeth were selected and randomly divided into three groups and six subgroups. Buccal or lingual surfaces of teeth were prepared to create a flat enamel surface. Adhesives used were Tetric N-Bond, AdheSE and AdheSE One F. In three subgroups, before applying adhesives, enamel surfaces were treated with Tooth Mousse CPP-ACP for one hour, rinsed and stored in 37°C temperature with 100% humidity. This procedure was repeated for 5 days and then adhesives were applied and Tetric N-Ceram composite was adhered to the enamel. This procedure was also fulfilled for the other three subgroups without CPP-ACP treatment. After 24 hour water storage, samples were tested for shear bond strength test in a universal testing machine. Failure modes were determined by stereomicroscope. Data were analyzed by t-test and one-way analysis of variance with P 0.05. In non-applied CPP-ACP subgroups, there were statistically significant differences among all subgroups. Tetric N-Bond had the highest and AdheSE One F had the lowest shear bond strength. Conclusion: CPP-ACP application reduces the shear bond strength of AdheSE and AdheSE One F to enamel but not Tetric N-Bond.

  8. Evaluation of bond strength of a conventional adhesive system in irradiated teeth

    Directory of Open Access Journals (Sweden)

    Emanuel Jordan de CARVALHO

    Full Text Available Abstract Introduction One of the most common treatments of head and neck cancer patients is radiotherapy, a treatment method which uses ionizing radiation beam and destroys tumor cells, minimizing damage to neighbor cells. Purpose To evaluate the bond strength of a conventional adhesive system in irradiated teeth. Method 24 third human molars, 12 of which were randomly exposed to radiation and prepared from the removal of occlusal enamel, then exposed to a flat dentine surface. The adhesive system Stae was applied according to the manufacturer’s instructions. Next, two 2 mm increments of resin were implemented. The samples were hemi sectioned specimens, originating shapped toothpick. To evaluate the bond strength, a micro tensile test was done with 500N load and speed of 0.5 mm/minute. Result There was no statistically significant difference between the bond strength of teeth which were or were not exposed to radiation and which used a conventional adhesive system. Conclusion Although the radiation doses applied may cause some alterations in microscopic range in dental tissues, it can be concluded that these alterations do not influence in the bond strength in dentin of irradiated teeth.

  9. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  10. The effect of pretreatment with fluoride on the tensile strength of orthodontic bonding

    International Nuclear Information System (INIS)

    Wang, W.N.; Sheen, D.H.

    1991-01-01

    White spot decalcifications and caries occurring adjacent to bonded orthodontic brackets have long been a concern to orthodontists. One procedure suggested to overcome this problem is fluoride treatment prior to bonding. The purpose of this study was to compare the tensile bond strength of orthodontic self-cured resin from Concise on teeth rinsed 4 minutes in 1.23% APF with untreated controls. Measurements were made on an Instron machine. Debonding interfaces were observed with a scanning electron microscope and energy dispersive x-ray spectrometry. Distributions were calculated. The tensile bond strengths of the fluoride-treated teeth and the untreated teeth were not significantly different. The debonding interfaces between resin and bracket base, within the resin itself, and between enamel and resin were similar in the two experimental groups. However, greater enamel detachment was seen within the fluoride pretreatment group. So while fluoride pretreatment does not significantly affect tensile bond strength, it may cause enamel detachment after debonding

  11. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  12. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets.

    Science.gov (United States)

    Bahnasi, Faisal I; Abd-Rahman, Aida Na; Abu-Hassan, Mohame I

    2013-10-01

    1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket.

  13. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    Science.gov (United States)

    Bahnasi, Faisal I.; Abu-Hassan, Mohame I.

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. Results: There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. Conclusion: To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket. PMID:24455081

  14. Effect of various bleaching treatments on shear bond strength of different universal adhesives and application modes

    Science.gov (United States)

    2018-01-01

    Objectives The aim of this in vitro study was to evaluate the bond strength of 2 universal adhesives used in different application modes to bleached enamel. Materials and Methods Extracted 160 sound human incisors were used for the study. Teeth were divided into 4 treatment groups: No treatment, 35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide. After bleaching treatments, groups were divided into subgroups according to the adhesive systems used and application modes (n = 10): 1) Single Bond Universal, etch and rinse mode; 2) Single Bond Universal, self-etch mode; 3) Gluma Universal, etch and rinse mode; 4) Gluma Universal, self-etch mode. After adhesive procedures nanohybrid composite resin cylinders were bonded to the enamel surfaces. All specimens were subjected to shear bond strength (SBS) test after thermocycling. Data were analyzed using a 3-way analysis of variance (ANOVA) and Tukey post hoc test. Results No significant difference were found among bleaching groups (35% hydrogen peroxide, 16% carbamid peroxide, 7.5% carbamid peroxide, and no treatment groups) in the mean SBS values. There was also no difference in SBS values between Single Bond Universal and Gluma Universal at same application modes, whereas self-etch mode showed significantly lower SBS values than etch and rinse mode (p adhesives was enhanced with the etch and rinse mode application to bleached enamel and non-bleached enamel. PMID:29765900

  15. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  16. Shear bond strength of precoated orthodontic brackets: an in vivo study

    OpenAIRE

    Hassan, Ali H

    2010-01-01

    Ali H HassanDepartment of Preventive Dental Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi ArabiaObjective: To evaluate the shear bond strength of precoated orthodontic brackets bonded with self-etching primer relative to that of noncoated conventionally-bonded brackets at two different time intervals.Methods: Twenty-one subjects were selected for randomized split-mouth bonding of two types of brackets to the maxillary arch. Half of the teeth had precoated brackets b...

  17. Shear strength of orthodontic bracket bonding with GIC bonding agent after the application of CPP-ACPF paste

    Directory of Open Access Journals (Sweden)

    Melisa Budipramana

    2013-03-01

    Full Text Available Background: White spot lesion is a major problem during fixed orthodontic treatment. This problem can be solved by minimizing white spot lesion before the treatment and using a fluoride-releasing bonding agent. The application of casein phosphopeptidesamorphous calcium phospate fluoride (CPP-ACPF paste as remineralization agent before treatment and GIC as orthodontic bonding agent is expected to overcome this problem as well as to strengthen GIC bonding. Purpose: To measure the shear strength of fix orthodontic appliance using GIC bonding with CPP-ACPF application prior treatment. Methods: In this study, 50 extracted premolars were randomly divided into 2 groups: group 1 as treatment group and group II as control group that was not given CPPACPF pretreatment. After having been cut and put into acrylic device, the samples in group I were given pretreatment with CPP-ACPF paste on enamel surface for 2 minutes twice a day as instructed in product label for 14 days. Orthodontic brackets were bonded with GIC bonding agent on all samples in both groups as instructed in product label. Then, the shear strength was measured by Autograph Shimatzu with crosshead speed 0.5 mm/minute. The data was analyzed with Independent t-test. Results: The mean shear bond strength in treatment group was 19.22 ± 4.04 MPa and in control group was 12.97 ± 3.97 MPa. Independent t-test analysis showed that there was a significant difference between treatment and control group (p<0.05. Conclusion: CPP-ACPF pretreatment could increase GIC orthodontic bonding shear strength.Latar belakang: Lesi putih karies merupakan masalah utama selama perawatan dengan peranti cekat ortodonti. Hal ini dapat diatasi dengan cara mengurangi lesi putih sebelum perawatan dengan menggunakan bahan bonding yang mengandung fluorida. Aplikasi pasta casein phosphopeptides-amorphous calcium phospate fluoride (CPP-ACPF sebagai bahan remineralisasi sebelum perawatan dan bahan bonding GIC diharapkan dapat

  18. [Evaluation of shear bond strengths of self-etching and total-etching dental adhesives to enamel and dentin].

    Science.gov (United States)

    Yu, Ling; Liu, Jing-Ming; Wang, Xiao-Yan; Gao, Xue-Jun

    2009-03-01

    To evaluate the shear bond strengths of four dental adhesives in vitro. The facial surfaces of 20 human maxillary incisors were prepared to expose fresh enamel and randomly divided into four groups, in each group 5 teeth were bonded with one adhesives: group A (Clearfil Protect Bond, self-etching two steps), group B (Adper( Prompt, self-etching one step), group C (SwissTEC SL Bond, total-etching two steps), group D (Single Bond, total-etching two steps). Shear bond strengths were determined using an universal testing machine after being stored in distilled water for 24 h at 37 degrees C. The bond strengths to enamel and dentin were (25.33 +/- 2.84) and (26.07 +/- 5.56) MPa in group A, (17.08 +/- 5.13) and (17.93 +/- 4.70) MPa in group B, (33.14 +/- 6.05) and (41.92 +/- 6.25) MPa in group C, (22.51 +/- 6.25) and (21.45 +/- 7.34) MPa in group D. Group C showed the highest and group B the lowest shear bond strength to enamel and dentin among the four groups. The two-step self-etching adhesive showed comparable shear bond strength to some of the total-etching adhesives and higher shear bond strength than one-step self-etching adhesive.

  19. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo PEREIRA

    2014-10-01

    Full Text Available OBJECTIVE: The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs and resinmodified glass ionomer cements (RMGICs. MATERIAL AND METHODS: Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. RESULTS: Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05. The post level did not influence the bond strength of fiber posts to root dentin (P=0.148. The major cause of failure was cohesive at the cement for all GICs and RMGICs. CONCLUSIONS: Except for Ionoseal, all cements provided satisfactory bond strength values.

  20. Effect of confinement on bond strength of hot-dip galvanized lap splices in concrete structures

    International Nuclear Information System (INIS)

    Fakhran, Mazen

    2004-01-01

    Galvanizing the reinforcing steel is one of the methods used to protect bars against corrosion. Galvanizing is a hot dip process where the reinforcing bars are immersed in an aqueous pre flux solution of zinc ammonium chloride at a controlled temperature between 840 and 850 degrees F. In 2001, a research program was started at AUB to evaluate experimentally the effect of hot dip galvanizing on the bond capacity of tension lap splices anchored in full-scale beam specimens designed to fail in bond splitting mode. The test results indicated that the use of galvanized bars had a negligible effect on bond strength of reinforcement in normal strength. However, galvanizing caused an average of 20 percent decrease in bond strength of reinforcement in high strength concrete. The primary objective of research reported in this thesis, is the need to find a solution to eliminate the bond reduction of galvanized bars in high strength concrete. It is significant to evaluate the positive effect of the addition of transverse reinforcement in the splice region. The hypothesis to be tested is that such transverse reinforcement will insure uniform bond stress distribution over the entire splice region, thus mobilizing all bar lugs along the splice in the stress transfer mechanism between the bar and the surrounding concrete. Such mechanism might reduce the significant decrease in bond strength in high strength concrete due to galvanizing. To achieve this objective, eighteen full-scale beam specimens were tested in positive bending. Each beam was reinforced with bars spliced in a constant moment region at midspam. The splice length was chosen in such a way that the beams failed in bond splitting of the concrete cover in the splice region. The main variables were type of coating (black or galvanized bars), bar size (20, 25 and 32 mm), and amount of transverse reinforcement in the splice region (0, 2 or 4 stirrups). The test results indicated that confinement did not have a significant

  1. Shear bond strength and fracture analysis of human vs. bovine teeth.

    Directory of Open Access Journals (Sweden)

    Stefan Rüttermann

    Full Text Available PURPOSE: To evaluate if bovine enamel and dentin are appropriate substitutes for the respective human hard tooth tissues to test shear bond strength (SBS and fracture analysis. MATERIALS AND METHODS: 80 sound and caries-free human erupted third molars and 80 freshly extracted bovine permanent central incisors (10 specimens for each group were used to investigate enamel and dentine adhesion of one 2-step self-etch (SE and one 3-step etch and rinse (E&R product. To test SBS the buccal or labial areas were ground plane to obtain appropriate enamel or dentine areas. SE and E&R were applied and SBS was measured prior to and after 500 thermocycles between +5 and +55°C. Fracture analysis was performed for all debonded areas. RESULTS: ANOVA revealed significant differences of enamel and dentin SBS prior to and after thermocycling for both of the adhesives. SBS- of E&R-bonded human enamel increased after thermocycling but SE-bonded did not. Bovine enamel SE-bonded showed higher SBS after TC but E&R-bonded had lower SBS. No differences were found for human dentin SE- or E&R-bonded prior to or after thermocycling but bovine dentin SE-bonded increased whereas bovine dentine E&R-bonded decreased. Considering the totalized and adhesive failures, fracture analysis did not show significances between the adhesives or the respective tooth tissues prior to or after thermocycling. CONCLUSION: Although SBS was different on human and bovine teeth, no differences were found for fracture analysis. This indicates that solely conducted SBS on bovine substrate are not sufficient to judge the perfomance of adhesives, thus bovine teeth are questionnable as a substrate for shear bond testing.

  2. Effect of air-drying time of single-application self-etch adhesives on dentin bond strength.

    Science.gov (United States)

    Chiba, Yasushi; Yamaguchi, Kanako; Miyazaki, Masashi; Tsubota, Keishi; Takamizawa, Toshiki; Moore, B Keith

    2006-01-01

    This study examined the effect of air-drying time of adhesives on the dentin bond strength of several single-application self-etch adhesive systems. The adhesive/resin composite combinations used were: Adper Prompt L-Pop/Filtek Z250 (AP), Clearfil Tri-S Bond/Clearfil AP-X (CT), Fluoro Bond Shake One/Beautifil (FB), G-Bond/Gradia Direct (GB) and One-Up Bond F Plus/Palfique Estelite (OF). Bovine mandibular incisors were mounted in self-curing resin and wet ground with #600 SiC to expose labial dentin. Adhesives were applied according to each manufacturer's instructions followed by air-drying time for 0 (without air-drying), 5 and 10 seconds. After light irradiation of the adhesives, the resin composites were condensed into a mold (phi4x2 mm) and polymerized. Ten samples per test group were stored in 37 degrees C distilled water for 24 hours; they were then shear tested at a crosshead speed of 1.0 mm/minute. One-way ANOVA followed by Tukey's HSD tests (alpha = 0.05) were done. FE-SEM observations of the resin/dentin interface were also conducted. Dentin bond strength varied with the different air drying times and ranged from 5.8 +/- 2.4 to 13.9 +/- 2.8 MPa for AP, 4.9 +/- 1.5 to 17.1 +/- 2.3 MPa for CT, 7.9 +/- 2.8 to 13.8 +/- 2.4 MPa for FB, 3.7 +/- 1.4 to 13.4 +/- 1.2 MPa for GB and 4.6 +/- 2.1 to 13.7 +/- 2.6 MPa for OF. With longer air drying of adhesives, no significant changes in bond strengths were found for the systems used except for OF. Significantly lower bond strengths were obtained for the 10-second air-drying group for OF. From FE-SEM observations, gaps between the cured adhesive and resin composites were observed for the specimens without the air drying of adhesives except for OF. The data suggests that, with four of the single-application self-etch adhesive systems, air drying is essential to obtain adequate dentin bond strengths, but increased drying time does not significantly influence bond strength. For the other system studied, the bond strength

  3. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Devon S. Ellis

    2018-02-01

    Full Text Available The use of fiber reinforced polymer (FRP bars in reinforced concrete members enhances corrosion resistance when compared to traditional steel reinforcing bars. Although there is ample research available on the behavior of FRP bars and concrete members reinforced with FRP bars under elevated temperatures (due to fire, there is little published information available on their post-fire residual load capacity. This paper reports residual tensile strength, modulus of elasticity, and bond strength (to concrete of glass fiber reinforced polymer (GFRP bars after exposure to elevated temperatures of up to 400 °C and subsequent cooling to an ambient temperature. The results showed that the residual strength generally decreases with increasing temperature exposure. However, as much as 83% of the original tensile strength and 27% of the original bond strength was retained after the specimens were heated to 400 °C and then cooled to ambient temperature. The residual bond strength is a critical parameter in post-fire strength assessments of GFRP-reinforced concrete members.

  4. Residual Tensile Strength and Bond Properties of GFRP Bars after Exposure to Elevated Temperatures.

    Science.gov (United States)

    Ellis, Devon S; Tabatabai, Habib; Nabizadeh, Azam

    2018-02-27

    The use of fiber reinforced polymer (FRP) bars in reinforced concrete members enhances corrosion resistance when compared to traditional steel reinforcing bars. Although there is ample research available on the behavior of FRP bars and concrete members reinforced with FRP bars under elevated temperatures (due to fire), there is little published information available on their post-fire residual load capacity. This paper reports residual tensile strength, modulus of elasticity, and bond strength (to concrete) of glass fiber reinforced polymer (GFRP) bars after exposure to elevated temperatures of up to 400 °C and subsequent cooling to an ambient temperature. The results showed that the residual strength generally decreases with increasing temperature exposure. However, as much as 83% of the original tensile strength and 27% of the original bond strength was retained after the specimens were heated to 400 °C and then cooled to ambient temperature. The residual bond strength is a critical parameter in post-fire strength assessments of GFRP-reinforced concrete members.

  5. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  6. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  7. Shear Bond Strength of Orthodontic Brackets to Tooth Enamel After Treatment With Different Tooth Bleaching Methods.

    Science.gov (United States)

    Vahid Dastjerdi, Elahe; Khaloo, Negar; Mojahedi, Seyed Masoud; Azarsina, Mohadese

    2015-11-01

    Bleaching treatments decrease shear bond strength between orthodontic brackets and teeth; although definite results have not been reported in this regard. This study determined the effects of different bleaching protocols on the shear bond strength of orthodontic brackets to teeth. This experimental study was performed in Iran. Forty-eight extracted human premolars were randomly assigned into four groups. In the control group, no bleaching treatment was performed. In groups 2 - 4, the bleaching procedures were performed using carbamide peroxide 45%, carbamide peroxide 20% and diode laser, respectively. Two weeks later, brackets were bonded to teeth and thermocycled. The shear bond strengths of the brackets to the teeth were measured. Data was analyzed by one-way ANOVA and Dunnett post-hoc test. Shear bond strength of the brackets to the teeth were 10.54 ± 1.51, 6.37 ± 0.92, 7.67 ± 1.01 and 7.49 ± 1.19 MPa, in groups 1 - 4, respectively. Significant differences were found between control group and all other groups (P brackets to the teeth. 45% carbamide peroxide had a more significant effect on bond strength compared to 20% carbamide peroxide. The difference in bond strength was not significant between laser group and either carbamide peroxide groups.

  8. Comparison of shear bond strength of four types of orthodontic brackets with different base technologies

    Directory of Open Access Journals (Sweden)

    Gaurang H Chaudhary

    2017-01-01

    Full Text Available Objectives: The aim of this study was to compare the shear bond strength (SBS of brackets systems with four different base technologies. Materials and Methods: Maxillary first premolars were randomly divided into four groups of thirty specimens each: (1 Master Series™ conventional twin, (2 T3™ self-ligating, (3 Victory series™ conventional twin, and (4 H4™ self-ligating brackets. Maxillary first premolars were bracketed using an acid-etch composite system, and the SBS measured using an Instron Universal Testing Machine at a crosshead speed of 2 mm/min. The ANOVA and Tukey's multiple comparison tests were performed with significance predetermined at P ≤ 0.05. Results: The overall mean bond strengths were 8.49 ± 2.93, 10.85 ± 3.34, 9.42 ± 2.97, and 9.73 ± 2.62 for the Groups 1, 2, 3, and 4 brackets, respectively. One-way ANOVA test gave an F = 3.182 with a P = 0.026. The Group 1 and Group 2 were observed to have statistically significant difference with a P = 0.014. Conclusions: The T3 self-ligating one-piece design with microetched Quadra Grip™ base brackets had the highest bond strength. The SBS difference between Group 2, Group 3, and Group 4 was not significant, but the difference between Group 2 and Group 1 was statistically significant.

  9. A study on the bonding residual thermal stress analysis of dissimilar materials using boundary element method

    International Nuclear Information System (INIS)

    Yi, Won; Yu, Yeong Chul; Jeong, Eui Seob; Lee, Chang Ho

    1995-01-01

    It is very important to evaluate the bonding residual thermal stress in dissimilar materials such as LSI package. In this study, the bonding residual thermal stress was calculated using the boundary element method, varing with the sub-element, geometry of specimen and adhesive thickness. The present results reveal a stress singularity at the edge of the interface, therefore the bonding strength of metal/resin interface can be estimated by taking into account it.

  10. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    Directory of Open Access Journals (Sweden)

    Cécile Bernard

    2015-01-01

    Full Text Available The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL and a two-steps/self-etch adhesive system (Optibond XTR were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR. All specimens were submitted to thermocycling ageing (10000 cycles. The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL.

  11. Effect of Dentin Wetness on the Bond Strength of Universal Adhesives

    Science.gov (United States)

    Lee, Ji-Hye; Son, Sung-Ae; Jung, Kyoung-Hwa; Kwon, Yong Hoon

    2017-01-01

    The effects of dentin wetness on the bond strength and adhesive interface morphology of universal adhesives have been investigated using micro-tensile bond strength (μTBS) testing and confocal laser scanning microscopy (CLSM). Seventy-two human third molars were wet ground to expose flat dentin surfaces. They were divided into three groups according to the air-drying time of the dentin surfaces: 0 (without air drying), 5, and 10 s. The dentin surfaces were then treated with three universal adhesives: G-Premio Bond, Single Bond Universal, and All-Bond Universal in self-etch or etch-and-rinse mode. After composite build up, a μTBS test was performed. One additional tooth was prepared for each group by staining the adhesives with 0.01 wt % of Rhodamine B fluorescent dye for CLSM analysis. The data were analyzed statistically using ANOVA and Tukey’s post hoc tests (α = 0.05). Two-way ANOVA showed significant differences among the adhesive systems and dentin moisture conditions. An interaction effect was also observed (p adhesives. PMID:29068404

  12. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    Science.gov (United States)

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (Penamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites. The mode of failure had no meaningful relation to the type of

  13. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    Science.gov (United States)

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  14. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  15. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems.

    Science.gov (United States)

    Hattan, Mohammad Ali; Pani, Sharat Chandra; Alomari, Mohammad

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength (P universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany) show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  16. Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.

    Science.gov (United States)

    Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi

    2017-10-01

    We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.

  17. Evaluation of Calcium Silicate Cement Bond Strength after Using ...

    African Journals Online (AJOL)

    2018-01-24

    Jan 24, 2018 ... (chloroform, Endosolv E, orange oil, and eucalyptol) on the push‑out bond strength of calcium ... rotary files, lasers, heating apparatuses, or ultrasonic instruments. .... essential factor for the success of endodontic treatments.

  18. Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials

    Science.gov (United States)

    Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.

    2013-10-01

    Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.

  19. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hattan

    2013-01-01

    Full Text Available Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80 stainless steel crowns (SSCs were divided into four groups (20 each. Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group, Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany, and Group C and Group D using two different brands of single-bottle adhesive systems. Shear bond strengths were calculated and the types of failure also were recorded. Results. The shear strength of Group B was significantly greater than that of other groups. No significant differences were found between the shear bond strengths of Groups C and D. The control group had significantly lower shear bond strength ( to composite than the groups that utilized bonding agents. Conclusion. Composites bonding to stainless steel crowns using the new universal bonding agent (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany show significantly greater shear bond strengths and fewer adhesive failures when compared to traditional single-bottle systems.

  20. Effect of Adhesive Type on the Shear Bond Strength of Metal Brackets to Two Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2014-04-01

    Full Text Available Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin.Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM.The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05. There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected.Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.

  1. Evaluation of in vitro push-out bond strengths of different post-luting systems after artificial aging.

    Science.gov (United States)

    Marigo, Luca; D' Arcangelo, Camillo; DE Angelis, Francesco; Cordaro, Massimo; Vadini, Mirco; Lajolo, Carlo

    2017-02-01

    The purpose of this study was to evaluate the push-out bond strengths of four commercially available adhesive luting systems (two self-adhesive and two etch-and-rinse systems) after mechanical aging. Forty single-rooted anterior teeth were divided into four groups according to the luting cement system used: Cement-One (Group 1); One-Q-adhesive Bond + Axia Core Dual (Group 2); SmartCem® 2 (Group 3); and XP Bond® + Core-X™ Flow (Group 4). Anatomical Post was cemented in groups 1 and 2, and D.T. Light-Post Illusion was cemented in groups 3 and 4. All samples were subjected to masticatory stress simulation consisting of 300,000 cycles applied with a computer-controlled chewing simulator. Push-out bond strength values (MPa) were calculated at cervical, middle, and apical each level, and the total bond strengths were calculated as the averages of the three levels. Statistical analysis was performed with data analysis software and significance was set at Partificial aging, etch-and-rinse luting systems exhibited more homogeneous bond strengths; nevertheless, Cement-One exhibited a total bond strength second only to Core-X Flow.

  2. The Investigation of Knitted Materials Bonded Seams Behaviour upon Cyclical Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Gita BUSILIENĖ

    2017-08-01

    Full Text Available In this research uniaxial tension behaviour of PES knitted materials with bonded seams is analysed. The objects of the investigation were two types of knitted materials, having the same fibre composition (93 % PES, 7 % EL, but different in knitting pattern, i. e. plain single jersey and rib 1 × 1. Bonded overlap seams were formed by changing the orientation of knitted materials strips, i. e. parallel/parallel, parallel/bias, parallel/perpendicular, bias/bias and bias/perpendicular. The strips of each knitted material were joined by two types of thermoplastic polyurethane (PU films different in thickness (75 mm and 150 mm. Mechanical characteristics of bonded seams were defined in longitudinal direction. During uniaxial tension such parameters as maximal force Fmax (N and maximal elongation ɛmax (% were recorded from typical tension diagrams. The changes of tested specimens strength and deformation were compared before and after cyclical fatigue tension the conditions of which were 50 cycles up to tension force F equal 24.5 N. The results have shown that changes before and after cyclical fatigue tension are mostly determined by the structure of knitted materials, the orientation of knitted materials strips in bonded seam, but not effected by thermoplastic polyurethane film. These results are opposite compared to the results of biaxial tension of the same type of specimens, which have shown that changes before and after cyclical fatigue punching are mostly determined by the type of thermoplastic film, but not effected by the orientation of knitted materials strips in bonded seams. DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16065

  3. Degradation of Multimode Adhesive System Bond Strength to Artificial Caries-Affected Dentin Due to Water Storage.

    Science.gov (United States)

    Follak, A C; Miotti, L L; Lenzi, T L; Rocha, R O; Soares, F Z

    The purpose of this study was to evaluate the influence of water storage on bond strength of multimode adhesive systems to artificially induced caries-affected dentin. One hundred twelve sound bovine incisors were randomly assigned to 16 groups (n=7) according to the dentin condition (sound; SND, artificially induced caries-affected dentin; CAD, cariogenic challenge by pH cycling for 14 days); the adhesive system (SU, Scotchbond Universal Adhesive; AB, All-Bond Universal; PB, Prime & Bond Elect; SB, Adper Single Bond 2; and CS, Clearfil SE Bond), and the etching strategy (etch-and-rinse and self-etch). All adhesive systems were applied under manufacturer's instructions to flat dentin surfaces, and a composite block was built up on each dentin surface. After 24 hours of water storage, the specimens were sectioned into stick-shaped specimens (0.8 mm 2 ) and submitted to a microtensile test immediately (24 hours) or after six months of water storage. Bond strength data (MPa) were analyzed using three-way repeated-measures analysis of variance and post hoc Tukey test (α=5%), considering each substrate separately (SND and CAD). The etching strategy did not influence the bond strength of multimode adhesives, irrespective of the dentin condition. Water storage only reduced significantly the bond strength to CAD. The degradation of bond strength due to water storage was more pronounced in CAD, regardless of the etching strategy.

  4. Evaluation of microtensile bond strength of different fissure sealants to bovine enamel.

    Science.gov (United States)

    Sen Tunc, E; Bayrak, S; Tuloglu, N; Ertas, E

    2012-03-01

    The aim of this study was to evaluate the microtensile bond strength (μTBS) of a new fissure sealant and compare it with conventional sealants which are applied to enamel alone, and also with self-etch and etch-and-rinse adhesives. Enamel specimens were prepared and randomly distributed into three groups according to fissure sealant (Aegis, Helioseal F, Helioseal Clear). Each group was then subdivided according to adhesive system (Clearfil S3, Single Bond, no adhesive). A universal testing machine was used to measure μTBS, and data were analysed using one-way ANOVA and Tukey's tests. μTBS values for all Aegis subgroups were significantly lower than for comparable Helioseal F and Helioseal Clear subgroups (p 0.05). In the Helioseal Clear group, μTBS values for Single Bond were significantly higher than for Clearfil S3 (p adhesive subgroups in the Aegis or Helioseal F groups (p > 0.05). Sealant μTBS values may be affected by material content. The addition of an adhesive may improve μTBS values of sealant to enamel. © 2012 Australian Dental Association.

  5. Improved bonding strength of bioactive cermet Cold Gas Spray coatings.

    Science.gov (United States)

    Gardon, M; Concustell, A; Dosta, S; Cinca, N; Cano, I G; Guilemany, J M

    2014-12-01

    The fabrication of cermet biocompatible coatings by means Cold Gas Spray (CGS) provides prosthesis with outstanding mechanical properties and the required composition for enhancing the bioactivity of prosthetic materials. In this study, hydroxyapatite/Titanium coatings were deposited by means of CGS technology onto titanium alloy substrates with the aim of building-up well-bonded homogeneous coatings. Powders were blended in different percentages and sprayed; as long as the amount of hydroxyapatite in the feedstock increased, the quality of the coating was reduced. Besides, the relation between the particle size distribution of ceramic and metallic particles is of significant consideration. Plastic deformation of titanium particles at the impact eased the anchoring of hard hydroxyapatite particles present at the top surface of the coating, which assures the looked-for interaction with the cells. Coatings were immersed in Hank's solution for 1, 4 and 7 days; bonding strength value was above 60 MPa even after 7 days, which enhances common results of HAp coatings obtained by conventional thermal spray technologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin

    Directory of Open Access Journals (Sweden)

    Tariq S. Abuhaimed

    2017-01-01

    Full Text Available Effective shaping and cleaning of root canals are essential for the success of endodontic treatment. Due to the complex anatomy of root canal spaces, the use of various instrumentation techniques alone is not effective in producing bacteria-free root canal spaces. Irrigation, disinfectants, rinses, and intervisit medications are used in conjunction with the mechanical instrumentation to ensure the success of endodontic treatment. Sodium hypochlorite (NaOCl, a halogenated compound, is routinely used to irrigate the root canal during endodontic treatments. NaOCl has been known for its antibacterial action, proteolytic and dissolution capacity, and debridement properties. NaOCl, however, can alter the composition of dentin and hence its interaction with the adhesive resins used to bond the restorative materials to treated dentin. This review therefore covers in depth the action of NaOCl on dentin-adhesive resin bond strength including both enhancement and reduction, then mechanisms proposed for such action, and finally how the adverse action of NaOCl on dentin can be reversed.

  7. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin.

    Science.gov (United States)

    Abuhaimed, Tariq S; Abou Neel, Ensanya A

    2017-01-01

    Effective shaping and cleaning of root canals are essential for the success of endodontic treatment. Due to the complex anatomy of root canal spaces, the use of various instrumentation techniques alone is not effective in producing bacteria-free root canal spaces. Irrigation, disinfectants, rinses, and intervisit medications are used in conjunction with the mechanical instrumentation to ensure the success of endodontic treatment. Sodium hypochlorite (NaOCl), a halogenated compound, is routinely used to irrigate the root canal during endodontic treatments. NaOCl has been known for its antibacterial action, proteolytic and dissolution capacity, and debridement properties. NaOCl, however, can alter the composition of dentin and hence its interaction with the adhesive resins used to bond the restorative materials to treated dentin. This review therefore covers in depth the action of NaOCl on dentin-adhesive resin bond strength including both enhancement and reduction, then mechanisms proposed for such action, and finally how the adverse action of NaOCl on dentin can be reversed.

  8. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    Science.gov (United States)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  9. Sealing ability and bond strength of four contemporary adhesives to enamel and to dentine.

    Science.gov (United States)

    Atash, R; Vanden Abbeele, A

    2005-12-01

    To compare the shear bond strength and microleakage of four adhesive systems to the enamel and dentine of primary bovine teeth. 120 bovine primary mandibular incisors were collected and stored in an aqueous 1% chloramine solution at room temperature for no longer than 3 months after extraction (80 for shear bond testing and 40 for microleakage evaluation). The adhesives tested were Clearfil SE bond (SE), Adper Prompt L Pop (LP), Xeno III (XE), and Prime and Bond NT (PB). For shear bond strength testing the specimens were wet ground to 600 grit SiC paper to expose a flat enamel or dentine surface. After bonding and restoration with Dyract AP (DAP), the teeth were subjected to shear stress using a universal testing machine. For microleakage evaluation, facial class V cavities were prepared half in enamel and half in cementum. All cavities were restored with DAP. After thermocycling and immersion in 2% methylene blue, the dye penetration was evaluated under a stereomicroscope. All data were analysed by Chi-square tests or Fisher's tests when adapted in order to determine the significant differences between groups. Results were considered as significant for p enamel 11.06 to 5.34, in decreasing order SE, LP, XE and PB and on dentine 10.47 to 4.74, in decreasing order SE, XE, LP and PB. Differences in bond strengths between the four systems on enamel and dentine were all statistically significant, excepted for XE vs LP (shear bond at dentine). No significant differences were recorded in the microleakage degree between the four adhesive systems on enamel and on dentine (p > 0.0.5). The highest shear bond strength was achieved by Clearfil SE bond and the lowest by Prime and Bond NT. There was no significant difference concerning the sealing ability of the four adhesive systems.

  10. Design and production of a novel sand materials strength testing machine for foundry applications

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Hansen, K. S.; Tiedje, Niels Skat

    2012-01-01

    testing machine was designed and built for both green sand and chemically-bonded sand materials. This machine measures and presents the loading response as a force-displacement profile from which the mechanical properties of the moulding materials can be deduced. The system was interfaced to a computer......In the foundry, existing strength testing machines are used to measure only the maximum fracture strength of mould and core materials. With traditionally used methods, the loading history to ascertain deformation of the material is not available. In this paper, a novel moulding material strength...... with a commercial PC based-control and data acquisition software. The testing conditions and operations are specified in the user interface and the data acquisition is made according to specifications. The force and displacements were calibrated to ensure consistency and reliability of the measurement data...

  11. Interfacial crystalline structures in injection over-molded polypropylene and bond strength.

    Science.gov (United States)

    Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian

    2010-11-01

    This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.

  12. Interface structure of Be/DSCu diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Makino, T.; Iwadachi, T. [NGK Insulators Ltd., Nagoya (Japan)

    1998-01-01

    Beryllium is used as plasma facing components of the first wall on ITER. Dispersion-Strengthened Copper (DSCu) is used as heat sink material by joining to Be because DSCu has high thermal conductivity and strength. In this study, Be/DSCu diffusion bonding tests using the interlayer of Al, Ni, Nb, Ti, Zr and Be-Cu alloy have been conducted to choose the suitable interlayer materials. As a result of the shear strength tests, Be/DSCu joints by using Be-Cu alloy interlayer showed the strength of about 200 MPa. Diffusion bonding tests using Be-Cu alloy interlayer or no interlayer (direct bonding) at the range of temperature from 600degC to 850degC have been conducted to identify the effect of bonding temperature and time on interface formation and strength. The thickness of diffusion layer was proportional to a square root of bonding time by diffusion controlled process. The shear strength is controlled by the formation of intermetallic layer at Be side. (author)

  13. Microtensile Bond Strength and Micromorphology of Bur-cut Enamel Using Five Adhesive Systems.

    Science.gov (United States)

    Vinagre, Alexandra; Ramos, João; Messias, Ana; Marques, Fernando; Caramelo, Francisco; Mata, António

    2015-04-01

    This study compared the microtensile bond strengths (μTBS) of two etch-and-rinse (ER) (OptiBond FL [OBFL]; Prime & Bond NT [PBNT]) and three self-etching (SE) (Clearfil SE Bond [CSEB]; Xeno III [XIII]; Xeno V+ [XV+]) adhesives systems to bur-prepared human enamel considering active (AA) and passive (PA) application of the self-etching systems. Ninety-six enamel surfaces were prepared with a medium-grit diamond bur and randomly allocated into 8 groups to receive adhesive restorations: G1: OBFL; G2: PBNT; G3: CSEB/PA; G4: CSEB/ AA; G5: XIII/PA; G6: XIII/AA; G7: XV+/PA; G8: XV+/AA. After composite buildup, samples were sectioned to obtain a total of 279 bonded sticks (1 mm2) that were submitted to microtensile testing (μTBS; 0.5 mm/min) after 24-h water storage (37°C). Etching patterns and adhesive interfacial ultramorphology were also evaluated with confocal laser scanning (CLSM) and scanning electron microscopy (SEM). Data was analyzed with one-way ANOVA (α = 0.05). Weibull probabilistic distribution was also determined. Regarding μTBS, both adhesive system and application mode yielded statistically significant differences (p systems together with CSEB/AA and XIII/PA recorded the highest and statistically similar bond strength results. XV+ presented very low bond strength values, regardless of the application mode. Among self-etching adhesives, CSEB produced significantly higher μTBS values when applied actively. Qualitative evaluation by SEM and CLSM revealed substantial differences between groups both in adhesive interfaces and enamel conditioning patterns. ER and SE adhesive systems presented distinctive bond strengths to bur-cut enamel. The application mode effect was adhesive dependent. Active application improved etching patterns and resin interfaces micromorphology.

  14. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  15. Crystal growth vs. conventional acid etching: A comparative evaluation of etch patterns, penetration depths, and bond strengths

    Directory of Open Access Journals (Sweden)

    Devanna Raghu

    2008-01-01

    Full Text Available The present study was undertaken to investigate the effect on enamel surface, penetration depth, and bond strength produced by 37% phosphoric acid and 20% sulfated polyacrylic acid as etching agents for direct bonding. Eighty teeth were used to study the efficacy of the etching agents on the enamel surface, penetration depth, and tensile bond strength. It was determined from the present study that a 30 sec application of 20% sulfated polyacrylic acid produced comparable etching topography with that of 37% phosphoric acid applied for 30 sec. The 37% phosphoric acid dissolves enamel to a greater extent than does the 20% sulfated polyacrylic acid. Instron Universal testing machine was used to evaluate the bond strengths of the two etching agents. Twenty percent sulfated polyacrylic acid provided adequate tensile bond strength. It was ascertained that crystal growth can be an alternative to conventional phosphoric acid etching as it dissolves lesser enamel and provides adequate tensile bond strength.

  16. Long-term bond strength of adhesive systems applied to etched and deproteinized dentin

    Directory of Open Access Journals (Sweden)

    Ninoshka Uceda-Gómez

    2007-12-01

    Full Text Available The aim of this study was to evaluate the early and 12-month bond strength of two adhesive systems (Single Bond-SB and One Step-OS applied to demineralized dentin (WH and demineralized/NaOCl-treated dentin (H. Twenty flat dentin surfaces were exposed, etched, rinsed and slightly dried. For the H groups, a solution of 10% NaOCl was applied for 60 s, rinsed (15 s and slightly dried. The adhesives were applied according to the manufacturer's instructions and composite resin crowns were incrementally constructed. After 24 h (water-37ºC, the specimens was sectioned in order to obtain resin-dentin sticks (0.8 mm². The specimens were tested in microtensile (0.5 mm/min immediately (IM or after 12 months of water storage (12M. The data (MPa were subjected to ANOVA and Tukey's test (a=0.05. Only the main factors adhesive and time were significant (p=0.004 and p=0.003, respectively. SB (42.3±9.1 showed higher bond strengths than OS (33.6±11.6. The mean bond strength for IM-group (42.5±8.7 was statistically superior to 12M (33.3±11.8. The use of 10% NaOCl, after acid etching, did not improve the immediate and the long-term resin-dentin bond strength.

  17. Influence of matrix metalloproteinase synthetic inhibitors on dentin microtensile bond strength of resin cements.

    Science.gov (United States)

    Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S

    2012-01-01

    This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (pEDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.

  18. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  19. Numerical and experimental analysis of thermosonic bond strength considering interfacial contact phenomena

    International Nuclear Information System (INIS)

    He Jun; Guo Yongjin; Lin Zhongqin

    2008-01-01

    The theoretical equation of thermosonic bond strength involving interfacial deformation and microcontact phenomena is presented in this study. The constitutive equation of gold considering the ultrasonic softening mechanism was developed based on the thermosonic bonding experiments and coded into the FE software. The numerical model of bonding was established to estimate the surface exposure and the effective normal pressure. The real contact area was calculated by a microcontact model. Accordingly, the nominal bond strength can be obtained and verified by the experimental data. It is found that a better conjunction exists at the edge of the contact area because large surface exposure is produced there, which is also proved by the SEM image of a sheared ball bond. Increasing the bonding force or the ultrasonic power will increase the interfacial plastic deformation, the nominal and real contact areas, but decreases the effective normal pressure. The contact ratio increases to a maximum with the increase in the bonding force, and then decreases while it continues to decrease with the increase in the ultrasonic power. In addition, both the stress analysis and experimental result show that cratering and damage to the pad structure are easily produced below the edge region of the contact area under an excessive bonding force or ultrasonic power

  20. Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxides

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, Vesselin, E-mail: vesselin@uctm.edu [Department of Silicate Technology, University of Chemical Technology and Metallurgy, 8, Kl. Ohridski Blvd., Sofia 1756 (Bulgaria); Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

    2012-12-15

    A suitable relationship between free-cation polarizability and electronegativity of elements in different valence states and with the most common coordination numbers has been searched on the basis of the similarity in physical nature of both quantities. In general, the cation polarizability increases with decreasing element electronegativity. A systematic periodic change in the polarizability against the electronegativity has been observed in the isoelectronic series. It has been found that generally the optical basicity increases and the single bond strength of simple oxides decreases with decreasing the electronegativity. The observed trends have been discussed on the basis of electron donation ability of the oxide ions and type of chemical bonding in simple oxides. - Graphical abstract: This figure shows the single bond strength of simple oxides as a function of element electronegativity. A remarkable correlation exists between these independently obtained quantities. High values of electronegativity correspond to high values of single bond strength and vice versa. It is obvious that the observed trend in this figure is closely related to the type of chemical bonding in corresponding oxide. Highlights: Black-Right-Pointing-Pointer A suitable relationship between free-cation polarizability and electronegativity of elements was searched. Black-Right-Pointing-Pointer The cation polarizability increases with decreasing element electronegativity. Black-Right-Pointing-Pointer The single bond strength of simple oxides decreases with decreasing the electronegativity. Black-Right-Pointing-Pointer The observed trends were discussed on the basis of type of chemical bonding in simple oxides.

  1. Comparative evaluation of shear bond strength of two self-etching adhesives (sixth and seventh generation on dentin of primary and permanent teeth: An in vitro study

    Directory of Open Access Journals (Sweden)

    Yaseen S

    2009-03-01

    Full Text Available Aim: The present study was undertaken to compare and evaluate shear bond strength of two self-etching adhesives (sixth and seventh generation on dentin of primary and permanent teeth. Materials and Methods: Flat dentin surface of 64 human anterior teeth (32 primary and 32 permanent divided into four groups of 16 each. Groups A and C were treated with Contax (sixth generation, while groups B and D were treated with Clearfil S3 (seventh generation. A teflon mold was used to build the composite (Filtek Z-350 cylinders on the dentinal surface of all the specimens. Shear bond strength was tested for all the specimens with an Instron Universal Testing Machine. Data were statistically analyzed using one-way ANOVA for multiple group comparison, followed by student′s unpaired ′t′ test for group-wise comparison. Results: There was no statistically significant difference in shear bond strength among the study groups except that primary teeth bonded with Contax exhibited significantly lesser shear bond strength than permanent teeth bonded with Clearfil S3. Conclusion: This study revealed that Clearfil S3 could be of greater advantage in pediatric dentistry than Contax because of its fewer steps and better shear bond strength in dentin of both primary and permanent teeth.

  2. A critical Examination of the Phenomenon of Bonding Area - Bonding Strength Interplay in Powder Tableting.

    Science.gov (United States)

    Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin

    2016-05-01

    Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.

  3. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    Science.gov (United States)

    Mortazavi, Vajihesadat; Fathi, Mohammadhosein; Ataei, Ebrahim; Khodaeian, Niloufar; Askari, Navid

    2012-01-01

    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n = 12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP. PMID:23209471

  4. Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2012-01-01

    Full Text Available In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT, Optibond Solo Plus (OBSP, and Clearfil SE Bond (CSEB and unfilled (Single Bond (SB adhesive systems (n=12. A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP.

  5. Effect of calcium hydroxide and double and triple antibiotic pastes on the bond strength of epoxy resin-based sealer to root canal dentin.

    Science.gov (United States)

    Akcay, Merve; Arslan, Hakan; Topcuoglu, Hüseyin Sinan; Tuncay, Oznur

    2014-10-01

    The aim of this study was to evaluate the effects of calcium hydroxide (CH) and triple (TAP) and double (DAP) antibiotic pastes on the bond strength of an epoxy resin-based sealer (AH Plus Jet; Dentsply DeTrey, Konstanz, Germany) to the root canal dentin. Sixty-four single-rooted human mandibular premolars were decoronated and prepared using the rotary system to size 40. The specimens were randomly divided into a control group (without intracanal dressing) and 3 experimental groups that received an intracanal dressing with either CH, DAP, or TAP (n = 16). The intracanal dressing was removed by rinsing with 10 mL 17% EDTA followed by 10 mL 2.5% sodium hypochlorite. The root canals were then obturated with gutta-percha and AH Plus Jet sealer. A push-out test was used to measure the bond strength between the root canal dentin and the sealer. The data were analyzed using 2-way analysis of variance and Tukey post hoc tests to detect the effect of the independent variables (intracanal medicaments and root canal thirds) and their interactions on the push-out bond strength of the root canal filling material to the root dentin (P = .05). The push-out bond strength values were significantly affected by the intracanal medicaments (P .05). In the middle and apical third, the bond strength of the TAP group was higher than those of the CH and DAP groups (P < .05). The DAP and CH did not affect the bond strength of the epoxy resin-based sealer. Additionally, the TAP improved the bond strength of the epoxy resin-based sealer in the middle and apical thirds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Shear bond strength of metal brackets to feldspathic porcelain treated by Nd:YAG laser and hydrofluoric acid.

    Science.gov (United States)

    Hosseini, Mohammad Hashem; Sobouti, Farhad; Etemadi, Ardavan; Chiniforush, Nasim; Shariati, Mahsa

    2015-02-01

    Adult orthodontic treatment requires bonding orthodontic attachment to dental restorations. Ceramics are commonly used as esthetic restorative materials for the crowns and bridges. The present study evaluated the shear bond strength of metal orthodontic brackets to the feldspathic porcelain surfaces following conditioning by different powers of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and hydrofluoric acid as a conventional method. Seventy-two glazed porcelain samples were prepared and randomly attributed to six equal groups of 12. In the conventional hydrofluoric (HF) group, the specimens were etched by 9.6% hydrofluoric acid for 4 min. In laser groups, samples were conditioned by 0.75-, 1-, 1.25-, 1.5-, and 2-W Nd:YAG laser for 10 s. Metal brackets were bonded to porcelain samples and after being stored in distilled water for 24 h, they were subjected to thermocycling for 500 cycles. The debonding was carried out by a Zwick testing machine. The data were statistically analyzed by ANOVA and Tamhane multiple comparisons tests. The mean ± SD of the shear bond strength in the laser group 0.75, 1, 1.25, 1.5, and 2 W and HF group was 2.2 ± 0.9, 4.2 ± 1.1, 4.9 ± 2.4, 7 ± 1.7, 9.6 ± 2.7, and 9.4 ± 2.5, respectively. Together with the increased power of laser, the mean shear bond strength was increased continuously and no significant differences were found between the HF group and the laser groups with power of 1.5 or 2 W. Also, there was no significant difference between all test groups in ARI scores. There was no significant difference between bond strength of laser groups with power of 1.5 and 2 W and HF-etched group. So, Nd:YAG laser with appropriate parameters can be used as an alternative method for porcelain etching.

  7. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    Science.gov (United States)

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  8. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  9. Behavior of bonded and unbonded prestressed normal and high strength concrete beams

    Directory of Open Access Journals (Sweden)

    O.F. Hussien

    2012-12-01

    This paper presents an experimental program conducted to study the behavior of bonded and unbounded prestressed normal strength (NSC and high strength concrete (HSC beams. The program consists of a total of nine beams; two specimens were reinforced with non-prestressed reinforcement, four specimens were reinforced with bonded tendons, and the remaining three specimens were reinforced with unbonded tendons. The overall dimensions of the beams are 160 × 340 × 4400-mm. The beams were tested under cyclic loading up to failure to examine its flexural behavior. The main variables in this experimental program are nominal concrete compressive strength (43, 72 and 97 MPa, bonded and unbonded tendons and prestressing index (0%, 70% and 100%. Theoretical analysis using rational approach was also carried out to predict the flexural behavior of the specimens. Evaluation of the analytical work is introduced and compared to the results of the experimental work.

  10. Casein phosphopeptide-amorphous calcium phosphate and shear bond strength of adhesives to primary teeth enamel.

    Science.gov (United States)

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-02-01

    CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth enamel.

  11. Recycling of Manganese Secondary Raw Material Via Cold-Bond Pelletizing Process

    International Nuclear Information System (INIS)

    Ahmed, Y.M.Z.; Mohamed, F.M.

    2004-01-01

    Large quantities of fines were produced during the shipping, transportation, handling and storage of manganese ore sinter imported from different countries to Sinai Company for ferromanganese production. These fines are generally considered as valuable secondary raw materials. Hence, they have a potential to be recycled back to the submerged arc furnace after having been agglomerated. For agglomerates to be considered as feed materials for submerged arc furnace they must have sufficient room temperature strength. Cold-bonded penalization process offers an economically attractive and environmentally viable method for achieving this. Ordinary Portland cement was used in this investigation for the purpose of producing a suitable cold-bonded pellet from such fines. In this investigation, the effect of adding different percentages of Portland cement on the mechanical properties of both green and pellet dried at room temperature for 1, 3, 7, 14, and 28 days of normal curing were studied. The results revealed that, although the compressive strength of green pellets improved with the increase of the amount of cement added. retardation in pellet drop strength was reported. Whereas, the increase in both the cement content and time of drying leads to increase in the mechanical properties of pellets normally cured at room temperature. pellets obtain with the addition of 9% cement shows reasonable mechanical properties to be charged in the submerged are furnace. ferromanganese alloy having a standard range composition was produced in a laboratory submerged are furnace using such pellets

  12. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study

    Directory of Open Access Journals (Sweden)

    C Vishnu Rekha

    2012-01-01

    Full Text Available Aim: The purpose of this study was to evaluate and compare the tensile bond strength and microleakage of Fuji IX GP, Fuji II LC, and compoglass and to compare bond strength with degree of microleakage exhibited by the same materials. Materials and Methods: Occlusal surfaces of 96 noncarious primary teeth were ground perpendicular to long axis of the tooth. Preparations were distributed into three groups consisting of Fuji IX GP, Fuji II LC and Compoglass. Specimens were tested for tensile bond strength by mounting them on Instron Universal Testing Machine. Ninety-six primary molars were treated with Fuji IX GP, Fuji II LC, and compoglass on box-only prepared proximal surface. Samples were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. ANOVA and Bonferrani correction test were done for comparisons. Pearson Chi-square test and regression analysis were done to assess the association between the parameters. Results: Compoglass showed highest tensile strength and Fuji II LC showed least microleakage. There was a significant difference between the three groups in tensile strength and microleakage levels. The correlation between tensile strength and microleakage level in each group showed that there was a significant negative correlation only in Group 3. Conclusion: Fuji II LC and compoglass can be advocated in primary teeth because of their superior physical properties when compared with Fuji IX GP.

  13. Evaluation of the resin cement thicknesses and push-out bond strengths of circular and oval fiber posts in oval-shapes canals

    Science.gov (United States)

    Er, Özgür; Kılıç, Kerem; Kılınç, Halil İbrahim; Sağsen, Burak

    2015-01-01

    PURPOSE The aim of this study was to evaluate whether the push-out bond strength varies between oval and circular fiber posts, and to examine the effect on the resin cement thicknesses around the posts. MATERIALS AND METHODS Eighteen mandibular premolar roots were separated into two groups for oval and circular fiber posts systems. Post spaces were prepared and fiber posts were luted to the post spaces. Roots were cut horizontally to produce 1-mm-thick specimens. Resin cement thicknesses were determined with a metallographic optical microscope and push-out tests were done. RESULTS No significant differences were observed in terms of push-out bond strength between the oval and circular fiber posts (P>.05) The resin cement thicknesses of the oval posts were greater than those of the circular posts group in the coronal, middle and apical specimens (P<.05). CONCLUSION In the light of these results, it can be stated that resin cement thickness does not affect the push-out bond strength. PMID:25722832

  14. Enamel shear bond strength of two orthodontic self-etching bonding systems compared to Transbond™ XT.

    Science.gov (United States)

    Hellak, Andreas; Rusdea, Patrick; Schauseil, Michael; Stein, Steffen; Korbmacher-Steiner, Heike Maria

    2016-11-01

    The aim of this in vitro study was to compare the shear bond strength (SBS) and Adhesive Remnant Index (ARI) scores of two self-etching no-mix adhesives (Prompt L-Pop™ and Scotchbond™) for orthodontic appliances to the commonly used total etch system Transbond XT™ (in combination with phosphoric acid). In all, 60 human premolars were randomly divided into three groups of 20 specimens each. In group 1 (control), brackets were bonded with Transbond™ XT primer. Prompt L-Pop™ (group 2) and Scotchbond™ Universal (group 3) were used in the experimental groups. Lower premolar brackets were bonded by light curing the adhesive. After 24 h of storage, the shear bond strength (SBS) was measured using a Zwicki 1120 testing machine. The adhesive remnant index (ARI) was determined under 10× magnification. The Kruskal-Wallis test was used to statistically compare the SBS and the ARI scores. No significant differences in the SBS between any of the experimental groups were detected (group 1: 15.49 ± 3.28 MPa; group 2: 13.89 ± 4.95 MPa; group 3: 14.35 ± 3.56 MPa; p = 0.489), nor were there any significant differences in the ARI scores (p = 0.368). Using the two self-etching no-mix adhesives (Prompt L-Pop™ and Scotchbond™) for orthodontic appliances does not affect either the SBS or ARI scores in comparison with the commonly used total-etch system Transbond™ XT. In addition, Scotchbond™ Universal supports bonding on all types of surfaces (enamel, metal, composite, and porcelain) with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures.

  15. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives.

    Science.gov (United States)

    Hosaka, Keiichi; Nakajima, Masatoshi; Monticelli, Francesca; Carrilho, Marcela; Yamauti, Monica; Aksornmuang, Juthatip; Nishitani, Yoshihiro; Tay, Franklin R; Pashley, David H; Tagami, Junji

    2007-10-01

    To evaluate the microtensile bond strength (microTBS) of two all-in-one self-etching adhesive systems and two self-etching adhesives with and without simulated hydrostatic pulpal pressure (PP). Flat coronal dentin surfaces of extracted human molars were prepared. Two all-in-one self-etching adhesive systems, One-Up Bond F (OBF; Tokuyama) and Clearfil S3 Bond (Tri-S, Kuraray Medical) and two self-etching primer adhesives, Clearfil Protect Bond (PB; Kuraray) and Clearfil SE Bond (SE; Kuraray) were applied to the dentin surfaces according to manufacturers' instructions under either a pulpal pressure (PP) of zero or 15 cm H2O. A hybrid resin composite (Clearfil AP-X, Kuraray) was used for the coronal buildup. Specimens bonded under PP were stored in water at 37 degrees C under 15 cm H2O for 24 h. Specimens not bonded under PP were stored under a PP of zero. After storage, the bonded specimens were sectioned into slabs that were trimmed to hourglass-shaped specimens, and were subjected to microtensile bond testing (microTBS). The bond strength data were statistically analyzed using two-way ANOVA and the Holm-Sidak method for multiple comparison tests (alpha = 0.05). The surface area percentage of different failure modes for each material was also statistically analyzed with three one-way ANOVAs and Tukey's multiple comparison tests. The microTBS of OBF and Tri-S fell significantly under PP. However, in the, PB and SE bonded specimens under PP, there were no significant differences compared with the control groups without PP. The microTBS of the two all-in-one adhesive systems decreased when PP was applied. However, the microTBS of both self-etching primer adhesives did not decrease under PP.

  16. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive.

  17. Correlation between degree of conversion, resin-dentin bond strength and nanoleakage of simplified etch-and-rinse adhesives.

    Science.gov (United States)

    Hass, Viviane; Dobrovolski, Max; Zander-Grande, Christiana; Martins, Gislaine Cristine; Gordillo, Luís Alfonso Arana; Rodrigues Accorinte, Maria de Lourdes; Gomes, Osnara Maria Mongruel; Loguercio, Alessandro Dourado; Reis, Alessandra

    2013-09-01

    The aim of this study was to correlate the degree of conversion measured inside the hybrid layer (DC) with the microtensile resin-dentin bond strength (μTBS) and silver nitrate uptake or nanoleakage (SNU) for five simplified etch-and-rinse adhesive systems. Fifty-five caries free extracted molars were used in this study. Thirty teeth were used for μTBS/SNU [n=6] and 25 teeth for DC [n=5]. The dentin surfaces were bonded with the following adhesives: Adper Single Bond 2 (SB), Ambar (AB), XP Bond (XP), Tetric N-Bond (TE) and Stae (ST) followed by composite resin build-ups. For μTBS and SNU test, bonded teeth were sectioned in order to obtain stick-shaped specimens (0.8mm(2)), which were tested under tensile stress (0.5mm/min). Three bonded sticks, from each tooth, were not tested in tensile stress and they were immersed in 50% silver nitrate, photo-developed and analyzed by scanning electron microscopy. Longitudinal 1-mm thick sections were prepared for the teeth assigned for DC measurement and evaluated by micro-Raman spectroscopy. ST showed lowest DC, μTBS, and higher SNU (p0.05), except for TE which showed an intermediate SNU level. The DC was positively correlated with μTBS and negatively correlated with SNU (p<0.05). SNU was also negatively correlated with μTBS (p<0.05). The measurement of DC inside the hybrid layer can provide some information about bonding performance of adhesive systems since this property showed a good correlation with resin-dentin bond strength and SNU values. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Assessing the effects of hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Andrighetto, Augusto Ricardo; de Leão Withers, Eduardo Henrique; Grando, Karlos Giovani; Ambrosio, Aldrieli Regina; Shimizu, Roberto Hideo; Melo, Ana Cláudia

    2016-01-01

    Tooth bleaching is, today, one of the most widespread cosmetic treatments in dental practice,  so it is important to determine whether it can interfere with orthodontic bonding or not. The aim of this study was to assess the in vitro effects of 35% hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets. Forty-five upper bicuspids were divided into three groups (n = 15). In the control Group (C), the brackets were bonded without previous bleaching treatment. Group 1 (G1) was treated with 35% hydrogen peroxide bleaching agent 24 h before bracket bonding. Group 2 was also bleached, and the brackets were bonded after 30 days. The shear bond strength of the brackets was measured using an EMIC machine, and the results were analyzed by ANOVA. There were no statistically significant differences between the three groups (P > 0.05), with Group C showing a mean bond strength of 9.72 ± 2.63 MPa, G1 of 8.09 ± 2.63 MPa, and G2 of 11.15 ± 4.42 MPa. It was possible to conclude that 35% hydrogen peroxide bleaching agent does not affect the shear strength of orthodontic brackets bonded 24 h and 30 days after bleaching.

  19. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    International Nuclear Information System (INIS)

    GUESS, TOMMY R.; METZINGER, KURT E.

    1999-01-01

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint

  1. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  2. Effects of silane application on the shear bond strength of ceramic orthodontic brackets to enamel surface

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2016-12-01

    Full Text Available Background: Fixed orthodontic appliances with ceramic brackets are used frequently to fulfill the aesthetic demand of patient through orthodontic treatment. Ceramic brackets have some weaknesses such as bond strength and enamel surface damage. In high bond strength the risk of damage in enamel surfaces increases after debonding. Purpose: This study aimed to determine the effect of silane on base of bracket and adhesive to shear bond strength and enamel structure of ceramic bracket. Method: Sixteen extracted upper premolars were randomly divided into four groups based on silane or no silane on the bracket base and on the adhesive surface. Design of the base on ceramic bracket in this research was microcrystalline to manage the influence of mechanical interlocking. Samples were tested in shear mode on a universal testing machine after attachment. Following it, adhesive remnant index (ARI scores were used to assess bond failure site. Statistical analysis was performed using a two-way Anova and the Mann-Whitney test. A scanning electron microscope (SEM with a magnification of 2000x was used to observe enamel structure after debonding. Result: Shear bond strength was increased between group without silane and group with silane on the base of bracket (p<0,05. There was no significance different between group without silane and group with silane on adhesive (p<0,05. Conclusion: Application of silane on base of bracket increases shear bond strength, however, application of silane on adhesive site does not increase shear bond strength of ceramic bracket. Most bonding failure occurred at the enamel adhesive interface and damage occurred on enamel structure in group contains silane of ceramic bracket.

  3. Effect of different light curing methods on the push-out bond strength of glass fiber post to different root canal regions

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2016-07-01

    Full Text Available Background and Aims: Slow polymerization rate in early stage of light curing process leads to higher monomers movement and entering in polymer network that cause higher mechanical properties.The aim of this study was to evaluate the effect of light activation methodes (immediate, 5 and 10 minutes delay on the push-out bond strength of cemented fiber posts in different regions of root canal with two types of resin cements. Materials and Methods: In sixty extracted human single canal, the teeth were decoronated from cement enamel junction and after root canal therapy, FRC postec plus were cemented with two resin cements, Duolink and Variolink 2, in three curing methods; immediate, 5 and 10 minutes of delay. After storing in a dark place for 24 hours, they were cut into three sections: coronal, middle and apical. The push-out bond strength test was performed using a universal testing machine. The failure modes were observed using a stereomicroscope. Data were analyzed using ANOVA and Tukey post hoc test (P0.05. In immediate light curing method, regardless of root region, Duolink had higher push-out bond strength than that of Variolink 2 (P=0.02. In all subgroups, there were reductions in the bond strengths from coronal to apical. Mixed failure at the cement-fiber post interface was predominent in all groups. Conclusion: 5 and 10 minutes delay caused reduction in the push-out bond strength for Variolink 2 but did not have significant effect for Duolink resin cement.

  4. Effect of universal adhesive etching modes on bond strength to dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; Brown, Matthew

    2018-04-01

    Information is lacking as to the effect on bond strength of the etching modes of universal adhesives when they are used to bond dual-polymerizing composite resins to dentin. The purpose of this in vitro study was to investigate the bonding of dual-polymerizing foundation composite resins to dentin when universal bonding agents are used in self-etch or etch-and-rinse modes. Sixty caries-free, extracted third molar teeth were sectioned transversely in the apical third of the crown and allocated to 12 groups (n=5). Three different bonding agents (Scotchbond Universal, OptiBond XTR, All-Bond Universal) were used to bond 2 different dual-polymerizing composite resins (CompCore AF or CoreFlo DC) to dentin, using 2 different etching approaches (etch-and-rinse or self-etch). The specimens were sectioned into sticks (1×1×8 mm) with a precision saw. The bond strength of the specimens was tested under microtensile force at a crosshead speed of 0.5 mm/min. The data were analyzed using a 3-way ANOVA, a Games-Howell post hoc comparisons model, and Student t tests with Bonferroni corrections (α=.05). In the overall model, the composite resin used had no effect on bond strength (P=.830). The etching protocol by itself also did not have a significant effect (P=.059), although a trend was present. The bonding agent, however, did have an effect (Pcomposite resins to dentin, no single etching protocol is better than another. Depending on which bonding agent is being used, one etching mode may perform better. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Effect of provisional cements on shear bond strength of porcelain laminate veneers.

    Science.gov (United States)

    Altintas, Subutay Han; Tak, Onjen; Secilmis, Asli; Usumez, Aslihan

    2011-08-01

    The purpose of this study was to evaluate the effect of three provisional cements and two cleaning techniques on the final bond strength of porcelain laminate veneers. The occlusal third of the crowns of forty molar teeth were sectioned and embedded in autopolymerizing acrylic resin. Dentin surfaces were polished and specimens were randomly divided into four groups (n=10). Provisional restorations were fabricated and two provisional restorations were cemented onto each tooth. Restorations were fixed with one of three different provisional cements: eugenol-free provisional cement (Cavex), calcium hydroxide (Dycal), and light-cured provisional cement (Tempond Clear). Provisional restorations were removed with either a dental explorer and air-water spray, or a cleaning bur (Opticlean). In the control group, provisional restorations were not used on the surfaces of specimens. IPS Empress 2 ceramic discs were luted with a dual-cured resin cement (Panavia F). Shear bond strength was measured using a universal testing machine. Data were statistically analyzed by ANOVA, Tukey's HSD and Dunnett tests. Surfaces were examined by scanning electronic microscopy. Significant differences were found between the control group and both the light-cured provisional cement groups and the eugenol-free provisional cement-cleaning bur group (Pprovisional cement showed the lowest bond strength values. Selection of the provisional cement is an important factor in the ultimate bond strength of the final restoration. Calcium hydroxide provisional cement and cleaning with a dental explorer are advisable.

  6. Effects of Novel Structure Bonding Materials on Properties of Aeronautical Acrylic

    Directory of Open Access Journals (Sweden)

    LI Zhisheng

    2017-06-01

    Full Text Available Novel structure bonding materials, J-351 epoxy adhesive film with low curing temperature and liquid modified acrylate SY-50s adhesive were chosen and characterized. The effects of adhesives on the mechanical properties of acrylic were studied. The results reveal that both adhesives have excellent bonding properties to acrylic. The stress-solvent crazing value of J-351 is higher than that of SY-50s. With the application of adhesive on the surface, mechanical properties of acrylic are declined. Casting acrylic shows more drastic decline than that of oriented acrylic. Through the characterization of fracture surface, we find that fracture of tensile sample derives from the side with adhesive. Mechanical properties of acrylic are more sensitive to SY-50s, because the liquid adhesive presents integrate bonding interface with acrylic. The interface between J-351 and acrylic is clear, making acrylic insensitive to J-351 film. Edge attachment strength of samples bonded with J-351 are higher than that of samples bonded with SY-50s due to the effects of adhesives on acrylic. J-351 epoxy adhesive film presents preferable application performance in the structure bonding of aeronautical acrylic.

  7. Effect of nanotechnology in self-etch bonding systems on the shear bond strength of stainless steel orthodontic brackets

    OpenAIRE

    Hammad, Shaza M.; El-Wassefy, Noha; Maher, Ahmed; Fawakerji, Shafik M.

    2017-01-01

    ABSTRACT Objective: To evaluate the effect of silica dioxide (SiO2) nanofillers in different bonding systems on shear bond strength (SBS) and mode of failure of orthodontic brackets at two experimental times. Methods: Ninety-six intact premolars were divided into four groups: A) Conventional acid-etch and primer Transbond XT; B) Transbond Plus self-etch primer; and two self-etch bonding systems reinforced with silica dioxide nanofiller at different concentrations: C) Futurabond DC at 1%; D...

  8. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    OpenAIRE

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons...

  9. Effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin

    Directory of Open Access Journals (Sweden)

    Payal Singh

    2017-07-01

    Full Text Available Objectives This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Materials and Methods Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups (n = 24 according to 5 different surface pre-treatments: No pre-treatment (control; 1M carbodiimide (EDC; 0.1% epigallocatechin-3-gallate (EGCG; 2% minocycline (MI; 10% sodium ascorbate (SA. After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter, which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS evaluation at 24 hours (immediate and remaining 10 samples were tested after 6 months (delayed. Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio‑Wilk W test, 2-way analysis of variance (ANOVA, and post hoc Tukey's test. Results At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only (p = 0.009. After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resin-dentin bond strength with no significant fall. Conclusions Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.

  10. Effect of Sandblasting and Type of Cement on the Bond Strength of Molar Bands on Stainless Steel Crowns.

    Science.gov (United States)

    Bawazir, Omar A; Elaraby, Alaa; Alshamrani, Hamed; Salama, Fouad S

    2015-01-01

    The purposes of this study were to: (1) compare the bond strength of molar bands cemented to stainless steel crowns (SSCs) using glass ionomer cement (GIC), resin-modified glass ionomer cement (RMGIC), or polycarboxylate cement (PXC); and (2) assess the influence of sandblasting molar bands on the mean bond strength between the band and the SSC. Sixty SSCs and 60 molar bands were used. The inner surfaces of 30 molar bands were roughened by sandblasting prior to cementation. The bond strength was measured after dislodging the SSC using a push-out test. In the nonsandblasted group, a significant difference was observed between PXC and RMGIC (P >.04). In the sandblasted group, a significant difference was observed between PXC and RMGIC (P >.02), while there was only a marginal difference between GIC and RMGIC (P >.05). The sandblasted group exhibited superior bond strength overall. However, the only significant improvement was observed for GIC (P >.03). PXC showed the highest bond strength of molar bands to SSCs, while RMGIC showed the lowest. Sandblasting the inner surface of bands enhanced the bond strength of different cements.

  11. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  12. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2011-02-01

    To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.

  13. Effect of UV irradiation on the shear bond strength of titanium with segmented polyurethane through gamma-mercapto propyl trimethoxysilane.

    Science.gov (United States)

    Sakamoto, Harumi; Hirohashi, Yohei; Doi, Hisashi; Tsutsumi, Yusuke; Suzuki, Yoshiaki; Noda, Kazuhiko; Hanawa, Takao

    2008-01-01

    The objective of this study was to investigate the effect of UV irradiation on shear bond strength between a titanium (Ti) and a segmented polyurethane (SPU) composite through gamma-mercapto propyl trimethoxysilane (gamma-MPS). To this end, the shear bond strength of Ti/SPU interface of Ti-SPU composite under varying conditions of ultraviolet ray (UV) irradiation was evaluated by a shear bond test. The glass transition temperatures of SPU with and without UV irradiation were also determined using differential scanning calorimetry. It was found that the shear bond strength of Ti/SPU interface increased with UV irradiation. However, excessive UV irradiation decreased the shear bond strength of Ti/SPU interface. Glass transition temperature was found to increase during 40-60 seconds of UV irradiation. In terms of durability after immersion in water at 37 degrees C for 30 days, shear bond strength was found to improve with UV irradiation. In conclusion, UV irradiation to a Ti-SPU composite was clearly one of the means to improve the shear bond strength of Ti/SPU interface.

  14. Social-bond strength influences vocally mediated recruitment to mobbing.

    Science.gov (United States)

    Kern, Julie M; Radford, Andrew N

    2016-11-01

    Strong social bonds form between individuals in many group-living species, and these relationships can have important fitness benefits. When responding to vocalizations produced by groupmates, receivers are expected to adjust their behaviour depending on the nature of the bond they share with the signaller. Here we investigate whether the strength of the signaller-receiver social bond affects response to calls that attract others to help mob a predator. Using field-based playback experiments on a habituated population of wild dwarf mongooses (Helogale parvula), we first demonstrate that a particular vocalization given on detecting predatory snakes does act as a recruitment call; receivers were more likely to look, approach and engage in mobbing behaviour than in response to control close calls. We then show that individuals respond more strongly to these recruitment calls if they are from groupmates with whom they are more strongly bonded (those with whom they preferentially groom and forage). Our study, therefore, provides novel evidence about the anti-predator benefits of close bonds within social groups. © 2016 The Author(s).

  15. Bracket bond strength and cariostatic potential of an experimental resin adhesive system containing Portland cement.

    Science.gov (United States)

    Iijima, Masahiro; Hashimoto, Masanori; Nakagaki, Susumu; Muguruma, Takeshi; Kohda, Naohisa; Endo, Kazuhiko; Mizoguchi, Itaru

    2012-09-01

    To determine if a new experimental resin-based material containing Portland cement (PC) can help prevent enamel caries while providing adequate shear bond strength (SBS). Brackets were bonded to human premolars with experimental resin-based adhesive pastes composed of three weight rations of resin and PC powder (PC 30, 7:3; PC 50, 5:5; PC 70, 3:7; n  =  7). Self-etching primer (SEP) adhesive (Transbond Plus) and resin-modified glass ionomer cement (RMGIC) adhesive (Fuji Ortho FC Automix) were used for comparison. All of the bonded teeth were subjected to alternating immersion in demineralizing (pH 4.55) and remineralizing (pH 6.8) solutions for 14 days. The SBS for each sample was examined, and the Adhesive Remnant Index (ARI) score was calculated. The hardness and elastic modulus of the enamel were determined by a nanoindenter at 20 equidistant depths from the external surface at 100 µm from the bracket edge. Data were compared by one-way analysis of variance and a chi-square test. PC 50 and PC 70 showed significantly greater SBS than Fuji Ortho FC Automix, although Transbond Plus showed significantly greater SBS than other bonding systems. No significant difference in the ARI category was observed among the five groups. For specimens bonded with PC 50 and PC 70, the hardness and elastic modulus values in most locations were equivalent to those of Fuji Ortho FC Automix. Experimental resin-based bonding material containing PC provides adequate SBS and a caries-preventive effect equivalent to that of the RMGIC adhesive system.

  16. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    Directory of Open Access Journals (Sweden)

    Rodrigo Vieira Caixeta

    2015-01-01

    Full Text Available The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED. Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10 followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa were submitted to Student’s t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x. Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites.

  17. Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2014-05-01

    Full Text Available Objectives This study evaluated the effect of three antioxidizing agents on pull-out bond strengths of dentin treated with sodium hypochlorite. Materials and Methods Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5 with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence, 10% hesperidin (HPN, Sigma, and 10% sodium ascorbate hydrogel (SA, AppliChem. Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh in the prepared canals. After storage in distilled water (24 h/37℃, the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (α = 0.05. Results There were significant differences between study groups (p = 0.016. The highest pull-out strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin.

  18. Ceramic (Feldspathic & IPS Empress II) vs. laboratory composite (Gradia) veneers; a comparison between their shear bond strength to enamel; an in vitro study.

    Science.gov (United States)

    Nikzad, S; Azari, Abbas; Dehgan, S

    2010-07-01

    Patient demand for aesthetic dentistry is steadily growing. Laminates and free metal restorations have evolved in an attempt to overcome the invasiveness nature of full veneer restorations. Although many different materials have been used for making these restorations, there is no single material that fits best for all purposes. Two groups of ceramic material (Feldspathic and IPS Empress II) and one group of laboratory composite (Gradia) discs (10 discs in each group; 4 mm in diameter and 2 mm in thickness) were prepared according to the manufacturer's instruction. The surface of ceramic discs were etched and silanized. In Gradia group, liquid primer was applied on composite surfaces. Thirty freshly extracted sound human molars and premolars were randomly divided into three groups. The enamel surface of each tooth was slightly flattened (0.3 mm) on the buccal or lingual side and then primed and cemented to the prepared discs with the aid of a dental surveyor. The finishing specimens were thermocycled between 5 degrees C and 55 degrees C for 2500 cycles and then prepared for shear bond strength testing. The resulting data were analyzed by one-way anova and Tukey HSD test. The fractured surfaces of each specimen were inspected by means of stereomicroscope and SEM. There is significant difference between the bond strength of materials tested. The mean bond strengths obtained with Feldspathic ceramic, IPS Empress II and Gradia were 33.10 +/- 4.31 MPa, 26.04 +/- 7.61 MPa and 14.42 +/- 5.82 MPa, respectively. The fracture pattern was mainly mixed for ceramic groups. More scientific evidence needed for standardization of bonding protocols.

  19. [Bond strengths of absorbable polylactic acid root canal post with three different adhesives].

    Science.gov (United States)

    Pan, Hui; Cheng, Can; Hu, Jia; Liu, He; Sun, Zhi-hui

    2015-12-18

    To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], Padhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives. No major failure modes were found in the group of cyanoacrylates. The bond strength of fibrin sealant is low, which cannot meet the requirement of

  20. Influence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin

    Directory of Open Access Journals (Sweden)

    Marcio Vivan Cardoso

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp. Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX and one self-etch system (Clearfil SE Bond - SE were employed, varying the presence or absence of an intrapulpal pressure (IPP simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05. The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.

  1. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    International Nuclear Information System (INIS)

    Butler, L.; West, J.S.; Tighe, S.L.

    2011-01-01

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  2. COMPOSITE RESIN BOND STRENGTH TO ETCHED DENTINWITH ONE SELF PRIMING ADHESIVE

    Directory of Open Access Journals (Sweden)

    P SAMIMI

    2002-09-01

    Full Text Available Introduction. The purpose of this study was to compare shear bond strength of composite resins to etched dentin in both dry and wet dentin surface with active and inactive application of a single-bottle adhesive resin (Single Bond, 3M Dental products. Methods. Fourthy four intact human extracted molars and premolars teeth were selected. The facial surfaces of the teeth were grounded with diamond bur to expose dentin. Then specimens were divided into four groups of 11 numbers (9 Molars and 2 Premolars. All the samples were etched with Phosphoric Acid Gel 35% and then rinsed for 10 seconds. The following stages were carried out for each group: Group I (Active-Dry: After rinsing, air drying of dentin surface for 15 seconds, active priming of adhesive resin for 15 seconds, air drying for 5 seconds, the adhesive resin layer was light cured for 10 seconds. Group III (Inactive-Dry:After rinsing, air drying of dentin surface for 15 seconds, adhesive resin was applied and air dryied for 5 seconds, the adhesive layer was light cured for 10 seconds. Group III (Active-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, active priming of adhesive resin for 15 seconds and air drying for 5 seconds, the adhesive layer was light cured for 10 seconds. Group IV (Inactive-Wet:After rinsing, removal of excess water of dentin surface with a cotton roll, the adhesive resin was applied and air dryied for 5 seconds and then cured for 10 seconds. After adhesive resin application, composite resin (Z250, 3M Dental products was applied on prepared surface with cylindrical molds (with internal diameter of 2.8mm, & height of 5mm and light-cured for 100 seconds (5x20s. The samples were then thermocycled. They were located in 6±3c water .temperature for 10 seconds and then 15 seconds in inviromental temperature, 10s in 55±3c water temperature and then were located at room temperature for 15s. This test was repeated for 100s. All of the specimens

  3. An evaluation of shear bond strength of self-etch adhesive on pre-etched enamel: an in vitro study.

    Science.gov (United States)

    Rao, Bhadra; Reddy, Satti Narayana; Mujeeb, Abdul; Mehta, Kanchan; Saritha, G

    2013-11-01

    To determine the shear bond strength of self-etch adhesive G-bond on pre-etched enamel. Thirty caries free human mandibular premolars extracted for orthodontic purpose were used for the study. Occlusal surfaces of all the teeth were flattened with diamond bur and a silicon carbide paper was used for surface smoothening. The thirty samples were randomly grouped into three groups. Three different etch systems were used for the composite build up: group 1 (G-bond self-etch adhesive system), group 2 (G-bond) and group 3 (Adper single bond). Light cured was applied for 10 seconds with a LED unit for composite buildup on the occlusal surface of each tooth with 8 millimeters (mm) in diameter and 3 mm in thickness. The specimens in each group were tested in shear mode using a knife-edge testing apparatus in a universal testing machine across head speed of 1 mm/ minute. Shear bond strength values in Mpa were calculated from the peak load at failure divided by the specimen surface area. The mean shear bond strength of all the groups were calculated and statistical analysis was carried out using one-way Analysis of Variance (ANOVA). The mean bond strength of group 1 is 15.5 Mpa, group 2 is 19.5 Mpa and group 3 is 20.1 Mpa. Statistical analysis was carried out between the groups using one-way ANOVA. Group 1 showed statistically significant lower bond strength when compared to groups 2 and 3. No statistical significant difference between groups 2 and 3 (p adhesive G-bond showed increase in shear bond strength on pre-etched enamel.

  4. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    International Nuclear Information System (INIS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-01-01

    Highlights: ► A method from new respect to characterize and measure the bond strength is proposed. ► We calculate the D pb of a series of various bonds to justify our approach. ► A quite good linear relationship of the D pb with the bond lengths for series of various bonds is shown. ► Take the prediction of strengths of C–H and N–H bonds for base pairs in DNA as a practical application of our method. - Abstract: A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by D pb . Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the D pb of base pairs in DNA along C–H and N–H bonds are obtained for the first time. All results show that C 7 –H of A–T and C 8 –H of G–C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate D pb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules

  5. Hybridization quality and bond strength of adhesive systems according to interaction with dentin.

    Science.gov (United States)

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-07-01

    To evaluate the hybridization quality and bond strength of adhesives to dentin. Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives - Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems - Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system - Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm(2) in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. SE reached significantly higher μ-TBS (P 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P quality than that observed for ADP and XE. The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin.

  6. Effect of Endodontic Irrigating Solutions on the Micro Push-out Bond Strength of a Fibre Glass Dowel

    Directory of Open Access Journals (Sweden)

    Olimpia Crispim da Silveira

    2014-01-01

    Full Text Available Purpose: To evaluate the effect of different endodontic irrigating solutions on the micro push-out bond strength of a fiber glass dowel. Material and Methods: Seventy 16-mm long root segments of bovine incisors were prepared and randomly assigned to 7 groups (n=10 according to the type of irrigating solution used prior to the cementation of the intra-radicular fiber glass dowels: G1: 5.25% NaOCl + 17% EDTA; G2: 5.25% NaOCl; G3: 17% EDTA; G4: 2% chlorhexidine gel; G5: 70% alcohol; G6: 11.5% polyacrylic acid; and G7: saline (control. After treatment of intracanal dentin, the glass fibre dowels were cemented with self-adhesive resin cement (RelyX Unicem. Six slices with the thickness of 1.00 ± 0.05 mm were obtained from each tooth at the coronal, middle and apical root thirds (2 slices per third using a low-speed saw. Micro push-out tests were performed at a crosshead speed of 0.5mm/min and the data (MPa were analyzed statistically by ANOVA and Tukey’s and Dunnett’s tests. Results: There were statistically significant differences (p<0.0001 among the irrigating solutions, but no significant difference (p=0.0591 was found among the root thirds. G5 presented the highest bond strength mean of all groups (p<0.0001. The use of 70% alcohol increased the adhesion values by 53% compared to the group control. Conclusion: The use of 70% alcohol increased the bond strength of the fiber glass dowel to the dentin walls. However, the push-out bond strength between the dowel and the root dentin was not affected by the root third (coronal, middle and apical.

  7. Evaluation of bond strength of silorane and methacrylate based restorative systems to dentin using different cavity models

    Directory of Open Access Journals (Sweden)

    Stephano Zerlottini Isaac

    2013-09-01

    Full Text Available OBJECTIVE: The aim of this in vitro study was to evaluate the microtensile bond strength (µTBS to dentin of two different restorative systems: silorane-based (P90, and methacrylate-based (P60, using two cavity models. MATERIAL AND METHODS: Occlusal enamel of 40 human third molars was removed to expose flat dentin surface. Class I cavities with 4 mm mesial-distal width, 3 mm buccal-lingual width and 3 mm depth (C-factor=4.5 were prepared in 20 teeth, which were divided into two groups (n=10 restored with P60 and P90, bulk-filled after dentin treatment according to manufacturer's instructions. Flat buccal dentin surfaces were prepared in the 20 remaining teeth (C-factor=0.2 and restored with resin blocks measuring 4x3x3 mm using the two restorative systems (n=10. The teeth were sectioned into samples with area between 0.85 and 1.25 mm2 that were submitted to µTBS testing, using a universal testing machine (EMIC at speed of 0.5 mm/min. Fractured specimens were analyzed under stereomicroscope and categorized according to fracture pattern. Data were analyzed using ANOVA and Tukey Kramer tests. RESULTS: For flat surfaces, P60 obtained higher bond strength values compared with P90. However, for Class I cavities, P60 showed significant reduction in bond strength (p0.05, or between Class I Cavity and Flat Surface group, considering P90 restorative system (p>0.05. Regarding fracture pattern, there was no statistical difference among groups (p=0.0713 and 56.3% of the fractures were adhesive. CONCLUSION: It was concluded that methacrylate-based composite µTBS was influenced by cavity models, and the use of silorane-based composite led to similar bond strength values compared to the methacrylate-based composite in cavities with high C-factor.

  8. Use of diffusion bonded SS-Al composite material in the development of neutron detectors

    International Nuclear Information System (INIS)

    Alex, Mary; Prasad, K.R.; Pappachan, A.L.; Grover, A.K.; Krishnan, J.; Derose, D.J.; Bhanumurthy, K.; Kale, G.B.

    2005-01-01

    The present paper describes the development of a SS-Al composite plate in-house at BARC by diffusion bonding technique. Details of the several tests carried out on the composite material and the use of the plate in the development of a boron lined neutron chamber for Dhruva reactor control instrumentation has been described. The bonded sample has withstood tensile strength test, leak test and thermal cycling test and the leak rate was observed to be less than 3 x 10 -10 stdcc/sec. The chamber with the composite material has been installed in Dhruva Basket C location and connected to the log rate safety channel. It has been working successfully for the past two years. The use of SS-Al composite material has improved the reliability and long-term performance of the detector. (author)

  9. Evaluation of a New Nano-filled Bonding Agent for Bonding Orthodontic Brackets as Compared to a Conventional Bonding Agent: An in vitro Study

    OpenAIRE

    Sandesh S Pai; Amrita Nagendra; Vinaya S Pai; K Neelima; A E Vishwanath; P Vinod; Sharanya Ajit Kumar; Roopa R Tubaki

    2012-01-01

    Introduction: Recent advances in the field of material sciences have opened up a new horizon of options for bonding agents that can be used efficiently in orthodontics. The purpose of this study was evaluate and compare the shear bond strength (SBS) of the traditionally used Transbond XT and a newer nano-filled material Prime and Bond NT. Materials and methods: Sixty freshly extracted maxillary first premolars were stored in 0.1% (weight/volume) thymol. These were divided into two Groups. ...

  10. Effects of drying agents on bond strength of etch-and-rinse adhesive systems to enamel immediately after bleaching.

    Science.gov (United States)

    Niat, Alireza Boruzi; Yazdi, Fatmeh Maleknejad; Koohestanian, Niloufar

    2012-12-01

    To determine the effect of drying agents and adhesive solvents on the bond strength of resin composite to enamel immediately after bleaching. Sixty healthy human premolars were bleached using 15% carbamide peroxide gel and randomly divided into three groups according to the immersing solutions applied immediately after bleaching: 70% alcohol, acetone, and distilled water. Each group was randomly divided into two subgroups according to the adhesives that were applied: an alcohol-based adhesive (Single Bond) and an acetone-based adhesive (One Step). By using rubber washers, composite Z100 was placed onto the enamel and shear bond strength was evaluated in a universal testing machine at a crosshead speed of 1 mm/min. The type of failure was also assessed using a stereomicroscope. The data were statistically analyzed by two-way ANOVA and Tukey's post-hoc test (α = 0.05). Fisher's Exact test was used to evaluate differences in the failure modes. Statistical analysis showed that the bond strength of the distilled water groups was significantly lower than that of the other groups, but the bond strengths of the two groups where a drying agent was applied were similar to that of the unbleached group. The acetone-based adhesive (One Step) provided higher bond strength than did the alcohol-based adhesive (Single Bond) (p 0.05). Fisher's Exact test showed there was no significant difference in the failure mode of all the experimental groups (p > 0.05). The application of drying agents improves the bond strength of resin composite to bleached enamel. Furthermore, the acetone-based adhesive used in the study had a higher bond strength to bleached enamel than did the alcohol-based adhesive used.

  11. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  12. Microtensile dentin bond strength of fifth with five seventh-generation dentin bonding agents after thermocycling: An in vitro study

    Directory of Open Access Journals (Sweden)

    Bruhvi Poptani

    2012-01-01

    Full Text Available Objectives: The objective of this in vitro study was to compare the microtensile dentin bond strength (μTBS of five seventh-generation dentin bonding agents (DBA with fifth-generation DBA before and after thermocycling. Materials and Methods: Ten extracted teeth were assigned to fifth generation control group (optibond solo and each of the five experimental groups namely, Group I (G-Bond ,Group II (S 3 Clearfil, Group III (One Coat 7.0, Group IV (Xeno V, and Group V (Optibond all in one. The crown portions of the teeth were horizontally sectioned below the central groove to expose the dentin. The adhesive resins from all groups were bonded to the teeth with their respective composites. Specimens of sizes 1 × 1 × 6 mm 3 were obtained. Fifty specimens that bonded to dentin from each group were selected. Twenty-five of the specimens were tested for debonding without thermocycling and the remaining were subjected to thermocycling followed by μTBS testing. The data were analyzed with one-way ANOVA and Dunnett′s-test for comparison with the reference group(Vth Generation. Results: There was no significant difference (P > 0.05 between the fifth- and seventh-generation adhesives before and after thermocycling. The results of our study showed significantly higher value (P < 0.05 of μTBS of seventh-generation Group II (Clearfil S 3 compared to the fifth-generation before and after thermocycling. Conclusion: The study demonstrated that the Clearfil S 3 bond had the highest μTBS values. In addition, of the five tested seventh-generation adhesive resins were comparable to the fifth-generation DBA.

  13. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  14. The influence of silane evaporation procedures on microtensile bond strength between a dental ceramic and a resin cement

    Directory of Open Access Journals (Sweden)

    Pereira Carolina

    2010-01-01

    Full Text Available Aim: To assess the influence of silane evaporation procedures on bond strength between a dental ceramic and a chemically activated resin cement. Materials and Methods: Eighteen blocks (6 mm Χ 14 mm Χ 14 mm of ceramic IPS Empress 2 were cemented (C and B to composite resin (InTen-S blocks using a chemical adhesive system (Lok. Six groups were analyzed, each with three blocks divided according to ceramic surface treatment: two control groups (no treatment, NT; 10% hydrofluoric acid plus silane Monobond-S dried at room temperature, HFS; the other four groups comprised different evaporation patterns (silane rinsed and dried at room temperature, SRT; silane rinsed in boiling water and dried as before, SBRT; silane rinsed with boiling water and heat dried at 50°C, SBH; silane dried at 50 ± 5°C, rinsed in boiling water and dried at room temperature, SHBRT. The cemented blocks were sectioned to obtain specimens for microtensile test 7 days after cementation and were stored in water for 30 days prior to testing. Fracture patterns were analyzed by optical and scanning electron microscopy. Statistics and Results: All blocks of NT debonded during sectioning. One way ANOVA tests showed higher bond strengths for HFS than for the other groups. SBRT and SBH were statistically similar, with higher bond strengths than SRT and SHBRT. Failures were 100% adhesive in SRT and SHBRT. Cohesive failures within the "adhesive zone" were detected in HFS (30%, SBRT (24% and SBH (40%. Conclusion: Silane treatment enhanced bond strength in all conditions evaluated, showing best results with HF etching.

  15. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel.

    Science.gov (United States)

    Yazici, A Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-07-01

    The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C-55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at Padhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (Padhesives tested (P=.17). Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested.

  16. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel

    Science.gov (United States)

    Yazici, A. Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-01-01

    Objective The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Methods: Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C–55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at Padhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (Penamel for any of the adhesives tested (P=.17). Conclusion: Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested. PMID:22904656

  17. Effect of polymerization mode of two adhesive systems on push-out bond strength of fiber post to different regions of root canal dentin

    Directory of Open Access Journals (Sweden)

    Shahram Farzin Ebrahimi

    2014-01-01

    Full Text Available Background: A few studies have investigated the effect of the activation mode of adhesive systems on bond strength of fiber posts to root canal dentin. This study investigated the push-out bond strengths of a glass fiber post to different root canal regions with the use of two adhesives with light- and dual-cure polymerization modes. Materials and Methods: In this in vitro study, 40 maxillary central incisors were decoronated at cement-enamel junction with 15 ± 1 mm root length. After root canal therapy and post space preparations, they were randomly divided into four groups. Post spaces were treated with four different adhesives: Excite, Excite Dual cure Single Component (DSC, self-etch adhesive (AdheSE, and AdheSE dual-cure. Then the fiber-reinforced composite (FRC post, Postec Plus, was cemented with dual-cure resin cement, Variolink II. The roots were cut into three 2-mm-thick slices. Push-out tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. The mode of failures was determined under a stereomicroscope. Data were analyzed by three-way analysis of variance (ANOVA and Tukey test was conducted to compare post hoc with P < 0.05 as the level of significance. Results: The highest bond strength was obtained for AdheSE dual-cure (15.54 ± 6.90 MPa and the lowest was obtained for Excite light-cure (10.07 ± 7.45 MPa and only the bond strength between these two adhesives had significant difference (P = 0.02. Bond strength decreased from the coronal to the apical in all groups and this was significant in Excite (group 1 and AdheSE (group 3 (P < 0.001. In apical regions, bond strength of dual-cure adhesives was significantly higher than light-cure adhesives (P < 0.001. Conclusion: Push-out bond strength of fiber post to different regions of root canal dentin was affected by both adhesive systems and their polymerization modes.

  18. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p < 0.05). Also, a significant increase in bond strength values was noted in group 6 (p < 0.05). All surface treatment methods enhanced the repair bond strength of the composite to zirconia; however, there were no significant differences between treatment methods. The results revealed that Nd:YAG laser irradiation along with the combination of sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. © Wiley Periodicals, Inc.

  19. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    Science.gov (United States)

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p enamel interface.

  20. Shear bond strength of two 2-step etch-and-rinse adhesives when bonding ceramic brackets to bovine enamel.

    Science.gov (United States)

    Godard, Marion; Deuve, Benjamin; Lopez, Isabelle; Hippolyte, Marie-Pascale; Barthélemi, Stéphane

    2017-09-01

    The present study assessed a fracture analysis and compared the shear bond strength (SBS) of two 2-step etch-and-rinse (E&R) adhesives when bonding ceramic orthodontic brackets to bovine enamel. Thirty healthy bovine mandibular incisors were selected and were equally and randomly assigned to 2 experimental groups. Ceramic brackets (FLI Signature Clear ® , RMO) were bonded onto bovine enamel using an adhesive system. In group 1 (n=15), the conventional E&R adhesive (OrthoSolo ® +Enlight ® , Ormco) was used, and in group 2 (n=15), the new E&R adhesive limited to ceramic bracket bonding (FLI ceramic adhesive ® : FLI sealant resin ® +FLI adhesive paste ® , RMO) was used. In order to obtain appropriate enamel surfaces, the vestibular surfaces of mandibular bovine incisors were flat ground. After bonding, all the samples were stored in distilled water at room temperature for 21 days and subsequently tested for SBS, using the Instron ® universal testing machine. The Adhesive Remnant Index (ARI) scores were evaluated. Failure modes were assessed using optical microscopy at magnification ×40. A statistic data analysis was performed using the Mann-Whitney U-test (Penamel/adhesive interface. A statistically significant difference was found for the ARI scores between the two groups (P=0.00996). Only two fractured brackets, which remained bonded onto the bovine enamel, were reported. Both occurred in group 1. When bonded to ceramic brackets, FLI ceramic adhesive ® (RMO) was demonstrated to be very predictable and safe for clinical application in enamel bonding, whereas the results obtained with the conventional adhesive system (OrthoSolo ® +Enlight ® , Ormco) were less reproducible and revealed slightly excessive shear bond strength values. Copyright © 2017 CEO. Published by Elsevier Masson SAS. All rights reserved.